WO2018036298A1 - 阵列基板及显示装置 - Google Patents

阵列基板及显示装置 Download PDF

Info

Publication number
WO2018036298A1
WO2018036298A1 PCT/CN2017/092914 CN2017092914W WO2018036298A1 WO 2018036298 A1 WO2018036298 A1 WO 2018036298A1 CN 2017092914 W CN2017092914 W CN 2017092914W WO 2018036298 A1 WO2018036298 A1 WO 2018036298A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
lines
line
array substrate
voltage lead
Prior art date
Application number
PCT/CN2017/092914
Other languages
English (en)
French (fr)
Inventor
先建波
郝学光
程鸿飞
马永达
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/743,530 priority Critical patent/US10541256B2/en
Publication of WO2018036298A1 publication Critical patent/WO2018036298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136272Auxiliary lines
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an array substrate and a display device.
  • a conventional liquid crystal display array substrate includes a base substrate.
  • the base substrate includes a pixel region and a peripheral region surrounding the pixel region.
  • a plurality of data lines, a plurality of gate lines, and a plurality of pixel units are disposed on the base substrate.
  • the pixel units are formed in a matrix and defined by a plurality of data lines and a plurality of gate lines which are formed on the base substrate and intersect each other.
  • a thin film transistor (TFT) is formed in each pixel unit.
  • the gate lines are used to drive the pixel cells of their respective rows.
  • the data lines are used to supply voltage to the pixel electrodes in the pixel cells of their respective columns.
  • any data line or breakpoint of the grid line on the array substrate may cause defects in the display panel, thereby affecting the display effect of the product.
  • the embodiments described herein provide an array substrate and display device that can increase the number of data lines or gate lines that can be repaired and improve the utilization of the maintenance line.
  • an array substrate includes data lines and gate lines disposed on the array substrate having a pixel region and a peripheral region, and at least two service lines disposed on the peripheral region of the array substrate.
  • the at least two service lines intersect one of the data line and the gate line, each of the service lines having at least one dimension Repair the voltage leads.
  • each of the service lines has a service voltage lead and the service voltage lead is located at an end of the same side of the service line.
  • each of the service lines has a service voltage lead.
  • the service voltage leads of at least one of the service lines are located at ends of different sides of the service line relative to the service voltage leads of other service lines.
  • the at least two service lines include two of the service lines, each of the service lines having only one service voltage lead.
  • the service voltage lead of one of the two service lines is located at an end of the different side of the service line with respect to the service voltage lead of the other of the two service lines .
  • the data line and the gate line are respectively connected to respective integrated circuits (ICs) on a side of the repair line opposite to the pixel area.
  • ICs integrated circuits
  • At least one of the service voltage leads is located between adjacent ones of the ICs.
  • the service line is divided into a plurality of service line groups.
  • Each of the repair line sets includes at least two of the service lines and only intersects the data lines or grid lines connected to the same IC. At least one end of at least one of the service lines in each of the service line sets has the service voltage lead.
  • At least one of the service voltage leads is located between adjacent ones of the ICs.
  • each of the service line groups corresponds to 300 to 400 of the data lines or the gate lines.
  • one of the data line and the gate line is disposed in the same layer as the repair line.
  • the service voltage lead is disposed in the same layer as the service line.
  • the service voltage lead is located at a different layer from the service line and is electrically connected.
  • the maintenance voltage lead of the at least two service lines is introduced The voltages are equal or different.
  • the data line or the gate line to be repaired is electrically connected to a corresponding one of the service lines at an intersection position.
  • the service voltage lead of at least one of the service lines is located between two adjacent data lines or gate lines.
  • the electrical connection comprises a soldered connection.
  • a common electrode line is further included, the common electrode line including at least one common electrode lead. At least one of the service voltage leads is located between one of the data lines or gate lines and the common electrode lead. Alternatively, at least one of the service voltage leads does not overlap the common electrode lead.
  • a display device includes the array substrate described in any of the above embodiments.
  • the provision of at least two service lines can increase the number of data lines or gate lines that can be repaired, thereby improving the utilization rate of the maintenance line. Further, it is advantageous to introduce a service voltage at a desired location by providing at least two service lines and having each of the service lines with a plurality of service voltage leads.
  • the repair voltage can be selected by the service voltage lead with the shortest electrical path to the data line or gate line to be repaired, thereby solving the voltage non-uniformity problem due to the excessive length of the electrical path.
  • FIG. 1 shows a schematic structural view of an array substrate according to a first embodiment of the present disclosure
  • FIG. 2 shows a schematic structural view of an array substrate according to a second embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of an array substrate according to a third embodiment of the present disclosure.
  • FIG. 4 is a schematic structural view of an array substrate according to a fourth embodiment of the present disclosure.
  • FIG. 5 is a schematic structural view of an array substrate according to a fifth embodiment of the present disclosure.
  • FIG. 6 illustrates a schematic structural view of a display device according to an embodiment of the present disclosure.
  • the present disclosure provides an array substrate including data lines and gate lines disposed on an array substrate having a pixel region and a peripheral region surrounding the pixel region, and at least two service lines disposed on a peripheral region of the array substrate.
  • the service line intersects the data line.
  • Each service line has at least one service voltage lead.
  • a maintenance line can only repair one data line in the conventional maintenance method, at least two repair lines can repair at least two data lines in the present disclosure, thereby increasing the number of maintenance data lines and improving the utilization rate of the maintenance line.
  • FIG. 1 shows a schematic structural view of an exemplary array substrate provided by a first embodiment of the present disclosure.
  • the array substrate 100 includes a pixel region 101 and a peripheral region 102.
  • the peripheral region 102 is disposed around the pixel region 101 (Fig. 1 shows only a portion of the peripheral region).
  • a plurality of data lines 110 and a plurality of gate lines 120 are disposed on the array substrate 100.
  • At least two service lines 130 are disposed on the peripheral area 102.
  • data line 110 is further coupled to a respective IC located on a side of service line 130 opposite pixel area 101 that provides an input voltage to data line 110.
  • Service line 130 intersects data line 110 for servicing data line 110.
  • the service line 130 can be parallel, for example, to the gate line 120.
  • each of the service lines 130 has a service voltage lead 131, and the service voltage lead 131 is located at the end of the same side of each of the service lines 130.
  • providing at least two service lines 130 can increase the number of data lines 110 that can be repaired.
  • the provision of at least two service lines 130 can also flexibly introduce equal or different voltages to different service lines 130 based on different maintenance requirements.
  • FIG. 2 shows a schematic structural view of an exemplary array substrate provided by a second embodiment of the present disclosure.
  • the array substrate 100 has a pixel region 101 and a peripheral region 102 surrounding the pixel region 101.
  • a plurality of data lines 110 and a plurality of gate lines 120 are disposed on the array substrate 100.
  • At least two service lines 130 are disposed on the peripheral area 102.
  • data line 110 is further coupled to a respective IC located on a side of service line 130 opposite pixel area 101 that provides an input voltage to data line 110.
  • Service line 130 intersects data line 110 for servicing data line 110.
  • the service line 130 can be parallel, for example, to the gate line 120.
  • each of the service lines 130 has a service voltage lead 131.
  • the service voltage lead 131 of at least one of the service lines 130 is located at an end of the different side of the service line 130 with respect to the service voltage lead 131 of the other service line 130.
  • at least two service lines 130 may include two service lines 130.
  • Each service line 130 has only one service voltage lead 131.
  • the service voltage lead 131 of one of the two service lines 130 is located at the end of the different side of the service line 130 with respect to the service voltage lead 131 of the other of the two service lines 130.
  • the electrical path of the repair voltage lead 131 to the data line 110 to be repaired is too long, the signal attenuation is severe, and the maintenance is difficult.
  • the service voltage lead 131 of the at least one service line 130 in the service line 130 at the end of the different side of the service line 130 with respect to the service voltage lead 131 of the other service line 130 the service person is servicing the data line 110.
  • the maintenance voltage lead 131 having the shortest electrical path to the data line 110 to be repaired can be selected, and the voltage is introduced to the data line 110 to be repaired through the maintenance voltage lead 131, thereby solving the voltage non-uniformity caused by the excessive electrical path. Improve the success rate of repairs.
  • FIG. 3 shows a schematic structural view of an exemplary array substrate provided by the third embodiment of the present disclosure.
  • the array substrate 100 has a pixel region 101 and a peripheral region 102 surrounding the pixel region 101.
  • a plurality of data lines 110 and a plurality of gate lines 120 are disposed on the array substrate 100.
  • At least two service lines 130 are disposed on the peripheral area 102.
  • data line 110 is further coupled to a respective IC located on a side of service line 130 opposite pixel area 101 that provides an input voltage to data line 110.
  • Service line 130 intersects data line 110 for dimensioning Repair the data line 110.
  • the service line 130 can be parallel, for example, to the gate line 120.
  • each of the service lines 130 has at least one service voltage lead 131, and at least one service voltage lead 131 may be disposed between adjacent ICs.
  • This configuration can make full use of the layout space and improve the utilization of the maintenance line 130.
  • the data line 110 is broken, it is also possible to introduce a voltage to the data line 110 to be repaired via the repair line 130, for example, from the service voltage lead 131 closest to the IC, thereby further shortening the slave service voltage lead 131.
  • the electrical path to the data line 110 to be repaired reduces the voltage loss from the service voltage lead 131 to the data line 110 to be repaired.
  • FIG. 4 shows a schematic structural view of an exemplary array substrate provided by the fourth embodiment of the present disclosure.
  • the array substrate 100 has a pixel region 101 and a peripheral region 102 surrounding the pixel region 101.
  • a plurality of data lines 110 and a plurality of gate lines 120 are disposed on the array substrate 100.
  • a plurality of service line groups 130S are disposed on the peripheral area 102, and each of the service line groups 130S includes at least two service lines 130.
  • the data line 110 is connected to a corresponding IC located on the side of the repair line group 130S opposite to the pixel area 101.
  • Each of the service line groups 130S intersects only the data lines 110 (e.g., 300 to 400 data lines 110) connected to the same IC.
  • At least one end of at least one of the service lines 130 in each of the repair line sets 130S has a service voltage lead 131.
  • the service voltage lead 131 of the at least one service line 130 is located between adjacent ICs.
  • each of the repair line groups 130S can separately repair at least two data lines 110, so that the number of data lines 110 that can be repaired can be increased.
  • the maintenance voltage lead 131 is located between adjacent ICs, it is not necessary to introduce a voltage from the both ends of the display panel to the data line 110 when the data line 110 is repaired, but the voltage can be locally supplied according to actual needs, so that the slave voltage lead 131 is maintained.
  • the electrical path to the data line 110 to be repaired is shorter. In particular, for repairing the data line 110 of the intermediate portion of the array substrate, the conduction path of the maintenance voltage can be effectively reduced.
  • each of the repair line groups 130S (corresponding to, for example, 300 to 400 data lines 110 connected to the same IC) has at least one service voltage lead 131, the voltage condition for each IC area can be flexibly adjusted to be introduced to Repair the voltage of line 130 to achieve sub-area maintenance.
  • FIG. 5 shows a schematic structural view of an array substrate according to a fifth embodiment of the present disclosure.
  • the maintenance voltage lead 131 of the at least one service line 130 may also be disposed in the phase Between the two adjacent data lines 110.
  • the configuration can, for example, introduce a voltage from the service voltage lead 131 closest to the data line 110 to be repaired via the service line 130 to the data line 110 to be repaired, thereby further shortening the service voltage.
  • the electrical path of the lead 131 to the data line 110 to be repaired reduces the voltage loss from the service voltage lead 131 to the data line 110 to be repaired.
  • a common electrode line 140 (shown only in FIG. 5) is generally disposed in the pixel region 101.
  • a common electrode line 140 parallel thereto is disposed adjacent to each of the gate lines 120 (which may be the data lines 110 in an alternative embodiment).
  • the common electrode line 140 needs to be led out to the peripheral region 102 through the common electrode lead 141 to electrically connect the common electrode line 140 to a common voltage signal source.
  • only one common electrode line 140 and the common electrode lead 141 are schematically shown. In order to minimize the interference existing between the service voltage lead 131 and the common electrode lead 141, at least one of the service voltage leads 131 and the common electrode lead 141 do not overlap.
  • At least one of the service voltage leads 131 and the common electrode lead 141 are disposed at a certain distance.
  • at least one of the service voltage leads 131 is located between the data line 110 (which may be the gate line 120 in an alternative embodiment) and the common electrode lead 141; at least one common electrode lead 141 is located between the service voltage lead 131 and the gate line 120 ( In an alternative embodiment it may be between data lines 110).
  • the gate line 120 can be disposed in the same layer as the service line 130.
  • the voltages introduced by the service voltage leads 131 of the service line 130 may be equal or different.
  • the maintenance voltage lead 131 may be disposed in the same layer as the repair line 130, or may be disposed in different layers but electrically connected.
  • a corresponding one of the maintenance lines 130 is selected during the maintenance to be electrically connected to the data line 110 to be repaired at the intersection.
  • the repair line 130 may not be in the same layer as one of the gate line 120 or the data line 110, for example, using a pixel electrode (or a common electrode layer), synchronously using the pixel electrode (or common electrode) material as the repair line 130; or forming a separate
  • the layer of metal is patterned to form the service line 130.
  • the selected service line 130 has a service voltage lead 131 that has the shortest electrical path to the data line 110 to be repaired, and a voltage is introduced to the data line 110 to be repaired by the service voltage lead 131.
  • the electrical connection between the maintenance line 130 and the data line 110 to be repaired at the intersection For example, it may be a soldered connection.
  • FIG. 6 shows a schematic structural view of a display device 600 according to an embodiment of the present disclosure.
  • the display device 600 includes the array substrate 100 provided by any of the above embodiments, and thus the description of the structure, function, and effect of the array substrate 100 in the above embodiment is also suitable for the display device 600 in the present embodiment.
  • the display device provided by the embodiment of the present disclosure can be applied to any product having a display function, such as an LCD, an OLED, an electronic paper, a mobile phone, a tablet, a television, a notebook computer, a digital photo frame, or a navigator.
  • a display function such as an LCD, an OLED, an electronic paper, a mobile phone, a tablet, a television, a notebook computer, a digital photo frame, or a navigator.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种阵列基板(100),其包括设置在具有像素区(101)和围绕所述像素区(101)的周边区域(102)的阵列基板(100)上的数据线(110)和栅线(120),以及设置在阵列基板(100)的周边区域(102)上的至少两条维修线(130)。至少两条维修线(130)与数据线(110)和栅线(120)中的一者相交。每条所述维修线(130)具有至少一条维修电压引线(131)。阵列基板(100)能够增加维修数据线(110)或栅线(120)的数量,提高维修线利用率,并且可以用于维修大面积的显示面板。

Description

阵列基板及显示装置
相关申请的交叉引用
本申请要求于2016年08月22日递交的中国专利申请第201620910651.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及显示技术领域,尤其涉及一种阵列基板及显示装置。
背景技术
液晶显示技术广泛应用于电视、手机以及公共信息显示,是目前使用最为广泛的显示技术。现有的液晶显示器阵列基板包括衬底基板。该衬底基板包括像素区以及围绕像素区的周边区域。在该衬底基板上布置有多条数据线、多条栅线以及多个像素单元。该像素单元形成为矩阵且由形成在衬底基板上的彼此交叉的多条数据线和多条栅线限定。每个像素单元中形成有薄膜晶体管(Thin film transistor,简称TFT)。栅线用于驱动其相应行的像素单元。数据线用于向其相应列的像素单元中的像素电极提供电压。
在阵列基板的生产过程中,阵列基板上的任何一条数据线或栅线的断点都会使得显示面板出现缺陷,从而影响产品显示效果。
实用新型内容
本文中描述的实施例提供了一种阵列基板及显示装置,其能够增加所能维修的数据线或栅线的数量,提高维修线利用率。
根据本公开的第一方面,提供了一种阵列基板。该阵列基板包括设置在具有像素区和周边区域的所述阵列基板上的数据线和栅线,以及设置在所述阵列基板的所述周边区域上的至少两条维修线。所述至少两条维修线与所述数据线和所述栅线中的一者相交,每条所述维修线具有至少一条维 修电压引线。
在本公开的实施例中,每条所述维修线具有一条维修电压引线,且所述维修电压引线位于所述维修线的同一侧的端部。
在本公开的实施例中,每条所述维修线具有一条维修电压引线。所述维修线中的至少一条维修线的所述维修电压引线相对于其它维修线的所述维修电压引线而言位于所述维修线的不同侧的端部。
在本公开的实施例中,所述至少两条维修线包括两条所述维修线,每条所述维修线仅具有一条维修电压引线。所述两条维修线中的一条维修线的所述维修电压引线相对于所述两条维修线中的另一条维修线的所述维修电压引线而言位于所述维修线的不同侧的端部。
在本公开的实施例中,所述数据线和所述栅线分别连接到位于所述维修线的与所述像素区相对的一侧的相应集成电路(IC)。
在本公开的进一步的实施例中,至少一条所述维修电压引线位于相邻的所述IC之间。
在本公开的实施例中,所述维修线被分为多个维修线组。每个所述维修线组包括至少两条所述维修线且仅与连接到同一个IC的所述数据线或栅线相交。每个所述维修线组中至少一条所述维修线的至少一端具有所述维修电压引线。
在本公开的进一步的实施例中,至少一条所述维修电压引线位于相邻的所述IC之间。
在本公开的进一步的实施例中,每个所述维修线组对应300~400条所述数据线或所述栅线。
在本公开的实施例中,所述数据线和所述栅线中的一者与所述维修线同层设置。
在本公开的实施例中,所述维修电压引线与所述维修线同层设置。
在本公开的实施例中,所述维修电压引线与所述维修线位于不同的层并电性连接。
在本公开的实施例中,所述至少两条维修线的所述维修电压引线引入 的电压相等或不同。
在本公开的实施例中,待维修的所述数据线或所述栅线与所述维修线中的相应一条在相交位置电性连接。
在本公开的实施例中,至少一条所述维修线的维修电压引线位于相邻的两条数据线或栅线之间。
在本公开的进一步的实施例中,所述电性连接包括焊接连接。
在本公开的实施例中,还包括公共电极线,所述公共电极线包括至少一条公共电极引线。至少有一条所述维修电压引线位于一条所述数据线或栅线与所述公共电极引线之间。或者,至少有一条所述维修电压引线与所述公共电极引线不交叠。
根据本公开的第二方面,提供了一种显示装置。该显示装置包括上述任一实施例所述的阵列基板。
在上述阵列基板和使用该阵列基板的液晶显示面板以及显示装置中,设置至少两条维修线可以增加所能维修的数据线或栅线的数量,因此能够提高维修线利用率。进一步地,通过设置至少两条维修线以及使每条维修线具有多条维修电压引线,有利于在希望的位置引入维修电压。在本公开的实施例中,可选择到待维修的数据线或栅线的电路径最短的维修电压引线来引入维修电压,从而解决由于电路径过长导致的电压不均匀问题。
附图说明
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开的实施方式作进一步的详细描述。在附图中,相同的标记表示相同的元件。本领域技术人员将理解,附图中描述的具体实施方式仅作为本公开技术方案的示例,而不是对其的限制。在附图中:
图1示出根据本公开的第一实施例的阵列基板的结构示意图;
图2示出根据本公开的第二实施例的阵列基板的结构示意图;
图3示出根据本公开的第三实施例的阵列基板的结构示意图;
图4示出根据本公开的第四实施例的阵列基板的结构示意图;
图5示出根据本公开的第五实施例的阵列基板的结构示意图;
图6示出根据本公开的实施例的显示装置的结构示意图。
具体实施方式
现将参照附图更全面地描述示例性的实施例。在以下的实施例中,仅以维修数据线为例,本领域的技术人员应理解可对以下的实施例做适当的修改以用于维修栅线。
本公开提供一种阵列基板,其包括设置在具有像素区和围绕像素区的周边区域的阵列基板上的数据线和栅线,以及设置在阵列基板的周边区域上的至少两条维修线。维修线与数据线相交。每条维修线具有至少一条维修电压引线。
因为在传统的维修方法中一条维修线仅能维修一条数据线,所以在本公开中至少两条维修线可以维修至少两条数据线,从而增加维修数据线的数量,提高维修线利用率。
图1示出本公开的第一实施例提供的示例性的阵列基板的结构示意图。如图1所示,该阵列基板100包括像素区101和周边区域102。通常周边区域102围绕像素区101设置(图1只显示了周边区域的一部分)。在阵列基板100上设置有多条数据线110和多条栅线120。在周边区域102上设置有至少两条维修线130。在一个示例中,数据线110进一步连接到位于维修线130的与像素区101相对的一侧的相应IC,该IC为数据线110提供输入电压。维修线130与数据线110相交以用于维修数据线110。在一个示例中,维修线130例如可以与栅线120平行。在本实施例中,每条维修线130具有一条维修电压引线131,维修电压引线131位于各维修线130的同一侧的端部。
在本实施例中,设置至少两条维修线130可以增加所能维修的数据线110的数量。此外,设置至少两条维修线130还可以基于不同的维修需求灵活地向不同的维修线130引入相等或不同的电压。
本实施例仅以图1示出的周边区域为例进行介绍,可以理解的是在其 他未示出的周边区域,根据需要设置相应的维修线和维修电压引线。
图2示出本公开的第二实施例提供的示例性的阵列基板的结构示意图。如图2所示,该阵列基板100具有像素区101与围绕像素区101的周边区域102。在阵列基板100上设置有多条数据线110和多条栅线120。在周边区域102上设置有至少两条维修线130。在一个示例中,数据线110进一步连接到位于维修线130的与像素区101相对的一侧的相应IC,该IC为数据线110提供输入电压。维修线130与数据线110相交以用于维修数据线110。在一个示例中,维修线130例如可以与栅线120平行。在本实施例中,每条维修线130具有一条维修电压引线131。维修线130中的至少一条维修线130的维修电压引线131相对于其它维修线130的维修电压引线131而言位于维修线130的不同侧的端部。此外,在本实施例的一个示例中,至少两条维修线130可以包括两条维修线130。每条维修线130仅具有一条维修电压引线131。该两条维修线130中的一条维修线130的维修电压引线131相对于该两条维修线130中的另一条维修线130的维修电压引线131而言位于维修线130的不同侧的端部。
对于大面积显示面板来说,维修电压引线131到待维修的数据线110的电路径过长,信号衰减严重,维修难度大。通过使维修线130中的至少一条维修线130的维修电压引线131相对于其它维修线130的维修电压引线131而言位于维修线130的不同侧的端部,维修人员在维修数据线110时,便能够选择到待维修的数据线110的电路径最短的维修电压引线131,并通过该维修电压引线131向待维修的数据线110引入电压,从而解决由于电路径过长导致的电压不均匀问题,提高维修成功率。
进一步地,图3示出本公开的第三实施例提供的示例性的阵列基板的结构示意图。在本实施例中,阵列基板100具有像素区101与围绕像素区101的周边区域102。在阵列基板100上设置有多条数据线110和多条栅线120。在周边区域102上设置有至少两条维修线130。在一个示例中,数据线110进一步连接到位于维修线130的与像素区101相对的一侧的相应IC,该IC为数据线110提供输入电压。维修线130与数据线110相交以用于维 修数据线110。在一个示例中,维修线130例如可以与栅线120平行。在本实施例中,每条维修线130具有至少一条维修电压引线131,并且可以在相邻IC之间设置至少一条维修电压引线131。这种配置可以充分利用布局空间,提高维修线130的利用率。此外,当数据线110出现断线的情况时,通过该配置还能够例如从距离IC最近的维修电压引线131经由维修线130向待维修的数据线110引入电压,从而进一步缩短从维修电压引线131到待维修的数据线110的电路径,减少从维修电压引线131到待维修的数据线110的电压损耗。
更进一步地,图4示出本公开的第四实施例提供的示例性的阵列基板的结构示意图。在本实施例中,如图4所示,阵列基板100具有像素区101与围绕像素区101的周边区域102。在阵列基板100上设置有多条数据线110和多条栅线120。在周边区域102上设置有多个维修线组130S,每个维修线组130S包括至少两条维修线130。数据线110连接到位于维修线组130S的与像素区101相对的一侧的相应IC。每个维修线组130S仅与连接到同一个IC的数据线110(例如300~400条数据线110)相交。每个维修线组130S中至少一条维修线130的至少一端具有维修电压引线131。在一个示例中,至少一条维修线130的维修电压引线131位于相邻IC之间。
首先,在本实施例中每个维修线组130S都可分别维修至少两条数据线110,因此可以增加所能维修的数据线110的数量。其次,由于维修电压引线131位于相邻IC之间,维修数据线110时无需从显示面板的两端向数据线110引入电压而是能够根据实际需要局部地提供电压,从而使得从维修电压引线131到待维修的数据线110的电路径更短。特别地,对于维修阵列基板中间部分的数据线110,可以有效地减少维修电压的传导路径。此外,由于每个维修线组130S(对应于连接到同一IC的例如300~400条数据线110)都具有至少一条维修电压引线131,因此针对各IC区域的电压情况,可灵活地调整引入到维修线130的电压,实现分区域维修。
图5示出根据本公开的第五实施例的阵列基板的结构示意图。在阵列基板100上,还可以将至少一条维修线130的维修电压引线131设置在相 邻的两条数据线110之间。当数据线110出现断线的情况时,通过该配置能够例如从距离待维修的数据线110最近的维修电压引线131经由维修线130向待维修的数据线110引入电压,从而进一步缩短从维修电压引线131到待维修的数据线110的电路径,减少从维修电压引线131到待维修的数据线110的电压损耗。
对于上述任一实施例来说,通常在像素区101中设置有公共电极线140(仅在图5中示出)。例如:紧邻每一条栅线120(在替代实施例中可以是数据线110)设置一条与其平行的公共电极线140。公共电极线140需要通过公共电极引线141引出到周边区域102,以便将公共电极线140电性连接到公共电压信号源上。在图5所示的实施例中,仅示意性示出一条公共电极线140及公共电极引线141。为了尽量减少维修电压引线131与公共电极引线141之间存在的干扰,至少有一条维修电压引线131与公共电极引线141不交叠。或者,将至少一条维修电压引线131与公共电极引线141设置成相距一定的距离。例如:至少有一条维修电压引线131位于数据线110(在替代实施例中可以是栅线120)与公共电极引线141之间;至少有一条公共电极引线141位于维修电压引线131与栅线120(在替代实施例中可以是数据线110)之间。
对于上述任一实施例来说,栅线120可以与维修线130同层设置。维修线130的维修电压引线131引入的电压可以相等或不同。维修电压引线131可以与所述维修线130同层设置,也可以不同层设置但电性连接。维修时选择维修线130中的相应一条维修线130,使其与待维修的数据线110在相交位置电性连接。当然,维修线130可以不与栅线120或数据线110之一同层,例如:利用像素电极(或公共电极层),同步利用像素电极(或公共电极)材料作为维修线130;或者单独形成一层金属层,图案化后形成维修线130。
进一步地,所选择的维修线130具有到待维修的数据线110的电路径最短的维修电压引线131,并通过该维修电压引线131来向待维修的数据线110引入电压。维修线130与待维修的数据线110在相交位置的电性连 接例如可以是焊接连接。
图6示出根据本公开的实施例的显示装置600的结构示意图。显示装置600包括上述任一实施例提供的阵列基板100,因此在上述实施例中对阵列基板100的结构、功能和效果的描述同样适于本实施例中的显示装置600。
本公开实施例提供的显示装置可以应用于任何具有显示功能的产品,例如,LCD、OLED、电子纸、手机、平板电脑、电视机、笔记本电脑、数码相框或导航仪等。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其他方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本申请的范围。
除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中明确禁止这样的解释。在本文中使用术语“示例”之处,特别是当其位于一组术语之后时,所述“示例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。
以上为了说明和描述的目的提供了实施例的前述描述。其并不旨在是穷举的或者限制本申请。特定实施例的各个元件或特征通常不限于特定的实施例,但是,在合适的情况下,这些元件和特征是可互换的并且可用在所选择的实施例中,即使没有具体示出或描述。同样也可以以许多方式来改变。这种改变不能被认为脱离了本申请,并且所有这些修改都包含在本申请的范围内。

Claims (15)

  1. 一种阵列基板,包括:
    设置在具有像素区和周边区域的所述阵列基板上的数据线和栅线;以及
    设置在所述阵列基板的所述周边区域上的至少两条维修线;
    其中所述至少两条维修线与所述数据线和所述栅线中的一者相交,每条所述维修线具有至少一条维修电压引线。
  2. 根据权利要求1所述的阵列基板,其中,每条所述维修线具有一条维修电压引线,且所述维修电压引线位于所述维修线的同一侧的端部。
  3. 根据权利要求1所述的阵列基板,其中,每条所述维修线具有一条维修电压引线,其中所述维修线中的至少一条维修线的所述维修电压引线相对于其它维修线的所述维修电压引线而言位于所述维修线的不同侧的端部。
  4. 根据权利要求1所述的阵列基板,其中,所述至少两条维修线包括两条所述维修线,每条所述维修线仅具有一条维修电压引线,其中所述两条维修线中的一条维修线的所述维修电压引线相对于所述两条维修线中的另一条维修线的所述维修电压引线而言位于所述维修线的不同侧的端部。
  5. 根据权利要求1所述的阵列基板,其中,所述数据线或所述栅线分别连接到位于所述维修线的与所述像素区相对的一侧的相应集成电路。
  6. 根据权利要求5所述的阵列基板,其中,至少一条所述维修电压引线位于相邻的所述集成电路之间。
  7. 根据权利要求5所述的阵列基板,其中,所述维修线被分为多个维修线组,每个所述维修线组包括至少两条所述维修线且仅与连接到同一个集成电路的所述数据线或栅线相交,其中每个所述维修线组中至少一条所述维修线的至少一端具有所述维修电压引线。
  8. 根据权利要求7所述的阵列基板,其中,至少一条所述维修电压引线位于相邻的所述集成电路之间。
  9. 根据权利要求1-8中任一项所述的阵列基板,其中,所述数据线和 所述栅线中的一者与所述维修线同层设置。
  10. 根据权利要求9所述的阵列基板,其中,所述至少两条维修线的所述维修电压引线引入的电压相等或不同。
  11. 根据权利要求9所述的阵列基板,其中,所述维修电压引线与所述维修线位于不同的层并电性连接。
  12. 根据权利要求9所述的阵列基板,其中,待维修的所述数据线或所述栅线与所述维修线中的相应一条在相交位置电性连接。
  13. 根据权利要求1所述的阵列基板,其中,至少一条所述维修线的维修电压引线位于相邻的两条数据线或栅线之间。
  14. 根据权利要求1-8中任一项所述的阵列基板,还包括公共电极线,所述公共电极线包括至少一条公共电极引线,
    其中,至少有一条所述维修电压引线位于一条所述数据线或栅线与所述公共电极引线之间;或者,至少有一条所述维修电压引线与所述公共电极引线不交叠。
  15. 一种显示装置,包括权利要求1-14中任一项所述的阵列基板。
PCT/CN2017/092914 2016-08-22 2017-07-14 阵列基板及显示装置 WO2018036298A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/743,530 US10541256B2 (en) 2016-08-22 2017-07-14 Array substrate and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620910651.9U CN205910472U (zh) 2016-08-22 2016-08-22 一种阵列基板及显示装置
CN201620910651.9 2016-08-22

Publications (1)

Publication Number Publication Date
WO2018036298A1 true WO2018036298A1 (zh) 2018-03-01

Family

ID=57802151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092914 WO2018036298A1 (zh) 2016-08-22 2017-07-14 阵列基板及显示装置

Country Status (3)

Country Link
US (1) US10541256B2 (zh)
CN (1) CN205910472U (zh)
WO (1) WO2018036298A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205910472U (zh) * 2016-08-22 2017-01-25 京东方科技集团股份有限公司 一种阵列基板及显示装置
TWI608274B (zh) * 2017-03-21 2017-12-11 友達光電股份有限公司 顯示裝置及顯示面板的佈線方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195338A1 (en) * 2004-03-03 2005-09-08 Hitachi Displays, Ltd. Active matrix type display device
CN102156366A (zh) * 2010-12-28 2011-08-17 友达光电股份有限公司 一种显示面板修补电路
CN202171713U (zh) * 2011-08-16 2012-03-21 北京京东方光电科技有限公司 Tft-lcd阵列基板、液晶显示面板及显示设备
CN103235459A (zh) * 2013-04-27 2013-08-07 合肥京东方光电科技有限公司 一种显示基板及驱动集成电路的引线修复方法
CN105786253A (zh) * 2016-02-29 2016-07-20 上海中航光电子有限公司 阵列基板、显示面板、触控中心坐标确定方法及显示装置
CN205910472U (zh) * 2016-08-22 2017-01-25 京东方科技集团股份有限公司 一种阵列基板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101090255B1 (ko) * 2004-11-16 2011-12-06 삼성전자주식회사 표시 장치용 표시판 및 표시 장치의 검사 방법
TWI363241B (en) * 2007-07-16 2012-05-01 Au Optronics Corp Lower substrate for an fpd
CN102629050B (zh) * 2011-08-02 2014-06-11 京东方科技集团股份有限公司 一种像素结构、液晶显示面板及其修复断线的方法
CN102929050B (zh) * 2012-10-31 2015-12-02 合肥京东方光电科技有限公司 阵列基板、面板和显示装置
CN104503176B (zh) * 2014-12-25 2017-03-22 合肥鑫晟光电科技有限公司 阵列基板、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195338A1 (en) * 2004-03-03 2005-09-08 Hitachi Displays, Ltd. Active matrix type display device
CN102156366A (zh) * 2010-12-28 2011-08-17 友达光电股份有限公司 一种显示面板修补电路
CN202171713U (zh) * 2011-08-16 2012-03-21 北京京东方光电科技有限公司 Tft-lcd阵列基板、液晶显示面板及显示设备
CN103235459A (zh) * 2013-04-27 2013-08-07 合肥京东方光电科技有限公司 一种显示基板及驱动集成电路的引线修复方法
CN105786253A (zh) * 2016-02-29 2016-07-20 上海中航光电子有限公司 阵列基板、显示面板、触控中心坐标确定方法及显示装置
CN205910472U (zh) * 2016-08-22 2017-01-25 京东方科技集团股份有限公司 一种阵列基板及显示装置

Also Published As

Publication number Publication date
CN205910472U (zh) 2017-01-25
US10541256B2 (en) 2020-01-21
US20180315774A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP5661156B2 (ja) 液晶表示装置とその駆動方法
TWI327660B (en) Display device
WO2016095316A1 (zh) 一种液晶显示面板及其制造方法
TWI398712B (zh) 具通至測試線之改良式連接結構的薄膜電晶體陣列面板
CN111736398B (zh) 一种显示面板及显示装置
US10204939B2 (en) Display substrate, manufacturing method thereof and display device
JP2020532755A (ja) アレイ基板、ディスプレイパネル、ディスプレイデバイス
JP2020504324A (ja) 表示装置
US20170329164A1 (en) Pixel structure, method of manufacturing the same, array substrate and display device
CN103903586B (zh) 显示装置及其制造方法
WO2017008346A1 (zh) 显示面板及薄膜晶体管阵列基板
WO2016019663A1 (zh) 基板和显示装置
US20200357867A1 (en) Array Substrate, Manufacturing Method Thereof and Display Device
JP2015108765A (ja) 表示装置
JP2020516956A (ja) アレイ基板構造及びアレイ基板の製造方法
WO2018036298A1 (zh) 阵列基板及显示装置
US20200257176A1 (en) Array substrate, manufacturing method thereof, and display device
WO2018126684A1 (zh) 一种显示基板、显示装置及驱动方法
CN108594552B (zh) 显示基板、显示面板、显示装置及其驱动方法
US11342397B2 (en) Array substrate and manufacturing method thereof
WO2019080290A1 (zh) 显示面板及其应用的显示装置
JPS59210419A (ja) 液晶表示体装置
CN106449664A (zh) 一种显示面板以及电子设备
WO2020237731A1 (zh) 阵列基板及其制作方法与显示装置
JP2006250984A (ja) 電気光学装置、その製造方法、及び電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15743530

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17842721

Country of ref document: EP

Kind code of ref document: A1