WO2018037914A1 - 蛍光体及びそれを含む樹脂組成物 - Google Patents

蛍光体及びそれを含む樹脂組成物 Download PDF

Info

Publication number
WO2018037914A1
WO2018037914A1 PCT/JP2017/028796 JP2017028796W WO2018037914A1 WO 2018037914 A1 WO2018037914 A1 WO 2018037914A1 JP 2017028796 W JP2017028796 W JP 2017028796W WO 2018037914 A1 WO2018037914 A1 WO 2018037914A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
resin
silica
resin composition
mol
Prior art date
Application number
PCT/JP2017/028796
Other languages
English (en)
French (fr)
Inventor
寛 辻田
潤 内藤
奈生子 倉田
小林 恵太
啓宏 植村
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to JP2018535590A priority Critical patent/JP6885405B2/ja
Publication of WO2018037914A1 publication Critical patent/WO2018037914A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a phosphor and a resin composition containing the phosphor. More specifically, the present invention relates to a phosphor and a resin composition containing the phosphor, a molded body (resin molded body), and a solar cell wavelength conversion material.
  • Non-Patent Document 1 proposes YVO 4 : Bi 3+ , Eu 3+ fluorescent nanoparticle material.
  • an expensive raw material such as yttrium is used as a main raw material, and a special low-temperature liquid phase synthesis such as a solvothermal method is required.
  • silica has a relatively low refractive index, it is a resin generally used as a sealing resin for solar cells (for example, ethylene- Vinyl acetate copolymer, etc.) can be brought close to the refractive index, and therefore, it is not nano-particles, it has visible light transparency, and ultraviolet light can be converted into visible light, and at low cost. I found out that it can be manufactured. However, it has been newly found that this phosphor has a problem of low resistance to ultraviolet light (also referred to as UV resistance, light resistance or weather resistance).
  • UV resistance also referred to as UV resistance, light resistance or weather resistance
  • Patent Document 1 discloses a fluorescent glass using silica.
  • glass has poor dispersibility in resin, and there are problems in workability, flexibility, handling, etc. even when glass is used alone.
  • development of a phosphor powder that can be blended with a resin or a resin composition containing the phosphor is desired in order to make it more useful for use as a wavelength conversion material for solar cells.
  • Patent Document 1 does not disclose or suggest the use of fluorescent glass as a wavelength conversion material for solar cells.
  • the present invention is capable of maintaining the visible light transmittance of a resin when blended with the resin, has a high conversion efficiency from ultraviolet light to visible light, and is particularly excellent in UV resistance.
  • An object is to provide a body and a resin composition containing the same.
  • Another object of the present invention is to provide a resin molded body and a solar cell wavelength conversion material using such a resin composition.
  • the present inventors have made a study on a phosphor based on silica.
  • silica has a relatively low refractive index and contains europium and aluminum, aluminum inhibits light emission by europium. It was found that the refractive index of silica was not changed. And since this phosphor has a lower refractive index than conventional phosphor materials, it is possible to maintain visible light transparency when blended with resin, and to convert wavelength of ultraviolet light into visible light. On the other hand, it has been found that there is a problem that the resistance to ultraviolet light is insufficient. Further investigation was made and the cause of the low UV resistance was found to be the crystal structure of the base silica.
  • the phosphor is based on silica and contains aluminum and europium and the main crystal phase of the silica is a cristobalite phase, the UV resistance is remarkably improved, and the above problem I came up with the idea that it can be solved brilliantly.
  • phosphors based on silica have been dispersed in a thermosetting resin such as an epoxy resin and have been studied for use as LED light-emitting elements mainly used indoors.
  • the UV resistance required for this was not a problem. In other words, the application to be used outdoors by dispersing in a thermoplastic resin widely used in solar cells has not been studied, and the need to improve UV resistance has not been recognized.
  • the present inventor newly found that the above-described phosphor having excellent UV resistance is good in compatibility or dispersibility with a thermoplastic resin, contrary to the conventional common knowledge, and the above-described phosphor and
  • a resin composition containing a thermoplastic resin it has a high conversion efficiency from ultraviolet light to visible light, and has high transparency and UV resistance, so that it is a particularly useful resin for use in wavelength conversion materials for solar cells. It has been found that it becomes a composition, and the present invention has been completed.
  • the resin composition and resin molding of this invention are excellent also in the lightweight property which cannot be demonstrated with the fluorescent glass described in patent document 1, the softness
  • the present invention is a phosphor based on silica and contains aluminum and europium
  • the silica is a phosphor whose main crystal phase is a cristobalite phase.
  • the phosphor preferably has a half width of a peak of 0.43 or less observed in a diffraction angle 2 ⁇ of 35 to 37 degrees in an X-ray diffractometer using a CuK ⁇ X-ray source.
  • the contents of aluminum and europium are preferably 0.5 to 25 mol and 0.01 to 15 mol, respectively, in terms of metal element, with respect to 100 mol of silica.
  • the present invention is also a resin composition containing the phosphor and a thermoplastic resin.
  • the phosphor content is preferably 0.05 to 15 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the resin composition preferably contains an ethylene-vinyl acetate copolymer and / or a polyethylene resin as the thermoplastic resin.
  • the present invention is also a resin molded body using the resin composition.
  • the resin molded body is preferably plate-shaped, film-shaped or sheet-shaped.
  • the resin molded body preferably has a total light transmittance of 85% or more at a thickness of 1 mm and a haze of 30% or less.
  • This invention is also a wavelength conversion material for solar cells provided with the said resin molding.
  • the phosphor of the present invention has a refractive index lower than that of conventional phosphors, has high conversion efficiency from ultraviolet light to visible light, and is particularly excellent in UV resistance. Therefore, since the resin composition containing the phosphor and the thermoplastic resin fat can reduce the difference in refractive index between the phosphor and the thermoplastic resin (especially a sealing resin), it is highly transparent to visible light. And is particularly useful for use as a wavelength conversion material for solar cells.
  • the base silica is a material with high light resistance, is a general-purpose material, and does not use rare earth as a base, and thus can be a cost-competitive material.
  • the wavelength conversion material for solar cells using the resin composition of the present invention is a photovoltaic power generation. It makes a great contribution to technology.
  • the phosphor of the present invention can be expected to be not only a blue phosphor but also a phosphor that emits visible light, such as a green phosphor, a yellow phosphor, and a red phosphor, and an infrared phosphor.
  • 3 is an XRD chart of phosphor 1.
  • 3 is an XRD chart of phosphor 2. It is a XRD chart of the fluorescent substance 2 (the figure which expanded the vertical axis
  • 3 is an XRD chart of phosphor 3.
  • 3 is an XRD chart of phosphor 4.
  • 4 is an SEM photograph of phosphors (powder) 1 to 4;
  • the phosphor of the present invention will be described first.
  • the phosphor of the present invention is based on silica whose main crystal phase is cristobalite phase, and contains aluminum and europium. Furthermore, you may contain the 1 type, or 2 or more types of other component as needed.
  • the main crystal phase of silica which is the base material of the phosphor, is a cristobalite phase.
  • peaks are observed in the diffraction angle 2 ⁇ of 21 to 23 degrees, 35 to 37 degrees, and 30 to 32 degrees in an X-ray diffractometer using a CuK ⁇ X-ray source.
  • the main crystal phase is the cristobalite phase” means that, for example, as shown in FIGS. 1 to 3, the strongest peak is observed when the diffraction angle 2 ⁇ ranges from 21 to 23 degrees, and the diffraction angle 2 ⁇ ranges from 35 to 37 degrees.
  • a peak is also observed in this range, and the half width of the peak observed in the range where the diffraction angle 2 ⁇ is 35 to 37 degrees is 0.45 or less.
  • the half width of the peak observed in the range where the diffraction angle 2 ⁇ is 35 to 37 degrees is preferably 0.43 or less.
  • a detailed method for measuring the half width is as described in Examples described later.
  • the phosphor includes aluminum.
  • the content of aluminum is not particularly limited, but it is preferably 0.5 to 25 mol in terms of metal element with respect to 100 mol of silica.
  • the fluorescence intensity also referred to as emission intensity
  • the amount is more preferably 1.5 to 20 mol, still more preferably 5 to 15 mol.
  • the phosphor includes europium.
  • the content of europium is not particularly limited, but is preferably 0.01 to 15 mol in terms of metal element with respect to 100 mol of silica. Thereby, the fluorescence intensity (also referred to as emission intensity) can be more fully exhibited. Even if there is too much europium, the emission intensity is saturated, but the emission intensity may be reduced due to concentration quenching.
  • the amount is more preferably 0.1 to 10 mol, still more preferably 0.5 to 5 mol.
  • the contents of aluminum and europium in the phosphor can be measured by various analysis methods. For example, it can be measured as follows.
  • the aluminum element and europium element derived from the raw material are all contained in the silica
  • the aluminum and europium contents contained in the phosphor can be calculated from the charged amount of the raw material. Yes (calculated from the amount of raw material charged in the examples described later).
  • ⁇ Measurement method > 0.2 g of phosphor, 1.0 g of lithium tetraborate as a flux, and 20 ⁇ L of 25% potassium bromide as a release agent are charged into a platinum crucible, and alkali-melted at 1050 ° C.
  • the obtained glass bead is dissolved in hydrochloric acid to prepare a 100 mL sample solution.
  • This sample solution is quantified by a calibration curve method with an inductively coupled plasma emission spectrometer (manufactured by SII Nanotechnology, SPS 3100 24HV).
  • the phosphor may further contain a coactivator other than europium.
  • a coactivator other than europium is mentioned.
  • Examples of rare earth elements other than europium include at least selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like.
  • One or more elements may be mentioned, and examples of the rare earth element compounds include carbonates, oxides, chlorides, sulfates, nitrates, and acetates of these elements.
  • the phosphor may have one or more coating layers on the surface.
  • the coating layer By forming the coating layer, the dispersibility in the thermoplastic resin can be improved.
  • the resin composition containing the phosphor and the thermoplastic resin is further excellent in various physical properties. Also, moisture resistance and water resistance are improved.
  • the surface coating agent which provides a coating layer is not specifically limited, It is preferable to use 1 type, or 2 or more types of an organic compound. Although it does not specifically limit as an organic compound, for example, coupling agents, such as a silane coupling agent and a titanium coupling agent other than silicone oil, alkylsilane, polyolefin, polyester, an amino acid, an amino acid salt, etc. are mentioned. Of these, amino group-containing silane coupling agents (such as aminopropylsilane) are preferred.
  • the phosphor preferably has a maximum emission wavelength of 400 to 1500 nm when excited with light having a wavelength of 365 nm. Thereby, the conversion efficiency from ultraviolet light to visible light further increases.
  • the maximum emission wavelength is more preferably 430 to 1100 nm.
  • the maximum emission wavelength can be measured using a spectrofluorometer (for example, FP-6500 manufactured by JASCO Corporation).
  • An ISF-513 type is used for the fluorescence integrating sphere, and the maximum emission wavelength when excited with light having a wavelength of 365 nm is measured with a photomultiplier tube (PMT) voltage set to 400.
  • the shape of the phosphor is not particularly limited, but is preferably substantially spherical.
  • the shape can be observed with a scanning electron microscope or the like.
  • the particle diameter (D50) of the phosphor is not particularly limited, and is preferably 10 nm to 20 ⁇ m, for example. More preferably, it is 0.5 to 10 ⁇ m. If the particle diameter exceeds 20 ⁇ m, defects such as pinholes may occur when a film or sheet containing a phosphor is produced.
  • D50 is a particle size value when the integrated value is 50% in a volume-based particle size distribution curve by microtrack (laser diffraction / scattering method), and specifically, in the examples described later. It can be determined by the method described.
  • the phosphor preferably has a refractive index of 1.3 to 1.7. Thereby, when it makes it disperse
  • the refractive index is more preferably 1.4 to 1.6. In this specification, the detailed method for measuring the refractive index is as described in the examples described later.
  • the process (1) which mixes an aluminum compound and a europium compound with a silica compound, and the baking which bakes the raw material mixture obtained by this process (1) Including a step (2), wherein the firing step (2) includes a step of firing in an oxygen-containing atmosphere and a step of firing at a temperature exceeding 1100 ° C. in a reducing atmosphere.
  • the firing step (2) includes a step of firing in an oxygen-containing atmosphere and a step of firing at a temperature exceeding 1100 ° C. in a reducing atmosphere.
  • you may further include the 1 or 2 or more other process employ
  • each step will be further described.
  • Step (1) is a step of mixing an aluminum compound and a europium compound with a silica compound. If necessary, raw materials other than these may be further mixed, and each raw material may be used alone or in combination of two or more. First, the raw materials will be described.
  • the method for mixing the raw materials is not particularly limited, and any of a dry method and a wet method can be suitably employed.
  • wet mixing it is preferable to mix while crushing the raw material charged by a bead mill or the like using a solvent such as water.
  • dry mixing the raw materials may be put in a bag and mixed by a technique such as shaking or kneading, or a ball mill or blender may be used.
  • the silica compound is not particularly limited, and natural silica (SiO 2 ) may be used, or synthetic silica (SiO 2 ) may be used. In any of these, considering cost reduction, availability, etc., it is preferable to use amorphous silica as a raw material in the step (1).
  • a synthetic product for example, porous silica is preferable, and wet silica other than porous silica, dry silica, and the like can be given.
  • the synthesis method is not particularly limited. For example, in the case of porous silica, it is preferably obtained by a sol-gel method. A commercial product may be used as the synthetic product. Commercially available products include silica manufactured by Sakai Chemical Industry Co., Ltd.
  • silica manufactured by Admatechs product names: SO-E1, SO-E2, SO-E4, SO-E5, SO-E6, SO-C1). , SO-C2, SO-C4, SO-C5, SO-C6), silica manufactured by Denka (product name: FB-5D), silica manufactured by Fuso Chemical Industries (product name: SP03B), DLS.
  • Silica manufactured by Japan Product name: Carplex # 67, Carplex # 80, Carplex # 1120, Carplex FPS-1, Carplex FPS-2, Carplex CS-5
  • Silica manufactured by Oriental Silica Corporation Product) Name: Toxeal U
  • Mizukacil P-73 Mizukacil P-78A, Mizukacil P-78D, Mizukacil P-78F, Mizukacil P-707, Mizukacil P-740, Mizukacil P-752, Mizukacil P-50) and the like.
  • the aluminum compound may be a compound containing an aluminum atom, and examples thereof include aluminum carbonate, aluminum oxide, aluminum chloride, aluminum sulfate, aluminum nitrate, and aluminum acetate.
  • an aqueous solution in which a water-soluble compound is dissolved is preferably used from the viewpoint of more uniform mixing.
  • an aqueous solution it is preferable to remove moisture by an operation such as heat drying before firing the mixture.
  • it may be a water-soluble compound or a water-insoluble compound.
  • the europium compound may be a compound containing a europium atom, and examples thereof include europium carbonate, europium oxide, europium chloride, europium sulfate, europium nitrate, and europium acetate.
  • an aqueous solution in which a water-soluble compound is dissolved is preferably used from the viewpoint of more uniform mixing.
  • an aqueous solution it is preferable to remove moisture by an operation such as heat drying before firing the mixture.
  • it may be a water-soluble compound or a water-insoluble compound.
  • the mixing ratio of the silica compound, the aluminum compound, and the europium compound is not particularly limited.
  • the content of the aluminum compound is preferably 0.5 to 25 mol in terms of metal element with respect to 100 mol of the silica compound. is there.
  • the amount is more preferably 1.5 to 20 mol, still more preferably 5 to 15 mol.
  • the europium compound is preferably used in an amount of 0.01 to 15 mol in terms of a metal element with respect to 100 mol of the silica compound.
  • the amount is more preferably 0.1 to 10 mol, still more preferably 0.5 to 5 mol.
  • a coactivator other than europium may be further mixed.
  • the coactivator is as described above.
  • Step (2) is a step of firing the raw material mixture obtained in the above step (1).
  • the step of firing in an oxygen-containing atmosphere (also referred to as oxygen-containing firing) and 1100 ° C. in a reducing atmosphere.
  • a step of baking at a temperature exceeding also referred to as high temperature reduction baking. Both the oxygen-containing firing and the high temperature reduction firing may be performed once or twice or more, respectively.
  • the baking method in each baking is not specifically limited, A fluid bed baking method may be sufficient and a fixed bed baking method may be sufficient. In each firing, it is preferable to perform firing so as to obtain a uniform temperature distribution in order to reduce firing unevenness.
  • the oxygen-containing atmosphere in the oxygen-containing firing is not particularly limited as long as the atmosphere contains oxygen.
  • An atmosphere containing 1% by volume or more of oxygen preferably an atmosphere containing 10% by volume or more of oxygen, and more preferably an air atmosphere.
  • the oxygen-containing baking is preferably performed at a baking temperature of 300 to 1000 ° C., for example. Thereby, more sufficient light emission intensity can be ensured.
  • firing temperature means the highest temperature reached during firing.
  • calculation time means the maximum temperature holding time at the maximum temperature, and does not include the temperature rising time until the maximum temperature is reached.
  • the firing time in the oxygen-containing firing is not particularly limited, but is preferably 0.5 to 12 hours, for example. Even if it exceeds 12 hours, the effect commensurate with it cannot be obtained, and the productivity may not be improved. More preferably, it is 0.5 to 5 hours. In addition, when performing oxygen-containing baking several times, it is suitable that the total baking time becomes in the range of the preferable baking time mentioned above.
  • the reducing atmosphere in the high temperature reduction firing is not particularly limited, and examples thereof include a mixed gas atmosphere of hydrogen and nitrogen, a mixed gas atmosphere of carbon monoxide and nitrogen, and the like.
  • a mixed gas atmosphere of hydrogen and nitrogen is preferable from the viewpoint of safety and cost, and in this case, the ratio of hydrogen in the mixed gas is preferably 0.1 to 20% by volume. More preferably, it is 0.5 to 10% by volume.
  • High temperature reduction baking is performed at a temperature exceeding 1100 ° C. Thereby, it is possible to easily give silica whose main crystal phase is a cristobalite phase.
  • the firing temperature is preferably 1150 ° C. or higher, more preferably 1200 ° C. or higher.
  • an upper limit temperature is not specifically limited, In order to suppress aggregation and necking by sintering of a baked product, it is preferable to set it as 1400 degrees C or less.
  • the firing time in the high temperature reduction firing is not particularly limited, but is preferably 0.5 to 12 hours, for example. Even if it exceeds 12 hours, the effect commensurate with it cannot be obtained, and the productivity may not be improved. More preferably, it is 0.5 to 5 hours. In addition, when performing high temperature reduction baking several times, it is suitable for the total baking time to be in the range of the preferable baking time mentioned above.
  • a firing step (also referred to as low temperature reduction firing) at 1100 ° C. or lower may be performed in a reducing atmosphere.
  • the stage of performing the low-temperature reduction firing is not particularly limited, but it is preferably performed between the oxygen-containing firing and the high-temperature reduction firing.
  • the preferable form of the reducing atmosphere in the low temperature reduction firing is the same as that in the high temperature reduction firing.
  • the low temperature reduction firing is performed at 1100 ° C. or lower.
  • the firing temperature is preferably 500 ° C. or higher, more preferably 700 ° C. or higher, and still more preferably 900 ° C. or higher.
  • the firing time is not particularly limited, but is preferably 0.5 to 12 hours, for example. More preferably, it is 0.5 to 5 hours.
  • pulverization and classification may be performed before and after the firing step (2).
  • the pulverization may be either wet pulverization or dry pulverization, but is preferably performed by wet pulverization.
  • a pulverizing medium stirring pulverizer such as a planetary mill, a bead mill, and a vibration mill may be used.
  • Post-treatment step In the present invention, post-treatment such as repulping (for example, after slurrying, stirring), filtration, washing with water, pulverization, and drying is performed on the fired product obtained in the firing step (2) as necessary. May be. Moreover, you may perform the classification by a sieve as needed. Examples of classification using a sieve include wet classification and dry classification.
  • the phosphor may have a coating layer on the surface as described above. That is, the manufacturing method may further include a surface coating step.
  • the surface coating step is preferably performed after the firing step (after these when a post-treatment step or the like is performed thereafter).
  • the surface coating method is not particularly limited, and various conventionally known surface treatments may be performed.
  • an aqueous dispersion also referred to as a slurry
  • a surface coating object for example, a fired product obtained in the firing step or a treated product in the case of performing a post-treatment step
  • a surface coating agent made of an inorganic compound or an organic compound that has been made water-soluble by mixing or the like
  • it can be coated by pulverizing, filtering, and heating as necessary.
  • an organic compound that is not water-soluble there may be mentioned a method of adding and mixing the organic compound by a dry method, followed by pulverization and heating as necessary.
  • the surface coating agent (also referred to as a surface treatment agent) is as described above.
  • the amount used is not particularly limited.
  • the amount used may be adjusted so that the coating amount by the surface coating agent is in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the finally obtained phosphor. Is preferred.
  • the functional improvement effect by surface treatment can be expressed, By setting it as 30 mass part or less, it can process without impairing original luminescent property, and is economical. It is advantageous from the viewpoint. More preferably, it is in the range of 0.1 to 20 parts by mass.
  • the phosphor of the present invention has a refractive index lower than that of conventional phosphors, has high conversion efficiency from ultraviolet light to visible light, and is particularly excellent in UV resistance. Therefore, since the resin composition containing the phosphor and the thermoplastic resin fat can reduce the difference in refractive index between the phosphor and the thermoplastic resin (especially a sealing resin), it is highly transparent to visible light. And is particularly useful for use as a wavelength conversion material for solar cells. As described above, the phosphor of the present invention exhibits a particularly excellent effect when used in combination with a resin, and therefore is suitably used for addition to a resin. That is, a phosphor for resin addition is preferable. More preferred is a phosphor for thermoplastic resin addition. Below, the resin composition of this invention containing fluorescent substance and a thermoplastic resin is explained in full detail.
  • Resin composition contains the fluorescent substance of this invention mentioned above, and a thermoplastic resin. Furthermore, other components may be included as necessary. Each component can be used alone or in combination of two or more.
  • the above-described phosphor of the present invention is used.
  • the half width of the peak observed in the range where the diffraction angle 2 ⁇ is 35 to 37 degrees is preferably 0.43 or less, and more preferably 0.41 or less.
  • the half width is more preferably 0.40 or less.
  • thermoplastic resin is not particularly limited.
  • low density polyethylene medium density polyethylene, high density polyethylene, polyethylene such as linear low density polyethylene (also referred to as polyethylene resin), polypropylene, polystyrene, polyvinyl chloride, polyvinyl fluoride, and the like.
  • Styrene (co) polymers such as polyvinylidene chloride, acrylonitrile-butadiene-styrene copolymer (ABS resin), polyamides such as 6-nylon, 66-nylon, 12-nylon, polyamideimide, polyimide, polyetherimide, Acrylic resins such as polyurethane and polymethyl methacrylate, fluororesins such as polyvinyl acetate, polyvinylidene fluoride, and polytetrafluoroethylene, alkenyl aromatic resins, polyethylene terephthalate, polybutylene terephthalate Polyester such as polyethylene naphthalate and polylactic acid, polycarbonate such as bisphenol A polycarbonate, polyacetal, polyphenylene sulfide, polymethylpentene, cellulose, polyvinyl alcohol, polyvinyl acetal, polyacrylic acid such as polyacrylonitrile, styrene-acrylonitrile copolymer ( AS resin), polyphenylene
  • the resin composition preferably contains an ethylene-vinyl acetate copolymer and / or a polyethylene resin as the thermoplastic resin.
  • the resin composition can exhibit high transparency.
  • the phosphor content is preferably 0.05 to 15 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Thereby, both the fluorescence intensity of a resin composition and the characteristic of transparency can be exhibited more fully.
  • the content of the phosphor is more preferably 0.5 to 5 parts by mass, still more preferably 1 to 3 parts by mass.
  • the resin composition may also include pigments, dyes, plasticizers, lubricants, antioxidants, ultraviolet absorbers, light stabilizers, antistatic agents, flame retardants, bactericides, antibacterial agents, curing catalysts, as necessary. You may include 1 type, or 2 or more types, such as a photoinitiator. In that case, the thing which does not inhibit transparency is more preferable.
  • the resin composition can be prepared by mixing or kneading the phosphor, the thermoplastic resin, and other components further contained as necessary by a usual method. In that case, you may use mixers, such as a kneader, an extruder, a Banbury mixer, and a three roll.
  • mixers such as a kneader, an extruder, a Banbury mixer, and a three roll.
  • the resin molded body of the present invention is a resin molded body using the above-described resin composition of the present invention. That is, it is a molded body of the resin composition.
  • the shape of the resin molded body is not particularly limited, and other than a planar shape such as a plate shape, a film shape, a sheet shape, a membrane shape, a rod shape, a fiber shape, a needle shape, a spherical shape, a string shape, a pellet shape, a tubular shape, a foil shape, Any shape such as particulate, sand, scale, sheet, liquid, gel, sol, suspension, aggregate, capsule type and the like can be mentioned. Among these, from the viewpoint of handleability, a plate shape, a film shape, or a sheet shape is preferable.
  • the resin molded body (particularly a plate-shaped, film-shaped or sheet-shaped resin molded body) preferably has a total light transmittance of 85% or more at a thickness of 1 mm. Thereby, it becomes more useful by the wavelength conversion material use for solar cells. When it is 85% or more, the visible light transmittance is improved, and the conversion efficiency is further improved. More preferably, it is 90% or more.
  • the resin molded body (particularly a plate-shaped, film-shaped or sheet-shaped resin molded body) also preferably has a haze of 30% or less at a thickness of 1 mm. Thereby, it becomes more useful by the wavelength conversion material use for solar cells. More preferably, it is 20% or less, more preferably 15% or less, particularly preferably 10% or less, and most preferably 8% or less. In the present specification, the total light transmittance and haze can be measured by the methods described in Examples described later.
  • the solar cell wavelength conversion material of the present invention includes the above-described resin molded body of the present invention (that is, the molded body of the resin composition). Such a wavelength conversion material for solar cells is particularly useful for crystalline silicon solar cells because of its high conversion efficiency from ultraviolet light to visible light and excellent UV resistance.
  • a crystalline silicon solar cell comprising such a solar cell wavelength conversion material of the present invention is one of the preferred embodiments of the present invention.
  • parts means “parts by weight (parts by mass)” and “wt%” means “% by weight (mass%)”.
  • a powder X-ray diffraction pattern (also referred to simply as an X-ray diffraction (XRD) pattern) is measured under the condition of a half-width or less, and the half-width of a peak observed within a diffraction angle 2 ⁇ of 35 to 37 degrees. was calculated.
  • the half width can be calculated from the measured chart.
  • the half width was calculated using powder X-ray diffraction pattern comprehensive analysis software (MDI JADE7). Specifically, the full width at half maximum was calculated by designating the region at 34 to 37 degrees on the software and performing peak separation processing after peak smoothing processing and background correction processing. The measurement results are shown in FIGS.
  • the particle diameter (D50) of each powder (phosphor) was measured as follows.
  • the particle size distribution was measured with a laser diffraction type particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., Microtrac MT3000) to obtain a particle size distribution curve.
  • the powder to be measured was charged so that the transmittance was 0.7 to 0.99, and the measurement was performed while ultrasonically dispersing and circulating at a flow rate of 60%.
  • the equipment circulating water at the time of measurement was water.
  • standard particle size distribution curve the particle size value when an integrated value is 50% was made into the average particle diameter D50 (micrometer).
  • the measured D50 is shown in Table 1.
  • Haze meter (Nippon Denshoku Kogyo Co., Ltd., NDH4000) was used as a total light transmittance and transparency evaluation of the haze sheet to measure haze (cloudiness) and total light transmittance. The results are shown in Table 2.
  • each test piece of 25 mm ⁇ 30 mm and thickness 1 mm was prepared from the sheet obtained in each test example.
  • an ultra-accelerated weathering tester Daipura Windes, Daipura Metal Weather, KU-R5NA
  • each test piece was exposed to ultraviolet rays with an irradiance of 80 mW / cm 2 under conditions of a temperature of 60 ° C. and a humidity of 60%.
  • the fluorescence intensity maintenance rate after irradiation with light for 25 hours (this is called a light resistance test) was evaluated. At that time, the fluorescence intensity before the light resistance test was set to 100%.
  • the total light transmittance and haze were also measured about each test piece after a light resistance test. The results are shown in Table 2.
  • the slurry was filtered and washed with water to obtain a cake, which was then transferred to an evaporating dish and dried at 130 ° C. overnight to remove moisture.
  • the dried powder is crushed in a mortar, filled with 20 g in an alumina crucible, heated to 650 ° C. at 200 ° C./hour in the atmosphere, held for 4 hours, and then cooled to room temperature at 200 ° C./hour. did.
  • the fired product thus obtained was crushed in a mortar to obtain silica powder.
  • the obtained silica powder was porous.
  • the fired product thus obtained was crushed in a mortar, filled with 120 g in an alumina crucible, heated to 1100 ° C. at 200 ° C./hour in a reducing atmosphere (1% hydrogen-containing nitrogen), and held for 2 hours. The temperature was lowered to room temperature at 200 ° C./hour.
  • the fired product thus obtained was crushed in a mortar, filled with 30 g in an alumina crucible, heated to 1200 ° C. at 200 ° C./hour in a reducing atmosphere (1% hydrogen-containing nitrogen), and held there for 1 hour. The temperature was lowered to room temperature at 200 ° C./hour.
  • the fired product thus obtained was ground and sized in water using a planetary ball mill, filtered and dried to obtain a silica phosphor powder containing aluminum and europium.
  • silica phosphor powder (10 g) containing aluminum and europium obtained in (iii) above was slurried with ion-exchanged water (this is referred to as “silica phosphor slurry”).
  • a hydrolyzed solution was obtained by stirring for 30 minutes.
  • the suspension is weighed in a container so that the weight of the silane coupling agent is 2.7 parts by weight with respect to 100 parts by weight of the silica phosphor powder in the silica phosphor slurry, and added to the silica phosphor slurry.
  • the surface of the silica phosphor was coated with a silane coupling agent by stirring for 90 minutes at room temperature.
  • the slurry after the treatment was filtered, and the obtained cake was dried at 130 ° C. for 3 hours to obtain a surface-treated silica phosphor 1 (phosphor 1).
  • the fired product thus obtained was crushed in a mortar, filled with 30 g in an alumina crucible, heated to 1200 ° C. at 200 ° C./hour in a reducing atmosphere (1% hydrogen-containing nitrogen), and held there for 2 hours. The temperature was lowered to room temperature at 200 ° C./hour.
  • the fired product thus obtained was ground and sized in water using a planetary ball mill, filtered and dried to obtain a silica phosphor powder containing aluminum and europium.
  • the subsequent surface treatment was performed in the same manner as in Production Example 1 to obtain a surface-treated silica phosphor 2 (phosphor 2).
  • Production Example 3 Phosphor 3) Surface-treated silica phosphor 3 (phosphor 3) in the same manner as in Production Example 1 except that the final reducing atmosphere firing temperature 1200 ° C. in Preparation Example 1 (iii) was changed to 1250 ° C. Got.
  • Production Example 4 (Phosphor 4) A silica phosphor 4 (phosphor 4) that was surface-treated by the same operation as in Production Example 2 was obtained except that the temperature of firing in a reducing atmosphere in Production Example 2 was changed from 1200 ° C. to 1100 ° C.
  • Production Example 5 Phosphor 5
  • the addition amount of 1 mol / L aluminum nitrate aqueous solution and 1 mol / L europium nitrate aqueous solution in Preparation Example 1 (iii) described above was 5 mol (99.9 mL) and 0.5 mol (100 mol) relative to 100 mol of silica, respectively.
  • the surface-treated silica phosphor 5 (phosphor 5) was obtained in the same manner as in Production Example 1 except that the content was changed to (9.99 mL).
  • the physical property values of phosphors 1 to 6 are shown in Table 1, XRD charts of phosphors 1 to 4 are shown in FIGS. 1 to 5, and SEM photographs are shown in FIG.
  • Table 1 the fluorescence intensity ratio at a wavelength of 450 nm is a relative value when the fluorescence intensity of the phosphor 1 (before the light resistance test) at a wavelength of 450 nm is 100%. Further, the fluorescence intensity ratio at 450 nm after the light resistance test is also a relative value when the fluorescence intensity at 450 nm before the light resistance test of the phosphor 1 is taken as 100%.
  • this resin composition 1 was subjected to temperature: 130 ° C., pressure condition: 0.6 MPa ⁇ 5 minutes, 2 MPa ⁇ 3 minutes, 5 MPa ⁇ 2 minutes. After pressing in this order, the sheet was cooled to room temperature to obtain a 1 mm thick sheet.
  • Test Examples 2 to 11 Sheets 2 to 11 were produced in the same manner as in Test Example 1, except that the type of phosphor and the ratio of the amount of phosphor used were changed as shown in Table 2. In addition, the total amount to be charged into the resin kneading tester is 50 g in total.
  • the fluorescence intensity ratio, total light transmittance and haze at a wavelength of 450 nm, and the fluorescence intensity maintenance ratio, total light transmittance and haze after the light resistance test (25 hours) are shown. It is shown in 2.
  • the fluorescence intensity ratio at a wavelength of 450 nm is a relative value when the fluorescence intensity at a wavelength of 450 nm of the sheet (before light resistance test) obtained in Test Example 1 is 100%.
  • the fluorescence intensity ratio at 450 nm after the light resistance test is also a relative value when the fluorescence intensity at 450 nm before the light resistance test of the sheet obtained in Test Example 1 is 100%.
  • the strongest peak is observed in the range of the diffraction angle 2 ⁇ of 21 to 23 degrees as shown in FIGS. 1 to 4, and the diffraction angle 2 ⁇ Since the half width of the peak observed in the range of 35 to 37 degrees is 0.45 or less, it can be said that the main crystal phase of the base silica is the cristobalite phase, and contains aluminum and europium. That is, it corresponds to the phosphor of the present invention.
  • the XRD charts of the phosphors 5 and 6 are not shown, it can be determined from the XRD chart that the main crystal phase of the base silica is a cristobalite phase, and contains aluminum and europium, and therefore corresponds to the phosphor of the present invention.
  • the phosphor 4 has no diffraction peak 2 ⁇ within the range of 21 to 23 degrees, 30 to 32 degrees, and 35 to 37 degrees, so it can be determined that there is no crystal phase of cristobalite phase. (See FIG. 5). Phosphors 1 to 3, 5 and 6 are different from phosphor 4 in this respect.
  • Phosphors 1 to 3, 5, and 6 had a maximum emission wavelength (measurement conditions as described above) of 430 to 480 nm when excited with light having an excitation wavelength of 365 nm (see Table 1).
  • a commercially available 50 mm test solar cell was sealed with each sheet obtained using phosphors 1 to 3 before the light resistance test, and the photoelectric conversion efficiency was measured using a solar simulator.
  • the conversion efficiency from ultraviolet light to visible light of the unused sheet (sheet made of EVA resin) was about 18.7%, but improved to 18.8-19%.
  • the photoelectric conversion efficiency also has an influence on the dispersibility of the phosphor. It is considered that there is room for improvement in photoelectric conversion efficiency by increasing dispersibility.
  • the phosphor of the present invention and the resin composition containing the phosphor are excellent in light resistance, there is little decrease in emission intensity even when used outdoors for a long period of time.
  • security films, traffic signs, electrical signs, liquid crystals It is expected to be applicable to applications that are used outdoors for a long time, such as backlights and illumination displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、樹脂と配合した際にその樹脂の可視光透過性を維持させることが可能で、紫外光から可視光への変換効率が高く、かつ耐UV性に特に優れる蛍光体及びこれを含む樹脂組成物を提供することを目的とする。本発明はまた、このような樹脂組成物を用いた樹脂成形体及び太陽電池用波長変換材料も提供することも目的とする。 本発明は、シリカを母体とする蛍光体であって、アルミニウムとユーロピウムとを含み、該シリカは、主な結晶相がクリストバライト相である蛍光体である。

Description

蛍光体及びそれを含む樹脂組成物
本発明は、蛍光体及びそれを含む樹脂組成物に関する。より詳しくは、蛍光体及びそれを含む樹脂組成物の他、その成形体(樹脂成形体)及び太陽電池用波長変換材料に関する。
近年、環境問題や資源問題等の観点から、再生可能エネルギーとして太陽光発電が着目されており、太陽電池の開発が進んでいる。太陽電池の中でも、現在は、半導体材料にシリコン(Si)系材料を使用し、太陽光を吸収して電気に変換する結晶シリコン太陽電池が主流となっている。だが、結晶シリコン太陽電池は、紫外光の波長域において分光感度が低いため、蛍光材料を利用して紫外光を分光感度の高い可視光へ波長変換させる技術が種々検討されている(非特許文献1参照)。
ところで、従来の蛍光材料として、例えば、多孔質ガラスにユーロピウム等をドープさせ、焼成して得られる蛍光ガラスが開発されている(特許文献1参照)。
特開2010-18460号公報
磯部徹彦著、「ドープ型YVO4蛍光ナノ粒子波長変換膜の結晶シリコン太陽電池への応用」、公益財団法人村田学術振興財団、2012年、第26号、p.306-308
上述のとおり、蛍光材料を利用して紫外光を分光感度の高い可視光へ波長変換させる技術が種々検討されている。だが、非特許文献1にも記載の通り、蛍光有機色素や希土類錯体では耐光性が低く、無機系蛍光体はミクロンサイズであるため可視光が散乱し、膜中を通過できず、いずれも太陽電池の波長変換材料用途には適さない。そこで、非特許文献1では、YVO:Bi3+,Eu3+蛍光ナノ粒子材料が提案されている。しかしながら、この蛍光ナノ粒子材料を得るためにはイットリウム等の高価な原料を主原料として使用し、ソルボサーマル法等の特殊な低温液相合成が必要となるため、製造コスト面で課題がある。そこで、本願発明者はシリカを母体とする蛍光体について検討を進めたところ、シリカは屈折率が比較的小さいことから、太陽電池の封止樹脂として一般的に採用されている樹脂(例えばエチレン-酢酸ビニル系共重合体等)の屈折率に近づけることができ、それゆえナノ粒子でなくとも可視光透過性を有し、かつ紫外光を可視光へ波長変換することができるうえ、低コストで製造できることを見いだした。だが、この蛍光体は、紫外光に対する耐性(耐UV性、耐光性又は耐候性とも称す)が低いという課題があることを新たに見いだした。
特許文献1には、シリカを用いた蛍光ガラスが開示されている。だが、ガラスは樹脂への分散性が悪く、またガラス単独で使用する場合においても加工性や柔軟性、取扱性等に課題がある。特に太陽電池の波長変換材料用途により有用なものとすべく、樹脂と配合可能な蛍光体粉末や蛍光体を含む樹脂組成物の開発が望まれる。なお、特許文献1には、蛍光ガラスを太陽電池の波長変換材料として使用することの開示や示唆は一切ない。
本発明は、上記現状に鑑み、樹脂と配合した際にその樹脂の可視光透過性を維持させることが可能で、紫外光から可視光への変換効率が高く、かつ耐UV性に特に優れる蛍光体及びこれを含む樹脂組成物を提供することを目的とする。本発明はまた、このような樹脂組成物を用いた樹脂成形体及び太陽電池用波長変換材料を提供することも目的とする。
本発明者らは、上述のとおりシリカを母体とする蛍光体について検討を進めたところ、シリカは屈折率が比較的小さいうえ、ユーロピウムとアルミニウムとを含むものとすると、アルミニウムは、ユーロピウムによる発光を阻害することなく、シリカの屈折率を変化させないことを見いだした。そして、この蛍光体は従来の蛍光体材料と比較して屈折率が低いため、樹脂と配合した際の可視光透過性を維持させることが可能で、かつ紫外光を可視光に波長変換することができることを見いだしたが、その一方で、紫外光に対する耐性が不充分であるという課題があることが判明した。更に検討を進め、耐UV性が低い原因が母体シリカの結晶構造にあることを見いだした。そこで、シリカを母体とする蛍光体であって、アルミニウムとユーロピウムとを含み、該シリカの主な結晶相がクリストバライト相である構成の蛍光体とすれば、耐UV性が著しく改善され、上記課題をみごとに解決することができることに想到した。なお、従来、シリカを母体とする蛍光体は、エポキシ樹脂等の熱硬化性樹脂に分散させ、主に屋内で使用するLEDの発光素子としての利用が検討されていたため、屋外で使用する太陽電池に求められる耐UV性は問題とはならなかった。つまり、太陽電池に汎用される熱可塑性樹脂に分散させて屋外で使用する用途への検討がなされておらず、耐UV性を改良する必要性が認識されていなかった。本発明者は、このような従来の技術常識に反し、上述の耐UV性に優れる蛍光体が、熱可塑性樹脂に対する相溶性又は分散性が良好であることを新たに見いだし、上述の蛍光体と熱可塑性樹脂とを含む樹脂組成物とすることで、紫外光から可視光への変換効率が高く、かつ高い透明性及び耐UV性を有するため、太陽電池用波長変換材料用途に特に有用な樹脂組成物となることを見いだし、本発明を完成するに至った。なお、本発明の樹脂組成物及び樹脂成形体は、特許文献1に記載された蛍光ガラスでは発揮できない軽量性や柔軟性、取扱性にも優れている。
すなわち本発明は、シリカを母体とする蛍光体であって、アルミニウムとユーロピウムとを含み、該シリカは、主な結晶相がクリストバライト相である蛍光体である。
上記蛍光体は、CuKαのX線源を用いたX線回折装置において回折角2θが35~37度の範囲に観察されるピークの半価幅が0.43以下であることが好ましい。
上記アルミニウム及びユーロピウムの含有量は、上記シリカ100モルに対し、金属元素換算で、それぞれ0.5~25モル及び0.01~15モルであることが好ましい。
本発明はまた、上記蛍光体と熱可塑性樹脂とを含む樹脂組成物でもある。
上記蛍光体の含有量は、上記熱可塑性樹脂100質量部に対し、0.05~15質量部であることが好ましい。
上記樹脂組成物は、熱可塑性樹脂として、エチレン-酢酸ビニル共重合体及び/又はポリエチレン樹脂を含むことが好ましい。
本発明は更に、上記樹脂組成物を用いてなる樹脂成形体でもある。
上記樹脂成形体は、板状、フィルム状又はシート状であることが好ましい。
上記樹脂成形体は、1mm厚での全光線透過率が85%以上であり、かつヘイズが30%以下であることが好ましい。
本発明はそして、上記樹脂成形体を備える太陽電池用波長変換材料でもある。
本発明の蛍光体は、従来の蛍光体と比較して屈折率が低く、紫外光から可視光への変換効率が高く、かつ耐UV性に特に優れるものである。それゆえ、この蛍光体と熱可塑性樹脂脂とを含む樹脂組成物は、蛍光体と熱可塑性樹脂(特に封止樹脂等)との屈折率差を低減できるため、可視光に対して高い透明性を有し、太陽電池用波長変換材料用途に特に有用である。また、母体のシリカは耐光性の高い素材であって、汎用素材であり、希土類を母体に用いていないため、コスト競争力のある材料となり得る。更に、本発明の蛍光体や樹脂組成物は、耐光性に加え、耐熱性、耐湿性等にも優れることから、本発明の樹脂組成物を用いた太陽電池用波長変換材料は、太陽光発電技術に多大な貢献をなすものである。なお、本発明の蛍光体は、青色蛍光体だけでなく、緑色蛍光体、黄色蛍光体、赤色蛍光体など可視光を発する蛍光体や赤外蛍光体の実用化も期待できる。
蛍光体1のXRDチャートである。 蛍光体2のXRDチャートである。 蛍光体2のXRDチャートである(図2の縦軸を3倍に拡大した図)。 蛍光体3のXRDチャートである。 蛍光体4のXRDチャートである。 蛍光体(粉体)1~4のSEM写真である。
以下、本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
1、蛍光体
まず本発明の蛍光体について説明する。
本発明の蛍光体は、主な結晶相がクリストバライト相であるシリカを母体とするものであり、アルミニウムとユーロピウムとを含む。更に必要に応じて他の成分を1種又は2種以上含んでいてもよい。
蛍光体の母体となるシリカは、主な結晶相がクリストバライト相である。
シリカのクリストバライト相は、CuKαのX線源を用いたX線回折装置において回折角2θが21~23度、35~37度、30~32度の範囲にピークが観察されるが、本願でいう「主な結晶相がクリストバライト相である」とは、例えば図1~3に示すように、回折角2θが21~23度の範囲に最も強いピークが観察され、回折角2θが35~37度の範囲にもピークが観察されていて、かつ回折角2θが35~37度の範囲に観察されるピークの半価幅が0.45以下であることを意味する。回折角2θが35~37度である範囲に観察されるピークの半価幅は、好ましくは0.43以下である。
本明細書中、上記半価幅の詳細な測定方法は、後述の実施例に記載するとおりである。
上記蛍光体は、アルミニウムを含む。アルミニウムの含有量は特に限定されないが、上記シリカ100モルに対し、金属元素換算で、0.5~25モルであることが好ましい。これにより、蛍光強度(発光強度とも称す)をより充分に発揮することができる。なお、アルミニウムが多すぎても発光強度は飽和する一方で、蛍光体母体の結晶構造変化による発光強度の低下等が生じることがある。より好ましくは1.5~20モル、更に好ましくは5~15モルである。
上記蛍光体は、ユーロピウムを含む。ユーロピウムの含有量は特に限定されないが、上記シリカ100モルに対し、金属元素換算で、0.01~15モルであることが好ましい。これにより、蛍光強度(発光強度とも称す)をより充分に発揮することができる。なお、ユーロピウムが多すぎても発光強度は飽和する一方で、濃度消光による発光強度の低下等が生じることがある。より好ましくは0.1~10モル、更に好ましくは0.5~5モルである。
ここで、蛍光体中のアルミニウム及びユーロピウムそれぞれの含有量は、各種分析方法で測定可能である。例えば、以下のようにして測定することができる。また、後述する蛍光体の好適な製造方法では、原料由来のアルミニウム元素とユーロピウム元素はシリカに全て含まれるため、蛍光体に含まれるアルミニウムとユーロピウム含有量は、原料の仕込み量から算出することもできる(後述の実施例では、原料の仕込み量から算出した)。
<測定方法>
蛍光体0.2g、融剤として四ホウ酸リチウム1.0g、剥離剤として25%臭化カリウム20μLを白金坩堝に投入し、高周波自動熔融装置を用い1050℃でアルカリ熔融させる。得られたガラスビードを塩酸に溶かし100mLの試料溶液を作成する。この試料溶液を、誘導結合型プラズマ発光分析装置(エスアイアイ・ナノテクノロジー社製、SPS 3100 24HV)にて検量線法で定量する。
上記蛍光体はまた、ユーロピウム以外の共賦活剤を更に含んでもよい。共賦活剤としては、特に限定されないが、ユーロピウム以外の希土類元素の化合物又はイオンが挙げられる。ユーロピウム以外の希土類元素の例としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等からなる群から選択される少なくとも1種以上の元素が挙げられ、希土類元素の化合物としては、これら元素の炭酸塩、酸化物、塩化物、硫酸塩、硝酸塩、酢酸塩等が挙げられる。
上記蛍光体は、表面に被覆層を1又は2層以上有していてもよい。被覆層を形成することにより、熱可塑性樹脂への分散性を改良することができる。それにより蛍光体と熱可塑性樹脂とを含む樹脂組成物が更に各種物性に優れるものとなる。また、耐湿性、耐水性も向上する。
被覆層を与える表面被覆剤は特に限定されないが、有機化合物の1種又は2種以上を使用することが好ましい。有機化合物としては特に限定されないが、例えば、シリコーンオイル、アルキルシラン、ポリオレフィン、ポリエステル、アミノ酸、アミノ酸塩等の他、シランカップリング剤、チタンカップリング剤等のカップリング剤が挙げられる。中でも、アミノ基含有シランカップリング剤(アミノプロピルシラン等)が好適である。
上記蛍光体は、波長365nmの光で励起したときの極大発光波長が400~1500nmであることが好ましい。これにより、紫外光から可視光への変換効率が更に高まる。上記極大発光波長は、より好ましくは430~1100nmである。
極大発光波長の測定は、分光蛍光光度計(例えば、日本分光社製のFP-6500)を用いて行うことができる。蛍光積分球にはISF-513型を使用し、光電子倍増管(PMT)の電圧の設定値を400として、波長365nmの光で励起した時の極大発光波長を測定する。
上記蛍光体の形状は特に限定されないが、略球状であることが好ましい。
なお、形状は、走査型電子顕微鏡等によって観察することができる。
上記蛍光体の粒子径(D50)は特に限定されず、例えば、10nm~20μmであることが好ましい。より好ましくは0.5~10μmである。粒子径が20μmを超えると、蛍光体を含むフィルムやシートを製造する際にピンホール等の不良がでる恐れがある。
本明細書中、D50は、マイクロトラック(レーザー回折・散乱法)による体積基準粒度分布曲線において、積算値が50%となるときの粒径値であり、具体的には、後述の実施例に記載した方法により求めることができる。
上記蛍光体は、屈折率が1.3~1.7であることが好ましい。これにより、熱可塑性樹脂に分散させて樹脂組成物とした際に、透明性により優れる樹脂組成物となる。屈折率は、より好ましくは1.4~1.6である。
本明細書中、屈折率の詳細な測定方法は、後述の実施例に記載するとおりである。
2、蛍光体の製造方法
続いて本発明の蛍光体を得るための製造方法について説明する。
本発明の蛍光体の製造方法としては特に限定されないが、例えば、シリカ化合物に、アルミニウム化合物とユーロピウム化合物とを混合する工程(1)と、該工程(1)で得た原料混合物を焼成する焼成工程(2)とを含み、該焼成工程(2)は、酸素含有雰囲気下で焼成する工程と、還元雰囲気下で1100℃を超える温度で焼成する工程とを含むという製造方法を採用することが好適である。これにより、低コストで、容易かつ簡便に本発明の蛍光体を製造することができる。なお、通常の蛍光体の製造時に採用される1又は2以上のその他の工程を更に含んでもよく、その他の工程は特に限定されない。
以下、各工程について更に説明する。
1)工程(1)
工程(1)は、シリカ化合物に、アルミニウム化合物とユーロピウム化合物とを混合する工程である。必要に応じて、これら以外の原料を更に混合してもよく、各原料はそれぞれ1種又は2種以上を使用することができる。原料についてまず説明する。
原料の混合方法は特に限定されず、乾式法、湿式法のいずれも好適に採用できる。湿式混合では、水等の溶媒を用いてビーズミル等で投入した原料の解砕をしながら混合をすることが好適である。また、乾式混合では、原料を袋の中に入れて震盪や揉みほぐし等の手法で混合してもよいし、ボールミルやブレンダー等を使用してもよい。
シリカ化合物は特に限定されず、天然のシリカ(SiO)を用いてもよいし、合成品のシリカ(SiO)を使用してもよい。これらのいずれであっても、コスト低減や入手容易性等を考慮すると、工程(1)の原料としては非晶質(アモルファス)シリカを用いることが好適である。合成品としては、例えば、多孔質シリカが好適である他、多孔質シリカ以外の湿式シリカ、乾式シリカ等が挙げられる。合成方法は特に限定されないが、例えば多孔質シリカであれば、ゾル-ゲル法で得ることが好ましい。合成品として、市販品を使用してもよい。市販品としては、堺化学工業社製シリカ(製品名:Sciqas)、アドマテックス社製シリカ(製品名:SO-E1、SO-E2、SO-E4、SO-E5、SO-E6、SO-C1、SO-C2、SO-C4、SO-C5、SO-C6)、Denka社製シリカ(品名:FB-5D)、扶桑化学工業社製シリカ(製品名:SP03B)、DLS.ジャパン社製シリカ(製品名:カープレックス#67、カープレックス#80、カープレックス#1120、カープレックスFPS-1、カープレックスFPS-2、カープレックスCS-5)、Oriental Silicas Corporation社製シリカ(製品名:トクシールU)、水澤化学工業社製シリカ(製品名:ミズカシルP-801、ミズカシルP-802、ミズカシルP-526、ミズカシルP-527、ミズカシルP-603、ミズカシルP-604、ミズカシルP-554A、ミズカシルP-73、ミズカシルP-78A、ミズカシルP-78D、ミズカシルP-78F、ミズカシルP-707、ミズカシルP-740、ミズカシルP-752、ミズカシルP-50)等が挙げられる。
アルミニウム化合物は、アルミニウム原子を含む化合物であればよく、例えば、炭酸アルミニウム、酸化アルミニウム、塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、酢酸アルミニウム等が挙げられる。中でも、原料の混合を乾式法により行う場合は、より均一に混合する観点から、水溶性化合物を溶解させた水溶液を用いることが好ましい。水溶液を用いた場合は、混合物を焼成する前に加熱乾燥等の操作で水分を取り除くことが好ましい。原料の混合を湿式法により行う場合は、水溶性化合物であっても水不溶性化合物であってもよい。
ユーロピウム化合物は、ユーロピウム原子を含む化合物であればよく、例えば、炭酸ユーロピウム、酸化ユーロピウム、塩化ユーロピウム、硫酸ユーロピウム、硝酸ユーロピウム、酢酸ユーロピウム等が挙げられる。中でも、原料の混合を乾式法により行う場合は、より均一に混合する観点から、水溶性化合物を溶解させた水溶液を用いることが好ましい。水溶液を用いた場合は、混合物を焼成する前に加熱乾燥等の操作で水分を取り除くことが好ましい。原料の混合を湿式法により行う場合は、水溶性化合物であっても水不溶性化合物であってもよい。
シリカ化合物、アルミニウム化合物及びユーロピウム化合物の混合量比は特に限定されないが、例えば、アルミニウム化合物の含有量は、シリカ化合物100モルに対し、金属元素換算で0.5~25モルとすることが好適である。より好ましくは1.5~20モル、更に好ましくは5~15モルである。また、ユーロピウム化合物の含有量は、シリカ化合物100モルに対し、金属元素換算で0.01~15モル使用することが好適である。より好ましくは0.1~10モル、更に好ましくは0.5~5モルである。
上記工程(1)ではまた、ユーロピウム以外の共賦活剤を更に混合してもよい。共賦活剤については上述したとおりである。
2)工程(2)
工程(2)は、上記工程(1)で得た原料混合物を焼成する工程であり、この工程では、酸素含有雰囲気下で焼成する工程(酸素含有焼成とも称する)と、還元雰囲気下で1100℃を超える温度で焼成する工程(高温還元焼成とも称す)とを少なくとも行う。酸素含有焼成及び高温還元焼成のいずれも、それぞれ1回又は2回以上行ってもよい。なお、各焼成での焼成方法は特に限定されず、流動床焼成法であってもよいし、固定床焼成法であってもよい。また、各焼成では、焼成むら低減のため、均一な温度分布になるように焼成を行うことが好適である。
-酸素含有焼成-
酸素含有焼成における酸素含有雰囲気は、酸素を含む雰囲気であれば特に限定されない。好ましくは酸素を1体積%以上含む雰囲気、より好ましくは酸素を10体積%以上含む雰囲気、更に好ましくは大気雰囲気である。
酸素含有焼成は、例えば、焼成温度300~1000℃で行うことが好ましい。これにより、より充分な発光強度を確保することができる。
本明細書中、「焼成温度」とは、焼成時の最高到達温度を意味する。「焼成時間」とは、その最高到達温度での最高温度の保持時間を意味し、最高温度に達するまでの昇温時間は含まない。
酸素含有焼成における焼成時間は特に限定されないが、例えば、0.5~12時間とすることが好ましい。12時間を超えても、それに見合う効果が得られず、より生産性を高めることができないことがある。より好ましくは0.5~5時間である。
なお、酸素含有焼成を複数回繰り返して行う場合、その合計の焼成時間が、上述した好ましい焼成時間の範囲内になることが好適である。
-高温還元焼成-
高温還元焼成における還元雰囲気は特に限定されず、例えば、水素と窒素との混合ガス雰囲気、一酸化炭素と窒素との混合ガス雰囲気等が挙げられる。中でも、安全性やコスト面から、水素と窒素との混合ガス雰囲気が好ましく、この場合、混合ガス中の水素の割合を0.1~20体積%とすることが好ましい。より好ましくは0.5~10体積%である。
高温還元焼成は、1100℃を超える温度で行う。これにより、主な結晶相がクリストバライト相であるシリカを容易に与えることが可能になる。焼成温度は、好ましくは1150℃以上、より好ましくは1200℃以上である。また上限温度は特に限定されないが、焼成品の焼結による凝集やネッキングを抑制するためには、1400℃以下とすることが好ましい。
高温還元焼成における焼成時間は特に限定されないが、例えば、0.5~12時間とすることが好ましい。12時間を超えても、それに見合う効果が得られず、より生産性を高めることができないことがある。より好ましくは0.5~5時間である。
なお、高温還元焼成を複数回繰り返して行う場合、その合計の焼成時間が、上述した好ましい焼成時間の範囲内になることが好適である。
-その他の焼成-
本発明ではまた、還元雰囲気下、1100℃以下での焼成工程(低温還元焼成とも称す)を行ってもよい。この低温還元焼成を行う段階は特に限定されないが、酸素含有焼成と高温還元焼成との間に行うことが好ましい。特に、分散性の良い蛍光体粒子を好適に得るためには、酸素含有焼成、低温還元焼成、高温還元焼成の順に行うことが好適である。
低温還元焼成における還元雰囲気の好ましい形態等は、高温還元焼成と同様である。
低温還元焼成は1100℃以下で行う。焼成温度は、好ましくは500℃以上、より好ましくは700℃以上、更に好ましくは900℃以上である。また、焼成時間は特に限定されないが、例えば、0.5~12時間とすることが好ましい。より好ましくは0.5~5時間である。
なお、低温還元焼成を複数回繰り返して行う場合、その合計の焼成時間が、上述した好ましい焼成時間の範囲内になることが好適である。
3)粉砕工程
本発明では、必要に応じ、焼成工程(2)の前後やその間に粉砕や分級を行ってもよい。特に、高温還元焼成の後に粉砕を行うことが好適である。粉砕は、湿式粉砕、乾式粉砕のいずれでもよいが、湿式粉砕により行うことが好ましい。湿式粉砕では、必要に応じて遊星ミル、ビーズミル、及び振動ミル等の粉砕媒体撹拌型粉砕機を用いてもよい。
4)後処理工程
本発明では、必要に応じ、上記焼成工程(2)で得られた焼成物について、リパルプ(例えばスラリー化後、撹拌)、ろ過、水洗、粉砕、乾燥等の後処理を行ってもよい。また、必要に応じて篩による分級を行ってもよい。篩による分級は、湿式分級や乾式分級が挙げられる。
5)表面処理工程
本発明では、上述のとおり蛍光体が表面に被覆層を有していてもよい。すなわち上記製造方法は、更に表面被覆工程を含んでもよい。表面被覆工程は、上記焼成工程の後(その後に後処理工程等を行う場合は、これらの後)に行うことが好適である。
表面被覆方法は特に限定されず、従来知られている様々な表面処理を行えばよい。例えば、表面被覆対象物(例えば、上記焼成工程で得られた焼成物や、更に後処理工程を行う場合はその処理物等)の水分散体(スラリーともいう)に、必要に応じて加水分解させる等して水溶性とした無機化合物、あるいは有機化合物の表面被覆剤を添加して混合した後、必要に応じて粉砕、ろ過、加熱することで被覆することができる。水溶性ではない有機化合物を使用する場合は、有機化合物を乾式にて添加して混合した後、必要に応じて粉砕、加熱する方法が挙げられる。
表面被覆剤(表面処理剤とも称す)については上述したとおりである。その使用量は特に限定されないが、例えば、最終的に得られる蛍光体100質量部に対し、表面被覆剤による被覆量が0.1~30質量部の範囲となるように使用量を調節することが好ましい。0.1質量部以上とすることで、表面処理による機能性向上効果を発現することができ、30質量部以下とすることで、本来の発光特性を損なわず処理することができ、また経済的な観点で有利である。より好ましくは0.1~20質量部の範囲である。
本発明の蛍光体は、従来の蛍光体と比較して屈折率が低く、紫外光から可視光への変換効率が高く、かつ耐UV性に特に優れるものである。それゆえ、この蛍光体と熱可塑性樹脂脂とを含む樹脂組成物は、蛍光体と熱可塑性樹脂(特に封止樹脂等)との屈折率差を低減できるため、可視光に対して高い透明性を有し、太陽電池用波長変換材料用途に特に有用である。このように本発明の蛍光体は、樹脂との併用系で特に優れた効果を奏するため、樹脂への添加用途に好適に使用される。すなわち樹脂添加用蛍光体であることが好ましい。より好ましくは、熱可塑性樹脂添加用蛍光体である。以下では、蛍光体と熱可塑性樹脂とを含む本発明の樹脂組成物について詳述する。
3、樹脂組成物
本発明の樹脂組成物は、上述した本発明の蛍光体と熱可塑性樹脂とを含む。更に必要に応じて他の成分を含んでいてもよい。各含有成分は、それぞれ1種又は2種以上を使用することができる。
蛍光体としては、上述した本発明の蛍光体を用いる。中でも、回折角2θが35~37度である範囲に観察されるピークの半価幅が、0.43以下であるものが好ましく、0.41以下であるものがより好ましい。これにより、樹脂組成物の耐UV性がより発揮され、樹脂組成物の紫外光照射後の蛍光強度維持率をより高めることが可能になる。上記半価幅は、更に好ましくは0.40以下である。
熱可塑性樹脂としては特に限定されないが、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン(ポリエチレン樹脂とも称す)、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリフッ化ビニル、ポリ塩化ビニリデン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)等のスチレン(共)重合体、6-ナイロン、66-ナイロン、12-ナイロン等のポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリウレタン、ポリメチルメタクリレート等のアクリル樹脂、ポリ酢酸ビニル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素樹脂、アルケニル芳香族樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸等のポリエステル、ビスフェノールA系ポリカーボネート等のポリカーボネート、ポリアセタール、ポリフェニレンスルフィド、ポリメチルペンテン、セルロース、ポリビニルアルコール、ポリビニルアセタール、ポリアクリロニトリル等のポリアクリル酸、スチレン-アクリロニトリル共重合体(AS樹脂)、ポリフェニレンエーテル(PPE)、変性PPE、ポリアリレート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマーエチレンとプロピレンとの共重合体、エチレン又はプロピレンと他のα-オレフィン(ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1等)との共重合体、エチレンと他のエチレン性不飽和単量体(酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、ビニルアルコール等)との共重合体等が挙げられる。なお、熱可塑性樹脂が共重合体である場合、ランダム共重合体、ブロック共重合体等のいずれの形態の共重合体であってもよい。
上記の中でも、太陽電池の封止樹脂用により有用なものとする観点から、エチレン-酢酸ビニル共重合体及び/又はポリエチレン樹脂を用いることが好ましい。すなわち上記樹脂組成物は、熱可塑性樹脂として、エチレン-酢酸ビニル系共重合体及び/又はポリエチレン樹脂を含むことが好適である。なお、本発明の蛍光体は、これら樹脂との屈折率の差が充分に小さいため、上記樹脂組成物は高い透明性を発揮することができる。
上記樹脂組成物において、蛍光体の含有量は、熱可塑性樹脂100質量部に対し、0.05~15質量部であることが好ましい。これにより、樹脂組成物の蛍光強度及び透明性の両方の特性をより充分に発揮することができる。蛍光体の含有量は、より好ましくは0.5~5質量部、更に好ましくは1~3質量部である。
上記樹脂組成物はまた、必要に応じて、顔料、染料、可塑剤、滑剤、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、難燃剤、殺菌剤、抗菌剤、硬化用触媒、光重合開始剤等の1種又は2種以上を含んでもよい。その際は透明性を阻害しないものがより好ましい。
上記樹脂組成物は、蛍光体と、熱可塑性樹脂と、必要に応じて更に含まれる他の成分とを、通常の手法によって混合又は混練することで、調製することができる。その際、例えば、ニーダー、押出機、バンバリミキサー、三本ロール等の混合機を用いてもよい。
4、樹脂成形体
本発明の樹脂成形体は、上述した本発明の樹脂組成物を用いてなる樹脂成形体である。すなわち上記樹脂組成物の成形体である。樹脂成形体の形状は特に限定されず、板状、フィルム状、シート状、膜状等の平面形状の他、棒状、繊維状、針状、球状、ひも状、ペレット状、管状、箔状、粒子状、砂状、鱗片状、シート状、液状、ゲル状、ゾル状、懸濁液、集合体、カプセル型等の任意の形状が挙げられる。中でも、取扱性等の観点から、板状、フィルム状又はシート状であることが好適である。
上記樹脂成形体(特に、板状、フィルム状又はシート状の樹脂成形体)は、1mm厚での全光線透過率が85%以上であることが好適である。これにより、太陽電池用波長変換材料用途により一層有用なものとなる。85%以上であると、可視光透過性が向上することで、変換効率がより向上する。より好ましくは90%以上である。
上記樹脂成形体(特に、板状、フィルム状又はシート状の樹脂成形体)はまた、1mm厚でのヘイズが30%以下であることが好ましい。これにより、太陽電池用波長変換材料用途により一層有用なものとなる。より好ましくは20%以下、更に好ましくは15%以下、特に好ましくは10%以下、最も好ましくは8%以下である。
本明細書中、全光線透過率及びヘイズは、後述する実施例に記載の方法により測定することができる。
5、太陽電池用波長変換材料
本発明の太陽電池用波長変換材料は、上述した本発明の樹脂成形体(すなわち、上記樹脂組成物の成形体)を備える。このような太陽電池用波長変換材料は、紫外光から可視光への変換効率が高く、かつ耐UV性に優れるため、結晶シリコン太陽電池に特に有用である。このような本発明の太陽電池用波長変換材料を備える結晶シリコン太陽電池は、本発明の好適な実施形態の一つである。
本発明を詳細に説明するために以下に具体例を挙げるが、本発明はこれらの例のみに限定されるものではない。特に断りのない限り、「部」とは「重量部(質量部)」を意味し、「wt%」とは「重量%(質量%)」を意味する。
1、各種物性の測定・評価方法
(1)SEM観察
走査型電子顕微鏡(日本電子社製、JSM-840F、JSM-7000F)により各粉体の一次粒子径やその表面等を観察した。蛍光体1~4の顕微鏡写真(SEM写真)を図6に示す。
(2)半価幅
以下の条件により粉末X線回折パターン(単にX線回折(XRD)パターンともいう)を測定し、回折角2θが35~37度の範囲に観察されるピークの半価幅を算出した。半価幅は、測定したチャートから算出することが可能であるが、本願では粉末X線回折パターン総合解析ソフトウェア(MDI JADE7)を用いて算出した。具体的にはソフト上で34~37度に領域指定をして、ピークの平滑化処理、バックグラウンド補正処理後にピーク分離処理をすることにより半価幅を算出させた。測定結果を図1~5に示す。
-分析条件-
使用機:リガク社製、RINT-TTRIII
線源:CuKα
電圧:50kV
電流:300mA
試料回転速度:60rpm
発散スリット:1.00mm
発散縦制限スリット:10mm
長尺スリット:200mm、開口角度0.057度
散乱スリット:開放
受光スリット:開放
走査モード:連続
スキャンスピード:1
計数単位:Counts
ステップ幅:0.0100度
操作軸:2θ/θ
走査範囲:10.0000~70.0000度
(3)屈折率
スライドガラス上に、粉体(蛍光体)を接触液(屈折液、米国カーギル研究所製)に浸した試料を載せて、その試料の透明性を目視で確認した。1.45~1.54までの屈折率の異なる接触液を使用して確認を行い、最も透明性が高い試料に用いた接触液の屈折率を粉体の屈折率として評価を行った。結果を表1に示す。
なお、後述の試験例で使用したEVA樹脂の屈折率は、1.48~1.49であった。
(4)粒子径(D50)
各粉体(蛍光体)の粒子径(D50)は、以下のようにして測定した。
レーザー回折型粒度分布測定装置(日機装社製、マイクロトラックMT3000)により粒度分布を測定し、粒度分布曲線を得た。この測定ではまず、測定対象の粉末(粉体)を、透過率が0.7~0.99になるように投入し、流速60%にて、超音波分散及び循環させながら測定を行った。測定時の装置循環水は水とした。そして、この体積基準粒度分布曲線において積算値が50%のときの粒径値を、平均粒子径D50(μm)とした。測定したD50を表1に示す。
(5)蛍光強度
各粉体(蛍光体)と各シートの発光物性(発光強度及び主波長)を、蛍光分光光度計(日本分光社製、FP-6500)を用いて測定した。蛍光積分球にはISF-513型を使用し、光電子倍増管(PMT)の電圧の設定値を400として、波長365nmの光で励起したときの極大発光波長(主波長)及び発光強度を測定した。測定範囲は380~720nmとし、蛍光スペクトルを測定したところ、450nm付近で強い発光を示した。粉体の測定結果を表1に、シートの測定結果を表2に示す。
(6)全光線透過率及びヘイズ
シートの透明性評価として、ヘイズメーター(日本電色工業社製、NDH4000)を用いて行い、ヘイズ(曇り度)と全光線透過率を測定した。結果を表2に示す。
(7)粉体の耐光性
各作製例で得た蛍光体0.3gを無色透明なスクリュー管(マルエム社製、No.3)に入れてナイロンメッシュ(400メッシュ)で蓋をした。その状態で、超促進耐候性試験機(ダイプラ・ウィンデス社製、ダイプラ・メタルウェザー、KU-R5N-A)を用い、各試料に温度60℃、湿度60%の条件下、放射照度80mW/cmの紫外光を5時間照射した(これを耐光性試験と称す)後の蛍光強度維持率を評価した。その際、耐光性試験前の蛍光強度を100%とした。結果を表1に示す。
(8)シートの耐光性
まず各試験例で得たシートから、25mm×30mm、厚み1mmの各試験片を用意した。超促進耐候性試験機(ダイプラ・ウィンデス社製、ダイプラ・メタルウェザー、KU-R5N-A)を用い、各試験片に温度60℃、湿度60%の条件下、放射照度80mW/cmの紫外光を25時間照射した(これを耐光性試験と称す)後の蛍光強度維持率を評価した。その際、耐光性試験前の蛍光強度を100%とした。また、耐光性試験後の各試験片について、全光線透過率及びヘイズも測定した。結果を表2に示す。
2、蛍光体の作製及び評価
作製例1(蛍光体1)
(i)シリカの合成
ドデシルアミン(キシダ化学社製、14.9g)をイオン交換水(800g)と工業用アルコール製剤(甘糟化学産業社製、アルコゾールP-5、1200g)の混合溶液に溶解させ、溶液温度を26℃とした。その溶液に正珪酸四エチル(多摩化学社製、72.9g)を添加し、90rpmにて攪拌すると5分程度で加水分解が進行し、溶液がスラリー化した。その後、スラリーを濾過、水洗をしてケーキを得てから蒸発皿へ移し、130℃で一晩乾燥し、水分を除去した。乾燥後の粉末を乳鉢で解砕し、アルミナ製坩堝に20g充填して、大気雰囲気中で200℃/時で650℃まで昇温し、そのまま4時間保持後、200℃/時で室温まで降温した。こうして得られた焼成物を乳鉢で解砕し、シリカ粉末を得た。得られたシリカ粉末は多孔質であった。
(ii)含浸液の調製
酸化ユーロピウム(信越化学工業社製)を60%硝酸(和光純薬工業社製)で溶解し、イオン交換水を加えて1mol/Lの硝酸ユーロピウム水溶液を調製した。また、硝酸アルミニウム・九水和物(和光純薬工業社製)をイオン交換水に溶解させて1mol/Lの硝酸塩水溶液を調製した。
(iii)蛍光体1の作製(工程(1)及び工程(2))
上記(i)で得た多孔質シリカ(120g:シリカとして1.997モル)に、1mol/Lの硝酸アルミニウム水溶液及び1mol/Lの硝酸ユーロピウム水溶液を、それぞれシリカ100モルに対して10モル(199.7mL)、1.5モル(29.95mL)添加し、袋中で揉みながら混合した。混合後の湿った粉体を蒸発皿へ移し、130℃で一晩乾燥し、水分を除去した。
乾燥後の粉末を乳鉢で解砕し、アルミナ製坩堝に充填して、大気雰囲気中で200℃/時で450℃まで昇温し、そのまま1時間保持後、200℃/時で室温まで降温した。
こうして得られた焼成物を乳鉢で解砕し、アルミナ製坩堝に120g充填して、還元雰囲気(1%水素含有窒素)中で200℃/時で1100℃まで昇温し、そのまま2時間保持後、200℃/時で室温まで降温した。
こうして得られた焼成物を乳鉢で解砕し、アルミナ製坩堝に30g充填して、還元雰囲気(1%水素含有窒素)中で200℃/時で1200℃まで昇温し、そのまま1時間保持後、200℃/時で室温まで降温した。
こうして得られた焼成物を、遊星ボールミルを用いて水中で粉砕して整粒し、濾過・乾燥してアルミニウムとユーロピウムを含有するシリカ蛍光体粉末を得た。
(iv)表面処理
上記(iii)で得たアルミニウムとユーロピウムを含有するシリカ蛍光体粉末(10g)をイオン交換水でスラリー化した(これを「シリカ蛍光体スラリー」と称す)。
別途、シランカップリング処理剤として、3-アミノプロピルトリエトキシシラン(信越化学工業社製、KBE-903)を、重量比(水/KBE-903=10/0.27)で混合して常温で30分間撹拌することにより加水分解液を得た。
上記懸濁液を、シリカ蛍光体スラリー中のシリカ蛍光体粉末100重量部に対してシランカップリング剤の重量が2.7重量部になる量を容器に計量し、シリカ蛍光体スラリーに添加して常温で90分間撹拌することにより、シリカ蛍光体表面にシランカップリング剤を被覆させた。
処理後のスラリーを濾過し、得られたケーキを130℃で3時間乾燥させることで、表面処理されたシリカ蛍光体1(蛍光体1)を得た。
作製例2(蛍光体2)
上述の作製例1(i)で得た多孔質シリカ(120g:シリカとして1.997モル)に、1mol/Lの硝酸アルミニウム水溶液及び1mol/Lの硝酸ユーロピウム水溶液を、それぞれシリカ100モルに対して10モル(199.7mL)、1.5モル(29.95mL)添加し、袋中で揉みながら混合した。混合後の湿った粉体を蒸発皿へ移し、130℃で一晩乾燥し、水分を除去した。
乾燥後の粉末を乳鉢で解砕し、アルミナ製坩堝に充填して、大気雰囲気中で200℃/時で450℃まで昇温し、そのまま1時間保持後、200℃/時で室温まで降温した。
こうして得られた焼成物を乳鉢で解砕し、アルミナ製坩堝に30g充填して、還元雰囲気(1%水素含有窒素)中で200℃/時で1200℃まで昇温し、そのまま2時間保持後、200℃/時で室温まで降温した。
こうして得られた焼成物を、遊星ボールミルを用いて水中で粉砕して整粒し、濾過・乾燥してアルミニウムとユーロピウムを含有するシリカ蛍光体粉末を得た。
その後の表面処理は、作製例1と同様の方法で実施し、表面処理されたシリカ蛍光体2(蛍光体2)を得た。
作製例3(蛍光体3)
上述の作製例1(iii)における最終の還元雰囲気焼成の温度1200℃を1250℃に変更したこと以外は、作製例1と同様の操作により、表面処理されたシリカ蛍光体3(蛍光体3)を得た。
作製例4(蛍光体4)
作製例2の還元雰囲気焼成の温度を1200℃から1100℃に変更したこと以外は、作製例2と同様の操作により表面処理されたシリカ蛍光体4(蛍光体4)を得た。
作製例5(蛍光体5)
上述の作製例1(iii)における、1mol/Lの硝酸アルミニウム水溶液及び1mol/Lの硝酸ユーロピウム水溶液の添加量を、それぞれシリカ100モルに対して5モル(99.9mL)、0.5モル(9.99mL)に変更したこと以外は作製例1と同様の操作により、表面処理されたシリカ蛍光体5(蛍光体5)を得た。
作製例6(蛍光体6)
上述の作製例1(iii)における、1mol/Lの硝酸アルミニウム水溶液及び1mol/Lの硝酸ユーロピウム水溶液の添加量を、それぞれシリカ100モルに対して15モル(299.6mL)、5モル(99.9mL)に変更したこと以外は作製例1と同様の操作により、表面処理されたシリカ蛍光体6(蛍光体6)を得た。
蛍光体1~6の各物性値を表1に、蛍光体1~4のXRDチャートを図1~5に、SEM写真を図6にそれぞれ示す。表1中、波長450nmでの蛍光強度比は、蛍光体1(耐光性試験前)の波長450nmでの蛍光強度を100%としたときの相対値である。また、耐光性試験後の450nmでの蛍光強度比も、蛍光体1の耐光性試験前の450nmでの蛍光強度を100%としたときの相対値である。
Figure JPOXMLDOC01-appb-T000001
3、樹脂成形体(シート)の作製及び評価
試験例1
エチレン-酢酸ビニル系共重合体(三井・デュポンポリケミカル社製、エバフレックス(R)EV360、以下「EVA樹脂」と称す)49.5gに蛍光体1を0.5g添加し、樹脂混練機(東洋精機社製、ラボプラストミル)に投入し、温度90℃、ローター回転数60rpmの条件下で20分間混練することで、樹脂組成物1を得た。この樹脂組成物1を、プレス機(東洋精機社製、Mini Test Press MP-WNH)を用い、温度:130℃、加圧条件:0.6MPa×5分、2MPa×3分、5MPa×2分(この順に)にてプレスした後、室温まで冷却することで、1mm厚のシートを得た。
試験例2~11
蛍光体の種類、並びに、蛍光体の使用量の比率を、表2に示す通りに変更したこと以外は、試験例1と同様にして、シート2~11をそれぞれ作製した。なお、樹脂混練試験機に投入する量はいずれも総計50gである。
試験例1~11で得たシートにつき、波長450nmでの蛍光強度比、全光線透過率及びヘイズ、並びに、耐光性試験(25時間)後の蛍光強度維持率、全光線透過率及びヘイズを表2に示す。表2中、波長450nmでの蛍光強度比は、試験例1で得られたシート(耐光性試験前)の波長450nmでの蛍光強度を100%としたときの相対値である。また、耐光性試験後の450nmでの蛍光強度比も、試験例1で得られたシートの耐光性試験前の450nmでの蛍光強度を100%としたときの相対値である。
Figure JPOXMLDOC01-appb-T000002
蛍光体1~3は、CuKαのX線源を用いたX線回折装置において図1~4に示すように回折角2θが21~23度の範囲に最も強いピークが観察され、かつ回折角2θが35~37度の範囲に観察されるピークの半価幅が0.45以下であることから、母体シリカの主な結晶相がクリストバライト相であるといえ、かつアルミニウム及びユーロピウムを含む。すなわち本発明の蛍光体に該当する。蛍光体5、6のXRDチャートは示していないものの、XRDチャートから母体シリカの主な結晶相がクリストバライト相であると判断でき、かつアルミニウム及びユーロピウムを含むため、本発明の蛍光体に該当する。これに対し、蛍光体4は、回折角2θが21~23度、30~32度、35~37度の範囲にはピークが確認できなかったため、クリストバライト相の結晶相は有さないと判断できる(図5参照)。蛍光体1~3、5、6と蛍光体4とはこの点で相違するが、粉体として、耐光性試験(5時間)後の蛍光強度維持率を比較すると、蛍光体1~3、5、6は、蛍光体4に比べ、蛍光強度維持率が著しく大きい(表1参照)。また、樹脂成形体(シート)とし、耐光性試験25時間経過後の蛍光強度維持率を比較すると、蛍光体1~3、5、6を含むシートは、蛍光体4を含むシートに比べ、蛍光強度維持率が著しく大きい(表2参照)。このことから、本発明の蛍光体は、耐UV性に特に優れるものであることが分かった。このとき、回折角2θが35~37度の範囲に観察されるピークの半価幅が小さくなるほど耐光性が向上することが示唆されているが、これは予想できないことであった。試験例1~3で得られたシートはまた、全光線透過率及びヘイズのいずれも耐光性試験前後で変化は殆どなく、可視光透過性に優れることも分かった(表2参照)。
上記の蛍光強度維持率の差は、おそらく2価のEuを発光中心とした公知の蛍光体の劣化機構に似ていることが推測され、粒子内に存在している水、特にアモルファスのシリカに含まれるOH基が関与することに起因すると考えられる。つまり蛍光体4は、このOH基が多く含まれることに起因して発光強度が低下した可能性が考えられる。これらの推測より、アモルファス蛍光シリカをクリストバライト結晶構造が形成する段階まで焼成し、Si-OH基を少なくすれば、紫外光に対して劣化は抑えられ、更には高温高湿度環境下に対する劣化を抑制できる可能性がある。
蛍光体1~3、5、6は、励起波長365nmの光で励起したときの極大発光波長(測定条件は上述の通り)が430~480nmであった(表1参照)。また、市販の50mm試験用太陽電池セルを、耐光性試験前の蛍光体1~3を用いて得た各シートで封止し、ソーラーシミュレーターを用いて光電変換効率を測定したところ、蛍光体を使用していないシート(EVA樹脂からなるシート)の紫外光から可視光への変換効率が18.7%程度であったのに対し、18.8~19%へと向上した。蛍光体の含有量を異ならせた検討も行ったところ、光電変換効率は、蛍光体の分散性も影響していることが分かった。分散性を高めることで光電変換効率の向上の余地があると考えられる。
本発明の蛍光体及び蛍光体を含む樹脂組成物は、耐光性に優れるため長期間屋外で使用しても発光強度の低下が少ないことから、例えば、セキュリティフィルム、交通標識、電飾看板、液晶バックライト、照明ディスプレイ等、屋外で長期間使用される用途に応用できることが期待される。

Claims (10)

  1. シリカを母体とする蛍光体であって、
    アルミニウムとユーロピウムとを含み、
    該シリカは、主な結晶相がクリストバライト相である
    ことを特徴とする蛍光体。
  2. CuKαのX線源を用いたX線回折装置において回折角2θが35~37度の範囲に観察されるピークの半価幅が0.43以下である
    ことを特徴とする請求項1に記載の蛍光体。
  3. 前記アルミニウム及びユーロピウムの含有量は、前記シリカ100モルに対し、金属元素換算で、それぞれ0.5~25モル及び0.01~15モルである
    ことを特徴とする請求項1又は2に記載の蛍光体。
  4. 請求項1~3のいずれかに記載の蛍光体と熱可塑性樹脂とを含む
    ことを特徴とする樹脂組成物。
  5. 前記蛍光体の含有量は、前記熱可塑性樹脂100質量部に対し、0.05~15質量部である
    ことを特徴とする請求項4に記載の樹脂組成物。
  6. 前記熱可塑性樹脂として、エチレン-酢酸ビニル共重合体及び/又はポリエチレン樹脂を含む
    ことを特徴とする請求項4又は5に記載の樹脂組成物。
  7. 請求項4~6のいずれかに記載の樹脂組成物を用いてなる
    ことを特徴とする樹脂成形体。
  8. 板状、フィルム状又はシート状である
    ことを特徴とする請求項7に記載の樹脂成形体。
  9. 前記樹脂成形体は、1mm厚での全光線透過率が85%以上であり、かつヘイズが30%以下である
    ことを特徴とする請求項8に記載の樹脂成形体。
  10. 請求項7~9のいずれかに記載の樹脂成形体を備える
    ことを特徴とする太陽電池用波長変換材料。
PCT/JP2017/028796 2016-08-24 2017-08-08 蛍光体及びそれを含む樹脂組成物 WO2018037914A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018535590A JP6885405B2 (ja) 2016-08-24 2017-08-08 蛍光体及びそれを含む樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016163741 2016-08-24
JP2016-163741 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018037914A1 true WO2018037914A1 (ja) 2018-03-01

Family

ID=61245700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028796 WO2018037914A1 (ja) 2016-08-24 2017-08-08 蛍光体及びそれを含む樹脂組成物

Country Status (2)

Country Link
JP (1) JP6885405B2 (ja)
WO (1) WO2018037914A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188831A1 (ja) * 2018-03-29 2019-10-03 Agc株式会社 波長変換部材及びその製造方法
JP2020033240A (ja) * 2018-08-31 2020-03-05 堺化学工業株式会社 粒子状シリカ及びその製造方法
EP3657141A1 (en) 2018-11-23 2020-05-27 trinamiX GmbH Detector and method for measuring ultraviolet radiation
WO2022196311A1 (ja) * 2021-03-15 2022-09-22 パナソニックIpマネジメント株式会社 蛍光体およびそれを用いた太陽電池モジュール

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270733A (ja) * 2000-03-27 2001-10-02 Iwasaki Electric Co Ltd 青色発光及び可視発光ゾルゲルガラス
JP2005132640A (ja) * 2003-10-28 2005-05-26 Japan Science & Technology Agency 発光体の製造方法及び発光体
JP2006274263A (ja) * 2005-03-25 2006-10-12 Sarnoff Corp 金属ケイ酸塩−シリカ系多形蛍光体および発光装置
KR20060106196A (ko) * 2005-04-06 2006-10-12 학교법인 호서학원 장중파장 자외선용 청색 형광체 및 그의 제조 방법
JP2014197683A (ja) * 2012-10-03 2014-10-16 株式会社ブリヂストン 太陽電池用封止膜及びこれを用いた太陽電池
WO2015108096A1 (ja) * 2014-01-17 2015-07-23 株式会社ブリヂストン 太陽電池用封止膜及びこれを用いた太陽電池
JP2016141780A (ja) * 2015-02-04 2016-08-08 堺化学工業株式会社 青色蛍光体、化粧料及び青色蛍光体の製造方法
JP2016141781A (ja) * 2015-02-04 2016-08-08 堺化学工業株式会社 青色蛍光体、化粧料及び青色蛍光体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270733A (ja) * 2000-03-27 2001-10-02 Iwasaki Electric Co Ltd 青色発光及び可視発光ゾルゲルガラス
JP2005132640A (ja) * 2003-10-28 2005-05-26 Japan Science & Technology Agency 発光体の製造方法及び発光体
JP2006274263A (ja) * 2005-03-25 2006-10-12 Sarnoff Corp 金属ケイ酸塩−シリカ系多形蛍光体および発光装置
KR20060106196A (ko) * 2005-04-06 2006-10-12 학교법인 호서학원 장중파장 자외선용 청색 형광체 및 그의 제조 방법
JP2014197683A (ja) * 2012-10-03 2014-10-16 株式会社ブリヂストン 太陽電池用封止膜及びこれを用いた太陽電池
WO2015108096A1 (ja) * 2014-01-17 2015-07-23 株式会社ブリヂストン 太陽電池用封止膜及びこれを用いた太陽電池
JP2016141780A (ja) * 2015-02-04 2016-08-08 堺化学工業株式会社 青色蛍光体、化粧料及び青色蛍光体の製造方法
JP2016141781A (ja) * 2015-02-04 2016-08-08 堺化学工業株式会社 青色蛍光体、化粧料及び青色蛍光体の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188831A1 (ja) * 2018-03-29 2019-10-03 Agc株式会社 波長変換部材及びその製造方法
JP2020033240A (ja) * 2018-08-31 2020-03-05 堺化学工業株式会社 粒子状シリカ及びその製造方法
JP7259231B2 (ja) 2018-08-31 2023-04-18 堺化学工業株式会社 粒子状シリカ及びその製造方法
EP3657141A1 (en) 2018-11-23 2020-05-27 trinamiX GmbH Detector and method for measuring ultraviolet radiation
WO2022196311A1 (ja) * 2021-03-15 2022-09-22 パナソニックIpマネジメント株式会社 蛍光体およびそれを用いた太陽電池モジュール
CN116997633A (zh) * 2021-03-15 2023-11-03 松下知识产权经营株式会社 荧光体和使用了它的太阳能电池模块

Also Published As

Publication number Publication date
JPWO2018037914A1 (ja) 2019-06-20
JP6885405B2 (ja) 2021-06-16

Similar Documents

Publication Publication Date Title
Basavaraj et al. Red and green emitting CTAB assisted CdSiO3: Tb3+/Eu3+ nanopowders as fluorescent labeling agents used in forensic and display applications
WO2018037914A1 (ja) 蛍光体及びそれを含む樹脂組成物
Saha et al. Controlling nonradiative transition centers in Eu3+ activated CaSnO3 nanophosphors through Na+ co-doping: realization of ultrabright red emission along with higher thermal stability
Tetsuka et al. Highly luminescent flexible amino-functionalized graphene quantum dots@ cellulose nanofiber–clay hybrids for white-light emitting diodes
Dutta et al. Luminescent properties of doped zinc aluminate and zinc gallate white light emitting nanophosphors prepared via sonochemical method
JP5252621B2 (ja) 粘土を主成分とするフレキシブル蛍光フィルム
Hua et al. Advantageous occupation of europium (III) in the B site of double-perovskite Ca2BB′ O6 (B= Y, Gd, La; B′= Sb, Nb) frameworks for white-light-emitting diodes
Wang et al. Facile encapsulation of SiO 2 on ZnO quantum dots and its application in waterborne UV-shielding polymer coatings
Iso et al. Effects of YVO4: Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module
Li et al. Carbon dots/ZnO quantum dots composite-based white phosphors for white light-emitting diodes
CN102250610A (zh) 一种复合ZnO介孔二氧化硅纳米材料的制备方法
Deepthi et al. Optical, electrical and luminescent studies of CuO/MgO nanocomposites synthesized via sonochemical method
WO2015119124A1 (ja) 蛍光体微粒子、蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池
Ishii et al. White light emission from mesoporous carbon–silica nanocomposites
Zheng et al. Molten Salt Shielded Synthesis of Monodisperse Layered CaZnOS‐Based Semiconductors for Piezophotonic and X‐Ray Detection Applications
Güner et al. Optical enhancement of phosphor-converted wLEDs using glass beads
Mukherjee et al. Sonochemically synthesized rare earth double-doped zirconia nanoparticles: probable candidate for white light emission
Matsunaga et al. Synthesis, photoluminescence, and photostability of Y2O3: Bi3+, Eu3+ nanosheets
Gao et al. Synthesis and photoluminescence of high color purity red-emitting BaLaLiTeO6: Eu3+ phosphors
Nohara et al. Mixed-solvent strategy for solvothermal synthesis of well-dispersed YBO 3: Ce 3+, Tb 3+ nanocrystals
Rafiaei et al. Synthesis and luminescence properties of transparent YVO4: Eu3+ phosphors
WO2013177848A1 (zh) 一种二氧化硅包覆的橙红色荧光粉及其制备方法
Alamdari et al. Highly stable Ga-doped ZnO/polystyrene nanocomposite film with narrow-band cyan emission
Zhu et al. (Y, Tb, Eu) 2 O 3 monospheres for highly fluorescent films and transparent hybrid films with color tunable emission
Miao et al. Y2O3: Eu3+, Tb3+ spherical particles based anti-reflection and wavelength conversion bi-functional films: Synthesis and application to solar cells

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535590

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843399

Country of ref document: EP

Kind code of ref document: A1