WO2018034286A1 - 固体燃料バーナ - Google Patents

固体燃料バーナ Download PDF

Info

Publication number
WO2018034286A1
WO2018034286A1 PCT/JP2017/029379 JP2017029379W WO2018034286A1 WO 2018034286 A1 WO2018034286 A1 WO 2018034286A1 JP 2017029379 W JP2017029379 W JP 2017029379W WO 2018034286 A1 WO2018034286 A1 WO 2018034286A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
burner
solid fuel
fuel
air nozzle
Prior art date
Application number
PCT/JP2017/029379
Other languages
English (en)
French (fr)
Inventor
倉増 公治
菊池 仁志
昌平 水戸
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2018034286A1 publication Critical patent/WO2018034286A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/02Structural details of mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel

Definitions

  • the present invention relates to a solid fuel burner, and more particularly to a structure of a solid fuel burner capable of reducing the amount of nitrogen oxide generated by combustion and having excellent maintainability.
  • NOx nitrogen oxides
  • a burner having a structure in which air (combustion gas) ejected from the outer periphery of the fuel ejected from a fuel nozzle (fuel-containing fluid jet) is expanded radially outward are known.
  • FIG. 9 the side view (partial cross section) of the conventional pulverized coal burner is shown.
  • the fuel nozzle 22 is connected to a transport pipe (not shown) on the base side, and ejects solid fuel together with primary air for transport.
  • a secondary air nozzle 24 that forms a flow path 25 of secondary air (combustion air) is provided on the outer periphery of the fuel nozzle 22, and a flow path of tertiary air (combustion air) is provided on the outer periphery of the secondary air nozzle 24.
  • a tertiary air nozzle 27 forming 26 is provided.
  • the secondary air passage 25 and the tertiary air passage 26 communicate with the wind box 23.
  • the annular secondary air nozzle 24 is arranged concentrically on the outer side with the fuel nozzle 22 as the center.
  • An annular tertiary air nozzle 27 is concentrically arranged outside the air nozzle 24.
  • the tertiary air nozzle 27 constitutes the outermost peripheral air nozzle.
  • An ignition burner 21 penetrating the fuel nozzle 22 is provided inside the fuel nozzle 22 and is used for auxiliary combustion when the burner is started or when low load combustion is performed.
  • a flame holder 32 for expanding the circulation flow 40 between the primary air and the secondary air is provided at the outlet end of the fuel nozzle 22.
  • the partition wall of the tertiary air nozzle 27 is a burner throat partition wall formed by the wall 9 of the furnace 10.
  • a guide member 33 that expands in the radial direction with respect to the burner central axis C is provided at the outlet end of the secondary air nozzle 24.
  • the secondary air nozzle 24 is fixed by a support plate 35 fixed to the outer wall of the fuel nozzle 22.
  • the tertiary air is mainly ejected outwardly away from the burner central axis C by the guide member 33 at the tip of the secondary air nozzle 24. Further, a guide member 34 is further provided in the tertiary air flow path 26. The guide member 34 is fixed by a support plate 36, and the other end of the support plate 36 is fixed to the outer wall of the secondary air nozzle 24.
  • Patent Document 2 is improved, the fuel nozzle cross-sectional shape is circular to the venturi flow restrictor, and the flatness is gradually increased from the venturi flow restrictor to the nozzle opening.
  • Patent Document 3 There is an invention of a burner in which the flatness is maximized at the opening.
  • Patent Document 4 discloses a configuration in which a tertiary combustion gas guide plate is provided in the upper and lower portions of the outer periphery of the secondary combustion gas nozzle in the tertiary combustion gas nozzle.
  • the combustion time after ignition can be secured by reducing the unignited distance of the fuel.
  • the flow path is expanded after being contracted by the flow path restricting portion of the venturi, the fuel concentration distribution of the fuel-containing fluid near the inner wall of the nozzle is made uniform.
  • the tertiary combustion gas flow path is divided into upper and lower parts, and the vertical velocity component to the furnace is given to the air flowing through the respective flow paths to deflect the flame.
  • the NOx reduction region is expanded to achieve low NOx combustion even when the burner is under low load.
  • the non-ignition area can be reduced by reducing the distance from the ignition area of the jet surface of the fuel-containing fluid to the center of the jet stream with a flat fuel nozzle shape. Therefore, the NOx concentration reducing effect is also high.
  • a guide member for example, guide member 34 in FIG. 9
  • a guide member for spreading the combustion gas radially outward is provided on the outer periphery of the outlet in the tertiary combustion gas nozzle located on the outermost side of the fuel nozzle, and the reduction By forming the region, the NOx concentration reducing effect is enhanced.
  • the burner described in Patent Document 4 discloses a configuration in which a combustion gas (air) is guided to the outer peripheral side by providing a tertiary air guide plate on the outer peripheral portion of the secondary air nozzle.
  • the guide member such as the tertiary air guide plate is fixed and supported from the outer wall of the secondary combustion gas nozzle inside, that is, the fuel nozzle side (burner central axis side).
  • the fuel nozzle is removed from the furnace. At that time, it is necessary to pull out the burner portion from the burner central axis to the guide member outside the furnace. If the part to be pulled out is large, a burden is imposed on the maintenance work.
  • the outer diameter of the guide member is generally made smaller than the diameter of the wall surface of the furnace opening. If the outer diameter of the guide member is made smaller than the diameter of the wall surface of the furnace opening, the gap between the guide member and the wall surface becomes wider, so the rate of straight flow in the burner axial direction increases and the circulating flow is destroyed. . Accordingly, since the circulating flow becomes small, there is a concern that the reduction zone is reduced and the NOx concentration is increased.
  • An object of the present invention relates to a solid fuel burner having a configuration in which a combustion gas ejected from the outer periphery of a fuel-containing fluid jet is expanded radially outward, and further prevents increase in NOx concentration and has excellent maintainability To provide a burner.
  • the object of the present invention can be achieved by adopting the following constitution.
  • the invention according to claim 1 is a first gas nozzle (2) having a cylindrical flow path through which a mixed fluid of a solid fuel and a carrier gas of the solid fuel flows, and an opening shape toward a furnace wall surface being a flat shape.
  • the second combustion gas flow path (6) formed on the outer peripheral side of the second gas nozzle (4) is communicated from the wind box (3) through which the combustion gas flows, and the opening shape is cylindrical.
  • a solid fuel burner comprising a horizontal portion (7a) along the vertical axis and a third gas nozzle (7) having an inclined portion (7b) whose diameter increases from the horizontal portion (7a) toward the furnace,
  • a second guide member (14) for guiding the combustion gas from the burner central axis side to the outer peripheral side is provided on the outlet side of the second combustion gas flow path (6), and the second guide member (14).
  • a support member (15) for fixing and supporting is provided on the inner wall of the third gas nozzle (7).
  • the invention according to claim 2 is the solid fuel burner according to claim 1, wherein the second guide member (14) is provided on the upper side and the lower side of the second gas nozzle (4), respectively.
  • a part of the partition wall (18) of the wind box (3) is a plate-like member (17) installed so as to be separable from the partition wall (18), and the first gas nozzle
  • a flame holder (12) formed surrounding the first gas nozzle (2) is provided on the outer periphery of the tip of the first gas nozzle (2), and the furnace side to the nozzle side are provided.
  • the “flat shape” means the rectangle in FIG. 5A, the ellipse in FIG. 5B, the combination of the semicircle and rectangle in FIG. 5C, and the width in FIG. 5D.
  • FIG. 5A some or all of the four corners may be curved.
  • FIG. 5D some or all of the polygonal corners may be curved.
  • the curvature of the curved portion is not limited to a constant curvature.
  • a second guide member which is a guide member for combustion gas, is supported from the wall surface of the second gas nozzle on the inner peripheral side on the outlet side in the third gas nozzle located on the outermost side of the first gas nozzle.
  • the second guide member is fixed to the outer wall of the second gas nozzle, a structure having a size from the burner central axis to the second guide member needs to be pulled out of the furnace during maintenance of the burner. There is.
  • the portion to be pulled out is reduced from the burner central axis to the portion to the second gas nozzle inside the second guide member. Is done.
  • the second guide member by supporting the second guide member from the outer peripheral side, it is not necessary to pull out the second guide member during maintenance of the burner. Maintenance is easier. Further, when the second guide member is supported from the inner peripheral side, the second guide member and the furnace opening are manufactured by making the outer diameter of the second guide member smaller in consideration of the deformation and the like. It is necessary to widen the gap with the wall surface. However, by supporting the guide member from the outer peripheral side, the gap between the second guide member and the wall surface can be made relatively small, or the diameter of the second guide member can be made larger than the opening diameter of the wall surface. .
  • the second combustion gas flow path is vertically moved with the major axis or the long side of the first gas nozzle interposed therebetween. Therefore, the third gas nozzle is also less mixed with the combustion gas and fuel than the first gas nozzle and the second gas nozzle, and the reduction area at the center of the burner is reduced. Expanding.
  • the combustion gas flowing in the relatively wide upper and lower flow paths between the third gas nozzle and the second gas nozzle has higher straightness than the left and right sides. Therefore, according to the second aspect of the invention, in addition to the operation of the first aspect of the invention, the second guide members are provided on the upper side and the lower side of the second gas nozzle, respectively. High combustion gas can also be directed outwards.
  • a part of the partition of the wind box is a plate-like member that can be separated from the partition body so that the burner can be easily removed and attached during maintenance.
  • a part of the partition of the wind box is a plate-like member that can be separated from the partition body so that the burner can be easily removed and attached during maintenance.
  • the flame holder provided on the outer periphery of the tip of the first gas nozzle circulates downstream thereof. By forming a flow, the reduction zone is expanded.
  • the solid fuel burner of the present invention enables low NOx combustion and improves maintainability. Specifically, the following effects are exhibited.
  • the gap between the second guide member and the inner wall of the third gas nozzle is compared by supporting the second guide member from the inner wall side of the third gas nozzle on the outer peripheral side thereof. Therefore, the straight flow of the combustion gas passing through the gap in the burner axial direction can be suppressed. Therefore, the size of the circulating flow formed downstream of the burner outlet can be ensured, and a sufficient reduction zone can be formed, thereby enabling low NOx combustion.
  • In maintenance of the burner only the member on the inner peripheral side of the second guide member needs to be pulled out, so that the portion to be pulled out is small, and the maintainability is also good.
  • the plate-like member separable from the windbox partition and the extraction portion of the burner are integrated.
  • the maintainability is further improved.
  • the movable part at the time of pulling out can be made small, so that the plate-like member can be reduced in size and weight, and maintainability is also improved.
  • the reduction zone is expanded by the flame holder provided on the outer periphery of the tip of the first gas nozzle.
  • the flammability is also improved by effectively forming the reduction region of the combustion gas downstream of the flame holder. Therefore, the NOx concentration can be further reduced.
  • FIG. 1 is a side view (schematic diagram) showing a partial cross section of a solid fuel burner which is an embodiment of the present invention.
  • FIG. 2 is a plan view (schematic diagram) showing a partial cross section of the solid fuel burner of FIG. 1.
  • 3A is a front view of the solid fuel burner of FIG. 1
  • FIG. 3B is a view taken along the line YY of the solid fuel burner of FIG. It is the side view (partial cross section) which showed an example of the connection structure of a front plate and a partition.
  • It is the figure which showed various cross-sectional shapes of the opening part of the fuel nozzle of FIG. 6A is a partially enlarged view of the solid fuel burner of FIG. 1, and FIG.
  • 6B is a view showing an example of a support structure of the guide vane. It is the perspective view which showed the example of the guide vane. It is the figure which showed the relationship between the fuel nozzle and front plate of a solid fuel burner at the time of seeing from the outside of a furnace. It is a side view (partial cross section) of the conventional pulverized coal burner.
  • FIG. 1 shows a side view (partial cross section) of a solid fuel burner according to an embodiment of the present invention
  • FIG. 2 shows a plan view (partial cross section) of the solid fuel burner of FIG. 3A shows a front view of the solid fuel burner of FIG. 1 viewed from the furnace side
  • FIG. 3B shows a YY arrow view of the solid fuel burner of FIG.
  • the fuel nozzle (first gas nozzle) 2 is a cylindrical member whose base side is connected to the fuel-containing fluid pipe 19, and the inside thereof is a solid gas and a solid gas containing a solid fuel and a transport gas (in this embodiment, air is used). It becomes a flow path of a phase flow (mixed fluid). And solid fuel is ejected with the gas for conveyance.
  • the solid fuel may be solid such as coal (pulverized coal) or biomass, powder, or a mixture thereof. In this embodiment, an example is shown in which pulverized coal is used as the solid fuel and air is used as the carrier gas.
  • the carrier gas flowing in the fuel nozzle 2 is also referred to as primary air, and the fuel nozzle 2 is also referred to as the primary air nozzle 2.
  • a secondary air nozzle (second gas nozzle) 4 that forms a secondary air flow path 5 is provided on the outer periphery of the fuel nozzle 2, and tertiary air that forms a tertiary air flow path 6 on the outer periphery of the secondary air nozzle 4.
  • a nozzle (third gas nozzle) 7 is provided.
  • These secondary air and tertiary air are combustion gases, and air is usually used in the same manner as the carrier gas, but combustion exhaust gas, oxygen-rich gas, or a mixture of two or more of these gases and air, etc. Is also applicable. Further, secondary air and secondary air and tertiary air are only used to distinguish them from the primary air.
  • the annular secondary air nozzle 4 is concentrically formed outside the fuel nozzle 2 as a center.
  • the annular tertiary air nozzle 7 is arranged concentrically outside the secondary air nozzle 4.
  • the tertiary air nozzle 7 constitutes the outermost peripheral air nozzle.
  • An ignition burner (oil gun) 1 penetrating the fuel nozzle 2 is provided inside the fuel nozzle 2, and is used for auxiliary combustion when the burner is started or when low-load combustion is performed.
  • a flame holder 12 for expanding the circulation flow between the primary air and the secondary air is provided at the outlet end of the fuel nozzle 2.
  • the flame holder 12 is provided in a ring shape at the tip of the fuel nozzle 2 so as to form a circulation flow downstream of the flame holder 12 to enhance ignitability and flame holding effect.
  • the burner which does not install the flame holder 12 is also included in this embodiment.
  • the ignition burner 1, the fuel nozzle 2, the secondary air nozzle 4, and the tertiary air nozzle 7 are directed from the furnace opening 8 provided in the wall 9 (formed by a water pipe (not shown)) 9 into the furnace 10. Eject each ejecta.
  • the ignition burner 1, the fuel nozzle 2, the secondary air nozzle 4 and the tertiary air nozzle 7 surround the furnace opening 8 and supply pulverized coal or combustion air from a combustion air flow path (not shown).
  • the partition wall 18 is a wall-like member that separates the interior space of the wind box 3 from the outside of the furnace 20, and the front plate 17 on which the fuel nozzle 2 is installed is integrated with the fuel nozzle 2 during maintenance of the burner. It is separable from the partition wall 18 so that it can be extracted, and is detachable from the partition wall 18.
  • FIG. 4 shows an example (side view) of a connection structure between the front plate 17 and the partition wall 18.
  • the front plate 17 can be attached to the partition wall 18 by inserting bolts 44 into the holes provided in the plate member 42 and the partition wall 18 integral with the front plate 17 and embedding them, and tightening them with nuts 46.
  • nuts 46 In addition, it is not limited to the example of illustration, You may use other fixing and latching means, such as screwing and a hook.
  • a fuel concentrator 11 is provided on the pulverized coal flow path in the fuel nozzle 2 to inject the pulverized coal particles into the furnace 10 while concentrating on the inner wall side of the fuel nozzle 2.
  • the concentrator 11 is provided on the outer periphery of the ignition burner 1 and forms a region in which a cross section perpendicular to the axial direction of the pulverized coal flow path decreases toward the inner wall of the fuel nozzle 2 and an area in which the fuel expands. It brings about an action of concentrating on the nozzle inner wall side (radially outside the central axis).
  • the burner which does not install the concentrator 11 is also contained in this embodiment.
  • the secondary air nozzle 4 is fixed (fixed) and supported by a flat support member 16 fixed to the outer wall of the fuel nozzle 2.
  • the shape of the support member 16 is not particularly limited, and is not limited to the case of being supported from the outer wall of the fuel nozzle 2, but may be an integral structure and connection relationship with the fuel nozzle 2.
  • a guide sleeve (first guide member) 13 that is expanded in the radial direction with respect to the burner central axis C is provided at the outlet end of the secondary air nozzle 4.
  • the guide sleeve 13 has a unitary structure. By the guide sleeve 13, the air flow is guided outward and ejected away from the burner central axis C.
  • guide vanes (second guide members) 14 for guiding the tertiary air are provided in regions where the upper and lower flow passage widths of the secondary air nozzle 4 are wide in the tertiary air passage 6. .
  • the relationship between the guide sleeve 13 and the guide vane 14 is such that the projection surface of the guide sleeve 13 from the furnace 10 to the partition wall 18 side and the projection surface of the guide vane 14 have a size or arrangement that does not overlap.
  • the fuel nozzle 2 and the secondary air nozzle 4 have a flat opening shape at the furnace opening 8.
  • the flat shape is a rectangle in FIG. 5A, an ellipse in FIG. 5B, a shape in which a semicircle and a rectangle in FIG. 5C are combined, a wide polygon in FIG. 5D, and the like.
  • This is a flat shape having a long diameter and a long side W and a short diameter and a short side H.
  • the cross-sectional shape perpendicular to the burner central axis C of the fuel nozzle 2 is circular from the fuel-containing fluid piping 19 to the vicinity of the front plate 17 (portion narrowing portion), and from there to the furnace opening 8.
  • the flatness is gradually increased from the burner central axis C to the outside in the horizontal direction, so that the flatness gradually increases, and the furnace opening 8 has a shape with the maximum flatness.
  • the flatness is defined as a ratio (W / H) of the long side W to the short side H. Accordingly, the gradual increase in flatness means that the ratio (W / H) of the long side W to the short side H of the cross section perpendicular to the central axis of the fuel nozzle 2 gradually increases.
  • the flat shape refers to the shape of the portion in the fuel nozzle 2 where the ratio (W / H) of the long side W to the short side H is the largest.
  • the flame stabilizer 12 at the outlet tip of the fuel nozzle 2 reduces the pressure in the downstream region, and promotes the formation of a circulating flow that is a flow from downstream to upstream. Since the high-temperature gas stays in the circulation flow, the ignition of the fuel particles proceeds and the stability of the flame is improved.
  • the tertiary air nozzle 7 is also a part of the furnace wall 9, and a cross section passing through the burner central axis C is a horizontal part (a part having a uniform diameter) 7 a along the burner central axis direction and an inclined part (diameter is enlarged) on the furnace 10 side. Part) 7b, which is cylindrical when viewed from the furnace 10 side.
  • the tertiary air flow path 6 is a flow path between the outer wall of the secondary air nozzle 4 and the tertiary air nozzle 7, and the left and right flow path widths are narrow and the upper and lower flow path widths are wide. Therefore, mixing of tertiary air and fuel is suppressed, and low NOx combustion is promoted.
  • FIG. 6 (A) shows a partially enlarged view of the solid fuel burner of FIG. 1
  • FIG. 6 (B) shows an example of a support structure of the guide vane 14 by the support member 15.
  • FIG. 7 is a perspective view showing an example of the guide vane 14.
  • the guide vane 14 is fixed and supported by a support member 15 fixed to the inner wall of the tertiary air nozzle 7.
  • the support member 15 includes an upper support member 15a fixed to the inner wall of the tertiary air nozzle 7 and a lower support member 15b fixed to the outer surface of the guide vane 14, and the upper support member 15a and the lower support member 15b are bolted.
  • the guide vane 14 is fixed by joining with the nut 50.
  • the guide vane 14 introduces the introduction portion 14a made of a plate-like member having a surface parallel to the flow direction of the tertiary air flow and the tertiary air flow in the radial direction from the burner central axis C. It is formed from a meniscus-shaped enlarged portion 14b extending toward the furnace 10 so as to expand outward (upper or lower).
  • the shape of the guide vane 14, the positional relationship between the outer wall of the secondary air nozzle 4 and the tertiary air nozzle 7, the number, and the support form by the support member 15 are not limited to those illustrated.
  • the enlarged portion 14b may be a triangle or a quadrangle as shown in FIGS. 7B and 7C, and its shape is not limited.
  • the embodiment in which the introduction portion 14a is omitted is also included in the present embodiment.
  • the support member 15 may be any member that can fix and support the guide vane 14 from the inner wall of the tertiary air nozzle 7 on the outer peripheral side.
  • the guide vanes 14 may be provided on the entire outer periphery of the secondary air nozzle 4.
  • the fuel nozzle 2 on the inner peripheral side is wider than the horizontal portion 7a of the cylindrical tertiary air nozzle 7 on the outer peripheral side. That is, since the shape of the fuel nozzle 2 and the secondary air nozzle 4 in the furnace opening 8 is wider than the width between the upper and lower sides, the tertiary air flow path surrounded by the tertiary air nozzle 7 on the outer peripheral side thereof. 6 inevitably narrows the left and right channel widths. For this reason, the air flow rate is small in this region, and the outward spreading flow is weak.
  • the guide vane 14 When the fuel nozzle 2 is removed from the furnace 10 for burner maintenance or the like, if the guide vane 14 is supported from the outer wall of the secondary air nozzle 4 on the inner peripheral side, the portion to be pulled out from the burner central axis C is the guide vane 14. Up to a wide range. In this case, the outer diameter of the guide vane 14 is made smaller in consideration of the manufacturing tolerance of the burner structure and the deformation due to the radiant heat of the flame, and the space between the guide vane 14 and the inner wall of the tertiary air nozzle 7 is widened. There is a need.
  • the guide vane 14 is fixed and supported by the support member 15 not from the outer wall of the secondary air nozzle 4 but from the inner wall of the tertiary air nozzle 7. Accordingly, since the portion to be pulled out is a narrow range from the burner central axis C to the secondary air nozzle 4, there is no burden on the maintenance work. Moreover, since it is not necessary to consider the above deformation and the like, the gap S (FIG. 3A) between the guide vane 14 and the tertiary air nozzle 7 can be made relatively small. That is, the enlarged portion 14b of the guide vane 14 can be enlarged. By enlarging the enlarged portion 14b of the guide vane 14, the action of spreading the tertiary air flow outward can be enhanced.
  • the guide vane 14 is installed such that the position of the end portion of the enlarged portion 14b that is farthest from the burner central axis C in the radial direction is located outside the horizontal portion 7a, or the guide vane 14 having such a shape. It is also possible to set the gap S on the minus side. By this structure, the effect which suppresses the straight flow of the tertiary air which slips through the clearance gap S becomes large.
  • the size of the circulating flow formed downstream of the burner outlet can be ensured, and a sufficient reduction zone can be formed, thereby enabling low NOx combustion.
  • the shape and number of the support members 15 of the guide vanes 14 and the installation position are not particularly limited.
  • two flat support members 15 may be provided on each of the upper and lower sides, or one each may be provided on each of the upper and lower sides.
  • the support structure is strengthened by supporting the guide vanes 14 with a plurality of support members 15, but if there are a large number, the resistance to the air flow is increased. Therefore, about two in each of the upper and lower sides so that the plane is parallel to the air flow. It is desirable to arrange.
  • the fuel nozzle 2 is fitted to the front plate 17, and the front plate 17 is a plate-like member that can be freely attached to and detached from the partition wall 18, so that by removing the front plate 17 from the partition wall 18, the ignition burner 1, Structures such as the fuel nozzle 2 and the secondary air nozzle 4 (including the concentrator 11, the flame holder 12, and the guide sleeve 13) can be extracted integrally.
  • the coupling between the front plate 17 and the fuel nozzle 2 is not limited in the coupling mode, whether by fitting, coupling by bolts and nuts via a flange, or by welding directly. If the nut 46 (FIG. 4) that fixes the front plate 17 is removed and the front plate 17 is pulled out to the outside of the furnace 20, the member integrated therewith can be removed.
  • FIG. 8 shows the relationship between the fuel nozzle 2 of the solid fuel burner and the front plate 17 when viewed from outside the furnace 20.
  • FIG. 8A shows a case where the guide vane 14 is supported on the inner wall of the tertiary air nozzle 7 on the outer peripheral side
  • FIG. 8B shows the guide vane 14 on the inner peripheral side of the secondary air nozzle 7. The case where it is supported by the outer wall of the air nozzle 4 is shown.
  • the fuel nozzle 2 is removed from the furnace 10, but when the guide vane 14 is supported by the outer wall of the secondary air nozzle 4 on the inner peripheral side, the part to be pulled out from the burner central axis C is the guide vane. Therefore, the front plate 17 needs to be made larger (FIG. 8B). In addition, a burden is imposed on the maintenance work. However, when the guide vane 14 is supported by the inner wall of the tertiary air nozzle 7 on the outer peripheral side, the portion to be pulled out is a narrow range from the burner central axis C to the secondary air nozzle 4, so the front plate 17 is small. That's it (FIG. 8A). Accordingly, the front plate 17 can be reduced in weight, and the maintainability can be improved.
  • the size of the front plate 17 needs to be larger than the projected area of the guide sleeve 13 from the furnace 10 to the partition wall 18 so that the portion) can be pulled out from the partition wall 18 as a unit.
  • a large number of pipes and wirings (not shown) are arranged outside the furnace 20, and when the fuel nozzle 2 and the like are pulled out integrally with the front plate 17 in maintenance and inspection of the burner, it is necessary to ensure a clearance with them. There is. In particular, securing the clearance becomes even more pronounced with a large-diameter burner with an increased capacity of a single machine.
  • the front plate 17 becomes large, and piping or unillustrated piping or The possibility of interference with wiring increases.
  • workability of piping and wiring becomes complicated in order to avoid the interference, and workability is inferior due to work such as removal and reconnection.
  • the front plate 17 can be made smaller by pulling out the guide air vane 14 and the guide sleeve 13 without pulling out the guide vane 14. Therefore, there is almost no interference between the front plate 17 and the piping and wiring.
  • FIG. 8A shows a case where the front plate 17 is elliptical, but other shapes such as a polygon having a uniform diameter such as a circle or a rectangle may be used, and the shape of the nozzle or the member having the largest diameter may be used. It is good to match.
  • an air swirling blade for generating a swirling flow for giving a swirling flow velocity to the tertiary air is provided on the inlet side of the tertiary air nozzle 7, or a secondary air amount is provided on the inlet side of the secondary air nozzle 4.
  • a damper to be adjusted may be provided.
  • the tertiary air nozzle 7 is a part of the furnace wall 9 .
  • the burner configuration is simplified, but the tertiary air nozzle 7 is a cylindrical member different from the furnace wall 9. It may be. *
  • the burner axial direction in the secondary air nozzle 4 can be prevented from going straight to the furnace 10 and slipping through, and a reduction zone can be formed on the downstream side of the flame holder 12 to ensure ignition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

固体燃料と搬送ガスとの混合流体が流れ、開口形状が扁平の燃料ノズル2と、燃料ノズル2の外周側で、先端外周にガイドスリーブ13を設け、開口形状が扁平の二次空気ノズル4と、二次空気ノズル4の外周側で、水平部7aと傾斜部7bとからなり開口形状が円筒形の三次空気ノズル7とを備えた固体燃料バーナの、三次空気ノズル7内の出口側に、三次空気を外周側に案内するガイドベーン14を、三次空気ノズル7内壁の支持部材15により支持する。この支持構成により、バーナのメンテナンス時における引き抜き部分が二次空気ノズル4までの部分で済み、メンテナンス性も良好になると共に、ガイドベーン14と三次空気ノズル7間の隙間を小さくできる。よって、燃料含有流体噴流の外周から噴出する燃焼用ガスを径方向外向きに広げる構成のバーナに関し、更なるNOx濃度の増加防止を図り、メンテナンス性にも優れる固体燃料バーナを提供できる。

Description

固体燃料バーナ
 本発明は固体燃料バーナに係り、特に燃焼により発生する窒素酸化物量を低減可能で、メンテナンス性にも優れた固体燃料バーナの構造に関する。
 石炭等の固体燃料(以下、微粉炭と言うことがある。)を燃焼させるボイラ等の燃焼装置では、環境保全のために燃料の燃焼によって発生する窒素酸化物(以下、NOxと言う)の濃度の低減が求められている。 
 火炎内で脱硝反応を行う低NOxバーナとして、燃料ノズルから噴出する燃料(燃料含有流体噴流)に対して、その外周から噴出する空気(燃焼用ガス)を径方向外向きに広げる構成のバーナが知られている。
 図9には、従来の微粉炭バーナの側面図(一部断面)を示す。 
 燃料ノズル22は基部側が図示されていない搬送管に接続されており、固体燃料を搬送用の一次空気とともに噴出する。燃料ノズル22の外周には二次空気(燃焼用空気)の流路25を形成する二次空気ノズル24が設けられ、二次空気ノズル24の外周には三次空気(燃焼用空気)の流路26を形成する三次空気ノズル27が設けられている。二次空気流路25及び三次空気流路26はウインドボックス23に連通している。
 燃料ノズル22と二次空気ノズル24と三次空気ノズル27をバーナ出口側の正面から見ると、燃料ノズル22を中心にしてその外側に環状の二次空気ノズル24が同心円状に配置され、二次空気ノズル24の外側に環状の三次空気ノズル27が同心円状に配置されている。三次空気ノズル27は最外周空気ノズルを構成している。
 燃料ノズル22の内部には、燃料ノズル22を貫通する点火バーナ21が設けられ、バーナ起動時あるいは低負荷燃焼時に助燃のために使用される。燃料ノズル22の出口先端には、一次空気と二次空気の間の循環流40を拡大するための保炎器32が設けられている。三次空気ノズル27の隔壁は火炉10の壁9で構成されるバーナスロートの隔壁である。二次空気ノズル24の出口先端には、バーナ中心軸Cに対して径方向に拡管するガイド部材33が設けられている。二次空気ノズル24は燃料ノズル22の外壁に固着した支持板35により固定されている。
 二次空気ノズル24先端のガイド部材33によって、主として三次空気がバーナ中心軸Cから離れるように外向きに噴出される。また、三次空気流路26には更にガイド部材34が設けられている。このガイド部材34は支持板36により固定されており、支持板36の他端は二次空気ノズル24の外壁に固着している。
 二次空気ノズル24や三次空気ノズル27内のガイド部材33、34によって、二次空気流及び三次空気流がバーナ中心軸C側から離れるようになることで、その下流側に循環流40が形成される。また、燃料ノズル22の出口先端の保炎器32によっても循環流40が拡大される。この循環流40内には高温のガスが滞留するため、燃料粒子の着火が進み、火炎の安定性が向上する。燃料を高温で酸素不足の火炎内に滞留させ、燃料中に含まれる窒素分をアンモニア或いはシアンのような還元剤として放出し、NOxを窒素に還元させている。上記構造のバーナとしては、下記特許文献1に記載の固体燃料バーナがある。
 複数の固体燃料バーナを備えたボイラ等の燃焼装置においては、バーナの容量の増加はコスト削減とバーナ本数削減による運用性向上のために有効な手法であるが、バーナ容量の拡大に伴って火炎が大きくなると、未着火領域が拡大する。未着火領域の拡大は、着火後の燃焼時間が短くなることを意味し、NOxの抑制が不十分だったり、燃焼効率が低下する要因ともなる。
 そこで、燃料ノズル形状を扁平として、バーナ容量を大きくしながら燃料含有流体の噴出流の断面積を拡大させることで流速を低下させ、燃料の未着火距離を縮小させたバーナの発明がある(下記特許文献2)。 
 また、上記特許文献2のバーナ構造に改良を加え、燃料ノズルの断面形状をベンチュリーの流路絞り部まで円形とし、ベンチュリーの流路絞り部からノズル開口部までは徐々に扁平度合いを増大させて、開口部で扁平度合いを最大としたバーナの発明がある(下記特許文献3)。 
 更に、上記特許文献2のバーナ構造に改良を加え、燃料ノズル外周の二次燃焼用ガス(二次空気)ノズルの断面形状を出口部において扁平形状とし、二次燃焼用ガスノズル外周の三次燃焼用ガス(三次空気)ノズルの断面形状を火炉壁面の開口部で円形としたバーナの発明がある(下記特許文献4)。この文献では、三次燃焼用ガスノズル内であって二次燃焼用ガスノズルの外周のうち、上部と下部に三次燃焼用ガスの案内板を設けた構成が開示されている。
 前記特許文献2に記載の発明によれば、燃料の未着火距離を縮小させることで、着火後の燃焼時間を確保することができる。また、前記特許文献3に記載の発明によれば、ベンチュリーの流路絞り部で縮流となった後、流路が拡げられるため、ノズル内壁近傍の燃料含有流体の燃料濃度分布が均一化される。
 燃焼用ガスを径方向外向きに広げることで、燃料ノズル出口で形成された火炎と三次空気などの燃焼用ガスはすぐには混合せずに、燃料噴流と外周空気噴流の間に循環流が発生する循環域を形成し、炉内のガスがバーナ近傍まで逆流する現象が生じる。この領域では、燃焼ガスが滞留しているため、酸素濃度が低く、燃料ノズル出口で形成された火炎で生じるNOxはこの領域で還元される。以後、この領域を還元域と称す。
 低NOxバーナでは、NOxから窒素への還元を促進するために、バーナ近くに高温で空気不足の還元域を形成させる必要がある。前記特許文献4に記載の発明によれば、三次燃焼用ガス流路を上下に分割し、それぞれの流路を流れる空気に火炉への上下方向の速度成分を与えることで、火炎を偏向させてNOxの還元域を拡大させて、バーナの低負荷時においても低NOx燃焼の達成を図っている。
特開2006-189188号公報 国際公開第2008/038426号パンフレット 特許第5867742号公報 特許第5908091号公報
 上記特許文献等に記載の発明によれば、燃料ノズル形状を扁平として、燃料含有流体の噴流表面の着火領域から同噴流の中心部までの距離を縮めることで、未着火領域を縮小できる。従って、NOx濃度の低減効果も高い。
 特に、燃料ノズルの一番外側に位置する三次燃焼用ガスノズル内の出口外周に、燃焼用ガスを径方向外向きに広げるためのガイド部材(例えば、図9のガイド部材34)を設け、前記還元域を形成させることで、NOx濃度の低減効果は高くなる。特許文献4に記載のバーナには、三次空気案内板を二次空気ノズルの外周部に設けることで燃焼用ガス(空気)を外周側に導く構成が開示されている。
 前記三次空気案内板等のガイド部材は、その内側の二次燃焼用ガスノズルの外壁、即ち燃料ノズル側(バーナ中心軸側)から固定、支持されている。バーナのメンテナンス時には、燃料ノズルを火炉から取り外すが、その際バーナ中心軸からガイド部材までのバーナ部分を炉外に引き抜く必要がある。引き抜く部分が大きいと、メンテナンス時の作業にも負担が掛かる。
 また、バーナ構造体の製作公差や火炎の輻射熱による変形等を考慮して、一般的にガイド部材の外径は、火炉開口部の壁面の径よりも小さめに製作されている。
 ガイド部材の外径を火炉開口部の壁面の径よりも小さくした場合は、ガイド部材と壁面との隙間が広くなるため、バーナ軸方向の直進流の割合が増加して循環流を壊してしまう。従って、循環流が小さくなることから、前記還元域が縮小してNOx濃度の増加が懸念される。
 本発明の課題は、燃料含有流体噴流の外周から噴出する燃焼用ガスを径方向外向きに広げる構成の固体燃料バーナに関し、更なるNOx濃度の増加防止を図ると共に、メンテナンス性にも優れる固体燃料バーナを提供することにある。
 上記本発明の課題は、下記の構成を採用することにより達成できる。 
 請求項1記載の発明は、固体燃料と該固体燃料の搬送ガスとの混合流体が流れる筒状の流路を有し、火炉壁面に向かう開口形状が扁平形状である第一のガスノズル(2)と、前記固体燃料の燃焼用ガスが流れるウインドボックス(3)から連通し、前記第一のガスノズル(2)の外周側に形成される第一の燃焼用ガス流路(5)を構成し、開口形状が扁平形状であると共に、先端外周に、燃焼用ガスをバーナ中心軸側から外周側に案内する第一の案内部材(13)を設けた第二のガスノズル(4)と、前記固体燃料の燃焼用ガスが流れるウインドボックス(3)から連通し、前記第二のガスノズル(4)の外周側に形成される第二の燃焼用ガス流路(6)を構成し、開口形状が円筒状であると共に、バーナ中心軸を通る断面がバーナ中心軸方向に沿う水平部(7a)と該水平部(7a)から火炉に向かって径が拡大する傾斜部(7b)とからなる第三のガスノズル(7)とを備えた固体燃料バーナであって、前記第二の燃焼用ガス流路(6)の出口側に、燃焼用ガスをバーナ中心軸側から外周側に案内する第二の案内部材(14)を設け、該第二の案内部材(14)を固定、支持する支持部材(15)を、第三のガスノズル(7)の内壁に設けた固体燃料バーナである。
 請求項2記載の発明は、前記第二の案内部材(14)は、第二のガスノズル(4)の上側と下側にそれぞれ設けられている請求項1記載の固体燃料バーナである。 
 請求項3記載の発明は、前記ウインドボックス(3)の隔壁(18)の一部は、該隔壁(18)と分離可能に設置される板状部材(17)であり、前記第一のガスノズル(2)と第二のガスノズル(4)は、前記板状部材(17)と一体的な構造である請求項1又は請求項2に記載の固体燃料バーナである。
 請求項4記載の発明は、前記第一のガスノズル(2)の先端外周に、第一のガスノズル(2)を取り囲んで形成される保炎器(12)を設け、火炉側からノズル側への保炎器(12)の投影面が第二のガスノズル(4)の投影面と少なくとも一部において重複する請求項1又は請求項2に記載の固体燃料バーナである。
 ここで、上記「扁平形状」とは、図5(A)の長方形、図5(B)の楕円形、図5(C)の半円形と長方形を組み合わせた形状、図5(D)の幅が広い多角形などの形状であり、長径や長辺Wと短径や短辺Hを有する平べったい形状と定義する。図5(A)において、4つの角部の一部又は全部は曲線状であっても良い。同様に、図5(D)において、多角形の角部の一部又は全部が曲線状であっても良い。また、上記の各形状において、曲線部の曲率は一定の曲率であることに限定されない。
(作用)
 第一のガスノズルの一番外側に位置する第三のガスノズル内の出口側に、燃焼用ガスのガイド部材である第二の案内部材を、その内周側の第二のガスノズルの壁面から支持する場合は、第二のガスノズルの外壁に第二の案内部材が固定されていることから、バーナのメンテナンス時には、バーナ中心軸から第二の案内部材までの大きさの構造体を炉外に引き抜く必要がある。
 しかし、第二の案内部材を、その外周側の第三のガスノズルの内壁から支持することで、引き抜く部分がバーナ中心軸から第二の案内部材の内側の第二のガスノズルまでの部分までに縮小される。
 従って、請求項1記載の発明によれば、第二の案内部材を外周側から支持することで、バーナのメンテナンス時に第二の案内部材を引き抜く必要がなくなることから、引き抜く部分が小さくて済み、メンテナンスがし易くなる。また、第二の案内部材が内周側から支持されている場合は、前記変形等を考慮して、第二の案内部材の外径を小さめに製作して、第二の案内部材と火炉開口の壁面との隙間を広くする必要がある。しかし、ガイド部材をその外周側から支持することで、第二の案内部材と壁面との隙間を比較的小さく又は第二の案内部材の径を壁面の開口径よりも大きくすることも可能になる。
 また、扁平形状である第一のガスノズルの外周に円筒状の第三のガスノズルを設けることで、第二の燃焼用ガス流路が主に第一のガスノズルの長径又は長辺を挟んで上下に配置されるため、第三のガスノズルも第一のガスノズル及び第二のガスノズルと同様に扁平形状とした場合に比べて、燃焼用ガスと燃料との混合が抑制され、バーナ中心部の還元域が拡大する。
 そして、第三のガスノズルと第二のガスノズル間の比較的広い上側と下側の流路を流れる燃焼用ガスは、左右側に比べて直進性が高くなる。そこで、請求項2記載の発明によれば、上記請求項1に記載の発明の作用に加えて、第二の案内部材を第二のガスノズルの上側と下側にそれぞれ設けることで、直進性の高い燃焼用ガスも外向きにできる。
 また、ウインドボックスの隔壁には、メンテナンス時にバーナの取り外し及び取り付けがし易いように、一部を隔壁本体から分離可能な板状部材としている。
 請求項3記載の発明によれば、上記請求項1又は請求項2に記載の発明の作用に加えて、ウインドボックス隔壁の板状部材とバーナの引き抜き部分を一体構造とすることで、それらを別々に取り外す必要がなくなり、同時に取り外すことが可能となる。
 また、請求項4記載の発明によれば、上記請求項1又は請求項2に記載の発明の作用に加えて、第一のガスノズルの先端外周に設けた保炎器によって、その下流側に循環流が形成されることで、還元域が拡大する作用をもたらす。
 更に、火炉側からノズル側を見た場合に、保炎器と第二のガスノズルの出口隔壁が一部でも重複する場合は、第二のガスノズル内のバーナ軸方向の燃焼用ガスの流れが火炉へ直進してすり抜けてしまうことを防止でき、保炎器の下流側に燃焼用ガスの滞留域(還元域)を効果的に形成して確実に着火できる作用をもたらす。
 本発明の固体燃料バーナによって、低NOx燃焼が可能となり、メンテナンス性も向上する。具体的には、以下の効果を奏する。 
 請求項1記載の発明によれば、第二の案内部材をその外周側の第三のガスノズルの内壁側から支持することで、第二の案内部材と第三のガスノズルの内壁との隙間を比較的小さくでき、この隙間をすり抜ける燃焼用ガスのバーナ軸方向の直進流を抑制できる。従って、バーナ出口下流に形成される循環流の大きさを確保でき、十分な還元域を形成できることで、低NOx燃焼が可能となる。そして、バーナのメンテナンス時には、第二の案内部材の内周側の部材のみ引き抜けば良くなることから、引き抜く部分が小さくて済み、メンテナンス性も良好となる。
 また、扁平形状である第一のガスノズルの外周に円筒状の第三のガスノズルを設けることで、燃焼用ガスと燃料との混合が抑制され、バーナ中心部の還元域が拡大し、低NOx燃焼が促進される。
 更に、請求項2記載の発明によれば、上記請求項1に記載の発明の効果に加えて、第二の燃焼用ガス流路を流れる比較的直進性の高い燃焼用ガスが外向きに流れることで更なる低NOx燃焼が可能となる。
 また、請求項3記載の発明によれば、上記請求項1又は請求項2に記載の発明の効果に加えて、ウインドボックス隔壁から分離可能な板状部材とバーナの引き抜き部分を一体構造とすることで、一度に取り外しや取り付けができることから、より一層メンテナンス性が良好となる。特に、第二の案内部材を第三のガスノズルの内壁側から支持することで、引き抜き時の可動部分が小さくて済むことから、板状部材の小型化、軽量化が図れ、メンテナンス性も向上する。
 また、請求項4記載の発明によれば、上記請求項1又は請求項2に記載の発明の効果に加えて、第一のガスノズルの先端外周に設けた保炎器によって還元域が拡大すると共に、保炎器の下流側に燃焼用ガスの還元域が効果的に形成されることで、着火性も良好となる。従って、更なるNOx濃度の低減が図れる。
本発明の一実施例である固体燃料バーナの一部断面を示す側面図(概略図)である。 図1の固体燃料バーナの一部断面を示す平面図(概略図)である。 図3(A)は、図1の固体燃料バーナの正面図であり、図3(B)は、図1の固体燃料バーナのY-Y線矢視図である。 フロントプレートと隔壁との接続構造の一例を示した側面図(一部断面)である。 図1の燃料ノズルの開口部の各種断面形状を示した図である。 図6(A)は、図1の固体燃料バーナの一部拡大図であり、図6(B)は、ガイドベーンの支持構造の一例を示した図である。 ガイドベーンの例を示した斜視図である。 炉外から見た場合の固体燃料バーナの燃料ノズルとフロントプレートとの関係を示した図である。 従来の微粉炭バーナの側面図(一部断面)である。
 以下に、本発明の実施の形態を示す。
 図1には、本発明の一実施例である固体燃料バーナの側面図(一部断面)を示し、図2には、図1の固体燃料バーナの平面図(一部断面)を示し、図3(A)には、図1の固体燃料バーナの火炉側から見た正面図を示し、図3(B)には、図1の固体燃料バーナのY-Y線矢視図を示す。
 燃料ノズル(第一のガスノズル)2は基部側が燃料含有流体配管19に接続された筒状部材であり、その内部は固体燃料と搬送用のガス(本実施例では空気を用いる)の固気二相流(混合流体)の流路となる。そして、固体燃料を搬送用のガスとともに噴出する。固体燃料としては、石炭(微粉炭)やバイオマスなどの固体や粉体、又はこれらの混合物であっても良い。本実施例では、固体燃料として微粉炭を、搬送ガスとして空気を用いた例を示しており、燃料ノズル2内を流れる搬送ガスを一次空気、また燃料ノズル2を一次空気ノズル2とも言う。
 燃料ノズル2の外周には二次空気流路5を形成する二次空気ノズル(第二のガスノズル)4が設けられ、二次空気ノズル4の外周には三次空気流路6を形成する三次空気ノズル(第三のガスノズル)7が設けられている。これら二次空気及び三次空気は燃焼用ガスであり、上記搬送ガスと同様に通常は空気が使用されるが、燃焼排ガスや富酸素ガス、又はこれらのガスや空気との二以上の混合気体等も適用できる。また、二次空気及び三次空気の二次及び三次とは前記一次空気と区別するために用いられているにすぎない。
 燃料ノズル2と二次空気ノズル4と三次空気ノズル7をバーナ出口側(火炉10側)の正面から見ると、燃料ノズル2を中心にしてその外側に環状の二次空気ノズル4が同心円状に配置され、二次空気ノズル4の外側に環状の三次空気ノズル7が同心円状に配置されている。三次空気ノズル7は最外周空気ノズルを構成している。
 燃料ノズル2の内部には、燃料ノズル2を貫通する点火バーナ(オイルガン)1が設けられ、バーナ起動時あるいは低負荷燃焼時に助燃のために使用される。燃料ノズル2の出口先端には、一次空気と二次空気の間の循環流を拡大するための保炎器12が設けられている。この保炎器12は、該保炎器12の下流側に循環流を形成して着火性と保炎効果を高めるように燃料ノズル2の先端部にリング状に設けられる。また、燃料ノズル2側には、さめ歯状の突起を形成したものを用いても良い。尚、保炎器12を設置しないバーナも本実施形態に含まれる。
 前記点火バーナ1、燃料ノズル2、二次空気ノズル4及び三次空気ノズル7は、火炉10の壁(図示しない水管により形成されている)9に設けられた火炉開口部8から火炉10内に向けてそれぞれの噴出物を噴出する。また、これら点火バーナ1、燃料ノズル2、二次空気ノズル4及び三次空気ノズル7は火炉開口部8を囲んで微粉炭又は燃焼用空気を燃焼用空気流路(図示せず)から供給するウインドボックス3内に配置されている。隔壁18は、ウインドボックス3の内部空間と炉外20とを隔てる壁状部材であり、隔壁18のうち、燃料ノズル2が設置されているフロントプレート17はバーナのメンテナンス時に燃料ノズル2と一体的に抜き出せるように隔壁18から分離可能で、隔壁18に着脱自在の構成である。
 図4には、フロントプレート17と隔壁18との接続構造の一例(側面図)を示す。 
 フロントプレート17と一体の板材42と隔壁18にそれぞれ設けた穴に、ボルト44を差し込んで埋め込み、ナット46により締め付けることで、フロントプレート17を隔壁18に取り付けることができる。尚、図示例に限定されず、ネジ止め、フックなど他の固定、係止手段を用いても良い。
 また、燃料ノズル2内の微粉炭流路上に微粉炭粒子を燃料ノズル2の内壁側に濃縮させながら火炉10内に噴出させるための燃料の濃縮器11を備えている。濃縮器11は、点火バーナ1の外周に設けられ、微粉炭流路の軸方向に直交する断面が燃料ノズル2の内壁に向かって縮小する領域と拡大する領域とを形成することで、燃料をノズル内壁側(中心軸の径方向外側)に濃縮する作用をもたらす。尚、濃縮器11を設置しないバーナも本実施形態に含まれる。
 二次空気ノズル4は燃料ノズル2の外壁に固着した平板状の支持部材16に固定(固着)、支持されている。尚、支持部材16の形状は特に問わず、また燃料ノズル2の外壁から支持される場合に限らず、燃料ノズル2と一体的な構造、結合関係にあれば良い。
 そして、二次空気ノズル4の出口先端にはバーナ中心軸Cに対して径方向に拡管する(末広がり形状の)ガイドスリーブ(第一の案内部材)13が設けられており、二次空気ノズル4とガイドスリーブ13は一体構造である。ガイドスリーブ13によって、空気流がバーナ中心軸Cから離れるように外向きに案内されて噴出する。また、三次空気流路6のうち、二次空気ノズル4の上側と下側の流路幅が広い領域に、それぞれ三次空気を案内するガイドベーン(第二の案内部材)14が設けられている。尚、ガイドスリーブ13とガイドベーン14との関係は、ガイドスリーブ13の火炉10から隔壁18側への投影面とガイドベーン14の投影面が重複しない大きさ又は配置となる関係である。
 図3に示すように、燃料ノズル2及び二次空気ノズル4は、火炉開口部8で扁平形状の開口形状を有する。燃料ノズル形状を扁平として、燃料含有流体の噴流表面の着火領域から同噴流の中心部までの距離を縮めることで、未着火領域を縮小できるため、NOx濃度の低減が図れる。尚、扁平形状とは、図5(A)の長方形、図5(B)の楕円、図5(C)の半円と長方形を組み合わせた形状、図5(D)の幅が広い多角形などの形状であり、長径や長辺Wと短径や短辺Hを有する平べったい形状をいう。
 燃料ノズル2のバーナ中心軸Cに対して垂直な断面形状は、燃料含有流体配管19からフロントプレート17付近(流路の狭まる部分)までは円形であり、そこから火炉開口部8までの間は、バーナ中心軸Cから外側へ水平方向に単調に拡がることで扁平度合いが徐々に増加し、火炉開口部8では扁平度合いが最大となる形状としている。
 ここで、前記扁平度合いとは、長辺Wと短辺Hの比(W/H)と定義する。従って、徐々に扁平度合いが増加するとは、燃料ノズル2の中心軸に直交する断面の長辺Wと短辺Hの比(W/H)が少しずつ増加していくことを意味し、最大の扁平形状とは、燃料ノズル2内で長辺Wと短辺Hの比(W/H)が最も大きな部分の形状を指す。
 このバーナによる燃焼では、二次空気ノズル4の出口先端のガイドスリーブ13や三次空気ノズル7内のガイドベーン14によって、二次空気流及び三次空気流がバーナ中心軸C側から離れるようになり、バーナのごく近傍では燃料含有流体噴流と燃焼用ガスが混合しないような流れが形成される。このように燃料を高温で酸素不足の火炎内に滞留させることで、NOxを窒素に還元させている。
 また、燃料ノズル2の出口先端の保炎器12によって、その下流側の領域の圧力が低下し、下流から上流に向かう流れである循環流の形成が促進される。この循環流内には高温のガスが滞留するため、燃料粒子の着火が進み、火炎の安定性が向上する。
 三次空気ノズル7は火炉壁9の一部でもあり、バーナ中心軸Cを通る断面がバーナ中心軸方向に沿う水平部(径が均一な部位)7aと火炉10側の傾斜部(径が拡大する部位)7bからなり、火炉10側から見ると、円筒状である。また、三次空気流路6は、二次空気ノズル4の外壁と三次空気ノズル7との間の流路であり、左右の流路幅が狭く、上下の流路幅が広くなっている。従って、三次空気と燃料との混合は抑制され、低NOx燃焼が促進される。
 図6(A)には、図1の固体燃料バーナの一部拡大図を示し、図6(B)には、支持部材15によるガイドベーン14の支持構造の一例を示す。また、図7には、ガイドベーン14の例を示した斜視図を示す。
 ガイドベーン14は、三次空気ノズル7の内壁に固着した支持部材15により、固定、支持されている。図示例では、支持部材15は三次空気ノズル7の内壁に固着する上側支持部材15aとガイドベーン14の外面に固着する下側支持部材15bからなり、上側支持部材15aと下側支持部材15bをボルト50とナット52により接合することで、ガイドベーン14が固定される。
 ガイドベーン14は、図7(A)に示すように、三次空気流の流れ方向に対して平行な面を有する平板状の部材からなる導入部14aと三次空気流をバーナ中心軸Cから径方向外側(上側又は下側)に拡げるように、火炉10側に延びる半月板状の拡大部14bから形成されている。
 尚、ガイドベーン14の形状や、二次空気ノズル4の外壁及び三次空気ノズル7との位置関係、個数、支持部材15による支持形態は、図示のものに限定されない。例えば、拡大部14bは図7(B)や(C)に示すような三角形または四角形であっても良く、その形状は限定されない。また、導入部14aを省略したものでも本実施形態に含まれる。支持部材15についても、外周側の三次空気ノズル7の内壁からガイドベーン14を固定、支持できるものであれば良い。また、ガイドベーン14を二次空気ノズル4の外周全体に設けても良い。
 燃料ノズル形状を扁平としたバーナ構造において、低NOx燃焼のためのノズル外周の燃焼用空気の流れを外向きに拡げる作用について、以下のような特徴がある。
 外周側の円筒状の三次空気ノズル7の水平部7aに対して内周側の燃料ノズル2は幅広の形状である。即ち、燃料ノズル2及び二次空気ノズル4の火炉開口部8における形状は、左右間の幅が上下間の幅よりも広いため、その外周側の三次空気ノズル7で囲まれた三次空気流路6は、左右の流路幅が必然的に狭くなる。このため、この領域では空気流量が少なく、外向きに広がる流れが弱い。一方、三次空気ノズル7の上下の流路幅は左右の流路幅に比べて広いため、流量は多くなるが、火炉開口部8の導入部となる水平部7aを通過した流れは直進性が高まるので外向きに拡がりにくい。
 従って、三次空気流路6を流れる上下の三次空気を外向きに拡げる作用を十分に高めることが必要となるため、ガイドベーン14は三次空気流路6の上下に設けると効果的である。また、ガイドベーン14の拡大部14bが大きいものが望ましい。
 バーナのメンテナンス等で燃料ノズル2を火炉10から取り外す際に、ガイドベーン14がその内周側の二次空気ノズル4の外壁から支持されていると、引き抜く部分がバーナ中心軸Cからガイドベーン14までの広範囲となる。また、この場合は、バーナ構造体の製作公差や火炎の輻射熱による変形等を考慮して、ガイドベーン14の外径を小さめに製作し、ガイドベーン14と三次空気ノズル7の内壁間を広くする必要がある。
 しかし、ガイドベーン14は、二次空気ノズル4の外壁ではなく、三次空気ノズル7の内壁から支持部材15により固定、支持されている。従って、引き抜く部分がバーナ中心軸Cから二次空気ノズル4までの狭い範囲で済むため、メンテナンス時の作業にも負担が掛かることはない。また上記変形等を考慮する必要もないため、ガイドベーン14と三次空気ノズル7との隙間S(図3(A))を比較的小さくできる。即ち、ガイドベーン14の拡大部14bを大きくすることができる。ガイドベーン14の拡大部14bを大きくすることで、三次空気流を外向きに拡げる作用を強化できる。
 また、拡大部14bの、バーナ中心軸Cから径方向に最も離れた端部の位置が水平部7aよりも外側に位置するようにガイドベーン14を設置したり、このような形状のガイドベーン14を設置することで、隙間Sをマイナス側に設定することも可能となる。本構成により、隙間Sをすり抜ける三次空気の直進流を抑制する効果が大きくなる。 
 以上のことから、バーナ出口下流に形成される循環流の大きさを確保でき、十分な還元域を形成できることで、低NOx燃焼が可能となる。
 また、ガイドベーン14の支持部材15の形状や個数、設置位置は特に問わない。例えば、図3に示すように平板状の支持部材15を上下それぞれに二つずつ設けても良いし、上下それぞれに一つずつ設けても良い。複数の支持部材15によりガイドベーン14を支持することで支持構造が強固となるが、個数が多いと空気流の抵抗となるため、平面が空気流と平行になるように上下それぞれに二個程度配置するのが望ましい。ガイドベーン14によって三次空気に火炉10への上下方向の速度成分を与え、火炎を偏向させてNOxの還元域を拡大させることで、バーナの低負荷時においても低NOx燃焼が可能となる。
 そして、フロントプレート17には燃料ノズル2が嵌合しており、フロントプレート17は隔壁18に着脱自在の板状部材であることから、フロントプレート17を隔壁18から取り外すことで、点火バーナ1、燃料ノズル2、二次空気ノズル4等の構造体(濃縮器11や保炎器12、ガイドスリーブ13も含めて)を一体的に抜き出すことが可能である。
 尚、フロントプレート17と燃料ノズル2との結合は、嵌め合わせでも、フランジを介してボルト及びナットによる結合でも、直に溶接による接合でも、結合様式に限定はない。
 フロントプレート17を固定しているナット46(図4)を取り外して、炉外20側へフロントプレート17を引き抜けば、これと一体となった部材が取り外せる。
 図8には、炉外20から見た場合の固体燃料バーナの燃料ノズル2とフロントプレート17との関係を示す。図8(A)には、ガイドベーン14がその外周側の三次空気ノズル7の内壁に支持されている場合を示し、図8(B)には、ガイドベーン14がその内周側の二次空気ノズル4の外壁に支持されている場合を示している。
 バーナのメンテナンス時には、燃料ノズル2を火炉10から取り外すが、その際ガイドベーン14がその内周側の二次空気ノズル4の外壁に支持されている場合、引き抜く部分がバーナ中心軸Cからガイドベーン14までの広範囲となり、その分フロントプレート17も大きめに取る必要がある(図8(B))。また、メンテナンス時の作業にも負担が掛かる。しかし、ガイドベーン14がその外周側の三次空気ノズル7の内壁に支持されている場合、引き抜く部分がバーナ中心軸Cから二次空気ノズル4までの狭い範囲で済むため、フロントプレート17は小さくて済む(図8(A))。従って、フロントプレート17の軽量化にも繋がり、メンテナンス性も向上する。
 そして、一体で引き抜く最も径の大きい部材、本実施例では図6に示すように、二次空気ノズル4出口のガイドスリーブ13まで(ガイドベーン14の下端部を示す破線Lより下(内側)の部分)を隔壁18から一体で引き抜けるように、フロントプレート17の大きさは、ガイドスリーブ13の火炉10から隔壁18側への投影面積以上の大きさを必要とする。
 炉外20には、図示しない配管類や配線類が多数配置されており、バーナの保守・点検等において、フロントプレート17と一体で燃料ノズル2等を引き抜く際、それらとのクリアランスを確保する必要がある。特に、クリアランスの確保は、単機の容量が拡大した大口径のバーナでは、一層顕著となる。
 仮に、バーナ中心軸Cからガイドベーン14までが、その内周側(燃料ノズル2側)から支持されて一体的に引き抜かれる構造である場合は、フロントプレート17が大きくなり、図示しない配管類や配線類と干渉する可能性が高くなる。また、前記干渉を回避するために配管類や配線類の取り回しが複雑になったり、取り外しや再接続の作業等が発生したりすることで、作業性に劣ってしまうことも考えられる。
 しかし、ガイドベーン14は引き抜かず、その内周側の二次空気ノズル4及びガイドスリーブ13までを引き抜くことで、フロントプレート17をその分、小さくできる。従って、上記フロントプレート17と配管類や配線類との干渉は殆ど起こらない。 
 また、バーナのメンテナンス時に、引き抜く部分が小さくて済むので、メンテナンス性も良好となる。
 図8(A)には、フロントプレート17を楕円形とした場合を示したが、径が均一な円や四角形などの多角形等、他の形状でも良く、ノズルや最も径の大きい部材の形状に合わせると良い。 
 なお、図示しないが、三次空気ノズル7の入り口側には三次空気に旋回流速を与えるための旋回流を発生させる空気旋回羽根を設けたり、二次空気ノズル4の入り口側に二次空気量を調整するダンパを設けたりしても良い。
 また、実施例では、三次空気ノズル7が火炉壁9の一部である場合を示し、この場合はバーナ構成が簡素となるが、三次空気ノズル7が火炉壁9とは別の円筒状の部材であっても良い。 
 更に、火炉10側から燃料ノズル2側への保炎器12の投影面がガイドスリーブ13の投影面と少なくとも一部において重複する関係にある場合は、二次空気ノズル4内のバーナ軸方向の二次空気の流れが火炉10へ直進してすり抜けてしまうことを防止でき、保炎器12の下流側に還元域を形成して確実に着火できる。
 固体燃料を用いたバーナ装置として、利用可能性がある。
1、21 点火バーナ     2、22 燃料ノズル
3、23 ウインドボックス  4、24 二次空気ノズル
5、25 二次空気流路    6、26 三次空気流路
7、27 三次空気ノズル   8 火炉開口部
9 火炉壁          10 火炉(内部)
11 燃料濃縮器       12、32 保炎器
13 ガイドスリーブ     14 ガイドベーン
15 ガイドベーン用支持部材
16 ガイドスリーブ用支持部材
17 フロントプレート    18 隔壁
19 燃料含有流体配管    20 炉外(側)
33、34 ガイド部材    35、36 支持板
40 循環流         42 板材
44、50 ボルト      46、52 ナット

Claims (4)

  1.  固体燃料と該固体燃料の搬送ガスとの混合流体が流れる筒状の流路を有し、火炉壁面に向かう開口形状が扁平形状である第一のガスノズルと、
     前記固体燃料の燃焼用ガスが流れるウインドボックスから連通し、前記第一のガスノズルの外周側に形成される第一の燃焼用ガス流路を構成し、開口形状が扁平形状であると共に、先端外周に、燃焼用ガスをバーナ中心軸側から外周側に案内する第一の案内部材を設けた第二のガスノズルと、
     前記固体燃料の燃焼用ガスが流れるウインドボックスから連通し、前記第二のガスノズルの外周側に形成される第二の燃焼用ガス流路を構成し、開口形状が円筒状であると共に、バーナ中心軸を通る断面がバーナ中心軸方向に沿う水平部と該水平部から火炉に向かって径が拡大する傾斜部とからなる第三のガスノズルと
    を備えた固体燃料バーナであって、
     前記第二の燃焼用ガス流路の出口側に、燃焼用ガスをバーナ中心軸側から外周側に案内する第二の案内部材を設け、
     該第二の案内部材を固定、支持する支持部材を、第三のガスノズルの内壁に設けたことを特徴とする固体燃料バーナ。
  2.  前記第二の案内部材は、第二のガスノズルの上側と下側にそれぞれ設けられていることを特徴とする請求項1記載の固体燃料バーナ。
  3.  前記ウインドボックスの隔壁の一部は、該隔壁と分離可能に設置される板状部材であり、
     前記第一のガスノズルと第二のガスノズルは、前記板状部材と一体的な構造であることを特徴とする請求項1又は請求項2に記載の固体燃料バーナ。
  4.  前記第一のガスノズルの先端外周に、第一のガスノズルを取り囲んで形成される保炎器を設け、火炉側からノズル側への保炎器の投影面が第二のガスノズルの投影面と少なくとも一部において重複することを特徴とする請求項1又は請求項2に記載の固体燃料バーナ。
PCT/JP2017/029379 2016-08-19 2017-08-15 固体燃料バーナ WO2018034286A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016161280A JP2018028418A (ja) 2016-08-19 2016-08-19 固体燃料バーナ
JP2016-161280 2016-08-19

Publications (1)

Publication Number Publication Date
WO2018034286A1 true WO2018034286A1 (ja) 2018-02-22

Family

ID=61197314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029379 WO2018034286A1 (ja) 2016-08-19 2017-08-15 固体燃料バーナ

Country Status (3)

Country Link
JP (1) JP2018028418A (ja)
TW (1) TW201812214A (ja)
WO (1) WO2018034286A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844062A (zh) * 2018-08-24 2018-11-20 深圳市迈拓铝设备技术有限公司 一种燃烧器
WO2019131335A1 (ja) * 2017-12-26 2019-07-04 三菱日立パワーシステムズ株式会社 固体燃料バーナおよび固体燃料バーナ用保炎器
CN110848672A (zh) * 2018-08-20 2020-02-28 三菱日立电力系统株式会社 固体燃料喷烧器
TWI703294B (zh) * 2018-07-09 2020-09-01 日商三菱日立電力系統股份有限公司 固體燃料噴燃器
JPWO2021161875A1 (ja) * 2020-02-10 2021-08-19

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611832B (zh) * 2019-01-17 2020-09-08 襄阳市胜合燃力设备有限公司 一种多通道双涡流回转窑用燃烧器
JP7105707B2 (ja) * 2019-02-13 2022-07-25 三菱重工業株式会社 アフタエアポート及びこれを備えた燃焼装置
CN112513526A (zh) * 2019-05-13 2021-03-16 三菱动力株式会社 固体燃料燃烧器、锅炉装置、固体燃料燃烧器的喷嘴单元及导流叶片单元
WO2020234965A1 (ja) * 2019-05-20 2020-11-26 三菱日立パワーシステムズ株式会社 固体燃料バーナ
WO2020230245A1 (ja) * 2019-05-13 2020-11-19 三菱日立パワーシステムズ株式会社 固体燃料バーナ、ボイラ装置および固体燃料バーナのノズルユニット
CN117927949A (zh) * 2024-01-15 2024-04-26 天津大学 一种用于氨煤混燃的新型燃烧器及其使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135920A (ja) * 1994-11-14 1996-05-31 Mitsubishi Heavy Ind Ltd 微粉炭バーナ
JPH09264509A (ja) * 1996-03-28 1997-10-07 Mitsubishi Heavy Ind Ltd バーナノズル
JPH11281010A (ja) * 1998-03-26 1999-10-15 Babcock Hitachi Kk 固体燃料燃焼バーナと固体燃料燃焼装置
JP2006132798A (ja) * 2004-11-02 2006-05-25 Babcock Hitachi Kk 二段燃焼式ボイラ用のアフタエアノズル、および、それを用いる二段燃焼式ボイラ
JP2006162208A (ja) * 2004-12-10 2006-06-22 Babcock Hitachi Kk バーナとその運転方法
WO2012042910A1 (ja) * 2010-09-30 2012-04-05 バブコック日立株式会社 燃焼システム及びその運転方法
WO2014027611A1 (ja) * 2012-08-14 2014-02-20 バブコック日立株式会社 固体燃料バーナと該固体燃料バーナを備えた燃焼装置の運転方法
JP2014055759A (ja) * 2012-08-14 2014-03-27 Babcock-Hitachi Co Ltd 固体燃料バーナを備えた燃焼装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135920A (ja) * 1994-11-14 1996-05-31 Mitsubishi Heavy Ind Ltd 微粉炭バーナ
JPH09264509A (ja) * 1996-03-28 1997-10-07 Mitsubishi Heavy Ind Ltd バーナノズル
JPH11281010A (ja) * 1998-03-26 1999-10-15 Babcock Hitachi Kk 固体燃料燃焼バーナと固体燃料燃焼装置
JP2006132798A (ja) * 2004-11-02 2006-05-25 Babcock Hitachi Kk 二段燃焼式ボイラ用のアフタエアノズル、および、それを用いる二段燃焼式ボイラ
JP2006162208A (ja) * 2004-12-10 2006-06-22 Babcock Hitachi Kk バーナとその運転方法
WO2012042910A1 (ja) * 2010-09-30 2012-04-05 バブコック日立株式会社 燃焼システム及びその運転方法
WO2014027611A1 (ja) * 2012-08-14 2014-02-20 バブコック日立株式会社 固体燃料バーナと該固体燃料バーナを備えた燃焼装置の運転方法
JP2014055759A (ja) * 2012-08-14 2014-03-27 Babcock-Hitachi Co Ltd 固体燃料バーナを備えた燃焼装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131335A1 (ja) * 2017-12-26 2019-07-04 三菱日立パワーシステムズ株式会社 固体燃料バーナおよび固体燃料バーナ用保炎器
KR20200090243A (ko) * 2017-12-26 2020-07-28 미츠비시 히타치 파워 시스템즈 가부시키가이샤 고체 연료 버너 및 고체 연료 버너용 보염기
KR102355284B1 (ko) 2017-12-26 2022-02-08 미츠비시 파워 가부시키가이샤 고체 연료 버너 및 고체 연료 버너용 보염기
US11519600B2 (en) 2017-12-26 2022-12-06 Mitsubishi Heavy Industries, Ltd. Solid fuel burner and flame stabilizer for solid fuel burner
TWI703294B (zh) * 2018-07-09 2020-09-01 日商三菱日立電力系統股份有限公司 固體燃料噴燃器
CN110848672A (zh) * 2018-08-20 2020-02-28 三菱日立电力系统株式会社 固体燃料喷烧器
CN108844062A (zh) * 2018-08-24 2018-11-20 深圳市迈拓铝设备技术有限公司 一种燃烧器
JPWO2021161875A1 (ja) * 2020-02-10 2021-08-19
WO2021161875A1 (ja) * 2020-02-10 2021-08-19 Jfeスチール株式会社 ラジアントチューブバーナ、ラジアントチューブ、及びラジアントチューブバーナの設計方法
JP7131701B2 (ja) 2020-02-10 2022-09-06 Jfeスチール株式会社 ラジアントチューブバーナ、ラジアントチューブ、及びラジアントチューブバーナの設計方法

Also Published As

Publication number Publication date
JP2018028418A (ja) 2018-02-22
TW201812214A (zh) 2018-04-01

Similar Documents

Publication Publication Date Title
WO2018034286A1 (ja) 固体燃料バーナ
JP2018028418A5 (ja)
JP4896143B2 (ja) バーナ、バーナを備えた燃焼装置及びボイラ
KR100330675B1 (ko) 미분탄버너
JP5188238B2 (ja) 燃焼装置及びバーナの燃焼方法
EP3318801B1 (en) Solid fuel burner
JP5832653B2 (ja) 固体燃料バーナ
US20070026356A1 (en) Burner and combustion method for solid fuels
EP2738461B1 (en) Solid fuel burner
JP6168875B2 (ja) 燃料二段燃焼式バーナ装置及び燃料二段燃焼方法
EP2781834B1 (en) Oil-fired burner, solid fuel-fired burner unit and solid fuel-fired boiler
JP6871422B2 (ja) 固体燃料バーナおよび固体燃料バーナ用保炎器
JP2000356309A (ja) 粉末固体燃料用バーナと燃焼装置
WO2011030501A1 (ja) 微粉炭焚きボイラ
WO2023127121A1 (ja) サイクロンバーナ、サイクロンバーナユニット、及びサイクロンバーナの改造方法
JP5530373B2 (ja) ボイラ装置
US11692705B2 (en) Solid fuel burner, boiler equipment, nozzle unit for solid fuel burner, and guide vane unit
WO2020230245A1 (ja) 固体燃料バーナ、ボイラ装置および固体燃料バーナのノズルユニット
WO2020234965A1 (ja) 固体燃料バーナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841508

Country of ref document: EP

Kind code of ref document: A1