WO2018036320A1 - 桥式变换器的控制方法及装置 - Google Patents

桥式变换器的控制方法及装置 Download PDF

Info

Publication number
WO2018036320A1
WO2018036320A1 PCT/CN2017/093892 CN2017093892W WO2018036320A1 WO 2018036320 A1 WO2018036320 A1 WO 2018036320A1 CN 2017093892 W CN2017093892 W CN 2017093892W WO 2018036320 A1 WO2018036320 A1 WO 2018036320A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge arm
arm mos
bridge
mos tube
operating state
Prior art date
Application number
PCT/CN2017/093892
Other languages
English (en)
French (fr)
Inventor
刘哲
王明金
吴琼
涂大锐
郑大成
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018036320A1 publication Critical patent/WO2018036320A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a method and apparatus for controlling a bridge converter.
  • the bridge converter includes a half bridge converter and a full bridge converter, which in turn includes a resonant converter and a quasi-resonant converter.
  • the upper and lower tubes are not completely symmetrically controlled, such as Pulse Width Modulation (PWM) + phase shift strategy or PWM + width adjustment strategy to change the discharge time of the upper and lower tube junction capacitors.
  • PWM Pulse Width Modulation
  • the industry commonly used phase shift frequency modulation or frequency modulation control strategy to control the leading bridge arm and the lag bridge arm.
  • MOS tube is hard-opened for a long time, and the energy stored in the MOS tube junction capacitor will be completely dissipated in the MOS tube in the form of current, and the opening current spike is large, thereby causing the device to overheat, and the long-term heat accumulation may cause the MOS tube to be damaged.
  • the embodiment of the invention provides a control method and device for a bridge converter, so as to solve at least the problem that it is difficult to achieve complete ZVS opening of all bridge arms of the high efficiency bridge converter in the related art, resulting in difficulty in balancing ultra-high efficiency and high reliability. .
  • a control method of a bridge converter comprising: determining a first operating state and a second bridge of a first bridge arm metal-oxide-semiconductor MOS transistor in a bridge converter a second operating state of the arm MOS tube; switching the operating state of the first bridge arm MOS tube to the second operating state when the predetermined condition is satisfied, and operating the second bridge arm MOS tube Switching to the first working state.
  • an operating state of the first bridge arm MOS transistor when a predetermined condition is satisfied, an operating state of the first bridge arm MOS transistor is switched to the second operating state, and an operating state of the second bridge arm MOS transistor is Switching to the first operational state includes: switching the operational state of the first bridge arm MOS tube to the second operation when determining that the bridge converter is in a predetermined operational state and determining that a predetermined time threshold is reached a state, and switching an operating state of the second bridge arm MOS tube to the first operating state.
  • the predetermined working state includes one of: a full working mode; a specific working state, wherein the specific operating state includes at least one of: a specific output voltage range, a specific frequency range, a specific Load range, specific input voltage range.
  • the first bridge arm MOS tube is an upper bridge arm MOS tube and the second bridge arm MOS tube is a lower bridge arm a MOS transistor, or the first bridge arm MOS transistor is a lower bridge MOS transistor and the second bridge arm MOS transistor is an upper bridge MOS transistor;
  • the bridge converter is a full bridge converter,
  • the first bridge arm MOS tube is a leading bridge arm MOS tube and the second bridge arm MOS tube is a delayed bridge arm MOS tube corresponding to the lead bridge arm, or the first bridge arm MOS tube is a lagging bridge
  • the arm MOS tube and the second bridge arm MOS tube are lead bridge arm MOS tubes corresponding to the lag bridge arm.
  • the first operating state includes at least one of: a switching frequency of the first bridge arm MOS transistor, a duty ratio of the first bridge arm MOS transistor, the first Bridge arm a phase shift angle of the MOS transistor;
  • the second operating state includes at least one of: a switching frequency of the second bridge arm MOS transistor, a duty ratio of the second bridge arm MOS transistor, and the second bridge arm The phase shift angle of the MOS tube.
  • a control device for a bridge converter comprising: a determining module configured to: determine a first bridge arm metal-oxide-semiconductor MOS transistor in the bridge converter a first working state and a second working state of the second bridge arm MOS tube; the switching module is configured to: switch the working state of the first bridge arm MOS tube to the second working state when a predetermined condition is met, And switching the operating state of the second bridge arm MOS tube to the first working state.
  • the switching module includes: a switching unit, configured to: when determining that the bridge converter is in a predetermined working state, and determining that a predetermined time threshold is reached, the first bridge arm MOS Switching the operating state of the tube to the second operating state, and switching the operating state of the second bridge arm MOS tube to the first operating state.
  • the predetermined working state includes one of: a full working mode; a specific working state, wherein the specific operating state includes at least one of: a specific output voltage range, a specific frequency range, a specific Load range, specific input voltage range.
  • the first bridge arm MOS tube is an upper bridge arm MOS tube and the second bridge arm MOS tube is a lower bridge arm a MOS transistor, or the first bridge arm MOS transistor is a lower bridge MOS transistor and the second bridge arm MOS transistor is an upper bridge MOS transistor;
  • the bridge converter is a full bridge converter,
  • the first bridge arm MOS tube is a leading bridge arm MOS tube and the second bridge arm MOS tube is a delayed bridge arm MOS tube corresponding to the lead bridge arm, or the first bridge arm MOS tube is a lagging bridge
  • the arm MOS tube and the second bridge arm MOS tube are lead bridge arm MOS tubes corresponding to the lag bridge arm.
  • the first operating state includes at least one of: a switching frequency of the first bridge arm MOS transistor, a duty ratio of the first bridge arm MOS transistor, the first a phase shift angle of the bridge arm MOS tube;
  • the second operating state includes at least one of: a switching frequency of the second bridge arm MOS transistor, a duty ratio of the second bridge arm MOS transistor, the second The phase shift angle of the bridge arm MOS tube.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the above steps.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • the first working state of the first bridge arm metal-oxide-semiconductor MOS transistor in the bridge converter and the second working state of the second bridge arm MOS transistor are determined; when the predetermined condition is met, Switching the operating state of the first bridge arm MOS tube to the second working state, and switching the operating state of the second bridge arm MOS tube to the first working state. Therefore, it can solve the problem that all bridge arms of the high efficiency bridge converter in the related art are difficult to achieve complete ZVS turn-on, resulting in difficulty in balancing ultra-high efficiency and high reliability, greatly reducing the heat accumulation of the MOS tube of the bridge converter, and improving the bridge.
  • the reliability of the converter can achieve the ultra-high efficiency of the bridge converter on the basis of high reliability.
  • FIG. 1 is a schematic diagram of a bridge converter in the related art
  • FIG. 2 is a block diagram showing the hardware structure of a mobile terminal for controlling a bridge converter according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a control method of a bridge converter according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the rotation of the working states of the upper and lower bridge MOS tubes according to an alternative embodiment of the present invention
  • FIG. 5 is a control flowchart of an optional implementation manner 1 according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an operational state rotation of a lead bridge arm and a lag bridge arm according to an alternative embodiment of the present invention
  • FIG. 8 is a block diagram showing the structure of a control device for a bridge converter according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a control device switching module 84 of a bridge converter according to an embodiment of the present invention.
  • FIG. 2 is a hardware block diagram of a mobile terminal of a control method of a bridge converter according to an embodiment of the present invention.
  • mobile terminal 20 may include one or more (only one shown in FIG. 2) processor 202 (processor 202 may include, but is not limited to, a Micro Controller Unit (MCU)). Or a processing device such as a programmable logic device FPGA (Field Programmable Gate Array), a memory 204 for storing data, and a transmission device 206 for communication functions.
  • MCU Micro Controller Unit
  • FPGA Field Programmable Gate Array
  • the structure shown in FIG. 2 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 20 may also include more or fewer components than those shown in FIG. 2, or have a different configuration than that shown in FIG. 2.
  • the memory 204 can be used to store software programs and modules of the application software, such as program instructions/modules corresponding to the control method of the bridge converter in the embodiment of the present invention, and the processor 202 can run the software program and the module stored in the memory 204. In order to perform various functional applications and data processing, the above method is implemented.
  • Memory 204 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 204 may also include memory remotely located relative to processor 202, which may be connected to mobile terminal 20 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 206 can be used to receive or transmit data via a network.
  • the network instance described above may include a wireless network provided by a communication provider of the mobile terminal 20.
  • the transmission device 206 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 206 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 3 is a flowchart of a control method of a bridge converter according to an embodiment of the present invention. As shown in FIG. 3, the flow may include the following steps. Step:
  • Step S302 determining a first working state of the first bridge arm metal-oxide-semiconductor MOS transistor in the bridge converter and a second working state of the second bridge arm MOS transistor;
  • Step S304 when the predetermined condition is satisfied, switching the operating state of the first bridge arm MOS transistor to the second operating state, and switching the operating state of the second bridge arm MOS transistor to the first operating state.
  • the execution body of the foregoing steps may be a terminal, but is not limited thereto.
  • the working state of the first bridge arm MOS transistor when the predetermined condition is met, the working state of the first bridge arm MOS transistor is switched to the second working state, and the working state of the second bridge arm MOS transistor is switched to the above
  • the first working state includes: switching the working state of the first bridge arm MOS tube to the second working state when determining that the bridge converter is in a predetermined working state, and determining that the predetermined time threshold is reached, and The working state of the two-arm MOS tube is switched to the first working state described above.
  • the bridge conversion can be controlled by using an incompletely symmetric control method, including at least one of the following: PWM+Phase Shift Control, PWM+Pulse Frequency Modulation (PFM) control.
  • the upper and lower tubes may not be completely symmetrically controlled or the lead and lag bridge arms may be differently controlled, that is, the upper and lower tubes or the leading and trailing bridge arms are not completely in the same working state, in the full working mode or a specific In the working mode, after a certain period of time, the upper and lower tubes or the leading and trailing bridge arm MOS tubes are switched.
  • the MOS tube heat accumulation can be halved. It effectively reduces the damage caused by heat accumulation of the MOS tube, improves the reliability of the entire converter, and achieves a combination of ultra high efficiency and high reliability.
  • the predetermined working state may include one of the following: a full working mode; a specific working state, wherein the specific working state may include at least one of the following: The output voltage range, the specific frequency range, the specific load range, and the specific input voltage range.
  • the counter in the full working mode, can count, when the counter reaches the threshold, switching the working state of the upper and lower arm MOS tubes or the operating state of the leading and trailing bridge arm MOS tubes, which may include but not Limited to the phase shift angle and dead time; in a certain working state, the counter can count, when the counter reaches the threshold, switch the working state of the upper and lower bridge MOS tubes or the leading and trailing bridge MOS tubes, which may include However, it is not limited to the phase shift angle and the dead time; a specific operating state may include, but is not limited to, a specific output voltage range, a specific frequency range, a specific load range, and a specific input voltage range.
  • the first bridge arm MOS tube is an upper bridge arm MOS tube and the second bridge arm MOS tube is a lower bridge arm MOS tube.
  • the first bridge arm MOS transistor is a lower bridge arm MOS transistor and the second bridge arm MOS transistor is an upper bridge arm MOS transistor; when the bridge converter is a full bridge converter, the first bridge arm MOS transistor a front bridge arm MOS tube and the second bridge arm MOS tube is a hysteresis bridge arm MOS tube corresponding to the lead bridge arm, or the first bridge arm MOS tube is a hysteresis bridge arm MOS tube and the second bridge arm MOS The tube is a leading bridge MOS tube corresponding to the above-mentioned lag bridge arm.
  • the first working state may include at least one of: a switching frequency of the first bridge arm MOS transistor, a duty ratio of the first bridge arm MOS transistor, and the first bridge arm MOS The phase shift angle of the tube;
  • the second working state may include at least one of: a switching frequency of the second bridge arm MOS transistor, a duty ratio of the second bridge arm MOS transistor, and a shift of the second bridge arm MOS tube Phase angle.
  • the upper and lower arm MOS are not completely complementary, and the lower tube (corresponding to the lower arm MOS tube) has a different duty ratio with respect to the upper tube (corresponding to the upper arm MOS tube) Or the turn-on time has a phase shift angle.
  • the upper and lower tubes have the same operating frequency, but the duty ratio of the lower tube is larger than that of the upper tube.
  • the counter reaches the T time, the working states of the upper and lower tubes are switched.
  • the duty ratio of the lower tube is larger than that of the upper tube, and the counter is cleared; after that, the counter continues to count.
  • the working state of the upper and lower tubes is switched again, and the duty ratio of the upper tube is larger than that of the lower tube after switching.
  • the rotation of the working state may include but is not limited to the switching frequency, duty cycle, Phase shift angle, etc.
  • the specific process of a work cycle is shown in Figure 5. The specific steps are as follows:
  • S501 Calculate the operating frequency, duty cycle or phase shift angle of the upper and lower tubes respectively.
  • S502 The counter is compared with a threshold T, and the counter is greater than a threshold.
  • the conduction states of the lead-and-lag bridge arm MOS transistors are not completely identical, and the hysteresis arm MOS tube has a phase shift angle different from the duty ratio of the super-forearm MOS tube or the turn-on time.
  • the lead-and-lag bridge arm MOS tube is turned off at the same time, and the duty ratio of the lag bridge arm is larger than that of the leading bridge arm.
  • the counter advances and lags after reaching the threshold T.
  • the working state of the bridge arm MOS tube is rotated.
  • the rotation of the operational state may include, but is not limited to, including a switching frequency, a duty cycle, a phase shift angle, and the like.
  • a specific work cycle process is shown in Figure 7.
  • S701 Calculate the working frequency, duty cycle or phase shift angle of the upper and lower tube leading bridge arms and the lag bridge arm respectively.
  • S702 Determine the working state of the converter, whether it is in a certain working state.
  • a certain operation mode in this embodiment may include, but is not limited to, a specific output voltage range, a specific operating frequency range, a specific load range, and a specific input voltage range.
  • control mode of the embodiment of the invention is applicable to all half bridge converters with incompletely symmetric control of the upper and lower tubes, and full bridge converters with different working modes of the trailing bridge arm and the delayed bridge arm.
  • the method according to the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, disk).
  • the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method described in the embodiments of the present invention.
  • a control device for the bridge converter is further provided, and the device is configured to implement the above-mentioned embodiments and optional embodiments, and the detailed description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • FIG. 8 is a structural block diagram of a control apparatus for a bridge converter according to an embodiment of the present invention. As shown in FIG. 8, the apparatus may include: a determining module 82 and a switching module 84, which are described below:
  • the determining module 82 is configured to: determine a first working state of the first bridge arm metal-oxide-semiconductor MOS transistor in the bridge converter and a second working state of the second bridge arm MOS transistor; the switching module 84 is connected to The determining module 82 is configured to: switch the operating state of the first bridge arm MOS tube to the second working state when the predetermined condition is satisfied, and switch the working state of the second bridge arm MOS tube to the foregoing A working state.
  • FIG. 9 is a structural block diagram of a control device switching module 84 of a bridge converter according to an embodiment of the present invention.
  • the switching module 84 may include: a switching unit 92, which is configured. To: determine that the bridge converter is in a predetermined working state, and determine to reach When the time threshold is predetermined, the operating state of the first bridge arm MOS transistor is switched to the second operating state, and the operating state of the second bridge arm MOS transistor is switched to the first operating state.
  • the predetermined working state may include one of: a full working mode; a specific working state, wherein the specific working state may include at least one of: a specific output voltage range, a specific frequency range, and a specific Load range, specific input voltage range.
  • the first bridge arm MOS tube is an upper bridge arm MOS tube and the second bridge arm MOS tube is a lower bridge arm MOS tube.
  • the first bridge arm MOS transistor is a lower bridge arm MOS transistor and the second bridge arm MOS transistor is an upper bridge arm MOS transistor; when the bridge converter is a full bridge converter, the first bridge arm MOS transistor a front bridge arm MOS tube and the second bridge arm MOS tube is a hysteresis bridge arm MOS tube corresponding to the lead bridge arm, or the first bridge arm MOS tube is a hysteresis bridge arm MOS tube and the second bridge arm MOS The tube is a leading bridge MOS tube corresponding to the above-mentioned lag bridge arm.
  • the first working state may include at least one of: a switching frequency of the first bridge arm MOS transistor, a duty ratio of the first bridge arm MOS transistor, and the first bridge arm MOS a phase shift angle of the tube;
  • the second operating state includes at least one of: a switching frequency of the second bridge arm MOS transistor, a duty ratio of the second bridge arm MOS transistor, and a phase shift of the second bridge arm MOS transistor angle.
  • the foregoing modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or the foregoing modules are in any combination. They are located in different processors.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be set to store program code for performing the above steps.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor performs the above steps according to the stored program code in the storage medium.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • modules or steps of the embodiments of the present invention may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code executable by a computing device such that they may be stored in a storage device by a computing device and, in some cases, may be executed in a different order than herein.
  • the steps shown or described are either made separately into different integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the first working state of the first bridge arm metal-oxide-semiconductor MOS transistor in the bridge converter and the second working state of the second bridge arm MOS transistor are determined; when the predetermined condition is met, Switching the operating state of the first bridge arm MOS tube to the second working state, and switching the operating state of the second bridge arm MOS tube to the first working state. Therefore, it can solve the problem that all bridge arms of the high efficiency bridge converter in the related art are difficult to achieve complete ZVS turn-on, resulting in difficulty in balancing ultra-high efficiency and high reliability, greatly reducing the heat accumulation of the MOS tube of the bridge converter, and improving the bridge.
  • the reliability of the converter can achieve the ultra-high efficiency of the bridge converter on the basis of high reliability.

Abstract

一种桥式变换器的控制方法及装置。控制方法包括:确定桥式变换器中的第一桥臂金属氧化物半导体(MOS)管(Q1,Q2)的第一工作状态和第二桥臂MOS管(Q3,Q4)的第二工作状态(S302);在满足预定条件时,将第一桥臂MOS管的工作状态切换成第二工作状态,以及,将第二桥臂MOS管的工作状态切换成第一工作状态(S304)。

Description

桥式变换器的控制方法及装置 技术领域
本申请涉及但不限于通信领域,尤其是一种桥式变换器的控制方法及装置。
背景技术
随着电源变换技术的发展,高效率高功率密度成为一个重要的发展趋势。各种桥式变换器以其软开关、效率高、工作频率高、体积小等优点在开关电源技术应用中得到广泛的应用和关注。桥式变换器如图1所示,包括半桥变换器和全桥变换器,变换器又包括谐振变换器和准谐振变换器。
为了提高变换器的效率,需要实现金属-氧化物-半导体(MOS Metal Oxide Semiconductor,简称为MOS)管的零电压开关技术(Zero Voltage Switch,简称为ZVS)开通。但是要实现MOS管的ZVS开通,需要有足够的能量来抽走将要开通的开关管结电容上的电荷。业界为了追求更高效的变换器,需要进一步降低MOS管的开关损耗,选用更快开关速度的MOS管成为必然趋势,同时为了进一步降低MOS管通态损耗,单个桥臂采用MOS管多个并联的形式也更加常见。但是MOS管多个并联,增加了寄生电容Coss,这样就使得MOS管结电容放电更慢,实现MOS管的ZVS开通变得更加困难。对于半桥变换器业界常用上、下管不完全对称控制的方法如脉宽调制(Pulse Width Modulation,简称为PWM)+移相策略或者PWM+调宽策略来改变上、下管结电容的放电时间,以达到上、下桥臂MOS管的ZVS;对于全桥变换器,业界常用移相调频或调频调宽控制策略来对超前桥臂和滞后桥臂进行控制。但是因为对超高效率的追求,MOS管的并联使得业界采用的各种控制方法不能使得谐振变换器的上、下桥臂MOS管都实现ZVS,只能实现部分桥臂MOS管ZVS。MOS管长时间硬开通,储存在MOS管结电容中的能量将以电流形式全部耗散在该MOS管内,开通电流尖峰很大,从而引起器件过热,长时间的热累积会导致MOS管损坏。
针对上述问题,相关技术中并未提出有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种桥式变换器的控制方法及装置,以至少解决相关技术中高效的桥式变换器所有桥臂难以实现完全ZVS开通,导致超高效和高可靠性难以均衡的问题。
根据本发明的一个实施例,提供了一种桥式变换器的控制方法,包括:确定桥式变换器中的第一桥臂金属-氧化物-半导体MOS管的第一工作状态和第二桥臂MOS管的第二工作状态;在满足预定条件时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态。
在一种示例性实施方式中,在满足预定条件时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态包括:在确定所述桥式变换器处于预定工作状态,且确定达到预定时间阈值时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态。
在一种示例性实施方式中,所述预定工作状态包括以下之一:全工作模式;特定工作状态,其中,所述特定工作状态包括以下至少之一:特定输出电压范围、特定频率范围、特定负载范围、特定输入电压范围。
在一种示例性实施方式中,当所述桥式变换器为半桥变换器时,所述第一桥臂MOS管为上桥臂MOS管且所述第二桥臂MOS管为下桥臂MOS管,或者,所述第一桥臂MOS管为下桥臂MOS管且所述第二桥臂MOS管为上桥臂MOS管;当所述桥式变换器为全桥变换器时,所述第一桥臂MOS管为超前桥臂MOS管且所述第二桥臂MOS管为与所述超前桥臂对应的滞后桥臂MOS管,或者,所述第一桥臂MOS管为滞后桥臂MOS管且所述第二桥臂MOS管为与所述滞后桥臂对应的超前桥臂MOS管。
在一种示例性实施方式中,所述第一工作状态包括以下至少之一:所述第一桥臂MOS管的开关频率、所述第一桥臂MOS管的占空比、所述第一桥臂 MOS管的移相角;所述第二工作状态包括以下至少之一:所述第二桥臂MOS管的开关频率、所述第二桥臂MOS管的占空比、所述第二桥臂MOS管的移相角。
在本发明的另一个实施例中,还提供一种桥式变换器的控制装置,包括:确定模块,设置为:确定桥式变换器中的第一桥臂金属-氧化物-半导体MOS管的第一工作状态和第二桥臂MOS管的第二工作状态;切换模块,设置为:在满足预定条件时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态。
在一种示例性实施方式中,所述切换模块包括:切换单元,设置为:在确定所述桥式变换器处于预定工作状态,且确定达到预定时间阈值时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态。
在一种示例性实施方式中,所述预定工作状态包括以下之一:全工作模式;特定工作状态,其中,所述特定工作状态包括以下至少之一:特定输出电压范围、特定频率范围、特定负载范围、特定输入电压范围。
在一种示例性实施方式中,当所述桥式变换器为半桥变换器时,所述第一桥臂MOS管为上桥臂MOS管且所述第二桥臂MOS管为下桥臂MOS管,或者,所述第一桥臂MOS管为下桥臂MOS管且所述第二桥臂MOS管为上桥臂MOS管;当所述桥式变换器为全桥变换器时,所述第一桥臂MOS管为超前桥臂MOS管且所述第二桥臂MOS管为与所述超前桥臂对应的滞后桥臂MOS管,或者,所述第一桥臂MOS管为滞后桥臂MOS管且所述第二桥臂MOS管为与所述滞后桥臂对应的超前桥臂MOS管。
在一种示例性实施方式中,所述第一工作状态包括以下至少之一:所述第一桥臂MOS管的开关频率、所述第一桥臂MOS管的占空比、所述第一桥臂MOS管的移相角;所述第二工作状态包括以下至少之一:所述第二桥臂MOS管的开关频率、所述第二桥臂MOS管的占空比、所述第二桥臂MOS管的移相角。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以上步骤的程序代码。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述桥式变换器的控制方法。
通过本发明实施例,由于确定桥式变换器中的第一桥臂金属-氧化物-半导体MOS管的第一工作状态和第二桥臂MOS管的第二工作状态;在满足预定条件时,将第一桥臂MOS管的工作状态切换成第二工作状态,以及,将第二桥臂MOS管的工作状态切换成第一工作状态。因此,可以解决相关技术中高效的桥式变换器所有桥臂难以实现完全ZVS开通,导致超高效和高可靠性难以均衡的问题,大幅减小桥式变换器的MOS管热累积,提高了桥式变换器的可靠性,在高可靠性的基础上可实现桥式变换器超高效率的效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是相关技术中的桥式变换器的示意图;
图2是本发明实施例的桥式变换器的控制方法的移动终端的硬件结构框图;
图3是根据本发明实施例的桥式变换器的控制方法流程图;
图4是根据本发明实施例的可选实施方式的上、下桥臂MOS管工作状态轮换的示意图;
图5是根据本发明实施例的可选实施方式一的控制流程图;
图6是根据本发明实施例的可选实施方式的超前桥臂和滞后桥臂一种工作状态轮换的示意图;
图7是根据本发明实施例的可选实施方式二的控制流程图;
图8是根据本发明实施例的桥式变换器的控制装置的结构框图;
图9是根据本发明实施例的桥式变换器的控制装置切换模块84的结构框图。
本发明的较佳实施方式
下面结合附图对本发明的实施方式进行描述。需要说明的是,在不冲突 的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
需要说明的是,本文中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图2是本发明实施例的桥式变换器的控制方法的移动终端的硬件结构框图。如图2所示,移动终端20可以包括一个或多个(图2中仅示出一个)处理器202(处理器202可以包括但不限于微处理器MCU(Micro Controller Unit,微控制器单元)或可编程逻辑器件FPGA(Field Programmable Gate Array,现场可编程门阵列)等的处理装置)、用于存储数据的存储器204、以及用于通信功能的传输装置206。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端20还可包括比图2中所示更多或者更少的组件,或者具有与图2所示不同的配置。
存储器204可用于存储应用软件的软件程序以及模块,如本发明实施例中的桥式变换器的控制方法对应的程序指令/模块,处理器202可通过运行存储在存储器204内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器204可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器204还可包括相对于处理器202远程设置的存储器,这些远程存储器可以通过网络连接至移动终端20。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置206可用于经由一个网络接收或者发送数据。上述的网络实例可包括移动终端20的通信供应商提供的无线网络。在一个实例中,传输装置206包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置206可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种桥式变换器的控制方法,图3是根据本发明实施例的桥式变换器的控制方法流程图,如图3所示,该流程可以包括如下步 骤:
步骤S302,确定桥式变换器中的第一桥臂金属-氧化物-半导体MOS管的第一工作状态和第二桥臂MOS管的第二工作状态;
步骤S304,在满足预定条件时,将上述第一桥臂MOS管的工作状态切换成上述第二工作状态,以及,将上述第二桥臂MOS管的工作状态切换成上述第一工作状态。
通过上述步骤,解决了相关技术中高效的桥式变换器所有桥臂难以实现完全ZVS开通,导致超高效和高可靠性难以均衡的问题,大幅减小桥式变换器的MOS管热累积,提高了桥式变换器的可靠性,在高可靠性的基础上可实现桥式变换器超高效率的效果。
可选地,上述步骤的执行主体可以为终端,但不限于此。
在一个可选的实施例中,在满足预定条件时,将上述第一桥臂MOS管的工作状态切换成上述第二工作状态,以及,将上述第二桥臂MOS管的工作状态切换成上述第一工作状态包括:在确定上述桥式变换器处于预定工作状态,且确定达到预定时间阈值时,将上述第一桥臂MOS管的工作状态切换成上述第二工作状态,以及,将上述第二桥臂MOS管的工作状态切换成上述第一工作状态。在本实施例中,可以采用不完全对称的控制方法对桥式变换进行控制,包括以下至少之一:PWM+移相控制、PWM+脉频调制(Pulse Frequency Modulation,简称为PFM)控制。即可以采用上、下管不完全对称控制方法或者超前和滞后桥臂不一样控制方法,即上、下管或者超前和滞后桥臂MOS管工作状态不完全一样,在全工作模式或某一特定工作模式下,每隔一定的周期后,上、下管或者超前和滞后桥臂MOS管工作状态进行切换。通过上述技术方案,即使为了提高效率采用更快开通速度的MOS管,并采用MOS管多个并联的形式,即使某个桥臂MOS管仍存在硬开关问题,也可以实现MOS管热累积减半,有效地减少MOS管因为热累积带来的损坏,提高整个变换器的可靠性,达到超高效率和高可靠性的结合。
在一个可选的实施例中,上述预定工作状态可以包括以下之一:全工作模式;特定工作状态,其中,上述特定工作状态可以包括以下至少之一:特 定输出电压范围、特定频率范围、特定负载范围、特定输入电压范围。在本实施例中,在全工作模式中,计数器可进行计数,当计数器达到阈值时,切换上、下桥臂MOS管的工作状态或者超前和滞后桥臂MOS管的工作状态,可包括但不限于移相角、死区时间;在某一特定工作状态下,计数器可进行计数,当计数器达到阈值时,切换上、下桥臂MOS管或者超前和滞后桥臂MOS管的工作状态,可包括但不限于移相角、死区时间;某一特定工作状态可包括但不限制于某一特定输出电压范围,某一特定频率范围,某一特定负载范围,某一特定输入电压范围。
在一个可选的实施例中,当上述桥式变换器为半桥变换器时,上述第一桥臂MOS管为上桥臂MOS管且上述第二桥臂MOS管为下桥臂MOS管,或者,上述第一桥臂MOS管为下桥臂MOS管且上述第二桥臂MOS管为上桥臂MOS管;当上述桥式变换器为全桥变换器时,上述第一桥臂MOS管为超前桥臂MOS管且上述第二桥臂MOS管为与上述超前桥臂对应的滞后桥臂MOS管,或者,上述第一桥臂MOS管为滞后桥臂MOS管且上述第二桥臂MOS管为与上述滞后桥臂对应的超前桥臂MOS管。
在一个可选的实施例中,上述第一工作状态可以包括以下至少之一:上述第一桥臂MOS管的开关频率、上述第一桥臂MOS管的占空比、上述第一桥臂MOS管的移相角;上述第二工作状态可以包括以下至少之一:上述第二桥臂MOS管的开关频率、上述第二桥臂MOS管的占空比、上述第二桥臂MOS管的移相角。
下面结合本发明实施例的可选实施方式对本发明实施例进行说明:
本发明实施例的可选实施方式一:
图1所示的半桥变换器,上、下桥臂MOS不完全互补开通,下管(对应于上述下桥臂MOS管)相对上管(对应于上述上桥臂MOS管)占空比不同或者开通时间有一个移相角。如图4所示,上、下管工作频率一样,但是下管的占空比相对上管大,在全工作模式下,计数器达到T时间后,上、下管的工作状态进行切换,切换后下管占空比比上管大,计数器清零;之后计数器继续计数,当达到T时间后,上、下管的工作状态再次切换,切换后上管占空比比下管大。工作状态的轮换可包括但不限制于开关频率、占空比、 移相角等。具体的一个工作周期的流程如图5所示,具体步骤如下:
S501:分别计算上、下管工作频率,占空比或移相角。
S502:计数器与阈值T进行比较,计数器是否大于阈值。
S503:如果计数器大于或者等于阈值T,由S501计算出的上管工作频率,占空比或移相角赋值给下管作为下管驱动;由S501计算出的下管工作频率,占空比或移相角赋值给上管作为上管驱动。计数器清零。
S504:如果计数器小于阈值T,计数器加1,由S501计算出的上管工作频率,占空比或移相角赋值给上管作为上管驱动;由S501计算出的下管工作频率,占空比或移相角赋值给下管作为下管驱动。
本发明实施例的可选实施方式二:
图1所示的全桥变换器,超前和滞后桥臂MOS管导通状态不完全一致,滞后臂MOS管相对超前臂MOS管占空比不同或者开通时间有一个移相角。如图6所示,超前和滞后桥臂MOS管同时开通不同时关断,滞后桥臂的占空比比超前桥臂大,在某一特定工作模式下,计数器在达到阈值T后,超前和滞后桥臂MOS管的工作状态进行轮换。工作状态的轮换可包括但不限制于包括开关频率、占空比、移相角等。具体的一个工作周期流程如图7所示。
S701:分别计算上、下管超前桥臂和滞后桥臂工作频率,占空比或移相角。
S702:对变换器工作状态进行判断,是否处在某一特定工作状态下。
S703:如果变换器处在某一特定工作状态下,计数器与阈值T进行比较,计数器是否大于阈值。
S704:如果计数器大于或者等于阈值T,由S701计算出的超前桥臂工作频率,占空比或移相角赋值给滞后桥臂作为驱动;由S701计算出的滞后桥臂工作频率,占空比或移相角赋值给超前桥臂作为驱动。计数器清零。
S705:如果计数器小于阈值T,计数器加1,由S701计算出的超前桥臂工作频率,占空比或移相角赋值给超前桥臂作为驱动;由S701计算出的滞后桥臂工作频率,占空比或移相角赋值给滞后桥臂作为驱动。
S706:如果变换器不处在某一特定工作状态下,计数器加1,由S701计算出的超前桥臂工作频率,占空比或移相角赋值给超前桥臂作为驱动;由 S701计算出的滞后桥臂工作频率,占空比或移相角赋值给滞后桥臂作为驱动。
需要说明的是,本实施例中的某一特定工作模式可包括但不限制于,特定输出电压范围、特定工作频率范围、特定负载范围、特定输入电压范围。
本发明实施例的控制方式适用于所有具有上、下管不完全对称控制的半桥变换器和超前桥臂、滞后桥臂工作模式不同的全桥变换器。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明实施例所述的方法。
在本实施例中还提供了一种桥式变换器的控制装置,该装置设置为:实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是根据本发明实施例的桥式变换器的控制装置的结构框图,如图8所示,该装置可以包括:确定模块82和切换模块84,下面对该装置进行说明:
确定模块82,设置为:确定桥式变换器中的第一桥臂金属-氧化物-半导体MOS管的第一工作状态和第二桥臂MOS管的第二工作状态;切换模块84,连接至上述确定模块82,设置为:在满足预定条件时,将上述第一桥臂MOS管的工作状态切换成上述第二工作状态,以及,将上述第二桥臂MOS管的工作状态切换成上述第一工作状态。
在一个可选的实施例中,图9是根据本发明实施例的桥式变换器的控制装置切换模块84的结构框图,如图9所示,上述切换模块84可以包括:切换单元92,设置为:在确定上述桥式变换器处于预定工作状态,且确定达到 预定时间阈值时,将上述第一桥臂MOS管的工作状态切换成上述第二工作状态,以及,将上述第二桥臂MOS管的工作状态切换成上述第一工作状态。
在一个可选的实施例中,上述预定工作状态可以包括以下之一:全工作模式;特定工作状态,其中,上述特定工作状态可以包括以下至少之一:特定输出电压范围、特定频率范围、特定负载范围、特定输入电压范围。
在一个可选的实施例中,当上述桥式变换器为半桥变换器时,上述第一桥臂MOS管为上桥臂MOS管且上述第二桥臂MOS管为下桥臂MOS管,或者,上述第一桥臂MOS管为下桥臂MOS管且上述第二桥臂MOS管为上桥臂MOS管;当上述桥式变换器为全桥变换器时,上述第一桥臂MOS管为超前桥臂MOS管且上述第二桥臂MOS管为与上述超前桥臂对应的滞后桥臂MOS管,或者,上述第一桥臂MOS管为滞后桥臂MOS管且上述第二桥臂MOS管为与上述滞后桥臂对应的超前桥臂MOS管。
在一个可选的实施例中,上述第一工作状态可以包括以下至少之一:上述第一桥臂MOS管的开关频率、上述第一桥臂MOS管的占空比、上述第一桥臂MOS管的移相角;上述第二工作状态包括以下至少之一:上述第二桥臂MOS管的开关频率、上述第二桥臂MOS管的占空比、上述第二桥臂MOS管的移相角。
需要说明的是,上述模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以上步骤的程序代码。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行以上步骤。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述桥式变换器的控制方法。
本领域的技术人员可以明白,上述的本发明实施例的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成不同集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件、处理器等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
本领域的普通技术人员可以理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围。本申请的保护范围以权利要求所定义的范围为准。
工业实用性
通过本发明实施例,由于确定桥式变换器中的第一桥臂金属-氧化物-半导体MOS管的第一工作状态和第二桥臂MOS管的第二工作状态;在满足预定条件时,将第一桥臂MOS管的工作状态切换成第二工作状态,以及,将第二桥臂MOS管的工作状态切换成第一工作状态。因此,可以解决相关技术中高效的桥式变换器所有桥臂难以实现完全ZVS开通,导致超高效和高可靠性难以均衡的问题,大幅减小桥式变换器的MOS管热累积,提高了桥式变换器的可靠性,在高可靠性的基础上可实现桥式变换器超高效率的效果。

Claims (10)

  1. 一种桥式变换器的控制方法,包括:
    确定桥式变换器中的第一桥臂金属-氧化物-半导体MOS管的第一工作状态和第二桥臂MOS管的第二工作状态;
    在满足预定条件时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态。
  2. 根据权利要求1所述的方法,其中,在满足预定条件时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态包括:
    在确定所述桥式变换器处于预定工作状态,且确定达到预定时间阈值时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态。
  3. 根据权利要求2所述的方法,其中,所述预定工作状态包括以下之一:
    全工作模式;
    特定工作状态,其中,所述特定工作状态包括以下至少之一:特定输出电压范围、特定频率范围、特定负载范围、特定输入电压范围。
  4. 根据权利要求1所述的方法,其中,
    当所述桥式变换器为半桥变换器时,所述第一桥臂MOS管为上桥臂MOS管且所述第二桥臂MOS管为下桥臂MOS管,或者,所述第一桥臂MOS管为下桥臂MOS管且所述第二桥臂MOS管为上桥臂MOS管;
    当所述桥式变换器为全桥变换器时,所述第一桥臂MOS管为超前桥臂MOS管且所述第二桥臂MOS管为与所述超前桥臂对应的滞后桥臂MOS管,或者,所述第一桥臂MOS管为滞后桥臂MOS管且所述第二桥臂MOS管为与所述滞后桥臂对应的超前桥臂MOS管。
  5. 根据权利要求1所述的方法,其中,
    所述第一工作状态包括以下至少之一:所述第一桥臂MOS管的开关频率、所述第一桥臂MOS管的占空比、所述第一桥臂MOS管的移相角;
    所述第二工作状态包括以下至少之一:所述第二桥臂MOS管的开关频率、所述第二桥臂MOS管的占空比、所述第二桥臂MOS管的移相角。
  6. 一种桥式变换器的控制装置,包括:
    确定模块,设置为:确定桥式变换器中的第一桥臂金属-氧化物-半导体MOS管的第一工作状态和第二桥臂MOS管的第二工作状态;
    切换模块,用于在满足预定条件时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态。
  7. 根据权利要求6所述的装置,其中,所述切换模块包括:
    切换单元,设置为:在确定所述桥式变换器处于预定工作状态,且确定达到预定时间阈值时,将所述第一桥臂MOS管的工作状态切换成所述第二工作状态,以及,将所述第二桥臂MOS管的工作状态切换成所述第一工作状态。
  8. 根据权利要求7所述的装置,其中,所述预定工作状态包括以下之一:
    全工作模式;
    特定工作状态,其中,所述特定工作状态包括以下至少之一:特定输出电压范围、特定频率范围、特定负载范围、特定输入电压范围。
  9. 根据权利要求6所述的装置,其中,
    当所述桥式变换器为半桥变换器时,所述第一桥臂MOS管为上桥臂MOS管且所述第二桥臂MOS管为下桥臂MOS管,或者,所述第一桥臂MOS管为下桥臂MOS管且所述第二桥臂MOS管为上桥臂MOS管;
    当所述桥式变换器为全桥变换器时,所述第一桥臂MOS管为超前桥臂MOS管且所述第二桥臂MOS管为与所述超前桥臂对应的滞后桥臂MOS管,或者,所述第一桥臂MOS管为滞后桥臂MOS管且所述第二桥臂MOS管为与所述滞后桥臂对应的超前桥臂MOS管。
  10. 根据权利要求6所述的装置,其中,
    所述第一工作状态包括以下至少之一:所述第一桥臂MOS管的开关频率、所述第一桥臂MOS管的占空比、所述第一桥臂MOS管的移相角;
    所述第二工作状态包括以下至少之一:所述第二桥臂MOS管的开关频率、所述第二桥臂MOS管的占空比、所述第二桥臂MOS管的移相角。
PCT/CN2017/093892 2016-08-26 2017-07-21 桥式变换器的控制方法及装置 WO2018036320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610743092.1 2016-08-26
CN201610743092.1A CN107786091A (zh) 2016-08-26 2016-08-26 桥式变换器的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2018036320A1 true WO2018036320A1 (zh) 2018-03-01

Family

ID=61245430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093892 WO2018036320A1 (zh) 2016-08-26 2017-07-21 桥式变换器的控制方法及装置

Country Status (2)

Country Link
CN (1) CN107786091A (zh)
WO (1) WO2018036320A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365244B (zh) * 2019-07-30 2020-10-13 湖北工业大学 一种降低单相光伏并网逆变器thd的错频调制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611348A (zh) * 2012-03-21 2012-07-25 福州大学 解决单相全桥逆变电路桥臂开关发热不均的pwm输出法
CN103259443A (zh) * 2013-05-23 2013-08-21 吕莹 一种有限双极性控制的全桥逆变器
JP5286184B2 (ja) * 2009-07-28 2013-09-11 株式会社日立製作所 電力変換制御装置,電力変換装置及び電力変換制御方法
CN103441692A (zh) * 2013-07-30 2013-12-11 东软飞利浦医疗设备系统有限责任公司 串联谐振逆变器及其实现方法
CN104600998A (zh) * 2015-02-10 2015-05-06 四川英杰电气股份有限公司 一种开关电源开关器件均匀发热的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286184B2 (ja) * 2009-07-28 2013-09-11 株式会社日立製作所 電力変換制御装置,電力変換装置及び電力変換制御方法
CN102611348A (zh) * 2012-03-21 2012-07-25 福州大学 解决单相全桥逆变电路桥臂开关发热不均的pwm输出法
CN103259443A (zh) * 2013-05-23 2013-08-21 吕莹 一种有限双极性控制的全桥逆变器
CN103441692A (zh) * 2013-07-30 2013-12-11 东软飞利浦医疗设备系统有限责任公司 串联谐振逆变器及其实现方法
CN104600998A (zh) * 2015-02-10 2015-05-06 四川英杰电气股份有限公司 一种开关电源开关器件均匀发热的控制方法

Also Published As

Publication number Publication date
CN107786091A (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
WO2019095771A1 (zh) 一种四管buck-boost电路的控制方法、控制电路及系统
WO2013117091A1 (zh) 无桥功率因数校正电路及其控制方法
US9825531B2 (en) Post-regulated flyback converter with variable output stage
US7456620B2 (en) Determining dead times in switched-mode DC-DC converters
TWI474572B (zh) 電源轉換器及輸入電容的電壓平衡方法
US20110211370A1 (en) Systems and Methods of Resonant DC/DC Conversion
EP2707942B1 (en) Switching delay controller for a switched mode power supply
US10084385B2 (en) Method for driving a resonant converter, and corresponding device and computer program product
EP3926777A1 (en) Multi-phase buck conversion circuit, fault detection method and device therefor, and storage medium
CN114301297A (zh) 一种功率变换器、增大逆向增益范围的方法、装置、介质
WO2021036392A1 (zh) 一种开关变换器及其控制方法
TW201916562A (zh) 轉換器和電源管理積體電路系統
CN109067229A (zh) Llc谐振变换电路及其工作模式的确定方法及装置
WO2018036320A1 (zh) 桥式变换器的控制方法及装置
CN108964430B (zh) 开关电源的放电方法和装置
CN111464062A (zh) 一种超声驱动单元零电压-零电流软开关式驱动方法
CN106385170B (zh) 高压输入的控制方法及装置
WO2016177118A1 (zh) 一种高低边自举驱动控制方法及装置
US11043892B2 (en) Totem-pole bridgeless power factor corrector and power factor correction method
CN103516193B (zh) 功率因数校正电路和开关电源模块、功率因数校正方法
US20190372468A1 (en) Psfb converter and methods for controlling a psfb converter
WO2021056652A1 (zh) 增益频率调制方法及相关装置
Zhou et al. Wide ZVS operation of a semi‐dual‐bridge resonant converter under variable‐frequency phase‐shift control
CN114825961A (zh) 用于控制移相全桥电路的控制器、电源模组以及电子设备
WO2020191578A1 (zh) 直流-直流变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842743

Country of ref document: EP

Kind code of ref document: A1