WO2018040351A1 - 用于往复式压缩机的曲轴和往复式压缩机 - Google Patents

用于往复式压缩机的曲轴和往复式压缩机 Download PDF

Info

Publication number
WO2018040351A1
WO2018040351A1 PCT/CN2016/108735 CN2016108735W WO2018040351A1 WO 2018040351 A1 WO2018040351 A1 WO 2018040351A1 CN 2016108735 W CN2016108735 W CN 2016108735W WO 2018040351 A1 WO2018040351 A1 WO 2018040351A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
reciprocating compressor
counterbore
main shaft
crank arm
Prior art date
Application number
PCT/CN2016/108735
Other languages
English (en)
French (fr)
Inventor
宋庆华
严志奇
孔德军
Original Assignee
安徽美芝制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610796878.XA external-priority patent/CN106194659A/zh
Priority claimed from CN201621033006.XU external-priority patent/CN206054225U/zh
Application filed by 安徽美芝制冷设备有限公司, 美的集团股份有限公司 filed Critical 安徽美芝制冷设备有限公司
Publication of WO2018040351A1 publication Critical patent/WO2018040351A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts

Definitions

  • the present invention relates to the field of compressor technology, and more particularly to a crankshaft for a reciprocating compressor and a reciprocating compressor having the same.
  • crankshaft of the reciprocating piston compressor in the prior art is generally cast by cast iron of FCD500 or FC200 with high Young's modulus, and the axial oil supply passage of the cast crankshaft needs to be obtained by processing, due to oil supply. The passage is long and the processing is troublesome.
  • the overall casting crankshaft of the reciprocating piston compressor has an eccentric structure, and the requirements for the rigidity of the crankshaft processing equipment are relatively high to ensure the parallelism of the main shaft and the crank, and the manufacturability is poor.
  • the parameters such as the crankshaft shaft diameter and the eccentric amount are usually changed.
  • the crank casting mold must be redesigned, the versatility of the mold is poor, and the degree of standardization is low.
  • the metal casting thermoforming process has a relatively large environmental pollution and energy consumption.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention proposes a crankshaft for a reciprocating compressor that is easy to process, has a high degree of standardization, is highly versatile, and has low cost, and can reduce environmental pollution and energy consumption.
  • the present invention also proposes a reciprocating compressor having the crankshaft for a reciprocating compressor.
  • a crankshaft for a reciprocating compressor includes: a main shaft, a counter shaft, and a crank arm, the main shaft and the counter shaft being respectively disposed on both sides of the crank arm, the crank A first counterbore and a second counterbore are respectively disposed on two sides of the arm, the main shaft is installed in the first counterbore, and the counter shaft is installed in the second counterbore.
  • the main shaft, the counter shaft, and the crank arm are separate components, one end of the main shaft is fixedly fixed in the first counterbore, and one end of the counter shaft is fixedly fixed to the second sink.
  • the mounting position of the main shaft and the counter shaft can be defined by the first counterbore and the second counterbore, which facilitates assembly of the main shaft, the counter shaft and the crank arm, and the main shaft and the counter shaft can be formed by stamping from a metal plate or formed of a metal tube.
  • the crank arm can be made of a metal plate, which makes the crankshaft for the reciprocating compressor simple to mold and easy to process. Compared with the traditional casting process, the quality of the crankshaft, material cost and processing cost can be greatly reduced, and at least the power of the reciprocating compressor during operation is reduced, and the reliability of the reciprocating compressor is improved.
  • crankshaft for a reciprocating compressor may further have the following additional technical features:
  • the main shaft has an interference fit with the first counterbore, the countershaft and the second sink The hole is over-matched.
  • the spindle is welded within the first counterbore and the countershaft is welded within the second counterbore.
  • a first oil supply passage is defined in the main shaft, and a second oil supply passage in communication with the first oil supply passage is defined in the counter shaft.
  • crank arm is provided with an eccentric oil hole, and the eccentric oil hole communicates with the first counterbore and the second counterbore to communicate the first oil supply passage and the second oil supply aisle.
  • the main shaft is provided with at least one lubricating oil hole communicating with the first oil supply passage.
  • the plurality of lubricating oil holes are plural, and the plurality of lubricating oil holes are spaced apart along the axial direction of the main shaft.
  • the first counterbore and the second counterbore have a depth H ⁇ 2 mm.
  • the main shaft and the countershaft are each made of a steel pipe, and the crank arm is made of a steel plate.
  • a reciprocating compressor according to an embodiment of the second aspect of the present invention includes a crankshaft for a reciprocating compressor according to the above embodiment.
  • the reciprocating compressor according to the embodiment of the present invention can also have the above-described technical effects, that is, the reciprocating compressor according to the embodiment of the present invention, by setting The crankshaft for a reciprocating compressor of the above embodiment can simplify the production process of parts, reduce material cost and processing cost, improve the reliability of the operation of the reciprocating compressor, and also reduce environmental pollution and energy effects.
  • FIG. 1 is a schematic structural view of a crankshaft for a reciprocating compressor according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a main shaft of a crankshaft for a reciprocating compressor according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a secondary shaft of a crankshaft for a reciprocating compressor according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of an angle of a crank arm of a crankshaft for a reciprocating compressor according to an embodiment of the present invention
  • Fig. 5 is a structural schematic view showing another angle of a crank arm of a crankshaft for a reciprocating compressor according to an embodiment of the present invention.
  • crankshaft for a reciprocating compressor 100: a crankshaft for a reciprocating compressor
  • crank arm 31: first counterbore, 32: second counterbore, 33: eccentric oil hole;
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • crankshaft 100 for a reciprocating compressor will be described below with reference to the accompanying drawings.
  • a crankshaft 100 for a reciprocating compressor may include a main shaft 1, a counter shaft 2, and a crank arm 3, and the main shaft 1 and the counter shaft 2 are respectively disposed on the crank arm 3.
  • the first counterbore 31 and the second counterbore 32 are respectively disposed on both sides of the crank arm 3.
  • the main shaft 1 is installed in the first counterbore 31, and the countershaft 2 is installed in the second counterbore 32.
  • the countershaft 2 and the main shaft 1 are hollow tubular structures.
  • the countershaft 2 and the main shaft 1 can be obtained by metal plate stamping or metal pipe or spinning, and precision and surface roughness are preferably used.
  • the metal pipe and the crank arm 3 can be stamped from a metal plate of a standard thickness. Since the metal pipe and the metal plate are standardized products, the dimensional and shape precision are high, and the rough machining process can be omitted compared with the conventional process casting crankshaft, and the quality, material cost and manufacturing cost of the crankshaft 100 are reduced. Further, the spindle 1, the countershaft 2, and the crank arm 3 can be made highly standardized and highly versatile.
  • a first counterbore 31 is provided on one side of the crank arm 3, and a second counterbore 32 is provided on the opposite side of the crank arm 3, and the first counterbore 31 and The depth of the second counterbore 32 is smaller than the thickness of the crank arm 3.
  • One end of the main shaft 1 is fixedly fixed in the first counterbore 31, and one end of the countershaft 2 is fixedly fixed in the second counterbore 32, so that the main shaft 1 can be realized.
  • the countershaft 2 is fixedly mounted to the crank arm 3, and the first counterbore 31 and the second counterbore 32 can define the main shaft 1 and the countershaft
  • the mounting position of 2 improves the accuracy of the mounting of the main shaft 1, the counter shaft 2, and the crank arm 3.
  • the eccentricity of the crankshaft 100 can be adjusted by adjusting the diameter of the metal pipe, the installation tool of the crankshaft 100, etc., to meet the process requirements of the crankshaft 100 of the reciprocating compressor of various displacements, thereby saving the mold opening cost of the crankshaft 100. Improve product production efficiency.
  • the main shaft 1, the counter shaft 2, and the crank arm 3 are separate components, and one end of the main shaft 1 is mounted and fixed in the first counterbore 31, and the countershaft 2 is One end is fixedly mounted in the second counterbore 32, and the mounting positions of the main shaft 1 and the counter shaft 2 are defined by the first counterbore 31 and the second counterbore 32, which facilitates assembly of the main shaft 1, the countershaft 2 and the crank arm 3.
  • the main shaft 1 and the counter shaft 2 may be formed by stamping from a metal plate or formed of a metal tube, and the crank arm 3 may be made of a metal plate, so that the crankshaft 100 for the reciprocating compressor is simple in molding and easy to process. Compared with the traditional casting process, the quality, material cost and processing cost of the crankshaft 100 can be greatly reduced, and at least the power of the reciprocating compressor during operation is reduced, and the reliability of the reciprocating compressor is improved.
  • the main shaft 1 and the first counterbore 31 may have an interference fit
  • the counter shaft 2 and the second counterbore 32 have an interference fit. That is, one end of the main shaft 1 can be intermittently pressed into the first counterbore 31, and one end of the counter shaft 2 is intervened and pressed into the second counterbore 32, so that the main shaft 1 and the counter shaft 2 can be respectively fixed to the crank arm. 3 on both sides.
  • the main shaft 1 may be welded within the first counterbore 31 and the countershaft 2 welded within the second counterbore 32. Specifically, one end of the main shaft 1 is inserted into the first counterbore 31, and after one end of the counter shaft 2 is inserted into the second counterbore 32, the joint of the main shaft 1, the countershaft 2 and the crank arm 3 can be fixed by welding. .
  • the spindle 1, the countershaft 2 and the crank arm 3 may be selected from low carbon steel, medium carbon steel or alloy steel for welding, thereby preventing cracking during the stamping process and cracks and bubbles during the welding process. Etc., affecting the stiffness and weld strength of the crankshaft 100.
  • the welding method may be argon arc welding, laser welding, brazing, or the like.
  • laser welding can be used, the laser welding speed is fast, the energy is concentrated, the aspect ratio of the weld is high, the precision is high, and the thermal deformation is less affected, and the deformation caused by the welding temperature rise can be minimized, thereby improving the crankshaft.
  • the precision of 100 eliminates the rough machining step and directly performs surface finishing of the crankshaft 100 to reduce the manufacturing cost.
  • the crankshaft 100 is formed by combining the countershaft 2, the main shaft 1 and the crank arm 3.
  • the eccentricity of the crankshaft 100, the outer diameters of the main shaft 1 and the countershaft 2 can be flexibly adjusted to suit different displacements.
  • the reciprocating piston compressor requires saving the mold opening cost of the crankshaft 100 and speeding up the development of new products.
  • main shaft 1 and the counter shaft 2 can be fixed in the first counterbore 31 and the second counterbore 32 on both sides of the crank arm 3 by means of interference press-fitting, respectively, and then the main shaft 1 and the counter shaft 2 can be The joints of the crank arms 3 are fixed together by welding. Thereby, the fixed connection of the main shaft 1, the countershaft 2 and the crank arm 3 is facilitated, and the structural strength for the reciprocating compressor can also be improved.
  • a first oil supply passage 11 may be defined in the main shaft 1 and a second oil supply passage 21 communicating with the first oil supply passage 11 is defined in the counter shaft 2.
  • the main shaft 1 and the counter shaft 2 can be made of metal tubes, and the main shaft 1
  • the central through hole may be formed as a first oil supply passage 11, and the central through hole of the secondary shaft 2 may be formed as a second oil supply passage 21, the first oil supply passage 11 penetrating the main shaft 1 in the axial direction of the main shaft 1, and the second supply
  • the oil passage 21 penetrates the counter shaft 2 in the axial direction of the counter shaft 2, and the first oil supply passage 11 communicates with the second oil supply passage 21. Therefore, in comparison with the cast crankshaft 100, the step of processing the oil supply passage can be omitted, making the processing easy.
  • crank arm 3 may be provided with an eccentric oil hole 33, and the eccentric oil hole 33 communicates with the first counterbore 31 and the second counterbore 32 to communicate the first oil supply passage 11 and the second oil supply passage 21.
  • the lubricating oil flows to the first oil supply passage 11 and flows to the second oil supply passage 21 through the eccentric oil hole 33.
  • At least one lubricating oil hole 4 communicating with the first oil supply passage 11 may be disposed on the main shaft 1.
  • the lubricating oil of the first oil supply passage 11 can flow to the outside of the crankshaft 100 through the lubricating oil hole 4 to lubricate the surface of each friction pair, and the wear resistance of the sub-shaft 2, the main shaft 1 and the like is increased.
  • the plurality of lubricating oil holes 4 may be plural, and the plurality of lubricating oil holes 4 are spaced apart along the axial direction of the main shaft 1. The lubricating oil flows out through the plurality of lubricating oil holes 4 to lubricate the crankshaft 100, thereby improving the lubricating effect.
  • the auxiliary shaft 2 may be provided with a lubricating oil hole 4, and the lubricating oil in the second oil supply passage 21 flows out from the lubricating oil hole 4 to lubricate the crankshaft 100.
  • the first counterbore 31 and the second counterbore 32 have a depth H > 2 mm.
  • the spindle 1 is mounted in the first counterbore 31, and the countershaft 2 is mounted in the second counterbore 32, which improves the assembly effect of the spindle 1 and the countershaft 2.
  • both the main shaft 1 and the countershaft 2 may be made of steel tubing, and the crank arm 3 may be made of steel sheet.
  • both the main shaft 1 and the counter shaft 2 can be made of high-quality medium and low carbon seamless steel tubes. Since the carbon content of the medium carbon steel and the low carbon steel is low, the surface hardness of the material is low and the wear resistance is poor.
  • the surface strengthening process such as carburizing, nitriding, carbonitriding, etc., can be used to improve the surface hardness and wear resistance of the crankshaft 100, and improve the reliability of the compressor during operation.
  • the present invention also proposes a reciprocating compressor having the crankshaft 100 for a reciprocating compressor of the above embodiment.
  • the reciprocating compressor according to the embodiment of the present invention can also have the above-described technical effects, that is, the reciprocating compressor according to the embodiment of the present invention.
  • Providing the crankshaft 100 for a reciprocating compressor of the above embodiment can simplify the production process of parts, reduce material cost and processing cost, improve the reliability of the operation of the reciprocating compressor, and reduce environmental pollution and energy. effect.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature may be "below”, “below” and “below” the second feature.
  • the first feature is directly below or obliquely below the second feature, or merely indicates that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Compressor (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

一种用于往复式压缩机的曲轴,包括:主轴(1)、副轴(2)和曲柄臂(3),所述主轴(1)和所述副轴(2)分别设在所述曲柄臂(3)的两侧,所述曲柄臂(3)的两侧分别设有第一沉孔(31)和第二沉孔(32),所述主轴(1)安装在所述第一沉孔(31)内,所述副轴(2)安装在所述第二沉孔(32)内。具有该曲轴的往复式压缩机。由于主轴(1)、副轴(2)和曲柄臂(3)为单独的零部件,使得曲轴成型简单、加工容易。相比传统的铸造工艺,可降低曲轴的质量、材料成本和加工成本,而且至少在一定程度上降低了往复式压缩机运行时的功率,提高了往复式压缩机的可靠性。

Description

用于往复式压缩机的曲轴和往复式压缩机 技术领域
本发明涉及压缩机技术领域,尤其涉及一种用于往复式压缩机的曲轴和具有其的往复式压缩机。
背景技术
现有技术中的往复式活塞压缩机的曲轴,普遍采用FCD500的铸铁或者杨氏模量较高的FC200等铸造而成,铸造曲轴的轴向供油通道需要用加工的方式获得,由于供油通道较长,加工比较麻烦。而且往复活塞压缩机整体铸造曲轴存在偏心结构,为保证主轴、曲柄的平行度对于曲轴加工设备的要求比较高,制造性较差。
在重新规划往复活塞式压缩机排量时,通常会带来曲轴轴径、偏心量等参数的改变,按传统的方案,必须重新设计曲轴铸造模具,模具的通用性差,标准化程度低。此外出于节能减排环保方面的考虑,金属铸造热成型工艺对于环境的污染以及能源的消耗也比较大。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种用于往复式压缩机的曲轴,加工容易,标准化程度高,通用性强,成本低,可减小对环境的污染和能源的消耗。
本发明还提出了一种具有所述用于往复式压缩机的曲轴的往复式压缩机。
根据本发明第一方面实施例的用于往复式压缩机的曲轴,包括:主轴、副轴和曲柄臂,所述主轴和所述副轴分别设在所述曲柄臂的两侧,所述曲柄臂的两侧分别设有第一沉孔和第二沉孔,所述主轴安装在所述第一沉孔内,所述副轴安装在所述第二沉孔内。
根据本发明实施例的用于往复式压缩机的曲轴,主轴、副轴和曲柄臂为单独的零部件,主轴的一端安装固定在第一沉孔内,副轴的一端安装固定在第二沉孔内,通过第一沉孔和第二沉孔可限定主轴和副轴的安装位置,有利于主轴、副轴和曲柄臂的装配,而且主轴和副轴可由金属板冲压形成或者由金属管形成,曲柄臂可由金属板制成,使得用于往复式压缩机的曲轴成型简单、加工容易。相比传统的铸造工艺,可大大降低曲轴的质量、材料成本和加工成本,而且至少在一定程度上降低了往复式压缩机运行时的功率,提高了往复式压缩机的可靠性。
另外,根据本发明实施例的用于往复式压缩机的曲轴还可以具有如下附加的技术特征:
根据本发明的一些实施例,所述主轴与所述第一沉孔过盈配合,所述副轴与所述第二沉 孔过盈配合。
根据本发明的一些实施例,所述主轴焊接在所述第一沉孔内,所述副轴焊接在所述第二沉孔内。
根据本发明的一些实施例,所述主轴内限定出第一供油通道,所述副轴内限定出与所述第一供油通道连通的第二供油通道。
可选地,所述曲柄臂上设有偏心油孔,所述偏心油孔连通所述第一沉孔与所述第二沉孔以连通所述第一供油通道和所述第二供油通道。
可选地,所述主轴上设有至少一个与所述第一供油通道连通的润滑油孔。
进一步地,所述润滑油孔为多个,多个所述润滑油孔沿所述主轴的轴向间隔开设置。
根据本发明的一些实施例,所述第一沉孔和所述第二沉孔的深度H≥2mm。
根据本发明的一些实施例,所述主轴和所述副轴均由钢管制成,所述曲柄臂由钢板制成。
根据本发明第二方面实施例的往复式压缩机包括根据上述实施例的用于往复式压缩机的曲轴。
由于上述实施例的用于往复式压缩机的曲轴具有上述技术效果,因此根据本发明实施例的往复式压缩机也可具有上述技术效果,即根据本发明实施例的往复式压缩机,通过设置上述实施例的用于往复式压缩机的曲轴,可简化零部件的生产工艺,降低材料成本和加工成本,提高往复式压缩机运行的可靠性,也可减少对环境的污染以及能源的效果。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明实施例的用于往复式压缩机的曲轴的结构示意图;
图2是根据本发明实施例的用于往复式压缩机的曲轴的主轴的结构示意图;
图3是根据本发明实施例的用于往复式压缩机的曲轴的副轴的结构示意图;
图4是根据本发明实施例的用于往复式压缩机的曲轴的曲柄臂一个角度的结构示意图;
图5是根据本发明实施例的用于往复式压缩机的曲轴的曲柄臂另一个角度的结构示意图。
附图标记:
100:用于往复式压缩机的曲轴;
1:主轴,11:第一供油通道;
2:副轴,21:第二供油通道;
3:曲柄臂,31:第一沉孔,32:第二沉孔,33:偏心油孔;
4:润滑油孔。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“厚度”、“上”、“下”、“左”、“右”、“顶”、“底”“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考附图描述根据本发明实施例的用于往复式压缩机的曲轴100。
如图1-图5所示,根据本发明实施例的用于往复式压缩机的曲轴100可以包括主轴1、副轴2和曲柄臂3,主轴1和副轴2分别设在曲柄臂3的两侧,曲柄臂3的两侧分别设有第一沉孔31和第二沉孔32,主轴1安装在第一沉孔31内,副轴2安装在第二沉孔32内。
副轴2和主轴1为中空的管状结构,具体地,副轴2和主轴1可通过金属板冲压或者金属管或者旋压的方式获得,优选地可使用精度以及表面粗糙度较好的精密无缝金属管,曲柄臂3可以采用标准厚度的金属板冲压而成。由于金属管与金属板属于标准化产品,尺寸、形位精度较高,与传统的工艺铸造的曲轴相比,可以省去粗加工工序,而且降低了曲轴100的质量、材料成本以及制造成本。而且也可使得主轴1、副轴2和曲柄臂3的标准化程度高,通用性强。
如图1、图4和图5所示,曲柄臂3的一侧上设有第一沉孔31,曲柄臂3的相对另一侧上设有第二沉孔32,第一沉孔31和第二沉孔32的深度均小于曲柄臂3的厚度,主轴1的一端安装固定在第一沉孔31内,副轴2的一端安装固定在第二沉孔32内,从而可实现主轴1、副轴2与曲柄臂3的安装固定,通过第一沉孔31和第二沉孔32可以限定主轴1和副轴 2的安装位置,提高主轴1、副轴2和曲柄臂3的安装的准确性。而且可以通过调整金属管的直径、曲轴100的安装工装等调节曲轴100的偏心量,以满足多种排量的往复式压缩机对曲轴100的工艺要求,进而节省了曲轴100的开模费用,提高产品的生产效率。
根据本发明实施例的用于往复式压缩机的曲轴100,主轴1、副轴2和曲柄臂3为单独的零部件,主轴1的一端安装固定在第一沉孔31内,副轴2的一端安装固定在第二沉孔32内,通过第一沉孔31和第二沉孔32可限定主轴1和副轴2的安装位置,有利于主轴1、副轴2和曲柄臂3的装配,而且主轴1和副轴2可由金属板冲压形成或者由金属管形成,曲柄臂3可由金属板制成,使得用于往复式压缩机的曲轴100成型简单、加工容易。相比传统的铸造工艺,可大大降低曲轴100的质量、材料成本和加工成本,而且至少在一定程度上降低了往复式压缩机运行时的功率,提高了往复式压缩机的可靠性。
在本发明的一些实施例中,主轴1与第一沉孔31可以过盈配合,副轴2与第二沉孔32过盈配合。也就是说,主轴1的一端可过盈压入第一沉孔31内,副轴2的一端过盈压入第二沉孔32内,从而可将主轴1和副轴2分别固定在曲柄臂3的两侧。
在本发明的另一些实施例中,主轴1可焊接在第一沉孔31内,副轴2焊接在第二沉孔32内。具体地,主轴1的一端插入第一沉孔31内,副轴2的一端插入第二沉孔32内后,可将主轴1、副轴2与曲柄臂3的结合处通过焊接方式固定在一起。
可选地,主轴1、副轴2和曲柄臂3在选材时可选用便于焊接的低碳钢、中碳钢或者合金钢,从而可防止在冲压过程中产生开裂以及焊接过程中产生裂纹及气泡等,影响曲轴100的刚度和焊缝强度。
可选地,焊接方式可以采用氩弧焊、激光焊、钎焊等。优选的可采用激光焊接,激光焊接焊接速度快,能量集中,焊缝的深宽比高,精度高,热变形影响较小,可以将焊接温升对零件产生的变形降到最低,从而提高曲轴100的精度,省掉粗加工的步骤,直接进行曲轴100表面精加工,降低制造成本。而且曲轴100由副轴2、主轴1和曲柄臂3结合而成,通过调整曲轴100的焊接定位工装可以灵活调整曲轴100的偏心量、主轴1和副轴2的外径,以适应不同排量的往复式活塞压缩机要求,节省曲轴100的开模费用,加快新产品开发的进度。
进一步地,主轴1和副轴2可分别通过过盈压入的方式,固定在曲柄臂3两侧的第一沉孔31和第二沉孔32内,然后可将主轴1、副轴2与曲柄臂3的结合处通过焊接方式固定在一起。从而有利于主轴1、副轴2和曲柄臂3的固定连接,也可提高用于往复式压缩机的结构强度。
在本发明的一些实施例中,主轴1内可限定出第一供油通道11,副轴2内限定出与第一供油通道11连通的第二供油通道21。如图1所示,主轴1和副轴2可金属管制成,主轴1 的中心通孔可形成为第一供油通道11,副轴2的中心通孔可形成为第二供油通道21,第一供油通道11沿主轴1的轴向贯穿主轴1,第二供油通道21沿副轴2的轴向贯穿副轴2,第一供油通道11与第二供油通道21连通。因此对比铸造的曲轴100,可以省去了加工供油通道的步骤,使得加工容易。
可选地,曲柄臂3上可设有偏心油孔33,偏心油孔33连通第一沉孔31与第二沉孔32以连通第一供油通道11和第二供油通道21。由此,润滑油流向第一供油通道11,并通过偏心油孔33流向第二供油通道21。
可选地,如图1-图2所示,主轴1上可设有至少一个与第一供油通道11连通的润滑油孔4。第一供油通道11的润滑油可经过润滑油孔4流向曲轴100的外侧,以润滑各摩擦副的表面,增加副轴2、主轴1等部位的耐磨性。进一步地,润滑油孔4可以为多个,多个润滑油孔4沿主轴1的轴向间隔开设置。润滑油通过多个润滑油孔4流出以对曲轴100进行润滑,提高润滑效果。可以理解的是,如图3所示,副轴2上也可设有润滑油孔4,第二供油通道21内的润滑油从润滑油孔4流出以对曲轴100进行润滑。
在本发明的一些实施例中,第一沉孔31和第二沉孔32的深度H≥2mm。从而有利于主轴1安装在第一沉孔31内,副轴2安装在第二沉孔32内,可提高主轴1和副轴2的装配效果。
在本发明的一些实施例中,主轴1和副轴2均可由钢管制成,曲柄臂3可由钢板制成。优选地,主轴1和副轴2均可使用优质中、低碳无缝钢管制成,由于中碳钢、低碳钢的含碳量较低,材料表面硬度低,耐磨性较差。在曲轴100焊接完成后,可以通过表面强化处理工艺,如渗碳、渗氮、碳氮共渗等,提高曲轴100的表面硬度及耐磨性,提高压缩机运行时的可靠性。
此外,本发明还提出了一种具有上述实施例的用于往复式压缩机的曲轴100的往复式压缩机。
由于上述实施例的用于往复式压缩机的曲轴100具有上述技术效果,因此根据本发明实施例的往复式压缩机也可具有上述技术效果,即根据本发明实施例的往复式压缩机,通过设置上述实施例的用于往复式压缩机的曲轴100,可简化零部件的生产工艺,降低材料成本和加工成本,提高往复式压缩机运行的可靠性,也可减少对环境的污染以及能源的效果。
根据本发明实施例的往复式压缩机的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是 第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种用于往复式压缩机的曲轴,其特征在于,包括:主轴、副轴和曲柄臂,所述主轴和所述副轴分别设在所述曲柄臂的两侧,所述曲柄臂的两侧分别设有第一沉孔和第二沉孔,所述主轴安装在所述第一沉孔内,所述副轴安装在所述第二沉孔内。
  2. 根据权利要求1所述的用于往复式压缩机的曲轴,其特征在于,所述主轴与所述第一沉孔过盈配合,所述副轴与所述第二沉孔过盈配合。
  3. 根据权利要求1所述的用于往复式压缩机的曲轴,其特征在于,所述主轴焊接在所述第一沉孔内,所述副轴焊接在所述第二沉孔内。
  4. 根据权利要求1所述的用于往复式压缩机的曲轴,其特征在于,所述主轴内限定出第一供油通道,所述副轴内限定出与所述第一供油通道连通的第二供油通道。
  5. 根据权利要求4所述的用于往复式压缩机的曲轴,其特征在于,所述曲柄臂上设有偏心油孔,所述偏心油孔连通所述第一沉孔与所述第二沉孔以连通所述第一供油通道和所述第二供油通道。
  6. 根据权利要求4所述的用于往复式压缩机的曲轴,其特征在于,所述主轴上设有至少一个与所述第一供油通道连通的润滑油孔。
  7. 根据权利要求6所述的用于往复式压缩机的曲轴,其特征在于,所述润滑油孔为多个,多个所述润滑油孔沿所述主轴的轴向间隔开设置。
  8. 根据权利要求1所述的用于往复式压缩机的曲轴,其特征在于,所述第一沉孔和所述第二沉孔的深度H≥2mm。
  9. 根据权利要求1所述的用于往复式压缩机的曲轴,其特征在于,所述主轴和所述副轴均由钢管制成,所述曲柄臂由钢板制成。
  10. 一种往复式压缩机,其特征在于,包括权利要求1-9中任一项所述的用于往复式压缩机的曲轴。
PCT/CN2016/108735 2016-08-31 2016-12-06 用于往复式压缩机的曲轴和往复式压缩机 WO2018040351A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610796878.XA CN106194659A (zh) 2016-08-31 2016-08-31 用于往复式压缩机的曲轴和具有其的往复式压缩机
CN201610796878.X 2016-08-31
CN201621033006.X 2016-08-31
CN201621033006.XU CN206054225U (zh) 2016-08-31 2016-08-31 用于往复式压缩机的曲轴和具有其的往复式压缩机

Publications (1)

Publication Number Publication Date
WO2018040351A1 true WO2018040351A1 (zh) 2018-03-08

Family

ID=61299819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108735 WO2018040351A1 (zh) 2016-08-31 2016-12-06 用于往复式压缩机的曲轴和往复式压缩机

Country Status (1)

Country Link
WO (1) WO2018040351A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2835414A1 (de) * 1978-08-12 1980-02-21 Bosch Gmbh Robert Motorverdichter
US4493226A (en) * 1981-08-03 1985-01-15 Aspera S.P.A. Crankshaft for small reciprocating machines
JPS60256614A (ja) * 1984-05-30 1985-12-18 Yamaha Motor Co Ltd クランクシヤフト
GB2139320B (en) * 1983-05-03 1986-03-19 Aspera Spa Crankshaft for compressors
JPH01109032A (ja) * 1987-10-21 1989-04-26 Toshiba Corp 圧縮機におけるクランクシャフトの製造方法
CN101158341A (zh) * 2006-10-02 2008-04-09 三星光州电子株式会社 密闭式压缩机
CN103244548A (zh) * 2013-04-19 2013-08-14 广州万宝集团压缩机有限公司 往复式压缩机的分体曲轴结构
CN104895764A (zh) * 2015-06-29 2015-09-09 安徽美芝制冷设备有限公司 用于往复式压缩机的曲轴及具有其的往复式压缩机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2835414A1 (de) * 1978-08-12 1980-02-21 Bosch Gmbh Robert Motorverdichter
US4493226A (en) * 1981-08-03 1985-01-15 Aspera S.P.A. Crankshaft for small reciprocating machines
GB2139320B (en) * 1983-05-03 1986-03-19 Aspera Spa Crankshaft for compressors
JPS60256614A (ja) * 1984-05-30 1985-12-18 Yamaha Motor Co Ltd クランクシヤフト
JPH01109032A (ja) * 1987-10-21 1989-04-26 Toshiba Corp 圧縮機におけるクランクシャフトの製造方法
CN101158341A (zh) * 2006-10-02 2008-04-09 三星光州电子株式会社 密闭式压缩机
CN103244548A (zh) * 2013-04-19 2013-08-14 广州万宝集团压缩机有限公司 往复式压缩机的分体曲轴结构
CN104895764A (zh) * 2015-06-29 2015-09-09 安徽美芝制冷设备有限公司 用于往复式压缩机的曲轴及具有其的往复式压缩机

Similar Documents

Publication Publication Date Title
CN104895764A (zh) 用于往复式压缩机的曲轴及具有其的往复式压缩机
US10359000B2 (en) Functionally optimized design of a cylinder liner
US20090241769A1 (en) Cooling channel piston for an internal combustion engine and method for the production thereof
CN204783538U (zh) 用于往复式压缩机的曲轴及具有其的往复式压缩机
CN102013767A (zh) 电动机定子铁芯内涨压装胎具
CN206054225U (zh) 用于往复式压缩机的曲轴和具有其的往复式压缩机
WO2018040351A1 (zh) 用于往复式压缩机的曲轴和往复式压缩机
CN204504279U (zh) 一种新型缸套精镗内孔专用夹具
CN105215131A (zh) 一种双金属复合管液涨成形全抱持装置
WO2017000129A1 (zh) 用于往复式压缩机的曲轴及具有其的往复式压缩机
CN107043893B (zh) 凸轮轴制作方法及凸轮轴
CN106425304B (zh) 一种滑油喷嘴的加工工艺
CN108673067A (zh) 一种压缩机轴承的制作方法
CN104723027A (zh) 一种锻压焊接制造耐磨金属弯管的方法
CN111287941B (zh) 曲轴及压缩机
CN215845699U (zh) 一种径跳免加工的粉末冶金转子类成形模具结构
CN112833014A (zh) 主轴承、压缩机、制冷设备和生产工艺
CN205779693U (zh) 压缩机的泵体及具有其的压缩机
CN102369131A (zh) 具有横截面收缩部的转向齿条外壳
JP2011069372A (ja) 金属基複合材形成用鉄系プリフォーム及びジャーナル部構造
CN105822551B (zh) 压缩机的泵体及具有其的压缩机
CN106735669B (zh) 一种钎焊钢活塞及制造方法
CN205714457U (zh) 钛铝复合结构的内燃机活塞
JP2005125343A (ja) クランクシャフトとその製造方法及び圧縮機
CN2835691Y (zh) 连体轴承芯轴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914913

Country of ref document: EP

Kind code of ref document: A1