TW201916562A - 轉換器和電源管理積體電路系統 - Google Patents

轉換器和電源管理積體電路系統 Download PDF

Info

Publication number
TW201916562A
TW201916562A TW107133341A TW107133341A TW201916562A TW 201916562 A TW201916562 A TW 201916562A TW 107133341 A TW107133341 A TW 107133341A TW 107133341 A TW107133341 A TW 107133341A TW 201916562 A TW201916562 A TW 201916562A
Authority
TW
Taiwan
Prior art keywords
converter
conversion path
load
input voltage
load state
Prior art date
Application number
TW107133341A
Other languages
English (en)
Other versions
TWI686043B (zh
Inventor
李志琛
徐研訓
黃梓期
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW201916562A publication Critical patent/TW201916562A/zh
Application granted granted Critical
Publication of TWI686043B publication Critical patent/TWI686043B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本發明公開一種轉換器和電源管理積體電路系統,該轉換器用於在輸出節點處產生輸出電壓,該轉換器包括:第一轉換路徑,配置為在第一負載狀態下在該輸出節點處生成該輸出電壓;第二轉換路徑,配置為在與該第一負載狀態不同的第二負載狀態下在該輸出節點處產生該輸出電壓;以及至少一個電感器,耦合到該第一轉換路徑和該第二轉換路徑,並耦合到該輸出節點。

Description

轉換器和電源管理積體電路系統
本發明涉及電源管理技術領域,尤其涉及一種轉換器和電源管理積體電路系統。
轉換器(converter)可以將一個電壓電平(例如輸入電壓Vin)轉換為另一個電壓電平(例如輸出電壓Vout)。多相(multi-phase)轉換器包括耦合到轉換器的輸出節點的複數個電感器。電感器的數量根據轉換器的負載狀態確定。轉換效率由輸出功率與總功率的比率確定,總功率包括輸出功率和功率損耗,例如傳導損耗,開關損耗和驅動損耗。業界希望轉換器具有較低的功率損耗,以達到較高的轉換效率。因此,如何提供一種具有更高轉換效率的轉換器,成為亟需解決的問題。
有鑑於此,本發明提供一種轉換器,具有更高的轉換效率。
根據本發明的第一方面,公開一種轉換器,用於在輸出節點處產生輸出電壓,該轉換器包括:
第一轉換路徑,配置為在第一負載狀態下在該輸出節點處生成該輸出電壓;
第二轉換路徑,配置為在與該第一負載狀態不同的第二負載狀態下在該輸出節點處產生該輸出電壓;以及
至少一個電感器,耦合到該第一轉換路徑和該第二轉換路徑,並耦合到該輸出節點。
根據本發明的第二方面,公開一種轉換器,能夠在輸出節點處產生複數個輸出電壓,該轉換器包括:
第一轉換路徑,用於在該輸出節點處產生第一輸出電壓;
第二轉換路徑,用於在該輸出節點處產生第二輸出電壓;以及
至少一個電感器,耦合到該第一轉換路徑和該第二轉換路徑,並耦合到該輸出節點。
根據本發明的第三個方面,公開一種電源管理積體電路系統,包括:
第一轉換器,包括用於第一負載狀態的第一轉換路徑,用於第二負載狀態的第二轉換路徑,以及耦合到該第一轉換路徑和第二轉換路徑的第一電感器。
本發明提供的轉換器由於轉換器包括:第一轉換路徑,配置為在第一負載狀態下在輸出節點處生成該第一輸出電壓;第二轉換路徑,配置為在與該第一負載狀態不同的第二負載狀態下在輸出節點處產生該第二輸出電壓;以及電感器,耦合到該第一轉換路徑和該第二轉換路徑。透過這種方式,轉換器可以根據不同的負載狀態來切換到不同的轉換路徑,以針對不同的負載狀態來對應的降低功率損耗,從而使轉換器在對於不同的負載狀態均可達到較高的轉換效率,提高了轉換器的效率。
以下描述為本發明實施的較佳實施例。以下實施例僅用來例舉闡釋本發明的技術特徵,並非用來限制本發明的範疇。在通篇說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域技術人員應可理解,製造商可能會用不同的名詞來稱呼同樣的元件。本說明書及申請專利範圍並不以名稱的差異來作為區別元件的方式,而係以元件在功能上的差異來作為區別的基準。本發明的範圍應當參考後附的申請專利範圍來確定。本發明中使用的術語“元件”、“系統”和“裝置”可以係與電腦相關的實體,其中,該電腦可以係硬體、軟體、或硬體和軟體的接合。在以下描述和申請專利範圍當中所提及的術語“包含”和“包括”為開放式用語,故應解釋成“包含,但不限定於…”的意思。此外,術語“耦接”意指間接或直接的電氣連接。因此,若文中描述一個裝置耦接至另一裝置,則代表該裝置可直接電氣連接於該另一裝置,或者透過其它裝置或連接手段間接地電氣連接至該另一裝置。
對這些實施例進行了詳細的描述係為了使本領域的技術人員能夠實施這些實施例,並且應當理解,在不脫離本發明的精神和範圍情況下,可以利用其他實施例進行機械、化學、電氣和程式上的改變。因此,以下詳細描述並非係限制性的,並且本發明的實施例的範圍僅由所附申請專利範圍限定。
下面將參考特定實施例並且參考某些附圖來描述本發明,但係本發明不限於此,並且僅由申請專利範圍限制。所描述的附圖僅係示意性的而並非限制性的。在附圖中,為了說明的目的,一些元件的尺寸可能被誇大,而不係按比例繪製。在本發明的實踐中,尺寸和相對尺寸不對應於實際尺寸。
發明人已經認識並理解,當輸出電壓(Vout)變低時,因為輸出功率下降而功率損耗(例如傳導損耗,開關損耗和驅動損耗)還與之前(Vout未變低時)保持相近,因此轉換器的效率可能會降低。例如,當行動電話從活動(active)模式切換到待機(standby)模式時,轉換行動電話的電池電壓(例如當前為4V)的轉換器可能將輸出電壓降低到較低水準(例如從1.2V至0.6 V),此時輸出電壓降低導致輸出功率降低,而輸入電壓不變(例如電池電壓仍然為4V),使得功率損耗與之前相近,因此轉換器的效率就降低了。負載狀態可以指示出由輸出電壓驅動的負載的大小。活動模式的負載狀態可能比待機模式的負載狀態更加重載,例如活動模式下負載的電流比待機模式的負載的電流更大。
可以透過降低輸入電壓來抑制(或稱之為:降低)功率損耗從而提高轉換效率。然而,轉換器的瞬態響應受到電感器的電流轉換速率(即(Vin-Vout)/ L,其中L為電感器的電感值)的限制,由於L一般不變,因此當輸入電壓Vin和輸出電壓Vout的差值越大則瞬態響應越快速,越小則瞬態響應越慢速,在輸出電壓Vout不變的情況下轉換器的瞬態響應隨著輸入電壓Vin的降低而惡化。
發明人已經認識並理解,透過分離不同負載狀態的轉換路徑,轉換器可以具有高效率和快速瞬態響應,例如透過本發明提供的方案,可以選擇執行高效率的轉換,或/和選擇執行快速瞬態響應的轉換。在一些實施例中,轉換器可以具有耦合到電感器(該電感器耦合到輸出節點)的第一轉換路徑和第二轉換路徑。當負載狀態為重載時,轉換器可以使第一轉換路徑在輸出節點處產生輸出電壓;當負載狀態為輕載時,轉換器可以使第二轉換路徑產生輸出電壓。透過這種方式,轉換器可以根據不同的負載狀態來切換到不同的轉換路徑,以針對不同的負載狀態來對應的降低功率損耗,從而使轉換器在對於不同的負載狀態均可達到較高的轉換效率,提高了轉換器的效率。在一些實施例中,轉換器可具有高於85%,高於88%或高於92%的峰值效率。
第1圖描繪了根據一些實施例的單相轉換器100。轉換器100可以將輸入電壓VDD 110轉換為在輸出節點124處的輸出電壓Vout以驅動負載122。負載122的值可以根據例如由輸出電壓Vout驅動的系統(例如智慧手機或其他設備的系統)的運轉模式(例如輕載或重載)而改變。可以將負載122的值與至少一個閾值電壓(或閾值電流)進行比較,以便確定負載122是重載還是輕載。例如,若負載122的電流值不超過額定電流值的20%(或10%,15%,18%,23%,25%等)則為輕載,若負載122的電流值大於等於額定電流值的80%(或70%,75%,82%,88%等)則為重載;或者若負載122的電壓值不超過額定電壓值的20%(或10%,15%,18%,23%,25%等)則為輕載,若負載122的電壓值大於等於額定電壓值的80%(或70%,75%,82%,88%等)則為重載;或者若負載122的功率值不超過額定功率值的20%(或10%,15%,18%,23%,25%等)則為輕載,若負載122的功率值大於等於額定功率值的80%(或70%,75%,82%,88%等)則為重載。例如,輸出電壓Vout可以驅動智慧手機,智慧手機可以在對應於重載負載狀態的活動模式下運轉,或者對應於輕載負載狀態的待機模式下運轉。輸入電壓VDD 110可以由智慧手機的電池供電。對於不同的負載狀態,輸出電壓Vout可以處於不同的水平(例如輸出電壓的電壓值不同),此外負載狀態不同也可以負載的電流值不同,或者負載的功率值不同。例如,在活動模式下運轉的智慧手機需要的來自轉換器的輸出電壓可能高於在待機模式下運轉需要的輸出電壓。
轉換器100可以包括第一轉換路徑102和第二轉換路徑104。第一轉換路徑102和第二轉換路徑104可以耦合到的電感器106(電感器106耦合到輸出節點124),第一轉換路徑102和第二轉換路徑104還可以耦合到電晶體118。當第一轉換路徑102和第二轉換路徑104中的任何一個啟用時,轉換器100可以用作降壓轉換器(buck converter)。在所示示例中,轉換器100包括兩個轉換路徑,然而,本發明不應限於兩個轉換路徑。轉換器可包括任何合適數量的轉換路徑,用於例如適應任何可能的負載狀態。
轉換器100可以具有至少一個將輸入電壓直接轉換為輸出電壓的轉換路徑,以及至少一個將輸入電壓轉換為中間電壓然後將中間電壓轉換為輸出電壓的轉換路徑,因此轉換器100可以稱為部分兩階段(two-stage)架構。在一些實施例中,第一轉換路徑102可以具有一階段架構(將輸入電壓直接轉換為輸出電壓),第二轉換路徑104可以具有兩階段架構(將輸入電壓轉換為中間電壓(輸入電壓Vin)然後將中間電壓轉換為輸出電壓)。第一轉換路徑102可以包括耦合在輸入電壓VDD 110和電感器106之間的電晶體116,並且第一轉換路徑102將輸入電壓VDD直接轉換為輸出電壓Vout。第二轉換路徑104可以包括相互串聯連接的DC-DC轉換器112和電晶體114,DC-DC轉換器112和電晶體114耦合在輸入電壓VDD 110和電感器106之間。第二轉換路徑可以首先將輸入電壓VDD轉換為節點126處的中間電壓,然後將該中間電壓轉換為輸出電壓Vout。在一些實施例中,DC-DC轉換器112的效率可以高於轉換器100的效率,例如在本發明中使用轉換效率較高的DC-DC轉換器。DC-DC轉換器112可以是開關電容器DC-DC轉換器,或降壓轉換器,或任何合適的DC-DC轉換器,DC-DC轉換器112可以將輸入電壓VDD 100進行降壓轉換,使在節點126處的電壓(輸入電壓Vin)比輸入電壓VDD 100低。此外,本實施例中,轉換器100包括第一轉換路徑102,第二轉換路徑104,電感器106,電晶體118,輸出電容器108。轉換器100可以包括控制器或不包括控制器,本實施例中以轉換器100不包括控制器為例描述。
轉換器100可以由控制器120控制,控制器120可以是控制電路或程式設計有用於控制轉換路徑的指令的處理器。控制器120可以根據負載122的負載狀態(例如重載或輕載)來控制第一轉換路徑102和第二轉換路徑104的啟用或禁用。可以透過接通或斷開電晶體116和114來分別啟用或禁用第一轉換路徑102和第二轉換路徑104。在一些實施例中,電晶體116和114可以是功率場效應電晶體(FET,field effect transistor)。
發明人已經認識並理解,當負載狀態為重載時,與電晶體的導通電阻(Rds,on)成正比的傳導損耗決定了功率損耗。將輸入電壓直接轉換為輸出電壓可以產生最高效率,因為可以透過增加電晶體的閘極至源極電壓(Vgs)來降低Rds,on。另一方面,當負載狀態為輕載時,與電晶體的漏極至源極電壓的平方(即Vds2)成正比的開關損耗變得與傳導損耗相當。在多階段中轉換輸入電壓可以減少開關損耗,因此此時可以啟用第二轉換路徑104,並禁用第一轉換路徑102。例如,Vds的值為4,直接轉換的開關損耗結果為16(即42),而兩階段轉換的開關損耗結果為8(即22和22的總和),這是直接轉換的值的一半,因為每階段的Vds的值為2(4/2(兩階段)=2),因此每階段的開關損耗就是4(即22),兩階段的開關損耗就是8(即4+4)。
在一些實施例中,當負載122的負載狀態為重載時,控制器120可啟用第一轉換路徑102,並禁用第二轉換路徑104。第一轉換路徑102,電晶體118,電感器106,輸出電容器108可以用作降壓轉換器。例如,當電晶體116導通時,電感器106和輸出電容器108可以充電;當電晶體116截止時,電感器106和輸出電容器108可以提供輸出電壓Vout。此時透過第一轉換路徑102將輸入電壓VDD轉換為輸出電壓,以用於重載的負載狀態。
在一些實施例中,當負載122的負載狀態為輕載時,控制器120可以啟用第二轉換路徑104,並禁用第一轉換路徑102。第二轉換路徑104,電晶體118,電感器106,輸出電容器108可以用作降壓轉換器。控制器120可以根據例如負載122的值來控制DC-DC轉換器112的輸出電壓,其中負載122的值可以由主機系統(例如計算機系統或智慧手機系統)請求的電壓或電流來測量。DC-DC轉換器112在節點126處的輸出電壓可以低於輸入電壓VDD 110,使得可以提高輕載負載的效率。DC-DC轉換器112的輸出電壓可以是輸入電壓VDD 110的一半,輸入電壓VDD 100的四分之一或任何合適的值。此時透過第二轉換路徑104將輸入電壓VDD轉換為輸出電壓,以用於輕載的負載狀態。此外,第一轉換路徑102和第二轉換路徑104的轉換效率可以相同或不同。並且透過第一轉換路徑102轉換後在輸出節點124處產生的輸出電壓與透過第二轉換路徑104轉換後在輸出節點124處產生的輸出電壓可以相同,也可以不同(例如第二輸出電壓低於第一輸出電壓,當然第二輸出電壓也可以高於第一輸出電壓)。此外在本實施例中,電晶體118,電感器106,輸出電容器108可以為第一轉換路徑102和第二轉換路徑104共用,電晶體118可以在電感器106和輸出電容器108可以提供輸出電壓Vout時起到輔助作用。
在一些實施例中,控制器120可以根據負載122的瞬態響應(例如快速或慢速)來控制第一轉換路徑102和第二轉換路徑104的啟用或禁用。在一些實施例中,當負載122所需要的瞬態響應為快速時,控制器120可啟用第一轉換路徑102,並禁用第二轉換路徑104。在一些實施例中,當負載122所需要的瞬態響應為慢速時,控制器120可以啟用第二轉換路徑104,並禁用第一轉換路徑102。這是因為,在啟用第一轉換路徑102時,輸入電壓Vin等於輸入電壓VDD 100,因此輸入電壓Vin與輸出電壓Vout差值較大,所以電感器的電流轉換速率(即(Vin-Vout)/ L)較大,瞬態響應就比較快速。因此對應的,在重載狀態下時,瞬態響應比較快速。而在啟用第二轉換路徑104時,輸入電壓Vin等於節點126處的電壓值,節點126處的電壓值比輸入電壓VDD 100低,因此輸入電壓Vin與輸出電壓Vout差值較小,所以電感器的電流轉換速率(即(Vin-Vout)/ L)較小,瞬態響應就比較慢速。因此對應的,在輕載狀態下時,瞬態響應比較慢速。
在一些實施例中,負載狀態可以指示由轉換器的輸出電壓驅動的負載的大小,以及負載的瞬態響應。在一些實施例中,當負載狀態為輕載但需要輸出電壓下降超過一定量時,例如2%,3%,或多於另一輕載負載的瞬間(instant)先前輸出電壓(如0.7V),控制器120可啟用第一轉換路徑102,並禁用第二轉換路徑104。也就是說,在輕載狀態下負載突然增大,使得較低的輸入電壓Vin無法負擔時,將會控制使用第一轉換路徑,從而增加輸入電壓Vin,使得可以驅動增加的負載(例如重載)。在一些實施例中,當負載狀態為輕載但需要輸出節點處的輸出電流在一定時間內增加時,例如透過1μH的電感器106在0.1ms內從0A增加到1A,控制器120可以啟用第一轉換路徑102,並且禁用第二轉換路徑104。也就是說,如果在輕載狀態時需要快速瞬態響應,可以啟用第一轉換路徑102(當然此時瞬態響應快速而轉換器的效率因為功率損耗較大(例如上述描述的直接轉換導致功率損耗為42=16)的原因相對較低)。另一方面,當負載可以接受所需的輸出電流在較長時間內(例如5ms)才提供時,控制器120可以啟用第二轉換路徑104,並且禁用第一轉換路徑102,以得到更高的效率。也就是說,如果在輕載狀態時不需要快速瞬態響應時(即輕載狀態時為慢速瞬態響應),可以繼續啟用第二轉換路徑104,而此時的轉換效率相對較高。
在一些實施例中,轉換器可以針對不同的轉換路徑具有不同的輸入電壓。第2圖描繪了單相轉換器200的示例性實施例,單相轉換器200可以具有第一轉換路徑202和第二轉換路徑204。類似於第1圖所示的轉換器100的第一轉換路徑102和第二轉換路徑104,第2圖中的第一轉換路徑202和第二轉換路徑204可以耦合到的電感器206(電感器206耦合到輸出節點224),此外還設有輸出電容器208耦合到輸出節點224。第一轉換路徑202和第二轉換路徑204也可以耦合到電晶體218。
第一轉換路徑202和第二轉換路徑204可以分別耦合到第一輸入電壓VDD和第二輸入電壓VCC。第一輸入電壓VDD可以由電池226提供。第二輸入電壓VCC可以來自由轉換器200驅動的系統222(例如智慧手機的系統)的內部節點。第二輸入電壓VCC可以低於第一輸入電壓VDD。
第一轉換路徑202和第二轉換路徑204可以分別包括電晶體216和電晶體214。轉換器200可以由控制器220控制,控制器220可以根據例如系統222的運轉模式(例如輕載或重載)來控制第一轉換路徑202和第二轉換路徑204的啟用或禁用。
在一些實施例中,當系統222在重載模式下運轉時,控制器200可以啟用第一轉換路徑202,並且禁用第二轉換路徑204。這是因為,第一輸入電壓VDD的電壓值較高(比第二輸入電壓VCC的電壓值高),如上所述,當負載狀態為重載時,與電晶體的導通電阻(Rds,on)成正比的傳導損耗決定了功率損耗。將輸入電壓直接轉換為輸出電壓可以產生最高效率,因為可以透過增加電晶體的閘極至源極電壓(Vgs)來降低Rds,on。從而降低傳導損耗,以提高轉換效率。因此,轉換器200可以將第一輸入電壓VDD轉換為在輸出節點224處的第一輸出電壓,以用於重載模式。
在一些實施例中,當系統222在輕載模式下運轉時,控制器200可以禁用第一轉換路徑202,並且啟用第二轉換路徑204。這是因為,第二輸入電壓VCC的電壓值較低(比第一輸入電壓VDD的電壓值低),如上所述,當負載狀態為輕載時,與電晶體的漏極至源極電壓的平方(即Vds2)成正比的開關損耗變得與傳導損耗相當,因此減少電晶體214的輸入電壓(即第二輸入電壓VCC較低)將可以減少開關損耗,從而提高轉換效率。因此,轉換器200可以將第二輸入電壓VCC轉換為在輸出節點224處的第二輸出電壓(在一個示例中,第二輸入電壓低於第一輸出電壓),以用於輕負載模式。因此,儘管第二輸出電壓低於第一輸出電壓,但是可以提高轉換器的輕載效率。此外,本實施例中轉換器還可以具有更多個轉換路徑,例如第三轉換路徑,其中與第三轉換路徑對應的第三輸入電壓可以比第一輸入電壓VDD更高,例如第一輸入電壓VDD為4,第二輸入電壓VCC為2,第三輸入電壓為16,這樣就可以更加精細的對應不同的負載或不同速度的瞬態響應。例如在最為重載的情況下,為提高轉換效率而使用第三轉換路徑;在次級重載的情況下,可以使用第二轉換路徑;在輕載的情況下可以使用第三轉換路徑。
第3圖描繪了單相轉換器300的示例性實施例,單相轉換器300可以分別經由單獨的第一轉換路徑302和第二轉換路徑304轉換一個輸入電壓VDD 310,以分別用於重載和輕載狀態。轉換器300可以將輸入電壓VDD 310轉換為在輸出節點324處的輸出電壓Vout,以驅動負載322。第一轉換路徑302和第二轉換路徑304可以耦合到電感器306(電感器306耦合到輸出節點324)。第一轉換路徑302和第二轉換路徑304還可以耦合到相互串聯連接的電晶體318和電晶體328。第一轉換路徑302可以包括電晶體316。
第二轉換路徑304可以包括相互串聯連接的電晶體314和電晶體326。轉換器300還可以包括耦合在電晶體326和電晶體318之間的飛跨電容器(flying capacitor)330。在一些實施例中,電晶體314和電晶體326之間可以驅動為180度異相。飛跨電容器330可以在每個切換週期重複充電和放電。除了輸出電容器308之外,飛跨電容器330在放電時可以用作另一個電源(例如第二電源),當然電感器306也可以在放電時作為電源。
轉換器300可以由控制器320控制,控制器320可以根據負載322的負載狀態控制第一轉換路徑302和第二轉換路徑304的啟用或禁用。基於與第1圖類似的原因,在一些實施例中,當負載322的負載狀態為重載時,控制器320可以啟用第一轉換路徑302,並且禁用第二轉換路徑304。然後,轉換器300可以用作降壓轉換器以用於快速瞬態響應性能。另一方面,當負載322的負載狀態為輕載時,控制器320可以啟用第二轉換路徑304,並且禁用第一轉換路徑302。此外,當啟用第一轉換路徑302時,電晶體318和328控制為同時接通或斷開,以在電感器306和輸出電容器308作為電源時起到輔助作用。而當啟用第二轉換路徑304時,電晶體318用作第二轉換路徑304其中的一階段(第二轉換路徑304此時有3階段,包括電晶體326,314和328),而電晶體328在電感器306和輸出電容器308作為電源時起到輔助作用。因此,當啟用第二轉換路徑304時,轉換器300可以用作3階段降壓轉換器(包括電晶體326,314和328),這樣可以使開關損耗更低,以用於高輕載效率。
第4圖描繪了根據一些實施例的多相轉換器400。轉換器400可以將輸入電壓VSP轉換為在輸出節點424處的輸出電壓VS1,以驅動負載(圖未示)。轉換器400可以包括第一轉換路徑402和第二轉換路徑404。控制器(圖未示,例如類似於第1圖中的控制器120)可以根據負載的負載狀態控制第一和第二轉換路徑402,404的啟用或禁用。
在一些實施例中,當負載狀態為重載時,輸入電壓VSP可以透過第一轉換路徑402轉換為第一輸出電壓,以驅動負載。第一轉換路徑402可以包括耦合到輸入電壓VSP的複數個電晶體MH,1,... MH,N。第一轉換路徑402可以包括耦合到輸出節點424的複數個電感器L1,...... LN,並且複數個電感器L1,...... LN還分別耦合到複數個電晶體MH,1,... MH,N。第一轉換路徑402和電晶體ML,1可以用作多相降壓轉換器。
在一些實施例中,當負載狀態為輕載時,輸入電壓VSP可以透過第二轉換路徑404轉換為第二輸出電壓(第二輸出電壓可以低於第一輸出電壓),以驅動負載。第二轉換路徑404可以包括串聯連接到電晶體MLP的DC-DC轉換器412。DC-DC轉換器412在節點426處的輸出電壓可以低於輸入電壓VSP。因此,儘管第二輸出電壓可以低於第一輸出電壓,但是轉換器400可以在重載負載和輕載負載狀態下均具有高效率。此外VSN可以接地或接負電壓。此外,作為另外一個示例,第二輸出電壓可以等於第一輸出電壓。
第5圖描繪根據一些實施例的具有複數個輸出的電源管理積體電路(PMIC,power management integrated circuit)500的示意圖。當然第5圖所示的電路也可以單獨用於轉換器中,此外第1圖-第4圖所示的電路可以用在PMIC中。PMIC500可以包括具有第一輸出節點424的第一轉換器BUCK1,以及將輸入電壓VSP轉換為在第二輸出節點524處的輸出電壓VSM的第二轉換器BUCKN。在一些實施例中,第一轉換器BUCK1可以具有轉換器400的一些或者全部的特徵。儘管PMIC 500在所示的示例中包括兩個輸出節點,但PMIC可包括三個,四個或任何合適數量的輸出節點。
第二轉換器BUCKN可以具有兩個轉換路徑502,504。在一些實施例中,第二轉換器BUCKN可以具有轉換器400的一些或全部的特徵。在一些實施例中,轉換路徑502可以包括耦合到輸入電壓VSP的複數個電晶體MH,M1,...... MH,MN。轉換路徑502可以包括耦合到輸出節點524的複數個電感器LM1,...... LMN,並且複數個電感器LM1,...... LMN還分別耦合到複數個電晶體MH,M1,...... MH,MN。當第二輸出節點524處的負載狀態為重載時,輸入電壓VSP可以透過轉換路徑502轉換。因此,轉換路徑502和電晶體ML,M1可以用作多相降壓轉換器。
在一些實施例中,第二轉換路徑504可以包括串聯連接到電晶體MLP,M的DC-DC轉換器412。當第二輸出節點524處的負載狀態為輕載時,輸入電壓VSP可以透過轉換路徑504轉換。因此,第二轉換器BUCKN可以用作降壓轉換器。此外,類似於第4圖所示的轉換器400,當負載狀態為重載時,輸入電壓VSP可以透過轉換路徑(例如與第4圖中的第一轉換路徑402對應的轉換路徑)轉換為在節點424處的第一輸出電壓,以驅動負載。當負載狀態為輕載時,輸入電壓VSP可以透過轉換路徑(例如與第4圖中的第二轉換路徑404對應的轉換路徑)轉換為在節點424處的第二輸出電壓,以驅動負載。
第6圖描繪了用於在轉換器(例如轉換器100,200,300,400或500)的輸出節點處生成輸出電壓的方法600。方法600可以從步驟602在負載狀態改變時開始。方法600可以包括步驟604,確定負載的大小,其中可以透過例如將負載的輸出電壓或負載的目標輸出電流與閾值電壓/電流進行比較來確定負載的大小。當確定負載的大小為重載時,方法600可以包括步驟606,啟用第一轉換路徑(例如上述的轉換路徑102,202,302,402或502),以及禁用第二轉換路徑(例如上述的轉換路徑104,204,304或404)。
當確定負載的大小為輕載時,方法600可以包括步驟608,確定負載的瞬態響應,其中可以透過例如將瞬態響應與閾值進行比較來確定負載的瞬態速度。當確定負載的瞬態響應速度為快速時,方法600可以包括步驟606,啟用第一轉換路徑(例如上述的轉換路徑102,202,302,402或502),以及禁用第二轉換路徑(例如上述的轉換路徑104,204,304或404)。當確定負載的瞬態響應速度為慢速時,方法600可以包括步驟610,啟用第二轉換路徑(例如上述的轉換路徑104,204,304或404),以及禁用第一轉換路徑(例如上述的轉換路徑102,202,302,402或502)。應當理解的是,方法600的步驟不應限於所示的順序。在一些實施例中,步驟608可以在步驟604之前執行,例如,方法600可以從步驟602在負載狀態改變時開始;之後確定負載的瞬態響應速度,若負載的瞬態響應速度為快速,則啟用第一轉換路徑以及禁用第二轉換路徑;若負載的瞬態響應速度為慢速,則確定負載的大小,若負載的大小為重載,則啟用第一轉換路徑以及禁用第二轉換路徑;若負載的大小為輕載,則啟用第二轉換路徑以及禁用第一轉換路徑。在一些實施例中,步驟600可以僅包括步驟604和608中的一個,例如,方法600可以從步驟602在負載狀態改變時開始,之後確定負載的大小,若負載的大小為重載,則啟用第一轉換路徑以及禁用第二轉換路徑;若負載的大小為輕載,則啟用第二轉換路徑以及禁用第一轉換路徑。又例如,方法600可以從步驟602在負載狀態改變時開始;之後確定負載的瞬態響應速度,若負載的瞬態響應速度為快速,則啟用第一轉換路徑以及禁用第二轉換路徑,若負載的瞬態響應速度為慢速,則啟用第二轉換路徑以及禁用第一轉換路徑。在一些實施例中,方法600可以包括任何其他合適的步驟。
本文描述的裝置和技術的各個方面可以單獨使用,組合使用,或者在前面的描述中描述的實施例中沒有特別討論的各種佈置中使用,因此在前面的描述中闡述的或在附圖中示出的組件不限於本文描述的裝置和技術應用的細節和佈置。例如,一個實施例中描述的方面可以以任何方式與其他實施例中描述的組合。
術語“大約”,“基本上”和“大約”可以用於表示在一些實施方案中在目標值的±20%之內,在一些實施方案中在目標值的±10%之內,在一些實施方案中在目標值的±5%之內,在一些實施方案中在目標值的±2%之內。
在申請專利範圍中使用諸如“第一”,“第二”,“第三”等的序數術語來修飾申請專利範圍元素本身並不意味著一個該特徵優先於另一特徵的優先順序,或者執行方法的動作的時間順序,而是僅用作標記以將具有特定名稱的一個特徵與具有相同名稱的另一個特徵(但是用於使用序數術語)區分,以區分特徵。
此外,這裡使用的措辭和術語是出於描述的目的,而不應被視為限制。本文中“包括”,“包含”或“具有”,“含有”,“涉及”及其變化形式的使用旨在涵蓋其後列出的特徵及其等同物以及附加特徵。
儘管已經對本發明實施例及其優點進行了詳細說明,但應當理解的係,在不脫離本發明的精神以及申請專利範圍所定義的範圍內,可以對本發明進行各種改變、替換和變更。所描述的實施例在所有方面僅用於說明的目的而並非用於限制本發明。本發明的保護範圍當視所附的申請專利範圍所界定者為准。本領域技術人員皆在不脫離本發明之精神以及範圍內做些許更動與潤飾。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
100、200、300、400、500‧‧‧轉換器
102、202、302、402、502‧‧‧第一轉換路徑
104、204、304、404、504‧‧‧第二轉換路徑
106、206、306、L1、L2、L3、L4、LN、LM1、LM2、LM3、LM4、LMN‧‧‧電感器
108、208、308‧‧‧輸出電容器
110、310、VSP‧‧‧輸入電壓
112、412‧‧‧DC-DC轉換器
114、116、118、214、216、218、314、316、318、326、328、MH 1、MH N、MLP、ML 1、MH M1、MH MN、MLP M、ML M1、‧‧‧電晶體
120、220、320‧‧‧控制器
122、322‧‧‧負載
124、224、342、424‧‧‧輸出節點
524‧‧‧第二輸出節點
126、426‧‧‧節點
222‧‧‧系統
226‧‧‧電池
330‧‧‧飛跨電容器
BUCK1‧‧‧第一轉換器
BUCKN‧‧‧第二轉換器
VS1、VSM‧‧‧輸出電壓
600‧‧‧方法
602、604、606、608、610‧‧‧步驟
透過閱讀後續的詳細描述和實施例可以更全面地理解本發明,本實施例參照附圖給出,其中: 第1圖是示出根據一些實施例的具有部分兩階段架構的單相轉換器的示意圖。 第2圖是示出根據一些實施例的單相轉換器的示意圖,該單相轉換器可以分別經由用於重載和輕載狀態的相應路徑轉換不同的輸入電壓。 第3圖是示出根據一些實施例的單相轉換器的示意圖,該單相轉換器可以分別經由用於重載和輕載狀態的單獨路徑轉換一個輸入電壓。 第4圖是示出根據一些實施例的多相轉換器的示意圖。 第5圖是示出根據一些實施例的具有複數個輸出的功率管理積體電路的示意圖。 第6圖是示出根據一些實施例的在轉換器的輸出節點處生成輸出電壓的方法的流程圖。

Claims (18)

  1. 一種轉換器,用於在輸出節點處產生輸出電壓,該轉換器包括: 第一轉換路徑,配置為在第一負載狀態下在該輸出節點處生成該輸出電壓; 第二轉換路徑,配置為在與該第一負載狀態不同的第二負載狀態下在該輸出節點處產生該輸出電壓;以及 至少一個電感器,耦合到該第一轉換路徑和該第二轉換路徑,並耦合到該輸出節點。
  2. 如申請專利範圍第1項所述的轉換器,其中該輸出節點處的輸出電壓低於該第一轉換路徑或該第二轉換路徑的輸入電壓。
  3. 如申請專利範圍第1項所述的轉換器,其中該第一轉換路徑和該第二轉換路徑並聯連接在輸入電壓和該電感器之間,該輸入電壓高於在該輸出節點處的該輸出電壓。
  4. 如申請專利範圍第1項所述的轉換器,其中該第二轉換路徑包括DC-DC轉換器,並且該第一負載狀態比該第二負載狀態更加重載或更加快速。
  5. 如申請專利範圍第4項所述的轉換器,其中該DC-DC轉換器是開關電容器DC-DC轉換器或降壓轉換器。
  6. 如申請專利範圍第4項所述的轉換器,其中該DC-DC轉換器或降壓轉換器配置為具有比該轉換器更高的功率效率。
  7. 如申請專利範圍第4項所述的轉換器,其中該第一轉換路徑耦合到輸入電壓,並且該第二轉換路徑的DC-DC轉換器耦合到該輸入電壓。
  8. 如申請專利範圍第7項所述的轉換器,其中該第一轉換路徑包括耦合在該輸入電壓和該電感器之間的第一電晶體,並且該第二轉換路徑包括耦合在該DC-DC轉換器和該電感器之間的第二電晶體。
  9. 如申請專利範圍第1項所述的轉換器,其中該第一轉換路徑耦合到第一輸入電壓,該第二轉換路徑耦合到低於該第一輸入電壓的第二輸入電壓,並且該第一負載狀態比該第二負載狀態更加重載或更加快速。
  10. 如申請專利範圍第1項所述的轉換器,其中該轉換器還包括耦合到該輸出節點的複數個電感器,該複數個電感器包括該電感器,以及還具有分別耦合到該複數個電感器的複數個電晶體。
  11. 如申請專利範圍第1項所述的轉換器,其中該第一轉換路徑包括耦合在輸入電壓和該電感器之間的電晶體,並且該第二轉換路徑包括耦合在該輸入電壓和該電感器之間的兩個串聯連接的電晶體。
  12. 一種轉換器,能夠在輸出節點處產生複數個輸出電壓,該轉換器包括: 第一轉換路徑,用於在該輸出節點處產生第一輸出電壓; 第二轉換路徑,用於在該輸出節點處產生第二輸出電壓;以及 至少一個電感器,耦合到該第一轉換路徑和該第二轉換路徑,並耦合到該輸出節點。
  13. 如申請專利範圍第12項所述的轉換器,其中該第二轉換路徑包括DC-DC轉換器,並且該第一輸出電壓高於該第二輸出電壓。
  14. 如申請專利範圍第12項所述的轉換器,其中該第一轉換路徑耦合在第一輸入電壓與該電感器之間,該第二轉換路徑耦合在第二輸入電壓與該電感器之間,該第一輸出電壓高於該第二輸出電壓,該第一輸入電壓高於該第二輸入電壓。
  15. 如申請專利範圍第12項所述的轉換器,其中第一轉換路徑配置為在第一負載狀態下在該輸出節點處產生該第一輸出電壓;第二轉換路徑配置為在第二負載狀態下在該輸出節點處產生該第二輸出電壓;其中該第一負載狀態比該第二負載狀態更加重載或更加快速。
  16. 一種電源管理積體電路系統,包括: 第一轉換器,包括用於第一負載狀態的第一轉換路徑,用於第二負載狀態的第二轉換路徑,以及耦合到該第一轉換路徑和第二轉換路徑的第一電感器。
  17. 如申請專利範圍第16項所述的電源管理積體電路系統,還包括: 第二轉換器,包括用於第三負載狀態的第三轉換路徑,用於第四負載狀態的第四轉換路徑,以及耦合到該第三轉換路徑和第四轉換路徑的第二電感器,其中,該第一轉換器的第二轉換路徑包括DC-DC轉換器,該第一負載狀態比該第二負載狀態更加載或更加快速,該第二轉換器的第四轉換路徑包括該DC-DC轉換器,以及該第三負載狀態比該第四負載狀態更加重載或更加快速。
  18. 如申請專利範圍第16項所述的電源管理積體電路系統,其中當該第二轉換路徑禁用時,該第一轉換器用作多相降壓轉換器。
TW107133341A 2017-09-21 2018-09-21 轉換器和電源管理積體電路系統 TWI686043B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762561222P 2017-09-21 2017-09-21
US62/561,222 2017-09-21
US15/962,910 2018-04-25
US15/962,910 US11095222B2 (en) 2017-09-21 2018-04-25 High efficiency converter

Publications (2)

Publication Number Publication Date
TW201916562A true TW201916562A (zh) 2019-04-16
TWI686043B TWI686043B (zh) 2020-02-21

Family

ID=65720717

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107133341A TWI686043B (zh) 2017-09-21 2018-09-21 轉換器和電源管理積體電路系統

Country Status (3)

Country Link
US (1) US11095222B2 (zh)
CN (1) CN109586572B (zh)
TW (1) TWI686043B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756906B (zh) * 2019-11-06 2022-03-01 美商高效電源轉換公司 具有用以對飛馳電容器進行預充電之分壓器的多階轉換器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763668B2 (en) * 2017-11-01 2020-09-01 Mediatek Inc. Converter with inductors coupled in series
US10389237B1 (en) * 2018-04-19 2019-08-20 Linear Technology Holding Llc Light-load efficiency improvement of hybrid switched capacitor converter
TWI713288B (zh) * 2020-01-21 2020-12-11 立錡科技股份有限公司 切換式電源轉換電路與切換電路
CN113872417B (zh) * 2020-06-12 2024-05-14 华为技术有限公司 Dvfs电源系统和dvfs电源控制方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897715B2 (en) * 2002-05-30 2005-05-24 Analog Devices, Inc. Multimode voltage regulator
US7498694B2 (en) * 2006-04-12 2009-03-03 02Micro International Ltd. Power management system with multiple power sources
US7541784B2 (en) * 2006-05-26 2009-06-02 Endurance Wind Power Dual voltage switching in power generation
JP4907275B2 (ja) 2006-09-01 2012-03-28 株式会社リコー 電源装置及びその動作制御方法
WO2009067591A2 (en) * 2007-11-21 2009-05-28 The Arizona Board Of Regents On Behalf Of The University Of Arizona Adaptive-gain step-up/down switched-capacitor dc/dc converters
CN102739065B (zh) 2011-03-31 2016-01-06 艾默生网络能源系统北美公司 一种高功率密度电源
TWM446455U (zh) 2012-08-27 2013-02-01 Richtek Technology Corp 充電器電路
KR20140055068A (ko) 2012-10-30 2014-05-09 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 이용한 유기 전계 발광 표시장치
CN104052275B (zh) 2013-03-14 2019-06-04 马克西姆综合产品公司 用于具有快速瞬态响应的两级降压升压转换器的系统和方法
US9577532B2 (en) 2013-07-25 2017-02-21 Gazelle Semiconductor, Inc. Switching regulator circuits and methods
TWI509402B (zh) 2014-04-21 2015-11-21 Fsp Technology Inc 電源供應裝置及其電源供應方法
CN105790626B (zh) 2014-12-25 2019-02-12 台达电子工业股份有限公司 谐振型功率转换电路及控制谐振型功率转换电路的方法
US9825480B2 (en) * 2015-02-11 2017-11-21 Mediatek Inc. Apparatus for performing hybrid power control in an electronic device with aid of separated power output nodes for multi-purpose usage of boost
US9731613B2 (en) 2015-02-11 2017-08-15 Mediateck Inc. Apparatus for performing hybrid power control in an electronic device with aid of separated power output nodes for multi-purpose usage of boost
JP6361827B2 (ja) 2015-05-29 2018-07-25 株式会社村田製作所 Dc−dcコンバータおよびスイッチングic
TWI551866B (zh) 2015-09-22 2016-10-01 國立成功大學 量測裝置、電壓調整器模組及實現最佳化avp的方法
DE102016211163B4 (de) 2016-06-22 2019-05-23 Dialog Semiconductor (Uk) Limited Mehrphasen-Mehrstufen-Schaltleistungsumsetzersystem, elektronische Vorrichtung und Verfahren zum Betreiben eines Mehrphasen-Mehrstufen-Schaltleistungsumsetzersystems
US10361659B2 (en) * 2017-03-22 2019-07-23 Intel IP Corporation Power envelope tracker and adjustable strength DC-DC converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756906B (zh) * 2019-11-06 2022-03-01 美商高效電源轉換公司 具有用以對飛馳電容器進行預充電之分壓器的多階轉換器
US11646656B2 (en) 2019-11-06 2023-05-09 Efficient Power Conversion Corporation Multi-level converter with voltage divider for pre-charging flying capacitor

Also Published As

Publication number Publication date
TWI686043B (zh) 2020-02-21
US11095222B2 (en) 2021-08-17
CN109586572B (zh) 2020-11-13
US20190089252A1 (en) 2019-03-21
CN109586572A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
TWI686043B (zh) 轉換器和電源管理積體電路系統
TWI652886B (zh) 用於電荷泵的平衡技術及電路
US11515793B2 (en) Hybrid multi-level power converter with inter-stage inductor
US9178422B2 (en) Resonance-based single inductor output-driven DC-DC converter and method
US9490644B2 (en) Reconfigurable compensator with large-signal stabilizing network
US8461815B1 (en) Fast transient buck regulator with dynamic charge/discharge capability
US20180175726A1 (en) Hybrid DCDC Power Converter with Increased Efficiency
US20150002115A1 (en) Series-capacitor buck converter multiphase controller
US10270354B1 (en) Synchronous rectifier controller integrated circuits
US11011988B1 (en) Implicit on-time regulated hybrid converter
US9287778B2 (en) Current parking response to transient load demands
US7911192B2 (en) High voltage power regulation using two power switches with low voltage transistors
JP2013516955A (ja) オペレーション・モード・スイッチングによるllcソフトスタート
US9577505B1 (en) Bootstrap controller for switching power supply
US10122276B2 (en) Method for operating a power converter circuit and power converter circuit
TWI694666B (zh) 轉換器及其驅動及控制方法
US20060255777A1 (en) Apparatus and method for improving voltage converter low load efficiency
US20140117951A1 (en) Multi-stage power supply with fast transient response
CN211127582U (zh) 电子转换器和集成电路
Biswas et al. GaN based switched capacitor three-level buck converter with cascaded synchronous bootstrap gate drive scheme
KR101250321B1 (ko) Llc 공진 컨버터
CN111566921A (zh) 用于三电平降压调节器的电路
WO2022236799A1 (zh) 一种电压调节模块及集成芯片
CN114172374A (zh) 基于双电感的交叉飞电容混合型升降压dc-dc转换器
TW201807921A (zh) 充電裝置及其控制方法