WO2018037718A1 - ハイブリッド駆動装置及びハイブリッド駆動装置の制御方法 - Google Patents
ハイブリッド駆動装置及びハイブリッド駆動装置の制御方法 Download PDFInfo
- Publication number
- WO2018037718A1 WO2018037718A1 PCT/JP2017/024181 JP2017024181W WO2018037718A1 WO 2018037718 A1 WO2018037718 A1 WO 2018037718A1 JP 2017024181 W JP2017024181 W JP 2017024181W WO 2018037718 A1 WO2018037718 A1 WO 2018037718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor generator
- gear
- generator
- motor
- state
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/442—Series-parallel switching type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/30—Control strategies involving selection of transmission gear ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/083—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with radially acting and axially controlled clutching members, e.g. sliding keys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a hybrid drive device and a control method of the hybrid drive device.
- JP2015-536863A discloses a series hybrid transmission including a first motor for driving the first shaft and a second motor for driving the second shaft.
- the present invention has been made in view of such technical problems, and it is an object of the present invention to prevent power transmission from being interrupted during a shift while suppressing an increase in cost, size, and weight.
- a hybrid drive device including an engine, a first motor generator, a second motor generator, a state in which the driving force of the engine is transmitted to the first motor generator, A first transmission mechanism that selectively switches between a state transmitted to the second motor generator and a disconnected state not transmitted to either the first motor generator or the second motor generator; A second transmission mechanism that connects or disconnects the first power transmission path to the drive wheels, a third transmission mechanism that connects or disconnects the second power transmission path from the second motor generator to the drive wheels, and the first A first transmission mechanism provided in the power transmission path and having a first transmission ratio and a second transmission ratio provided in the second power transmission path and having a second transmission ratio A first transmission state in which the second transmission mechanism is operated as a generator and the first motor generator is operated as an electric motor to drive the drive wheels at the first transmission ratio; and the first motor When the generator is operated as a generator and the second motor generator is operated as an electric motor to switch between the second operating state in which the driving wheels are driven at the second gear
- an engine a first motor generator, a second motor generator, a state where the driving force of the engine is transmitted to the first motor generator, and the second motor generator
- a first transmission mechanism for selectively switching between a state transmitted to the first motor generator and a disconnected state not transmitted to any of the first motor generator and the second motor generator, and from the first motor generator to the drive wheel
- a second transmission mechanism for connecting or disconnecting the first power transmission path, a third transmission mechanism for connecting or disconnecting the second power transmission path from the second motor generator to the drive wheel, and the first power transmission path.
- a first speed change mechanism having a first speed change ratio, and a second speed change mechanism provided in the second power transmission path and having a second speed change ratio.
- a control method for an hybrid drive device wherein the second motor generator is operated as a generator and the first motor generator is operated as an electric motor to drive the drive wheels at the first gear ratio.
- the engine is There is provided a control method for a hybrid drive device that is in the disconnected state and connects the first power transmission path and the second power transmission path, and operates the first motor generator and the second motor generator as an electric motor.
- the first motor generator and the second motor generator function as a generator and an electric motor. Further, when switching between the first operation state and the second operation state, both the first motor generator and the second motor generator are operated as electric motors to transmit the driving force to the drive wheels. Therefore, it is possible to prevent power transmission from being interrupted while performing a shift while suppressing an increase in cost, size, and weight with a configuration according to a general series hybrid vehicle.
- FIG. 1 is a schematic configuration diagram of a hybrid drive device according to an embodiment of the present invention, showing a Lo gear drive state.
- FIG. 2 is a schematic configuration diagram of the hybrid drive device according to the embodiment of the present invention, and shows a Hi gear drive state.
- FIG. 3 is a schematic configuration diagram of the hybrid drive device according to the embodiment of the present invention, and shows a state during switching between the Lo gear drive state and the Hi gear drive state.
- FIG. 4 is a time chart showing a state of switching from the Lo gear driving state to the Hi gear driving state.
- FIG. 5 is a diagram for explaining a travel mode that can be realized by the hybrid drive device according to the embodiment of the present invention.
- FIG. 1 is a schematic configuration diagram of a hybrid drive apparatus 100 according to an embodiment of the present invention.
- the hybrid drive device 100 includes an engine 1, a first motor generator MG 1, a second motor generator MG 2, a state where the driving force of the engine 1 is transmitted to the first motor generator MG 1, Friction clutch CL1 and dog clutch CL4 as a first transmission mechanism that alternatively switches between a state transmitted to two motor generator MG2 and a disconnected state not transmitted to either first motor generator MG1 or second motor generator MG2. And a dog clutch CL2 as a second transmission mechanism for connecting or disconnecting the power transmission path from the first motor generator MG1 to the drive wheels 5, and a power transmission path from the second motor generator MG2 to the drive wheels 5 being connected or disconnected.
- a gear train 20 and a controller 40 as control means are provided.
- the first motor generator MG1 and the second motor generator MG2 have a function as a generator that is driven by the engine 1 to generate power and a function as an electric motor that generates a driving force upon receiving electric power.
- the controller 40 includes a CPU, a RAM, an input / output interface, and the like.
- the controller 40 includes a rotation speed sensor (not shown) for detecting the rotation speed of the engine 1, a rotation speed sensor (not shown) for detecting the rotation speed of the first motor generator MG1, and a rotation speed of the second motor generator MG2.
- a signal from a rotation speed sensor (not shown) or the like that detects the above is input. It is also possible to configure the controller 40 with a plurality of microcomputers.
- the controller 40 performs various calculations based on the input signal, outputs control commands to the engine 1, the first motor generator MG1, and the second motor generator MG2, and controls the operation state thereof.
- a control command is output to a hydraulic pressure control circuit 50 that supplies hydraulic pressure to the friction clutch CL1 and the dog clutches CL2 to CL4 to control the operating states of the friction clutch CL1 and the dog clutches CL2 to CL4.
- the friction clutch CL1 is provided between the rotating shaft 1a of the engine 1 and the first shaft 31 which is a rotating shaft provided in series with the rotating shaft 1a.
- the friction clutch CL1 transmits the driving force of the engine 1 to the first shaft 31 in the engaged state (ON), and interrupts the driving force of the engine 1 in the released state (OFF).
- the first shaft 31 is provided with a gear 11, a gear 22, and a dog clutch CL4.
- the gear 11 and the gear 22 are provided to be rotatable with respect to the first shaft 31.
- the dog clutch CL4 can be switched between a position where it engages with the gear 11, a position where it engages with the gear 22, and a position where neither engages.
- the hybrid drive device 100 includes a second shaft 32, a third shaft 33, and an output shaft 34 which are rotating shafts provided in parallel with the first shaft 31.
- the gear 11 meshes with the gear 12 provided on the third shaft 33. Further, gear 12 meshes with gear 13 provided on rotation shaft 2a of first motor generator MG1. The gear 12 is provided so as to be rotatable with respect to the third shaft 33.
- first motor generator MG1 can be operated as a generator.
- the gear 22 meshes with the gear 21 provided on the rotation shaft 3a of the second motor generator MG2.
- second motor generator MG2 can be operated as a generator.
- the position of the dog clutch CL4 that engages with the gear 11 is referred to as the MG1 position
- the position of the dog clutch CL4 that engages with the gear 22 is referred to as the MG2 position
- the position of the dog clutch CL4 that does not engage with either is N (neutral). ) Location.
- the friction clutch CL1 is ON and the dog clutch CL4 is in the MG2 position. That is, the driving force of the engine 1 is transmitted to the second motor generator MG2.
- a dog clutch CL2 and a gear 36 are provided.
- the dog clutch CL2 can be switched between a position where it engages with the gear 12 (ON) and a position where it does not engage with the gear 12 (OFF).
- gear 36 meshes with a gear 37 provided on the output shaft 34.
- the rotation of the output shaft 34 is transmitted to the drive wheels 5 through a final reduction gear (not shown).
- the gear 22 provided on the first shaft 31 meshes with the gear 21 provided on the rotation shaft 3a of the second motor generator MG2 and also meshes with the gear 23 provided on the second shaft 32.
- the gear 23 is provided so as to be rotatable with respect to the second shaft 32.
- a dog clutch CL3 and a gear 35 are provided.
- the dog clutch CL3 can be switched between a position (ON) where it engages with the gear 23 and a position (OFF) where it does not engage with the gear 23.
- gear 35 meshes with a gear 37 provided on the output shaft 34.
- the gear train 10 as the first speed change mechanism includes a gear 12 and a gear 13.
- the gear train 20 as the second speed change mechanism includes a gear 21, a gear 22, and a gear 23.
- the gear ratio in the gear train 10 is set larger than the gear ratio in the gear train 20.
- the hybrid drive device 100 is configured as described above.
- the friction clutch CL1 is ON
- the dog clutch CL4 is in the MG2 position
- the dog clutch CL2 is ON
- the dog clutch CL3 is OFF.
- Lo gear drive is realized in which the second motor generator MG2 is operated as a generator and the first motor generator MG1 is operated as an electric motor to drive the drive wheels 5 with the gear ratio (Lo gear) of the gear train 10.
- the electric power generated by the second motor generator MG2 is supplied to the first motor generator MG1 via a battery (not shown) as indicated by an arrow (dotted line).
- the friction clutch CL1 is ON
- the dog clutch CL4 is in the MG1 position
- the dog clutch CL2 is OFF
- the dog clutch CL3 is ON.
- first motor generator MG1 is operated as a generator
- second motor generator MG2 is operated as an electric motor, so that the Hi gear drive for driving the drive wheels 5 with the gear ratio (Hi gear) of the gear train 20 is realized.
- the electric power generated by first motor generator MG1 is supplied to second motor generator MG2 via a battery (not shown) as shown by an arrow (dotted line).
- the controller 40 of the present embodiment prevents frictional transmission of power to the driving wheels 5 during that time, as shown in FIG.
- the clutch CL1 is turned off, the dog clutch CL4 is turned to the MG1 position, the dog clutch CL2 is turned on, and the dog clutch CL3 is turned on, and the first motor generator MG1 and the second motor generator MG2 are operated as electric motors.
- FIG. 4 is a time chart showing a state of switching from the Lo gear driving state to the Hi gear driving state.
- the Lo gear Prior to time t1, the Lo gear is driven, the friction clutch CL1 is ON, the dog clutch CL4 is in the MG2 position, the dog clutch CL2 is ON, and the dog clutch CL3 is OFF (see FIG. 1).
- the second motor generator MG2 is driven by the engine 1 and operates as a generator. Therefore, the driving force of second motor generator MG2 is zero. Further, the first motor generator MG1 operates as an electric motor, and the driving force generated by the first motor generator MG1 is transmitted to the drive wheels 5.
- the rotation speed of the second motor generator MG2 decreases in order to synchronize the rotation speed of the gear 23 and the rotation speed of the dog clutch CL3.
- the dog clutch CL3 is turned on (time t4). Accordingly, it is possible to transmit the driving force to the drive wheels 5 by operating the second motor generator MG2 as an electric motor.
- the current supplied to the first motor generator MG1 decreases and the current supplied to the second motor generator MG2 increases. That is, the driving force generated by the first motor generator MG1 decreases and the driving force generated by the second motor generator MG2 increases.
- the driving force source is switched from the first motor generator MG1 to the second motor generator MG2 while the driving force of the driving wheel 5 is kept constant.
- the dog clutch CL2 is turned off (time t6), then the friction clutch CL1 is turned on (time t7), and the switching from the Lo gear driving state to the Hi gear driving state is completed.
- the first motor generator MG1 is driven by the engine 1 and operates as a generator. Therefore, the driving force of first motor generator MG1 is zero. Further, the second motor generator MG2 operates as an electric motor, and the driving force generated by the second motor generator MG2 is transmitted to the drive wheels 5.
- the rotation speed of the first motor generator MG1 and the rotation speed of the engine 1 are kept constant during the shift.
- a general series hybrid vehicle includes a generator and a drive motor, and generates power by driving the generator with an engine and supplies the generated power to the drive motor to generate driving force.
- the controller 40 of the hybrid drive device 100 operates the second motor generator MG2 as a generator and operates the first motor generator MG1 as an electric motor to drive the drive wheels 5 with the Lo gear.
- the controller 40 of the hybrid drive device 100 operates the second motor generator MG2 as a generator and operates the first motor generator MG1 as an electric motor to drive the drive wheels 5 with the Lo gear.
- the engine 1 is disconnected and the power transmission path from the first motor generator MG1 to the drive wheel 5 and the power transmission path from the second motor generator MG2 to the drive wheel 5 are connected, and the first motor generator MG1 and the second motor are connected.
- Generator MG2 is operated as an electric motor.
- the first motor generator MG1 and the second motor generator MG2 function as a generator and an electric motor.
- both the first motor generator MG1 and the second motor generator MG2 are operated as electric motors to transmit the drive force to the drive wheels 5. Therefore, it is possible to prevent power transmission from being interrupted while performing a shift while suppressing an increase in cost, size, and weight with a configuration according to a general series hybrid vehicle.
- the controller 40 increases the driving force of the second motor generator MG2 while decreasing the driving force of the first motor generator MG1.
- the dog clutch CL2 When the dog clutch CL2 is ON, the dog clutch CL3 is OFF, and the dog clutch CL4 is in the N position, EV traveling (EV (Lo)) by the driving force generated by the first motor generator MG1 (Lo gear driving) is realized.
- the friction clutch CL1 may be ON or OFF.
- the friction clutch CL1 may be ON or OFF.
- the dog clutch CL2 When the dog clutch CL2 is ON, the dog clutch CL3 is ON, and the dog clutch CL4 is in the N position, EV traveling (EV) is generated by the driving force generated by the first motor generator MG1 (Lo gear drive) and the second motor generator MG2 (Hi gear drive). (Lo + Hi)) is realized.
- the friction clutch CL1 may be ON or OFF.
- the hybrid drive device 100 is switched from the Lo gear drive state to the Hi gear drive state is described as an example.
- similar effects can be obtained even when switching from the Hi gear drive state to the Lo gear drive state.
- the first transmission mechanism is constituted by the friction clutch CL1 and the dog clutch CL4.
- a friction clutch that connects or disconnects the power transmission path from the engine 1 to the first motor generator MG1, and a power transmission path from the engine 1 to the second motor generator MG2.
- You may comprise a 1st transmission mechanism with the friction clutch connected or cut
- a friction clutch As each clutch constituting the first transmission mechanism, the second transmission mechanism, and the third transmission mechanism, a friction clutch, a dog clutch, or another clutch mechanism can be appropriately selected.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Structure Of Transmissions (AREA)
- Control Of Transmission Device (AREA)
Abstract
コントローラは、第2モータジェネレータを発電機として作動させるとともに第1モータジェネレータを電動機として作動させて第1変速比で駆動輪を駆動する第1運転状態と、第1モータジェネレータを発電機として作動させるとともに第2モータジェネレータを電動機として作動させて第2変速比で駆動輪を駆動する第2運転状態と、を切換える際は、エンジンを切断状態にするとともに第1モータジェネレータから駆動輪までの動力伝達経路及び第2モータジェネレータから駆動輪までの動力伝達経路を接続し、第1モータジェネレータ及び第2モータジェネレータを電動機として作動させる。
Description
本発明は、ハイブリッド駆動装置及びハイブリッド駆動装置の制御方法に関する。
JP2015-536863Aには、第1軸を駆動するための第1モータと第2軸を駆動するための第2モータとを備えたシリーズハイブリッド変速機が開示されている。
上記の変速機では、2つのモータを組み合わせて作動させることで、出力軸に動力を伝達するギヤを切換えて変速を行う間に動力伝達が途切れることを防止している。
しかしながら、上記の変速機では、一般的なシリーズハイブリッド車両の構成である発電機と駆動用モータとに加えて2つ目の駆動用モータを設ける必要があり、コスト、サイズ、及びウエイトが増加するという問題があった。
本発明は、このような技術的課題に鑑みてなされたもので、コスト、サイズ、及びウエイトの増加を抑制しつつ、変速を行う間に動力伝達が途切れることを防止できるようにすることを目的とする。
本発明のある態様によれば、ハイブリッド駆動装置であって、エンジンと、第1モータジェネレータと、第2モータジェネレータと、前記エンジンの駆動力が前記第1モータジェネレータに伝達される状態と、前記第2モータジェネレータに伝達される状態と、前記第1モータジェネレータ及び前記第2モータジェネレータのいずれにも伝達されない切断状態と、を択一的に切換える第1伝達機構と、前記第1モータジェネレータから駆動輪までの第1動力伝達経路を接続又は切断する第2伝達機構と、前記第2モータジェネレータから前記駆動輪までの第2動力伝達経路を接続又は切断する第3伝達機構と、前記第1動力伝達経路に設けられ、第1変速比を有する第1変速機構と、前記第2動力伝達経路に設けられ、第2変速比を有する第2変速機構と、前記第2モータジェネレータを発電機として作動させるとともに前記第1モータジェネレータを電動機として作動させて前記第1変速比で前記駆動輪を駆動する第1運転状態と、前記第1モータジェネレータを発電機として作動させるとともに前記第2モータジェネレータを電動機として作動させて前記第2変速比で前記駆動輪を駆動する第2運転状態と、を切換える際は、前記エンジンを前記切断状態にするとともに前記第1動力伝達経路及び前記第2動力伝達経路を接続し、前記第1モータジェネレータ及び前記第2モータジェネレータを電動機として作動させる制御手段と、を備えるハイブリッド駆動装置が提供される。
また、本発明の別の態様によれば、エンジンと、第1モータジェネレータと、第2モータジェネレータと、前記エンジンの駆動力が前記第1モータジェネレータに伝達される状態と、前記第2モータジェネレータに伝達される状態と、前記第1モータジェネレータ及び前記第2モータジェネレータのいずれにも伝達されない切断状態と、を択一的に切換える第1伝達機構と、前記第1モータジェネレータから駆動輪までの第1動力伝達経路を接続又は切断する第2伝達機構と、前記第2モータジェネレータから前記駆動輪までの第2動力伝達経路を接続又は切断する第3伝達機構と、前記第1動力伝達経路に設けられ、第1変速比を有する第1変速機構と、前記第2動力伝達経路に設けられ、第2変速比を有する第2変速機構と、を備えるハイブリッド駆動装置の制御方法であって、前記第2モータジェネレータを発電機として作動させるとともに前記第1モータジェネレータを電動機として作動させて前記第1変速比で前記駆動輪を駆動する第1運転状態と、前記第1モータジェネレータを発電機として作動させるとともに前記第2モータジェネレータを電動機として作動させて前記第2変速比で前記駆動輪を駆動する第2運転状態と、を切換える際は、前記エンジンを前記切断状態にするとともに前記第1動力伝達経路及び前記第2動力伝達経路を接続し、前記第1モータジェネレータ及び前記第2モータジェネレータを電動機として作動させるハイブリッド駆動装置の制御方法が提供される。
これらの態様では、第1モータジェネレータと第2モータジェネレータとが、発電機及び電動機として機能する。また、第1運転状態と第2運転状態とを切換える際は、第1モータジェネレータと第2モータジェネレータとの両方を電動機として作動させて駆動輪に駆動力を伝達する。よって、一般的なシリーズハイブリッド車両に準じた構成で、コスト、サイズ、及びウエイトの増加を抑制しつつ、変速を行う間に動力伝達が途切れることを防止できる。
以下、添付図面を参照しながら本発明の実施形態について説明する。
図1は、本発明の実施形態に係るハイブリッド駆動装置100の概略構成図である。
ハイブリッド駆動装置100は、図1に示すように、エンジン1と、第1モータジェネレータMG1と、第2モータジェネレータMG2と、エンジン1の駆動力が第1モータジェネレータMG1に伝達される状態と、第2モータジェネレータMG2に伝達される状態と、第1モータジェネレータMG1及び第2モータジェネレータMG2のいずれにも伝達されない切断状態と、を択一的に切換える第1伝達機構としての摩擦クラッチCL1及びドグクラッチCL4と、第1モータジェネレータMG1から駆動輪5までの動力伝達経路を接続又は切断する第2伝達機構としてのドグクラッチCL2と、第2モータジェネレータMG2から駆動輪5までの動力伝達経路を接続又は切断する第3伝達機構としてのドグクラッチCL3と、第1モータジェネレータMG1から駆動輪5までの動力伝達経路に設けられた第1変速機構としてのギヤ列10と、第2モータジェネレータMG2から駆動輪5までの動力伝達経路に設けられた第2変速機構としてのギヤ列20と、制御手段としてのコントローラ40と、を備える。
第1モータジェネレータMG1及び第2モータジェネレータMG2は、エンジン1により駆動されて発電する発電機としての機能と、電力の供給を受けて駆動力を発生する電動機としての機能と、を有する。
コントローラ40は、CPU、RAM、入出力インターフェース等で構成される。コントローラ40には、エンジン1の回転速度を検出する回転速度センサ(図示せず)、第1モータジェネレータMG1の回転速度を検出する回転速度センサ(図示せず)、第2モータジェネレータMG2の回転速度を検出する回転速度センサ(図示せず)等からの信号が入力される。コントローラ40を複数のマイクロコンピュータで構成することも可能である。
コントローラ40は、入力される信号に基づき各種演算を行い、エンジン1、第1モータジェネレータMG1、及び第2モータジェネレータMG2に制御指令を出力して、その作動状態を制御する。また、摩擦クラッチCL1及びドグクラッチCL2~CL4に油圧を供給する油圧制御回路50に制御指令を出力して、摩擦クラッチCL1及びドグクラッチCL2~CL4の作動状態を制御する。
摩擦クラッチCL1は、エンジン1の回転軸1aと、回転軸1aと直列に設けられた回転軸である第1軸31との間に設けられる。摩擦クラッチCL1は、締結状態(ON)ではエンジン1の駆動力を第1軸31に伝達し、解放状態(OFF)ではエンジン1の駆動力を遮断する。
第1軸31には、ギヤ11、ギヤ22、及びドグクラッチCL4が設けられる。なお、ギヤ11及びギヤ22は、第1軸31に対して回転自在に設けられている。
ドグクラッチCL4は、ギヤ11と係合する位置と、ギヤ22と係合する位置と、いずれとも係合しない位置と、を切換え可能となっている。
ギヤ11は、ドグクラッチCL4が係合した状態では、第1軸31に対する相対回転が規制されて第1軸31及びドグクラッチCL4と一体となって回転する。
ギヤ22は、ドグクラッチCL4が係合した状態では、第1軸31に対する相対回転が規制されて第1軸31及びドグクラッチCL4と一体となって回転する。
また、ハイブリッド駆動装置100は、第1軸31と平行に設けられた回転軸である第2軸32、第3軸33、及び出力軸34を備える。
ギヤ11は、第3軸33に設けられたギヤ12と噛合っている。また、ギヤ12は、第1モータジェネレータMG1の回転軸2aに設けられたギヤ13と噛合っている。なお、ギヤ12は、第3軸33に対して回転自在に設けられている。
よって、摩擦クラッチCL1をONにするとともにドグクラッチCL4をギヤ11に係合させると、エンジン1の駆動力が第1モータジェネレータMG1に伝達される状態となる。この場合は、第1モータジェネレータMG1を発電機として作動させることができる。
ギヤ22は、第2モータジェネレータMG2の回転軸3aに設けられたギヤ21と噛合っている。
よって、摩擦クラッチCL1をONにするとともにドグクラッチCL4をギヤ22と係合させると、エンジン1の駆動力が第2モータジェネレータMG2に伝達される状態となる。この場合は、第2モータジェネレータMG2を発電機として作動させることができる。
以降の説明では、ギヤ11と係合するドグクラッチCL4の位置をMG1位置といい、ギヤ22と係合するドグクラッチCL4の位置をMG2位置といい、いずれとも係合しないドグクラッチCL4の位置をN(ニュートラル)位置という。
図1では、摩擦クラッチCL1がONであり、ドグクラッチCL4がMG2位置である。つまり、エンジン1の駆動力が第2モータジェネレータMG2に伝達される状態となっている。
第3軸33には、ギヤ12が設けられる他に、ドグクラッチCL2及びギヤ36が設けられる。
ドグクラッチCL2は、ギヤ12と係合する位置(ON)と、ギヤ12と係合しない位置(OFF)と、を切換え可能となっている。
ギヤ12は、ドグクラッチCL2がONの状態では、第3軸33に対する相対回転が規制されて第3軸33及びドグクラッチCL2と一体となって回転する。
また、ギヤ36は、出力軸34に設けられたギヤ37と噛合っている。出力軸34の回転は、終減速装置(図示せず)を介して駆動輪5に伝達される。
よって、ドグクラッチCL2をONにすると、第1モータジェネレータMG1から駆動輪5までの動力伝達経路が接続され、ドグクラッチCL2をOFFにすると、第1モータジェネレータMG1から駆動輪5までの動力伝達経路が切断される。
また、第1軸31に設けられたギヤ22は、第2モータジェネレータMG2の回転軸3aに設けられたギヤ21と噛合うとともに、第2軸32に設けられたギヤ23と噛合っている。なお、ギヤ23は、第2軸32に対して回転自在に設けられている。
第2軸32には、ギヤ23が設けられる他に、ドグクラッチCL3及びギヤ35が設けられる。
ドグクラッチCL3は、ギヤ23と係合する位置(ON)と、ギヤ23と係合しない位置(OFF)と、を切換え可能となっている。
ギヤ23は、ドグクラッチCL3がONの状態では、第2軸32に対する相対回転が規制されて第2軸32及びドグクラッチCL3と一体となって回転する。
また、ギヤ35は、出力軸34に設けられたギヤ37と噛合っている。
よって、ドグクラッチCL3をONにすると、第2モータジェネレータMG2から駆動輪5までの動力伝達経路が接続され、ドグクラッチCL3をOFFにすると、第2モータジェネレータMG2から駆動輪5までの動力伝達経路が切断される。
第1変速機構としてのギヤ列10は、ギヤ12及びギヤ13で構成される。また、第2変速機構としてのギヤ列20は、ギヤ21、ギヤ22、及びギヤ23で構成される。本実施形態では、ギヤ列10における変速比が、ギヤ列20における変速比よりも大きく設定される。
ハイブリッド駆動装置100は以上のように構成され、図1では、摩擦クラッチCL1がON、ドグクラッチCL4がMG2位置、ドグクラッチCL2がON、ドグクラッチCL3がOFFになっている。
この場合は、第2モータジェネレータMG2を発電機として作動させるとともに第1モータジェネレータMG1を電動機として作動させてギヤ列10の変速比(Loギヤ)で駆動輪5を駆動するLoギヤ駆動が実現される。なお、第2モータジェネレータMG2で発電した電力は、矢印(点線)で示すように、バッテリ(図示せず)を介して第1モータジェネレータMG1に供給される。
また、図2では、摩擦クラッチCL1がON、ドグクラッチCL4がMG1位置、ドグクラッチCL2がOFF、ドグクラッチCL3がONになっている。
この場合は、第1モータジェネレータMG1を発電機として作動させるとともに第2モータジェネレータMG2を電動機として作動させてギヤ列20の変速比(Hiギヤ)で駆動輪5を駆動するHiギヤ駆動が実現される。なお、第1モータジェネレータMG1で発電した電力は、矢印(点線)で示すように、バッテリ(図示せず)を介して第2モータジェネレータMG2に供給される。
また、本実施形態のコントローラ40は、Loギヤ駆動状態とHiギヤ駆動状態とを切換える際は、その間に駆動輪5への動力伝達が途切れることを防止するべく、図3に示すように、摩擦クラッチCL1をOFF、ドグクラッチCL4をMG1位置、ドグクラッチCL2をON、ドグクラッチCL3をONにして、第1モータジェネレータMG1及び第2モータジェネレータMG2を電動機として作動させる。
以下、図4を参照しながらより詳しく説明する。図4は、Loギヤ駆動状態からHiギヤ駆動状態に切換わる様子を示すタイムチャートである。
時刻t1よりも前はLoギヤ駆動状態であり、摩擦クラッチCL1がON、ドグクラッチCL4がMG2位置、ドグクラッチCL2がON、ドグクラッチCL3がOFFである(図1参照)。
この状態では、第2モータジェネレータMG2は、エンジン1により駆動されて発電機として作動している。よって、第2モータジェネレータMG2の駆動力は0である。また、第1モータジェネレータMG1が電動機として作動し、第1モータジェネレータMG1で発生した駆動力が駆動輪5に伝達されている。
Loギヤ駆動からHiギヤ駆動への切換え、すなわち変速が開始されると、摩擦クラッチCL1がOFFになり(時刻t1)、次いでドグクラッチCL4がMG1位置になる(時刻t2)。
時刻t3では、ギヤ23の回転速度とドグクラッチCL3の回転速度とを同期させるために、第2モータジェネレータMG2の回転速度が低下する。
そして、ギヤ23の回転速度とドグクラッチCL3の回転速度とが同期すると、ドグクラッチCL3がONになる(時刻t4)。これにより、第2モータジェネレータMG2を電動機として作動させて駆動輪5に駆動力を伝達することが可能となる。
時刻t5以降は、第1モータジェネレータMG1に供給される電流が減少していき、第2モータジェネレータMG2に供給される電流が増加していく。つまり、第1モータジェネレータMG1で発生する駆動力が減少するとともに、第2モータジェネレータMG2で発生する駆動力が増加する。
これにより、図4に示すように、駆動輪5の駆動力が一定に保たれたまま、駆動力源が第1モータジェネレータMG1から第2モータジェネレータMG2に切換わる。
駆動力源の切換えが完了すると、ドグクラッチCL2がOFFになり(時刻t6)、次いで摩擦クラッチCL1がONになり(時刻t7)、Loギヤ駆動状態からHiギヤ駆動状態への切換えが完了する。
Hiギヤ駆動状態では、第1モータジェネレータMG1がエンジン1により駆動されて発電機として作動している。よって、第1モータジェネレータMG1の駆動力は0である。また、第2モータジェネレータMG2が電動機として作動し、第2モータジェネレータMG2で発生した駆動力が駆動輪5に伝達されている。
なお、本実施形態では、変速の間は、第1モータジェネレータMG1の回転速度及びエンジン1の回転速度が一定に保たれる。
続いて、ハイブリッド駆動装置100を上記のように構成することによる作用効果について説明する。
一般的なシリーズハイブリッド車両は、発電機と駆動用モータとを備え、エンジンで発電機を駆動して発電するとともに、発電した電力を駆動用モータに供給して駆動力を発生させる。
ここで、一般的なシリーズハイブリッド車両の構成では、出力軸に動力を伝達するギヤを切換えて変速を行う間に動力伝達が途切れるという問題がある。そこで、2つ目の駆動用モータを設けて、2つの駆動用モータを組み合わせて作動させることで、変速を行う間に動力伝達が途切れることを防止することが考えられる。
しかしながら、この場合は、2つ目の駆動用モータを設けることで駆動装置及び車両のコスト、サイズ、及びウエイトが増加するという問題がある。
これに対して、本実施形態では、ハイブリッド駆動装置100のコントローラ40は、第2モータジェネレータMG2を発電機として作動させるとともに第1モータジェネレータMG1を電動機として作動させてLoギヤで駆動輪5を駆動するLoギヤ駆動状態と、第1モータジェネレータMG1を発電機として作動させるとともに第2モータジェネレータMG2を電動機として作動させてHiギヤで駆動輪5を駆動するHiギヤ駆動状態と、を切換える際は、エンジン1を切断状態にするとともに第1モータジェネレータMG1から駆動輪5までの動力伝達経路及び第2モータジェネレータMG2から駆動輪5までの動力伝達経路を接続し、第1モータジェネレータMG1及び第2モータジェネレータMG2を電動機として作動させる。
これによれば、第1モータジェネレータMG1と第2モータジェネレータMG2とが、発電機及び電動機として機能する。また、Loギヤ駆動状態とHiギヤ駆動状態とを切換える際は、第1モータジェネレータMG1と第2モータジェネレータMG2との両方を電動機として作動させて駆動輪5に駆動力を伝達する。よって、一般的なシリーズハイブリッド車両に準じた構成で、コスト、サイズ、及びウエイトの増加を抑制しつつ、変速を行う間に動力伝達が途切れることを防止できる。
また、コントローラ40は、Loギヤ駆動状態からHiギヤ駆動状態に切換える際は、第1モータジェネレータMG1の駆動力を減少させつつ第2モータジェネレータMG2の駆動力を増加させる。
これによれば、駆動輪5の駆動力を一定に保ちつつ、変速を行うことができる。
なお、本実施形態のハイブリッド駆動装置100によれば、図5に示すように、9つの走行モードを実現することが可能である。
ドグクラッチCL2がON、ドグクラッチCL3がOFF、ドグクラッチCL4がN位置の場合は、第1モータジェネレータMG1(Loギヤ駆動)が発生する駆動力によるEV走行(EV(Lo))が実現される。この場合は、摩擦クラッチCL1はONでもOFFでもよい。
ドグクラッチCL2がOFF、ドグクラッチCL3がON、ドグクラッチCL4がN位置の場合は、第2モータジェネレータMG2(Hiギヤ駆動)が発生する駆動力によるEV走行(EV(Hi))が実現される。この場合は、摩擦クラッチCL1はONでもOFFでもよい。
ドグクラッチCL2がON、ドグクラッチCL3がON、ドグクラッチCL4がN位置の場合は、第1モータジェネレータMG1(Loギヤ駆動)及び第2モータジェネレータMG2(Hiギヤ駆動)が発生する駆動力によるEV走行(EV(Lo+Hi))が実現される。この場合は、摩擦クラッチCL1はONでもOFFでもよい。
摩擦クラッチCL1がON、ドグクラッチCL2がON、ドグクラッチCL3がOFF、ドグクラッチCL4がMG1位置の場合は、第1モータジェネレータMG1(Loギヤ駆動)及びエンジン1(Loギヤ駆動)が発生する駆動力によるパラレル走行(EV(Lo)+ENG(Lo))が実現される。
摩擦クラッチCL1がON、ドグクラッチCL2がON、ドグクラッチCL3がON、ドグクラッチCL4がMG1位置の場合は、第1モータジェネレータMG1(Loギヤ駆動)、第2モータジェネレータMG2(Hiギヤ駆動)、及びエンジン1(Loギヤ駆動)が発生する駆動力によるパラレル走行(EV(Lo+Hi)+ENG(Lo))が実現される。
摩擦クラッチCL1がON、ドグクラッチCL2がON、ドグクラッチCL3がON、ドグクラッチCL4がMG2位置の場合は、第1モータジェネレータMG1(Loギヤ駆動)、第2モータジェネレータMG2(Hiギヤ駆動)、及びエンジン1(Hiギヤ駆動)が発生する駆動力によるパラレル走行(EV(Lo+Hi)+ENG(Hi))が実現される。
摩擦クラッチCL1がON、ドグクラッチCL2がOFF、ドグクラッチCL3がON、ドグクラッチCL4がMG2位置の場合は、第2モータジェネレータMG2(Hiギヤ駆動)及びエンジン1(Hiギヤ駆動)が発生する駆動力によるパラレル走行(EV(Hi)+ENG(Hi))が実現される。
摩擦クラッチCL1がON、ドグクラッチCL2がON、ドグクラッチCL3がOFF、ドグクラッチCL4がMG2位置の場合は、エンジン1により第2モータジェネレータMG2が駆動されて発電するとともに第1モータジェネレータMG1(Loギヤ駆動)が発生する駆動力によるシリーズ走行(EV(Lo)-MG2発電)が実現される(Loギヤ駆動状態、図1参照)。
摩擦クラッチCL1がON、ドグクラッチCL2がOFF、ドグクラッチCL3がON、ドグクラッチCL4がMG1位置の場合は、エンジン1により第1モータジェネレータMG1が駆動されて発電するとともに第2モータジェネレータMG2(Hiギヤ駆動)が発生する駆動力によるシリーズ走行(EV(Hi)-MG1発電)が実現される(Hiギヤ駆動状態、図2参照)。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
例えば、上記実施形態では、ハイブリッド駆動装置100をLoギヤ駆動状態からHiギヤ駆動状態に切換える場合を例示して説明している。しかしながら、本発明によれば、Hiギヤ駆動状態からLoギヤ駆動状態に切換える場合でも同様の作用効果を得ることができる。
また、上記実施形態では、第1伝達機構を摩擦クラッチCL1及びドグクラッチCL4で構成している。しかしながら、摩擦クラッチCL1及びドグクラッチCL4に代えて、例えば、エンジン1から第1モータジェネレータMG1までの動力伝達経路を接続又は切断する摩擦クラッチと、エンジン1から第2モータジェネレータMG2までの動力伝達経路を接続又は切断する摩擦クラッチと、により第1伝達機構を構成してもよい。
また、第1伝達機構、第2伝達機構、及び第3伝達機構を構成する各クラッチとしては、摩擦クラッチ、ドグクラッチ、或いはその他のクラッチ機構を適宜選択可能である。
本願は2016年8月24日に日本国特許庁に出願された特願2016-163263に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
Claims (3)
- ハイブリッド駆動装置であって、
エンジンと、
第1モータジェネレータと、
第2モータジェネレータと、
前記エンジンの駆動力が前記第1モータジェネレータに伝達される状態と、前記第2モータジェネレータに伝達される状態と、前記第1モータジェネレータ及び前記第2モータジェネレータのいずれにも伝達されない切断状態と、を択一的に切換える第1伝達機構と、
前記第1モータジェネレータから駆動輪までの第1動力伝達経路を接続又は切断する第2伝達機構と、
前記第2モータジェネレータから前記駆動輪までの第2動力伝達経路を接続又は切断する第3伝達機構と、
前記第1動力伝達経路に設けられ、第1変速比を有する第1変速機構と、
前記第2動力伝達経路に設けられ、第2変速比を有する第2変速機構と、
前記第2モータジェネレータを発電機として作動させるとともに前記第1モータジェネレータを電動機として作動させて前記第1変速比で前記駆動輪を駆動する第1運転状態と、前記第1モータジェネレータを発電機として作動させるとともに前記第2モータジェネレータを電動機として作動させて前記第2変速比で前記駆動輪を駆動する第2運転状態と、を切換える際は、前記エンジンを前記切断状態にするとともに前記第1動力伝達経路及び前記第2動力伝達経路を接続し、前記第1モータジェネレータ及び前記第2モータジェネレータを電動機として作動させる制御手段と、
を備えるハイブリッド駆動装置。 - 請求項1に記載のハイブリッド駆動装置であって、
前記制御手段は、前記第1運転状態から前記第2運転状態に切換える際は、前記第1モータジェネレータの駆動力を減少させつつ前記第2モータジェネレータの駆動力を増加させる、
ハイブリッド駆動装置。 - エンジンと、
第1モータジェネレータと、
第2モータジェネレータと、
前記エンジンの駆動力が前記第1モータジェネレータに伝達される状態と、前記第2モータジェネレータに伝達される状態と、前記第1モータジェネレータ及び前記第2モータジェネレータのいずれにも伝達されない切断状態と、を択一的に切換える第1伝達機構と、
前記第1モータジェネレータから駆動輪までの第1動力伝達経路を接続又は切断する第2伝達機構と、
前記第2モータジェネレータから前記駆動輪までの第2動力伝達経路を接続又は切断する第3伝達機構と、
前記第1動力伝達経路に設けられ、第1変速比を有する第1変速機構と、
前記第2動力伝達経路に設けられ、第2変速比を有する第2変速機構と、
を備えるハイブリッド駆動装置の制御方法であって、
前記第2モータジェネレータを発電機として作動させるとともに前記第1モータジェネレータを電動機として作動させて前記第1変速比で前記駆動輪を駆動する第1運転状態と、前記第1モータジェネレータを発電機として作動させるとともに前記第2モータジェネレータを電動機として作動させて前記第2変速比で前記駆動輪を駆動する第2運転状態と、を切換える際は、前記エンジンを前記切断状態にするとともに前記第1動力伝達経路及び前記第2動力伝達経路を接続し、前記第1モータジェネレータ及び前記第2モータジェネレータを電動機として作動させる、
ハイブリッド駆動装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018535499A JP6594551B2 (ja) | 2016-08-24 | 2017-06-30 | ハイブリッド駆動装置及びハイブリッド駆動装置の制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016163263 | 2016-08-24 | ||
JP2016-163263 | 2016-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018037718A1 true WO2018037718A1 (ja) | 2018-03-01 |
Family
ID=61245810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/024181 WO2018037718A1 (ja) | 2016-08-24 | 2017-06-30 | ハイブリッド駆動装置及びハイブリッド駆動装置の制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6594551B2 (ja) |
WO (1) | WO2018037718A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020260916A1 (ja) * | 2019-06-26 | 2020-12-30 | 日産自動車株式会社 | 車両の駆動装置 |
JPWO2021038266A1 (ja) * | 2019-08-28 | 2021-03-04 | ||
JPWO2020053939A1 (ja) * | 2018-09-10 | 2021-10-21 | 日産自動車株式会社 | 車両用の動力伝達装置 |
US20230392654A1 (en) * | 2020-11-18 | 2023-12-07 | Nissan Motor Co., Ltd. | Vehicle clutch control method and vehicle clutch control device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003079005A (ja) * | 2001-06-19 | 2003-03-14 | Hitachi Ltd | 自動車の動力伝達装置 |
JP2005001563A (ja) * | 2003-06-12 | 2005-01-06 | Honda Motor Co Ltd | ハイブリッド車両の動力伝達装置 |
JP2015536863A (ja) * | 2012-11-29 | 2015-12-24 | マック トラックス インコーポレイテッド | シリーズハイブリッド変速機及びシリーズハイブリッド変速機の変速方法 |
-
2017
- 2017-06-30 JP JP2018535499A patent/JP6594551B2/ja active Active
- 2017-06-30 WO PCT/JP2017/024181 patent/WO2018037718A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003079005A (ja) * | 2001-06-19 | 2003-03-14 | Hitachi Ltd | 自動車の動力伝達装置 |
JP2005001563A (ja) * | 2003-06-12 | 2005-01-06 | Honda Motor Co Ltd | ハイブリッド車両の動力伝達装置 |
JP2015536863A (ja) * | 2012-11-29 | 2015-12-24 | マック トラックス インコーポレイテッド | シリーズハイブリッド変速機及びシリーズハイブリッド変速機の変速方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11891045B2 (en) | 2018-09-10 | 2024-02-06 | Nissan Motor Co., Ltd. | Power transmission device for vehicle |
JPWO2020053939A1 (ja) * | 2018-09-10 | 2021-10-21 | 日産自動車株式会社 | 車両用の動力伝達装置 |
JP7127690B2 (ja) | 2018-09-10 | 2022-08-30 | 日産自動車株式会社 | 車両用の動力伝達装置 |
JPWO2020260916A1 (ja) * | 2019-06-26 | 2020-12-30 | ||
CN114025979B (zh) * | 2019-06-26 | 2024-06-07 | 日产自动车株式会社 | 车辆的驱动装置 |
WO2020260916A1 (ja) * | 2019-06-26 | 2020-12-30 | 日産自動車株式会社 | 車両の駆動装置 |
CN114025979A (zh) * | 2019-06-26 | 2022-02-08 | 日产自动车株式会社 | 车辆的驱动装置 |
JP7078179B2 (ja) | 2019-06-26 | 2022-05-31 | 日産自動車株式会社 | 車両の駆動装置 |
WO2021038266A1 (ja) * | 2019-08-28 | 2021-03-04 | 日産自動車株式会社 | 動力伝達装置 |
JP7193002B2 (ja) | 2019-08-28 | 2022-12-20 | 日産自動車株式会社 | 動力伝達装置 |
US20220274477A1 (en) * | 2019-08-28 | 2022-09-01 | Nissan Motor Co., Ltd. | Power transmission device |
JPWO2021038266A1 (ja) * | 2019-08-28 | 2021-03-04 | ||
US12024020B2 (en) * | 2019-08-28 | 2024-07-02 | Nissan Motor Co., Ltd. | Power transmission device |
US20230392654A1 (en) * | 2020-11-18 | 2023-12-07 | Nissan Motor Co., Ltd. | Vehicle clutch control method and vehicle clutch control device |
US12000441B2 (en) * | 2020-11-18 | 2024-06-04 | Nissan Motor Co., Ltd. | Vehicle clutch control method and vehicle clutch control device |
Also Published As
Publication number | Publication date |
---|---|
JP6594551B2 (ja) | 2019-10-23 |
JPWO2018037718A1 (ja) | 2019-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6594551B2 (ja) | ハイブリッド駆動装置及びハイブリッド駆動装置の制御方法 | |
JP6255510B2 (ja) | ハイブリッド駆動装置 | |
WO2014162631A1 (ja) | 車両の制御装置 | |
CN104340046A (zh) | 具有提供电功率的离合器促动器的车辆动力传动系 | |
JP2013108604A (ja) | 車両駆動装置 | |
JP2010221946A (ja) | パワーテイクオフ付きハイブリッド車両 | |
JP5783105B2 (ja) | ハイブリッド車両 | |
CN108621779B (zh) | 混合动力车辆的驱动装置 | |
JP2011178280A (ja) | ハイブリッド車両用動力伝達装置及びその制御方法 | |
JP2010269717A (ja) | 車両の駆動装置 | |
JP2014097688A (ja) | ハイブリッド車の動力伝達装置 | |
JP5081744B2 (ja) | 車両の駆動装置 | |
JP2016043909A (ja) | 駆動力伝達装置 | |
JP2014054900A (ja) | ハイブリッド車の動力伝達装置 | |
JP2008024100A (ja) | 自動車の制御装置,制御方法及び変速システム | |
WO2014162760A1 (ja) | 車両の制御装置 | |
JP2013141938A (ja) | ハイブリッド車両の発進制御装置 | |
WO2020065799A1 (ja) | 電動車両の制御方法および電動車両の駆動システム | |
JP5874335B2 (ja) | ハイブリッド車両の駆動装置 | |
JP2015009691A (ja) | 動力伝達機構 | |
JP3868976B2 (ja) | 自動車とその変速機、及び自動車の制御装置 | |
JP6485202B2 (ja) | 車両用駆動装置 | |
JP2012051534A (ja) | ハイブリッド車両の駆動装置 | |
JP5929738B2 (ja) | ハイブリッド車両の制御装置 | |
JP6658244B2 (ja) | ハイブリッド車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018535499 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17843206 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17843206 Country of ref document: EP Kind code of ref document: A1 |