WO2018037721A1 - 熱式湿度測定装置 - Google Patents

熱式湿度測定装置 Download PDF

Info

Publication number
WO2018037721A1
WO2018037721A1 PCT/JP2017/024429 JP2017024429W WO2018037721A1 WO 2018037721 A1 WO2018037721 A1 WO 2018037721A1 JP 2017024429 W JP2017024429 W JP 2017024429W WO 2018037721 A1 WO2018037721 A1 WO 2018037721A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
heating element
output
humidity
thermal
Prior art date
Application number
PCT/JP2017/024429
Other languages
English (en)
French (fr)
Inventor
安藤 亮
洋 小貫
中野 洋
丈夫 細川
真之 日尾
成亘 小松
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2018535500A priority Critical patent/JP6592200B2/ja
Priority to US16/315,424 priority patent/US11092559B2/en
Priority to DE112017002858.2T priority patent/DE112017002858T5/de
Publication of WO2018037721A1 publication Critical patent/WO2018037721A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/62Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers
    • G01N25/64Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers using electric temperature-responsive elements

Definitions

  • the present invention relates to a thermal humidity measuring device that detects humidity by using a change in heat conduction based on the amount of moisture contained in the air.
  • Patent Document 1 a thermal gas sensor described in JP 2011-137679 A (Patent Document 1) is known.
  • the thermal gas sensor of Patent Document 1 includes a substrate having a cavity portion, a thin film support layered in the cavity portion and composed of a plurality of insulating layers, a first heating element sandwiched between the insulating layers of the thin film support body, and a first heating element.
  • Two heating elements the second heating element is arranged around the first heating element, the first heating element is controlled at a higher temperature than the second heating element, and based on the electric power applied to the first heating element Measure ambient gas concentration (see summary).
  • the second heating element maintains the gas temperature around the first heating element at a predetermined temperature, and can reduce the influence of fluctuations in the gas temperature, and the heating element is time-divided into different temperatures.
  • the drive circuit of the thermal gas sensor of Patent Document 1 includes a series circuit in which a first heating element and a fourth fixed resistor are connected in series, and a series circuit in which a fifth fixed resistor and a sixth fixed resistor are connected in series.
  • the first bridge circuit configured by connection, the series circuit in which the second heating element and the first fixed resistor are connected in series, and the series circuit in which the second fixed resistor and the third fixed resistor are connected in series are arranged in parallel.
  • a second bridge circuit configured to be connected (see paragraph 0029).
  • the first bridge circuit including the first heating element for measuring the concentration of the ambient gas and the gas temperature around the first heating element are held at a predetermined temperature.
  • the second bridge circuit including the second heating element By providing the second bridge circuit including the second heating element, the concentration value of the ambient gas measured by the first heating element is suppressed from fluctuating due to the influence of the gas temperature.
  • the second bridge circuit and the second heating element as a component thereof are used only to maintain the gas temperature around the first heating element at a predetermined temperature.
  • a physical quantity on a gas state (for example, pressure, flow rate, temperature, etc.) using a bridge circuit.
  • the thermal gas sensor is referred to as a thermal humidity measuring device.
  • An object of the present invention is to provide a plurality of measurement values (measurement values) including humidity measured by the first heating element by effectively using each heating element in the configuration including the first heating element and the second heating element. It is to provide a thermal humidity measuring device that can obtain the above.
  • the thermal humidity measuring device of the present invention is: In a thermal humidity measuring apparatus comprising a first bridge circuit having a first heating element for detecting humidity and a second bridge circuit having a second heating element for heating air around the first heating element, Extracting the first output signal from the first bridge circuit to detect the humidity; A second output signal including at least one of pressure, air flow rate, and air temperature is extracted from the second bridge circuit.
  • FIG. 1 is a configuration diagram of a thermal humidity measurement device according to the present invention, and is a configuration diagram showing an embodiment of a thermal humidity measurement device that performs air flow correction.
  • FIG. 3 is a layout view of a first heating element and a second heating element according to an embodiment of the present invention.
  • 1 is a configuration diagram of a thermal humidity measurement device according to the present invention, and is a configuration diagram showing an embodiment of a thermal humidity measurement device that performs pressure correction.
  • FIG. 1 is a configuration diagram of a thermal humidity measurement device according to the present invention, and is a configuration diagram showing an embodiment of a thermal humidity measurement device that outputs a temperature signal.
  • FIG. It is a block diagram of the thermal type humidity measuring apparatus which concerns on one Example of this invention. It is a figure which shows the pressure dependence of a humidity measured value.
  • the amount of heat released from the heating element depends on the amount of moisture contained in the air.
  • the thermal humidity measuring device uses the amount of heat released from the heating element as a detection signal (measurement signal). Since the amount of heat release changes due to the following four factors, (Factor 4) Factors other than moisture contained in the air become the error factors of humidity measurement. (Factor 1) Temperature difference between the heating element and air. (Factor 2) Pressure of air around the heating element. (Factor 3) Air flow around the heating element. (Factor 4) Moisture contained in the air.
  • the thermal humidity measuring device in order to realize the countermeasure of (Countermeasure 1), includes a first heating element 4 that detects humidity and a second air temperature around the first heating element 4 that keeps the air temperature constant.
  • a heating element 10 is provided.
  • FIG. 4 shows an arrangement example of the first heating element 4 and the second heating element 10.
  • the second heating element 10 is arranged so as to surround the periphery of the first heating element 4. Electrodes 21 and 22 are provided at both ends of the first heating element 4. Electrodes 23 and 24 are provided at both ends of the second heating element 10.
  • the relationship between air heat transfer coefficient and humidity is temperature-dependent, and heat transfer coefficient is humidity-dependent at an air temperature of 500 ° C, but humidity dependency is almost eliminated at 350 ° C (more preferably 300 ° C). . Therefore, the first heating element 4 is heated to 500 to 600 ° C., and the second heating element is heated to 250 to 350 ° C. In this embodiment, the first heating element 4 is heated to 500 ° C., and the second heating element is heated to 300 ° C.
  • the temperature difference between the first heating element 4 and air is constant regardless of the temperature of the outside air.
  • the temperature is maintained (200 ° C.).
  • FIG. 1 shows a configuration of a thermal humidity measuring apparatus 1 according to an embodiment of the present invention.
  • the first heating element 4 is an element for detecting humidity.
  • the first heating element 4, a fixed resistor (first fixed resistor) 5, a fixed resistor (second fixed resistor) 6, and a fixed resistor (third fixed resistor) ) 7 is heated to a predetermined temperature by a bridge circuit (first bridge circuit) 2 composed of 7.
  • a first series circuit in which a first heating element 4 and a fixed resistor 5 are connected in series and a second series circuit in which a fixed resistor 6 and a fixed resistor 7 are connected in series are connected in parallel.
  • the bridge circuit 2 is configured. Then, the potential Va1 of the connection part a1 between the first heating element 4 and the fixed resistor 5 and the potential Va2 of the connection part a2 between the fixed resistance 6 and the fixed resistance 7 are input to the differential amplifier 8, and the potential Va1 and the potential are input.
  • the potential difference Va1a2 with Va2 is appropriately amplified, and a current corresponding to the potential difference Va1a2 is supplied to the connection part a3 between the first heating element 4 and the fixed resistor 6 of the bridge circuit 2.
  • the connection part a4 between the fixed resistor 5 and the fixed resistor 7 is grounded and connected to the earth potential. Thereby, the 1st heat generating body 4 is heated to predetermined temperature.
  • the potential Va5 of the connection part a5 between the first heating element 4 and the fixed resistor 5 is a humidity signal corresponding to humidity (a humidity signal before adjustment described later).
  • the connection part a5 is substantially the same part as the connection part a1
  • the potential Va5 is the same as the potential Va1.
  • the humidity signal of the thermal humidity measuring device 1 As for the humidity signal of the thermal humidity measuring device 1, the voltage signal Va5 at the connection point a5 between the first heating element 4 and the fixed resistor 5 is input (connected) to the output adjustment circuit 9, and the output adjustment circuit 9 outputs the voltage signal Va5. It is obtained by adjusting.
  • the humidity signal obtained by adjusting the voltage signal Va5 is output from the output terminal 15.
  • the output adjustment circuit 9 is for adjusting the individual variation of the voltage signal at the connection point a1 between the first heating element 4 and the fixed resistor 5.
  • the second heating element 10 is an element for heating the air around the first heating element 4.
  • the second heating element 10 a fixed resistor (fourth fixed resistor) 11, a fixed resistor (fifth fixed resistor) 12, and A bridge circuit (second bridge circuit) 3 composed of a fixed resistor (sixth fixed resistor) 13 is heated to a predetermined temperature.
  • a third series circuit in which the second heating element 10 and the fixed resistor 11 are connected in series and a fourth series circuit in which the fixed resistor 12 and the fixed resistor 13 are connected in series are connected in parallel.
  • the bridge circuit 3 is configured. Then, the potential Va11 of the connection part a11 between the second heating element 10 and the fixed resistance 11 and the potential Va12 of the connection part a12 between the fixed resistance 6 and the fixed resistance 7 are input to the differential amplifier 14, and the potential Va11 and the potential are input.
  • the potential difference Va11a12 with Va12 is appropriately amplified, and a current corresponding to the potential difference Va11a12 is supplied to the connection part a13 between the second heating element 10 and the fixed resistor 11 of the bridge circuit 3.
  • the connection part a5 is substantially the same part as the connection part a1, and the potential Va5 is the same as the potential Va1. Thereby, the 1st heat generating body 4 is heated to predetermined temperature.
  • the heat generated in the second heating element 10 is radiated to the surrounding air, and the amount of radiated heat is the ambient air state (for example, pressure, flow rate or temperature). ).
  • the change in the heat radiation amount due to the change in the air state changes the potential Va15 of the connection part a15 between the second heating element 10 and the fixed resistor 11. Therefore, the potential Va15 of the connection part a15 can be used as information (hereinafter referred to as a physical quantity) regarding the air state (for example, pressure, flow rate, or temperature).
  • taking out the potential Va15 of the connection part a15 means detecting the current (current value) flowing through the second heating element 10.
  • FIG. 2 shows a configuration of a thermal humidity measuring apparatus 1 'which is a comparative example with the present invention.
  • the first heating element 4 is arranged in a place where there is no flow of ambient air (the above (Countermeasure 3)), and measures a humidity output error due to the air flow.
  • a pressure sensor 17 is arranged, and the signal processing circuit 18 corrects and calculates the ambient air pressure signal and the humidity signal from the output terminal 15 to take measures against a humidity output error due to pressure.
  • the bridge circuit 3 is provided only for heating the air around the first heating element to a predetermined temperature.
  • a signal is taken out from the bridge circuit 3 and outputted from the output terminal 16 to the outside of the thermal humidity measuring apparatus 1. Since the signal from the bridge circuit 3 includes information on the air flow (flow rate), pressure, and temperature around the thermal humidity measuring device 1, it can be used as a signal for outputting such information.
  • a signal (information) obtained from the output terminal 16 is used as a correction signal for correcting a humidity signal obtained from the bridge circuit 2
  • the humidity signal obtained from the bridge circuit 2 may be referred to as a first output signal
  • the signal obtained from the bridge circuit 3 (a signal obtained from the output terminal 16) may be referred to as a second output signal.
  • FIG. 3 shows an embodiment of a thermal humidity measuring device 1 that performs air flow correction.
  • the thermal humidity measuring apparatus 1 in FIG. 3 uses the voltage output (potential of the connection part a15) Va15 from the bridge circuit 3 as a signal of the air flow around the thermal humidity measuring apparatus 1, and the humidity obtained from the bridge circuit 2
  • the embodiment in the case of correcting the influence (error) of the air flow included in the signal is shown.
  • a pressure sensor 17 for detecting the ambient pressure
  • a signal processing circuit (signal processing unit) 18 for correcting an error included in the humidity signal
  • a temperature sensor 25 for detecting the temperature. Note that any one of the pressure sensor 17, the signal processing circuit 18, or the temperature sensor 25, or any two of them, or all of them may be included in the thermal humidity measuring device 1. .
  • a humidity signal output from the output terminal 15, a pressure signal output from the pressure sensor 17, a signal output from the output terminal 16, and a temperature signal output from the temperature sensor 25 are input to the signal processing circuit 18.
  • the signal output from the output terminal 16 includes air flow rate, pressure, and temperature information (components).
  • the signal processing circuit 18 uses the pressure signal output from the pressure sensor 17 and the temperature signal output from the temperature sensor 25, and the pressure component included in the signal output from the output terminal 16 (second output signal). Correct to remove the temperature component. Thereby, the signal processing circuit 18 can extract the air flow rate component (air flow rate signal) included in the second output signal.
  • the signal processing circuit 18 corrects the humidity output error (error of the first output signal) due to pressure fluctuation and air flow using the pressure signal and the extracted air flow rate signal, and outputs the corrected humidity signal.
  • Fig. 8 shows the pressure dependence of the humidity measurement value.
  • the thermal humidity measuring device 1 of this embodiment outputs absolute humidity as a measured value.
  • the definition of absolute humidity here is the weight ratio of the moisture content to the measurement air, specifically the mass of moisture contained in 1 kg of measurement air.
  • the absolute humidity specifying method includes a method of calculating using an approximate expression of the pressure dependency characteristic of the humidity measurement value as shown in FIG. 8, a method of reading out the absolute humidity stored on the two-dimensional coordinates, and the like. It is done.
  • the approximate expression and the two-dimensional coordinates storing the absolute humidity are stored in the storage circuit (storage unit) 26.
  • the memory circuit 26 may be included in the thermal humidity measuring device 1.
  • Humidity measurement values also depend on temperature and air flow rate. For this reason, as in the case of the pressure dependency, an approximate expression of the dependency characteristic and a two-dimensional coordinate are stored in the storage circuit 26, and the absolute humidity is specified for each temperature and each air flow rate. to correct.
  • the 1st heat generating body 4 can be arrange
  • the first heating element 4 can be disposed in a place where the surrounding air is easily exchanged, and the thermal humidity measuring device 1 that achieves both high accuracy and high-speed response can be realized.
  • a configuration in which the temperature sensor 25 is not disposed is also an object of this embodiment.
  • FIG. 5 shows an embodiment of a thermal humidity measuring apparatus 1 that performs pressure correction.
  • the thermal humidity measuring device 1 of FIG. 5 uses the voltage output (potential of the connection part a15) Va15 from the bridge circuit 3 as a signal of the air pressure around the thermal humidity measuring device 1, and the humidity obtained from the bridge circuit 2
  • the embodiment in the case of correcting the influence (error) of the pressure included in the signal is shown.
  • the first heating element 4 and the second heating element 10 are arranged in an environment (space) where the flow of air can be ignored.
  • Such a space can be realized by a hollow portion similar to that of Patent Document 1.
  • a signal processing circuit (signal processing unit) 18 that corrects an error included in the humidity signal and a temperature sensor 25 that detects the ambient temperature are provided.
  • any one of the signal processing circuit 18 and the temperature sensor 25, or all of them may be included in the thermal humidity measuring device 1.
  • a humidity signal output from the output terminal 15, a signal output from the output terminal 16, and a temperature signal output from the temperature sensor 25 are input to the signal processing circuit 18.
  • the signal output from the output terminal 16 includes air flow rate, pressure, and temperature information (components).
  • the signal processing circuit 18 uses the temperature signal output from the temperature sensor 25 to correct the temperature component included in the signal output from the output terminal 16 (second output signal). Thereby, the signal processing circuit 18 can extract the pressure component (pressure signal) included in the second output signal.
  • the signal processing circuit 18 corrects a humidity output error (error of the first output signal) due to temperature fluctuation and pressure fluctuation using the temperature signal and the extracted pressure signal, and outputs the humidity signal from the output terminal 19. From the output terminal 19, not only a humidity signal but also a pressure signal and a temperature signal can be output simultaneously or in a time division manner.
  • the first heating element 4 needs to be arranged in a place where there is no air flow, but the pressure sensor 17 is not required, so an inexpensive thermal humidity measuring device can be realized.
  • position the temperature sensor 25 is also the object of a present Example.
  • FIG. 6 shows an embodiment of a thermal humidity measuring device 1 that outputs a temperature signal.
  • FIG. 6 is an embodiment in which the voltage output (potential of the connection part a15) Va15 from the bridge circuit 3 is used as a signal of the temperature of the air around the humidity measurement apparatus 1.
  • FIG. it is assumed that the first heating element 4 and the second heating element 10 are arranged in an environment (space) where the flow of air can be ignored.
  • the first heating element 4 is arranged in a place where there is no air flow, and the pressure sensor 17 is provided.
  • the humidity output error error of the first output signal
  • a high-accuracy humidity signal in which the humidity output error due to pressure fluctuation is corrected is output from the output terminal 19.
  • the signal can be output from the terminal 19. In this case, there is no need for correction because there is no humidity output error due to air flow fluctuations or it is negligibly small.
  • the signal from the output terminal 16 (second output signal) for humidity signal correction.
  • the signal from the output terminal 16 includes a temperature signal, it can be used as an air temperature signal separately from the correction of the humidity signal.
  • the pressure fluctuation component (signal) is also included in the second output signal, the second output signal is input to the signal processing circuit 18, the pressure fluctuation component is removed from the second output signal, and the temperature signal is obtained. Extract. Thereby, a humidity signal, a pressure signal, and a temperature signal can be output from the output terminal 19 simultaneously or in a time division manner.
  • the signal from the bridge circuit 2 is taken from the connection part a5 between the second heating element 10 and the fixed resistor 11, but is shown in FIG. As described above, the signal (Va6) may be taken from the output terminal a6 of the differential amplifier 14.
  • the thermal humidity measuring device is an error factor in humidity measurement because the output changes depending on the amount of moisture contained in the air and the temperature difference between the heating element that measures humidity and the air, as well as the air flow and ambient air pressure. It becomes. Therefore, in the thermal humidity measuring device, the heating element that measures humidity is placed in a place where there is no air flow, or the pressure of the ambient air is measured with a pressure measuring device placed near the thermal humidity measuring device, and the output signal ( A measure such as correcting the measurement value) is required.
  • Patent Document 1 describes a composite sensor in which a thermal gas sensor is integrated with a thermal air flow sensor, and this composite sensor is a secondary sensor provided with a thermal air flow sensor.
  • a thermal gas sensor is installed in the cavity of the housing that communicates with the passage (see paragraph 0088). That is, in the composite sensor disclosed in Patent Document 1, the thermal gas sensor is disposed in a hollow portion of the housing, whereby the thermal gas sensor is disposed in a place where there is no air flow (hollow portion).
  • the thermal humidity measuring device that measures the environment of the intake passage of an internal combustion engine needs to measure the humidity of the gas in real time. Therefore, high-speed response performance (hereinafter referred to as high-speed response) is desired for the thermal humidity measuring device.
  • high-speed response high-speed response performance
  • the humidity detection element is exposed to the intake passage, the intake air pulsates due to the high-speed operation of the internal combustion engine, and the measurement of humidity is adversely affected by turbulent flow. For this reason, it is necessary to arrange the heating element for humidity measurement in a place where there is no air flow or in a place where there is little air flow.
  • both high-precision measurement with low noise and high-speed response are compatible. difficult.
  • the configuration in which the pressure sensor for correcting the pressure effect of the humidity signal has a problem that the product price is high.
  • the first output signal humidity signal
  • the second output signal high accuracy can be obtained even in an environment where intake pulsation occurs due to high rotation operation of the internal combustion engine. It is possible to provide a humidity measuring device that can measure humidity compatible with high-speed response, and to provide an inexpensive thermal humidity measuring device.
  • this invention is not limited to each above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 1 Thermal humidity measuring apparatus, 2 ... Bridge circuit which drives 1st heat generating body, 3 ... Bridge circuit which drives 2nd heat generating body, 4 ... 1st heat generating body, 5, 6, 7 ... Fixed resistance, 8 ... Differential amplifier, 9 ... output adjustment circuit, 10 ... second heating element, 11, 12, 13 ... fixed resistor, 14 ... differential amplifier, 15, 16 ... output terminal, 17 ... pressure sensor, 18 ... signal processing circuit, DESCRIPTION OF SYMBOLS 19 ... Output terminal, 20 ... Board

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Nonlinear Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本発明の目的は、第1発熱体と第2発熱体とを備えた構成において、各発熱体を有効に利用して、第1発熱体で計測される湿度を含む複数の計測値(測定値)を得られるようにした熱式湿度測定装置を提供することにある。湿度を検知する第1発熱体(4)を有する第1ブリッジ回路(2)と第1発熱体(4)の周辺空気を加熱する第2発熱体(10)を有する第2ブリッジ回路(3)とを備えた熱式湿度測定装置(1)において、第1ブリッジ回路(2)から第1出力信号(Va5)を取り出して湿度を検知し、第2ブリッジ回路(3)から少なくとも圧力、空気流量又は空気温度いずれか一つの情報を含む第2出力信号(Va15)を取り出す。

Description

熱式湿度測定装置
 本発明は、空気中に含まれる水分の量に基づく熱伝導の変化を利用して湿度を検出する熱式湿度測定装置に関する。
 本発明の技術分野に属する背景技術として、特開2011-137679号公報(特許文献1)に記載された熱式ガスセンサが知られている。
 特許文献1の熱式ガスセンサは、空洞部を有する基板と、空洞部に積層され複数の絶縁層から構成される薄膜支持体と、薄膜支持体の絶縁層に挟持された第1発熱体および第2発熱体とを有し、第2発熱体は第1発熱体の周辺に配置され、第1発熱体は第2発熱体よりも高温に制御され、第1発熱体に印可される電力に基づいて周囲ガスの濃度を測定する(要約参照)。この熱式ガスセンサでは、第2発熱体は第1発熱体の周囲のガス温度を所定の温度に保持し、ガス温度の変動による影響を低減することができると共に、発熱体を異なる温度に時分割に加熱する必要がなく応答速度を速くすることができる(段落0012参照)。特許文献1の熱式ガスセンサの駆動回路は、第1発熱体と第4固定抵抗とが直列接続された直列回路、および第5固定抵抗と第6固定抵抗とが直列接続された直列回路を並列接続して構成される第一ブリッジ回路と、第2発熱体と第1固定抵抗とが直列接続された直列回路、および第2固定抵抗と第3固定抵抗とが直列接続された直列回路を並列接続して構成される第二ブリッジ回路とを備える(段落0029参照)。
特開2011-137679号公報
 特許文献1の熱式ガスセンサの駆動回路では、周囲ガスの濃度を測定するために第1発熱体を含む第1ブリッジ回路と、第1発熱体の周囲のガス温度を所定の温度に保持するために第2発熱体を含む第2ブリッジ回路とを備えることにより、第1発熱体で測定する周囲ガスの濃度値がガス温度の影響を受けて変動するのを抑制している。この熱式ガスセンサの駆動回路では、第2ブリッジ回路およびその構成要素である第2発熱体は第1発熱体の周囲のガス温度を所定の温度に保持するためだけに用いられており、第2ブリッジ回路を用いてガスの状態(例えば、圧力、流量または温度など)に関する情報(以下、物理量という)を計測することについては、配慮がなかった。以下、熱式ガスセンサは熱式湿度測定装置と呼ぶ。
 本発明の目的は、第1発熱体と第2発熱体とを備えた構成において、各発熱体を有効に利用して、第1発熱体で計測される湿度を含む複数の計測値(測定値)を得られるようにした熱式湿度測定装置を提供することにある。
 上記目的を達成するために、本発明の熱式湿度測定装置は、
 湿度を検知する第1発熱体を有する第1ブリッジ回路と前記第1発熱体の周辺空気を加熱する第2発熱体を有する第2ブリッジ回路とを備えた熱式湿度測定装置において、
 前記第1ブリッジ回路から第1出力信号を取り出して前記湿度を検知し、
 前記第2ブリッジ回路から少なくとも圧力、空気流量又は空気温度いずれか一つの情報を含む第2出力信号を取り出す。
 本発明によれば、第2発熱体を用いて空気の圧力、流量または温度の少なくともいずれか一つの情報を計測することにより、第1発熱体で計測される湿度を含む複数の計測値(測定値)が得られる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る熱式湿度測定装置の構成図である。 本発明との比較例である熱式湿度測定装置の構成図である。 本発明に係る熱式湿度測定装置の構成図であり、空気流量補正を行う熱式湿度測定装置の一実施例を示す構成図である。 本発明の一実施例に係る第1発熱体と第2発熱体との配置図である。 本発明に係る熱式湿度測定装置の構成図であり、圧力補正を行う熱式湿度測定装置の一実施例を示す構成図である。 本発明に係る熱式湿度測定装置の構成図であり、温度信号を出力する熱式湿度測定装置の一実施例を示す構成図である。 本発明の一実施例に係る熱式湿度測定装置の構成図である。 湿度計測値の圧力依存性を示す図である。
 発熱体からの放熱量は空気中に含まれる水分の量に依存する。熱式湿度測定装置は発熱体からの放熱量を検出信号(計測信号)としている。放熱量は次の4つの要因で変化するため、(要因4)空気中に含まれる水分以外の要因は湿度計測の誤差要因となる。
(要因1)発熱体と空気との温度差。
(要因2)発熱体周辺の空気の圧力。
(要因3)発熱体周辺の空気の流れ。
(要因4)空気中に含まれる水分。
 従来技術の熱式湿度測定装置では(1)~(3)の要因について、次の対策を施している。
(対策1)発熱体の周りの空気を別の発熱体で一定温度に保持する。
(対策2)発熱体近傍に圧力センサを配置して圧力を計測し、検出信号を補正する。
(対策3)発熱体を空気の流れが無い場所に配置する。
 本実施例では、(対策1)の対策を実現する為に、熱式湿度測定装置には湿度を検知する第1発熱体4と、第1発熱体4の周辺空気温度を一定に保つ第2発熱体10とが設けられている。
 図4に第1発熱体4および第2発熱体10の配置例を示す。
 第1発熱体4の周辺を囲むように第2の発熱体10は配置される。第1発熱体4の両端部には電極21,22が設けられている。第2の発熱体10の両端部には電極23,24が設けられている。
 空気の熱伝達率と湿度との関係には温度依存性があり、空気温度500℃では熱伝達率に湿度依存性があるが、350℃(より好ましくは300℃)では湿度依存性がほぼ無くなる。このため、第1発熱体4は500~600℃に、第2発熱体は250~350℃に加熱される。本実施例では、第1発熱体4は500℃に、第2発熱体は300℃に加熱する。
 このような第1発熱体4および第2発熱体10の配置と各発熱体4,10の温度制御とにより、第1発熱体4と空気との温度差は外気の温度によらず、一定の温度(200℃)に保たれる。
 図1に本発明の一実施例に係る熱式湿度測定装置1の構成を示す。
 第1発熱体4は湿度を検出する為の素子であり、第1発熱体4と、固定抵抗(第1固定抵抗)5、固定抵抗(第2固定抵抗)6および固定抵抗(第3固定抵抗)7とで構成されるブリッジ回路(第1ブリッジ回路)2で所定温度に加熱されている。
 この比較例では、第1発熱体4と固定抵抗5とが直列に接続された第1直列回路と、固定抵抗6と固定抵抗7とが直列に接続された第2直列回路とが並列に接続されて、ブリッジ回路2が構成される。そして、第1発熱体4と固定抵抗5との接続部a1の電位Va1と、固定抵抗6と固定抵抗7との接続部a2の電位Va2とを差動増幅器8に入力し、電位Va1と電位Va2との電位差Va1a2を適切に増幅して電位差Va1a2に応じた電流をブリッジ回路2の第1発熱体4と固定抵抗6との接続部a3に供給する。なお、固定抵抗5と固定抵抗7との接続部a4は接地され、アース電位に接続される。これにより、第1発熱体4は所定温度に加熱される。
 第1発熱体4を所定温度に維持している状態では、第1発熱体4と固定抵抗5との接続部a5の電位Va5は湿度に対応した湿度信号(後述する調整を行う前の湿度信号)として取り出すことができる。なお、接続部a5は接続部a1と実質的に同じ部位であり、電位Va5は電位Va1と同じである。
 熱式湿度測定装置1の湿度信号は、第1発熱体4と固定抵抗5との接続点a5の電圧信号Va5を出力調整回路9に入力(接続)し、出力調整回路9で電圧信号Va5を調整することにより得られる。電圧信号Va5を調整することによって得られた湿度信号は、出力端子15から出力される。出力調整回路9は第1発熱体4と固定抵抗5との接続点a1の電圧信号の個体ばらつきを調整するためのものである。
 第2発熱体10は第1発熱体4の周辺の空気を加熱する為の素子であり、第2発熱体10と固定抵抗(第4固定抵抗)11、固定抵抗(第5固定抵抗)12および固定抵抗(第6固定抵抗)13とで構成されるブリッジ回路(第2ブリッジ回路)3で所定温度に加熱されている。
 この比較例では、第2発熱体10と固定抵抗11とが直列に接続された第3直列回路と、固定抵抗12と固定抵抗13とが直列に接続された第4直列回路とが並列に接続されて、ブリッジ回路3が構成される。そして、第2発熱体10と固定抵抗11との接続部a11の電位Va11と、固定抵抗6と固定抵抗7との接続部a12の電位Va12とを差動増幅器14に入力し、電位Va11と電位Va12との電位差Va11a12を適切に増幅して電位差Va11a12に応じた電流をブリッジ回路3の第2発熱体10と固定抵抗11との接続部a13に供給する。なお、接続部a5は接続部a1と実質的に同じ部位であり、電位Va5は電位Va1と同じである。これにより、第1発熱体4は所定温度に加熱される。
 第2発熱体10を所定温度に維持している状態では、第2発熱体10で発生する熱は周囲の空気に放熱され、その放熱量は周囲の空気の状態(例えば、圧力、流量または温度)によって変化する。そして、空気の状態の変化による放熱量の変化は、第2発熱体10と固定抵抗11との接続部a15の電位Va15を変化させる。従って、接続部a15の電位Va15を空気の状態(例えば、圧力、流量または温度)に関する情報(以下、物理量という)として用いることができる。
 また、接続部a15の電位Va15を取り出すことは、第2発熱体10を流れる電流(電流値)を検出することを意味する。
 図2に本発明との比較例である熱式湿度測定装置1’の構成を示す。
 図2の比較例では、第1発熱体4は周辺空気の流れが無い場所に配置され(上記(対策3))、空気の流れによる湿度出力誤差を対策している。また、圧力センサ17を配置し、周辺空気の圧力信号と出力端子15からの湿度信号とを信号処理回路18で補正演算して、圧力による湿度出力誤差を対策する。
 図2の比較例では、ブリッジ回路3からは熱式湿度測定装置1の外部に信号を取り出していない。従って、ブリッジ回路3は第1発熱体の周囲の空気を所定温度に加熱するためだけに設けられている。
 これに対し、図1に示す本実施例の熱式湿度測定装置1では、ブリッジ回路3から信号を取り出し、出力端子16から熱式湿度測定装置1の外部に出力している。ブリッジ回路3からの信号は熱式湿度測定装置1周辺の空気の流れ(流量)や圧力、温度の情報を含んでいるため、これらの情報を出力する信号として活用できる。
 以下では、出力端子16から得られる信号(情報)を、ブリッジ回路2から得られる湿度信号を補正する補正信号として用いる例を実施例1~5に分けて説明する。なお、ブリッジ回路2から得られる湿度信号は第1出力信号と呼び、ブリッジ回路3から得られる信号(出力端子16から得られる信号)は第2出力信号と呼ぶ場合がある。
 [実施例1]
 図3に、空気流量補正を行う熱式湿度測定装置1の一実施例を示す。
 図3の熱式湿度測定装置1は、ブリッジ回路3からの電圧出力(接続部a15の電位)Va15を熱式湿度測定装置1周辺の空気の流れの信号として用い、ブリッジ回路2から得られる湿度信号に含まれる空気流れの影響(誤差)を補正する場合の実施例を示している。
 本実施例では、図1の熱式湿度測定装置1の他に、周囲の圧力を検出する圧力センサ17と、湿度信号に含まれる誤差を補正する信号処理回路(信号処理部)18と、周囲の温度を検出する温度センサ25とを備える。なお、圧力センサ17、信号処理回路18または温度センサ25のいずれか一つ、或いはこれらの中のいずれか二つ、或いはこれらの全てが熱式湿度測定装置1に含まれる構成であってもよい。
 信号処理回路18に、出力端子15から出力される湿度信号と、圧力センサ17から出力される圧力信号と、出力端子16から出力される信号と、温度センサ25から出力される温度信号とを入力する。上述したように、出力端子16から出力される信号には、空気流量や圧力、温度の情報(成分)が含まれる。信号処理回路18は、圧力センサ17から出力される圧力信号と温度センサ25から出力される温度信号とを用いて、出力端子16から出力される信号(第2出力信号)に含まれる圧力成分と温度成分を取り除くように補正する。これにより、信号処理回路18は第2出力信号に含まれる空気流量成分(空気流量信号)を抽出することができる。
 信号処理回路18は、圧力信号と抽出した空気流量信号とを用いて、圧力変動と空気の流れとによる湿度出力誤差(第1出力信号の誤差)を補正し、補正処理された湿度信号を出力端子19から出力する。出力端子19からは湿度信号のみならず、圧力信号および温度信号も同時、または時分割で出力することができる。
 図8に、湿度計測値の圧力依存性を示す。
 本実施例の熱式湿度測定装置1は計測値として絶対湿度を出力する。ここでの絶対湿度の定義は測定空気に対する含有水分量の重量比で、具体的には測定空気1kg中に含まれる水分の質量である。
 熱式湿度測定装置1の出力である湿度計測値は圧力依存性があるため、図8に示すように、絶対湿度が同じでも圧力が変化すると湿度計測値も変化する。絶対湿度の特定方法(補正方法)は、図8に示すような湿度計測値の圧力依存特性の近似式を用いて算出する方法や2次元座標上に記憶された絶対湿度を読み出す方法などが挙げられる。
 このための近似式や絶対湿度を記憶した2次元座標は、記憶回路(記憶部)26に記憶される。記憶回路26は熱式湿度測定装置1に含まれる構成であってもよい。
 湿度計測値は温度や空気流量に対しても依存性を有する。そのため、これらの依存性に対して、圧力依存性と同様に、依存特性の近似式や2次元座標を記憶回路26に記憶し、各温度および各空気流量に対して絶対湿度を特定するように補正する。
 本実施例は、第1発熱体4の周辺の空気の流れによって生じる計測誤差を補正することができる。このため、第1発熱体4を空気流の発生する場所に配置することができる。その結果、第1発熱体4を周辺の空気の交換が行われ易い場所に配置でき、高精度化と高速応答とを両立した熱式湿度測定装置1を実現できる。図3において、温度の影響を無視できる場合には、温度センサ25を配置しない構成も本実施例の対象となる。
 [実施例2]
 図5に、圧力補正を行う熱式湿度測定装置1の一実施例を示す。
 図5の熱式湿度測定装置1は、ブリッジ回路3からの電圧出力(接続部a15の電位)Va15を熱式湿度測定装置1周辺の空気の圧力の信号として用い、ブリッジ回路2から得られる湿度信号に含まれる圧力の影響(誤差)を補正する場合の実施例を示している。なお本実施例では、第1発熱体4および第2発熱体10は空気の流れを無視できる環境(空間)に配置されていることを前提としている。このような空間は特許文献1と同様な空洞部によって実現できる。
 本実施例では、図1の熱式湿度測定装置1の他に、湿度信号に含まれる誤差を補正する信号処理回路(信号処理部)18と、周囲の温度を検出する温度センサ25とを備える。なお、信号処理回路18または温度センサ25のいずれか一つ、或いはこれらの全てが熱式湿度測定装置1に含まれる構成であってもよい。
 信号処理回路18に、出力端子15から出力される湿度信号と、出力端子16から出力される信号と、温度センサ25から出力される温度信号とを入力する。
上述したように、出力端子16から出力される信号には、空気流量や圧力、温度の情報(成分)が含まれる。信号処理回路18は、温度センサ25から出力される温度信号を用いて、出力端子16から出力される信号(第2出力信号)に含まれる温度成分を取り除くように補正する。これにより、信号処理回路18は第2出力信号に含まれる圧力成分(圧力信号)を抽出することができる。
 信号処理回路18は、温度信号と抽出した圧力信号とを用いて、温度変動と圧力変動とによる湿度出力誤差(第1出力信号の誤差)を補正し、湿度信号を出力端子19から出力する。出力端子19からは湿度信号のみならず、圧力信号および温度信号も同時、または時分割で出力することができる。
 本実施例の場合、第1発熱体4は空気の流れが無い場所に配置する必要があるが、圧力センサ17が不要になるので安価な熱式湿度測定装置を実現できる。図5において、温度の影響を無視できる場合には、温度センサ25を配置しない構成も本実施例の対象となる。
 [実施例3]
 図6に、温度信号を出力する熱式湿度測定装置1の一実施例を示す。
 図6の熱式湿度測定装置1は、ブリッジ回路3からの電圧出力(接続部a15の電位)Va15を湿度測定装置1周辺の空気の温度の信号として用いる場合の実施例である。本実施例では、第1発熱体4および第2発熱体10は空気の流れを無視できる環境(空間)に配置されていることを前提としている。
 本実施例では、第1発熱体4を空気の流れが無い場所に配置し、圧力センサ17を設ける。圧力センサ17から出力される圧力信号を用いて、湿度出力誤差(第1出力信号の誤差)を補正することにより、出力端子19から圧力変動による湿度出力誤差を補正した高精度な湿度信号を出力端子19から出力することができる。この場合、空気流量変動による湿度出力誤差はないか、無視できるほどに小さいので、補正の必要ない。
 この場合、出力端子16からの信号(第2出力信号)を湿度信号補正に使う必要はない。しかし、出力端子16からの信号には温度信号も含まれるため、湿度信号の補正とは別に空気温度信号として使うことができる。しかし、第2出力信号には圧力変動の成分(信号)も含まれているため、第2出力信号を信号処理回路18に入力し、第2出力信号から圧力変動の成分を取り除き、温度信号を抽出する。これにより、出力端子19から湿度信号、圧力信号および温度信号を同時、または時分割で出力することができる。
 図1および実施例1~実施例3の熱式湿度測定装置1では、ブリッジ回路2からの信号を第2発熱体10と固定抵抗11との接続部a5から取っているが、図7に示すように、差動増幅器14の出力端子a6から信号(Va6)をとってもよい。
 熱式湿度測定装置は空気中に含まれる水分の量や、湿度計測をする発熱体と空気との温度差の他に空気の流れや周囲空気の圧力でも出力が変化し、湿度計測の誤差要因となる。そのため熱式湿度測定装置では、湿度計測をする発熱体を空気の流れが無い場所に配置する、或いは熱式湿度測定装置近傍に配置した圧力測定装置で周囲空気の圧力を計測して出力信号(計測値)を補正する、などの手段が必要になる。
 このような課題に対して、特許文献1には、熱式ガスセンサを熱式空気流量センサと一体にした複合型センサが記載されており、この複合型センサは熱式空気流量センサを設置した副通路と連通するハウジングの空洞部に熱式ガスセンサを設置している(段落0088参照)。すなわち、特許文献1の複合型センサでは、熱式ガスセンサをハウジングの空洞部に配置することにより、熱式ガスセンサを空気の流れが無い場所(空洞部)に配置している。
 しかし、湿度計測をする発熱体を空気の流れが無い場所に配置することは、空気の交換が行われにくくなる為、湿度変化への応答性が悪化するという課題が生じる。
 内燃機関の吸気通路の環境を測定する熱式湿度測定装置は、リアルタイムに気体の湿度を測定する必要がある。そのため熱式湿度測定装置には高速な応答性能(以下、高速応答という)が望まれている。高速応答を実現するためには、湿度検出素子を吸気通路に露出させることが望ましい。しかし、湿度検出素子を吸気通路に露出させた場合、内燃機関の高回転運転によって吸気が脈動し、乱流の影響を受けて湿度の測定に悪影響を与える。このため、湿度計測をする発熱体を空気の流れが無い場所、もしくは少ない場所に配置する必要があり、特許文献1の熱式ガスセンサでは、ノイズの少ない高精度な計測と高速応答との両立は難しい。
 また、湿度信号の圧力影響を補正する為の圧力センサを配置する構成は製品価格が高くなるという課題がある。
 上述した実施例のうち、第2出力信号を用いて第1出力信号(湿度信号)を補正するようにした実施例では、内燃機関の高回転運転などにより吸気脈動する環境においても、高精度と高速応答とを両立した湿度を測定できる湿度測定装置を提供することができると共に、安価な熱式湿度測定装置を提供することができる。
 なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…熱式湿度測定装置、2…第1発熱体を駆動するブリッジ回路、3…第2発熱体を駆動するブリッジ回路、4…第1発熱体、5,6,7…固定抵抗、8…差動増幅器、9…出力調整回路、10…第2発熱体、11,12,13…固定抵抗、14…差動増幅器、15、16…出力端子、17…圧力センサ、18…信号処理回路、19…出力端子、20…基板、21,22,23,24…電極、25…温度センサ、26…記憶装置。

Claims (4)

  1.  湿度を検知する第1発熱体を有する第1ブリッジ回路と前記第1発熱体の周辺空気を加熱する第2発熱体を有する第2ブリッジ回路とを備えた熱式湿度測定装置において、
     前記第1ブリッジ回路から第1出力信号を取り出して前記湿度を検知し、
     前記第2ブリッジ回路から少なくとも圧力、空気流量又は空気温度いずれか一つの情報を含む第2出力信号を取り出すことを特徴とする熱式湿度測定装置。
  2.  請求項1に記載の熱式湿度測定装置において、
     前記第1出力信号に含まれる誤差を補正する信号処理部と、周囲の圧力を検出する圧力センサと、周囲の温度を検出する温度センサと、を備え、
     前記信号処理部は、前記圧力センサの出力と前記温度センサの出力とを用いて前記第2出力信号から空気流量信号を取り出し、前記圧力センサの出力と前記空気流量信号とを用いて前記第1出力信号を補正することを特徴とする熱式湿度測定装置。
  3.  請求項1に記載の熱式湿度測定装置において、
     前記第1発熱体および前記第2発熱体を、空気の流れを無視できる空間に配置し、
     前記第1出力信号に含まれる誤差を補正する信号処理部と、周囲の温度を検出する温度センサと、を備え、
     前記信号処理部は、前記温度センサの出力を用いて前記第2出力信号から圧力信号を取り出し、前記圧力信号を用いて前記第1出力信号を補正することを特徴とする熱式湿度測定装置。
  4.  請求項1に記載の熱式湿度測定装置において、
     前記第1発熱体および前記第2発熱体を、空気の流れを無視できる空間に配置し、
     前記第1出力信号に含まれる誤差を補正する信号処理部と、周囲の圧力を検出する圧力センサとを備え、
     前記信号処理部は、前記圧力センサの出力を用いて前記第1出力信号に含まれる誤差を補正すると共に、前記圧力センサの出力を用いて前記第2出力信号から温度信号を取り出すことを特徴とする熱式湿度測定装置。
PCT/JP2017/024429 2016-08-26 2017-07-04 熱式湿度測定装置 WO2018037721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018535500A JP6592200B2 (ja) 2016-08-26 2017-07-04 熱式湿度測定装置
US16/315,424 US11092559B2 (en) 2016-08-26 2017-07-04 Thermal humidity measuring device
DE112017002858.2T DE112017002858T5 (de) 2016-08-26 2017-07-04 Thermisches Feuchtigkeitsmessgerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-165304 2016-08-26
JP2016165304 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018037721A1 true WO2018037721A1 (ja) 2018-03-01

Family

ID=61245863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024429 WO2018037721A1 (ja) 2016-08-26 2017-07-04 熱式湿度測定装置

Country Status (4)

Country Link
US (1) US11092559B2 (ja)
JP (1) JP6592200B2 (ja)
DE (1) DE112017002858T5 (ja)
WO (1) WO2018037721A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11820333B2 (en) 2018-09-28 2023-11-21 Asahi Kasei Kabushiki Kaisha Humidity measuring device and dew point temperature measuring device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10728104B2 (en) * 2018-11-15 2020-07-28 Adobe Inc. Time-dependent network embedding
US11483408B2 (en) 2019-07-10 2022-10-25 Adobe Inc. Feature-based network embedding
TWI759855B (zh) * 2020-09-10 2022-04-01 財團法人工業技術研究院 感測裝置以及校正方法
CN113607295A (zh) * 2021-06-09 2021-11-05 合肥通用机械研究院有限公司 一种低温空气温湿度测量及计算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966037A (en) * 1983-09-12 1990-10-30 Honeywell Inc. Cantilever semiconductor device
JPH07113777A (ja) * 1993-10-18 1995-05-02 Ricoh Seiki Co Ltd 雰囲気検出装置
JPH10104183A (ja) * 1996-09-27 1998-04-24 Hitachi Ltd 湿度検出装置及びそれを用いた空気流量測定装置
JP2011099757A (ja) * 2009-11-06 2011-05-19 Hitachi Automotive Systems Ltd 熱式流体流量センサおよびその製造方法
JP2011137679A (ja) * 2009-12-28 2011-07-14 Hitachi Automotive Systems Ltd 熱式ガスセンサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021761B2 (ja) * 2013-08-27 2016-11-09 日立オートモティブシステムズ株式会社 ガスセンサ装置
US9896089B2 (en) * 2016-04-07 2018-02-20 Ford Global Technologies, Llc Methods and systems for adjusting engine operation based on weather data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966037A (en) * 1983-09-12 1990-10-30 Honeywell Inc. Cantilever semiconductor device
JPH07113777A (ja) * 1993-10-18 1995-05-02 Ricoh Seiki Co Ltd 雰囲気検出装置
JPH10104183A (ja) * 1996-09-27 1998-04-24 Hitachi Ltd 湿度検出装置及びそれを用いた空気流量測定装置
JP2011099757A (ja) * 2009-11-06 2011-05-19 Hitachi Automotive Systems Ltd 熱式流体流量センサおよびその製造方法
JP2011137679A (ja) * 2009-12-28 2011-07-14 Hitachi Automotive Systems Ltd 熱式ガスセンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11820333B2 (en) 2018-09-28 2023-11-21 Asahi Kasei Kabushiki Kaisha Humidity measuring device and dew point temperature measuring device

Also Published As

Publication number Publication date
JP6592200B2 (ja) 2019-10-16
DE112017002858T5 (de) 2019-02-28
US20190310212A1 (en) 2019-10-10
US11092559B2 (en) 2021-08-17
JPWO2018037721A1 (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6592200B2 (ja) 熱式湿度測定装置
JP6346922B2 (ja) ホール起電力補正装置及びホール起電力補正方法
JP4177183B2 (ja) 熱式空気流量計
US8874387B2 (en) Air flow measurement device and air flow correction method
JP6714083B2 (ja) 圧力センサのためのセンサ素子
US9157826B2 (en) Method and system to compensate for temperature and pressure in piezo resistive devices
CN110006554B (zh) 一种温度计校准装置和方法
US20050049805A1 (en) Methods and systems for temperature compensation of physical property sensors
US20090056466A1 (en) Active temperature differential compensation for strain gage based sensors
US20140260516A1 (en) Electronic Tilt Compensation for Diaphragm Based Pressure Sensors
JP2019090616A (ja) 環境センサ
WO2019150745A1 (ja) センサ装置
JP2003106887A (ja) 流量計測装置
US20170023389A1 (en) Flow rate measuring apparatus
CN111954793B (zh) 热式流量计
JP2017036935A (ja) 熱伝導式湿度センサ
EP4253928A1 (en) Method for thermoelectric effect error correction
US8893554B2 (en) System and method for passively compensating pressure sensors
JP2010216906A (ja) 自動車用流量計
JP2019066253A (ja) 流量計測装置
US20060021444A1 (en) Method of operating a resistive heat-loss pressure sensor
JP2019109190A (ja) 流量検出装置
JPH0674802A (ja) 感熱式流量センサ
JPH0572221A (ja) 風速センサ
JP2017219426A (ja) 気体流量測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535500

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843209

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17843209

Country of ref document: EP

Kind code of ref document: A1