WO2018034442A1 - Heater and heating system for transportation means - Google Patents

Heater and heating system for transportation means Download PDF

Info

Publication number
WO2018034442A1
WO2018034442A1 PCT/KR2017/008076 KR2017008076W WO2018034442A1 WO 2018034442 A1 WO2018034442 A1 WO 2018034442A1 KR 2017008076 W KR2017008076 W KR 2017008076W WO 2018034442 A1 WO2018034442 A1 WO 2018034442A1
Authority
WO
WIPO (PCT)
Prior art keywords
disposed
heating
ceramic layer
heat
ceramic substrate
Prior art date
Application number
PCT/KR2017/008076
Other languages
French (fr)
Korean (ko)
Inventor
이인재
김원진
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160105805A external-priority patent/KR102583758B1/en
Priority claimed from KR1020160131651A external-priority patent/KR20180040054A/en
Priority claimed from KR1020170000744A external-priority patent/KR20180079956A/en
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to CN201790001187.4U priority Critical patent/CN210518876U/en
Publication of WO2018034442A1 publication Critical patent/WO2018034442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • H05B3/50Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material heating conductor arranged in metal tubes, the radiating surface having heat-conducting fins

Definitions

  • This embodiment relates to a heating system for a heater and a vehicle.
  • the heater functions to generate heat to the components of the heating system.
  • the heater is essentially installed in a moving means such as a car in response to the needs of the consumer, and may also be referred to as a "heating device", “heating device”.
  • Electric cars are also equipped with heating systems, just like regular internal combustion engine cars.
  • the present embodiment is to provide a heater and a vehicle heating system including the same that can increase energy efficiency and durability.
  • the heater according to the present embodiment includes a case in which the inlet and the outlet are disposed to face each other so that the heat medium passes; A heating module disposed between the inlet and the outlet of the case; And a power module disposed on one side of the case and electrically connected to the heat generating module, wherein the heat generating module includes a plurality of heat dissipation fins and a plurality of heating cores alternately arranged with each other.
  • a ceramic substrate part including a first ceramic layer and a second ceramic layer disposed on the first ceramic layer; And a heat diffusion element disposed between the first ceramic layer and the second ceramic layer, wherein the thermal diffusion plate is disposed on any one of the first ceramic layer and the second ceramic layer.
  • the heat generating element may include a first heat generating unit extending from one side to the other side, and a second heat generating unit extending from the predetermined point on the other side back to one side and a third heat generation extending from the predetermined point on one side of the second heat generating unit to the other side again.
  • the first heating unit, the second heating unit and the third heating unit may be spaced apart from each other.
  • the heating module may further include a first gasket and a second gasket disposed on one side and the other side of the case.
  • the heating core further includes a cover part covering the ceramic substrate part, wherein the cover part is formed to extend from the ceramic substrate part on one side and the other side, and one side of the cover part is inserted into the first gasket, and the cover part The other side may be inserted into the second gasket to support the heating core by the first gasket and the second gasket.
  • the heating module further includes a first electrode terminal disposed on one side and electrically connected to the heating element, and the power module includes a first connection terminal coupled to the first electrode terminal and the first electrode.
  • the terminal includes a first binding member and a second binding member that face each other in a direction through which the heat medium passes, and the first binding member extends to one side and is bent to move closer to the second binding member and to be separated from each other.
  • the second binding member extends to one side and is bent to approach and move away from the first binding member.
  • the first connection terminal is interposed between the first binding member and the second binding member. It may be coupled to the first electrode terminal.
  • the first heat diffusion plate and the second heat diffusion plate may be disposed to face each other in a direction in which the heating cores are arranged.
  • the thermal expansion coefficients of the first thermal diffusion plate, the ceramic substrate part, and the second thermal diffusion plate may be the same.
  • At least one of the first and second thermal diffusion plates may include a first thermal diffusion layer, a second thermal diffusion layer disposed on the first thermal diffusion layer, and a third thermal diffusion layer disposed on the second thermal diffusion layer. It may include.
  • the second thermal diffusion layer may include molybdenum.
  • the first thermal diffusion layer and the third thermal diffusion layer may include copper or aluminum.
  • a protrusion may be formed on a surface of at least one of the first and second heat diffusion plates.
  • the electronic device may further include a thermal conductor disposed between the first ceramic layer and the second ceramic layer and disposed on a side surface of the heat generating element.
  • the thermal conductivity of the thermal conductor may be higher than that of the first ceramic layer and the second ceramic layer.
  • the thermal conductor may include at least one of aluminum nitride, silicon nitride, and boron nitride.
  • the first ceramic layer and the second ceramic layer may be integrally bonded at the edge.
  • the porosity of the ceramic substrate may be 3% or less.
  • the display device may further include a first electrode pad disposed on the first ceramic layer or the second ceramic layer and connected to the first end of the heating element, and a second electrode pad connected to the second end of the heating element.
  • Heating system used in the moving means is a flow path for moving air; An air supply unit installed at one side of the flow path to introduce air from the outside; An exhaust unit installed at the other side of the flow path and discharging air to the interior of the moving unit; And a heater disposed between the air supply unit and the exhaust unit to heat air in the flow path, wherein the heater comprises: a case in which an inlet and an outlet are disposed to face each other; A heating module disposed between the inlet and the outlet of the case; And a power module disposed on one side of the case and electrically connected to the heat generating module, wherein the heat generating module extends from one side to the other side, and includes a plurality of heat dissipation fins and a plurality of heating cores alternately arranged.
  • the heating core includes: a ceramic substrate part including a first ceramic layer and a second ceramic layer disposed on the first ceramic layer; And a heat diffusion element disposed between the first ceramic layer and the second ceramic layer, wherein the thermal diffusion plate is disposed on any one of the first ceramic layer and the second ceramic layer.
  • the heating core is a first thermal diffusion plate, a first ceramic layer disposed on the first thermal diffusion plate, a heating element disposed on the first ceramic layer, disposed on the first ceramic layer A second ceramic layer, and a second thermal diffusion plate disposed on the second ceramic layer.
  • It may further include a thermal conductor disposed on the first ceramic layer, disposed on the side of the heat generating element.
  • the heat efficiency is increased by using a ceramic heater in which the heat generating elements are stacked in the direction in which the heat medium (air) passes.
  • the heater can be sized up without changing the cross-sectional area of the heater occupied by the dashboard.
  • the heating module of this embodiment is coupled to the power module by an electrode terminal including a curved pair of binding members.
  • the shape of the binding member enhances the coupling force of the heating module and the power module to improve the durability of the heater of the present embodiment.
  • this embodiment presents design conditions in which the ratio of the cross-sectional area of the ceramic substrate and the heating element and the thickness of the heat dissipation fin and the heating core are optimally adjusted.
  • the present invention provides a heating system for moving means including the heater of the present embodiment.
  • FIG. 1 is a perspective view showing a heater of this embodiment.
  • FIG. 2 is a plan view showing a heating module of the present embodiment.
  • FIG 3 is an exploded perspective view showing the heating rod of the present embodiment.
  • FIG. 4 is a cross-sectional view showing the ceramic substrate, the first thermal diffusion plate and the second thermal diffusion plate of this embodiment.
  • FIG. 5 is a horizontal sectional view showing the ceramic substrate of this embodiment.
  • FIG. 6 is an exploded perspective view showing a heater of this embodiment.
  • FIG. 7 is a conceptual diagram illustrating a state in which the first electrode terminal and the second connection terminal of the present embodiment are coupled.
  • FIG. 8 is a block diagram showing a heating system for a moving means of the present embodiment.
  • FIG. 9 is a cross-sectional view of a ceramic substrate according to another embodiment of the present invention.
  • FIG. 10 is an exploded view of a ceramic substrate according to another embodiment of the present invention.
  • FIG 11 is various shapes of a heating element disposed in a ceramic substrate according to another embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a ceramic substrate according to another embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a ceramic substrate according to still another embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a method of manufacturing a ceramic substrate according to the embodiments of FIGS. 9 to 13.
  • FIG. 15A shows a cross-sectional view of a ceramic substrate manufactured according to a comparative example
  • FIG. 15B shows a cross-sectional view of a ceramic substrate manufactured according to the embodiment.
  • FIG. 16 shows an example of a ceramic substrate having a cylindrical shape.
  • FIG. 17 is a cross-sectional view of a thermal diffusion plate and a ceramic substrate according to an embodiment of the present invention.
  • FIG. 18 shows a thermal diffusion plate according to an embodiment of the present invention.
  • FIG. 19 shows a heater according to another embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms.
  • a component is described as being “connected”, “coupled” or “connected” to another component, the component may be directly connected, coupled or connected to the other component, but the component and its other components It is to be understood that another component may be “connected”, “coupled” or “connected” between the elements.
  • the " front and rear direction " used below is the y-axis direction shown in the drawing.
  • forward is set in the direction of the arrow on the y-axis.
  • up-down direction is taken as the z-axis direction shown in the drawing.
  • lower side refers to the direction of the arrow on the z-axis.
  • left-right direction is taken as the x-axis direction shown in drawing. In this case, “left” is set in the direction of the arrow on the x-axis.
  • FIG. 1 is a perspective view showing a heater of this embodiment
  • Figure 2 is a plan view showing a heat generating module of the present embodiment
  • Figure 3 is an exploded perspective view showing a heating rod of the present embodiment
  • Figure 4 is a ceramic substrate of the present embodiment
  • the first 6 is an exploded perspective view illustrating a heater of the present embodiment
  • FIG. 7 is a conceptual diagram illustrating a state in which the first electrode terminal and the second connection terminal of the present embodiment are coupled to each other.
  • the heater 1000 of the present embodiment may include a case 100, a heating module 200, and a power module 300.
  • the case 100 may be an exterior member of the heater 1000.
  • the heating module 200 may be accommodated in the case 100.
  • the power module 300 may be disposed below the case 100.
  • the case 100 may be supported by the power module 300.
  • the case 100 and the power module 300 may be coupled to each other.
  • the lower part of the case 100 is accommodated in the case guide hole 310 of the power module 300, which will be described later, the case 100 and the power module 300 may be fitted into the coupling.
  • the lower part of the front, rear, left and right sides of the case 100 may be accommodated in the case guide hole 310.
  • the case 100 may have a hollow block shape or a cage shape.
  • the case 100 may include a case front surface 110 and a case rear surface 120.
  • the case front surface 110 may be a surface located in front of the case 100.
  • the case rear surface 120 may be a surface located behind the case 100.
  • a plurality of inlets may be formed in the case front surface 110.
  • the plurality of inlets may be arranged in rows in up, down, left, and right directions.
  • a plurality of outlets may be formed on the rear surface 120 of the case. In this case, the plurality of outlets may be formed to correspond to the inlet of the case front surface 110 by matching the columns in the vertical direction.
  • the outer heating medium is introduced into the case 100 through the inlet of the case front surface 110, and then heated by the heat generating module 200 inside the case 100 to open the outlet of the case rear surface 120. Through the case 100 may be discharged to the outside. That is, the external heat medium (air) can pass through the case 100 from the front to the back.
  • the heating module 200 may be disposed inside the case 100.
  • the heating module 200 may be electrically connected to the power module 300.
  • the heat generating module 200 may include a heat dissipation fin 210, a heating core 220, a first gasket 230, and a second gasket 240.
  • the plurality of heat dissipation fins 210 and the heating cores 220 extending from the lower side to the upper side may be alternately arranged.
  • the arrangement direction of the heat dissipation fin 210 and the heating core 220 may be left and right directions.
  • the upper side of the heating core 220 may be supported by the first gasket 230.
  • the lower side of the heating core 220 may be supported by the second gasket 240.
  • the heat dissipation fin 210 may be disposed in the case 100. There may be a plurality of heat dissipation fins 210. The plurality of heat dissipation fins 210 may be spaced apart from each other in the left and right directions. A plurality of heating cores 220 may be disposed between the plurality of heat dissipation fins 210. Therefore, the heat dissipation fin 210 and the heating core 220 may be adjacent to each other. In this case, the left and right sides of the heat dissipation fin 210 and the left and right sides of the heating core 220 may be joined. Silver paste or thermally conductive silicon may be used as a bonding agent of the heat dissipation fin 210 and the heating core 220. As a result, heat generated in the heating core 220 may be transferred to the heat dissipation fin 210.
  • the heat dissipation fin 210 may be extended from the lower side to the upper side.
  • the heat dissipation fin 210 may be a louver fin.
  • the shape of the heat dissipation fin 210 may be a waveform vibrating from side to side in a wave traveling from the lower side to the upper side. That is, the heat dissipation fins 210 may have a form in which plates inclined in a left and right direction and a reverse direction thereof are stacked in a vertical direction. Therefore, a plurality of gaps may be formed in the heat dissipation fin 210 through which the heat medium (air) can pass in the front-rear direction.
  • the heat transfer area in which heat generated from the heating core 220 is transferred to the heat medium (air) may be increased, thereby improving thermal efficiency.
  • the heating core 220 may be disposed inside the case 100 as a heat generating portion.
  • the heating core 220 may be electrically connected to the power module 300.
  • the plurality of heating cores 220 may be spaced apart from each other in the left and right directions.
  • a plurality of heat dissipation fins 210 may be disposed between the plurality of heating cores 220. Therefore, the heating core 220 and the heat dissipation fin 210 may be adjacent to each other.
  • the left and right side surfaces of the heating core 220 may contact the left and right sides of the heat dissipation fin 210.
  • Thermal conductive silicon may be used as a bonding agent between the heating core 220 and the heat dissipation fin 210. As a result, heat generated in the heating core 220 may be transferred to the heat dissipation fin 210.
  • the heating core 220 may have a shape extending from the lower side to the upper side.
  • the heating core 220 includes a ceramic substrate 221, a heating element 222, a first thermal diffusion plate 223, a second thermal diffusion plate 224, a first electrode terminal 225, and a second electrode terminal 226.
  • the cover unit 227 may be included.
  • the ceramic substrate 221 may accommodate the heat generating element 222 made of a ceramic material.
  • the heating core 220 of the present embodiment may be lighter than the PTC thermistor by the ceramic covering the heat generating element 222, free from heavy metals such as lead (Pb), far-infrared rays, and the like, and have a high thermal conductivity.
  • the first thermal diffusion plate 223 may be disposed on the left side of the ceramic substrate 221.
  • the second thermal diffusion plate 224 may be disposed on the right side of the ceramic substrate 221.
  • the ceramic substrate 221 may be accommodated in the cover 227 together with the first heat spreader 223 and the second heat spreader 224.
  • the ceramic substrate 221 may include a first ceramic substrate 221a and a second ceramic substrate 221b.
  • the ceramic substrate 221 may include a left side and a right side opposite thereto.
  • the left surface of the ceramic substrate portion 221 may be referred to as a "first surface.”
  • the right side surface of the ceramic substrate unit 221 may be referred to as a "second surface”.
  • the first ceramic substrate 221a may be disposed on the left side, and the second ceramic substrate 221b may be disposed on the right side.
  • the heating element 222 may be disposed on the right side of the first ceramic substrate 221a by printing, patterning, or deposition. After the heating element 222 is disposed on the first ceramic substrate 221a, the first ceramic substrate 221a and the second ceramic substrate 221b are sintered 1500 to integrally form the ceramic substrate portion 221. Can be. In this case, the right side surface of the first ceramic substrate 221a and the left side surface of the second ceramic substrate 221b may be aligned and sintered.
  • Terminal 226 may be disposed and bonded.
  • the first and second electrode terminals 225 and 226 may be disposed and bonded to lower ends of the first and second ceramic substrates 221a and 221b.
  • the first and second electrode terminals 225 and 226 may be electrically connected to the heating element 222.
  • the heating element 222 may be electrically connected to the first and second electrode terminals 225 and 226. Separate leader line may be extended.
  • the heat generating element 222 may be disposed in the ceramic substrate 221.
  • the heating element 222 may be disposed on the right side of the first ceramic substrate 221a by printing, patterning, or deposition.
  • the heating element 222 may be a resistor line.
  • the heat generating element 222 may be a resistor such as tungsten (w) and molybdenum (Mo). Therefore, the heating element 222 may generate heat when electricity flows.
  • the heating element 222 may be arranged to be stacked in the front-rear direction (the direction in which the heat medium passes) while alternately extending from the lower side to the upper side and then turned up (bending or bending) to extend from the upper side to the lower side.
  • the heating element 222 extends from one side to the other side from the first heat generating portion extending from one side and the other side from the predetermined point of the other side and the second heat generating portion extending from one side to the other side again from another predetermined point.
  • Including a third heat generating portion, the first heat generating portion, the second heat generating portion and the third heat generating portion may be spaced apart from each other. Therefore, while the heat medium (air) passes through the heat generating module 200, the heat medium (air) may be heated while passing through the heat generating portion of the heater core 220. That is, the contact area of heat generated from the heat medium (air) and the heater core 220 can be increased by the arrangement of the heat generating elements 222.
  • Both ends of the heating element 222 may be electrically connected to each of the first and second electrode terminals 225 and 226.
  • An end positioned at the front of both ends of the heating element 222 may be electrically connected to the first electrode terminal 225.
  • An end located at the rear of both ends of the heating element 222 may be electrically connected to the second electrode terminal 226.
  • the first and second electrode terminals 225 and 226 may receive power from the power module 300 to be described later. Therefore, a current may flow in the heating element 222.
  • the heat generating element 222 may generate heat. In this case, the intensity, direction, and wavelength of the current supplied to the heating element 222 may be controlled by the power module 300.
  • Each of the first and second thermal diffusion plates 223 and 224 may be bonded to the left and right sides of the ceramic substrate 221.
  • the first thermal diffusion plate 223 may be bonded to the left surface of the first ceramic substrate 221a.
  • the second thermal diffusion plate 224 may be bonded to the right side surface of the second ceramic substrate 221b.
  • An active metal layer may be used to bond the first and second thermal diffusion plates 223 and 224 to the first and second ceramic substrates 221a and 221b.
  • the active metal layer may be an active metal alloy of the titanium group.
  • the active metal layer may be disposed on the left side of the first ceramic substrate 221a and the right side of the second ceramic substrate 221b.
  • the active metal layer and the ceramic may react to form oxides or nitrides.
  • the first and second thermal diffusion plates 223 and 224 and the first and second ceramic substrates 221a and 221b may be aligned and bonded to each other.
  • the first thermal diffusion plate 223 may include a first thermal diffusion layer 223a, a second thermal diffusion layer 223b, and a third thermal diffusion layer 223c sequentially stacked on the outer side (left side) of the first ceramic substrate 221a. Can be. Bonding of the first, second, and third thermal diffusion layers 223a, 223b, and 223c may be performed by hot pressing.
  • the second thermal diffusion plate 223 may include a fourth thermal diffusion layer 224a, a fifth thermal diffusion layer 224b, and a sixth thermal diffusion layer 224c that are sequentially stacked on the outer side (right side) of the second ceramic substrate 221b. Can be. The bonding of the fourth, fifth and sixth thermal diffusion layers 224a, 224b and 224c may be performed by hot pressing.
  • the material of the first, third, fourth, and sixth thermal diffusion layers 223a, 223c, 224a, and 224c may include copper (Cu) or aluminum (Al).
  • the material of the second and fifth thermal diffusion layers 223b and 224b may include molybdenum (Mo). Therefore, the first, second, second, third, fourth, fifth, and sixth thermal diffusion layers 223a, 223b, 223c, 224a, 224b, and 224c have high thermal conductivity and thus may evenly distribute heat generated from the ceramic substrate 221. .
  • the thermal expansion coefficient may be adjusted by adjusting the thicknesses (left and right directions) of the second and fourth thermal diffusion layers 223b and 224b.
  • the thermal expansion coefficients of the first and second thermal diffusion plates 223 and 224 may be determined according to preset conditions reflecting the thermal expansion coefficient of the ceramic substrate 221. That is, the thermal expansion coefficients of the first and second thermal diffusion plates 223 and 224 may have a value similar to that of the ceramic substrate portion 221. Further, the thermal expansion coefficients of the first and second thermal diffusion plates 223 and 224 may have the same value as the thermal expansion coefficient of the ceramic substrate 221. For example, when the thermal expansion coefficient of the ceramic substrate portion 221 is 7 ppm /, the thermal expansion coefficient of the first thermal diffusion plate 223 and the second thermal diffusion plate 224 may also be 7 ppm /, respectively. At this time, the thermal conductivity of the thermal diffusion plate may be 230W / mK.
  • the thermal expansion coefficients of the first thermal diffusion plate 223 and the second thermal diffusion plate 224 may be 0.8 to 1.2 times the thermal expansion coefficient of the ceramic substrate 221.
  • the ceramic substrate portion 221 having good thermal conductivity but brittle and easily damaged by thermal shock can be reinforced.
  • the first and second thermal diffusion plates 223 and 224 may be additional components that can be changed by design request. That is, any one of the first and second thermal diffusion plates 223 and 224 may be omitted from the heating core 220. In addition, both of the first and second thermal diffusion plates 223 and 224 may be omitted from the heating core 220.
  • the first and second electrode terminals 225 and 226 may be disposed under the heating core 220.
  • the first and second electrode terminals 225 and 226 may be disposed under the ceramic substrate 221.
  • the first electrode terminal 225 may be disposed below the front of the ceramic substrate 221.
  • the second electrode terminal 226 may be disposed under the rear of the ceramic substrate 221.
  • the first and second electrode terminals 225 and 226 may be electrically connected to the heating element 222.
  • the first and second electrode terminals 225 and 226 may be electrically connected to the power module 300.
  • the first electrode terminal 225 may be electrically connected to the first connection terminal 330 of the power module 300 to be described later.
  • the second electrode terminal 226 may be electrically connected to the second connection terminal 340 of the power module 300 to be described later.
  • the first electrode terminal 225 may include a first connector 225a, a first electrode terminal body 225b, a first binding member 225c, and a second binding member 225d.
  • the first connector 225a, the first electrode terminal body 225b, the first binding member 225c and the second binding member 225d may be integrally formed.
  • the first connector 225a may have a plate shape having a surface formed in a left and right direction.
  • the first connector 225a may be bonded to the lower front of the left side of the first ceramic substrate 221a.
  • the first connector 225a may be bonded to the lower front of the right side of the first ceramic substrate 221a. In this case, the first connector 225a may be interposed between the first ceramic substrate 221a and the second ceramic substrate 221b.
  • the first connector 225a may be bonded to the lower front of the right side of the second ceramic substrate 221b.
  • the first connector 225a may be electrically connected to an end positioned at the front of both ends (the start point and the end point of the heat generation line) of the heating element 222.
  • the first electrode terminal body 225b may have a block shape, and a first connection part 225a may be connected to an upper portion thereof.
  • the first binding member 225c may be connected to the lower front of the first electrode terminal body 225b.
  • the second binding member 225d may be connected to the lower rear side of the first electrode terminal body 225b.
  • the first binding member 225c may be in the form of a plate that is curved or bent (bent) backward.
  • the second binding member 225d may be in the form of a plate that is curved or bent (bent) forward.
  • the first and second binding members 225c and 225d may be disposed to face each other in the front-rear direction. Accordingly, the first binding member 225c may be bent or bent to move closer to the lower side and closer to the second binding member 225d, and the second binding member 225d may be bent toward the lower side. It may be bent or bent to close to and away from).
  • a first connection terminal 330 described later may be inserted between the first and second binding members 225c and 225d. As a result, the first electrode terminal 225 and the power module 300 may be electrically connected.
  • the second electrode terminal 226 may include a second connector 226a, a second electrode terminal body 226b, a third binding member 226c, and a fourth binding member 226d.
  • the second connector 226a, the second electrode terminal body 226b, the third binding member 226c, and the fourth binding member 226d may be integrally formed.
  • the second connector 226a may be in the form of a plate having a surface formed in the left and right directions.
  • the second connector 226a may be bonded to the lower back of the left side of the first ceramic substrate 221a.
  • the second connector 226a may be bonded to the lower rear side of the right surface of the first ceramic substrate 221a.
  • the second connector 226a may be interposed between the first ceramic substrate 221a and the second ceramic substrate 221b.
  • the second connector 226a may be bonded to the lower front of the right side of the second ceramic substrate 221b.
  • the second connector 226a may be electrically connected to an end positioned at a rear side of both ends (starting point and end point of the heating line) of the heating element 222.
  • the second electrode terminal body 226b may have a block shape, and a second connector 226a may be connected to an upper portion thereof.
  • the third binding member 226c may be connected to the lower front of the second electrode terminal body 226b.
  • a fourth binding member 226d may be connected to the lower rear side of the second electrode terminal body 225b.
  • the third binding member 226c may be in the form of a plate that is curved or bent backwards.
  • the fourth binding member 226d may have a plate shape that is curved or bent forward.
  • the third and fourth binding members 226c and 226d may be disposed to face each other in the front-rear direction. Therefore, the third binding member 226c may be bent or bent to move closer to the lower side and closer to the fourth binding member 226d, and the fourth binding member 226d may have a third binding member 226c toward the lower side. It may be bent or bent to close to and away from).
  • a second connection terminal 340 to be described later may be inserted between the third and fourth binding members 226c and 226d.
  • the second electrode terminal 226 and the power module 300 may be electrically connected.
  • Current may be supplied from the power module 300 to the heating element 222 through the first and second electrode terminals 225 and 226.
  • the heat generating element 222 may generate heat.
  • the material of the cover part 227 may include aluminum (Al).
  • the cover part 227 may be in the form of a hollow bar or rod extending in the vertical direction to the exterior member of the heating rod 220. Therefore, the cover portion 227 may be formed with a cover hole 227a penetrating in the vertical direction.
  • the ceramic substrate 221, the heat generating element 222, the first heat diffusion plate 223, and the second heat diffusion plate 224 may be accommodated in the cover 227.
  • the inner surface of the cover hole 227a may be in contact with the front surface and the rear surface of the ceramic substrate portion 221, the left surface of the first thermal diffusion plate 223, and the right surface of the second thermal diffusion plate 224.
  • the first and second thermal diffusion plates 223 and 224 may be omitted.
  • the inner surface of the cover hole 227a may be in contact with four front, rear, left, and right sides of the ceramic substrate 221.
  • Thermally conductive silicon may be used to bond the cover part 227 to the ceramic substrate part 221 and the first and second thermal diffusion plates 223 and 224.
  • the left side of the cover 227 may be in contact with the right side of the heat dissipation fin 210 located on the left side of the cover 227.
  • the right side surface of the cover portion 227 may be in contact with the left side portion of the heat dissipation fin 210 located on the right side of the cover portion 227.
  • Thermally conductive silicon may be used to bond the cover part 227 to the heat dissipation fin 227.
  • the cover 227 may serve to protect the ceramic substrate 221 and the first and second thermal diffusion plates 223.
  • the cover 227 may have a high thermal conductivity and may serve to diffuse heat generated from the heat generating element 222 of the ceramic substrate 221.
  • the cover part 227 may be easily bonded to the heating rod 220 and the heat dissipation fin 210 because of good adhesion.
  • the cover part 227 may be formed to have an upper side extending upward from an upper side of the ceramic substrate 221 and the first and second thermal diffusion plates 223 and 224.
  • the lower side of the cover portion 227 may be formed to extend below the lower side of the ceramic substrate portion 221 and the first and second thermal diffusion plates 223 and 224. That is, the vertical length of the cover part 227 may be longer than the vertical length of the ceramic substrate part 221 and the first and second thermal diffusion plates 223 and 224.
  • the upper portion (upper side) of the cover part 227 may be inserted into the first accommodation hole 231 of the first gasket 230 to be described later.
  • the cover portion 227 may be inserted into the first accommodating portion 231. Accordingly, the first gasket 230 may not directly receive heat transfer from the ceramic substrate 221 and the first and second thermal diffusion plates 223 and 224. As a result, damage due to deterioration of the first gasket 230 can be prevented.
  • the lower portion (lower side) of the cover portion 227 may be inserted into the second accommodation portion 241 of the second gasket 240 to be described later. In this case, only the lower portion extending from the cover portion 227 beyond the ceramic substrate portion 221 and the first and second thermal diffusion plates 223 and 224 may be inserted into the first accommodation hole 231.
  • the second gasket 240 may not directly receive heat transfer from the ceramic substrate 221 and the first and second thermal diffusion plates 223 and 224. As a result, damage due to deterioration of the second gasket 240 can be prevented.
  • the first and second electrode terminals 225 and 226 of the heating core 220 may be exposed downward through the second receiving portion downward. As a result, the first and second electrode terminals 225 and 226 may be electrically connected to the power module 300 positioned under the heating core 220.
  • the heating core 220 may be supported by inserting the cover 227 into the first and second gaskets 230 and 240. Therefore, the cover portion 227 may also perform the function of the support member.
  • the cover 227 may not be an essential component of the heating core 220. That is, the cover part 227 may be omitted by design request.
  • the upper and lower portions of the ceramic substrate 221 may be inserted into the first and second gaskets 230 and 240.
  • upper and lower portions of the ceramic substrate 221 and the first and second thermal diffusion plates 223 and 224 may be inserted into the first and second gaskets 230 and 240.
  • the first gasket 230 may be located above the inside of the case 100.
  • the second gasket 240 may be located below the case 100.
  • the case 100 is in the form of a hollow box, and the first and second gaskets 230 and 240 may be coupled and fixed to the upper and lower portions of the case 100 by pinching and bonding, respectively.
  • the first and second gaskets 230 and 240 may be provided with a plurality of first and second accommodation parts 231 and 241 spaced apart in the left and right directions.
  • a plurality of first accommodating parts 231 protruding upward may be formed in the first gasket 230.
  • a plurality of second accommodating parts 241 protruding downward may be formed in the second gasket 240.
  • the plurality of first and second accommodating parts 231 and 241 may be formed in one-to-one correspondence with the plurality of heating cores 220. Therefore, the upper portion of the heating core 220 may be inserted into the corresponding first receiving portion 231. In addition, the lower portion of the heating core 220 may be inserted into the corresponding second receiving portion 241.
  • the first and second electrode terminals 225 and 226 of the heating core 220 may extend downward through the second receiving portion 241. Accordingly, the first and second electrode terminals 225 and 226 may be exposed to the lower side and electrically connected to the power module 300 disposed under the heating core 220.
  • the heating core 220 may be securely fixed in the form of a pillar having upper and lower fixed ends, and may be embedded in the case 100.
  • the power module 300 may be disposed below the case 100.
  • the power module 300 may be combined with the case 100.
  • the power module 300 may be electrically connected to the heat generating module 200.
  • the power module 300 may control the strength, direction, wavelength, etc. of the current supplied to the heating module 200.
  • the power module 300 may be connected to an external power supply device by a conductive line (not shown) to be charged or supplied with power.
  • the power module 300 may include a case guide part 310, a connection terminal part 320, a first connection terminal 330, and a second connection terminal 340 in a block form.
  • the case guide part 310 may be formed at the center of the upper surface of the power module 300.
  • the case guide part 310 may have a rectangular groove or hole shape, and a connection terminal part 320 may be formed therein.
  • a groove or a hole corresponding to the lower portion of the case 100 may be formed by the rectangular groove or the hole of the case guide part 310 and the side wall of the connection terminal 320. Therefore, the case 100 may be guided in a form inserted into the case guide part 310.
  • the power module 300 may be aligned and disposed below the case 100. In this case, the lower portion of the case 100 and the power module 300 may be combined.
  • various methods such as mechanical (screw, etc.), structural (such as pinching), and adhesive (adhesive) may be used.
  • connection terminal 320 may be a support formed in the inner center of the case guide part 310.
  • a connection terminal groove 321 may be formed in the center of the connection terminal unit 320.
  • a plurality of first and second connection terminals 330 and 340 may be arranged on the bottom surface of the connection terminal groove 321.
  • the first and second connection terminals 330 and 340 may be plural in number.
  • the first and second connection terminals 330 and 340 may be spaced apart in the front-back direction. In this case, the first connection terminal 330 may be disposed in front.
  • the second connection terminal 340 may be disposed at the rear.
  • the first and second connection terminals 330 and 340 may have a plate shape having front and rear surfaces.
  • the plurality of first and second connection terminals 330 and 340 may correspond one-to-one with the plurality of heating cores 220.
  • the plurality of first and second connection terminals 330 and 340 may face each other in a one-to-one correspondence with the plurality of first and second electrode terminals 225 and 226.
  • the first connection terminal 330 may be coupled to the first electrode terminal 225 corresponding thereto.
  • the second connection terminal 340 may be coupled to the second electrode terminal 226 corresponding thereto.
  • the first connection terminal 330 may be interposed between the first binding member 225c and the second binding member 225d of the first electrode terminal 225. Therefore, the first connection terminal 330 and the first electrode terminal 225 may be pinched, coupled or assembled to be electrically connected.
  • the second connection terminal 340 may be interposed between the third binding member 226c and the fourth binding member 226d of the second electrode terminal 226. Therefore, the second connection terminal 340 and the second electrode terminal 226 may be pinched or assembled to be electrically connected.
  • FIG. 8 is a block diagram showing a heating system for a moving means of the present embodiment.
  • the heating system 2000 for moving means of this embodiment can be used for various moving means.
  • the means of transportation is not limited to vehicles that run on land such as automobiles, and may include ships and airplanes.
  • the heating system 2000 for a means of transportation of this embodiment is used for a motor vehicle is demonstrated as an example.
  • the vehicle heating system 2000 may be accommodated in an engine room of a vehicle.
  • the vehicle heating system 2000 may include an air supply unit 1400, a flow path 1500, an exhaust unit 1600, and a heater 1000.
  • the air supply unit 1400 various air supply devices such as a blowing fan and a pump may be used.
  • the air supply unit 1400 may move the heat medium (air in the engine room) of the outside of the heating system 2000 for the vehicle to the inside of the flow path 1500 to be described later, and move along the flow path 1500.
  • the flow path 1500 may be a passage through which a heat medium (air) flows.
  • the air supply unit 1400 may be disposed at one side of the flow path 1500, and the exhaust unit 1600 may be disposed at the other side of the flow path 1500.
  • the flow path 1500 may cooperatively connect the engine room and the interior of the vehicle.
  • the exhaust part 1600 As the exhaust part 1600, a blade which can be opened and closed may be used.
  • the exhaust part 1600 may be disposed on the other side of the flow path 1500.
  • the exhaust part 1600 may communicate with the interior of the vehicle. Therefore, the heat medium (air) moved along the flow path 1500 may flow into the vehicle interior through the exhaust part 1600.
  • the heater 1000 of the present embodiment may be used as the heater 1000 of the heating system 2000 for the vehicle.
  • the heater 1000 may be arranged in the form of a partition wall in the middle of the flow path 1500.
  • the front and rear of the heater 1000 may be the same or similar to the front and rear of the vehicle.
  • the cold heat medium (air) of the engine room supplied to the flow path 1500 through the air supply unit 1400 is heated while passing through the heater 1000 from the front side to the rear side, and then flows along the flow path 1500 again and the exhaust unit 1600 Can be supplied to the room.
  • FIG. 2 is a plan view showing the heating module of the present embodiment
  • Figure 5 is a horizontal cross-sectional view showing a ceramic substrate of the present embodiment
  • Figure 7 is a conceptual diagram showing a state in which the first electrode terminal and the second connection terminal of the present embodiment is coupled. .
  • the heater 1000 of the present embodiment may generate heat transfer by a resistor (heating element 222) covered by the ceramic substrate 221.
  • the thermal efficiency can be improved by using a high heat generation amount of the resistor (heating element 222).
  • the high heat generation amount of the resistor (heating element 222) is covered with a ceramic having a high heat transfer rate to achieve thermal stability and maintain thermal efficiency.
  • the first and second thermal diffusion plates 223 and 224 disposed in contact with the ceramic substrate 221 diffuse heat at the main heating point (the point where the heating element 222 is disposed) of the ceramic substrate 221 to distribute the heat. You can even out.
  • the ceramic substrate 221 including the brittle material may be vulnerable to damage due to deterioration.
  • the first and second thermal diffusion plates 223 and 224 having the same or similar thermal expansion coefficients as those of the ceramic substrate 221 may be disposed on the ceramic substrate 221 to thermally reinforce the ceramic substrate 221.
  • the heater 1000 of the present embodiment may be free from heavy metal materials such as lead (Pb), and may be lightweight.
  • the heater 1000 of this embodiment has high durability. This is because the heating core 220 has a columnar structure in which both ends are fixed by the first and second gaskets 230 and 240. Further, as shown in FIG. 7, the first binding member 225c disposed in front of the first electrode terminal 225 may be curved or bent backwards. In addition, the second binding member 225d disposed behind the first electrode terminal 225 may be curved or bent forward. In addition, the first connection terminal 330 may be interposed between the first and second binding members 225c and 225d. As a result, the first connection terminal 330 may be tightly interposed between the first and second binding members 225c and 225d.
  • the structures of the first and second binding members 225c and 225d described above are strong against front and rear vibrations. This is because even if the first connection terminal 330 is separated from the narrowest part of the first and second fastening members 225c and 225d, the first connection terminal 330 is easily seated in the narrowest part by the curved or bent structure of the first and second fastening members 225c and 225d. . Furthermore, when the lower portions of the first and second binding members 225c and 225d are supported by the bottom surface of the connection terminal 320, the front and rear vibrations may be more effectively countered.
  • Mass air flow (MAF) of the heater 1000 of the present embodiment should be designed to 300kg / h.
  • the room of the proper means of transportation must be reached at an appropriate set temperature at an appropriate time.
  • the size of the heating core 220, excluding the cover portion 227 in the heating module 200 may be 180 * 15 * 1.3 (mm, in turn, up and down, front and rear, left and right directions).
  • the electric power supplied to the heating element 222 in a typical medium-sized car is 7 kW, and based on this, it is located in the center of the heating core 220 and the ceramic substrate portion 221 in a cross-sectional area perpendicular to the extending direction of the heating core 220.
  • Ceramic and the cross-sectional area of the heating element 222 (tungsten) may be 180: 1 to 190: 1. If it is smaller than this, the room cannot be reached at the proper time at the proper temperature. In addition, if it is larger than this, the amount of heat generation is too large and is thermally unstable, and may be overheated. (See FIG. 7)
  • the heating element 222 is a heat medium (air).
  • the length of the single heat dissipation fin 210 and the heating core 220 in the direction (left and right directions) in which the heat dissipation fin 210 and the heating core 220 are arranged (except P of FIG. 2 and the cover part 227) It may be more than 8mm and less than 17mm. If the cover part 227 is added, the length (P of FIG. 2) in the left and right directions of the heat dissipation fin 210 and the heating core 220 may be 10 mm or more and 19 mm or less. Since the length of the heating core 220 (except for the cover part 227) in the left and right directions is usually set to 13 mm, this may be viewed as a left and right condition of the heat dissipation fin 210. If smaller than this, the mass air flow (MAF) of the heater 1000 is less than 300kg / h is not preferable. Moreover, when larger than this, since it cannot reach a suitable temperature in a suitable time, it is unpreferable.
  • MAF mass air flow
  • the heat conductor may be further disposed on the side of the heat generating element.
  • FIG. 9 is a cross-sectional view of a ceramic substrate according to another embodiment of the present invention
  • FIG. 10 is an exploded view of a ceramic substrate according to another embodiment of the present invention
  • FIG. 11 is disposed in a ceramic substrate according to another embodiment of the present invention.
  • Various shapes of the heating element. 12 is a cross-sectional view of a ceramic substrate according to still another embodiment of the present invention
  • FIG. 13 is a cross-sectional view of a ceramic substrate according to another embodiment of the present invention.
  • the ceramic substrate part 221 includes a first ceramic layer 400 and a second ceramic layer 430 disposed on the first ceramic layer 400, and includes a first ceramic layer (
  • the heating element 410 and the thermal conductor 420 are disposed between the 400 and the second ceramic layer 430.
  • the first ceramic layer 400 and the second ceramic layer 430 correspond to the ceramic substrate portions 221a and b of FIGS. 1 to 8, and the heating element 410 is the heating element 222 of FIGS. 1 to 8. ) Can be used.
  • the first ceramic layer 400 and the second ceramic layer 430 may include alumina.
  • the first ceramic layer 400 and the second ceramic layer 430 may further include at least one of aluminum nitride (AlN), silicon nitride (SiN), and boron nitride (BN).
  • AlN aluminum nitride
  • SiN silicon nitride
  • BN boron nitride
  • the first ceramic layer 400 and the second ceramic layer 430 may be glass frit, such as calcium oxide (CaO), magnesium oxide (MgO), sodium oxide (Na 2 O), or silicon oxide (SiO 2 ). And titanium oxide (TiO 2 ) or one or a mixture thereof.
  • the first ceramic layer 400 and the second ceramic layer 430 may further include metal particles, for example, copper (Cu) or silver (Ag) particles.
  • the first ceramic layer 400 and the second ceramic layer 430 further include copper or silver particles dispersed in the glass frit, not only have a high thermal conductivity, Since it can be reduced, it is resistant to thermal shock and can minimize cracking problems.
  • the particle size of the glass frit and the particle size of the metal particles may be 1 to 10 ⁇ m, respectively, and the metal particles may be included in an amount of 1 to 20 wt% with respect to the first ceramic layer 400 and the second ceramic layer 430.
  • the thickness of the first ceramic layer 400 and the second ceramic layer 430 may be 0.5 to 2 mm, respectively.
  • the heat generating element 410 is disposed on the first ceramic layer 400 and generates heat when electricity flows.
  • the heating element 410 is selected from tungsten (W), molybdenum (Mo), nickel (Ni), chromium (Cr), copper (Cu), silver (Ag), indium tin oxide (ITO), and barium titanate (BaTiO). It may comprise any one or mixtures thereof.
  • the heating element 410 may be printed, patterned, coated or deposited on the first ceramic layer 400 in various shapes as shown in FIG. 11. For example, as shown in FIG. 11A, the heating element 410 is formed to repeat the pattern extending in the first direction and then turned up to extend in the second direction opposite to the first direction.
  • the heat generating element 410 includes a plurality of heat generating patterns 410-1 and 410-2 connected in a predetermined pattern, and the thermoelectric element is disposed in a spaced area between the plurality of heat generating patterns 410-1 and 410-2.
  • Conductor 420 may be disposed. The larger the printed area of the heating element 410 is, the greater the amount of heat generated by the ceramic substrate 221.
  • the heating element 410 may be mixed with a resistor, a heating pattern, a heating element, and the like.
  • the thermal conductor 420 is disposed on the first ceramic layer 400, and is disposed between the heating elements 410, and heat generated from the heating elements 410 is transferred to the ceramic substrate portion 221 through the thermal conductors 420. Can be passed out of.
  • the height of the heating element 410 and the thermal conductor 420 may be 5 to 20 ⁇ m respectively.
  • the thermal conductivity of the thermal conductor 420 is higher than the thermal conductivity of the first ceramic layer 400 and the second ceramic layer 430.
  • the thermal conductor 420 may include at least one of aluminum nitride, silicon nitride, and boron nitride.
  • at least some of the side surfaces of the thermal conductor 420 and the side surfaces of the heating element 410 may contact each other. Accordingly, heat generated from the heat generating element 410 may be transferred to the outside of the ceramic substrate portion 221 through the heat conductor 420.
  • the heating patterns 410-1 and 410-2 constituting the heating element 410 are filled with the thermal conductor 420, the bonding between the first ceramic layer 400 and the second ceramic layer 430 is performed.
  • the porosity of the ceramic substrate portion 221 may be lowered to 3% or less.
  • the porosity means a percentage of the pore area per unit area with respect to the cross section of the ceramic substrate portion 221.
  • the thermal conductor 420 may not only be disposed between the heating patterns 410-1 and 410-2 disposed on the first ceramic layer 400, but also further disposed outside the heating element 410. May be In this case, an area of the heat conductor 420 disposed on the first ceramic layer 400 may be 0.5 times or more of the area of the heat generating element 410. When the area of the heat conductor 420 is less than 0.5 times the area of the heat generating element 410, the thermal conductivity of heat generated from the heat generating element 410 may be low.
  • one end T1 of the heating element 410 may be connected to the first electrode pad 440, and the other end T2 of the heating element 410 may be connected to the second electrode pad 450.
  • At least one of the first electrode pad 440 and the second electrode pad 450 may be disposed on at least one of the first ceramic layer 400 and the second ceramic layer 430.
  • the first electrode pad 440 and the second electrode pad 450 are disposed on the first ceramic layer 400, and the heat generating element 410 is provided. It may be connected to one end (T1) and the other end (T2) of each.
  • the second ceramic layer 430 may include a through hole formed to connect the first electrode pad 440 and the second electrode pad 450 to the wires W1 and W2 respectively connected to the power module 300. 432, 434).
  • the wirings W1 and W2 correspond to the first electrode terminal 225 and the second electrode terminal 226 of FIGS. 1 to 8, or the first connecting portion 225a and the second electrode of the first electrode terminal 225. It may correspond to the second connection portion 226a of the electrode terminal 226.
  • the first electrode pad 440 and the second electrode pad 450 may be disposed on the first ceramic layer 400, and the heat generating element 410 may be formed. It may be connected to one end (T1) and the other end (T2), respectively.
  • the wires W1 and W2 connected to the power module 300 are connected to the first electrode pad 440 and the second electrode pad 450, respectively, and the first ceramic layer 400 and the second ceramic layer are respectively connected to the power module 300. It may be drawn out between the 430.
  • one of the first electrode pad 440 and the second electrode pad 450 may be disposed on the first ceramic layer 410, and the other may be disposed on the second ceramic layer 430. At least one of the first electrode pad 440 and the second electrode pad 450 may be disposed on an outer surface of the first ceramic layer 400 or the second ceramic layer 430. In this case, one end T1 of the heating element 410 and the first electrode pad 440 or the other end of the heating element 420 and the second electrode pad 450 may be formed of the first ceramic layer 410 or the second ceramic layer ( It may be connected through the through hole formed in 430.
  • one end T1 and the other end T2 of the heating element 410 may be electrically connected to the power module 300 through the first electrode pad 440 and the second electrode pad 450. Electricity may flow in 410.
  • the thickness of the thermal conductor 420 disposed outside the heat generating element 410 may become thinner toward the edge of the ceramic substrate 221. According to this, when the first ceramic layer 400 and the second ceramic layer 430 are bonded to each other, it is possible to reduce the possibility of voids occurring at the edge of the ceramic substrate portion 221.
  • the heat conductor 420 may be disposed on the heat generating element 410 as well as the side surface of the heat generating element 410. Accordingly, the thermal conductivity may be increased not only in the side surface of the ceramic substrate portion 221 but also in the direction toward the surface of the second ceramic layer 430.
  • FIG. 14 is a flowchart illustrating a method of manufacturing a ceramic substrate according to the embodiments of FIGS. 9 to 13.
  • a first ceramic layer is prepared (S900).
  • the first ceramic layer may include alumina, and may include calcium oxide (CaO), magnesium oxide (MgO), sodium oxide (Na 2 O), silicon oxide (SiO 2 ), and titanium oxide (TiO 2 ). It may further comprise any one selected from or a mixture thereof.
  • the first ceramic layer may be in the form of a green sheet mixed with an organic material.
  • the heating element is coated or printed on the first ceramic layer (S910).
  • the heating element is any one selected from tungsten (W), molybdenum (Mo), nickel (Ni), chromium (Cr), copper (Cu), silver (Ag), ITO (Indium Tin Oxide) and barium titanate (BaTiO) It may comprise one or a mixture thereof.
  • the first ceramic layer on which the heating element is formed is dried (S920).
  • a thermal conductor is printed between the heating elements (S930).
  • a paste or slurry containing at least one of aluminum nitride, silicon nitride and boron nitride may be used.
  • a second ceramic layer is laminated on the heating element and the thermal conductor (S940), and heated and pressed (S950).
  • heating and pressurization may be performed by using a hot pressing process, for example, pressurized at a temperature of 150 to 200.
  • the sintering process is performed to bond the first ceramic layer and the second ceramic layer (S960).
  • the sintering process is performed at about 1500, whereby the first ceramic layer and the second ceramic layer may be integrally formed by bonding at edges where the heating element and the thermal conductor are not disposed.
  • the heating element was printed on the first alumina layer, the second alumina layer was laminated, and then heated and pressed.
  • the heating element was printed on the first alumina layer, and after the thermal conductor was further printed between the printed heating elements, the second alumina layer was laminated, heated and pressed.
  • FIG. 15A shows a cross-sectional view of a ceramic substrate manufactured according to a comparative example
  • FIG. 15B shows a cross-sectional view of a ceramic substrate manufactured according to the embodiment.
  • Table 1 shows the thermal conductivity and porosity of the ceramic substrate according to the comparative example and the example.
  • the ceramic substrate according to the embodiment has a lower porosity and a higher thermal conductivity than the ceramic substrate according to the comparative example.
  • the ceramic substrate has a plate shape as an example, the present invention is not limited thereto.
  • the ceramic substrate according to the embodiment of the present invention may have a cylindrical shape as illustrated in FIG. 16.
  • the ceramic substrate part 221 includes a first ceramic layer 400 and a second ceramic layer 430.
  • the heating element 410 and the thermal conductor 420 are disposed between the first ceramic layer 400 and the second ceramic layer 430.
  • the first ceramic layer 400 may have a cylindrical shape, and the heat generating element 410 and the thermal conductor 420 may be disposed on the outer circumferential surface of the first ceramic layer 400.
  • the second ceramic layer 430 may be disposed to surround the outer circumferential surface of the first ceramic layer 400, the heat generating element 410, and the thermal conductor 420.
  • one end T1 of the heating element 410 may be connected to the first electrode pad 440, and the other end T2 of the heating element 410 may be connected to the second electrode pad 450.
  • the wires W1 and W2 connected to the power module 300 are connected to the first electrode pad 440 and the second electrode pad 450, respectively, and the first ceramic layer 400 and the second ceramic layer are respectively connected to the power module 300. It may be drawn out between the 430.
  • a through hole is formed in the second ceramic layer 430, and wirings W1 and W1 that connect the first electrode pad 440 and the second electrode pad 450 to the power module 300 through the through hole. You can also connect to W2).
  • a thermal diffusion plate may be further disposed on the outer circumferential surface of the second ceramic layer 430.
  • FIG. 17 is a cross-sectional view of a thermal diffusion plate and a ceramic substrate according to an embodiment of the present invention.
  • the first bonding layer 21 disposed between the first thermal diffusion plate 223 and the ceramic substrate part 221 and the second thermal diffusion plate 224 between the ceramic substrate 221 may be disposed. 2 bonding layer 22 can be confirmed.
  • the first bonding layer 21 and the second bonding layer 22 are active metal layers, and may be formed by coating, depositing, and printing.
  • the bonding layers 21 and 22 may use an active metal alloy of a titanium group such as titanium (Ti) or zirconium (Zr).
  • the thermal diffusion plate may be bonded using a metal oxide layer and an active metal layer formed on the ceramic substrate 221.
  • the surface of the metal oxide layer is adhesive, so that the surface of the active metal layer can be bonded.
  • the active metal layer bonded to the metal oxide layer may be formed using any one selected from aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (SiN), silicon carbide (SiC) or an alloy thereof. Can be formed.
  • the active metal layer may be formed by coating, depositing, and printing.
  • the metal oxide layer may include, for example, copper oxide (CuO, Cu 2 O).
  • protrusions may be formed on the surface of the thermal diffusion plate.
  • FIG. 18 shows a thermal diffusion plate according to an embodiment of the present invention.
  • FIG. 18A illustrates protrusions 32 formed on the surfaces of the thermal diffusion plates 223 and 224 to emboss the surfaces
  • FIG. 18B illustrates protrusions elongated on the surfaces of the thermal diffusion plates 223 and 224. 34) is formed and implemented.
  • the heat radiation plate in the form of an elongated protrusion as in this embodiment, the contact area with the cooling water becomes wider, so that the cooling water can be heated more efficiently.
  • the surface of the thermal diffusion plate is not limited to the protruding shape and may be modified in various forms.
  • the surface of the thermal diffusion plate may be formed curved without regular shape.
  • the heater according to the embodiment of the present invention may be a heater by a cooling water heating method as well as a heater by an air heating method.
  • FIG. 19 shows a heater according to another embodiment of the present invention.
  • the heater system 3000 may include a coolant tank 3100 in which a coolant 3110 is stored, a heating core 3200 according to an embodiment of the present invention submerged in coolant, and a heat exchanger 3300.
  • the coolant 3110 cools the heating parts 3400 of the electric vehicle and is stored in the coolant tank 3100 through the coolant pipe 3500.
  • the heat generating part 3400 may include an inverter or a motor.
  • the heating core 3200 may be the heating core shown in FIGS. 1 to 18.
  • the heating core 3200 may be used in a form coupled to the coolant tank 3100 and may be replaced.
  • One or more heating cores in the coolant tank 3100 may be immersed in the coolant.
  • the heating core 3200 may be used by supporting the whole of the cooling water except for a portion of the cooling water or the electrode portion coupled to the cooling water tank.
  • attaching the thermal diffusion plate to the ceramic substrate may prevent the ceramic substrate from being damaged.
  • the thermal diffusion plate when the thermal diffusion plate is applied to the ceramic substrate, the heat loss is minimized due to the high thermal conductivity of the thermal diffusion plate, and the thermal conductivity is high, so all the heat generated from the heating core can be used to heat the cooling water. .
  • the reliability of the heating core itself can be improved.
  • the heat exchanger 3300 is to provide heat of the cooled coolant to the interior of the vehicle, and the heat exchanger 3300 may be connected to the coolant tank 3100 through the coolant pipe 3500.
  • the coolant that has cooled the heating component 3400 is moved to the coolant tank 3100 through the coolant pipe 3500, the coolant is heated by the heating core 3200 and then again through the coolant pipe After moving to the heat exchanger 3300, heat is exchanged to provide heat to the interior of the vehicle.
  • the heat-exchanged coolant again moves along the coolant pipe to cool the heating element 3400.
  • the cooling water may be cooled by the heating core and then heated by the heating core to provide heat to the vehicle interior.
  • the volume can be reduced by 50% or more, and the thermal efficiency can be ensured by 95% or more compared with the conventional heating apparatus.

Abstract

The present embodiment provides a heater and a transportation means heating system including the same, the heater comprising: a case having an inlet and an outlet arranged to face each other such that a heating medium passes therethrough; a heating module disposed inside the case; and a power module disposed at one side of the case and electrically connected to the heating module, wherein the heating module includes a plurality of radiating fins and a plurality of heating cores, which are extended from one side thereof to the other side thereof and have an alternating alignment, the heating core includes: a ceramic substrate; and heating elements arranged inside the ceramic substrate, and the heating elements, in an alternating manner, extend from one side thereof to the other side thereof, turn up, and extend from the other side thereof to the one side thereof, and are aligned so as to be stacked in the direction in which the heating medium passes.

Description

히터 및 이동수단용 히팅 시스템Heating system for heaters and vehicles
본 실시예는 히터 및 이동수단용 히팅 시스템에 관한 것이다.This embodiment relates to a heating system for a heater and a vehicle.
이하에서 기술되는 내용은 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 기재한 것은 아니다.The contents described below provide background information on the present embodiment, but do not describe the prior art.
히터는 히팅 시스템의 구성기기로 열을 발생시키는 기능을 한다. 히터는 소비자의 요구에 부응하여 자동차 등 이동수단에 필수적으로 설치되고 있으며, "난방기기", "난방 장치"로도 호칭될 수 있다.The heater functions to generate heat to the components of the heating system. The heater is essentially installed in a moving means such as a car in response to the needs of the consumer, and may also be referred to as a "heating device", "heating device".
한편, 환경문제와 신재생에너지의 이용에 관한 관심이 대두하면서, 전기 자동차에 관한 연구개발이 진행되고 있다. 전기 자동차에도 일반 내연기관 자동차와 마찬가지로 히팅 시스템이 설치된다.Meanwhile, as environmental issues and interest in the use of renewable energy are on the rise, research and development on electric vehicles is progressing. Electric cars are also equipped with heating systems, just like regular internal combustion engine cars.
전기자동차의 경우, 내연기관 자동차에 비해 발생하는 열이 적기 때문에(예를 들면, 엔진의 폐열) 손실되는 열을 줄이고 에너지 효율을 높이는 것이 특히 중요하다.In the case of electric vehicles, it is particularly important to reduce the amount of heat lost and to increase energy efficiency because less heat is generated than internal combustion engine vehicles (eg waste heat from the engine).
또, 스마트한 자동차의 출현으로 인해, 자동차의 대시보드에 다양한 기능을 가진 스마트 기기 및 디스플레이가 장착되고 있다. 그 결과, 자동차의 대시보드의 면적에서 공조시스템의 송풍면적이 차지하는 비율은 줄어들고 있다. 즉, 설계적 요청에 의해 점차 작아지는 공조시스템의 송풍면적에 대응하여 히터의 에너지 효율을 높여야 하는 실정이다.In addition, with the advent of smart cars, smart devices and displays with various functions are mounted on the dashboard of the car. As a result, the proportion of the ventilation area of the air conditioning system in the area of the dashboard of the automobile is decreasing. In other words, it is necessary to increase the energy efficiency of the heater in response to the air blowing area of the air conditioning system gradually decreases by design request.
그러나 기존의 자동차용 히터는 PTC 서미스터(Positive temperature coefficient-thermistor)를 사용하여 열효율이 낮아 문제된다.However, conventional automotive heaters have a problem of low thermal efficiency using PTC thermistors (Positive temperature coefficient-thermistor).
아울러 일반적인 차량용 히터의 경우, 내구성이 약하여 주행에 의한 차체의 흔들림 또는 외력에 의해 구조적 손상이 발생하는 문제점이 있었다. 이러한 손상은 히팅 시스템의 오작동을 유발하므로 이에 대한 해결책도 필요한 실정이다.In addition, in the case of a general vehicle heater, there is a problem that the structural damage occurs due to the shaking or external force of the vehicle body due to the weak durability. Since such damage causes a malfunction of the heating system, a solution for this situation is also required.
본 실시예는, 에너지 효율과 내구성을 높일 수 있는 히터와 이를 포함하는 차량용 히팅 시스템을 제공하고자 한다.The present embodiment is to provide a heater and a vehicle heating system including the same that can increase energy efficiency and durability.
본 실시예에 따른 히터는, 유입구와 배출구가 대향하게 배치되어 열매체가 통과하는 케이스; 상기 케이스의 내부에서 상기 유입구와 배출구 사이에 배치되는 발열모듈; 및 상기 케이스의 일측에 배치되며, 상기 발열모듈과 전기적으로 연결된 파워모듈을 포함하고, 상기 발열모듈은, 서로 교번하며 배열된 복수 개의 방열핀과 복수 개의 히팅코어를 포함하고, 상기 히팅코어는, 제 1 세라믹층 및 상기 제1 세라믹층 상에 배치된 제2 세라믹층을 포함하는 세라믹기판부; 및 상기 제1 세라믹층 및 상기 제2 세라믹층 사이에 배치된 발열소자를 포함하고, 상기 제1 세라믹층 및 상기 제2 세라믹층 중 어느 하나에 배치된 열확산판을 포함한다.The heater according to the present embodiment includes a case in which the inlet and the outlet are disposed to face each other so that the heat medium passes; A heating module disposed between the inlet and the outlet of the case; And a power module disposed on one side of the case and electrically connected to the heat generating module, wherein the heat generating module includes a plurality of heat dissipation fins and a plurality of heating cores alternately arranged with each other. A ceramic substrate part including a first ceramic layer and a second ceramic layer disposed on the first ceramic layer; And a heat diffusion element disposed between the first ceramic layer and the second ceramic layer, wherein the thermal diffusion plate is disposed on any one of the first ceramic layer and the second ceramic layer.
상기 발열소자는, 일측에서 타측으로 연장되는 제 1 발열부 및 상기 타측의 소정 지점에서 다시 일측으로 연장되는 제 2 발열부와 상기 제 2 발열부의 일측의 소정 지점에서 다시 타측으로 연장되는 제 3발열부를 포함하고, 상기 제 1 발열부, 제 2 발열부 및 제 3 발열부는 서로 이격되어 배치될 수 있다.The heat generating element may include a first heat generating unit extending from one side to the other side, and a second heat generating unit extending from the predetermined point on the other side back to one side and a third heat generation extending from the predetermined point on one side of the second heat generating unit to the other side again. The first heating unit, the second heating unit and the third heating unit may be spaced apart from each other.
상기 발열모듈은, 상기 케이스의 내부에서 일측과 타측에 각각 배치되는 제1가스켓과 제2가스켓을 더 포함할 수 있다.The heating module may further include a first gasket and a second gasket disposed on one side and the other side of the case.
상기 히팅코어는, 세라믹기판부를 커버하는 커버부를 더 포함하며, 상기 커버부는, 일측과 타측에서 상기 세라믹기판부보다 연장되어 형성되고, 상기 커버부의 일측은 상기 제1가스켓에 삽입되고, 상기 커버부의 타측은 상기 제2가스켓에 삽입되어 상기 제1가스켓과 상기 제2가스켓에 의해 상기 히팅코어가 지지될 수 있다.The heating core further includes a cover part covering the ceramic substrate part, wherein the cover part is formed to extend from the ceramic substrate part on one side and the other side, and one side of the cover part is inserted into the first gasket, and the cover part The other side may be inserted into the second gasket to support the heating core by the first gasket and the second gasket.
상기 발열모듈은, 일측에 배치되어 상기 발열소자의 전기적으로 연결된 제1전극단자를 더 포함하고, 상기 파워모듈은, 상기 제1전극단자와 결합하는 제1연결단자를 포함하며, 상기 제1전극단자는, 열매체가 통과하는 방향으로 서로 대향하는 제1결속부재와 제2결속부재를 포함하고, 상기 제1결속부재는, 일측으로 연장되며, 상기 제2결속부재와 가까워지다가 멀어지도록 구부러진 형태이고, 상기 제2결속부재는, 일측으로 연장되며, 상기 제1결속부재와 가까워지다가 멀어지도록 구부러진 형태이고, 상기 제1연결단자는, 상기 제1결속부재와 상기 제2결속부재 사이에 개재되어 상기 제1전극단자와 결합할 수 있다.The heating module further includes a first electrode terminal disposed on one side and electrically connected to the heating element, and the power module includes a first connection terminal coupled to the first electrode terminal and the first electrode. The terminal includes a first binding member and a second binding member that face each other in a direction through which the heat medium passes, and the first binding member extends to one side and is bent to move closer to the second binding member and to be separated from each other. The second binding member extends to one side and is bent to approach and move away from the first binding member. The first connection terminal is interposed between the first binding member and the second binding member. It may be coupled to the first electrode terminal.
상기 제1열확산판과 상기 제2열확산판은, 상기 히팅코어가 배열된 방향으로, 서로 대향하게 배치될 수 있다.The first heat diffusion plate and the second heat diffusion plate may be disposed to face each other in a direction in which the heating cores are arranged.
상기 제1열확산판, 상기 세라믹기판부, 그리고 상기 제2열확산판의 열팽창계수는 서로 동일할 수 있다.The thermal expansion coefficients of the first thermal diffusion plate, the ceramic substrate part, and the second thermal diffusion plate may be the same.
상기 제1열확산판 및 상기 제2열확산판 중 적어도 하나는, 제1열확산층, 상기 제1 열확산층 상에 배치된 제2 열확산층, 그리고 상기 제2 열확산층 상에 배치된 제3 열확산층을 포함할 수 있다.At least one of the first and second thermal diffusion plates may include a first thermal diffusion layer, a second thermal diffusion layer disposed on the first thermal diffusion layer, and a third thermal diffusion layer disposed on the second thermal diffusion layer. It may include.
상기 제2열확산층은 몰리브덴을 포함할 수 있다.The second thermal diffusion layer may include molybdenum.
상기 제1 열확산층 및 상기 제3 열확산층은 구리 또는 알루미늄을 포함할 수 있다.The first thermal diffusion layer and the third thermal diffusion layer may include copper or aluminum.
상기 제1열확산판 및 제2열확산판 중 적어도 하나의 표면에는 돌출부가 형성될 수 있다.A protrusion may be formed on a surface of at least one of the first and second heat diffusion plates.
상기 제1 세라믹층 및 상기 제2 세라믹층 사이에 배치되며, 상기 발열소자의 측면에 배치되는 열전도체를 더 포함할 수 있다.The electronic device may further include a thermal conductor disposed between the first ceramic layer and the second ceramic layer and disposed on a side surface of the heat generating element.
상기 열전도체의 열전도율은 상기 제1 세라믹층 및 상기 제2 세라믹층의 열전도율보다 높을 수 있다.The thermal conductivity of the thermal conductor may be higher than that of the first ceramic layer and the second ceramic layer.
상기 열전도체는 질화알루미늄, 질화규소 및 질화붕소 중 적어도 하나를 포함할 수 있다.The thermal conductor may include at least one of aluminum nitride, silicon nitride, and boron nitride.
상기 제1 세라믹층 및 상기 제2 세라믹층은 가장자리에서 일체로 접합할 수 있다.The first ceramic layer and the second ceramic layer may be integrally bonded at the edge.
상기 세라믹기판부의 기공율이 3% 이하일 수 있다.The porosity of the ceramic substrate may be 3% or less.
상기 제1 세라믹층 또는 상기 제2 세라믹층에 배치되며, 상기 발열소자의 제1 단과 연결되는 제1 전극패드 및 상기 발열소자의 제2 단과 연결되는 제2 전극패드를 더 포함할 수 있다.The display device may further include a first electrode pad disposed on the first ceramic layer or the second ceramic layer and connected to the first end of the heating element, and a second electrode pad connected to the second end of the heating element.
본 발명의 한 실시예에 따른 이동수단에 사용되는 히팅 시스템은 공기가 이동하는 유로; 상기 유로의 일측에 설치되어 외부로부터 공기를 유입하는 급기부; 상기 유로의 타측에 설치되어 상기 이동수단의 실내로 공기를 배출하는 배기부; 및 상기 유로에서 상기 급기부와 상기 배기부의 사이에 배치되어 공기를 가열하는 히터를 포함하고, 상기 히터는, 유입구와 배출구가 대향하게 배치되어 공기가 통과하는 케이스; 상기 케이스의 내부에서 상기 유입구와 배출구 사이에 배치되는 발열모듈; 및 상기 케이스의 일측에 배치되며, 상기 발열모듈과 전기적으로 연결된 파워모듈을 포함하고, 상기 발열모듈은, 일측에서 타측으로 연장된 형태이며, 서로 교번하며 배열된 복수 개의 방열핀과 복수 개의 히팅코어를 포함하고, 상기 히팅코어는, 제 1 세라믹층 및 상기 제1 세라믹층 상에 배치된 제2 세라믹층을 포함하는 세라믹기판부; 및 상기 제1 세라믹층 및 상기 제2 세라믹층 사이에 배치된 발열소자를 포함하고, 상기 제1 세라믹층 및 상기 제2 세라믹층 중 어느 하나에 배치된 열확산판을 포함한다.Heating system used in the moving means according to an embodiment of the present invention is a flow path for moving air; An air supply unit installed at one side of the flow path to introduce air from the outside; An exhaust unit installed at the other side of the flow path and discharging air to the interior of the moving unit; And a heater disposed between the air supply unit and the exhaust unit to heat air in the flow path, wherein the heater comprises: a case in which an inlet and an outlet are disposed to face each other; A heating module disposed between the inlet and the outlet of the case; And a power module disposed on one side of the case and electrically connected to the heat generating module, wherein the heat generating module extends from one side to the other side, and includes a plurality of heat dissipation fins and a plurality of heating cores alternately arranged. The heating core includes: a ceramic substrate part including a first ceramic layer and a second ceramic layer disposed on the first ceramic layer; And a heat diffusion element disposed between the first ceramic layer and the second ceramic layer, wherein the thermal diffusion plate is disposed on any one of the first ceramic layer and the second ceramic layer.
본 발명의 한 실시예에 따른 히팅코어는 제1 열확산판, 상기 제1 열확산판 상에 배치되는 제1 세라믹층, 상기 제1 세라믹층 상에 배치되는 발열소자, 상기 제1 세라믹 층 상에 배치되는 제2 세라믹층, 그리고 상기 제2 세라믹층 상에 배치되는 제2 열확산판을 포함한다.The heating core according to an embodiment of the present invention is a first thermal diffusion plate, a first ceramic layer disposed on the first thermal diffusion plate, a heating element disposed on the first ceramic layer, disposed on the first ceramic layer A second ceramic layer, and a second thermal diffusion plate disposed on the second ceramic layer.
상기 제1 세라믹층 상에 배치되며, 상기 발열소자의 측면에 배치되는 열전도체를 더 포함할 수 있다.It may further include a thermal conductor disposed on the first ceramic layer, disposed on the side of the heat generating element.
본 실시예는 발열소자가 열매체(공기)가 통과하는 방향으로 적층 배열되어 있는 세라믹 히터를 사용하여 열효율을 높였다. 이러한 발열소자를 설계조건에 맞추어 자유롭게 적층함으로써, 대시보드에서 차지하는 히터의 단면적을 변화시키지 않고, 히터를 사이즈업(size-up)할 수 있다.In this embodiment, the heat efficiency is increased by using a ceramic heater in which the heat generating elements are stacked in the direction in which the heat medium (air) passes. By stacking these heating elements freely in accordance with design conditions, the heater can be sized up without changing the cross-sectional area of the heater occupied by the dashboard.
나아가 본 실시예의 발열모듈은 만곡된 한 쌍의 결속부재를 포함하는 전극단자에 의해 파워모듈과 결합한다. 이러한 결속부재의 형태는 발열모듈과 파워모듈의 결합력을 강화시켜 본 실시예의 히터의 내구성을 향상시켰다.Furthermore, the heating module of this embodiment is coupled to the power module by an electrode terminal including a curved pair of binding members. The shape of the binding member enhances the coupling force of the heating module and the power module to improve the durability of the heater of the present embodiment.
나아가 본 실시예는, 세라믹기판과 발열소자의 단면적의 비와 방열핀과 히팅코어의 두께를 최적으로 조절한 설계조건을 제시한다.Furthermore, this embodiment presents design conditions in which the ratio of the cross-sectional area of the ceramic substrate and the heating element and the thickness of the heat dissipation fin and the heating core are optimally adjusted.
나아가 상술한 본 실시예의 히터를 포함한 이동수단용 히팅 시스템을 제공한다.Furthermore, the present invention provides a heating system for moving means including the heater of the present embodiment.
도 1은 본 실시예의 히터를 나타낸 사시도이다.1 is a perspective view showing a heater of this embodiment.
도 2는 본 실시예의 발열모듈을 나타낸 평면도이다.2 is a plan view showing a heating module of the present embodiment.
도 3은 본 실시예의 히팅로드를 나타낸 분해사시도이다.3 is an exploded perspective view showing the heating rod of the present embodiment.
도 4는 본 실시예의 세라믹기판, 제1열확산판 및 제2열확산판을 나타낸 단면도이다.4 is a cross-sectional view showing the ceramic substrate, the first thermal diffusion plate and the second thermal diffusion plate of this embodiment.
도 5는 본 실시예의 세라믹기판을 나타낸 수평단면도이다.5 is a horizontal sectional view showing the ceramic substrate of this embodiment.
도 6은 본 실시예의 히터를 나타낸 분해사시도이다.6 is an exploded perspective view showing a heater of this embodiment.
도 7은 본 실시예의 제1전극단자와 제2연결단자가 결합된 모습을 나타낸 개념도이다.7 is a conceptual diagram illustrating a state in which the first electrode terminal and the second connection terminal of the present embodiment are coupled.
도 8은 본 실시예의 이동수단용 히팅 시스템을 나타낸 블럭도이다.8 is a block diagram showing a heating system for a moving means of the present embodiment.
도 9는 본 발명의 다른 실시예에 따른 세라믹기판부의 단면도이다. 9 is a cross-sectional view of a ceramic substrate according to another embodiment of the present invention.
도 10은 본 발명의 다른 실시예에 따른 세라믹기판부의 분해도이다. 10 is an exploded view of a ceramic substrate according to another embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 따른 세라믹기판부에 배치된 발열소자의 다양한 형상이다. 11 is various shapes of a heating element disposed in a ceramic substrate according to another embodiment of the present invention.
도 12는 본 발명의 또 다른 실시예에 따른 세라믹기판부의 단면도이다. 12 is a cross-sectional view of a ceramic substrate according to another embodiment of the present invention.
도 13은 본 발명의 또 다른 실시예에 따른 세라믹기판부의 단면도이다.13 is a cross-sectional view of a ceramic substrate according to still another embodiment of the present invention.
도 14는 도 9 내지 13 의 실시예에 따른 세라믹 기판의 제조 방법을 나타내는 순서도이다.14 is a flowchart illustrating a method of manufacturing a ceramic substrate according to the embodiments of FIGS. 9 to 13.
도 15(a)는 비교예에 따라 제작된 세라믹 기판의 단면도를 나타내고, 도 15(b)는 실시예에 따라 제작된 세라믹 기판의 단면도를 나타낸다.15A shows a cross-sectional view of a ceramic substrate manufactured according to a comparative example, and FIG. 15B shows a cross-sectional view of a ceramic substrate manufactured according to the embodiment.
도 16은 원기둥 형상을 가지는 세라믹 기판의 예를 나타낸다. 16 shows an example of a ceramic substrate having a cylindrical shape.
도 17은 본 발명의 실시예에 따른 열확산판과 세라믹기판부의 단면도를 나타낸다. 17 is a cross-sectional view of a thermal diffusion plate and a ceramic substrate according to an embodiment of the present invention.
도 18은 본 발명의 실시예에 따른 열확산판을 나타낸다.18 shows a thermal diffusion plate according to an embodiment of the present invention.
도 19는 본 발명의 다른 실시예에 따른 히터를 나타낸다.19 shows a heater according to another embodiment of the present invention.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 설명한다. 각 도면의 구성요소들에 참조부호를 기재함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표시한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described through exemplary drawings. In describing the reference numerals in the components of each drawing, the same components are denoted by the same reference numerals as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present invention, when it is determined that a detailed description of a related well-known configuration or function disturbs the understanding of the embodiment of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결, 결합 또는 접속될 수 있지만, 그 구성 요소와 그 다른 구성요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the embodiments of the present disclosure, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. When a component is described as being "connected", "coupled" or "connected" to another component, the component may be directly connected, coupled or connected to the other component, but the component and its other components It is to be understood that another component may be "connected", "coupled" or "connected" between the elements.
이하에서 사용되는 "전후 방향"은 도면에 표시된 y축 방향으로 한다. 이 경우, "전방"은 y축의 화살표 방향으로 한다. 또, "상하 방향"은 도면에 표시된 z축 방향으로 한다. 이 경우, "아래측"은 z축의 화살표 방향으로 한다. 또, "좌우 방향"은 도면에 표시된 x축 방향으로 한다. 이 경우, "좌측"은 x축의 화살표 방향으로 한다.The " front and rear direction " used below is the y-axis direction shown in the drawing. In this case, "forward" is set in the direction of the arrow on the y-axis. In addition, "up-down direction" is taken as the z-axis direction shown in the drawing. In this case, "lower side" refers to the direction of the arrow on the z-axis. In addition, "left-right direction" is taken as the x-axis direction shown in drawing. In this case, "left" is set in the direction of the arrow on the x-axis.
이하에서는, 도면을 참조하여 본 실시예의 히터의 구조를 설명하고자 한다. 도 1은 본 실시예의 히터를 나타낸 사시도이고, 도 2는 본 실시예의 발열모듈을 나타낸 평면도이고, 도 3은 본 실시예의 히팅로드를 나타낸 분해사시도이고, 도 4는 본 실시예의 세라믹기판, 제1열확산판 및 제2열확산판을 나타낸 단면도이고, 도 6은 본 실시예의 히터를 나타낸 분해사시도이고, 도 7은 본 실시예의 제1전극단자와 제2연결단자가 결합된 모습을 나타낸 개념도이다. 본 실시예의 히터(1000)는 케이스(100), 발열모듈(200) 및 파워모듈(300)을 포함할 수 있다.Hereinafter, the structure of the heater of this embodiment will be described with reference to the drawings. 1 is a perspective view showing a heater of this embodiment, Figure 2 is a plan view showing a heat generating module of the present embodiment, Figure 3 is an exploded perspective view showing a heating rod of the present embodiment, Figure 4 is a ceramic substrate of the present embodiment, the first 6 is an exploded perspective view illustrating a heater of the present embodiment, and FIG. 7 is a conceptual diagram illustrating a state in which the first electrode terminal and the second connection terminal of the present embodiment are coupled to each other. The heater 1000 of the present embodiment may include a case 100, a heating module 200, and a power module 300.
케이스(100)는 히터(1000)의 외장부재일 수 있다. 케이스(100)의 내부에는 발열모듈(200)이 수용될 수 있다. 케이스(100)의 아래측에는 파워모듈(300)이 배치될 수 있다. 케이스(100)는 파워모듈(300)에 의해서 지지될 수 있다. 케이스(100)와 파워모듈(300)은 끼임결합할 수 있다. 이 경우, 케이스(100)의 하부는 후술하는 파워모듈(300)의 케이스가이드홀(310)에 수용되어, 케이스(100)와 파워모듈(300)은 끼임결합할 수 있다. 이 경우, 케이스(100)의 전후방, 좌우 측면의 하부는 케이스가이드홀(310)에 수용될 수 있다.The case 100 may be an exterior member of the heater 1000. The heating module 200 may be accommodated in the case 100. The power module 300 may be disposed below the case 100. The case 100 may be supported by the power module 300. The case 100 and the power module 300 may be coupled to each other. In this case, the lower part of the case 100 is accommodated in the case guide hole 310 of the power module 300, which will be described later, the case 100 and the power module 300 may be fitted into the coupling. In this case, the lower part of the front, rear, left and right sides of the case 100 may be accommodated in the case guide hole 310.
케이스(100)는 중공의 블록형태 또는 케이지(cage) 형상일 수 있다. 케이스(100)는 케이스전방면(110)과 케이스후방면(120)을 포함할 수 있다. 이 경우, 케이스전방면(110)은 케이스(100)의 전방에 위치하는 면일 수 있다. 또, 케이스후방면(120)은 케이스(100)의 후방에 위치하는 면일 수 있다. 케이스전방면(110)에는 복수 개의 유입구가 형성될 수 있다. 이 경우, 복수 개의 유입구는 상하 좌우 방향으로 열을 맞추어 배열될 수 있다. 케이스후방면(120)에는 복수 개의 배출구가 형성될 수 있다. 이 경우, 복수 개의 배출구는 상하 좌우 방향으로 열을 맞추어 케이스전방면(110)의 유입구와 대응되게 형성될 수 있다. 외부의 열매체는 케이스전방면(110)의 유입구를 통해 케이스(100) 내부로 유입된 후 후, 케이스(100) 내부의 발열모듈(200)에 의해 가열되어, 케이스후방면(120)의 배출구를 통해 케이스(100) 외부로 배출될 수 있다. 즉, 외부의 열매체(공기)는 케이스(100)를 전방에서 후방으로 통과할 수 있다.The case 100 may have a hollow block shape or a cage shape. The case 100 may include a case front surface 110 and a case rear surface 120. In this case, the case front surface 110 may be a surface located in front of the case 100. In addition, the case rear surface 120 may be a surface located behind the case 100. A plurality of inlets may be formed in the case front surface 110. In this case, the plurality of inlets may be arranged in rows in up, down, left, and right directions. A plurality of outlets may be formed on the rear surface 120 of the case. In this case, the plurality of outlets may be formed to correspond to the inlet of the case front surface 110 by matching the columns in the vertical direction. The outer heating medium is introduced into the case 100 through the inlet of the case front surface 110, and then heated by the heat generating module 200 inside the case 100 to open the outlet of the case rear surface 120. Through the case 100 may be discharged to the outside. That is, the external heat medium (air) can pass through the case 100 from the front to the back.
발열모듈(200)은 케이스(100)의 내부에 배치될 수 있다. 발열모듈(200)은 파워모듈(300)과 전기적으로 연결될 수 있다. 발열모듈(200)은 방열핀(210), 히팅코어(220), 제1가스켓(230) 및 제2가스켓(240)을 포함할 수 있다. 발열모듈(200)에서는 하측에서 상측으로 연장된 복수 개의 방열핀(210)과 히팅코어(220)가 서로 교번하며 배열될 수 있다. 이 경우, 방열핀(210)과 히팅코어(220)의 배열방향은 좌우 방향일 수 있다. 또, 히팅코어(220)의 상측은 제1가스켓(230)에 의해 지지될 수 있다. 또, 히팅코어(220)의 하측은 제2가스켓(240)에 의해 지지될 수 있다.The heating module 200 may be disposed inside the case 100. The heating module 200 may be electrically connected to the power module 300. The heat generating module 200 may include a heat dissipation fin 210, a heating core 220, a first gasket 230, and a second gasket 240. In the heat generating module 200, the plurality of heat dissipation fins 210 and the heating cores 220 extending from the lower side to the upper side may be alternately arranged. In this case, the arrangement direction of the heat dissipation fin 210 and the heating core 220 may be left and right directions. In addition, the upper side of the heating core 220 may be supported by the first gasket 230. In addition, the lower side of the heating core 220 may be supported by the second gasket 240.
방열핀(210)은 케이스(100)의 내부에 배치될 수 있다. 방열핀(210)은 복수 개일 수 있다. 복수 개의 방열핀(210)은 좌우 방향으로 서로 이격되어 배치될 수 있다. 복수 개의 방열핀(210) 사이에는 복수 개의 히팅코어(220)가 배치될 수 있다. 따라서 방열핀(210)과 히팅코어(220)는 인접할 수 있다. 이 경우, 방열핀(210)의 좌우 측부와 히팅코어(220)의 좌우 측면은 접합할 수 있다. 방열핀(210)과 히팅코어(220)의 접합제로는 실버 페이스트 또는 열전도성 실리콘이 이용될 수 있다. 그 결과, 히팅코어(220)에서 발생한 열은 방열핀(210)으로 전달될 수 있다.The heat dissipation fin 210 may be disposed in the case 100. There may be a plurality of heat dissipation fins 210. The plurality of heat dissipation fins 210 may be spaced apart from each other in the left and right directions. A plurality of heating cores 220 may be disposed between the plurality of heat dissipation fins 210. Therefore, the heat dissipation fin 210 and the heating core 220 may be adjacent to each other. In this case, the left and right sides of the heat dissipation fin 210 and the left and right sides of the heating core 220 may be joined. Silver paste or thermally conductive silicon may be used as a bonding agent of the heat dissipation fin 210 and the heating core 220. As a result, heat generated in the heating core 220 may be transferred to the heat dissipation fin 210.
방열핀(210)은 하측에서 상측으로 연장된 형태일 수 있다. 방열핀(210)은 루버핀(Louver fin)일 수 있다. 방열핀(210)의 형태는 하측에서 상측으로 진행하는 파동에서 좌우로 진동하는 파형일 수 있다. 즉, 방열핀(210)은 좌우 방향과 이의 역방향으로 경사진 플레이트가 상하 방향으로 적층된 형태일 수 있다. 따라서 방열핀(210)에는 전후 방향으로 열매체(공기)가 통과할 수 있는 복수 개의 간극이 형성될 수 있다. 방열핀(210)에 의해, 히팅코어(220)에서 발생한 열이 열매체(공기)로 전달되는 전열면적이 높아져 열효율이 향상될 수 있다.The heat dissipation fin 210 may be extended from the lower side to the upper side. The heat dissipation fin 210 may be a louver fin. The shape of the heat dissipation fin 210 may be a waveform vibrating from side to side in a wave traveling from the lower side to the upper side. That is, the heat dissipation fins 210 may have a form in which plates inclined in a left and right direction and a reverse direction thereof are stacked in a vertical direction. Therefore, a plurality of gaps may be formed in the heat dissipation fin 210 through which the heat medium (air) can pass in the front-rear direction. By the heat dissipation fin 210, the heat transfer area in which heat generated from the heating core 220 is transferred to the heat medium (air) may be increased, thereby improving thermal efficiency.
히팅코어(220)는 발열부분으로 케이스(100)의 내부에 배치될 수 있다. 히팅코어(220)는 파워모듈(300)과 전기적으로 연결될 수 있다. 히팅코어(220)는 복수 개일 수 있다. 본 실시예의 히터(1000)에서는 6개의 히팅코어(220)가 사용되었다. 다만, 히팅코어(220)의 개수는 이에 한정되지 않을 수 있다. 복수 개의 히팅코어(220)는 좌우 방향으로 서로 이격되어 배치될 수 있다. 복수 개의 히팅코어(220) 사이에는 복수 개의 방열핀(210)이 배치될 수 있다. 따라서 히팅코어(220)와 방열핀(210)은 인접할 수 있다. 이 경우, 히팅코어(220)의 좌우 측면은 방열핀(210)의 좌우 측부와 접할 수 있다. 히팅코어(220)와 방열핀(210)의 접합제로는 열전도성 실리콘이 이용될 수 있다. 그 결과, 히팅코어(220)에서 발생한 열은 방열핀(210)으로 전달될 수 있다.The heating core 220 may be disposed inside the case 100 as a heat generating portion. The heating core 220 may be electrically connected to the power module 300. There may be a plurality of heating cores 220. In the heater 1000 of the present embodiment, six heating cores 220 are used. However, the number of heating cores 220 may not be limited thereto. The plurality of heating cores 220 may be spaced apart from each other in the left and right directions. A plurality of heat dissipation fins 210 may be disposed between the plurality of heating cores 220. Therefore, the heating core 220 and the heat dissipation fin 210 may be adjacent to each other. In this case, the left and right side surfaces of the heating core 220 may contact the left and right sides of the heat dissipation fin 210. Thermal conductive silicon may be used as a bonding agent between the heating core 220 and the heat dissipation fin 210. As a result, heat generated in the heating core 220 may be transferred to the heat dissipation fin 210.
히팅코어(220)는 하측에서 상측으로 연장된 형태일 수 있다. 히팅코어(220)는 세라믹기판부(221), 발열소자(222), 제1열확산판(223), 제2열확산판(224), 제1전극단자(225), 제2전극단자(226), 커버부(227)를 포함할 수 있다.The heating core 220 may have a shape extending from the lower side to the upper side. The heating core 220 includes a ceramic substrate 221, a heating element 222, a first thermal diffusion plate 223, a second thermal diffusion plate 224, a first electrode terminal 225, and a second electrode terminal 226. The cover unit 227 may be included.
세라믹기판부(221)는 세라믹 재질로 발열소자(222)를 수용할 수 있다. 본 실시예의 히팅코어(220)는 발열소자(222)를 커버하는 세라믹에 의해, PTC Thermistor보다 경량이고, 납성분(Pb) 등 중금속으로부터 자유롭고, 원적외선 등이 발산되고, 높은 열전도율을 가질 수 있다. 세라믹기판부(221)의 좌측면에는 제1열확산판(223)이 배치될 수 있다. 세라믹기판부(221)의 우측면에는 제2열확산판(224)이 배치될 수 있다. 세라믹기판부(221)은 제1열확산판(223)과 제2열확산판(224)과 함께 커버부(227)에 수용될 수 있다. 세라믹기판부(221)는 제1세라믹기판(221a)과 제2세라믹기판(221b)을 포함할 수 있다. 세라믹기판부(221)는 좌측면과 이에 대향하는 우측면을 포함할 수 있다. 이 경우, 세라믹기판부(221)의 좌측면은 "제1면"으로 호칭될 수 있다. 또, 세라믹기판부(221)의 우측면은 "제2면"으로 호칭될 수 있다.The ceramic substrate 221 may accommodate the heat generating element 222 made of a ceramic material. The heating core 220 of the present embodiment may be lighter than the PTC thermistor by the ceramic covering the heat generating element 222, free from heavy metals such as lead (Pb), far-infrared rays, and the like, and have a high thermal conductivity. The first thermal diffusion plate 223 may be disposed on the left side of the ceramic substrate 221. The second thermal diffusion plate 224 may be disposed on the right side of the ceramic substrate 221. The ceramic substrate 221 may be accommodated in the cover 227 together with the first heat spreader 223 and the second heat spreader 224. The ceramic substrate 221 may include a first ceramic substrate 221a and a second ceramic substrate 221b. The ceramic substrate 221 may include a left side and a right side opposite thereto. In this case, the left surface of the ceramic substrate portion 221 may be referred to as a "first surface." In addition, the right side surface of the ceramic substrate unit 221 may be referred to as a "second surface".
제1세라믹기판(221a)은 좌측에 배치되고, 제2세라믹기판(221b)은 우측에 배치될 수 있다. 제1세라믹기판(221a)의 우측면에는 발열소자(222)가 인쇄(printing), 패터닝(patterning), 증착 등의 방법으로 배치될 수 있다. 제1세라믹기판(221a)에 발열소자(222)가 배치된 후, 제1세라믹기판(221a)과 제2세라믹기판(221b)은 소결(1500)되어 일체로 세라믹기판부(221)를 형성할 수 있다. 이 경우, 제1세라믹기판(221a)의 우측면과 제2세라믹기판(221b)의 좌측면이 얼라인(정렬)되어 소결될 수 있다.The first ceramic substrate 221a may be disposed on the left side, and the second ceramic substrate 221b may be disposed on the right side. The heating element 222 may be disposed on the right side of the first ceramic substrate 221a by printing, patterning, or deposition. After the heating element 222 is disposed on the first ceramic substrate 221a, the first ceramic substrate 221a and the second ceramic substrate 221b are sintered 1500 to integrally form the ceramic substrate portion 221. Can be. In this case, the right side surface of the first ceramic substrate 221a and the left side surface of the second ceramic substrate 221b may be aligned and sintered.
제1세라믹기판(221a)의 좌측면 또는 제2세라믹기판(221b)의 우측면 또는 제1세라믹기판(221a)과 제2세라믹기판(221b)의 사이에 제1전극단자(225)와 제2전극단자(226)가 배치되어 접합될 수 있다. 이 경우, 제1,2전극단자(225,226)는 제1,2세라믹기판(221a,221b)의 하단부에 배치되어 접합될 수 있다. 또, 제1,2전극단자(225,226)는 발열소자(222)와 전기적으로 연결될 수 있다. 제1,2전극단자(225,226)가 제1,2세라믹기판(221a,221b)의 외측면에 존재하는 경우, 발열소자(222)에서는 제1,2전극단자(225,226)와 전기적으로 연결을 위한 별도의 인출선이 연장될 수 있다.The first electrode terminal 225 and the second electrode between the left side of the first ceramic substrate 221a or the right side of the second ceramic substrate 221b or between the first ceramic substrate 221a and the second ceramic substrate 221b. Terminal 226 may be disposed and bonded. In this case, the first and second electrode terminals 225 and 226 may be disposed and bonded to lower ends of the first and second ceramic substrates 221a and 221b. In addition, the first and second electrode terminals 225 and 226 may be electrically connected to the heating element 222. When the first and second electrode terminals 225 and 226 exist on the outer surfaces of the first and second ceramic substrates 221a and 221b, the heating element 222 may be electrically connected to the first and second electrode terminals 225 and 226. Separate leader line may be extended.
발열소자(222)는 세라믹기판부(221)의 내부에 배치될 수 있다. 발열소자(222)는 제1세라믹기판(221a)의 우측면에 인쇄, 패터닝, 증착 등의 방법으로 배치될 수 있다. 발열소자(222)는 저항체 라인(line)일 수 있다. 발열소자(222)는 텅스텐(w), 몰리브덴(Mo) 등의 저항체일 수 있다. 따라서 발열소자(222)는 전기가 흐르면 발열할 수 있다. 발열소자(222)는 하측에서 상측으로 연장되었다가 턴업(만곡 또는 절곡)되어 상측에서 하측으로 연장되는 것을 교번하며 전후 방향(열매체가 통과하는 방향)으로 적층되도록 배열될 수 있다. 즉, 발열소자(222)는 일측에서 타측으로 연장되는 제1발열부 및 상기 타측의 소정 지점에서 다시 일측으로 연장되는 제2발열부와 상기 제2발열부의 일측의 소정 지점에서 다시 타측으로 연장되는 제3발열부를 포함하고, 상기 제1발열부, 제2발열부 및 제3발열부는 서로 이격되어 배치될 수 있다. 따라서 열매체(공기)는 발열모듈(200)을 통과하는 동안, 히터코어(220)에서 발열하는 부분을 차례차례 지나가며 가열될 수 있다. 즉, 발열소자(222)의 배열 형태에 의해 열매체(공기)와 히터코어(220)에서 발생되는 열의 접촉면적을 높일 수 있다.The heat generating element 222 may be disposed in the ceramic substrate 221. The heating element 222 may be disposed on the right side of the first ceramic substrate 221a by printing, patterning, or deposition. The heating element 222 may be a resistor line. The heat generating element 222 may be a resistor such as tungsten (w) and molybdenum (Mo). Therefore, the heating element 222 may generate heat when electricity flows. The heating element 222 may be arranged to be stacked in the front-rear direction (the direction in which the heat medium passes) while alternately extending from the lower side to the upper side and then turned up (bending or bending) to extend from the upper side to the lower side. That is, the heating element 222 extends from one side to the other side from the first heat generating portion extending from one side and the other side from the predetermined point of the other side and the second heat generating portion extending from one side to the other side again from another predetermined point. Including a third heat generating portion, the first heat generating portion, the second heat generating portion and the third heat generating portion may be spaced apart from each other. Therefore, while the heat medium (air) passes through the heat generating module 200, the heat medium (air) may be heated while passing through the heat generating portion of the heater core 220. That is, the contact area of heat generated from the heat medium (air) and the heater core 220 can be increased by the arrangement of the heat generating elements 222.
발열소자(222)의 양 끝 단부(라인의 시작지점과 끝지점) 각각은 제1,2전극단자(225,226) 각각과 전기적으로 연결될 수 있다. 발열소자(222)의 양 끝 단부 중 전방에 위치하는 단부는 제1전극단자(225)와 전기적으로 연결될 수 있다. 발열소자(222)의 양 끝 단부 중 후방에 위치하는 단부는 제2전극단자(226)와 전기적으로 연결될 수 있다. 제1,2전극단자(225,226)는 후술하는 파워모듈(300)로부터 전원을 공급받을 수 있다. 따라서 발열소자(222)에는 전류가 흐를 수 있다. 그 결과, 발열소자(222)는 발열할 수 있다. 이 경우, 발열소자(222)에 공급되는 전류의 세기, 방향, 파장은 파워모듈(300)에 의해 제어될 수 있다.Both ends of the heating element 222 (the start point and the end point of the line) may be electrically connected to each of the first and second electrode terminals 225 and 226. An end positioned at the front of both ends of the heating element 222 may be electrically connected to the first electrode terminal 225. An end located at the rear of both ends of the heating element 222 may be electrically connected to the second electrode terminal 226. The first and second electrode terminals 225 and 226 may receive power from the power module 300 to be described later. Therefore, a current may flow in the heating element 222. As a result, the heat generating element 222 may generate heat. In this case, the intensity, direction, and wavelength of the current supplied to the heating element 222 may be controlled by the power module 300.
제1,2열확산판(223,224) 각각은 세라믹기판부(221)의 좌우 측면에 접합되어 배치될 수 있다. 제1열확산판(223)은 제1세라믹기판(221a)의 좌측면에 접합되어 배치될 수 있다. 제2열확산판(224)은 제2세라믹기판(221b)의 우측면에 접합되어 배치될 수 있다. 제1,2열확산판(223,224)과 제1,2세라믹기판(221a,221b)의 접합에는 액티브 메탈 레이어(Active metal layer)가 이용될 수 있다. 액티브 메탈 레이어는 티탄족의 활성금속 합금일 수 있다. 액티브 메탈 레이어는 제1세라믹기판(221a)의 좌측면과 제2세라믹기판(221b)의 우측면에 배치될 수 있다. 액티브 메탈 레이어와 세라믹이 반응하여 산화물이나 질화물을 형성할 수 있다. 그 결과, 제1,2열확산판(223,224)과 제1,2세라믹기판(221a,221b)을 정렬한 후 접하여 접합할 수 있다.Each of the first and second thermal diffusion plates 223 and 224 may be bonded to the left and right sides of the ceramic substrate 221. The first thermal diffusion plate 223 may be bonded to the left surface of the first ceramic substrate 221a. The second thermal diffusion plate 224 may be bonded to the right side surface of the second ceramic substrate 221b. An active metal layer may be used to bond the first and second thermal diffusion plates 223 and 224 to the first and second ceramic substrates 221a and 221b. The active metal layer may be an active metal alloy of the titanium group. The active metal layer may be disposed on the left side of the first ceramic substrate 221a and the right side of the second ceramic substrate 221b. The active metal layer and the ceramic may react to form oxides or nitrides. As a result, the first and second thermal diffusion plates 223 and 224 and the first and second ceramic substrates 221a and 221b may be aligned and bonded to each other.
제1열확산판(223)은 제1세라믹기판(221a)에서 외측(좌측)으로 차례로 적층된 제1열확산층(223a), 제2열확산층(223b) 및 제3열확산층(223c)을 포함할 수 있다. 제1,2,3열확산층(223a,223b,223c)의 접합은 가압 가열(hot pressing)에 의해 이루어질 수 있다. 제2열확산판(223)은 제2세라믹기판(221b)에서 외측(우측)으로 차례로 적층된 제4열확산층(224a), 제5열확산층(224b) 및 제6열확산층(224c)을 포함할 수 있다. 제4,5,6열확산층(224a,224b,224c)의 접합은 가압 가열(hot pressing)에 의해 이루어질 수 있다.The first thermal diffusion plate 223 may include a first thermal diffusion layer 223a, a second thermal diffusion layer 223b, and a third thermal diffusion layer 223c sequentially stacked on the outer side (left side) of the first ceramic substrate 221a. Can be. Bonding of the first, second, and third thermal diffusion layers 223a, 223b, and 223c may be performed by hot pressing. The second thermal diffusion plate 223 may include a fourth thermal diffusion layer 224a, a fifth thermal diffusion layer 224b, and a sixth thermal diffusion layer 224c that are sequentially stacked on the outer side (right side) of the second ceramic substrate 221b. Can be. The bonding of the fourth, fifth and sixth thermal diffusion layers 224a, 224b and 224c may be performed by hot pressing.
제1,3,4,6열확산층(223a,223c,224a,224c)의 재질은 구리(Cu) 또는 알루미늄(Al)을 포함할 수 있다. 제2,5열확산층(223b,224b)의 재질은 몰리브덴(Mo)를 포함할 수 있다. 따라서 제1,2,3,4,5,6열확산층(223a,223b,223c,224a,224b,224c)는 열전도율이 높아 세라믹기판부(221)에서 발생하는 열을 확산시켜 고르게 분포할 수 있다. 나아가 제2,4열확산층(223b,224b)의 두께(좌우 방향)를 조절하여 열팽창계수를 조절할 수 있다. 따라서 제1,2열확산판(223,224)의 열팽창계수는 세라믹기판부(221)의 열팽창계수를 반영하여 기설정된 조건에 따라 정해질 수 있다. 즉, 제1,2열확산판(223,224)의 열팽창계수는 세라믹기판부(221)의 열팽창계수와 유사한 값을 가질 수 있다. 나아가 제1,2열확산판(223,224)의 열팽창계수는 세라믹기판부(221)의 열팽창계수와 동일한 값을 가질 수 있다. 예를 들어, 세라믹기판부(221)의 열팽창 계수가 7ppm/인 경우, 제1 열확산판(223) 및 제2 열확산판(224)의 열팽창 계수도 각각 7ppm/일 수 있다. 이때, 열확산판의 열전도율은 230W/mK일 수 있다. 또는, 세라믹기판부(221)의 열팽창 계수에 대하여 제1 열확산판(223) 및 제2 열확산판(224)의 열팽창 계수는 0.8 내지 1.2배일 수 있다. 그 결과, 열전도율은 좋으나 취성을 가져 열충격에 의해 손상되기 쉬운 세라믹기판부(221)를 보강할 수 있다. The material of the first, third, fourth, and sixth thermal diffusion layers 223a, 223c, 224a, and 224c may include copper (Cu) or aluminum (Al). The material of the second and fifth thermal diffusion layers 223b and 224b may include molybdenum (Mo). Therefore, the first, second, second, third, fourth, fifth, and sixth thermal diffusion layers 223a, 223b, 223c, 224a, 224b, and 224c have high thermal conductivity and thus may evenly distribute heat generated from the ceramic substrate 221. . Furthermore, the thermal expansion coefficient may be adjusted by adjusting the thicknesses (left and right directions) of the second and fourth thermal diffusion layers 223b and 224b. Therefore, the thermal expansion coefficients of the first and second thermal diffusion plates 223 and 224 may be determined according to preset conditions reflecting the thermal expansion coefficient of the ceramic substrate 221. That is, the thermal expansion coefficients of the first and second thermal diffusion plates 223 and 224 may have a value similar to that of the ceramic substrate portion 221. Further, the thermal expansion coefficients of the first and second thermal diffusion plates 223 and 224 may have the same value as the thermal expansion coefficient of the ceramic substrate 221. For example, when the thermal expansion coefficient of the ceramic substrate portion 221 is 7 ppm /, the thermal expansion coefficient of the first thermal diffusion plate 223 and the second thermal diffusion plate 224 may also be 7 ppm /, respectively. At this time, the thermal conductivity of the thermal diffusion plate may be 230W / mK. Alternatively, the thermal expansion coefficients of the first thermal diffusion plate 223 and the second thermal diffusion plate 224 may be 0.8 to 1.2 times the thermal expansion coefficient of the ceramic substrate 221. As a result, the ceramic substrate portion 221 having good thermal conductivity but brittle and easily damaged by thermal shock can be reinforced.
제1,2열확산판(223,224)는 설계적 요청에 의해 변경될 수 있는 부가적인 구성일 수 있다. 즉, 히팅코어(220)에서 제1,2열확산판(223,224) 중 어느 하나는 생략될 수 있다. 또, 히팅코어(220)에서 제1,2열확산판(223,224) 모두 생략될 수 있다.The first and second thermal diffusion plates 223 and 224 may be additional components that can be changed by design request. That is, any one of the first and second thermal diffusion plates 223 and 224 may be omitted from the heating core 220. In addition, both of the first and second thermal diffusion plates 223 and 224 may be omitted from the heating core 220.
제1,2전극단자(225,226)는 히팅코어(220)의 하부에 배치될 수 있다. 제1,2전극단자(225,226)는 세라믹기판부(221)의 하부에 배치될 수 있다. 제1전극단자(225)는 세라믹기판부(221)의 전방 하부에 배치될 수 있다. 제2전극단자(226)는 세라믹기판부(221)의 후방 하부에 배치될 수 있다. 제1,2전극단자(225,226)는 발열소자(222)와 전기적으로 연결될 수 있다. 제1,2전극단자(225,226)는 파워모듈(300)과 전기적으로 연결될 수 있다. 제1전극단자(225)는 후술하는 파워모듈(300)의 제1연결단자(330)와 전기적으로 연결될 수 있다. 제2전극단자(226)는 후술하는 파워모듈(300)의 제2연결단자(340)와 전기적으로 연결될 수 있다.The first and second electrode terminals 225 and 226 may be disposed under the heating core 220. The first and second electrode terminals 225 and 226 may be disposed under the ceramic substrate 221. The first electrode terminal 225 may be disposed below the front of the ceramic substrate 221. The second electrode terminal 226 may be disposed under the rear of the ceramic substrate 221. The first and second electrode terminals 225 and 226 may be electrically connected to the heating element 222. The first and second electrode terminals 225 and 226 may be electrically connected to the power module 300. The first electrode terminal 225 may be electrically connected to the first connection terminal 330 of the power module 300 to be described later. The second electrode terminal 226 may be electrically connected to the second connection terminal 340 of the power module 300 to be described later.
제1전극단자(225)는 제1연결부(225a), 제1전극단자본체(225b), 제1결속부재(225c) 및 제2결속부재(225d)를 포함할 수 있다. 제1연결부(225a), 제1전극단자본체(225b), 제1결속부재(225c) 및 제2결속부재(225d)는 일체로 형성될 수 있다. 제1연결부(225a)는 좌우 방향으로 면이 형성된 플레이트 형태일 수 있다. 제1연결부(225a)는 제1세라믹기판(221a)의 좌측면의 하부 전방에 접합되어 배치될 수 있다. 제1연결부(225a)는 제1세라믹기판(221a)의 우측면의 하부 전방에 접합되어 배치될 수 있다. 이 경우, 제1연결부(225a)는 제1세라믹기판(221a)과 제2세라믹기판(221b)의 사이에 개재될 수 있다. 제1연결부(225a)는 제2세라믹기판(221b)의 우측면의 하부 전방에 접합되어 배치될 수 있다. 제1연결부(225a)는 발열소자(222)의 양 끝단(발열라인의 시작점과 끝점) 중 전방에 위치하는 끝단과 전기적으로 연결될 수 있다. 제1전극단자본체(225b)는 블럭형태로 상부에는 제1연결부(225a)가 연결될 수 있다. 제1전극단자본체(225b)의 하부 전방에는 제1결속부재(225c)가 연결될 수 있다. 제1전극단자본체(225b)의 하부 후방에는 제2결속부재(225d)가 연결될 수 있다. 제1결속부재(225c)는 후방으로 만곡 또는 절곡(구부러진)된 플레이트 형태일 수 있다. 제2결속부재(225d)는 전방으로 만곡 또는 절곡(구부러진)된 플레이트 형태일 수 있다. 제1,2결속부재(225c,225d)는 전후 방향으로 서로 대향하여 배치될 수 있다. 따라서 제1결속부재(225c)는 하측으로 갈수록 제2결속부재(225d)와 가까워지다가 멀어지도록 만곡되거나 절곡된 형태일 수 있고, 제2결속부재(225d)는 하측으로 갈수록 제1결속부재(225c)와 가까워지다가 멀어지도록 만곡되거나 절곡된 형태일 수 있다. 제1,2결속부재(225c,225d) 사이에는 후술하는 제1연결단자(330)가 삽입될 수 있다. 그 결과, 제1전극단자(225)와 파워모듈(300)은 전기적으로 연결될 수 있다.The first electrode terminal 225 may include a first connector 225a, a first electrode terminal body 225b, a first binding member 225c, and a second binding member 225d. The first connector 225a, the first electrode terminal body 225b, the first binding member 225c and the second binding member 225d may be integrally formed. The first connector 225a may have a plate shape having a surface formed in a left and right direction. The first connector 225a may be bonded to the lower front of the left side of the first ceramic substrate 221a. The first connector 225a may be bonded to the lower front of the right side of the first ceramic substrate 221a. In this case, the first connector 225a may be interposed between the first ceramic substrate 221a and the second ceramic substrate 221b. The first connector 225a may be bonded to the lower front of the right side of the second ceramic substrate 221b. The first connector 225a may be electrically connected to an end positioned at the front of both ends (the start point and the end point of the heat generation line) of the heating element 222. The first electrode terminal body 225b may have a block shape, and a first connection part 225a may be connected to an upper portion thereof. The first binding member 225c may be connected to the lower front of the first electrode terminal body 225b. The second binding member 225d may be connected to the lower rear side of the first electrode terminal body 225b. The first binding member 225c may be in the form of a plate that is curved or bent (bent) backward. The second binding member 225d may be in the form of a plate that is curved or bent (bent) forward. The first and second binding members 225c and 225d may be disposed to face each other in the front-rear direction. Accordingly, the first binding member 225c may be bent or bent to move closer to the lower side and closer to the second binding member 225d, and the second binding member 225d may be bent toward the lower side. It may be bent or bent to close to and away from). A first connection terminal 330 described later may be inserted between the first and second binding members 225c and 225d. As a result, the first electrode terminal 225 and the power module 300 may be electrically connected.
제2전극단자(226)는 제2연결부(226a), 제2전극단자본체(226b), 제3결속부재(226c) 및 제4결속부재(226d)를 포함할 수 있다. 제2연결부(226a), 제2전극단자본체(226b), 제3결속부재(226c) 및 제4결속부재(226d)는 일체로 형성될 수 있다. 제2연결부(226a)는 좌우 방향으로 면이 형성된 플레이트 형태일 수 있다. 제2연결부(226a)는 제1세라믹기판(221a)의 좌측면의 하부 후방에 접합되어 배치될 수 있다. 제2연결부(226a)는 제1세라믹기판(221a)의 우측면의 하부 후방에 접합되어 배치될 수 있다. 이 경우, 제2연결부(226a)는 제1세라믹기판(221a)과 제2세라믹기판(221b)의 사이에 개재될 수 있다. 제2연결부(226a)는 제2세라믹기판(221b)의 우측면의 하부 전방에 접합되어 배치될 수 있다. 제2연결부(226a)는 발열소자(222)의 양 끝단(발열라인의 시작점과 끝점) 중 후방에 위치하는 끝단과 전기적으로 연결될 수 있다. 제2전극단자본체(226b)는 블럭형태로 상부에는 제2연결부(226a)가 연결될 수 있다. 제2전극단자본체(226b)의 하부 전방에는 제3결속부재(226c)가 연결될 수 있다. 제2전극단자본체(225b)의 하부 후방에는 제4결속부재(226d)가 연결될 수 있다. 제3결속부재(226c)는 후방으로 만곡 또는 절곡된 플레이트 형태일 수 있다. 제4결속부재(226d)는 전방으로 만곡 또는 절곡된 플레이트 형태일 수 있다. 제3,4결속부재(226c,226d)는 전후 방향으로 서로 대향하여 배치될 수 있다. 따라서 제3결속부재(226c)는 하측으로 갈수록 제4결속부재(226d)와 가까워지다가 멀어지도록 만곡되거나 절곡된 형태일 수 있고, 제4결속부재(226d)는 하측으로 갈수록 제3결속부재(226c)와 가까워지다가 멀어지도록 만곡되거나 절곡된 형태일 수 있다. 제3,4결속부재(226c,226d) 사이에는 후술하는 제2연결단자(340)가 삽입될 수 있다. 그 결과, 제2전극단자(226)와 파워모듈(300)은 전기적으로 연결될 수 있다. 파워모듈(300)로부터 제1,2전극단자(225,226)를 통하여 발열소자(222)에 전류가 공급될 수 있다. 그 결과, 발열소자(222)는 발열할 수 있다.The second electrode terminal 226 may include a second connector 226a, a second electrode terminal body 226b, a third binding member 226c, and a fourth binding member 226d. The second connector 226a, the second electrode terminal body 226b, the third binding member 226c, and the fourth binding member 226d may be integrally formed. The second connector 226a may be in the form of a plate having a surface formed in the left and right directions. The second connector 226a may be bonded to the lower back of the left side of the first ceramic substrate 221a. The second connector 226a may be bonded to the lower rear side of the right surface of the first ceramic substrate 221a. In this case, the second connector 226a may be interposed between the first ceramic substrate 221a and the second ceramic substrate 221b. The second connector 226a may be bonded to the lower front of the right side of the second ceramic substrate 221b. The second connector 226a may be electrically connected to an end positioned at a rear side of both ends (starting point and end point of the heating line) of the heating element 222. The second electrode terminal body 226b may have a block shape, and a second connector 226a may be connected to an upper portion thereof. The third binding member 226c may be connected to the lower front of the second electrode terminal body 226b. A fourth binding member 226d may be connected to the lower rear side of the second electrode terminal body 225b. The third binding member 226c may be in the form of a plate that is curved or bent backwards. The fourth binding member 226d may have a plate shape that is curved or bent forward. The third and fourth binding members 226c and 226d may be disposed to face each other in the front-rear direction. Therefore, the third binding member 226c may be bent or bent to move closer to the lower side and closer to the fourth binding member 226d, and the fourth binding member 226d may have a third binding member 226c toward the lower side. It may be bent or bent to close to and away from). A second connection terminal 340 to be described later may be inserted between the third and fourth binding members 226c and 226d. As a result, the second electrode terminal 226 and the power module 300 may be electrically connected. Current may be supplied from the power module 300 to the heating element 222 through the first and second electrode terminals 225 and 226. As a result, the heat generating element 222 may generate heat.
커버부(227)의 재질은 알루미늄(Al)을 포함할 수 있다. 커버부(227)는 히팅로드(220)의 외장부재로 상하 방향으로 연장된 중공의 바(bar) 또는 로드 형태일 수 있다. 따라서 커버부(227)에는 상하 방향으로 관통하는 커버홀(227a)이 형성될 수 있다. 커버부(227)의 내부에는 세라믹기판부(221), 발열소자(222), 제1열확산판(223) 및 제2열확산판(224)이 수용될 수 있다. 이 경우, 커버홀(227a)의 내측면은 세라믹기판부(221)의 전방면 및 후방면, 제1열확산판(223)의 좌측면, 제2열확산판(224)의 우측면과 접할 수 있다. 제1,2열확산판(223,224)은 생략될 수 있다. 이 경우, 커버홀(227a)의 내측면은 세라믹기판부(221)의 전후좌우 4방면과 접할 수 있다. 커버부(227)와 세라믹기판부(221), 제1,2열확산판(223,224)를 접합하는 데에는 열전도성 실리콘이 사용될 수 있다. 커버부(227)의 좌측면은 커버부(227)의 좌측에 위치한 방열핀(210)의 우측부와 접할 수 있다. 커버부(227)의 우측면은 커버부(227)의 우측에 위치한 방열핀(210)의 좌측부와 접할 수 있다. 커버부(227)와 방열핀(227)의 접합에는 열전도성 실리콘이 이용될 수 있다. 커버부(227)는 세라믹기판부(221)와 제1,2열확산판(223)을 보호하는 역할을 할 수 있다. 또, 커버부(227)는 열전도성이 높아 세라믹기판부(221)의 발열소자(222)에서 발생한 열을 확산시키는 역할을 할 수 있다. 또, 커버부(227)는 접착성이 좋아 히팅로드(220)와 방열핀(210)의 접착을 용이하게 할 수 있다.The material of the cover part 227 may include aluminum (Al). The cover part 227 may be in the form of a hollow bar or rod extending in the vertical direction to the exterior member of the heating rod 220. Therefore, the cover portion 227 may be formed with a cover hole 227a penetrating in the vertical direction. The ceramic substrate 221, the heat generating element 222, the first heat diffusion plate 223, and the second heat diffusion plate 224 may be accommodated in the cover 227. In this case, the inner surface of the cover hole 227a may be in contact with the front surface and the rear surface of the ceramic substrate portion 221, the left surface of the first thermal diffusion plate 223, and the right surface of the second thermal diffusion plate 224. The first and second thermal diffusion plates 223 and 224 may be omitted. In this case, the inner surface of the cover hole 227a may be in contact with four front, rear, left, and right sides of the ceramic substrate 221. Thermally conductive silicon may be used to bond the cover part 227 to the ceramic substrate part 221 and the first and second thermal diffusion plates 223 and 224. The left side of the cover 227 may be in contact with the right side of the heat dissipation fin 210 located on the left side of the cover 227. The right side surface of the cover portion 227 may be in contact with the left side portion of the heat dissipation fin 210 located on the right side of the cover portion 227. Thermally conductive silicon may be used to bond the cover part 227 to the heat dissipation fin 227. The cover 227 may serve to protect the ceramic substrate 221 and the first and second thermal diffusion plates 223. In addition, the cover 227 may have a high thermal conductivity and may serve to diffuse heat generated from the heat generating element 222 of the ceramic substrate 221. In addition, the cover part 227 may be easily bonded to the heating rod 220 and the heat dissipation fin 210 because of good adhesion.
커버부(227)는 상측은 세라믹기판부(221), 제1,2열확산판(223,224)의 상측보다 상측으로 연장되어 형성될 수 있다. 커버부(227)의 하측은 세라믹기판부(221), 제1,2열확산판(223,224)의 하측보다 하측으로 연장되어 형성될 수 있다. 즉, 커버부(227)의 상하 방향 길이는 세라믹기판부(221)와 제1,2열확산판(223,224)의 상하 방향 길이보다 길 수 있다. 커버부(227)의 상부(상측)는 후술하는 제1가스켓(230)의 제1수용홀(231)에 삽입될 수 있다. 이 경우, 커버부(227)에서 세라믹기판부(221), 제1,2열확산판(223,224)을 넘어 연장된 상부만이 제1수용부(231)에 삽입될 수 있다. 따라서 제1가스켓(230)은 세라믹기판부(221)와 제1,2열확산판(223,224)으로부터 직접적으로 열전달을 받지 않을 수 있다. 그 결과, 제1가스켓(230)의 열화에 의한 손상이 방지될 수 있다. 커버부(227)의 하부(하측)는 후술하는 제2가스켓(240)의 제2수용부(241)에 삽입될 수 있다. 이 경우, 커버부(227)에서 세라믹기판부(221), 제1,2열확산판(223,224)을 넘어 연장된 하부만이 제1수용홀(231)에 삽입될 수 있다. 따라서 제2가스켓(240)은 세라믹기판부(221)와 제1,2열확산판(223,224)으로부터 직접적으로 열전달을 받지 않을 수 있다. 그 결과, 제2가스켓(240)의 열화에 의한 손상이 방지될 수 있다. 다만, 이 경우, 히팅코어(220)의 제1,2전극단자(225,226)는 제2수용부를 하측으로 관통하여 아래로 노출될 수 있다. 그 결과, 제1,2전극단자(225,226)는 히팅코어(220)의 하부에 위치하는 파워모듈(300)과 전기적으로 연결될 수 있다. 상술한 바를 종합하면, 히팅코어(220)는 커버부(227)가 제1,2가스켓(230,240)에 삽입됨으로써 지지될 수 있다. 따라서 커버부(227)는 지지부재의 기능도 수행할 수 있다. 한편, 커버부(227)는 히팅코어(220)의 필수적 구성요소가 아닐 수 있다. 즉, 커버부(227)는 설계적 요청에 의해 생략될 수 있다. 이 경우, 세라믹기판부(221)의 상부와 하부가 제1,2가스켓(230,240)에 삽입될 수 있다. 또, 세라믹기판부(221)와 제1,2열확산판(223,224)의 상부와 하부가 제1,2가스켓(230,240)에 삽입될 수 있다.The cover part 227 may be formed to have an upper side extending upward from an upper side of the ceramic substrate 221 and the first and second thermal diffusion plates 223 and 224. The lower side of the cover portion 227 may be formed to extend below the lower side of the ceramic substrate portion 221 and the first and second thermal diffusion plates 223 and 224. That is, the vertical length of the cover part 227 may be longer than the vertical length of the ceramic substrate part 221 and the first and second thermal diffusion plates 223 and 224. The upper portion (upper side) of the cover part 227 may be inserted into the first accommodation hole 231 of the first gasket 230 to be described later. In this case, only an upper portion of the cover portion 227 extending beyond the ceramic substrate portion 221 and the first and second thermal diffusion plates 223 and 224 may be inserted into the first accommodating portion 231. Accordingly, the first gasket 230 may not directly receive heat transfer from the ceramic substrate 221 and the first and second thermal diffusion plates 223 and 224. As a result, damage due to deterioration of the first gasket 230 can be prevented. The lower portion (lower side) of the cover portion 227 may be inserted into the second accommodation portion 241 of the second gasket 240 to be described later. In this case, only the lower portion extending from the cover portion 227 beyond the ceramic substrate portion 221 and the first and second thermal diffusion plates 223 and 224 may be inserted into the first accommodation hole 231. Therefore, the second gasket 240 may not directly receive heat transfer from the ceramic substrate 221 and the first and second thermal diffusion plates 223 and 224. As a result, damage due to deterioration of the second gasket 240 can be prevented. However, in this case, the first and second electrode terminals 225 and 226 of the heating core 220 may be exposed downward through the second receiving portion downward. As a result, the first and second electrode terminals 225 and 226 may be electrically connected to the power module 300 positioned under the heating core 220. In summary, the heating core 220 may be supported by inserting the cover 227 into the first and second gaskets 230 and 240. Therefore, the cover portion 227 may also perform the function of the support member. The cover 227 may not be an essential component of the heating core 220. That is, the cover part 227 may be omitted by design request. In this case, the upper and lower portions of the ceramic substrate 221 may be inserted into the first and second gaskets 230 and 240. In addition, upper and lower portions of the ceramic substrate 221 and the first and second thermal diffusion plates 223 and 224 may be inserted into the first and second gaskets 230 and 240.
제1가스켓(230)은 케이스(100) 내부의 상측에 위치할 수 있다. 제2가스켓(240)은 케이스(100) 내부의 하측에 위치할 수 있다. 케이스(100)는 중공의 박스형태이며, 케이스(100)의 상부와 하부에는 각각 제1가스켓(230)과 제2가스켓(240)이 끼임, 접착 등에 의하여 결합되어 고정될 수 있다.The first gasket 230 may be located above the inside of the case 100. The second gasket 240 may be located below the case 100. The case 100 is in the form of a hollow box, and the first and second gaskets 230 and 240 may be coupled and fixed to the upper and lower portions of the case 100 by pinching and bonding, respectively.
제1,2가스켓(230,240)에는 좌우 방향으로 이격되어 배열된 복수 개의 제1,2수용부(231,241)가 형성될 수 있다. 제1가스켓(230)에는 상측으로 돌출된 복수 개의 제1수용부(231)가 형성될 수 있다. 제2가스켓(240)에는 하측으로 돌출된 복수 개의 제2수용부(241)가 형성될 수 있다. 복수 개의 제1,2수용부(231,241)는 복수 개의 히팅코어(220)와 일대일 대응되게 형성될 수 있다. 따라서 히팅코어(220)의 상부는 대응하는 제1수용부(231)에 삽입될 수 있다. 또, 히팅코어(220)의 하부는 대응하는 제2수용부(241)에 삽입될 수 있다. 다만, 이 경우, 히팅코어(220)의 제1,2전극단자(225,226)은 제2수용부(241)를 하측으로 관통하여 아래로 연장될 수 있다. 따라서 제1,2전극단자(225,226)는 하측으로 노출되어 히팅코어(220)의 하부에 배치되는 파워모듈(300)과 전기적으로 연결될 수 있다. 상술한 바를 종합하면, 히팅코어(220)는 상부와 하부가 고정단인 기둥형태로 안전하게 고정되어 케이스(100)에 내장될 수 있다.The first and second gaskets 230 and 240 may be provided with a plurality of first and second accommodation parts 231 and 241 spaced apart in the left and right directions. A plurality of first accommodating parts 231 protruding upward may be formed in the first gasket 230. A plurality of second accommodating parts 241 protruding downward may be formed in the second gasket 240. The plurality of first and second accommodating parts 231 and 241 may be formed in one-to-one correspondence with the plurality of heating cores 220. Therefore, the upper portion of the heating core 220 may be inserted into the corresponding first receiving portion 231. In addition, the lower portion of the heating core 220 may be inserted into the corresponding second receiving portion 241. However, in this case, the first and second electrode terminals 225 and 226 of the heating core 220 may extend downward through the second receiving portion 241. Accordingly, the first and second electrode terminals 225 and 226 may be exposed to the lower side and electrically connected to the power module 300 disposed under the heating core 220. In summary, the heating core 220 may be securely fixed in the form of a pillar having upper and lower fixed ends, and may be embedded in the case 100.
파워모듈(300)은 케이스(100)의 하부에 배치될 수 있다. 파워모듈(300)은 케이스(100)와 결합할 수 있다. 파워모듈(300)은 발열모듈(200)과 전기적으로 연결될 수 있다. 파워모듈(300)은 발열모듈(200)로 공급되는 전류의 세기, 방향, 파장 등을 제어할 수 있다. 파워모듈(300)은 도전라인(미도시)에 의해 외부의 전원 장치와 연결되어 충전되거나 전원을 공급받을 수 있다. 파워모듈(300)은 블럭형태로, 케이스가이드부(310), 연결단자부(320), 제1연결단자(330) 및 제2연결단자(340)를 포함할 수 있다.The power module 300 may be disposed below the case 100. The power module 300 may be combined with the case 100. The power module 300 may be electrically connected to the heat generating module 200. The power module 300 may control the strength, direction, wavelength, etc. of the current supplied to the heating module 200. The power module 300 may be connected to an external power supply device by a conductive line (not shown) to be charged or supplied with power. The power module 300 may include a case guide part 310, a connection terminal part 320, a first connection terminal 330, and a second connection terminal 340 in a block form.
케이스가이드부(310)는 파워모듈(300)의 윗면 중심부에 형성될 수 있다. 케이스가이드부(310)는 사각의 홈 또는 홀 형태로, 내부에는 연결단자부(320)가 형성될 수 있다. 이 경우, 케이스가이드부(310)의 사각의 홈 또는 홀과 연결단자부(320)의 측벽에 의해 케이스(100)의 하부와 대응하는 홈 또는 홀이 형성될 수 있다. 따라서 케이스(100)는 케이스가이드부(310)에 삽입되는 형태로 가이드될 수 있다. 그 결과, 케이스(100)의 하부에 파워모듈(300)이 얼라인되어 배치될 수 있다. 이 경우, 케이스(100)의 하부와 파워모듈(300)은 결합할 수 있다. 케이스(100)와 파워모듈(300)의 결합방식에는 기계적(스크류 등), 구조적(끼임 등), 접착(접착제) 등의 다양한 방식이 이용될 수 있다.The case guide part 310 may be formed at the center of the upper surface of the power module 300. The case guide part 310 may have a rectangular groove or hole shape, and a connection terminal part 320 may be formed therein. In this case, a groove or a hole corresponding to the lower portion of the case 100 may be formed by the rectangular groove or the hole of the case guide part 310 and the side wall of the connection terminal 320. Therefore, the case 100 may be guided in a form inserted into the case guide part 310. As a result, the power module 300 may be aligned and disposed below the case 100. In this case, the lower portion of the case 100 and the power module 300 may be combined. In the coupling method of the case 100 and the power module 300, various methods such as mechanical (screw, etc.), structural (such as pinching), and adhesive (adhesive) may be used.
연결단자부(320)는 케이스가이드부(310)의 내측 중심부에 형성되어 있는 지지대일 수 있다. 연결단자부(320)의 중앙에는 연결단자홈(321)이 형성될 수 있다. 연결단자홈(321)의 밑면에는 복수 개의 제1,2연결단자(330,340)가 배열될 수 있다.The connection terminal 320 may be a support formed in the inner center of the case guide part 310. A connection terminal groove 321 may be formed in the center of the connection terminal unit 320. A plurality of first and second connection terminals 330 and 340 may be arranged on the bottom surface of the connection terminal groove 321.
제1,2연결단자(330,340)는 복수 개일 수 있다. 제1,2연결단자(330,340)는 전후방향으로 이격되어 배치될 수 있다. 이 경우, 제1연결단자(330)는 전방에 배치될 수 있다. 또, 제2연결단자(340)는 후방에 배치될 수 있다. 제1,2연결단자(330,340)는 전후방 면을 가지는 플레이트 형태일 수 있다. 복수 개의 제1,2연결단자(330,340)는 복수 개의 히팅코어(220)와 일대일 대응될 수 있다. 복수 개의 제1,2연결단자(330,340)는 복수 개의 제1,2전극단자(225,226)와 일대일 대응되어 대향할 수 있다. 따라서 케이스(100)와 파워모듈(300)의 결합시 제1연결단자(330)는 이와 대응하는 제1전극단자(225)와 결합할 수 있다. 또, 제2연결단자(340)는 이와 대응하는 제2전극단자(226)와 결합할 수 있다. 이 경우, 제1연결단자(330)는 제1전극단자(225)의 제1결속부재(225c)와 제2결속부재(225d) 사이에 개재될 수 있다. 따라서 제1연결단자(330)와 제1전극단자(225)는 끼임 결합 또는 조립되어 전기적으로 연결될 수 있다. 또, 제2연결단자(340)는 제2전극단자(226)의 제3결속부재(226c)와 제4결속부재(226d) 사이에 개재될 수 있다. 따라서 제2연결단자(340)와 제2전극단자(226)는 끼임 결합 또는 조립되어 전기적으로 연결될 수 있다.The first and second connection terminals 330 and 340 may be plural in number. The first and second connection terminals 330 and 340 may be spaced apart in the front-back direction. In this case, the first connection terminal 330 may be disposed in front. In addition, the second connection terminal 340 may be disposed at the rear. The first and second connection terminals 330 and 340 may have a plate shape having front and rear surfaces. The plurality of first and second connection terminals 330 and 340 may correspond one-to-one with the plurality of heating cores 220. The plurality of first and second connection terminals 330 and 340 may face each other in a one-to-one correspondence with the plurality of first and second electrode terminals 225 and 226. Therefore, when the case 100 and the power module 300 are coupled, the first connection terminal 330 may be coupled to the first electrode terminal 225 corresponding thereto. In addition, the second connection terminal 340 may be coupled to the second electrode terminal 226 corresponding thereto. In this case, the first connection terminal 330 may be interposed between the first binding member 225c and the second binding member 225d of the first electrode terminal 225. Therefore, the first connection terminal 330 and the first electrode terminal 225 may be pinched, coupled or assembled to be electrically connected. In addition, the second connection terminal 340 may be interposed between the third binding member 226c and the fourth binding member 226d of the second electrode terminal 226. Therefore, the second connection terminal 340 and the second electrode terminal 226 may be pinched or assembled to be electrically connected.
이하에서는, 도면을 참조하여 본 실시예의 이동수단용 히팅 시스템을 설명한다. 도 8은 본 실시예의 이동수단용 히팅 시스템을 나타낸 블럭도이다.Hereinafter, with reference to the drawings will be described a heating system for a moving means of this embodiment. 8 is a block diagram showing a heating system for a moving means of the present embodiment.
본 실시예의 이동수단용 히팅 시스템(2000)은 다양한 이동수단에 사용될 수 있다. 여기서 이동수단은 자동차 등 육지를 운행하는 차량에 한정되지 않으며, 배, 비행기 등도 포함될 수 있다. 다만, 이하에서는, 본 실시예의 이동수단용 히팅 시스템(2000)이 자동차에 사용되는 경우를 일례로 설명한다.The heating system 2000 for moving means of this embodiment can be used for various moving means. Here, the means of transportation is not limited to vehicles that run on land such as automobiles, and may include ships and airplanes. However, below, the case where the heating system 2000 for a means of transportation of this embodiment is used for a motor vehicle is demonstrated as an example.
이동수단용 히팅 시스템(2000)은 자동차의 엔진룸에 수용될 수 있다. 이동수단용 히팅 시스템(2000)은 급기부(1400), 유로(1500), 배기부(1600) 및 히터(1000)를 포함할 수 있다.The vehicle heating system 2000 may be accommodated in an engine room of a vehicle. The vehicle heating system 2000 may include an air supply unit 1400, a flow path 1500, an exhaust unit 1600, and a heater 1000.
급기부(1400)로는 송풍팬, 펌프 등 다양한 급기장치가 사용될 수 있다. 급기부(1400)는 이동수단용 히팅 시스템(2000)의 외부의 열매체(엔진룸의 공기)를 후술하는 유로(1500)의 내부로 이동시키며, 유로(1500)를 따라 이동하게 할 수 있다.As the air supply unit 1400, various air supply devices such as a blowing fan and a pump may be used. The air supply unit 1400 may move the heat medium (air in the engine room) of the outside of the heating system 2000 for the vehicle to the inside of the flow path 1500 to be described later, and move along the flow path 1500.
유로(1500)는 열매체(공기)가 흐르는 통로일 수 있다. 유로(1500)의 일측에는 급기부(1400)가 배치될 수 있고, 유로(1500)의 타측에는 배기부(1600)가 배치될 수 있다. 유로(1500)는 자동차의 엔진룸과 실내를 공조적으로 연결할 수 있다.The flow path 1500 may be a passage through which a heat medium (air) flows. The air supply unit 1400 may be disposed at one side of the flow path 1500, and the exhaust unit 1600 may be disposed at the other side of the flow path 1500. The flow path 1500 may cooperatively connect the engine room and the interior of the vehicle.
배기부(1600)로는 개폐가 가능한 블레이드 등이 사용될 수 있다. 배기부(1600)는 유로(1500)의 타측에 배치될 수 있다. 배기부(1600)는 자동차의 실내와 연통될 수 있다. 따라서 유로(1500)를 따라 이동한 열매체(공기)는 배기부(1600)를 통하여 자동차의 실내로 유입될 수 있다.As the exhaust part 1600, a blade which can be opened and closed may be used. The exhaust part 1600 may be disposed on the other side of the flow path 1500. The exhaust part 1600 may communicate with the interior of the vehicle. Therefore, the heat medium (air) moved along the flow path 1500 may flow into the vehicle interior through the exhaust part 1600.
이동수단용 히팅 시스템(2000)의 히터(1000)로는 상술한 본 실시예의 히터(1000)가 사용될 수 있다. 이하, 동일한 기술적 사상에 대한 설명은 생략한다. 히터(1000)는 유로(1500)의 중간에 격벽형태로 배치될 수 있다. 이 경우, 히터(1000)의 전후방은 자동차의 전후방과 동일하거나 유사한 방향일 수 있다. 급기부(1400)를 통해 유로(1500)로 급기된 엔진룸의 차가운 열매체(공기)는 히터(1000)를 전방에서 후방으로 투과하면서 가열된 후, 다시 유로(1500)를 따라 흘러 배기부(1600)를 통해 실내로 공급될 수 있다.The heater 1000 of the present embodiment may be used as the heater 1000 of the heating system 2000 for the vehicle. Hereinafter, description of the same technical idea will be omitted. The heater 1000 may be arranged in the form of a partition wall in the middle of the flow path 1500. In this case, the front and rear of the heater 1000 may be the same or similar to the front and rear of the vehicle. The cold heat medium (air) of the engine room supplied to the flow path 1500 through the air supply unit 1400 is heated while passing through the heater 1000 from the front side to the rear side, and then flows along the flow path 1500 again and the exhaust unit 1600 Can be supplied to the room.
이하에서는, 도면을 참조하여 본 실시예의 히터(1000)의 효과에 대해서 설명한다. 도 2는 본 실시예의 발열모듈을 나타낸 평면도이고, 도 5는 본 실시예의 세라믹기판을 나타낸 수평단면도이고, 도 7은 본 실시예의 제1전극단자와 제2연결단자가 결합된 모습을 나타낸 개념도이다.Hereinafter, with reference to the drawings, the effect of the heater 1000 of the present embodiment will be described. 2 is a plan view showing the heating module of the present embodiment, Figure 5 is a horizontal cross-sectional view showing a ceramic substrate of the present embodiment, Figure 7 is a conceptual diagram showing a state in which the first electrode terminal and the second connection terminal of the present embodiment is coupled. .
본 실시예의 히터(1000)는 기존의 PTC 서미스터와 달리 세라믹기판부(221)에 의해 커버된 저항체(발열소자(222))에 의해 열전달이 일어날 수 있다. 저항체(발열소자(222))의 높은 발열량을 이용하여 열효율을 높일 수 있다. 또, 저항체(발열소자(222))의 높은 발열량을 열전달율이 높은 세라믹으로 커버하여 열적 안정을 이루는 동시에 열효율을 유지할 수 있다. 나아가 세라믹기판부(221)와 접하여 배치된 제1,2열확산판(223,224)은 세라믹기판부(221)의 주된 발열지점(발열소자(222)가 배치된 지점))의 열을 확산시켜 열분포를 고르게 할 수 있다. 또, 취성소재를 포함하는 세라믹기판부(221)는 열화에 의한 손상에 취약할 수 있다. 이를 커버하기 위해 세라믹기판부(221)에 세라믹기판부(221)와 동일하거나 유사한 열팽창계수를 가지는 제1,2열확산판(223,224)을 배치하여 세라믹기판부(221)를 열적으로 보강할 수 있다. 나아가 본 실시예의 히터(1000)는 납(Pb)과 같은 중금속재질로부터 자유로울 수 있으며, 경량일 수 있다.Unlike the conventional PTC thermistor, the heater 1000 of the present embodiment may generate heat transfer by a resistor (heating element 222) covered by the ceramic substrate 221. The thermal efficiency can be improved by using a high heat generation amount of the resistor (heating element 222). In addition, the high heat generation amount of the resistor (heating element 222) is covered with a ceramic having a high heat transfer rate to achieve thermal stability and maintain thermal efficiency. Further, the first and second thermal diffusion plates 223 and 224 disposed in contact with the ceramic substrate 221 diffuse heat at the main heating point (the point where the heating element 222 is disposed) of the ceramic substrate 221 to distribute the heat. You can even out. In addition, the ceramic substrate 221 including the brittle material may be vulnerable to damage due to deterioration. To cover this, the first and second thermal diffusion plates 223 and 224 having the same or similar thermal expansion coefficients as those of the ceramic substrate 221 may be disposed on the ceramic substrate 221 to thermally reinforce the ceramic substrate 221. . Furthermore, the heater 1000 of the present embodiment may be free from heavy metal materials such as lead (Pb), and may be lightweight.
본 실시예의 히터(1000)는 내구성이 높다. 히팅코어(220)는 제1,2가스켓(230,240)에 의해 양단이 고정된 기둥구조를 가지기 때문이다. 나아가 도 7에서 나타내는 바와 같이 제1전극단자(225)에서 전방에 배치된 제1결속부재(225c)는 후방으로 만곡되거나 절곡된 형태일 수 있다. 또, 제1전극단자(225)에서 후방에 배치된 제2결속부재(225d)는 전방으로 만곡되거나 절곡된 형태일 수 있다. 또, 제1,2결속부재(225c,225d)의 사이에 제1연결단자(330)가 개재될 수 있다. 그 결과, 제1연결단자(330)는 제1,2결속부재(225c,225d)의 사이의 최협부에 개재되어 단단하게 고정될 수 있다. 또, 상술한 제1,2결속부재(225c,225d)의 구조는 전후방 진동에 강한 구조이다. 제1연결단자(330)가 제1,2결속부재(225c,225d)의 최협부에서 이탈되더라도 제1,2결속부재(225c,225d)의 만곡 또는 절곡 구조에 의해 쉽게 최협부로 안착되기 때문이다. 나아가 제1,2결속부재(225c,225d)의 하부가 연결단자부(320)의 밑면에 의해 지지되는 경우, 보다 효과적으로 전후방 진동에 대응할 수 있다.The heater 1000 of this embodiment has high durability. This is because the heating core 220 has a columnar structure in which both ends are fixed by the first and second gaskets 230 and 240. Further, as shown in FIG. 7, the first binding member 225c disposed in front of the first electrode terminal 225 may be curved or bent backwards. In addition, the second binding member 225d disposed behind the first electrode terminal 225 may be curved or bent forward. In addition, the first connection terminal 330 may be interposed between the first and second binding members 225c and 225d. As a result, the first connection terminal 330 may be tightly interposed between the first and second binding members 225c and 225d. The structures of the first and second binding members 225c and 225d described above are strong against front and rear vibrations. This is because even if the first connection terminal 330 is separated from the narrowest part of the first and second fastening members 225c and 225d, the first connection terminal 330 is easily seated in the narrowest part by the curved or bent structure of the first and second fastening members 225c and 225d. . Furthermore, when the lower portions of the first and second binding members 225c and 225d are supported by the bottom surface of the connection terminal 320, the front and rear vibrations may be more effectively countered.
이하, 도 5,7을 참조하여 최적으로 설계될 수 있는 본 실시예의 히터(1000)에 대해서 설명한다. 본 실시예의 히터(1000)의 MAF(mass air flow)는 300kg/h로 설계되어야 한다. 또, 적정 이동수단의 실내를 적정 설정온도로 적정 시간에 도달시켜야 한다. 일반적으로, 발열모듈(200)에서 히팅코어(220, 커버부(227) 제외)의 사이즈는, 180*15*1.3(mm, 차례대로, 상하 방향, 전후 방향, 좌우 방향)일 수 있다. 일반적인 중형차에서 발열소자(222)에 공급되는 전력은 7kW로 이를 기준으로 산정하면, 히팅코어(220)의 중앙에 위치하고, 히팅코어(220)가 연장된 방향과 수직한 단면적에서 세라믹기판부(221, 세라믹)와 발열소자(222, 텅스텐)의 단면적의 비는 180:1 내지 190:1일 수 있다. 이보다 작으면, 실내를 적정 온도로 적정 시간대에 도달시킬 수 없다. 또, 이보다 크면, 발열량이 너무 많아 열적으로 불안정적이며, 오버히트가 될 수 있어 바람직하지 않다.(도 7 참고) 본 발명의 실시예의 히팅코어(220)에서 발열소자(222)는 열매체(공기)가 통과하는 방향(전후 방향)으로 적층되므로 발열소자(222)의 적층 사이즈를 조절하여 설계적 요청에 따른 히팅코어(220)의 발열량을 조절할 수 있다. 나아가 발열소자(222)의 사이즈가 증가하더라도 히팅코어(220)의 전후 방향 길이가 늘어날 뿐, 좌우 방향길이는 늘어나지 않는다. 따라서 히터(1000)의 전방 단면적이 제한되더라도 자유롭게 발열량을 조절할 수 있다.Hereinafter, the heater 1000 of the present embodiment, which can be optimally designed, will be described with reference to FIGS. 5 and 7. Mass air flow (MAF) of the heater 1000 of the present embodiment should be designed to 300kg / h. In addition, the room of the proper means of transportation must be reached at an appropriate set temperature at an appropriate time. In general, the size of the heating core 220, excluding the cover portion 227 in the heating module 200 may be 180 * 15 * 1.3 (mm, in turn, up and down, front and rear, left and right directions). The electric power supplied to the heating element 222 in a typical medium-sized car is 7 kW, and based on this, it is located in the center of the heating core 220 and the ceramic substrate portion 221 in a cross-sectional area perpendicular to the extending direction of the heating core 220. , Ceramic) and the cross-sectional area of the heating element 222 (tungsten) may be 180: 1 to 190: 1. If it is smaller than this, the room cannot be reached at the proper time at the proper temperature. In addition, if it is larger than this, the amount of heat generation is too large and is thermally unstable, and may be overheated. (See FIG. 7) In the heating core 220 according to the embodiment of the present invention, the heating element 222 is a heat medium (air). ) Is laminated in a direction (forward and backward direction) passing through it, thereby controlling the heat generation amount of the heating core 220 according to the design request by adjusting the stacking size of the heating element 222. Furthermore, even if the size of the heating element 222 increases, the length of the front and rear directions of the heating core 220 increases, but the length of the left and right directions does not increase. Therefore, even if the front cross-sectional area of the heater 1000 is limited, it is possible to freely adjust the amount of heat generated.
또, 단일의 방열핀(210)과 히팅코어(220)의 방열핀(210)과 히팅코어(220)가 배열된 방향(좌우 방향)으로의 길이(도 2의 P, 커버부(227) 제외)는 8mm이상 17mm이하일 수 있다. 만약, 커버부(227)가 추가된다면 방열핀(210)과 히팅코어(220)의 좌우 방향으로의 길이(도 2의 P)는 10mm이상 19mm이하일 수 있다. 히팅코어(220, 커버부(227) 제외)의 좌우 방향으로의 길이는 대개 13mm로 정해져 있으므로, 이는, 방열핀(210)의 좌우 방향 조건으로도 볼 수 있다. 만약 이보다 작으면, 히터(1000)의 MAF(mass air flow)가 300kg/h 미만이 되어 바람직하지 않다. 또, 이보다 크면, 적정시간내에 적정온도로 도달될 수 없어 바람직하지 않다.In addition, the length of the single heat dissipation fin 210 and the heating core 220 in the direction (left and right directions) in which the heat dissipation fin 210 and the heating core 220 are arranged (except P of FIG. 2 and the cover part 227) It may be more than 8mm and less than 17mm. If the cover part 227 is added, the length (P of FIG. 2) in the left and right directions of the heat dissipation fin 210 and the heating core 220 may be 10 mm or more and 19 mm or less. Since the length of the heating core 220 (except for the cover part 227) in the left and right directions is usually set to 13 mm, this may be viewed as a left and right condition of the heat dissipation fin 210. If smaller than this, the mass air flow (MAF) of the heater 1000 is less than 300kg / h is not preferable. Moreover, when larger than this, since it cannot reach a suitable temperature in a suitable time, it is unpreferable.
한편, 본 발명의 실시예에 따르면, 발열소자의 측면에는 열전도체가 더 배치될 수 있다.On the other hand, according to an embodiment of the present invention, the heat conductor may be further disposed on the side of the heat generating element.
도 9는 본 발명의 다른 실시예에 따른 세라믹기판부의 단면도이고, 도 10은 본 발명의 다른 실시예에 따른 세라믹기판부의 분해도이며, 도 11은 본 발명의 다른 실시예에 따른 세라믹기판부에 배치된 발열소자의 다양한 형상이다. 도 12는 본 발명의 또 다른 실시예에 따른 세라믹기판부의 단면도이고, 도 13은 본 발명의 또 다른 실시예에 따른 세라믹기판부의 단면도이다. 9 is a cross-sectional view of a ceramic substrate according to another embodiment of the present invention, FIG. 10 is an exploded view of a ceramic substrate according to another embodiment of the present invention, and FIG. 11 is disposed in a ceramic substrate according to another embodiment of the present invention. Various shapes of the heating element. 12 is a cross-sectional view of a ceramic substrate according to still another embodiment of the present invention, and FIG. 13 is a cross-sectional view of a ceramic substrate according to another embodiment of the present invention.
도 9 내지 10을 참조하면, 세라믹 기판부(221)는 제1 세라믹층(400) 및 제1 세라믹층(400) 상에 배치되는 제2 세라믹층(430)을 포함하며, 제1 세라믹층(400)과 제2 세라믹층(430) 사이에는 발열소자(410) 및 열전도체(420)가 배치된다. 여기서, 제1 세라믹층(400) 및 제2 세라믹층(430)은 도 1 내지 8의 세라믹기판부(221a, b)에 대응하고, 발열소자(410)는 도 1 내지 8의 발열소자(222)에 대응할 수 있다.9 to 10, the ceramic substrate part 221 includes a first ceramic layer 400 and a second ceramic layer 430 disposed on the first ceramic layer 400, and includes a first ceramic layer ( The heating element 410 and the thermal conductor 420 are disposed between the 400 and the second ceramic layer 430. Here, the first ceramic layer 400 and the second ceramic layer 430 correspond to the ceramic substrate portions 221a and b of FIGS. 1 to 8, and the heating element 410 is the heating element 222 of FIGS. 1 to 8. ) Can be used.
제1 세라믹층(400) 및 제2 세라믹층(430)은 알루미나를 포함할 수 있다. 또는, 제1 세라믹층(400) 및 제2 세라믹층(430)은 질화알루미늄(AlN), 질화규소(SiN) 및 질화붕소(BN) 중 적어도 하나를 더 포함할 수도 있다. 또는, 제1 세라믹층(400) 및 제2 세라믹층(430)은 글래스 프리트, 예를 들어 산화칼슘(CaO), 산화마그네슘(MgO), 산화나트륨(Na2O), 산화규소(SiO2) 및 산화티탄(TiO2)으로부터 선택된 어느 하나 또는 이들의 혼합물을 포함할 수 있다. 이때, 제1 세라믹층(400) 및 제2 세라믹층(430)은 금속 입자, 예를 들어 구리(Cu) 또는 은(Ag) 입자를 더 포함할 수도 있다. 이와 같이, 제1 세라믹층(400) 및 제2 세라믹층(430)이 글래스 프리트에 분산된 구리 또는 은 입자를 더 포함하는 경우, 높은 열전도율을 가질뿐만 아니라, 발열체(410)와의 열팽창 계수 차를 줄일 수 있으므로, 열충격에 강하며, 크랙 발생 문제를 최소화할 수 있다. 이때, 글래스 프리트의 입도 및 금속 입자의 입도는 각각 1 내지 10㎛일 수 있으며, 제1 세라믹층(400) 및 제2 세라믹층(430)에 대하여 금속 입자는 1 내지 20wt%로 포함될 수 있다. The first ceramic layer 400 and the second ceramic layer 430 may include alumina. Alternatively, the first ceramic layer 400 and the second ceramic layer 430 may further include at least one of aluminum nitride (AlN), silicon nitride (SiN), and boron nitride (BN). Alternatively, the first ceramic layer 400 and the second ceramic layer 430 may be glass frit, such as calcium oxide (CaO), magnesium oxide (MgO), sodium oxide (Na 2 O), or silicon oxide (SiO 2 ). And titanium oxide (TiO 2 ) or one or a mixture thereof. In this case, the first ceramic layer 400 and the second ceramic layer 430 may further include metal particles, for example, copper (Cu) or silver (Ag) particles. As such, when the first ceramic layer 400 and the second ceramic layer 430 further include copper or silver particles dispersed in the glass frit, not only have a high thermal conductivity, Since it can be reduced, it is resistant to thermal shock and can minimize cracking problems. In this case, the particle size of the glass frit and the particle size of the metal particles may be 1 to 10 μm, respectively, and the metal particles may be included in an amount of 1 to 20 wt% with respect to the first ceramic layer 400 and the second ceramic layer 430.
제1 세라믹층(400) 및 제2 세라믹층(430)의 두께는 각각 0.5 내지 2mm일 수 있다. The thickness of the first ceramic layer 400 and the second ceramic layer 430 may be 0.5 to 2 mm, respectively.
발열소자(410)는 제1 세라믹층(400) 상에 배치되며, 전기가 흐르면 열을 발생시킨다. 발열소자(410)는 텅스텐(W), 몰리브덴(Mo), 니켈(Ni), 크롬(Cr), 구리(Cu), 은(Ag), ITO(Indium Tin Oxide) 및 티탄산바륨(BaTiO)으로부터 선택된 어느 하나 또는 이들의 혼합물을 포함할 수 있다. 발열소자(410)는 도 11에서 도시된 바와 같이 다양한 형상으로 제1 세라믹층(400) 상에 인쇄, 패터닝, 코팅 또는 증착될 수 있다. 예를 들어, 발열소자(410)는 도 11(a)에 도시된 바와 같이, 제1 방향으로 연장된 후, 턴업되어 제1 방향과 반대인 제2 방향으로 연장되는 패턴을 반복하도록 형성되거나, 도 11(b)와 같이 지그재그 형상으로 형성되거나, 도 11(c)와 같이 나선 형상으로 형성될 수 있다. 이와 같이, 발열소자(410)는 소정 패턴으로 연결되는 복수의 발열 패턴(410-1, 410-2)을 포함하며, 복수의 발열 패턴(410-1, 410-2) 간의 이격 영역 내에는 열전도체(420)가 배치될 수 있다. 발열소자(410)가 인쇄된 면적이 넓을수록 세라믹 기판부(221)의 발열량이 많아질 수 있다. 본 명세서에서, 발열소자(410)는 저항체, 발열 패턴, 발열체 등과 혼용될 수 있다. The heat generating element 410 is disposed on the first ceramic layer 400 and generates heat when electricity flows. The heating element 410 is selected from tungsten (W), molybdenum (Mo), nickel (Ni), chromium (Cr), copper (Cu), silver (Ag), indium tin oxide (ITO), and barium titanate (BaTiO). It may comprise any one or mixtures thereof. The heating element 410 may be printed, patterned, coated or deposited on the first ceramic layer 400 in various shapes as shown in FIG. 11. For example, as shown in FIG. 11A, the heating element 410 is formed to repeat the pattern extending in the first direction and then turned up to extend in the second direction opposite to the first direction. It may be formed in a zigzag shape as shown in Figure 11 (b), or may be formed in a spiral shape as shown in Figure 11 (c). As described above, the heat generating element 410 includes a plurality of heat generating patterns 410-1 and 410-2 connected in a predetermined pattern, and the thermoelectric element is disposed in a spaced area between the plurality of heat generating patterns 410-1 and 410-2. Conductor 420 may be disposed. The larger the printed area of the heating element 410 is, the greater the amount of heat generated by the ceramic substrate 221. In the present specification, the heating element 410 may be mixed with a resistor, a heating pattern, a heating element, and the like.
열전도체(420)는 제1 세라믹층(400) 상에 배치되되, 발열소자(410) 사이에 배치되며, 발열소자(410)로부터 발생한 열은 열전도체(420)를 통하여 세라믹 기판부(221)의 외부로 전달될 수 있다. 발열소자(410) 및 열전도체(420)의 높이는 각각 5 내지 20㎛일 수 있다.The thermal conductor 420 is disposed on the first ceramic layer 400, and is disposed between the heating elements 410, and heat generated from the heating elements 410 is transferred to the ceramic substrate portion 221 through the thermal conductors 420. Can be passed out of. The height of the heating element 410 and the thermal conductor 420 may be 5 to 20㎛ respectively.
이때, 열전도체(420)의 열전도율은 제1 세라믹층(400) 및 제2 세라믹층(430)의 열전도율보다 높다. 이를 위하여, 열전도체(420)는 질화알루미늄, 질화규소 및 질화붕소 중 적어도 하나를 포함할 수 있다. 그리고, 열전도체(420)의 측면 및 발열소자(410)의 측면 중 적어도 일부는 서로 접촉할 수 있다. 이에 따라, 발열소자(410)로부터 발생한 열은 열전도체(420)를 통하여 세라믹 기판부(221)의 외부로 전달될 수 있다. 이와 같이, 발열소자(410)를 구성하는 발열 패턴(410-1, 410-2) 사이가 열전도체(420)로 채워지면, 제1 세라믹층(400)과 제2 세라믹층(430) 간의 접합 시 제1 세라믹층(400)의 표면과 발열소자(410)의 높이 차로 인하여 공극이 발생할 가능성을 낮출 수 있다. 본 발명의 실시예에 따르면, 세라믹 기판부(221)의 기공율을 3% 이하로 낮출 수 있다. 여기서, 기공율은 세라믹 기판부(221)의 단면에 대한 단위 면적 당 공극 면적의 백분율을 의미한다. 이와 같이, 세라믹 기판부(221)의 기공율이 3% 이하로 낮아지면, 열전도 효율을 높일 수 있으며, 강도가 개선되고, 크랙 발생 가능성이 낮아질 수 있다.In this case, the thermal conductivity of the thermal conductor 420 is higher than the thermal conductivity of the first ceramic layer 400 and the second ceramic layer 430. To this end, the thermal conductor 420 may include at least one of aluminum nitride, silicon nitride, and boron nitride. In addition, at least some of the side surfaces of the thermal conductor 420 and the side surfaces of the heating element 410 may contact each other. Accordingly, heat generated from the heat generating element 410 may be transferred to the outside of the ceramic substrate portion 221 through the heat conductor 420. As such, when the heating patterns 410-1 and 410-2 constituting the heating element 410 are filled with the thermal conductor 420, the bonding between the first ceramic layer 400 and the second ceramic layer 430 is performed. Due to the difference in height between the surface of the first ceramic layer 400 and the heating element 410, the possibility of voids may be reduced. According to the exemplary embodiment of the present invention, the porosity of the ceramic substrate portion 221 may be lowered to 3% or less. Here, the porosity means a percentage of the pore area per unit area with respect to the cross section of the ceramic substrate portion 221. As such, when the porosity of the ceramic substrate 221 is lowered to 3% or less, the thermal conductivity efficiency may be increased, the strength may be improved, and the possibility of cracking may be reduced.
여기서, 열전도체(420)는 제1 세라믹층(400) 상에 배치된 발열 패턴(410-1, 410-2)의 사이에 배치될 수 있을뿐만 아니라, 발열소자(410)의 외부에 더 배치될 수도 있다. 이때, 제1 세라믹층(400) 상에 배치된 열전도체(420)의 면적은 발열소자(410)의 면적의 0.5배 이상일일 수 있다. 열전도체(420)의 면적이 발열소자(410)의 면적의 0.5배 미만인 경우, 발열소자(410)로부터 발생한 열의 열전도율이 낮을 수 있다. Here, the thermal conductor 420 may not only be disposed between the heating patterns 410-1 and 410-2 disposed on the first ceramic layer 400, but also further disposed outside the heating element 410. May be In this case, an area of the heat conductor 420 disposed on the first ceramic layer 400 may be 0.5 times or more of the area of the heat generating element 410. When the area of the heat conductor 420 is less than 0.5 times the area of the heat generating element 410, the thermal conductivity of heat generated from the heat generating element 410 may be low.
한편, 발열소자(410)의 일단(T1)은 제1 전극패드(440)와 연결될 수 있으며, 발열소자(410)의 타단(T2)은 제2 전극패드(450)와 연결될 수 있다. 제1 전극패드(440) 및 제2 전극패드(450) 중 적어도 하나는 제1 세라믹층(400) 및 제2 세라믹층(430) 중 적어도 하나에 배치될 수 있다. Meanwhile, one end T1 of the heating element 410 may be connected to the first electrode pad 440, and the other end T2 of the heating element 410 may be connected to the second electrode pad 450. At least one of the first electrode pad 440 and the second electrode pad 450 may be disposed on at least one of the first ceramic layer 400 and the second ceramic layer 430.
예를 들어, 도 10(a) 및 도 10(c)를 참조하면, 제1 전극패드(440) 및 제2 전극패드(450)는 제1 세라믹층(400)에 배치되며, 발열소자(410)의 일단(T1) 및 타단(T2)과 각각 연결될 수 있다. 그리고, 제2 세라믹층(430)은 제1 전극패드(440) 및 제2 전극패드(450)를 파워모듈(300)과 연결되는 배선(W1, W2)에 각각 연결하기 위하여 형성되는 관통홀(432, 434)을 포함할 수도 있다. 여기서, 배선(W1, W2)은 도 1 내지 8의 제1 전극단자(225) 및 제2 전극단자(226)에 대응하거나, 제1 전극단자(225)의 제1 연결부(225a) 및 제2 전극단자(226)의 제2 연결부(226a)에 대응할 수 있다.For example, referring to FIGS. 10A and 10C, the first electrode pad 440 and the second electrode pad 450 are disposed on the first ceramic layer 400, and the heat generating element 410 is provided. It may be connected to one end (T1) and the other end (T2) of each. The second ceramic layer 430 may include a through hole formed to connect the first electrode pad 440 and the second electrode pad 450 to the wires W1 and W2 respectively connected to the power module 300. 432, 434). Here, the wirings W1 and W2 correspond to the first electrode terminal 225 and the second electrode terminal 226 of FIGS. 1 to 8, or the first connecting portion 225a and the second electrode of the first electrode terminal 225. It may correspond to the second connection portion 226a of the electrode terminal 226.
또는, 도 10(b) 및 도 10(d)를 참조하면, 제1 전극패드(440) 및 제2 전극패드(450)는 제1 세라믹층(400)에 배치되며, 발열소자(410)의 일단(T1) 및 타단(T2)과 각각 연결될 수 있다. 그리고, 파워모듈(300)과 연결되는 배선(W1, W2)은 제1 전극패드(440) 및 제2 전극패드(450) 상에 각각 연결되며, 제1 세라믹층(400) 및 제2 세라믹층(430) 사이에서 외부로 인출될 수도 있다. Alternatively, referring to FIGS. 10B and 10D, the first electrode pad 440 and the second electrode pad 450 may be disposed on the first ceramic layer 400, and the heat generating element 410 may be formed. It may be connected to one end (T1) and the other end (T2), respectively. The wires W1 and W2 connected to the power module 300 are connected to the first electrode pad 440 and the second electrode pad 450, respectively, and the first ceramic layer 400 and the second ceramic layer are respectively connected to the power module 300. It may be drawn out between the 430.
뿐만 아니라, 제1 전극패드(440) 및 제2 전극패드(450) 중 하나는 제1 세라믹층(410)에 배치되고, 나머지 하나는 제2 세라믹층(430)에 배치될 수도 있다. 그리고, 제1 전극패드(440) 및 제2 전극패드(450) 중 적어도 하나는 제1 세라믹층(400) 또는 제2 세라믹층(430)의 바깥 표면에 배치될 수도 있다. 이때, 발열소자(410)의 일단(T1)과 제1 전극패드(440) 또는 발열소자(420)의 타단과 제2 전극패드(450)는 제1 세라믹층(410) 또는 제2 세라믹층(430)에 형성된 관통홀을 통하여 연결될 수 있다. In addition, one of the first electrode pad 440 and the second electrode pad 450 may be disposed on the first ceramic layer 410, and the other may be disposed on the second ceramic layer 430. At least one of the first electrode pad 440 and the second electrode pad 450 may be disposed on an outer surface of the first ceramic layer 400 or the second ceramic layer 430. In this case, one end T1 of the heating element 410 and the first electrode pad 440 or the other end of the heating element 420 and the second electrode pad 450 may be formed of the first ceramic layer 410 or the second ceramic layer ( It may be connected through the through hole formed in 430.
이와 같이, 발열소자(410)의 일단(T1) 및 타단(T2)은 제1 전극패드(440) 및 제2 전극패드(450)를 통하여 파워 모듈(300)과 전기적으로 연결될 수 있으며, 발열소자(410) 내에는 전기가 흐를 수 있다. As such, one end T1 and the other end T2 of the heating element 410 may be electrically connected to the power module 300 through the first electrode pad 440 and the second electrode pad 450. Electricity may flow in 410.
도 12를 참조하면, 발열소자(410)의 외부에 배치되는 열전도체(420)의 두께는 세라믹 기판부(221)의 가장자리로 갈수록 얇아질 수 있다. 이에 따르면, 제1 세라믹층(400)과 제2 세라믹층(430) 간의 접합 시 세라믹 기판부(221)의 가장자리에서도 공극이 발생할 가능성을 낮출 수 있다.Referring to FIG. 12, the thickness of the thermal conductor 420 disposed outside the heat generating element 410 may become thinner toward the edge of the ceramic substrate 221. According to this, when the first ceramic layer 400 and the second ceramic layer 430 are bonded to each other, it is possible to reduce the possibility of voids occurring at the edge of the ceramic substrate portion 221.
도 13을 참조하면, 열전도체(420)는 발열소자(410)의 측면뿐만 아니라, 발열소자(410) 상에 배치될 수도 있다. 이에 따르면, 세라믹 기판부(221)의 측면뿐만 아니라, 제2 세라믹층(430)의 표면을 향하는 방향으로도 열전도율이 높아질 수 있다. Referring to FIG. 13, the heat conductor 420 may be disposed on the heat generating element 410 as well as the side surface of the heat generating element 410. Accordingly, the thermal conductivity may be increased not only in the side surface of the ceramic substrate portion 221 but also in the direction toward the surface of the second ceramic layer 430.
도 14는 도 9 내지 13 의 실시예에 따른 세라믹 기판의 제조 방법을 나타내는 순서도이다. 14 is a flowchart illustrating a method of manufacturing a ceramic substrate according to the embodiments of FIGS. 9 to 13.
도 14를 참조하면, 제1 세라믹층을 마련한다(S900). 제1 세라믹층은, 전술한 바와 같이 알루미나를 포함할 수 있으며, 산화칼슘(CaO), 산화마그네슘(MgO), 산화나트륨(Na2O), 산화규소(SiO2) 및 산화티탄(TiO2)으로부터 선택된 어느 하나 또는 이들의 혼합물을 더 포함할 수 있다. 제1 세라믹층은 유기물과 혼합된 그린시트 형태일 수 있다. Referring to FIG. 14, a first ceramic layer is prepared (S900). As described above, the first ceramic layer may include alumina, and may include calcium oxide (CaO), magnesium oxide (MgO), sodium oxide (Na 2 O), silicon oxide (SiO 2 ), and titanium oxide (TiO 2 ). It may further comprise any one selected from or a mixture thereof. The first ceramic layer may be in the form of a green sheet mixed with an organic material.
다음으로, 제1 세라믹층 상에 발열소자를 코팅 또는 인쇄한다(S910). 여기서, 발열소자는 텅스텐(W), 몰리브덴(Mo), 니켈(Ni), 크롬(Cr), 구리(Cu), 은(Ag), ITO(Indium Tin Oxide) 및 티탄산바륨(BaTiO)으로부터 선택된 어느 하나 또는 이들의 혼합물을 포함할 수 있다. Next, the heating element is coated or printed on the first ceramic layer (S910). Here, the heating element is any one selected from tungsten (W), molybdenum (Mo), nickel (Ni), chromium (Cr), copper (Cu), silver (Ag), ITO (Indium Tin Oxide) and barium titanate (BaTiO) It may comprise one or a mixture thereof.
다음으로, 발열소자가 형성된 제1 세라믹층을 건조한다(S920). Next, the first ceramic layer on which the heating element is formed is dried (S920).
다음으로, 발열소자 사이에 열전도체를 인쇄한다(S930). 이를 위하여, 질화알루미늄, 질화규소 및 질화붕소 중 적어도 하나를 포함하는 페이스트 또는 슬러리를 이용할 수 있다. Next, a thermal conductor is printed between the heating elements (S930). To this end, a paste or slurry containing at least one of aluminum nitride, silicon nitride and boron nitride may be used.
다음으로, 발열소자 및 열전도체 상에 제2 세라믹층을 적층하고(S940), 가열 및 가압한다(S950). 이때, 가열 및 가압은 핫프레싱(Hot Pressing) 공정을 이용하여 수행될 수 있으며, 예를 들어 150 내지 200의 온도에서 가압될 수 있다. Next, a second ceramic layer is laminated on the heating element and the thermal conductor (S940), and heated and pressed (S950). In this case, heating and pressurization may be performed by using a hot pressing process, for example, pressurized at a temperature of 150 to 200.
이후, 소결 공정을 수행하여 제1 세라믹층 및 제2 세라믹층을 접합한다(S960). 소결 공정은 약 1500에서 수행되며, 이에 따라 제1 세라믹층 및 제2 세라믹층은 발열소자 및 열전도체가 배치되지 않은 가장자리에서 접합되어 일체로 형성될 수 있다. Thereafter, the sintering process is performed to bond the first ceramic layer and the second ceramic layer (S960). The sintering process is performed at about 1500, whereby the first ceramic layer and the second ceramic layer may be integrally formed by bonding at edges where the heating element and the thermal conductor are not disposed.
이하, 비교예 및 실시예를 이용하여 세라믹 기판의 열전도 성능을 실험한 결과를 설명한다. Hereinafter, the results of experiments on the thermal conductivity performance of the ceramic substrate using the comparative examples and examples will be described.
비교예에서는 제1 알루미나층 상에 발열소자를 인쇄하고, 제2 알루미나층을 적층한 후, 가열 및 가압하였다. In the comparative example, the heating element was printed on the first alumina layer, the second alumina layer was laminated, and then heated and pressed.
실시예에서는 제1 알루미나층 상에 발열소자를 인쇄하고, 인쇄된 발열소자 사이에 열전도체를 더 인쇄한 후, 제2 알루미나층을 적층하고, 가열 및 가압하였다. In the embodiment, the heating element was printed on the first alumina layer, and after the thermal conductor was further printed between the printed heating elements, the second alumina layer was laminated, heated and pressed.
도 15(a)는 비교예에 따라 제작된 세라믹 기판의 단면도를 나타내고, 도 15(b)는 실시예에 따라 제작된 세라믹 기판의 단면도를 나타낸다. 표 1은 비교예 및 실시예에 따른 세라믹 기판의 열전도도 및 기공율을 나타낸다. 15A shows a cross-sectional view of a ceramic substrate manufactured according to a comparative example, and FIG. 15B shows a cross-sectional view of a ceramic substrate manufactured according to the embodiment. Table 1 shows the thermal conductivity and porosity of the ceramic substrate according to the comparative example and the example.
실험 번호Experiment number 열전도도(W/mK)Thermal Conductivity (W / mK) 기공율(%)Porosity (%)
비교예Comparative example 1818 5%5%
실시예Example 2121 3% 이하3% less than
표 1을 참조하면, 실시예에 따른 세라믹 기판은 비교예에 따른 세라믹 기판에 비하여 기공율이 낮으며 열전도도가 높음을 알 수 있다. 기공율이 낮을수록 세라믹 기판의 강도가 높아지며, 크랙 발생 가능성이 낮아질 수 있다. Referring to Table 1, it can be seen that the ceramic substrate according to the embodiment has a lower porosity and a higher thermal conductivity than the ceramic substrate according to the comparative example. The lower the porosity, the higher the strength of the ceramic substrate and the lower the possibility of cracking.
이상에서는 세라믹 기판이 판 형상인 것을 예로 들어 설명하고 있으나, 이로 제한되는 것은 아니다. 본 발명의 실시예에 따른 세라믹 기판은 도 16에서 예시된 바와 같이 원기둥 형상일 수도 있다. Although the ceramic substrate has a plate shape as an example, the present invention is not limited thereto. The ceramic substrate according to the embodiment of the present invention may have a cylindrical shape as illustrated in FIG. 16.
도 16을 참조하면, 세라믹 기판부(221)는 제1 세라믹층(400) 및 제2 세라믹층(430)을 포함한다. 그리고, 제1 세라믹층(400) 및 제2 세라믹층(430) 사이에는 발열소자(410) 및 열전도체(420)가 배치된다.Referring to FIG. 16, the ceramic substrate part 221 includes a first ceramic layer 400 and a second ceramic layer 430. The heating element 410 and the thermal conductor 420 are disposed between the first ceramic layer 400 and the second ceramic layer 430.
이때, 제1 세라믹층(400)은 원기둥 형상이며, 발열소자(410) 및 열전도체(420)는 제1 세라믹층(400)의 외주면에 배치될 수 있다. 그리고, 제2 세라믹층(430)은 제1 세라믹층(400)의 외주면, 발열소자(410) 및 열전도체(420)를 둘러싸도록 배치될 수 있다. In this case, the first ceramic layer 400 may have a cylindrical shape, and the heat generating element 410 and the thermal conductor 420 may be disposed on the outer circumferential surface of the first ceramic layer 400. The second ceramic layer 430 may be disposed to surround the outer circumferential surface of the first ceramic layer 400, the heat generating element 410, and the thermal conductor 420.
이때, 발열소자(410)의 일단(T1)은 제1 전극패드(440)와 연결될 수 있으며, 발열소자(410)의 타단(T2)은 제2 전극패드(450)와 연결될 수 있다. 그리고, 파워모듈(300)과 연결되는 배선(W1, W2)은 제1 전극패드(440) 및 제2 전극패드(450) 상에 각각 연결되며, 제1 세라믹층(400) 및 제2 세라믹층(430) 사이에서 외부로 인출될 수 있다. 도시되지 않았지만, 제2 세라믹층(430)에는 관통홀이 형성되며, 관통홀을 통하여 제1 전극패드(440) 및 제2 전극패드(450)를 파워모듈(300)과 연결되는 배선(W1, W2)에 각각 연결할 수도 있다. In this case, one end T1 of the heating element 410 may be connected to the first electrode pad 440, and the other end T2 of the heating element 410 may be connected to the second electrode pad 450. The wires W1 and W2 connected to the power module 300 are connected to the first electrode pad 440 and the second electrode pad 450, respectively, and the first ceramic layer 400 and the second ceramic layer are respectively connected to the power module 300. It may be drawn out between the 430. Although not shown, a through hole is formed in the second ceramic layer 430, and wirings W1 and W1 that connect the first electrode pad 440 and the second electrode pad 450 to the power module 300 through the through hole. You can also connect to W2).
도시되지 않았으나, 제2 세라믹층(430)의 외주면에는 열확산판이 더 배치될 수도 있다. Although not shown, a thermal diffusion plate may be further disposed on the outer circumferential surface of the second ceramic layer 430.
다음으로, 열확산판과 세라믹기판부 사이의 접합층을 더욱 상세하게 설명한다. Next, the bonding layer between the thermal diffusion plate and the ceramic substrate portion will be described in more detail.
도 17은 본 발명의 실시예에 따른 열확산판과 세라믹기판부의 단면도를 나타낸다. 17 is a cross-sectional view of a thermal diffusion plate and a ceramic substrate according to an embodiment of the present invention.
도 17을 참조하면, 제1 열확산판(223)과 세라믹 기판부(221) 사이에 배치된 제1 접합층(21) 및 제2 열확산판(224)과 세라믹 기판(221) 사이에 배치된 제2 접합층(22)을 확인할 수 있다. Referring to FIG. 17, the first bonding layer 21 disposed between the first thermal diffusion plate 223 and the ceramic substrate part 221 and the second thermal diffusion plate 224 between the ceramic substrate 221 may be disposed. 2 bonding layer 22 can be confirmed.
제1 접합층(21)과 제2 접합층(22)은 능동 메탈층으로, 코팅, 증착, 인쇄하여 형성할 수 있다. 접합층(21, 22)은 티탄(Ti) 또는 지르코늄(Zr)과 같은 티탄족의 활성 금속 합금을 이용할 수 있다.The first bonding layer 21 and the second bonding layer 22 are active metal layers, and may be formed by coating, depositing, and printing. The bonding layers 21 and 22 may use an active metal alloy of a titanium group such as titanium (Ti) or zirconium (Zr).
또한, 열확산판은 산화금속층과 세라믹 기판부(221)에 형성된 능동 메탈층(active metal layer)을 이용하여 접합할 수 있다. 산화금속층의 표면은 접착력이 있어, 능동 메탈층(active metal layer)의 표면에 접착이 가능하다. 금속산화물층과 접합하는 능동 메탈층(Active metal layer)은 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 질화규소(SiN), 탄화규소(SiC) 중 선택된 어느 하나 또는 그 합금을 이용하여 형성할 수 있다. 능동 메탈층(Active metal layer)은 코팅, 증착, 인쇄하여 형성할 수 있다. 금속산화물 층은 예를 들어 산화구리(CuO, Cu2O)를 포함할 수 있다.In addition, the thermal diffusion plate may be bonded using a metal oxide layer and an active metal layer formed on the ceramic substrate 221. The surface of the metal oxide layer is adhesive, so that the surface of the active metal layer can be bonded. The active metal layer bonded to the metal oxide layer may be formed using any one selected from aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (SiN), silicon carbide (SiC) or an alloy thereof. Can be formed. The active metal layer may be formed by coating, depositing, and printing. The metal oxide layer may include, for example, copper oxide (CuO, Cu 2 O).
다음으로, 열확산판의 표면에는 돌기가 형성될 수 있다. Next, protrusions may be formed on the surface of the thermal diffusion plate.
도 18은 본 발명의 실시예에 따른 열확산판을 나타낸다. 18 shows a thermal diffusion plate according to an embodiment of the present invention.
도 18의 (a)는 열확산판(223, 224)의 표면에 돌기(32)를 형성하여 표면을 엠보싱 형태로 구현한 것이고, (b)는 열확산판(223, 224)의 표면에 기다란 돌출부(34)를 형성하여 구현한 것이다. FIG. 18A illustrates protrusions 32 formed on the surfaces of the thermal diffusion plates 223 and 224 to emboss the surfaces, and FIG. 18B illustrates protrusions elongated on the surfaces of the thermal diffusion plates 223 and 224. 34) is formed and implemented.
본 실시예에서와 같이 열확산판의 표면을 엠보싱 형태, 기다란 돌출부의 열방사판 형태로 구현하게 되면, 냉각수와의 접촉면적이 넓어지게 되므로 냉각수를 보다 효율적으로 가열할 수 있다. When the surface of the thermal diffusion plate is embossed, the heat radiation plate in the form of an elongated protrusion, as in this embodiment, the contact area with the cooling water becomes wider, so that the cooling water can be heated more efficiently.
돌기(32) 및 기다란 돌출부(34)는 접촉 면적을 넓히기 위한 것이므로 열확산판의 표면은 돌출된 형상에는 제한이 없으며 다양한 형태로 변형할 수 있다. 예를 들어, 열확산판의 표면은 규칙적인 형상 없이 굴곡지게 형성될 수도 있다.Since the protrusions 32 and the elongated protrusions 34 are for widening the contact area, the surface of the thermal diffusion plate is not limited to the protruding shape and may be modified in various forms. For example, the surface of the thermal diffusion plate may be formed curved without regular shape.
이와 같이, 본 발명의 실시예에 따른 히터는 공기 가열 방식에 의한 히터뿐만 아니라, 냉각수 가열 방식에 의한 히터일 수도 있다. As such, the heater according to the embodiment of the present invention may be a heater by a cooling water heating method as well as a heater by an air heating method.
도 19는 본 발명의 다른 실시예에 따른 히터를 나타낸다.19 shows a heater according to another embodiment of the present invention.
도 19를 참조하면, 히터 시스템(3000)은 냉각수(3110)가 저장된 냉각수 탱크(3100), 냉각수에 잠긴 본 발명의 실시예에 따른 히팅코어(3200), 및 열교환기(3300)를 포함할 수 있다 Referring to FIG. 19, the heater system 3000 may include a coolant tank 3100 in which a coolant 3110 is stored, a heating core 3200 according to an embodiment of the present invention submerged in coolant, and a heat exchanger 3300. have
냉각수(3110)는 전기 자동차의 발열부품(3400)들을 냉각시키고 냉각수 파이프(3500)를 통해 냉각수 탱크(3100)에 저장된다. 발열부품(3400)은 인버터나 모터 등을 포함할 수 있다. The coolant 3110 cools the heating parts 3400 of the electric vehicle and is stored in the coolant tank 3100 through the coolant pipe 3500. The heat generating part 3400 may include an inverter or a motor.
히팅코어(3200)는 앞서 도 1 내지 18에서 도시한 히팅코어일 수 있다. 히팅코어(3200)는 냉각수 탱크(3100)에 결합된 형태로 사용할 수 있으며, 교체가 가능하다. 냉각수 탱크(3100)에서 하나 이상의 히팅코어가 냉각수에 잠길 수 있다. 또한 히팅코어(3200)는 냉각수에 일부분 또는 냉각수 탱크의 결합된 전극부를 제외한 전체를 냉각수에 담지하여 사용할 수 있다. The heating core 3200 may be the heating core shown in FIGS. 1 to 18. The heating core 3200 may be used in a form coupled to the coolant tank 3100 and may be replaced. One or more heating cores in the coolant tank 3100 may be immersed in the coolant. In addition, the heating core 3200 may be used by supporting the whole of the cooling water except for a portion of the cooling water or the electrode portion coupled to the cooling water tank.
본 발명의 실시예에서와 같이 세라믹 기판부에 열확산판을 부착하면 세라믹 기판부가 손상되는 것을 방지할 수 있다. 본 발명의 실시예와 같이, 세라믹 기판부에 열확산판을 적용하면, 열확산판의 높은 열전도율로 인해 열손실이 최소화되고, 열 전도율이 높아 히팅코어에서 발생하는 열을 모두 냉각수를 가열하는데 사용할 수 있다. 또한 열확산판을 부착하여 진동 신뢰성, 열충격 깨짐 등을 방지하여 히팅코어 자체의 신뢰성이 향상될 수 있다. As in the embodiment of the present invention, attaching the thermal diffusion plate to the ceramic substrate may prevent the ceramic substrate from being damaged. As in the embodiment of the present invention, when the thermal diffusion plate is applied to the ceramic substrate, the heat loss is minimized due to the high thermal conductivity of the thermal diffusion plate, and the thermal conductivity is high, so all the heat generated from the heating core can be used to heat the cooling water. . In addition, by attaching a thermal diffusion plate to prevent vibration reliability, thermal shock cracking, etc., the reliability of the heating core itself can be improved.
여기서, 열교환기(3300)는 가열된 냉각수의 열을 차량의 실내로 제공하기 위한 것으로, 열교환기(3300)는 냉각수 파이프(3500)를 통해 냉각수 탱크(3100)와 연결될 수 있다. Here, the heat exchanger 3300 is to provide heat of the cooled coolant to the interior of the vehicle, and the heat exchanger 3300 may be connected to the coolant tank 3100 through the coolant pipe 3500.
히터 시스템의 동작을 살펴보면, 발열부품(3400)을 냉각시킨 냉각수는 냉각수 파이브(3500)를 통해 냉각수 탱크(3100)로 이동하고, 냉각수는 히팅코어(3200)에 의해 가열된 후 다시 냉각수 파이프를 통해 열교환기(3300)로 이동한 후 열교환되어 차량의 실내에 열을 제공한다. 열교환된 냉각수는 다시 냉각수 파이프를 따라 이동하여 발열부품(3400)을 냉각시킨다. Looking at the operation of the heater system, the coolant that has cooled the heating component 3400 is moved to the coolant tank 3100 through the coolant pipe 3500, the coolant is heated by the heating core 3200 and then again through the coolant pipe After moving to the heat exchanger 3300, heat is exchanged to provide heat to the interior of the vehicle. The heat-exchanged coolant again moves along the coolant pipe to cool the heating element 3400.
이러한 순환 구조에 의해 냉각수는 발열부품을 냉각시킨 후, 히팅코어에 의해 가열되어 차량 실내에 열을 제공할 수 있다. By this circulation structure, the cooling water may be cooled by the heating core and then heated by the heating core to provide heat to the vehicle interior.
본 실시예에서와 같이 히팅코어를 냉각수에 담지하여 사용하면 종래의 난방 장치에 비해 부피를 50%이상 감소할 수 있고, 열효율을 95%이상 확보 가능하다.When the heating core is used by supporting the cooling water as in the present embodiment, the volume can be reduced by 50% or more, and the thermal efficiency can be ensured by 95% or more compared with the conventional heating apparatus.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. In the above description, all elements constituting the embodiments of the present invention are described as being combined or operating in combination, but the present invention is not necessarily limited to the embodiments. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more. In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be inherent unless specifically stated otherwise, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms used generally, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be interpreted in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (10)

  1. 유입구와 배출구가 대향하게 배치되어 열매체가 통과하는 케이스;A case in which the inlet and the outlet are disposed to face each other so that the heat medium passes;
    상기 케이스의 내부에서 상기 유입구와 배출구 사이에 배치되는 발열모듈; 및A heating module disposed between the inlet and the outlet of the case; And
    상기 케이스의 일측에 배치되며, 상기 발열모듈과 전기적으로 연결된 파워모듈을 포함하고,Is disposed on one side of the case, includes a power module electrically connected to the heat generating module,
    상기 발열모듈은,The heating module,
    서로 교번하며 배열된 복수 개의 방열핀과 복수 개의 히팅코어를 포함하고,Comprising a plurality of heat sink fins and a plurality of heating cores arranged alternately,
    상기 히팅코어는,The heating core,
    제 1 세라믹층 및 상기 제1 세라믹층 상에 배치된 제2 세라믹층을 포함하는 세라믹기판부; 및A ceramic substrate part including a first ceramic layer and a second ceramic layer disposed on the first ceramic layer; And
    상기 제1 세라믹층 및 상기 제2 세라믹층 사이에 배치된 발열소자를 포함하고,A heating element disposed between the first ceramic layer and the second ceramic layer,
    상기 제1 세라믹층 및 상기 제2 세라믹층 중 어느 하나에 배치된 열확산판을 포함하는 A thermal diffusion plate disposed in any one of the first ceramic layer and the second ceramic layer.
    상기 제1 세라믹층 또는 상기 제2 세라믹층에 배치되며, 상기 발열소자의 제1 단과 연결되는 제1 전극패드 및 상기 발열소자의 제2 단과 연결되는 제2 전극패드를 더 포함하는A first electrode pad disposed on the first ceramic layer or the second ceramic layer and connected to a first end of the heat generating element, and a second electrode pad connected to a second end of the heat generating element;
    히터.heater.
  2. 제1항에 있어서,The method of claim 1,
    상기 히팅코어는,The heating core,
    세라믹기판부를 커버하는 커버부를 더 포함하며Further comprising a cover portion for covering the ceramic substrate portion
    상기 커버부는,The cover part,
    일측과 타측에서 상기 세라믹기판부보다 연장되어 형성되고,Is formed extending from the ceramic substrate portion on one side and the other side,
    상기 커버부의 일측은 상기 제1가스켓에 삽입되고, 상기 커버부의 타측은 상기 제2가스켓에 삽입되어 상기 제1가스켓과 상기 제2가스켓에 의해 상기 히팅코어가 지지되는 히터.One side of the cover portion is inserted into the first gasket, the other side of the cover portion is inserted into the second gasket, the heating core is supported by the first gasket and the second gasket.
  3. 제2항에 있어서,The method of claim 2,
    상기 발열모듈은,The heating module,
    일측에 배치되어 상기 발열소자와 전기적으로 연결된 제1전극단자를 더 포함하고,A first electrode terminal disposed on one side and electrically connected to the heating element;
    상기 파워모듈은,The power module,
    상기 제1전극단자와 결합하는 제1연결단자를 포함하며,A first connection terminal coupled to the first electrode terminal,
    상기 제1전극단자는,The first electrode terminal,
    열매체가 통과하는 방향으로 서로 대향하는 제1결속부재와 제2결속부재를 포함하고,A first binding member and a second binding member opposing each other in a direction through which the heat medium passes;
    상기 제1결속부재는,The first binding member,
    일측으로 연장되며, 상기 제2결속부재와 가까워지다가 멀어지도록 구부러진 형태이고,Extends to one side and is bent to move away from and close to the second binding member,
    상기 제2결속부재는,The second binding member,
    일측으로 연장되며, 상기 제1결속부재와 가까워지다가 멀어지도록 구부러진 형태이고,It extends to one side, and is bent to move away from the first binding member,
    상기 제1연결단자는,The first connection terminal,
    상기 제1결속부재와 상기 제2결속부재 사이에 개재되어 상기 제1전극단자와 결합하는 히터.A heater interposed between the first binding member and the second binding member and coupled to the first electrode terminal.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1열확산판, 상기 세라믹기판부, 그리고 상기 제2열확산판의 열팽창계수는 서로 동일한 히터.And a heat expansion coefficient of the first heat diffusion plate, the ceramic substrate part, and the second heat diffusion plate.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1열확산판 및 상기 제2열확산판 중 적어도 하나는,At least one of the first thermal diffusion plate and the second thermal diffusion plate,
    제1열확산층, 상기 제1 열확산층 상에 배치된 제2 열확산층, 그리고 상기 제2 열확산층 상에 배치된 제3 열확산층을 포함하는 히터.And a first thermal diffusion layer, a second thermal diffusion layer disposed on the first thermal diffusion layer, and a third thermal diffusion layer disposed on the second thermal diffusion layer.
  6. 제1항에 있어서, The method of claim 1,
    상기 제1열확산판 및 제2열확산판 중 적어도 하나의 표면에는 돌출부가 형성된 히터.The heater having a protrusion formed on a surface of at least one of the first and second heat diffusion plates.
  7. 제1항에 있어서, The method of claim 1,
    상기 제1 세라믹층 및 상기 제2 세라믹층 사이에 배치되며, 상기 발열소자의 측면에 배치되는 열전도체를 더 포함하는 히터.And a heat conductor disposed between the first ceramic layer and the second ceramic layer and disposed on a side surface of the heat generating element.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 열전도체의 열전도율은 상기 제1 세라믹층 및 상기 제2 세라믹층의 열전도율보다 높은 히터. The thermal conductivity of the thermal conductor is higher than the thermal conductivity of the first ceramic layer and the second ceramic layer.
  9. 제8항에 있어서, The method of claim 8,
    상기 세라믹기판부의 기공율이 3% 이하인 히터. And a porosity of 3% or less of the ceramic substrate.
  10. 이동수단에 사용되는 히팅 시스템으로,Heating system used for vehicles,
    공기가 이동하는 유로;A flow path through which air moves;
    상기 유로의 일측에 설치되어 외부로부터 공기를 유입하는 급기부;An air supply unit installed at one side of the flow path to introduce air from the outside;
    상기 유로의 타측에 설치되어 상기 이동수단의 실내로 공기를 배출하는 배기부; 및An exhaust unit installed at the other side of the flow path and discharging air to the interior of the moving unit; And
    상기 유로에서 상기 급기부와 상기 배기부의 사이에 배치되어 공기를 가열하는 히터를 포함하고,A heater disposed between the air supply unit and the exhaust unit in the flow path to heat air;
    상기 히터는,The heater,
    유입구와 배출구가 대향하게 배치되어 공기가 통과하는 케이스;A case through which an inlet and an outlet are disposed to face air;
    상기 케이스의 내부에서 상기 유입구와 배출구 사이에 배치되는 발열모듈; 및A heating module disposed between the inlet and the outlet of the case; And
    상기 케이스의 일측에 배치되며, 상기 발열모듈과 전기적으로 연결된 파워모듈을 포함하고,Is disposed on one side of the case, includes a power module electrically connected to the heat generating module,
    상기 발열모듈은,The heating module,
    일측에서 타측으로 연장된 형태이며, 서로 교번하며 배열된 복수 개의 방열핀과 복수 개의 히팅코어를 포함하고,It extends from one side to the other side, and includes a plurality of heat dissipation fins and a plurality of heating cores alternately arranged,
    상기 히팅코어는,The heating core,
    제 1 세라믹층 및 상기 제1 세라믹층 상에 배치된 제2 세라믹층을 포함하는 세라믹기판부; 및A ceramic substrate part including a first ceramic layer and a second ceramic layer disposed on the first ceramic layer; And
    상기 제1 세라믹층 및 상기 제2 세라믹층 사이에 배치된 발열소자를 포함하고,A heating element disposed between the first ceramic layer and the second ceramic layer,
    상기 제1 세라믹층 및 상기 제2 세라믹층 중 어느 하나에 배치된 열확산판을 포함하는A thermal diffusion plate disposed in any one of the first ceramic layer and the second ceramic layer.
    상기 제1 세라믹층 또는 상기 제2 세라믹층에 배치되며, 상기 발열소자의 제1 단과 연결되는 제1 전극패드 및 상기 발열소자의 제2 단과 연결되는 제2 전극패드를 더 포함하는A first electrode pad disposed on the first ceramic layer or the second ceramic layer and connected to a first end of the heat generating element, and a second electrode pad connected to a second end of the heat generating element;
    히팅시스템. Heating system.
PCT/KR2017/008076 2016-08-19 2017-07-27 Heater and heating system for transportation means WO2018034442A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790001187.4U CN210518876U (en) 2016-08-19 2017-07-27 Heater core, heater and heating system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0105805 2016-08-19
KR1020160105805A KR102583758B1 (en) 2016-08-19 2016-08-19 Ceramic heater and heating apparatus of electric vehicle using the same
KR10-2016-0131651 2016-10-11
KR1020160131651A KR20180040054A (en) 2016-10-11 2016-10-11 Heater and heating system for transporter
KR10-2017-0000744 2017-01-03
KR1020170000744A KR20180079956A (en) 2017-01-03 2017-01-03 Heater and heating apparatus comprising the same

Publications (1)

Publication Number Publication Date
WO2018034442A1 true WO2018034442A1 (en) 2018-02-22

Family

ID=61196916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008076 WO2018034442A1 (en) 2016-08-19 2017-07-27 Heater and heating system for transportation means

Country Status (2)

Country Link
CN (1) CN210518876U (en)
WO (1) WO2018034442A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080037325A (en) * 2006-10-26 2008-04-30 현대모비스 주식회사 Hot water heater core having ceramics heater
KR20110048639A (en) * 2009-11-03 2011-05-12 백영신 Energy saving type fan heater using nano tube plane heater
KR20140040441A (en) * 2012-09-26 2014-04-03 주식회사 엑사이엔씨 Heater for vehicle
US20150183295A1 (en) * 2012-05-14 2015-07-02 Behr-Hella Thermocontrol Gmbh Electrical vehicle heater, in particular for vehicles having a hybrid drive or having an electric drive
KR20160002897A (en) * 2013-04-28 2016-01-08 비와이디 컴퍼니 리미티드 Electrical heater, defroster, heating and air conditioning system and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080037325A (en) * 2006-10-26 2008-04-30 현대모비스 주식회사 Hot water heater core having ceramics heater
KR20110048639A (en) * 2009-11-03 2011-05-12 백영신 Energy saving type fan heater using nano tube plane heater
US20150183295A1 (en) * 2012-05-14 2015-07-02 Behr-Hella Thermocontrol Gmbh Electrical vehicle heater, in particular for vehicles having a hybrid drive or having an electric drive
KR20140040441A (en) * 2012-09-26 2014-04-03 주식회사 엑사이엔씨 Heater for vehicle
KR20160002897A (en) * 2013-04-28 2016-01-08 비와이디 컴퍼니 리미티드 Electrical heater, defroster, heating and air conditioning system and vehicle

Also Published As

Publication number Publication date
CN210518876U (en) 2020-05-12

Similar Documents

Publication Publication Date Title
US7745928B2 (en) Heat dissipation plate and semiconductor device
WO2017131327A1 (en) Independently controlled ptc heater, and device
WO2019182216A1 (en) Double-sided cooling type power module and manufacturing method therefor
KR101066711B1 (en) Semiconductor package
WO2013129814A1 (en) Vehicle heater
WO2013129815A1 (en) Cooling-water heating type heater
WO2013172603A1 (en) Heater for a vehicle
KR20150013764A (en) Electrical vehicle heater, in particular for vehicles having a hybrid drive or having an electric drive
WO2008075409A1 (en) Base for power module, method for producing base for power module and power module
WO2018117484A1 (en) Heating rod, heating module including same, and heating device including same
WO2018034442A1 (en) Heater and heating system for transportation means
WO2018128449A1 (en) Heating rod and heater having same
JP2007141932A (en) Power module base
KR102351851B1 (en) Heater core, heater and heating system including thereof
KR102292906B1 (en) Heater core, heater and heating system including thereof
KR102544527B1 (en) Heater core, heater and heating system including thereof
KR102351852B1 (en) Heater and heating system including thereof
KR102292905B1 (en) Heater core, heater and heating system including thereof
KR102429946B1 (en) Heater core, heater and heating system including thereof
KR102331182B1 (en) Heater core, heater and heating system including thereof
CN103370845B (en) The electronic installation used in the region having explosion hazard and protection component thereof
CN115349158A (en) Heat dissipation structure, manufacturing method thereof and vacuum valve
KR102330198B1 (en) Heater and heating system including thereof
WO2019045518A1 (en) Ptc heater
KR20190121615A (en) Heater core, heater and heating system including thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841625

Country of ref document: EP

Kind code of ref document: A1