WO2018036554A1 - 设备故障检测系统及故障检测装置 - Google Patents

设备故障检测系统及故障检测装置 Download PDF

Info

Publication number
WO2018036554A1
WO2018036554A1 PCT/CN2017/098965 CN2017098965W WO2018036554A1 WO 2018036554 A1 WO2018036554 A1 WO 2018036554A1 CN 2017098965 W CN2017098965 W CN 2017098965W WO 2018036554 A1 WO2018036554 A1 WO 2018036554A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
inspected
module
detection
data
Prior art date
Application number
PCT/CN2017/098965
Other languages
English (en)
French (fr)
Inventor
徐克�
Original Assignee
徐克�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610727251.9A external-priority patent/CN106383763B/zh
Application filed by 徐克� filed Critical 徐克�
Priority to US16/322,377 priority Critical patent/US20190171540A1/en
Publication of WO2018036554A1 publication Critical patent/WO2018036554A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/27Built-in tests
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/263Generation of test inputs, e.g. test vectors, patterns or sequences ; with adaptation of the tested hardware for testability with external testers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2268Logging of test results
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/2205Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using arrangements specific to the hardware being tested
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Preventing errors by testing or debugging software
    • G06F11/3668Software testing

Definitions

  • the present application relates to the technical field of computer and electromechanical equipment maintenance, and in particular to an equipment fault detection system and a fault detection apparatus.
  • an object of the present invention is to provide a device fault detecting system, the system comprising a fault detecting device and a terminal device, wherein the fault detecting device operates independently of a target to be inspected;
  • the fault detecting device is configured to collect self-test data and/or detected data of the object to be inspected, identify the fault information in the self-test data and/or the detected data, generate a fault diagnosis result according to the fault information, and send the fault diagnosis result. Giving the terminal device;
  • the terminal device is configured to receive and display the fault diagnosis result, and is further configured to send information to the object to be detected.
  • the device fault detection system is configured to, according to the self-test data and/or the detected data, the to-be-checked in the case that the object to be detected is down or disconnected
  • the physical layer of the target performs offline fault diagnosis and automatically obtains offline fault diagnosis results.
  • the device fault detection system performs fault detection on target hardware and target software of the physical layer of the object to be inspected based on an operating system and application software carried by the device, wherein the target software At least one of the following: an initial startup software of the object to be inspected, the detection software of the object to be inspected; wherein the device failure detection system further includes: a data processing device configured to integrate the offline fault diagnosis result
  • the online fault diagnosis result is a fault diagnosis result obtained when the device fault detection system performs online fault diagnosis on the system layer and the application layer of the object to be detected.
  • the fault detecting device is independently disposed outside the object to be detected, and includes a signal collecting module, a control module, and a communication module;
  • the signal acquisition module is connected to the detection output port of the object to be detected through a data communication cable, and the form of the data collected by the signal acquisition module corresponds to the data output form of the detection output port of the object to be detected, including Collecting data of the detection output port of the object to be inspected by an image, photoelectric or analog-to-digital conversion system;
  • the signal acquisition module is further connected to the control module, and the signal acquisition module is configured to acquire self-test data and/or detected data of the object to be detected and send the data to the control module, where the self-test
  • the data and/or the detected data includes an original detection code string of the detection signal of the object to be inspected or other format converted according to the original detection code character;
  • the control module is further connected to the communication module, configured as an original detection code string of the detection signal of the object to be detected input from the signal acquisition module or in another format converted according to the original detection code character Identifying the fault information, generating a fault diagnosis result, and transmitting the fault diagnosis result through the communication module.
  • the device fault detection system further includes a summary device
  • the summarizing device is connected to the plurality of fault detecting devices, and communicates with the terminal device, the terminal device receives a plurality of fault diagnosis results sent by the fault detecting device, and sends the fault diagnosis result to the Terminal Equipment.
  • the device fault detection system further includes a collecting device and a summarizing device
  • the concentrating device is connected to the plurality of fault detecting devices and connected to the merging device, and the concentrating device receives the fault diagnosis results sent by the plurality of fault detecting devices, and sends the fault diagnosis results to the summarizing device;
  • the summarizing device is connected to the plurality of concentrating devices, and communicates with at least one of the terminal devices, and sends the fault diagnosis result after being summarized to the terminal device.
  • the summary device includes a signal output module, and the signal output module includes: a wireless communication module and a positioning module;
  • the positioning module is configured to acquire geographic location information of the object to be inspected and geographic location information of the terminal device;
  • the wireless communication module is installed with an Internet of Things level SIM card, and the fault diagnosis result and the geographical location information are transmitted to the terminal device installed with the corresponding SIM card by using the Internet of Things level SIM card.
  • the fault detecting device is installed inside the object to be inspected in any of the following manners and operates independently of the object to be inspected:
  • the fault detecting device is independently installed inside the object to be inspected;
  • the fault detecting device is embedded in an associated main control board of the object to be inspected;
  • the fault detecting device is inserted in a slot of the relevant main control board of the object to be inspected;
  • the fault detecting device includes a signal collecting module, a control module and a communication module;
  • the signal acquisition module is connected to the detection output port of the main control board of the object to be inspected through a dedicated data cable or a module contact pin or a printed circuit, and the signal acquisition module is further connected to the control module, the signal The acquisition module is configured to acquire self-test data and/or detected data of the object to be inspected and send the data to the control module, wherein the self-test data and/or the detected data includes a detection signal of the object to be inspected Original detection code string;
  • the control module is further connected to the communication module, configured to identify fault information from the original detection code string input of the detection signal of the object to be detected input by the signal acquisition module, generate a fault detection result, and pass the The communication module sends the fault diagnosis result.
  • the communication module includes a positioning module and a wireless communication module
  • the positioning module is configured to acquire geographic location information of the object to be inspected and geographic location information of the terminal device;
  • the wireless communication module is installed with an Internet of Things level SIM card, and the fault information and the geographical location information are transmitted to the terminal device with the corresponding SIM card through the Internet of Things level SIM card.
  • the device fault detection system when the device fault detection system includes a plurality of independent fault detection devices, the device fault detection system can establish a cluster management mechanism according to the complexity and volume of the object to be inspected. In order to achieve the aggregation and aggregation of the plurality of independent fault detecting devices.
  • the device fault detection system further includes: a power interface module, wherein the power interface module is integrated on the fault detecting device, configured to receive the DC power provided by the object to be detected Or the power interface module is configured to receive a DC power supply provided by an independent power source, the independent power source being independent of the object to be inspected.
  • control module includes: a processing submodule and an inventory comparison submodule, wherein
  • the processing sub-module is connected to the signal acquisition module, and configured to determine, according to the original detection code string input by the signal acquisition module, an error information or a log of the object to be inspected;
  • the inventory comparison sub-module is connected to the processing sub-module, and configured to compare the error information or the log with the configuration information stored in the target database of the to-be-detected target after the update, to obtain the accurate diagnosis result of the fault diagnosis.
  • the fault diagnosis result includes: a location, a model, a specification, or a version of the updated minimum field replaceable unit of the object to be inspected.
  • the present invention also provides a fault detecting apparatus, the fault detecting apparatus comprising a signal acquisition module, a control module and a communication module;
  • the signal acquisition module is connected to the detection output port of the object to be inspected, and the signal acquisition module is further connected to the control module, and the signal acquisition module is configured to acquire self-test data of the object to be inspected and/or be Detecting data and transmitting to the control module, wherein the self-test data and/or the detected data includes an original detection code string of the detection signal of the object to be inspected or other characters converted according to the original detection code character format;
  • the control module is further connected to the communication module, configured as an original detection code string of the detection signal of the object to be detected input from the signal acquisition module or in another format converted according to the original detection code character Identifying the fault information, generating a fault diagnosis result, and transmitting the fault diagnosis result to the terminal device through the communication module.
  • the external fault detecting device that is independent of the target to be inspected collects the self-test information and/or the detected information of the object to be inspected and performs signal conversion, and detects the fault of the target to be detected.
  • the device fault detection alarm can only be "online” plus “manual”; in the embodiment of the present application, the built-in fault detecting device embedded in the target to be detected by the preset circuit board directly acquires various types of objects to be inspected.
  • the self-test signal avoids the signal conversion and achieves the purpose of optimizing the performance of the hardware fault detection system, thereby alleviating the passive detection used in the fault detection and alarm system of the prior art in the fault detection of the equipment hardware.
  • the method leads to technical problems of large limitations of the fault detection and alarm system and waste of conversion resources, thereby realizing the technical effect of actively detecting the detection target.
  • FIG. 1 is a schematic diagram of a device fault detection system according to an embodiment of the present application.
  • FIG. 2 is a second schematic diagram of a device fault detection system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an application environment of a device fault detection system according to an embodiment of the present application.
  • FIG. 4 is a second schematic diagram of an application environment of a device fault detection system according to an embodiment of the present application.
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present application can be understood in the specific circumstances for those skilled in the art.
  • the embodiment provides a device fault detection system, where the system includes a fault detection device and a terminal device, and the fault detection device operates independently of the object to be inspected.
  • the fault detecting device is configured to collect self-test data and/or detected data of the object to be inspected, identify the fault information in the self-test data and/or the detected data, generate a fault diagnosis result according to the fault information, and send the fault diagnosis result. To the terminal device.
  • the device fault detection system may, according to the fault detection device, the physical layer of the object to be inspected according to the self-test data and/or the detected data, in the case that the object to be detected is down or disconnected Perform offline fault diagnosis and automatically get offline fault diagnosis results.
  • the device fault detection system performs fault detection on the target hardware and target software of the physical layer of the object to be inspected based on the operating system and application software carried by the device, where the target The software includes at least one of the following: an initial startup software of the object to be inspected, and detection software of the object to be inspected; wherein the device failure detection system further includes: a data processing device configured to perform the offline fault diagnosis result Incorporating into the online fault diagnosis result, wherein the online fault diagnosis result is a fault diagnosis result obtained when the device fault detection system performs online fault diagnosis on the system layer and the application layer of the object to be detected.
  • the terminal device is configured to receive and display the fault diagnosis result, and is further configured to send an instruction to each other to be inspected. In this way, the user can view the fault diagnosis result through the terminal device, and can also be configured to send information to the object to be detected.
  • the terminal device can also be configured to activate a spare parts logistics distribution system.
  • the fault detecting apparatus 1 is independently disposed outside the object to be detected, and includes a signal acquiring module 5, a first control module 7 and a first Communication module 8.
  • the signal acquisition module 5 is connected to the detection output port of the object to be detected through a data communication cable, and the form of the data collected by the signal acquisition module 5 corresponds to the data output form of the detection output port of the object to be detected. And collecting data of the detection output port of the object to be inspected by an image, photoelectric or analog-to-digital conversion system.
  • the signal acquisition module 5 is further connected to the first control module 7.
  • the signal acquisition module 5 is configured to acquire self-test data and/or detected data of the object to be detected and send the data to the first control module. 7, wherein the self-test data and/or the detected data includes an original detection code string of the detection signal of the object to be inspected or according to the original inspection Test other formats after code character conversion.
  • the first control module 7 is further connected to the first communication module 8 and configured as an original detection code string of the detection signal of the object to be detected input from the signal acquisition module 5 or according to the original detection code.
  • the fault information is identified in other formats after the character conversion, the fault diagnosis result is generated, and the fault diagnosis result is transmitted through the first communication module 8.
  • the fault detecting apparatus 1 further includes a data storage module 6.
  • the first control module 7 (including a script program composed of all relevant instructions for fault detection) automatically runs the self-test and/or the detected data of each device collected by the acquisition module to perform fault detection and is filtered out (useless Normal operation information; when an error message is detected (ie, when an error log is read or an error is found in related information), the information is retained and compared with the accessory information library in the data storage module 6, and passed through the first
  • the communication module 8 controls to output a composite signal of the number information of the corresponding device and the faulty accessory model to the terminal device 3.
  • the self-test and the detected data include: a character signal (such as COM, a network port), an analog signal (such as a VGA, a USB port), an image signal (such as an indicator light, a liquid crystal screen), and the like.
  • the fault detecting apparatus 1 further includes: a data conversion module 12, wherein the data conversion module 12 uses an image signal or an analog signal in the self-test and/or the detected data (image recognition, photoelectricity may be adopted) Sensing, analog-to-digital conversion, OCR, CCD, OTG, etc.) are converted into character signals (in the specific implementation, photoelectric sensors or micro cameras can be used to capture the arrangement of the indicator lights at regular intervals; using a miniature camera to move the detection and recording LCD screen The error code; or the external input cable in the externally extractable detection module, and the data signal is transferred to the fault detecting device 1; and then converted into a digital signal by the above technology or directly obtained by the manufacturer self-test code)
  • a control module 7 collects and operates for fault detection.
  • the device fault detection system further includes a summary device 2 .
  • the summarizing device 2 is connected to the plurality of fault detecting devices 1 and communicates with the terminal device 3, and the terminal device 3 receives a plurality of fault diagnosis results sent by the fault detecting device 1, and the fault diagnosis is summarized. The result is sent to the terminal device 3.
  • the terminal device 3 includes: a notebook, a display, a mobile phone, an IPAD, a multi-screen wall, a personnel dispatching system, and a logistics distribution system.
  • the summary device 2 may include a second control module 11 , a second communication module 9 , and a display output module 10 .
  • the second control module 11 collects the composite signal outputted by each fault detecting device 1 (including the number information of the fault detecting device 1) through the second communication module 9, and sends it to the terminal device 3 for display through the display output module 10.
  • each fault detecting device 1 including the number information of the fault detecting device 1
  • the second communication module 9 sends it to the terminal device 3 for display through the display output module 10.
  • the fault detecting apparatus 1 further includes a first alarm 20, and when the error information is detected, the first control module 7 triggers the first alarm 20 to perform an alarm (including sound, Image, start emergency department System).
  • an alarm including sound, Image, start emergency department System.
  • the system further includes a second alarm 4, the second alarm 4 is connected to the summary device 2, and after the summary device 2 receives the fault diagnosis node The second alarm 4 is triggered to perform an alarm.
  • the device fault detection system may further include a concentrating device 13.
  • the concentrating device 13 is connected to the plurality of fault detecting devices 1 and is connected to the merging device 2, and the concentrating device 13 receives a plurality of fault diagnosis results sent by the fault detecting device 1 and sends the fault diagnosis results to the Aggregate device 2.
  • the aggregation device 2 is connected to the plurality of aggregation devices 13 and communicates with at least one of the terminal devices 3, and transmits the fault diagnosis result to the terminal device 3.
  • the concentrating device 13 includes: a third communication module 14, a data cache module 15, a fourth communication module 16, and a third control module 17, and the third control module 17 collects each fault detection device through the third communication module 14.
  • the synthesized signal outputted by 1 (including the number information of the fault detecting device 1) is stored in the data buffering module 15 for buffering; after the data is collected, the combined signals output by the buffered fault detecting devices 1 (including the fault detecting device 1)
  • the number information) and the number information of the aggregation device 13 are transmitted to the second communication module 9 of the aggregation device 2 via the fourth communication module 16.
  • the concentrating device 13 includes a k-level, wherein the j+1-level concentrating device 13 and the j-th concentrating device 13 perform a one-to-one or one-to-many connection.
  • the first-stage concentrating device 13 is connected to the fault detecting device 1 one-to-one or one-to-many, and the k-th concentrating device 13 is connected to the merging device 2; one fault detecting device 1 is respectively connected with m computers or Server connection; wherein, 1 ⁇ m ⁇ 15, 1 ⁇ k, 0 ⁇ j ⁇ k to 1.
  • one concentrating device 13 is connected to n fault detecting devices 1, wherein 1 ⁇ n ⁇ 20; one concentrating device 2 is connected to the z concentrating device 13, wherein 1 ⁇ z ⁇ 48.
  • the method further includes: a power source 18, the power source 18 is connected to the concentrating device 13; and the concentrating device 13 is respectively connected to the fault detecting device 1 and the summarizing device 2 through an optical fiber or a network cable; The detecting device 1 and the summarizing device 2 obtain power from the cascade device through a network cable, or obtain power through an independent power source 18.
  • the concentrating device 13 further includes: a signal amplifying circuit 19.
  • the third control module 17 collects the composite signal outputted by each fault detecting device 1 (including the number information of the fault detecting device 1) through the third communication module 14, and then enhances the signal strength through the signal amplifying circuit 19 and stores it in the data buffer module 15 Cache.
  • the aggregation device 2 includes a wireless communication module and a positioning module
  • the positioning module is configured to acquire geographic location information of the object to be inspected and geographic location information of the terminal device 3;
  • the wireless communication module is installed with an Internet of Things level SIM card, and the fault diagnosis result and the geographical location information are transmitted to the terminal device 3 with the corresponding SIM card through the Internet of Things level SIM card.
  • the wireless communication module may be a 3G/4G/5G module
  • the positioning module may be a GPS module
  • the second control module 11 locates a maintenance location and a maintenance personnel through the positioning module, and each failure is performed through a wireless communication module.
  • the composite signal output from the detecting device 1 and the amplified signal from the concentrating device 13 are sent to a mobile phone of a nearby maintenance person.
  • FIG. 3 is a schematic diagram of an application scenario of the device fault detection system, as shown in FIG. 1 to FIG. 3 (specifically, FIG. 3 is a schematic diagram of two objects to be inspected, and FIG. 3 is Port (COM, etc.), 2 is port line (COM line, etc.), 4 is fiber or network cable or wireless, 6 is fiber or network cable or wireless, 8 is signal output line or wireless, 9 is display device, 10 is mobile device; 9 and 10 are equivalent to the terminal device 3 in the present application; in the schematic diagram of the virtual-frame computer, the "original detection procedure 1, N" is the effect that the display is directly connected to the host when there is no such application; in FIG. 3, the middle dotted line represents the equipment room. The dividing line with the supervisory monitoring room can be next door.
  • Port COM, etc.
  • 2 is port line (COM line, etc.)
  • 4 is fiber or network cable or wireless
  • 6 fiber or network cable or wireless
  • 8 is signal output line or wireless
  • 9 is display device
  • 10 is mobile device
  • the device fault detection system can obtain a character signal through a COM port or a network port of the device, acquire an analog signal through a VGA port or a USB port, acquire an image signal through an indicator light or a liquid crystal screen, and then obtain the above image.
  • the self-test and the detected data are input into the fault detecting device 1, and are operated by each module (the image signal or analog signal (which can be image recognition, photoelectric sensing, analog-to-digital conversion, OCR, CCD, OTG, etc.) is converted into a character signal.
  • a photoelectric sensor or a micro camera may be used to periodically capture the arrangement of the indicator lights; a micro camera is used to move the error code of the detection and recording liquid crystal screen; or an input cable is externally connected to the externally detectable module.
  • the data signal is transferred to the fault detecting device 1; and then converted into a digital signal by the above technology or directly obtained by obtaining the self-checking code of the manufacturer, and output to the concentrating device 13 of the next stage, and then through the operation of each module, and finally Connected to the summary device 2 outside the equipment room through an optical fiber/twisted pair/wireless network; 3 shows a terminal device (such as a large screen frequency, monitor, notebook, iPad, mobile phones).
  • the display page can automatically jump to the abnormal device, and the page displays the fault point (such as CPU, memory or fan).
  • the fault point such as CPU, memory or fan.
  • the engineer can get the corresponding spare parts to the user site for replacement and repair according to the reported model, which improves the repair accuracy.
  • the engineer can also log in to the alarm device via the display or mobile terminal to enter the command to re-diagnose the confirmation, or directly remotely repair (the system does not start). If equipped with a staffing system and a logistics distribution system, users can automatically receive technical support and spare parts delivery services.
  • the fault detecting device 1 can be designed into an ARM embedded printing integrated circuit, which has a built-in processor, a memory, a power supply 18, a wireless module, etc., and is fixed in a small square box, and can also be made into a standard rack with a height of 1 U.
  • the front of the small box or 1U cabinet is the input port and indicator light
  • the rear is the output port and indicator light (the front side of the light can also be the port).
  • Various set-top box corresponding interfaces include power supply 18, Ethernet, optical fiber, COM, USB, VGA, HDMI, audio, video, printing, and the like.
  • the power source 18 can be used for local pressure change, or can be accessed through the remote end of the network cable.
  • the fault detecting apparatus 1 in the present application may be an embedded industrial computer based on an ARM architecture.
  • the front end of the fault detecting device 1 can be input by multiple serial ports, and the built-in chip can store and calculate, and all relevant commands that the senior engineer should input are made into a "script" program, and the "fault detecting device 1" is implanted to automatically run in time sharing (such as Run every 3 minutes), when the machine reads the error log or related information and finds an error, the alarm device is activated and stored with the stored parts information library (because the user purchased the machine, the manufacturer has given the part model specifications The user can input it to the database for comparison.
  • the concentrating device 13 Through its back-end three network ports (twisted pair, optical fiber, wireless WiFi), it is output to the concentrating device 13 as needed (the input end is a multi-network port, and the output end is It is a single network port) or directly output to the summary device 2 (the input end is a multi-network port, the output end is a multi-display port, such as USB, VGA, LVDS, HDMI, etc.), and then output to the terminal device 3 through the video line, such as Display, large screen, notebook, etc., or transmitted to the mobile terminal, interact with iPad, mobile phone, etc., display the part number with signal light or SMS or graphic, and accompany the alarm sound, let the user control the device at any time.
  • the video line such as Display, large screen, notebook, etc.
  • 1 to 15 devices in the same rack can be connected to the same fault detecting device 1, and the 1U cabinet is installed in the gap or the top of the rack machine, and the COM port of each machine is connected to the port of the fault detecting device 1.
  • the fault detecting device 1 on each of 1 to 20 different racks can be connected to the collecting device 13 through a network cable. If the number of racks is large, a plurality of concentrating devices 13 can be connected to form a pyramidal exchange connection.
  • the number of machines that can be controlled by the entire equipment fault detection system of the present application can be increased indefinitely, theoretically from one to several tens of thousands.
  • the fault detecting apparatus is installed inside the object to be inspected and runs independently of the object to be inspected in any of the following manners:
  • the fault detecting device is independently installed inside the object to be inspected;
  • the fault detecting device is embedded in an associated main control board of the object to be inspected;
  • the fault detecting device is inserted in a slot of the relevant main control board of the object to be inspected;
  • the fault detecting device 22 includes a signal collecting module, a first control module, and a first communications module.
  • the signal acquisition module is connected to the detection output port of the main control board of the object 23 to be inspected through a dedicated data cable or a module contact pin or a printed circuit, and the signal acquisition module is further connected to the first control module.
  • the signal acquisition module is configured to acquire self-test data and/or test data of the object 23 to be inspected and send the data to the first control module, where the self-test data and/or the test data includes the The original detection code string of the detection signal of the target 23 to be inspected;
  • the first control module is further connected to the first communication module, configured to identify fault information from the original detection code string input of the detection signal of the object 23 to be detected input by the signal acquisition module, and generate a fault. Detecting the result and transmitting the fault diagnosis result through the first communication module.
  • the fault detecting device 22 is a circuit board integrated with a plurality of modules, and the first control module has embedded detection software configured to perform fault detection on the object 23 to be inspected.
  • the fault detecting device 22 is mainly configured to acquire self-test information and/or information to be inspected of the object 23 to be inspected, and then process the self-test information and/or the information to be inspected to obtain a fault diagnosis result, and send the fault diagnosis result to the terminal device 21
  • the client APP performs an alarm and displays it.
  • the terminal device 21 is installed with a client APP, and the terminal device 21 is configured to use the client APP to send at least one of the following information to the device fault detection system: The machine number of the inspection target 23, the IP address information, the prompt information, the threshold of the error level, the number installed in the SIM card of the terminal device 21, and the program and/or keyword of the device failure detection system being changed;
  • the terminal device 21 that installs the client APP is further configured to send a query and a recheck instruction to the device fault detection system, wherein the query command is configured to query a historical fault diagnosis result, and the recheck command is configured to Check and simply repair the faulty device again.
  • the client APP is installed in the terminal device 21, and the client APP is paired with the fault detecting device 22, that is, the client APP is a client matched with the device fault detecting system. end.
  • the application of the client may be installed on the terminal device 21, and then the communication connection between the client and the fault detecting device 22 is established. At this time, the fault detection is performed.
  • the device 22 can transmit the fault diagnosis result to the terminal device 21 for display in real time, and alarm.
  • the fault detecting device 22 provided in the embodiment of the present application can be integrated on the main control board of the target 23 to be inspected, and then set.
  • the manufacturer of the object 23 to be inspected may provide an application of the client APP without configuring the terminal device 21, and then the user may install the application in any one of the terminal devices 21 and establish the fault detecting device. 22 paired connections.
  • the fault detecting device 22 can be independently installed inside the object 23 to be inspected, or embedded in the relevant main control board of the object 23 to be inspected, or inserted into the slot of the relevant control board of the object 23 to be inspected.
  • the fault detecting device 22 can collect the self-test information or the detected information before the self-test information or the detected information is converted.
  • the purpose of optimizing the performance of the hardware fault detecting device is achieved, thereby alleviating the limitation of the device fault detecting system caused by the passive detecting mode used by the equipment fault detecting system in the prior art for detecting the fault of the object 23 to be detected.
  • the technical problem of Yamato's conversion of resource waste thus achieving the technical effect of actively detecting the target 23 for fault detection.
  • the device fault detection system in the prior art can realize the online fault diagnosis of the target 23 to be inspected, that is, when the target 23 to be inspected is not powered off or is not down, the fault detection is performed, but when the target is to be inspected 23 In the case of power failure or downtime, it is impossible to detect the fault.
  • the embedded intelligent device fault detection system provided by the embodiment of the present application can detect the physical layer of the target 23 under the condition that the target 23 to be detected is down or powered off.
  • the offline fault diagnosis is performed to obtain the offline fault diagnosis result, and further, the technical problem that the existing equipment fault detection system cannot perform the offline fault diagnosis of the target 23 is solved.
  • the target hardware and target of the physical layer of the target 23 to be inspected may be based on the operating system and application software carried by the device.
  • the software performs fault detection, wherein the target software includes at least one of the following: an initial startup software of the target 23 to be inspected, and detection software of the target 23 to be inspected.
  • online fault diagnosis may be performed on the application layer of the object 23 to be inspected by the device fault detection system to obtain an online fault. diagnostic result.
  • the terminal device 21 obtains the offline fault diagnosis result and the online fault diagnosis result, the offline fault diagnosis result and the online fault diagnosis result can be merged, and the result after the fusion is displayed and monitored.
  • the obtained offline fault diagnosis result is: the model is A1, the version is B1, the specification is C1, the component with the position D1 is faulty; and the object 23 to be inspected is detected.
  • the online fault diagnosis result is: the model is A1 or A2, the version is B1 or B2, the specification is C1 or C2, and the component with position D1 or D2 is faulty.
  • the terminal device 21 may fuse the two fault diagnosis results together, for example, display the offline fault diagnosis result on the left side of the display window configured to display the fault diagnosis result in the client APP, and then, the online fault diagnosis is performed.
  • the result shows the right side of the display window in the client APP configured to display the diagnosis result.
  • the device fault detection system when the device fault detection system includes a plurality of independent fault detecting devices 22, the device fault detecting system can establish a cluster with the complexity and volume of the target 23 to be inspected.
  • a management mechanism is implemented to perform aggregation and aggregation of the plurality of independent fault detecting devices 22.
  • the object 23 to be inspected includes: an electromechanical device carrying a self-detection function, wherein the electromechanical device comprises: a computer, a robot, a mechanical device, a medical instrument, a household appliance, water, land, and air. Mobile tool.
  • the device fault detection system can be configured in the high-end hardware maintenance field of all industries, and the hardware fault provided in the embodiment of the present application can be used as long as the target 23 to be inspected carries the detection means such as a self-test, a log, and a diagnostic command set.
  • the fault detecting device 22 performs a fault alarm for it.
  • a household appliance, an aerospace vehicle, and a core "computer" portion thereof are all computer or industrial computer fault detecting devices 22, and therefore, the present invention can be used in the embodiments of the present application.
  • the hardware failure detecting device warns of the failure.
  • the above device failure detecting system can be installed inside the aircraft main control device.
  • it can automatically multi-alarm at the first time, and the alarm signal can be transmitted to the driver, the "black box” and the ground tower related personnel at the same time, and will not be lost due to the delay of the transmission distance.
  • the device fault detection system provided in the embodiment of the present application can record the fault condition of the automobile in real time, and feed back the fault condition to the terminal device 21, so that the individual owner and the rental company holding the terminal device 21 can timely understand the operation of the automobile. happensing.
  • the equipment fault detection system provided in the embodiment of the present application, when any fault or doubt occurs, the owner can know the condition of the vehicle, and whether the owner is a professional technician or not, it can know which component has a problem and how to operate. The repair should not be repaired, where to find repairs, how much it costs, to achieve transparency control. For example, the driving recorder has a great help to the traffic accident ruling.
  • the equipment fault detecting system provided by the embodiment of the present application can also help the vehicle owner to quickly identify the fault condition of the vehicle.
  • the fault location can only be known by the service personnel when the maintenance personnel repair the air conditioner. However, when maintenance personnel are required to repair the air conditioner, they may change a lot of things and spend a lot of money, which often causes the user to feel "black.”
  • the device fault detection system provided by the embodiment of the present application can detect the air conditioner in real time and accurately determine the fault location of the air conditioner.
  • the unit computer room includes a large number of computers.
  • the network management personnel need to perform a test. This not only delays the network management personnel a lot of time, but also makes the detection speed very slow.
  • the unit needs to use the computer, it causes Unnecessary trouble.
  • the device fault detection system in the embodiment of the present application is embedded in the mainframe of the computer, the device fault detection system can detect the fault of the computer in real time, identify the fault, and obtain a fault diagnosis result. All the relevant technicians need to do is to repair the computer according to the diagnosis result. It can be seen that the device fault detection system can improve the efficiency of the network maintenance personnel to repair the computer, and saves the time of the relevant technicians.
  • the volume of the fault detecting device 22 is less than 12*12*2 cubic centimeters, wherein the shape of the fault detecting device 22 depends on the internal structure of the object 23 to be inspected, The complexity and size of the additional function modules.
  • the volume of the above-described fault detecting device 22 may be set to a circuit board having a length*width*height of 12*12*2 cm, or a circuit board having a volume of the fault detecting device 22 of less than 12*12*2 cm.
  • the controller of the air conditioner, and the main controller of the car waiting for the space of the main control device of the inspection target 23 the fault detection device 22 in the embodiment of the present application can be set to grow *width*height respectively. It is the size of the 12*12*2cm structure.
  • the size of the fault detecting device 22 is not limited to 12*12*2 cm, and the actual size of the fault detecting device 22 may be determined according to the internal space of the object 23 to be inspected, or according to different uses. Requirements can be tailored to add or reduce different module devices and interfaces to minimize resource usage.
  • the specific length, width, and height of the failure detecting device 22 are not specifically limited so as to be able to be installed inside the object 23 to be inspected and to meet the functional requirements.
  • the device fault detection system further includes: a power interface module, wherein the power interface module is integrated on the fault detecting device 22, and configured to receive the object to be inspected 23 to provide The DC power supply, or the power interface module is configured to receive a DC power supply provided by an independent power source, the independent power source being independent of the object 23 to be inspected.
  • one or more power interface modules may be integrated on the fault detecting device 22, and the power interface module may be connected to the DC power supply provided by the object 23 to be inspected to obtain the target 23 to be inspected.
  • the DC power supply at this time, when the target 23 to be inspected is working normally, or when the target 23 to be inspected is not powered off, the fault detection system of the device can perform fault detection normally.
  • a DC power source for example, 5V, 9V, 12V, 24V, 38V, etc.
  • the universal 12V DC power supply can be independently disposed inside the object 23 to be inspected, or separately disposed outside the object 23 to be inspected.
  • the object 23 to be inspected may be separately used to provide a device fault detection system.
  • the above 12V DC power supply can be used separately to supply power to the equipment fault detection system, and the equipment fault detection system can be powered by the 23 and 12V DC power sources to be inspected.
  • the DC power supply can be the chassis power supply. Electric energy devices such as batteries, lithium batteries, and external power supplies.
  • the 12V DC power supply can be connected to the power output port of the target 23 to be tested to supply power to the 12V DC power supply.
  • the fault detecting device 22 is connected to the terminal device 21 via a twisted pair, and the 8-core 2-core cable of the twisted pair can be used as a power cord to reverse the power supply from the notebook terminal for the present application.
  • the signal acquisition module is provided with a detection input port, and the detection input port is connected to the main control board of the object 23 to be inspected through a dedicated data cable or a module contact pin or a printed circuit.
  • the detection output port is connected, configured to acquire the self-test data and/or the detected data of the object 23 to be inspected and sent to the control module, so that the control module determines the error information of the object 23 to be inspected according to the error level. Or log.
  • the detection input port of the main control board of the object 23 to be inspected may be connected by detecting the input port.
  • the to-be-detected target 23 outputs a detection signal through the detection output terminal, wherein the output detection signal is the original detection code string, that is, the detection signal input to the signal recognition module is not converted, and is the original signal.
  • the detection signal includes a self-test signal and a detected signal, wherein the self-test signal can be understood as a signal obtained by the object 23 to be inspected when the self-test program is started, and the detected signal is detected after receiving the detection command. The signal obtained afterwards.
  • the detection signal collected by the signal acquisition module is the original detection code string, that is, the detection signal may carry multiple types of programming languages.
  • the signal acquisition module will process the detection signal.
  • the detected signal after processing can be recognized by other modules.
  • the processing signal after the processing may be sent to the first control module for processing, wherein after acquiring the detection signal after the processing, the first control module can determine the to-be-checked according to the level of the error. Error message or log for target 23.
  • the error level threshold typically includes primarily a 1-7 level threshold.
  • I or info indicates some basic message descriptions
  • W or warn indicates warning messages, configured to indicate that the device may have problems, but does not affect normal operation
  • E or error indicates some large error messages
  • the error level threshold is set to the last two levels, if an error occurs, the hardware is usually repaired or replaced.
  • the first control module includes: a processing submodule and an inventory comparison submodule, where
  • the processing sub-module is connected to the signal acquisition module, and configured to determine an error information or a log of the object 23 to be inspected according to the original detection code string input input by the signal acquisition module;
  • the inventory comparison sub-module is connected to the processing sub-module, and configured to compare the error information or the log with the configuration information stored in the target database of the to-be-detected target 23 after the update, to obtain the fault diagnosis accuracy.
  • the fault diagnosis result comprises: an updated bit of the minimum field replaceable unit of the object 23 to be inspected Set, model, specification or version.
  • the processing sub-module may send the error information or the log to the inventory comparison sub-module, so that the inventory comparison sub-module
  • the error information or the log is compared with the configuration information stored in the target database to obtain a fault diagnosis result (including an offline fault diagnosis result and/or an online fault diagnosis result), and the obtained fault diagnosis result includes the fault location of the target 23 to be inspected. , the model, specification and version of the part in the fault location.
  • the device fault detection system provided by the embodiment of the present application can timely detect the replacement condition of the electronic component in the object 23 to be inspected through special instructions, and store the accessory information (for example, model number, version, specification, etc.) in the target database after the replacement.
  • Target data after the update.
  • the inventory comparison sub-module is comparing, it can be understood that the error information or the log is compared with the configuration information of the electronic accessory stored in the target database of the object 23 to be inspected after the update, and the fault diagnosis result is obtained.
  • the first communication module is configured to generate an alarm prompt message according to a control signal of the first control module, and transmit an alarm prompt information to the terminal device 21 having the information receiving function or the client APP installed continuously n times, wherein n is greater than A positive integer of 1, the alarm prompt information is saved in a preset manner in a last-in, first-out manner, or a preset time period is saved.
  • the alarm prompt information may be stored by the storage device, wherein the storage device is a FIFO memory, that is, the alarm prompt information is sequentially stored in the storage device in a first-in, first-out manner.
  • the first communications module may include a positioning module and a wireless communications module
  • the positioning module is configured to acquire geographic location information of the object 23 to be inspected and geographic location information of the terminal device 21;
  • the wireless communication module is installed with an Internet of Things level SIM card, and the fault information and the geographical location information are transmitted to the terminal device 21 with the corresponding SIM card through the Internet of Things level SIM card.
  • the wireless communication module includes at least one of the following: a mobile 3G/4G/5G communication device, a satellite communication device, a Wifi communication device, a cable communication device, and a radio transmission communication device, wherein
  • the mobile 3G/4G/5G communication device includes a 3G/4G/5G module built in the device fault detection system, and the mobile 3G/4G/5G communication device is configured to install an IoT SIM card and troubleshoot through the IoT SIM card. The result is transmitted to the terminal device 21 on which the target SIM card is installed;
  • the wireless communication module may be a mobile 3G/4G/5G communication device in which the mobile 3G/4G/5G communication device is integrated on the failure detecting device 22, and in the mobile 3G/4G/5G Built in communication device 3G/4G/5G module.
  • a SIM card can be installed in the mobile 3G/4G/5G communication device, including a normal SIM card and a network-level SIM card.
  • the mobile 3G/4G/5G communication device transmits the fault diagnosis result to the client APP of the terminal device 21 on which the target SIM card is installed more conveniently.
  • the satellite communication device includes a satellite/GPS/beidou positioning module and associated sensors built in the device fault detection system, wherein the satellite communication device is configured to transmit the target information to the target device, wherein the target information includes at least one of the following: a fault diagnosis result
  • the moving position of the target 23 to be inspected includes at least one of the following: the terminal device 21, the monitoring center, and the monitoring storage device.
  • the wireless communication module may also be selected as a satellite communication device, wherein the satellite communication device is integrated on the fault detecting device 22, and a satellite is built in the satellite communication device. GPS/Beidou positioning module and related sensors.
  • the satellite communication device is configured to transmit a fault diagnosis result to the target device, in addition to which the satellite communication device is further configured to transmit the mobile position of the object 23 to be inspected to the target device.
  • the target device includes a terminal device 21 (for example, the terminal device 21 for installing the client APP), and the target device further includes an in-regulation information and a monitoring storage device, wherein the monitoring storage device includes an electronic recording device such as a black box and a driving recorder.
  • the satellite/GPS/Beidou communication device can also perform positioning and rescue including mechanical failure and personnel accident in real time.
  • the Wifi communication device includes a WiFi socket built in the device failure detection system, wherein the MAC address and the identifier of the WiFi socket are bound to the client APP installed in the terminal device 21, wherein the WiFi socket is paired with the client APP.
  • the WiFi communication device includes a WiFi socket built into the device failure detection system, the WiFi socket including a unique MAC address and an identifier, and the WiFi signal can be received or transmitted.
  • the client APP of the terminal device 21 can be bound to the private MAC address and identifier of the WiFi socket.
  • the terminal device 21 can be paired with the WiFi socket of the fault detecting device 22 by means of automatic scanning; and can also be remotely transmitted by using the WeChat service. Intelligent monitoring.
  • the cable communication device is built in the device failure detection system, and the cable communication device is connected to the terminal device 21 through the target cable, configured to transmit the fault diagnosis result to the terminal device 21, or the DC generated from the terminal device 21.
  • the power supply is reversely transmitted to the device fault detection system to supply power to the device fault detection system.
  • the target cable includes at least one of the following: optical fiber, twisted pair cable, USB cable, VGA cable, COM cable, audio and video. Output cable.
  • the wireless communication module may also be replaced by a cable communication device, which is built in the device fault detection system and connected to the terminal device 21, wherein the line The cable communication device is configured to transmit a fault diagnosis result to the terminal device 21.
  • the DC power source acquired from the terminal device 21 can be transmitted to the device fault detection system through the cable to supply power to the device fault detection system.
  • the target line There are various types of cables.
  • the target cable is preferably any one of an optical fiber, a twisted pair cable, a USB cable, a VGA cable, a COM cable, and an audio/video output cable.
  • the radio transmission communication device is configured to transmit a failure diagnosis result or a failure alarm signal of the object 23 to be inspected to the terminal device 21 on which the radio reception device is installed.
  • the wireless communication module further includes a radio transmission communication device, wherein the radio transmission communication device is integrated on the fault detection device 22, configured to transmit the fault diagnosis result or the fault alarm signal of the target 23 to be detected. It is in the terminal device 21 in which the radio receiving device is installed.
  • the first control module may further include an instruction operation submodule configured to run a command set script and software related to the detection command through a language programming such as Java/C. package.
  • the configuration includes storing a detection instruction, a timing reading instruction, an error message or an error level threshold indicated by the log, and initial configuration information.
  • the instruction operation submodule is configured to store the above instruction and related information, but is not limited to being configured only by the above instruction and related information.
  • the instruction related to the detection program may be stored in the instruction operation. Submodule.
  • the instruction operation submodule includes: a read only memory and a read/write memory, wherein the read only memory is configured to store the detection instruction, and the read/write memory is configured to store the timing read instruction, and the error information indicates Error level threshold, initial configuration information.
  • the detection instruction may be embedded in the read-only memory ROM, and when the detection instruction needs to be called, the detection instruction may be called to the read-only memory ROM for detection.
  • other instructions than the detection command can be embedded in the ROM.
  • Timing read commands, error level thresholds, and initial configuration information can be embedded in the readable and writable memory RAM.
  • the initial configuration information is initialization information, for example, an initial command, a machine name, a machine serial number, a model number of the terminal device 21, and related parameters of the related client APP in the terminal device 21.
  • the terminal device 21 is further configured to send, by using the display page or the installation client APP page, the failure detecting device 22 to modify at least one of the following information: the machine of the target 23 to be inspected The number, the IP address information, the prompt information, the threshold of the error level, the number installed in the SIM card of the terminal device 21, the program and/or the keyword in which the device failure detection system is changed; the terminal device 21 in which the client APP is installed
  • the method is configured to send a query instruction to the device fault detection system through the network output module, where the query instruction is configured to query the historical fault diagnosis result.
  • the user may send a query instruction to the device fault detection system through the display page of the client APP in the terminal device 21, where the query command is an instruction for querying the historical alarm prompt information.
  • the query command is an instruction for querying the historical alarm prompt information.
  • the user can enter the query date “2016.11.28” in the fault diagnosis result query field in the client APP, and then the device fault detection system queries the alarm information of the query date after receiving the query date. And send the results of the query to the terminal The display is performed in the client APP of the device 21.
  • the user can also input "2016.11.28, 8:00pm to 16:00pm", that is, query 2016.11.28, 8:00 am to 4:00 pm, the alarm message during this time, the equipment fault detection system is After receiving the query instruction, the alarm prompt information of the time period is queried in the historical alarm prompt information according to the query date input by the user, and the queried result is sent to the client APP of the terminal device 21 for display.
  • the terminal device 21 that installs the client APP further includes an encryption device, and the encryption device is bound to the device fault detection system, configured to detect the device fault.
  • the system performs encryption, wherein the encryption device comprises at least one of: a password input device, an image acquisition device, a watchdog device, a fingerprint landing device, a face and voice recognition device, a front server or a two-dimensional code recognition device.
  • the display interface of the fingerprint login device is displayed on the display interface of the terminal device 21, and the fingerprint of the user is recognized.
  • the connection of the client APP to the failure detecting device 22 is opened.
  • the face recognition device displays the display interface of the face recognition device on the display interface of the terminal device 21 when the user clicks to open the client APP installed on the terminal device 21, and performs the face image of the user. Identification, when the identification is accurate, the connection of the client APP to the fault detecting device 22 is opened.
  • the terminal device 21 is further configured to send a detection instruction to the device fault detection system through the network communication device, so that the device fault detection system performs fault detection according to the detection instruction.
  • the development platform of the client APP is an Android platform.
  • the client APP can generate a framework to open an account, establish a basic configuration of the alarm system, establish a port API protocol between the alarm systems, establish an operation page layout, and can also establish a corresponding expression of sentences and animations, short message translation and high fidelity cut, It can realize the binding with the alarm system, and can also realize the man-machine positioning through the GPS module.
  • the client APP can perform the stress test and modify the BUG.
  • the present embodiment provides a device fault detection system, which is independently installed in the object to be inspected 23, or embedded in the relevant main control board of the object 23 to be inspected, or inserted in the standby control panel 23 Check the slot of the relevant main control board of target 23. For example, it is embedded inside the computer and connected to the main control board of the computer through the test data line.
  • the above equipment fault detection system hardware can select ARM-based embedded printing integrated circuit, support multi-core CPU, multi-G memory, optional communication device and port, independent DC power supply, etc.; software can be selected based on Linux/Android operating system platform, support Java , C and other language programming; embedding the diagnostic set by the above hardware and software, and installing the client APP corresponding to the detecting device in the terminal device 21 to implement remote monitoring management.
  • the purpose of the present application is to provide an equipment fault detection system and a fault detection apparatus, which can be used to alleviate the fault detection system of the prior art, and can only use the online detection mode and the passive detection when performing fault detection on hardware such as electromechanical equipment.
  • the method leads to technical problems with limited device fault detection system. Its main features are:
  • This application is generally applicable to larger or more expensive equipment (including computers, mechanical systems, electronic equipment or electrical equipment, etc.), and is not applicable to small or inexpensive electronic and mechanical devices that do not have multiple repair values. Such as low-end personal computers, toys, household appliances, and so on.
  • This application is generally based on the "offline” (system not started) mode displayed by the original port (similar to the serial port) after the summary processing of the underlying or physical layer detection commands, and the existing system-based network layer or application layer.
  • the "online” (system started) approach is fundamentally different. That is, when the “online” network is interrupted or even the downtime has to use manual inspection, an automatic "offline” detection means, and the use of modern intelligent technology to transmit alarm maintenance. Only when “online” plus “offline” can completely solve the problem of intelligent detection of equipment detection.
  • the application is divided into two parts on the basis of the "offline" underlying detection system: for the used (old) equipment, the connection external method is used to detect the alarm; for the unused (new) equipment The built-in “module device” and “module design” methods are used to detect alarms.
  • the application further improves the integration degree, thereby saving space and resources, and reducing line faults and system occupation loss.
  • the fault detecting device 22 can be embedded in the interior of the object 23 to be inspected, and the service is directly provided to the user, which is convenient for management, saves manpower and material cost, and saves a large amount of training and reserves for senior technicians (only General disassembly skills are enough).
  • the manufacturer can correctly analyze the probability of wearing parts in order to improve the product; the maintenance provider can accurately identify the problem in time and simplify the maintenance operation process.
  • the alarm system supports two-way remote human-computer interaction to realize a modern intelligent control method based on the Internet.
  • the alarm system supports personnel dispatching systems and logistics distribution systems, which automatically receive technical support and spare parts supply. By directly connecting to the target to be inspected, the alarm system can reduce intermediate links and unify code output standards, making it simpler and smarter.
  • the alarm system provided by the embodiment of the present application can be installed in a new generation of equipment to add a new selling point.
  • the alarm system can be extended to all industries, reforming and subverting the traditional maintenance mode of all electromechanical devices, making hardware repairs simpler, more realistic and more interesting (for example, APP image animation).

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Debugging And Monitoring (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请提供了一种设备故障检测系统,所述系统包括故障检测装置及终端设备,所述故障检测装置独立于待检目标运行;所述故障检测装置配置成采集待检目标的自检数据和/或被检数据,识别所述自检数据和/或被检数据中的故障信息,根据所述故障信息生成故障诊断结果并发送给所述终端设备;所述终端设备配置成接收并显示所述故障诊断结果,还配置成与待检目标相互发送信息。缓解了现有技术中的故障检测报警系统在对计算机等硬件进行故障检测时所采用的在线检测方式和被动检测方式导致故障检测报警系统局限性较大的技术问题。

Description

设备故障检测系统及故障检测装置
相关申请的交叉引用
本申请要求于2016年08月25日提交中国专利局的优先权号为2016107272519、名称为“数据中心智能设备故障检测系统”的中国专利申请的优先权,以及于2016年12月23日提交中国专利局的优先权号为2016112083856、名称为“嵌入式智能设备故障检测系统”的中国专利申请的优先权,将上述专利全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机及机电设备维修技术领域,具体涉及一种设备故障检测系统及故障检测装置。
背景技术
长期以来,各类机电相关设备和计算机厂家生产的产品,本身的底层真正的硬件维修基本上都是采取人工检测,或者自动检测显示在直连屏幕上,再由技术人员对故障进行人工区分修理。也就是说,现有技术中对机电设备(包括计算机及安防系统)的故障进行检测时,都是通过经验丰富的工程师最终到现场进行实时观察判断故障。
现有技术中也有些远程、自动诊断的方法,包括应用软件监控、手机APP遥控等,都是通过产品设备可登录到系统界面,通过相关在线命令了解问题,都是基于应用层面或系统层面,不一定能够真正查出故障部件。这些检查方式与网管或巡检方式相当,查出的硬件问题有时只与软件故障相关,尤其是当设备卡网、断网、死机、宕机、甚至断电时,使用、维修人员根本无法掌握突发故障的精确信息,也不可能将庞大、贵重的整机一起更换。并且,通过上述网络检测方法占用很大流量资源。所以,维修检测的最终阶段(“最后一公里”)还是人工而非自动。
设备生产厂家一般只注重使用而不太注重维修,使用功能日新月异,维修手段一成不变,使得维修工作异常艰难、繁重,而且枯燥。
发明内容
为解决上述问题,本发明的目的在于提供一种设备故障检测系统,所述系统包括故障检测装置及终端设备,所述故障检测装置独立于待检目标运行;
所述故障检测装置配置成采集待检目标的自检数据和/或被检数据,识别所述自检数据和/或被检数据中的故障信息,根据所述故障信息生成故障诊断结果并发送给所述终端设备;
所述终端设备配置成接收并显示所述故障诊断结果,还配置成与待检目标相互发送信息。
可选地,在上述系统中,所述设备故障检测系统配置成在所述待检目标宕机或者断网的情况下,对根据所述自检数据和/或被检数据对所述待检目标的物理层进行离线故障诊断,自动得到离线故障诊断结果。
可选地,在上述系统中,所述设备故障检测系统基于自身携带的操作系统和应用软件,对所述待检目标的物理层的目标硬件和目标软件进行故障检测,其中,所述目标软件包括以下至少之一:所述待检目标的初始启动软件,所述待检目标的检测软件;其中,所述设备故障检测系统还包括:数据处理装置,配置成将所述离线故障诊断结果融入至在线故障诊断结果中,其中,所述在线故障诊断结果为所述设备故障检测系统对所述待检目标的系统层和应用层进行在线故障诊断时得到的故障诊断结果。
可选地,在上述系统中,所述故障检测装置独立设置于所述待检目标外部,包括信号采集模块,控制模块及通信模块;
所述信号采集模块通过数据通信线缆与所述待检目标的检测输出端口相连接,所述信号采集模块采集数据的形式与所述待检目标的检测输出端口的数据输出形式相对应,包括通过图像、光电或模数转换系统对所述待检目标的检测输出端口的数据进行采集;
所述信号采集模块还与所述控制模块连接,所述信号采集模块配置成获取所述待检目标的自检数据和/或被检数据并发送给所述控制模块,其中,所述自检数据和/或被检数据包括所述待检目标的检测信号的原始检测代码字符串或根据所述原始检测代码字符转换后的其他格式;
所述控制模块还与所述通信模块连接,配置成从所述信号采集模块输入的所述待检目标的检测信号的原始检测代码字符串或根据所述原始检测代码字符转换后的其他格式中识别出故障信息,生成故障诊断结果并通过所述通信模块发送所述故障诊断结果。
可选地,在上述系统中,所述设备故障检测系统还包括汇总装置;
所述汇总装置与多个故障检测装置连接,并与所述终端设备通信,所述终端设备接收多个所述故障检测装置发送的故障诊断结果,将汇总后所述故障诊断结果发送给所述终端设备。
可选地,在上述系统中,所述设备故障检测系统还包括集联装置及汇总装置;
所述集联装置与多个故障检测装置连接,并与所述汇总装置连接,所述集联装置接收多个所述故障检测装置发送的故障诊断结果,并发送给所述汇总装置;
所述汇总装置与多个集联装置连接,并与至少一个所述终端设备通信,将汇总后所述故障诊断结果发送给所述终端设备。
可选地,在上述系统中,所述汇总装置包括信号输出模块,所述信号输出模块包括:无线通信模块及定位模块;
所述定位模块配置成获取所述待检目标的地理位置信息和所述终端设备的地理位置信息;
所述无线通信模块安装有物联网级SIM卡,通过所述物联网级SIM卡将所述故障诊断结果及地理位置信息传输至安装有对应SIM卡的终端设备。
可选地,在上述系统中,所述故障检测装置采用以下任一种方式安装在待检目标的内部并独立于所述待检目标运行:
所述故障检测装置独立安装在所述待检目标的内部;
所述故障检测装置嵌入在所述待检目标的相关主控板中;
所述故障检测装置插入在所述待检目标的相关主控板的插槽中;
其中,所述故障检测装置包括信号采集模块,控制模块及通信模块;
所述信号采集模块通过专用数据线缆或模块触脚或印刷电路与所述待检目标的主控板的检测输出端口相连接,所述信号采集模块还与所述控制模块连接,所述信号采集模块配置成获取所述待检目标的自检数据和/或被检数据并发送给所述控制模块,其中,所述自检数据和/或被检数据包括所述待检目标的检测信号的原始检测代码字符串;
所述控制模块还与所述通信模块连接,配置成从所述信号采集模块输入的所述待检目标的检测信号的原始检测代码字符串输入中识别出故障信息,生成故障检测结果并通过所述通信模块发送所述故障诊断结果。
可选地,在上述系统中,所述通信模块包括定位模块及无线通信模块;
所述定位模块配置成获取所述待检目标的地理位置信息和所述终端设备的地理位置信息;
所述无线通信模块安装有物联网级SIM卡,通过所述物联网级SIM卡将所述故障信息及地理位置信息传输至安装有对应SIM卡的终端设备。
可选地,在上述系统中,当所述设备故障检测系统包括多个独立的故障检测装置时,所述设备故障检测系统能够随所述待检目标的复杂程度和体积数量建立集群管理机制,以实现将所述多个独立的故障检测装置进行集联汇总。
可选地,在上述系统中,所述设备故障检测系统还包括:电源接口模块,其中,所述电源接口模块集成在所述故障检测装置上,配置成接收所述待检目标提供的直流电源,或者,所述电源接口模块配置成接收独立电源提供的直流电源,所述独立电源为独立于所述待检目标。
可选地,在上述系统中,所述控制模块包括:处理子模块及库存比较子模块,其中,
所述处理子模块与所述信号采集模块连接,配置成根据所述信号采集模块输入的原始检测代码字符串输进行处理确定所述待检目标的错误信息或日志;
所述库存比较子模块与所述处理子模块连接,配置成将所述错误信息或日志与更新之后的所述待检目标的目标数据库中存储的配置信息相比较,得到所述故障诊断精确结果,其中,所述故障诊断结果包括:更新后的所述待检目标的最小现场可更换单元的位置、型号、规格或版本。
本发明还提供一种故障检测装置,所述故障检测装置包括信号采集模块,控制模块及通信模块;
所述信号采集模块与待检目标的检测输出端口相连接,所述信号采集模块还与所述控制模块连接,所述信号采集模块配置成获取所述待检目标的自检数据和/或被检数据并发送给所述控制模块,其中,所述自检数据和/或被检数据包括所述待检目标的检测信号的原始检测代码字符串或根据所述原始检测代码字符转换后的其他格式;
所述控制模块还与所述通信模块连接,配置成从所述信号采集模块输入的所述待检目标的检测信号的原始检测代码字符串或根据所述原始检测代码字符转换后的其他格式中识别出故障信息,生成故障诊断结果并通过所述通信模块发送所述故障诊断结果给终端设备。
在本申请实施例中,通过独立于待检目标运行的外置故障检测设备,采集待检目标的自检信息和/或被检信息并进行信号转换,对待检测目标进行故障检测,解决了现有设备故障检测报警只能“在线”加“人工”的技术问题;在本申请实施例中,通过预设电路板内嵌于待检测目标的内置故障检测装置,直接获取待检目标的各类自检信号,避免了信号的转换,达到了对硬件故障的检测系统的性能进行优化的目的,进而缓解了现有技术中的故障检测报警系统在对设备硬件进行故障检测时所采用的被动检测方式导致故障检测报警系统局限性较大和转换资源浪费的技术问题,从而实现了主动对待检测目标进行故障检测的技术效果。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供设备故障检测系统的示意图之一;
图2是本申请实施例提供设备故障检测系统的示意图之二;
图3是本申请实施例提供设备故障检测系统的应用环境示意图之一;
图4是本申请实施例提供设备故障检测系统的应用环境示意图之二。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例 是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本实施例提供一种设备故障检测系统,所述系统包括故障检测装置及终端设备,所述故障检测装置独立于待检目标运行。
所述故障检测装置配置成采集待检目标的自检数据和/或被检数据,识别所述自检数据和/或被检数据中的故障信息,根据所述故障信息生成故障诊断结果并发送给所述终端设备。
通过所述故障检测装置,所述设备故障检测系统可以在所述待检目标宕机或者断网的情况下,根据所述自检数据和/或被检数据对所述待检目标的物理层进行离线故障诊断,自动得到离线故障诊断结果。
可选地,在本实施例中,所述设备故障检测系统基于自身携带的操作系统和应用软件,对所述待检目标的物理层的目标硬件和目标软件进行故障检测,其中,所述目标软件包括以下至少之一:所述待检目标的初始启动软件,所述待检目标的检测软件;其中,所述设备故障检测系统还包括:数据处理装置,配置成将所述离线故障诊断结果融入至在线故障诊断结果中,其中,所述在线故障诊断结果为所述设备故障检测系统对所述待检目标的系统层和应用层进行在线故障诊断时得到的故障诊断结果。
所述终端设备配置成接收并显示所述故障诊断结果,还配置成向待检目标互发送指令。如此,用户可以通过终端设备查看所述故障诊断结果,还可以配置成与所述待检目标相互发送信息。所述终端设备还可以配置成启动备件物流配送系统。
可选地,请参照图1,在本实施例的一种实施方式中,所述故障检测装置1独立设置于所述待检目标外部,包括信号采集模块5,第一控制模块7及第一通信模块8。
所述信号采集模块5通过数据通信线缆与所述待检目标的检测输出端口相连接,所述信号采集模块5采集数据的形式与所述待检目标的检测输出端口的数据输出形式相对应,包括通过图像、光电或模数转换系统对所述待检目标的检测输出端口的数据进行采集。
所述信号采集模块5还与所述第一控制模块7连接,所述信号采集模块5配置成获取所述待检目标的自检数据和/或被检数据并发送给所述第一控制模块7,其中,所述自检数据和/或被检数据包括所述待检目标的检测信号的原始检测代码字符串或根据所述原始检 测代码字符转换后的其他格式。
所述第一控制模块7还与所述第一通信模块8连接,配置成从所述信号采集模块5输入的所述待检目标的检测信号的原始检测代码字符串或根据所述原始检测代码字符转换后的其他格式中识别出故障信息,生成故障诊断结果并通过所述第一通信模块8发送所述故障诊断结果。
可选地,在本实施方式中,所述故障检测装置1还包括数据存储模块6。所述第一控制模块7(包含故障检测的所有相关指令做成的脚本程序)定时自动运行采集模块采集的各台设备的自检和/或被检数据进行故障检测,并过滤掉(无用的)正常运行信息;当检测出错误信息时(即读取错误日志或相关信息发现错误时),则保留信息且将该错误信息与数据存储模块6中的配件信息库进行比较,并通过第一通信模块8控制输出相应设备的编号信息与故障配件型号的合成信号至所述终端设备3。其中,所述的自检及被检数据包括:字符信号(如COM、网口的)、模拟信号(如VGA、USB口的)、图像信号(如指示灯、液晶屏的)等。
可选地,所述故障检测装置1还包括:数据转换模块12,所述的数据转换模块12将所述自检和/或被检数据中的图像信号或模拟信号(可采用图像识别、光电传感、模数转换、OCR、CCD、OTG等技术)转换为字符信号(具体实施时,可采用光电传感器或微型照相机来定时捕捉指示灯的排列组合;采用微型摄像头来移动侦测记录液晶屏的错误代码;或在可外拔的检测模块中外接输入排线,将其数据信号转到故障检测装置1中;再通过以上技术或直接通过获得厂家自检代码转换成数字信号),供第一控制模块7采集运行进行故障检测。
可选地,在本实施方式中,请再次参照图1,所述设备故障检测系统还包括汇总装置2。
所述汇总装置2与多个故障检测装置1连接,并与所述终端设备3通信,所述终端设备3接收多个所述故障检测装置1发送的故障诊断结果,将汇总后所述故障诊断结果发送给所述终端设备3。所述的终端设备3包括:笔记本、显示器、手机、IPAD、多屏幕墙、人员调度系统和物流配送系统。
可选地,在本实施方式中,所述汇总装置2可以包括第二控制模块11、第二通信模块9及显示输出模块10。
所述第二控制模块11通过所述第二通信模块9采集各故障检测装置1输出的合成信号(还包括故障检测装置1的编号信息),并通过显示输出模块10发送至终端设备3进行显示(可通过USB、VGA、LVDS、HDMI、网络、蓝牙、红外等端口),
可选地,在本实施方式中,所述故障检测装置1还包括第一报警器20,当检测出错误信息时,所述第一控制模块7触发第一报警器20进行报警(包括声音、图像、启动应急系 统)。
可选地,在本实施方式中,所述系统还包括第二报警器4,所述第二报警器4与所述汇总装置2连接,所述汇总装置2在接收到所述故障诊断结后触发所述第二报警器4进行报警。
可选地,请参照图2,在本实施方式中,所述设备故障检测系统还可以包括集联装置13。
所述集联装置13与多个故障检测装置1连接,并与所述汇总装置2连接,所述集联装置13接收多个所述故障检测装置1发送的故障诊断结果,并发送给所述汇总装置2。
所述汇总装置2与多个集联装置13连接,并与至少一个所述终端设备3通信,将汇总后所述故障诊断结果发送给所述终端设备3。
所述的集联装置13包括:第三通信模块14、数据缓存模块15、第四通信模块16和第三控制模块17,所述第三控制模块17通过第三通信模块14采集各个故障检测装置1输出的合成信号(包括故障检测装置1的编号信息),存入数据缓存模块15进行缓存;数据采集完毕后,将所缓存的各个故障检测装置1输出的合成信号(包括故障检测装置1的编号信息)以及所述集联装置13的编号信息,通过第四通信模块16发送至汇总装置2的第二通信模块9。
可选地,在本实施例中,所述的集联装置13包括k级,其中,第j+1级集联装置13与第j级集联装置13进行一对一或一对多连接,第1级集联装置13与所述故障检测装置1进行一对一或一对多连接,第k级集联装置13分别与汇总装置2连接;一台故障检测装置1分别与m台计算机或服务器连接;其中,1≤m≤15,1≤k,0≤j≤k至1。
可选地,在本实施例中,一台集联装置13与n台故障检测装置1连接,其中,1≤n≤20;一台汇总装置2与z台集联装置13连接,其中,1≤z≤48。
可选地,在本实施方式中,还包括:电源18,所述电源18与集联装置13连接;集联装置13通过光纤或网线分别与故障检测装置1和汇总装置2连接;所述故障检测装置1和所述汇总装置2通过网线从所述级联装置获得供电,或通过独立电源18获得供电。
可选地,在本实施方式中,所述集联装置13还包括:信号放大电路19。
所述第三控制模块17通过第三通信模块14采集各个故障检测装置1输出的合成信号(包括故障检测装置1的编号信息),再通过信号放大电路19增强信号强度后存入数据缓存模块15进行缓存。
可选地,在本实施方式中,所述汇总装置2包括无线通信模块及定位模块;
所述定位模块配置成获取所述待检目标的地理位置信息和所述终端设备3的地理位置信息;
所述无线通信模块安装有物联网级SIM卡,通过所述物联网级SIM卡将所述故障诊断结果及地理位置信息传输至安装有对应SIM卡的终端设备3。
所述无线通信模块可以为3G/4G/5G模块,所述定位模块可以为GPS模块,所述第二控制模块11通过所述定位模块定位维修地点及维修人员,并通过无线通信模块将各个故障检测装置1输出的合成信号与集联装置13的放大信号发送至附近维修人员的手机上。
请参照图3,图3为上述设备故障检测系统的应用场景示意图,如图1~图3所示(具体的,图3是应配置成两台待检目标的示意图,图3中,①为端口(COM等),②为端口线(COM线等),④为光纤或网线或无线,⑥为光纤或网线或无线,⑧为信号输出线或无线,⑨为显示设备,⑩为移动设备;⑨和⑩相当于本申请中的终端设备3;虚框电脑示意图中“原检测程序1、N”为没有本申请时,显示器直接连接主机的效果;图3中,中间点划线代表设备机房与主管监控室的分界线,可为隔壁。
基于上述设计,本实施方式提供的设备故障检测系统可以通过设备的COM口或网口获取字符信号、通过VGA口或USB口获取模拟信号、通过指示灯或液晶屏获取图像信号,然后将上述的自检及被检数据输入故障检测装置1,经过各模块运行(其中的图像信号或模拟信号(可采用图像识别、光电传感、模数转换、OCR、CCD、OTG等技术)转换为字符信号;具体实施时,可采用光电传感器或微型照相机来定时捕捉指示灯的排列组合;采用微型摄像头来移动侦测记录液晶屏的错误代码;或在可外拔的的检测模块中外接输入排线,将其数据信号转到故障检测装置1中;再通过以上技术或直接通过获得厂家自检代码转换成数字信号),输出到下一级的集联装置13,再经过其各模块的运行,最终通过一根光纤/双绞线/无线网等连接到设备机房外面的汇总装置2;由汇总装置2再接入要显示的终端设备3(如大频幕、显示器、笔记本、iPad、手机等)。当设备管理者接到报警信号时(可为灯光闪烁、警铃鸣响),显示页面可自动跳转到该异常设备上,页面显示故障点(如中央处理器、存储器或风扇等)。此时如果为了安全也可不通过无线网,直接发短信到技术提供商或备件提供商相关人员的手机上。这样工程师可根据所报型号,拿到相应备件到用户现场做更换维修,提高了修复准确率。如果系统带电且加密得当,工程师也可通过显示器或移动终端登陆该报警设备输入命令再次诊断确认,或直接远程修复(此时系统并未启动)。如果配备了人员调度系统和物流配送系统,使用者可自动获得技术支持和备件送达的服务。
所述的故障检测装置1可设计制作成ARM嵌入式印刷集成电路,内置处理器、内存、电源18、无线模块等,并固定在小方盒内,也可做成标准机架上1U高的机柜,小方盒或1U机柜前方为输入端口及指示灯,后方为输出端口及指示灯(也可前方为灯后方为口)。各种机顶盒对应接口包括电源18、以太网、光纤,COM、USB、VGA、HDMI、音频、视频、打印等。电源18可就地变压取用,也可通过网线远端取用。
具体的说,本申请中的故障检测装置1可以为一种基于ARM架构的嵌入式工控机。故障检测装置1的前端可多串口输入,内置芯片可存储和运算,将高级工程师应该输入的所有相关命令,做成“脚本”程序,植入“故障检测装置1”去分时自动运行(如每3分钟运行1次),当该机器读取错误日志或相关信息发现错误时,激发报警装置,并与所存储的配件信息库(由于用户购买机器时,厂家已将部件型号规格都给到用户,用户可将其输入到数据库)作比较,通过其后端三网口(双绞线、光纤、无线WiFi),根据需要输出给集联装置13(其输入端为多网口,输出端为单网口)或直接输出给汇总装置2(其输入端为多网口,输出端为多显示口,如USB、VGA、LVDS、HDMI等),再通过视频线输出给终端设备3,如显示器、大屏幕、笔记本等,或传输到移动端,与iPad、手机等互动,以信号灯或短信或图示的方式显示配件号,并伴有报警声,让使用者随时管控设备。
其中,可将1~15台同一机架上的设备连入同一故障检测装置1,将此1U机柜装入机架机器的缝隙中或顶上,连接各机器COM口到故障检测装置1的端口。每1~20台不同机架上的故障检测装置1可再通过网线连到集联装置13。如机架数量很多,可连接多个集联装置13,形成金字塔状交换连接。本申请的整个设备故障检测系统可控制的机器数量可以无限增多,理论上可从1台至几万台。
可选地,在本实施例的另一种实施方式中,所述故障检测装置采用以下任一种方式安装在待检目标的内部并独立于所述待检目标运行:
所述故障检测装置独立安装在所述待检目标的内部;
所述故障检测装置嵌入在所述待检目标的相关主控板中;
所述故障检测装置插入在所述待检目标的相关主控板的插槽中;
其中,请参照图4,所述故障检测装置22包括信号采集模块、第一控制模块及第一通信模块;
所述信号采集模块通过专用数据线缆或模块触脚或印刷电路与所述待检目标23的主控板的检测输出端口相连接,所述信号采集模块还与所述第一控制模块连接,所述信号采集模块配置成获取所述待检目标23的自检数据和/或被检数据并发送给所述第一控制模块,其中,所述自检数据和/或被检数据包括所述待检目标23的检测信号的原始检测代码字符串;
所述第一控制模块还与所述第一通信模块连接,配置成从所述信号采集模块输入的所述待检目标23的检测信号的原始检测代码字符串输入中识别出故障信息,生成故障检测结果并通过所述第一通信模块发送所述故障诊断结果。
可选地,在本实施方式中,上述故障检测装置22为集成了多个模块的电路板,所述第一控制模块中已嵌入配置成对待检目标23进行故障检测的检测软件。所述故障检测装置 22主要配置成获取待检目标23的自检信息和/或被检信息,然后,对自检信息和/或被检信息进行处理,得到故障诊断结果,并将故障诊断结果发送至终端设备21的客户端APP中进行报警并显示。
可选地,在本实施方式中,所述终端设备21安装有客户端APP,所述终端设备21配置成通过所述客户端APP向所述设备故障检测系统以下至少一种信息:所述待检目标23的机器号码,IP地址信息,提示语信息,错误等级的阈值,安装在所述终端设备21的SIM卡中的号码,所述设备故障检测系统发生变更的程序和/或关键词;
安装所述客户端APP的所述终端设备21还配置成向所述设备故障检测系统发送查询和复检指令,其中,所述查询指令配置成查询历史故障诊断结果,所述复检指令配置成再次检查和简单修复故障设备。
需要说明的是,在本实施方式中,客户端APP安装于终端设备21中,该客户端APP与故障检测装置22配对连接,也就是说,该客户端APP为设备故障检测系统相配套的客户端。当用户使用该设备故障检测系统对待检目标23进行故障检测时,可以将该客户端的应用程序安装于终端设备21,然后,建立该客户端与故障检测装置22的通信连接,此时,故障检测装置22就能够实时将故障诊断结果发送至终端设备21中进行显示,并报警。
进一步需要说明的是,当待检目标23的生产厂家生产待检目标23时,可以将本申请实施例提供的故障检测装置22集成在待检目标23的主控板上,然后,并配套设置一个终端设备21,其中,在该终端设备21中安装有上述客户端APP。那么,此时用户就可以通过该终端设备21实时对待检目标23的运行状态进行监控。可选地,待检目标23的生产厂家可以不用配置终端设备21,可以提供一个客户端APP的应用程序,然后,用户可以在任意一个终端设备21中安装该应用程序,并建立于故障检测装置22的配对连接。
在本实施方式中,故障检测装置22可以独立安装于待检目标23的内部,或者,嵌入在待检目标23的相关主控板中,或者插入在待检目标23的相关控制板的插槽中,通过将故障检测装置22安装在待检目标23的内部,能够使得故障检测装置22在自检信息或者被检信息进行信号的转换之前,就对自检信息或者被检信息进行采集,从而达到了对硬件故障的检测装置的性能进行优化的目的,进而缓解了现有技术中的设备故障检测系统在待检目标23进行故障检测时所采用的被动检测方式导致设备故障检测系统局限性较大和转换资源浪费的技术问题,从而实现了主动对待检目标23进行故障检测的技术效果。
现有技术中的设备故障检测系统能够实现对待检目标23的在线故障诊断,即,当待检目标23未断电或者未宕机的情况下,对其进行故障检测,但是,当待检目标23断电或者宕机的情况下,就无法对其进行故障检测。针对上述缺点,本申请实施例提供的嵌入式智能设备故障检测系统能够在待检目标23宕机或者断电的情况下,对待检目标23的物理层 进行离线故障诊断,得到离线故障诊断结果,进而,就解决了现有的设备故障检测系统无法对待检目标23进行离线故障诊断的技术问题。
具体地,在本实施方式中,设备故障检测系统在对待检目标23的物理层进行离线故障诊断时,可以基于自身携带的操作系统和应用软件,对待检目标23的物理层的目标硬件和目标软件进行故障检测,其中,目标软件包括以下至少之一:待检目标23的初始启动软件,待检目标23的检测软件。
需要说明的是,在本实施方式中,除了通过设备故障检测系统对待检目标23进行离线故障诊断之外,还可以通过设备故障检测系统对待检目标23的应用层进行在线故障诊断,得到在线故障诊断结果。在终端设备21得到离线故障诊断结果和在线故障诊断结果之后,就可以将离线故障诊断结果和在线故障诊断结果进行融合,并对融合之后的结果进行显示和监控。
例如,通过对待检目标23的物理层进行故障诊断之后,得到的离线故障诊断结果为:型号为A1,版本为B1,规格为C1,位置为D1的部件发生了故障;通过对待检目标23的应用层进行故障诊断之后,得到在线故障诊断结果为:型号为A1或A2,版本为B1或B2,规格为C1或C2,位置为D1或D2的部件发生了故障,其中,部件是指待检目标23上的最小可换单元。此时,终端设备21可以将该两个故障诊断结果融合在一起,例如,将离线故障诊断结果显示在客户端APP中配置成显示故障诊断结果的显示窗口的左侧,然后,将在线故障诊断结果显示客户端APP中配置成显示故障诊断结果的显示窗口的右侧。通过将离线故障诊断结果和在线故障诊断结果进行同屏对比,能够更加精确地为用户提供故障信息,起到了双重保障的作用。同时,当待检目标23宕机或者断电时,还可以通过离线故障诊断结果确定故障位置,型号,规格,版本等信息。进一步地,如果配备了人员调度系统和物流配送系统,使用者可自动获得技术支持和备件送达的服务。
可选地,在本实施例中,当所述设备故障检测系统包括多个独立的故障检测装置22时,所述设备故障检测系统能够随所述待检目标23的复杂程度和体积数量建立集群管理机制,以实现将所述多个独立的故障检测装置22进行集联汇总。
可选地,在本实施方式中,所述待检目标23包括:携带自身检测功能的机电设备,其中,机电设备包括:计算机,机器人,机械装备,医疗仪器,家用电器,水、陆、空移动工具。
具体地,上述设备故障检测系统能够配置成所有行业的高端硬件维修领域,只要待检目标23携带有自检、日志、诊断命令集等检测手段,就可以使用本申请实施例中提供的硬件故障的故障检测装置22对其进行故障报警。例如,家用电器,航空飞行器,其核心“电脑”部分都为计算机或工控机故障检测装置22,因此,都可以采用本申请实施例中提供的 硬件故障的检测装置对其进行故障预警。
现举例说明:
第一,空中移动工具,例如飞机。由于飞机的驾驶舱内设有大量的仪表盘,需要驾驶员人工实时看清并反映判断准确,但是,驾驶员人工实时看清并反映判断准确并非易事,且地面更不能实时掌握飞机机械及电器运行状况。
在本实施方式中,可以将上述设备故障检测系统安装在飞机主控装置的内部。当任何故障发生时,能够在第一时间自动多重报警,报警信号能够同时一点不差地传向驾驶员、“黑匣子”及地面塔台相关人员,并不会因传输距离的延误而损失所述待检目标23的任何瞬时检测信息。此时,所有相关人员可同时发现问题,共同应对突发事件,也不用事后再去急于寻找“黑匣子”,大大提高了风险处理效率,提高了安全保障。
第二,陆地移动工具,例如汽车。当非本人驾驶汽车时,对于仪表盘上显示和未显示的数据(例如,胎压、油耗、速度、故障灯、噪音),租借管理的车主个人或租借公司往往不能实时了解汽车的详细使用情况。通过本申请实施例中提供的设备故障检测系统能够实时记录汽车的故障情况,并将故障情况反馈至终端设备21,以使持有该终端设备21的个人车主和租借公司能够及时了解汽车的运行情况。
如果本人驾驶汽车时,新车的缺陷或隐患也往往致使驾驶人员与厂商或4S店发生不必要的争执,加之一些维修点的乱换部件,给车主带来很多损失。采用本申请实施例中提供的设备故障检测系统,当任何故障或疑问发生时,车主都能了解到车辆状况,不论车主是不是专业技术人员,都可知道是哪个部件有问题,以及该如何操作,该修不该修,该找哪里修,该花多少钱,实现透明化管控。例如,行车记录仪对交通事故裁定帮助很大,通过本申请实施例提供的设备故障检测系统也能够帮助车主较快地认定车辆的故障情况。
第三,水上移动工具,例如轮船。轮船的驾驶舱内同样设有大量的仪表盘,同样需要驾驶员人工实时看清并反映判断准确。当轮船发生故障时,大量的仪表检测工作也给工作人员带来了很大的工作量。尤其是海洋的特殊环境,信号不好,备件不全,更需要及时并准确地确定轮船的故障部件或者故障点,进而,通知相关工作人员进行维修,为工作人员节省了大量的时间,同时也保证了工作人员的人身财产不受损失。
第四,家用电器,例如空调。当空调不制冷时,一般情况下是空调发生了故障,但是,用户不能知晓具体故障位置,例如,压缩机故障,冷凝器故障,阀门故障,缺氟故障或者其他部位故障。只有在维修人员对空调进行维修时,才能通过维修人员知晓故障位置。但是请维修人员对空调进行维修时,有时可能换很多东西,花很多冤枉钱,致使用户经常有被“黑”的感觉。采用本申请实施例提供的设备故障检测系统能够实时对空调进行检测,并准确地确定空调的故障位置。
第五,计算机,例如电脑。单位机房中包括大量的电脑,当电脑大量发生故障时,需要网管人员一台台的进行检测,这不仅耽误了网管人员大量的时间,还使得检测速度非常缓慢,当单位需要使用电脑时,造成了不必要的麻烦。此时,如果将本申请实施例中的设备故障检测系统嵌入至电脑的主机箱中,那么该设备故障检测系统就能够实时对检测电脑的故障,并对故障进行识别,得到故障诊断结果,此时,相关技术人员所需要做的仅仅是按照故障诊断结果对电脑进行修理。可见,通过该设备故障检测系统能够提高网管人员对电脑进行维修的效率,还节省了相关技术人员的时间。
可选地,在本实施例中,所述故障检测装置22的体积小于12*12*2立方厘米,其中,所述故障检测装置22的形状大小取决于所述待检目标23的内部结构、复杂程度和附加功能模块的大小。
具体地,可以将上述故障检测装置22的体积设置长*宽*高为12*12*2厘米的电路板,或者,将故障检测装置22的体积为小于12*12*2厘米的电路板。考虑到计算机机箱,空调的控制器,汽车的主控制器等待检目标23的主控装置的空间有限,因此,一般地可以将本申请实施例中的故障检测装置22设置成长*宽*高分别为12*12*2cm结构的大小。具体地,故障检测装置22长*宽*高的尺寸并不限定于必须是12*12*2cm,故障检测装置22的实际大小可以根据待检目标23的内部空间来确定,或者根据不同的使用需求可量身定制,添加或减少不同模块装置及接口,使其占用资源最小化。在本实施方式中,对故障检测装置22的具体长、宽和高的尺度不做具体限定,以能够安装在待检目标23的内部且满足功能需求为准。
可选地,在本实施例中,所述设备故障检测系统还包括:电源接口模块,其中,所述电源接口模块集成在所述故障检测装置22上,配置成接收所述待检目标23提供的直流电源,或者,所述电源接口模块配置成接收独立电源提供的直流电源,所述独立电源为独立于所述待检目标23。
具体地,在本实施方式中,还可以在故障检测装置22上集成一个或者多个电源接口模块,该电源接口模块可以连接至待检目标23提供的直流电源上,以获取待检目标23提供的直流电源,此时,在待检目标23正常工作,或者,待检目标23未断电时,该设备故障检测系统均能正常进行故障检测。
除此之外,为了防止待检目标23在断电的情况下,设备故障检测系统不能正常工作,还可以单独设置一个直流电源(例如,5V、9V、12V、24V、38V等直流电源),其中,通用的12V直流电源可以独立设置于待检目标23的内部,或者,单独设置于待检目标23的外部。
需要说明的是,本申请实施例中,可以单独采用待检目标23来为设备故障检测系统提 供直流电源,还可以单独采用上述12V直流电源来对设备故障检测系统进行供电,还可以结合待检目标23和12V直流电源来为设备故障检测系统进行供电,其中,直流电源可以为机箱电源、蓄电池、锂电池、外部电源等电能装置。
在本实施方式中,还可以将12V直流电源与待检目标23的电源输出端口相连接,以实现对该12V直流电源进行供电。例如,故障检测装置22通过双绞线与终端设备21连接,该双绞线中8芯的2芯线可作为电源线从笔记本终端反向为本申请供电。
可选地,在本实施例中,所述信号采集模块上设置有检测输入端口,该检测输入端口通过专用数据线缆或模块触脚或印刷电路与所述待检目标23的主控板的检测输出端口相连接,配置成获取所述待检目标23的自检数据和/或被检数据并发送给所述控制模块,以使所述控制模块根据错误等级确定待检目标23的错误信息或日志。
可选地,在本实施方式中,可以通过检测输入端口与待检目标23的主控板的检测输出端口相连接。待检目标23通过检测输出端输出检测信号,其中,输出的检测信号为原始检测代码字符串,也就是说,输入至信号识别模块中的检测信号为还未经过转化,为原始信号。检测信号包括自检信号和被检信号,其中,自检信号可以理解为待检目标23自身在启动自检程序时,得到的信号,被检信号为在接收到检测指令之后,对其进行检测之后得到的信号。
通过上述描述可知,信号采集模块采集到的检测信号为原始检测代码字符串,也就是说,检测信号中可能会携带多种类型的程序语言,此时,信号采集模块将对检测信号进行处理,处理之后的检测信号能够被其他模块所识别。在处理之后,就可以将处理之后的检测信号发送至所述第一控制模块中进行处理,其中,第一控制模块在获取到该处理之后的检测信号之后,就能够根据错误的等级确定待检目标23的错误信息或者日志。
在本实施方式中,错误等级阈值通常主要包括1-7级阈值。例如,I或info表示一些基本的讯息说明;W或warn:表示警示讯息,配置成指示设备可能有问题,但是还不至于影响正常运作;E或error表示一些较大的错误讯息;F或fatal比error还要严重的致命的错误信息。当错误等级阈值设置为最后两级时,如果报错,通常都要维修或更换硬件。
可选地,在本实施例中,所述第一控制模块包括:处理子模块及库存比较子模块,其中,
所述处理子模块与所述信号采集模块连接,配置成根据所述信号采集模块输入的原始检测代码字符串输进行处理确定所述待检目标23的错误信息或日志;
所述库存比较子模块与所述处理子模块连接,配置成将所述错误信息或日志与更新之后的所述待检目标23的目标数据库中存储的配置信息相比较,得到所述故障诊断精确结果,其中,所述故障诊断结果包括:更新后的所述待检目标23的最小现场可更换单元的位 置、型号、规格或版本。
可选地,在本实施方式中,所述处理子模块在对检测信号进行分析处理得到错误信息或者日志之后,就可以将错误信息或者日志发送至库存比较子模块中,以使库存比较子模块将错误信息或者日志,与目标数据库中存储的配置信息进行比较,得到故障诊断结果(包括离线故障诊断结果和/或在线故障诊断结果),得到的故障诊断结果中包括待检目标23的故障位置,故障位置的零件的型号,规格和版本等信息。
需要说明的是,由于待检目标23的中的配件可能会发生更换,例如,更换计算机的主机箱中内存条/板/块的型号和大小等。本申请实施例提供的设备故障检测系统能够通过专门指令适时检测待检目标23中电子配件的更换情况,并将更换之后配件信息(例如,型号,版本和规格等)存储在目标数据库中,得到更新之后的目标数据。此时,当库存比较子模块在进行比较时,可以理解为将错误信息或日志与更新之后的待检目标23的目标数据库中存储的电子配件的配置信息相比较,得到故障诊断结果。
所述第一通信模块配置成根据第一控制模块的控制信号生成报警提示信息,并连续n次向具有信息接收功能或安装有客户端APP的终端设备21传输报警提示信息,其中,n为大于1的正整数,报警提示信息按照后进先出的方式,保存预设次数,或者,保存预设时间段。
需要说明的是,在本实施方式中,可以通过存储装置对报警提示信息进行存储,其中,该存储装置为FIFO存储器,也就是说,报警提示信息按照先进先出的方式在存储装置顺序进行存储。一般情况下,可以设定保留时间或者设定保留预设次数,例如,设置保留时间为3天,或者,设置保留次数为5次。
可选地,在本实施例中,所述第一通信模块可以包括定位模块及无线通信模块;
所述定位模块配置成获取所述待检目标23的地理位置信息和所述终端设备21的地理位置信息;
所述无线通信模块安装有物联网级SIM卡,通过所述物联网级SIM卡将所述故障信息及地理位置信息传输至安装有对应SIM卡的终端设备21。
所述无线通信模包括以下至少之一:移动3G/4G/5G通信装置,卫星通信装置,Wifi通信装置,线缆通信装置,无线电发射通信装置,其中,
移动3G/4G/5G通信装置包括内置于设备故障检测系统的3G/4G/5G模块,移动3G/4G/5G通信装置配置成安装物联网级SIM卡,并通过物联网级SIM卡将故障诊断结果传输至安装有目标SIM卡的终端设备21;
具体地,在本实施方式中,无线通信模块可以为移动3G/4G/5G通信装置,其中,移动3G/4G/5G通信装置集成在故障检测装置22上,并且在该移动3G/4G/5G通信装置中内置 3G/4G/5G模块。移动3G/4G/5G通信装置中能够安装SIM卡,包括普通的SIM卡和联网级SIM卡。当SIM卡为联网级SIM卡时,移动3G/4G/5G通信装置将故障诊断结果更加便捷地传输至安装有目标SIM卡的终端设备21的客户端APP上。
卫星通信装置包括内置于设备故障检测系统的卫星/GPS/北斗定位模块和相关传感器,其中,卫星通信装置配置成将目标信息传输至目标设备,其中,目标信息包括以下至少之一:故障诊断结果,待检目标23的移动位置,目标设备包括以下至少之一:终端设备21,监管中心,监控存储设备。
可选地,在本实施方式中,在本实施方式中,无线通信模块还可以选取为卫星通信装置,其中,卫星通信装置集成在故障检测装置22上,并且在该卫星通信装置中内置卫星/GPS/北斗定位模块和相关传感器。
卫星通信装置配置成向目标设备传输故障诊断结果,除此之外,卫星通信装置还配置成向目标设备传输待检目标23的移动位置。其中,目标设备包括终端设备21(例如,上述安装客户端APP的终端设备21),目标设备还包括监管中信息和监控存储设备,其中,监控存储设备包括黑匣子和行车记录仪等电子记录设备。
当待检目标23为移动运输工具时,通过卫星/GPS/北斗通信装置还能够实时对其进行包括机械故障和人员事故的定位和救援。
Wifi通信装置包括内置于设备故障检测系统的WiFi插座,其中,WiFi插座的MAC地址和标识符绑定至终端设备21中安装的客户端APP,其中,WiFi插座与客户端APP配对连接。
可选地,在本实施方式中,WiFi通信装置包括内置于设备故障检测系统的WiFi插座,该WiFi插座包括唯一的MAC地址和标识符,可接收或发送WiFi信号。此时,终端设备21的客户端APP可以与该WiFi插座的专有MAC地址和标识符进行绑定。与现有的故障检测装置22不相同的是,在本实施方式中,终端设备21能够通过自动扫描的方式实现与故障检测装置22的WiFi插座配对连接;还可以利用微信服务,进行远程传输的智能监控。
线缆通信装置内置于设备故障检测系统中,线缆通信装置通过目标线缆与终端设备21相连接,配置成向终端设备21传输故障诊断结果,或者,将从终端设备21中获取到的直流电源反向传输至设备故障检测系统,以对设备故障检测系统进行供电,其中,目标线缆包括以下至少之一:光纤,双绞线,USB线缆,VGA线缆,COM线缆,音视频输出线缆。
可选地,在本实施方式中,所述无线通信模块也可以由有线缆通信装置代替,该线缆通信装置内置于设备故障检测系统中,并与终端设备21相连接,其中,该线缆通信装置配置成向终端设备21传输故障诊断结果。除此之外,还可以通过线缆将从终端设备21获取到的直流电源传输至设备故障检测系统,以为设备故障检测系统进行供电。其中,目标线 缆的种类有多种,在本实施方式中,优选目标线缆为光纤,双绞线,USB线缆,VGA线缆,COM线缆,音视频输出线缆中的任一种。
无线电发射通信装置配置成将故障诊断结果或者待检目标23的故障报警信号发送至安装有无线电接收装置的终端设备21。
可选地,在本实施方式中,无线通信模块还包括无线电发射通信装置,其中,无线电发射通信装置集成在故障检测装置22上,配置成传输故障诊断结果或者待检目标23的故障报警信号发送至安装有无线电接收装置的终端设备21中。
可选地,在本实施方式中,所述第一控制模块还可以包括指令运算子模块,所述指令运算子模块配置成通过Java/C等语言编程运行命令集脚本和与检测命令相关的软件包。包括配置成存储检测指令,定时读取指令,错误信息或者日志所指示的错误等级阈值,初始配置信息。需要说明的是,指令运算子模块配置成存储上述指令和相关信息,但是并不限于仅配置成上述指令和相关信息,在本实施方式中,与检测程序相关的指令均可以存储在该指令运算子模块。
可选地,在本实施方式中,指令运算子模块包括:只读存储器和读写存储器,其中,只读存储器配置成存储检测指令,读写存储器配置成存储定时读取指令,错误信息所指示的错误等级阈值,初始配置信息。
可选地,在本实施方式中,可以将检测指令嵌入在只读存储器ROM中,当需要调用该检测指令时,可以向该只读存储器ROM中调用该检测指令进行检测。除此之外,还可以将除检测指令之外的其他指令嵌入在只读存储器ROM中。可以将定时读取指令,错误等级阈值和初始配置信息嵌入在可读写存储器RAM中。其中,上述初始配置信息为初始化信息,例如,初始命令,机器名称,机器序列号,终端设备21的型号,以及终端设备21中相关客户端APP的相关参数等信息。
可选地,在本实施方式中,所述终端设备21还配置成通过其显示页面或安装客户端APP页面向所述故障检测装置22发送修改以下至少之一种信息:待检目标23的机器号码,IP地址信息,提示语信息,错误等级的阈值,安装在终端设备21的SIM卡中的号码,设备故障检测系统发生变更的程序和/或关键词;安装客户端APP的终端设备21还配置成通过网络输出模块向设备故障检测系统发送查询指令,其中,查询指令配置成查询历史故障诊断结果。
具体地,用户可以通过终端设备21中的客户端APP的显示页面向设备故障检测系统发送查询指令,该查询指令为查询历史报警提示信息的指令。例如,用户可以在该客户端APP中的故障诊断结果查询栏中输入查询日期“2016.11.28”,那么设备故障检测系统在接收到该查询日期之后,就会对该查询日期的报警信息进行查询,并将查询到的结果发送至终端 设备21的客户端APP中进行显示。进一步地,用户还可以输入“2016.11.28,8:00pm至16:00pm”,即查询2016.11.28日,上午8点到下午4点,这段时间内的报警提示信息,设备故障检测系统在接收到该查询指令之后,就根据用户输入的查询日期在历史报警提示信息中对该时间段的报警提示信息进行查询,并将查询到的结果发送至终端设备21的客户端APP中进行显示。
可选地,在本实施方式中,安装所述客户端APP的所述终端设备21中还包括加密装置,所述加密装置绑定至所述设备故障检测系统,配置成对所述设备故障检测系统进行加密,其中,所述加密装置包括以下至少之一:密码输入装置、图像获取装置、看门狗装置、指纹登陆装置、人脸及语音识别装置、前置服务器或二维码识别装置。
例如,指纹登录装置,当用户点击打开安装在终端设备21的客户端APP时,将在终端设备21的显示界面上显示该指纹登录装置的显示界面,并对用户的指纹进行识别,当识别准确时,打开该客户端APP与故障检测装置22的连接。又例如,人脸识别装置,当用户点击打开安装在终端设备21的客户端APP时,将在终端设备21的显示界面上显示该人脸识别装置的显示界面,并对用户的人脸图像进行识别,当识别准确时,打开该客户端APP与故障检测装置22的连接。
可选地,在本实施方式中,终端设备21还配置成通过网络通信装置向设备故障检测系统发送检测指令,以使设备故障检测系统根据检测指令对待检目标23进行故障检测。
需要说明的是,在本实施方式中客户端APP的开发平台为安卓平台。该客户端APP能够生成框架组织开户,建立报警系统的基础配置,建立于报警系统之间的端口API协议,建立操作页面布局,还能建立语句和动画的对应表达,短信翻译和高保真切图,能够实现与报警系统的捆绑,还可通过GPS模块实现人机定位,该客户端APP能够进行压力测试,并修改BUG。
基于上述设计,本实施方式提供一种的设备故障检测系统,该设备故障检测系统独立安装在待检目标23的内部,或者嵌入在待检目标23的相关主控板中,又或者插入在待检目标23的相关主控板的插槽中。例如,嵌入在计算机的内部,并通过检测数据线与计算机的主控板相连接。上述设备故障检测系统硬件可以选取基于ARM的嵌入式印刷集成电路,支持多核CPU、多G内存、可选通信装置和端口、独立直流电源等;软件可以选取基于Linux/Android操作系统平台,支持Java、C等语言编程;通过以上硬件和软件嵌入诊断命定集,并在终端设备21中安装与该检测装置相对应的客户端APP,来实现远程监控管理。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行 等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
工业实用性
本申请的目的在于提供一种设备故障检测系统及故障检测装置,以缓解现有技术中的设备故障检测系统在对机电设备等硬件进行故障检测时所采用的只能用在线检测方式和被动检测方式导致设备故障检测系统局限性较大的技术问题。其主要特点是:
一、本申请一般针对较大型或较贵重的设备(包括计算机、机械系统、电子设备或电器装备等,简称设备),对于没有多次维修价值的较小或廉价的电子及机械装置不适用,如低档个人电脑、玩具、家用电器等。
二、本申请一般都是基于原始端口(类似串口)对底层或物理层检测命令的汇总加工后显示的“离线”(系统未启动)方式,与现有的基于系统网络层或应用层的“在线”(系统已启动)方式有着根本的不同。即当“在线”网络中断甚至宕机不得不使用人工进行检查的情况下的一种自动“离线”检测手段,并运用现代智能技术传输报警检修。只有当“在线”加上“离线”才能彻底解决设备检测智能自动化问题。
三、本申请在“离线”底层检测系统的基础上又分为两大部分:对于已经使用的(老旧)设备上采用连接外置方式来检测报警;对于还未使用的(新出)设备中采用增加内置的“模块装置”和“模块设计”方式来检测报警。
四、本申请进一步提高了集成度,进而节约了空间和资源,减少线路故障及系统占用损耗。在待检目标23出厂时,该故障检测装置22即可以嵌入在待检目标23的内部,一劳永逸直接为用户服务,方便管理,节约人力物力成本,节省大量培训储备高级技术人员的费用(只需一般拆装技能就够用)。通过该报警系统,厂家能够正确分析易损件的概率,以便改进产品;维护商可及时准确发现问题,简化维修操作流程。该报警系统支持双向远程人机互动,实现基于互联网的现代智能管控方式。该报警系统支持人员调度系统和物流配送系统,可自动获得技术支持和备件供给。该报警系统通过直接与待检目标连接,能够减少中间环节,统一代码输出标准,更加简捷智能。
五、本申请实施例提供的报警系统可以安装在新一代设备中,以增加新的卖点。同时,该报警系统还可以推广到所有行业,改革并颠覆了所有机电设备的传统维修模式,能够使得硬件维修变得更简捷、更真实、更有趣(例如,APP形象动画)。

Claims (20)

  1. 一种设备故障检测系统,其特征在于,所述系统包括故障检测装置及终端设备,所述故障检测装置独立于待检目标运行;
    所述故障检测装置配置成采集待检目标的自检数据和/或被检数据,识别所述自检数据和/或被检数据中的故障信息,根据所述故障信息生成故障诊断结果并发送给所述终端设备;
    所述终端设备配置成接收并显示所述故障诊断结果,还配置成与待检目标相互发送信息。
  2. 根据权利要求1所述的设备故障检测系统,其特征在于,所述设备故障检测系统配置成在所述待检目标宕机或者断网的情况下,对根据所述自检数据和/或被检数据对所述待检目标的物理层进行离线故障诊断,自动得到离线故障诊断结果。
  3. 根据权利要求2所述的设备故障检测系统,其特征在于,所述设备故障检测系统基于自身携带的操作系统和应用软件,对所述待检目标的物理层的目标硬件和目标软件进行故障检测,其中,所述目标软件包括以下至少之一:所述待检目标的初始启动软件,所述待检目标的检测软件;其中,所述设备故障检测系统还包括:数据处理装置,配置成将所述离线故障诊断结果融入至在线故障诊断结果中,其中,所述在线故障诊断结果为所述设备故障检测系统对所述待检目标的系统层和应用层进行在线故障诊断时得到的故障诊断结果。
  4. 根据权利要求1至3任一项所述的设备故障检测系统,其特征在于,所述故障检测装置独立设置于所述待检目标外部,包括信号采集模块,控制模块及通信模块;
    所述信号采集模块通过数据通信线缆与所述待检目标的检测输出端口相连接,所述信号采集模块采集数据的形式与所述待检目标的检测输出端口的数据输出形式相对应,包括通过图像、光电或模数转换系统对所述待检目标的检测输出端口的数据进行采集;
    所述信号采集模块还与所述控制模块连接,所述信号采集模块配置成获取所述待检目标的自检数据和/或被检数据并发送给所述控制模块,其中,所述自检数据和/或被检数据包括所述待检目标的检测信号的原始检测代码字符串或根据所述原始检测代码字符转换后的其他格式;
    所述控制模块还与所述通信模块连接,配置成从所述信号采集模块输入的所述待检目标的检测信号的原始检测代码字符串或根据所述原始检测代码字符转换后的其他格式中识别出故障信息,生成故障诊断结果并通过所述通信模块发送所述故障诊断结果。
  5. 根据权利要求4所述的设备故障检测系统,其特征在于,所述设备故障检测系统还包括汇总装置;
    所述汇总装置与多个故障检测装置连接,并与所述终端设备通信,所述终端设备接收多个所述故障检测装置发送的故障诊断结果,将汇总后所述故障诊断结果发送给所述终端设备。
  6. 根据权利要求4所述的设备故障检测系统,其特征在于,所述设备故障检测系统还包括集联装置及汇总装置;
    所述集联装置与多个故障检测装置连接,并与所述汇总装置连接,所述集联装置接收多个所述故障检测装置发送的故障诊断结果,并发送给所述汇总装置;
    所述汇总装置与多个集联装置连接,并与至少一个所述终端设备通信,将汇总后所述故障诊断结果发送给所述终端设备。
  7. 根据权利要求5或6所述的设备故障检测系统,其特征在于,所述汇总装置包括信号输出模块,所述信号输出模块包括:无线通信模块及定位模块;
    所述定位模块配置成获取所述待检目标的地理位置信息和所述终端设备的地理位置信息;
    所述无线通信模块安装有物联网级SIM卡,通过所述物联网级SIM卡将所述故障诊断结果及地理位置信息传输至安装有对应SIM卡的终端设备。
  8. 根据权利要求6所述的设备故障检测系统,其特征在于,所述的集联装置包括k级,其中,第j+1级集联装置与第j级集联装置进行一对一或一对多连接,第1级集联装置与所述故障检测装置进行一对一或一对多连接,第k级集联装置分别与汇总装置连接;一台故障检测装置分别与m台计算机或服务器连接;其中,1≤m≤15,1≤k,0≤j≤k至1。
  9. 根据权利要求6所述的设备故障检测系统,其特征在于,一台集联装置与n台故障检测装置连接,其中,1≤n≤20;一台汇总装置与z台集联装置连接,其中,1≤z≤48。
  10. 根据权利要求6所述的设备故障检测系统,其特征在于,还包括:电源,所述电源与集联装置连接;集联装置通过光纤或网线分别与故障检测装置和汇总装置连接;所述故障检测装置和所述汇总装置通过网线从所述集联装置获得供电,或通过独立电源获得供电。
  11. 根据权利要求5至10任一项所述的设备故障检测系统,其特征在于,所述系统还包括报警器,所述报警器与所述汇总装置连接,所述汇总装置在接收到所述故障诊断结后触发所述报警器进行报警。
  12. 根据权利要求1至3任一项所述的设备故障检测系统,其特征在于,所述故障 检测装置采用以下任一种方式安装在待检目标的内部并独立于所述待检目标运行:
    所述故障检测装置独立安装在所述待检目标的内部;
    所述故障检测装置嵌入在所述待检目标的相关主控板中;
    所述故障检测装置插入在所述待检目标的相关主控板的插槽中;
    其中,所述故障检测装置包括信号采集模块,控制模块及通信模块;
    所述信号采集模块通过专用数据线缆或模块触脚或印刷电路与所述待检目标的主控板的检测输出端口相连接,所述信号采集模块还与所述控制模块连接,所述信号采集模块配置成获取所述待检目标的自检数据和/或被检数据并发送给所述控制模块,其中,所述自检数据和/或被检数据包括所述待检目标的检测信号的原始检测代码字符串;
    所述控制模块还与所述通信模块连接,配置成从所述信号采集模块输入的所述待检目标的检测信号的原始检测代码字符串输入中识别出故障信息,生成故障检测结果并通过所述通信模块发送所述故障诊断结果。
  13. 根据权利要求12所述的设备故障检测系统,其特征在于,所述通信模块包括定位模块及无线通信模块;
    所述定位模块配置成获取所述待检目标的地理位置信息和所述终端设备的地理位置信息;
    所述无线通信模块安装有物联网级SIM卡,通过所述物联网级SIM卡将所述故障信息及地理位置信息传输至安装有对应SIM卡的终端设备。
  14. 根据权利要求12所述的设备故障检测系统,其特征在于,当所述设备故障检测系统包括多个独立的故障检测装置时,所述设备故障检测系统能够随所述待检目标的复杂程度和体积数量建立集群管理机制,以实现将所述多个独立的故障检测装置进行集联汇总。
  15. 根据权利要求12至14中任一项所述的设备故障检测系统,其特征在于,所述故障检测装置的体积小于12*12*2立方厘米,其中,所述故障检测装置的形状大小取决于所述待检目标的内部结构和复杂程度。
  16. 根据权利要求12至14中任一项所述的设备故障检测系统,其特征在于,所述设备故障检测系统还包括:电源接口模块,其中,所述电源接口模块集成在所述故障检测装置上,配置成接收所述待检目标提供的直流电源,或者,所述电源接口模块配置成接收独立电源提供的直流电源,所述独立电源为独立于所述待检目标。
  17. 根据权利要求4至16任一项所述的设备故障检测系统,其特征在于,所述控制模块包括:处理子模块及库存比较子模块,其中,
    所述处理子模块与所述信号采集模块连接,配置成根据所述信号采集模块输入的 原始检测代码字符串输进行处理确定所述待检目标的错误信息或日志;
    所述库存比较子模块与所述处理子模块连接,配置成将所述错误信息或日志与更新之后的所述待检目标的目标数据库中存储的配置信息相比较,得到所述故障诊断精确结果,其中,所述故障诊断结果包括:更新后的所述待检目标的最小现场可更换单元的位置、型号、规格或版本。
  18. 根据权利要求1至17任一项所述的设备故障检测系统,其特征在于,
    所述终端设备安装有客户端APP,所述终端设备配置成通过所述客户端APP向所述设备故障检测系统以下至少一种信息:所述待检目标的机器号码,IP地址信息,提示语信息,错误等级的阈值,安装在所述终端设备的SIM卡中的号码,所述设备故障检测系统发生变更的程序和/或关键词;
    安装所述客户端APP的所述终端设备还配置成向所述设备故障检测系统发送查询指令和复检指令,其中,所述查询指令配置成查询历史故障诊断结果,所述复检指令配置成再次检查和简单修复故障设备。
  19. 根据权利要求18所述的设备故障检测系统,其特征在于,安装所述客户端APP的所述终端设备中还包括加密装置,所述加密装置绑定至所述设备故障检测系统,配置成对所述设备故障检测系统进行加密,其中,所述加密装置包括以下至少之一:密码输入装置、图像获取装置、看门狗装置、指纹登陆装置、人脸及语音识别装置、前置服务器或二维码识别装置。
  20. 一种故障检测装置,其特征在于,所述故障检测装置包括信号采集模块,控制模块及通信模块;
    所述信号采集模块与待检目标的检测输出端口相连接,所述信号采集模块还与所述控制模块连接,所述信号采集模块配置成获取所述待检目标的自检数据和/或被检数据并发送给所述控制模块,其中,所述自检数据和/或被检数据包括所述待检目标的检测信号的原始检测代码字符串或根据所述原始检测代码字符转换后的其他格式;
    所述控制模块还与所述通信模块连接,配置成从所述信号采集模块输入的所述待检目标的检测信号的原始检测代码字符串或根据所述原始检测代码字符转换后的其他格式中识别出故障信息,生成故障诊断结果并通过所述通信模块发送所述故障诊断结果给终端设备。
PCT/CN2017/098965 2016-08-25 2017-08-25 设备故障检测系统及故障检测装置 WO2018036554A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/322,377 US20190171540A1 (en) 2016-08-25 2017-08-25 Apparatus fault detecting system and fault detection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610727251.9A CN106383763B (zh) 2016-05-30 2016-08-25 数据中心智能故障检测报警系统
CN201610727251.9 2016-08-25
CN201611208385.6A CN106502853B (zh) 2016-12-23 2016-12-23 嵌入式智能故障检测报警系统
CN201611208385.6 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018036554A1 true WO2018036554A1 (zh) 2018-03-01

Family

ID=58333880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098965 WO2018036554A1 (zh) 2016-08-25 2017-08-25 设备故障检测系统及故障检测装置

Country Status (3)

Country Link
US (1) US20190171540A1 (zh)
CN (1) CN106502853B (zh)
WO (1) WO2018036554A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112631846A (zh) * 2020-12-25 2021-04-09 广州品唯软件有限公司 一种故障演练方法、装置、计算机设备及存储介质
CN113589075A (zh) * 2021-07-21 2021-11-02 四川虹美智能科技有限公司 WiFi与显示一体化的智能空调的检测系统
CN114371963A (zh) * 2020-10-14 2022-04-19 华为技术有限公司 一种故障检测方法及电子终端
CN114866640A (zh) * 2022-07-05 2022-08-05 荣耀终端有限公司 触控面板失灵通信方法和相关装置
CN114937316A (zh) * 2022-05-18 2022-08-23 深圳市易孔立出软件开发有限公司 一种软件故障检测方法、装置、设备及介质
CN115175160A (zh) * 2022-09-05 2022-10-11 江西立盾光电科技有限公司 一种基于北斗定位具有测距功能的应急通讯系统
CN116107794A (zh) * 2023-04-10 2023-05-12 中国船舶集团有限公司第七一九研究所 一种舰船软件故障自动诊断方法、系统及存储介质
CN116367397A (zh) * 2023-05-31 2023-06-30 深圳市微星物联科技有限公司 基于卫星定位的求生灯塔系统
CN118244163A (zh) * 2024-05-27 2024-06-25 山东聊城鲁岳汽车电机有限公司 一种用于起动机的故障检查装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106502853B (zh) * 2016-12-23 2018-06-26 北京华杰代克科技有限公司 嵌入式智能故障检测报警系统
CN107506289A (zh) * 2017-07-06 2017-12-22 广东网金控股股份有限公司 一种金融终端的异常状态监控方法及金融终端
CN107392329A (zh) * 2017-08-14 2017-11-24 青岛海尔洗衣机有限公司 衣物处理设备的维修辅助系统和维修方法
CN107255935A (zh) * 2017-08-22 2017-10-17 安徽简道科技有限公司 基于智能家居系统的信息推送系统及方法
CN107918801A (zh) * 2017-12-06 2018-04-17 北京云头柜智能科技有限公司 一种医用床头柜的在线管理方法及系统
CN108174374A (zh) * 2017-12-25 2018-06-15 江苏惠通集团有限责任公司 一种连接恢复方法及装置、存储介质、终端
KR102350644B1 (ko) * 2018-01-26 2022-01-14 에스케이하이닉스 주식회사 메모리 컨트롤러 및 이를 포함하는 메모리 시스템
CN108391278A (zh) * 2018-01-31 2018-08-10 北京电子工程总体研究所 基于4g网络的飞行器系统的测试分析与诊断系统和方法
CN108648421A (zh) * 2018-05-09 2018-10-12 北京瑞尔腾普科技有限公司 一种告警方法、装置及系统
CN109866209A (zh) * 2018-11-29 2019-06-11 珠海格力电器股份有限公司 一种远程调试方法、系统及计算机可读存储介质
CN109684178A (zh) * 2019-01-07 2019-04-26 浪潮商用机器有限公司 一种小型机的信息采集装置
US10575072B1 (en) * 2019-02-15 2020-02-25 Chengdu Qinchuan Iot Technology Co., Ltd. Gas meter fault prompting method and internet of things (IoT) system based on compound IoT
CN110309027B (zh) * 2019-06-14 2024-01-23 北京奇艺世纪科技有限公司 一种app故障定位方法、装置、服务器及终端
CN110429713B (zh) * 2019-08-27 2023-06-13 青岛东软载波科技股份有限公司 一种基于终端的集抄设备故障诊断系统
CN110865920B (zh) * 2019-11-05 2023-08-29 RealMe重庆移动通信有限公司 开机异常处理方法、装置、电子设备以及存储介质
CN110768851A (zh) * 2019-11-28 2020-02-07 海丰通航科技有限公司 网络故障检测仪及其检测方法
CN111103832A (zh) * 2019-12-18 2020-05-05 中石大蓝天(青岛)石油技术有限公司 一种多源互馈宽输入群控装置
CN111190407A (zh) * 2019-12-26 2020-05-22 中国家用电器研究院 基于软件自检在halt试验中快速激发并定位故障的检测方法
CN111008393A (zh) * 2020-02-04 2020-04-14 杨晓闯 基于二维码的语音动画匿名加密的系统和方法
CN111506044B (zh) * 2020-04-23 2021-05-18 北京空间技术研制试验中心 航天器用通用离线检测装置
CN112078514B (zh) * 2020-08-05 2022-03-25 东风电驱动系统有限公司 Tft屏报警灯自检方法及装置
CN111988170B (zh) * 2020-08-07 2023-04-28 锐捷网络股份有限公司 一种终端故障定位方法及装置
CN112286090A (zh) * 2020-10-09 2021-01-29 姜茂清 一种前端电子设备故障检测与智能维护应用管理系统
CN112564784A (zh) * 2020-11-18 2021-03-26 北京直真科技股份有限公司 一种应用于通信行业光缆室外故障的压缩机制实现方法
CN112596961A (zh) * 2020-12-01 2021-04-02 上海航天控制技术研究所 一种星载计算机自动化测试方法及系统
CN112486749B (zh) * 2020-12-02 2023-10-13 成都长虹网络科技有限责任公司 基于5g通信终端的测试方法、装置和可读存储介质
CN113110291B (zh) * 2021-03-29 2023-05-09 麒盛科技股份有限公司 一种电动床的自检方法及系统
CN113259349A (zh) * 2021-05-12 2021-08-13 国家计算机网络与信息安全管理中心 一种轨道交通控制网络的监测方法及装置
CN113078736A (zh) * 2021-05-19 2021-07-06 淮北师范大学 一种多功能智能微电网系统
CN113419162A (zh) * 2021-07-09 2021-09-21 广州朗国电子科技股份有限公司 基于android系统的PCB板测试方法及装置
US11276315B1 (en) 2021-07-12 2022-03-15 Beta Air, Llc Electric aircraft configured to implement a layered data network and method to implement a layered data network in electric aircraft
CN113806152B (zh) * 2021-09-14 2024-04-19 合肥联宝信息技术有限公司 一种故障诊断卡及设备
CN113986787B (zh) * 2021-10-09 2023-06-30 河南源网荷储电气研究院有限公司 一种多cpu通信数据检测方法及系统
CN114294778B (zh) * 2021-12-27 2023-11-14 深圳市兴特能源科技有限公司 一种教室灯具的空气循环消毒净化方法及系统
CN114545894A (zh) * 2022-01-19 2022-05-27 东风汽车集团股份有限公司 一种整车功能安全测试方法及测试系统
CN115150260A (zh) * 2022-06-30 2022-10-04 中国电信股份有限公司 通信线缆监测方法、装置、系统、电子设备及存储介质
CN115865751B (zh) * 2022-11-25 2024-05-14 南方电网数字平台科技(广东)有限公司 基于多态数据的故障检测方法及装置
CN117135263B (zh) * 2023-02-16 2024-06-07 荣耀终端有限公司 日志信息获取方法、电子设备及计算机可读存储介质
CN116781169B (zh) * 2023-07-26 2024-03-15 广州汇信特通信技术股份有限公司 一种单向光电传输采集系统及方法
CN118200953B (zh) * 2024-05-13 2024-07-12 深圳市烽云技术有限公司 一种无线自组网故障自检方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203104678U (zh) * 2012-12-31 2013-07-31 浙江元亨通信技术股份有限公司 基于数据安全存储的视频监控设备故障检测系统
CN104778142A (zh) * 2015-04-27 2015-07-15 成都我来啦网格信息技术有限公司 一种智能储物柜的故障检测系统
CN104980306A (zh) * 2015-06-26 2015-10-14 小米科技有限责任公司 故障检测方法和装置
CN105700977A (zh) * 2015-12-31 2016-06-22 美的集团股份有限公司 故障检测方法、检测装置及具有其的移动终端
CN106383763A (zh) * 2016-05-30 2017-02-08 徐克� 数据中心智能故障检测报警系统
CN106502853A (zh) * 2016-12-23 2017-03-15 北京华杰代克科技有限公司 嵌入式智能故障检测报警系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312585C (zh) * 2003-10-08 2007-04-25 东南大学 嵌入式旋转机械智能状态监控与故障诊断装置
CN102999407A (zh) * 2012-12-06 2013-03-27 大连奥林匹克电子城腾飞办公设备商行 基于pci总线的计算机硬件故障诊断系统
CN103149901B (zh) * 2013-02-04 2015-05-13 南京理工大学 制造装备嵌入式智能监控与远程维护系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203104678U (zh) * 2012-12-31 2013-07-31 浙江元亨通信技术股份有限公司 基于数据安全存储的视频监控设备故障检测系统
CN104778142A (zh) * 2015-04-27 2015-07-15 成都我来啦网格信息技术有限公司 一种智能储物柜的故障检测系统
CN104980306A (zh) * 2015-06-26 2015-10-14 小米科技有限责任公司 故障检测方法和装置
CN105700977A (zh) * 2015-12-31 2016-06-22 美的集团股份有限公司 故障检测方法、检测装置及具有其的移动终端
CN106383763A (zh) * 2016-05-30 2017-02-08 徐克� 数据中心智能故障检测报警系统
CN106502853A (zh) * 2016-12-23 2017-03-15 北京华杰代克科技有限公司 嵌入式智能故障检测报警系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114371963A (zh) * 2020-10-14 2022-04-19 华为技术有限公司 一种故障检测方法及电子终端
CN112631846A (zh) * 2020-12-25 2021-04-09 广州品唯软件有限公司 一种故障演练方法、装置、计算机设备及存储介质
CN113589075A (zh) * 2021-07-21 2021-11-02 四川虹美智能科技有限公司 WiFi与显示一体化的智能空调的检测系统
CN113589075B (zh) * 2021-07-21 2023-04-18 四川虹美智能科技有限公司 WiFi与显示一体化的智能空调的检测系统
CN114937316B (zh) * 2022-05-18 2023-12-29 深圳市易孔立出软件开发有限公司 一种软件故障检测方法、装置、设备及介质
CN114937316A (zh) * 2022-05-18 2022-08-23 深圳市易孔立出软件开发有限公司 一种软件故障检测方法、装置、设备及介质
CN114866640B (zh) * 2022-07-05 2022-12-27 荣耀终端有限公司 触控面板失灵通信方法和相关装置
CN114866640A (zh) * 2022-07-05 2022-08-05 荣耀终端有限公司 触控面板失灵通信方法和相关装置
CN115175160B (zh) * 2022-09-05 2023-04-07 江西立盾光电科技有限公司 一种基于北斗定位具有测距功能的应急通讯系统
CN115175160A (zh) * 2022-09-05 2022-10-11 江西立盾光电科技有限公司 一种基于北斗定位具有测距功能的应急通讯系统
CN116107794A (zh) * 2023-04-10 2023-05-12 中国船舶集团有限公司第七一九研究所 一种舰船软件故障自动诊断方法、系统及存储介质
CN116367397A (zh) * 2023-05-31 2023-06-30 深圳市微星物联科技有限公司 基于卫星定位的求生灯塔系统
CN116367397B (zh) * 2023-05-31 2023-08-22 深圳市微星物联科技有限公司 基于卫星定位的求生灯塔系统
CN118244163A (zh) * 2024-05-27 2024-06-25 山东聊城鲁岳汽车电机有限公司 一种用于起动机的故障检查装置

Also Published As

Publication number Publication date
US20190171540A1 (en) 2019-06-06
CN106502853A (zh) 2017-03-15
CN106502853B (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
WO2018036554A1 (zh) 设备故障检测系统及故障检测装置
CN106383763B (zh) 数据中心智能故障检测报警系统
CN103699075B (zh) 基于视频监控的变电站巡检智能调度与控制系统
CN110865917A (zh) 基于ar技术的电力机房巡检作业方法、系统及应用
BR102012015582A2 (pt) Sistema, método e produto de programa de computador
US20130231782A1 (en) Integrated monitoring and controlling of various city functionalities
WO2023125591A1 (zh) 远程诊断方法及装置、系统、电子设备和存储介质
US11111032B2 (en) Systems and methods for monitoring the health of a rotating machine
KR102666058B1 (ko) 차량의 원격 고장 진단 방법, 장치, 차량 및 컴퓨터 저장 매체
CN114137923B (zh) 工业生产现场数据采集与控制装置
JP2012076626A (ja) 電子連動装置の試験用シミュレータ及び電子連動装置のシミュレーション方法
CN104618501A (zh) 一种服务器集群系统的无线智能监控管理装置
CN203534602U (zh) 一种适用于车载导航多媒体终端的测试设备
He et al. Research on the intelligent information system for the multimedia teaching equipment management
CN108062851B (zh) 用于检测和报告对被监测空间的访问的系统和方法
CN101718778B (zh) 基于gprs的酒精测试仪远程故障诊断方法及系统
CN111157031B (zh) 燃料箱测试系统
CN210465709U (zh) 安检系统
US10991285B2 (en) Cloud-based remote diagnostics for smart signage
CN105785872A (zh) 一种基于云网络的设备巡检监控平台
KR20110125193A (ko) 설비 가동시간 및 상태 취득 방법 및 시스템
TW202134593A (zh) 大型機械裝置輔助檢測與故障分析系統及其方法
KR101410700B1 (ko) 운항정보 표출 단말 모니터링 및 제어 시스템
CN219225872U (zh) 一种dlp拼接屏故障诊断系统
CN211427394U (zh) 一种维修机台的混合现实穿戴设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842976

Country of ref document: EP

Kind code of ref document: A1