WO2018034245A1 - 軸受装置、及び工作機械用主軸装置 - Google Patents

軸受装置、及び工作機械用主軸装置 Download PDF

Info

Publication number
WO2018034245A1
WO2018034245A1 PCT/JP2017/029161 JP2017029161W WO2018034245A1 WO 2018034245 A1 WO2018034245 A1 WO 2018034245A1 JP 2017029161 W JP2017029161 W JP 2017029161W WO 2018034245 A1 WO2018034245 A1 WO 2018034245A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
counter
raceway groove
bearing
axial
Prior art date
Application number
PCT/JP2017/029161
Other languages
English (en)
French (fr)
Inventor
恭平 松永
美昭 勝野
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US16/325,477 priority Critical patent/US20190211874A1/en
Priority to KR1020197004414A priority patent/KR20190030716A/ko
Priority to EP17841468.6A priority patent/EP3499065A4/en
Priority to CN201780050061.0A priority patent/CN109642613A/zh
Publication of WO2018034245A1 publication Critical patent/WO2018034245A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6685Details of collecting or draining, e.g. returning the liquid to a sump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6662Details of supply of the liquid to the bearing, e.g. passages or nozzles the liquid being carried by air or other gases, e.g. mist lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N31/00Means for collecting, retaining, or draining-off lubricant in or on machines or apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/30Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the oil being fed or carried along by another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring

Definitions

  • the present invention relates to a bearing device and a spindle device for a machine tool, and more particularly to a bearing device using an outer ring oil supply type ball bearing and a spindle device for a machine tool.
  • oil-air lubrication is employed in the region of high speed rotation (dmn 800,000 or more).
  • high-pressure air and fine oil particles are supplied into the bearing from the side surface of the bearing by using an oil supply nozzle top 101 inserted into the radial through hole 102a of 102.
  • oil supply parts such as the nozzle top 101 are required separately, and the number of parts of the spindle increases, leading to an increase in the cost of the entire spindle and an increase in management effort.
  • the shape of the outer ring spacer and the structure of the housing become complicated, and the time and effort for designing and processing the spindle increase.
  • the air curtain generated by the high-speed rotation (the air curtain is a wall of the high-speed air flow in the circumferential direction generated by the friction between the air and the inner ring outer surface rotating at high speed).
  • the supply of oil particles from the nozzle is obstructed, and as a result, it is difficult to reliably supply the lubricating oil into the bearing.
  • conventional oil-air lubrication is superior to grease lubrication in terms of lubricity under high-speed rotation, it is important to cope with higher speeds as the speed increases.
  • an oil groove 112 is formed in the circumferential direction of the outer peripheral surface of the outer ring 111, and at the same axial position as the oil groove 112, the oil groove 112 is directed in the radial direction.
  • an outer ring oil supply type bearing 110 having an oil hole 113 formed therein see, for example, Patent Document 1).
  • an outer ring oil supply type bearing even when the bearing is used at high speed rotation, the supply of oil particles is not hindered by the air curtain. Therefore, a stable spindle can be used even at high speed.
  • FIG. 13 is a schematic diagram of the main shaft in the case of oil-air lubrication using the nozzle top 101 and oil-air lubrication of the outer ring lubrication specification.
  • the upper half of FIG. 13 is an oil / air lubrication spindle 120 with an outer ring lubrication specification, and the lower half is an oil / air lubrication spindle 120 ⁇ / b> A using a nozzle top 101.
  • reference numeral 121 denotes a rotating shaft
  • reference numeral 122 denotes a motor rotor that is fitted to the rotating shaft 121.
  • the outer ring oil supply type bearing has many advantages compared with the conventional side surface oil supply type bearing, and the effect is obtained particularly in a high-speed rotation region where the lubrication condition of the bearing becomes severe.
  • the outer ring lubrication type bearing can supply lubricating oil directly inside the bearing, but if the oil drainage structure of the lubricating oil is not studied carefully, the amount of lubricating oil inside the bearing will exceed the amount required for lubrication. There is a possibility of staying. In particular, in a high-speed rotation region, if a large amount of lubricating oil is present in the bearing, the agitation resistance of the lubricating oil generated during rotation of the bearing tends to increase. Therefore, it is necessary to consider an oil drain structure in which the lubricating oil supplied into the bearing is efficiently discharged.
  • a notch is provided in the end face of the bearing outer ring and an oil draining structure is provided in the outer ring oil supply type bearing itself (see, for example, Patent Document 2).
  • a notch 114 for draining oil is provided on a part of the end surface of the outer ring 111.
  • 14 shows an example in which the notch 114 is formed on the outer ring end surface on the counter-bore side
  • FIG. 15 shows an example in which the notch 114 is formed on the outer ring end surface on the counter-bore side. .
  • the bearing used is that of which the retainer 115 is an outer ring guide specification (the inner ring surface of the outer ring 111 is designed to restrict the movement of the retainer 115 in the bearing radial direction).
  • the notch 114 is provided in the outer ring 111, depending on the axial depth of the notch 114, the inner diameter surface of the outer ring 111 and the surface of the notch 114 perpendicular to the rotation axis direction of the bearing.
  • the formed edge E1 contacts the outer diameter surface of the cage 115 during rotation of the bearing, and the outer diameter surface of the cage 115 is worn.
  • the outer diameter surface of the cage and the inner diameter surface of the outer ring are larger in the high-speed rotation region where the centrifugal force acting on the cage 115 is larger than in the low-speed rotation region. Since the momentum of the cage 115 at the time of collision increases, there is a high possibility that the outer diameter surface of the cage 115 will be worn when colliding with the edge E1, and the degree of wear will also be severe. Is assumed.
  • the axial depth of the notch 114 cannot be sufficiently secured, which is efficient. May not be able to drain properly. For this reason, the design which provides the notch 114 in the counterbore side end surface of the outer ring
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to efficiently discharge the lubricating oil supplied to the inside of the bearing from a supply hole formed in the outer ring without fear that the cage will wear.
  • An object of the present invention is to provide a bearing device and a machine tool spindle device that can obtain stable bearing performance in a high-speed rotation region.
  • An inner ring having an inner ring raceway groove on the outer peripheral surface, an outer ring raceway groove on the inner peripheral surface, and an outer ring having a counter bore on one axial side of the outer ring raceway groove, the inner ring raceway groove and the outer ring raceway groove, A plurality of rolling elements arranged so as to be freely rotatable between the outer ring and the outer ring, the outer ring penetrating in a radial direction from the outer peripheral surface to the inner peripheral surface, and having at least one supply hole for supplying lubricating oil A rolling bearing lubricated by the lubricating oil; Anti-counterbore side peripheral components arranged adjacent to the outer ring on the counter-counter bore side that is the other side in the axial direction of the outer ring raceway groove; A bearing device comprising: The counter-counter-bore peripheral component has a tapered surface that increases in diameter as it moves away from the axial end surface in contact with the outer ring
  • a bearing device in which an inner diameter dimension of an axial end face of the counter counter side peripheral component is equal to or larger than an inner diameter dimension of the other end face in the axial direction of the outer ring in contact with the counter counter side peripheral component.
  • the inner peripheral surface of the outer ring has a groove shoulder on the other axial side of the outer ring raceway groove, The bearing device according to (1), wherein an inner diameter dimension of the other end face in the axial direction of the outer ring is defined by an inner diameter dimension of the groove shoulder having a uniform inner diameter.
  • the counterbore includes an inclined surface that gradually increases in diameter to one end surface in the axial direction of the outer ring
  • the counterbore side peripheral part includes a notch formed in a radial direction on an axial end surface in contact with the outer ring
  • the inner diameter dimension of the axial end surface of the counter bore side peripheral part is equal to or larger than the inner diameter dimension of the outer ring one side end face in contact with the counter bore side peripheral part.
  • An inner ring having an inner ring raceway groove on the outer peripheral surface, an outer ring raceway groove on the inner peripheral surface, and an outer ring having a counter bore on one axial side of the outer ring raceway groove, the inner ring raceway groove and the outer ring raceway groove, A plurality of rolling elements that are arranged so as to be freely rollable between the outer ring and the outer ring.
  • a rolling bearing lubricated by the lubricating oil Counterbore side peripheral parts arranged adjacent to the outer ring on the counterbore side,
  • a bearing device comprising: The counterbore includes an inclined surface that gradually increases in diameter to one end surface in the axial direction of the outer ring, The counterbore side peripheral part includes a notch formed in a radial direction on an axial end surface in contact with the outer ring, A bearing device in which an inner diameter dimension of an axial end surface of the counter bore side peripheral component is equal to or larger than an inner diameter dimension of an axial end surface of the outer ring in contact with the counter bore side peripheral component.
  • a machine tool spindle device comprising the bearing device according to any one of (1) to (5).
  • the “axial direction” in the outer ring, the inner ring, the counter bore side peripheral component, and the counter counter side peripheral component represents the rotation axis direction of the rolling bearing.
  • the outer ring has at least one supply hole for supplying lubricating oil, and is disposed adjacent to the outer ring on the counter-bore side that is the other axial side of the outer ring raceway groove.
  • the counterbore peripheral component has a tapered surface on its inner peripheral surface that increases in diameter as it moves away from the axial end surface that contacts the outer ring, and a discharge hole that penetrates in the radial direction and discharges lubricating oil.
  • the inner diameter dimension of the axial end surface of the counter-bore side peripheral part is set to be equal to or larger than the inner diameter dimension of the other end face in the axial direction of the outer ring contacting the counter-counter side peripheral part.
  • the outer ring has at least one replenishing hole for supplying lubricating oil
  • the counter bore of the outer ring is an inclined surface that gradually increases in diameter to one end surface in the axial direction of the outer ring.
  • Counterbore side peripheral components arranged adjacent to the outer ring on the counterbore side include a notch formed in the radial direction on the axial end surface in contact with the outer ring.
  • the inner diameter dimension of the axial end surface of the counterbore peripheral component is set to be equal to or larger than the inner diameter dimension of the outer end of the outer ring in contact with the counterbore peripheral component.
  • (A) is sectional drawing of the ball bearing of the outer ring oil supply specification which has the conventional oil draining structure, (b) is the side view.
  • (A) is sectional drawing of the ball bearing of the outer ring
  • the bearing device 1 As shown in FIG. 1, the bearing device 1 according to the first embodiment can be applied to a spindle device for machine tools, and includes an angular ball bearing (rolling bearing) 10 and an outer ring spacer (anti-counter bore side peripheral component) 30. And at least.
  • the angular ball bearing 10 includes an inner ring 11 having an arc-shaped inner ring raceway groove 11a on an outer peripheral surface, an outer ring 12 having an arc-shaped outer ring raceway groove 12a on an inner peripheral surface, and an inner ring raceway groove 11a having a predetermined contact angle ⁇ .
  • a plurality of balls (rolling elements) 13 that are arranged so as to roll freely between the outer ring raceway grooves 12 a and a cage 14 that holds the plurality of balls 13 are provided.
  • a counter bore 12b is provided on the inner peripheral surface on the one axial side of the outer ring 12, while a groove shoulder 12c is formed on the inner peripheral surface on the other axial side.
  • the counterbore 12b includes an inclined surface that gradually increases in diameter to the end surface 12d on the one side in the axial direction of the outer ring 12. Further, the groove shoulder 12c has a uniform inner diameter from the boundary position between the outer ring 12 and the outer ring raceway groove 12a to the other end face 12e in the axial direction of the outer ring.
  • the cage 14 is an outer ring guide system, and is specifically guided by the inner peripheral surface of the groove shoulder 12 c of the outer ring 12.
  • This angular ball bearing 10 is an outer ring oil supply type bearing, and the outer ring 12 has a supply hole 15 penetrating in the radial direction from the outer peripheral surface to the inner peripheral surface thereof.
  • a concave groove 16 communicating with the supply hole 15 is formed on the outer peripheral surface of the outer ring 12 along the circumferential direction.
  • the inner diameter side opening of the supply hole 15 is provided on the inner peripheral surface on the contact angle side with respect to the groove bottom position A of the outer ring 12.
  • the inner diameter side opening of the supply hole 15 is preferably provided in the outer ring raceway groove 12a from the viewpoint of lubricity during rotation of the bearing.
  • the inner diameter side opening of the supply hole 15 is a contact ellipse between the ball 13 and the outer ring raceway groove 12a. It is set to be a position separated from E.
  • the contact ellipse E is a contact ellipse generated only by an initial preload, and more preferably a contact ellipse generated by a bearing internal load including an external load generated when processing a workpiece.
  • the diameter of the replenishing hole 15 is set to 0.5 to 1.5 mm in consideration of lubrication oil supply and prevention of interference with the contact ellipse E. Moreover, in this embodiment, the supply hole 15 has a uniform diameter over the radial direction.
  • the outer ring spacer 30 is disposed adjacent to the outer ring 12 on the counter-bore side. Further, the inner diameter dimension D 31 of the axial end face 31 of the outer ring spacer 30 is designed to be the same diameter as the inner diameter dimension D 12 e of the other end face 12 e in the axial direction of the outer ring 12 that contacts the outer ring spacer 30.
  • the inner peripheral surface of the outer ring spacer 30 includes a tapered surface 32 that increases in diameter as it is separated from the axial end surface 31 that contacts the outer ring 12, and a cylindrical surface 33 that extends from the large-diameter side end of the tapered surface 32.
  • the outer ring spacer 30 includes a discharge hole 34 that penetrates in the radial direction and discharges the lubricating oil.
  • the discharge hole 34 is formed so as to straddle the tapered surface 32 and the cylindrical surface 33, but is not limited thereto, and may be provided in the middle of the tapered surface 32.
  • wheel spacer 30 are shown on the same phase for convenience of drawing, it is not limited to this.
  • the inner circumferential surface of the outer ring spacer 30 is the tapered surface 32, and the discharge hole 34 is provided on the tapered surface 32, whereby the lubrication carried to the outer ring side by centrifugal force. Oil is efficiently discharged to the outside. That is, due to the revolution of the balls 13 and the cage 14 during high-speed rotation, a high-speed flow in the circumferential direction is generated in the bearing, and the lubricating oil flows in the circumferential direction while adhering to the inner peripheral surface of the outer ring 12. Yes.
  • the inner peripheral surface of the outer ring spacer 30 is formed as a tapered surface 32 having a large diameter on the discharge hole 34 side, so that the lubricating oil can be guided to the discharge hole 34 while spirally rotating the tapered surface 32.
  • the lubricating oil supplied to the inside of the bearing is efficiently discharged, resulting from the lubricating oil staying inside. It is important to suppress heat generation and the like as much as possible.
  • the outer ring spacer 30 with the oil drainage structure of the present embodiment, the outer ring 12 is formed on the outer ring 12 while solving problems such as collision between the outer diameter surface of the retainer 14 and the notch edge. Efficient discharge of the lubricating oil supplied from the supply hole 15 into the bearing can be realized, and stable bearing performance can be obtained in the high-speed rotation region.
  • annular grooves 19 are formed along the circumferential direction on both sides in the axial direction across the concave groove 16.
  • the oil leakage may be prevented by disposing a seal member 20, which is an annular elastic member such as an O-ring, in the groove 19.
  • the inner diameter dimension D 31 of the axial end surface 31 of the outer ring spacer 30 is set to be equal to or larger than the inner diameter dimension D 12e of the other end face 12 e in the axial direction of the outer ring 12 that contacts the outer ring spacer 30. It may be the same diameter as in the above embodiment. However, as in the second modification shown in FIG. 3, the inner diameter dimension D 31 of the axial end surface 31 of the outer ring spacer 30 is equal to the inner diameter dimension D of the other end face 12 e in the axial direction of the outer ring 12 in contact with the outer ring spacer 30. It may be designed to be larger than 12e .
  • the inner diameter side opening of the supply hole 15 is provided on the inner peripheral surface on the contact angle side with respect to the groove bottom position A of the outer ring 12 so as to approach the outer ring spacer 30 having the discharge hole 34. It is preferable that However, as in the third modification shown in FIG. 4, the inner diameter side opening of the replenishing hole 15 may be provided on the inner peripheral surface on the side opposite to the contact angle with respect to the groove bottom position A of the outer ring 12.
  • the bearing device 1 includes an inner ring spacer 50 (inner ring side periphery) disposed adjacent to the inner ring 11 on the other axial side (on the counter-bore side of the outer ring 12). Parts).
  • the inner ring spacer 50 has a tapered outer peripheral surface 51 that faces the tapered surface 32 of the outer ring spacer 30 and forms a labyrinth L with the tapered surface 32.
  • a labyrinth L is formed between the inner peripheral surface of the outer ring spacer 30 and the outer peripheral surface of the inner ring spacer 50, and the labyrinth L is a tapered outer periphery of the inner ring spacer 50 in the rotation axis direction of the bearing 10.
  • the tapered outer peripheral surface 51 of the inner ring spacer 50 is formed from a position away from the end face in the axial direction in contact with the inner ring 11.
  • the seal member 20 is arranged on the outer peripheral surface of the outer ring 12, but, like FIG. 1, the seal member is not provided. Also good.
  • the bearing device 1 a is applicable to a machine tool spindle device, and includes an angular ball bearing (rolling bearing) 10, an outer ring spacer (counter bore side peripheral component) 40, and At least.
  • the inner diameter side opening of the replenishing hole 15 has an inner circumference on the side opposite to the contact angle with respect to the groove bottom position A of the outer ring 12, as in the third modification of the first embodiment. It is provided on the surface.
  • the inner diameter side opening of the supply hole 15 is preferably provided in the outer ring raceway groove 12a from the viewpoint of lubricity during rotation of the bearing.
  • the outer ring spacer 40 is disposed adjacent to the outer ring 12 on the counter bore side.
  • Inner diameter D 41 of the axial end face 41 of the outer ring spacer 40 is designed in the same diameter as the inner diameter D 12d of one axial end surface 12d of the outer ring 12 that contacts the outer ring spacer 40.
  • the outer ring spacer 40 includes a discharge notch 42 formed over the radial end surface 41 in contact with the outer ring 12.
  • wheel spacer 40 are shown on the same phase for convenience of drawing, it is not limited to this.
  • the bearing device 1a of the present embodiment As a result, in the bearing device 1a of the present embodiment, a high-speed flow in the circumferential direction is generated in the bearing due to the revolution of the balls 13 and the cage 14 during high-speed rotation, and the lubricating oil adheres to the inner peripheral surface of the outer ring 12. In the circumferential direction. From the above phenomenon, the lubricating oil can be guided to the discharge notch 42 while spirally rotating the counter bore 12b which is an inclined surface.
  • the counter bore 12b of the outer ring 12 is an inclined surface, so that the inner peripheral surface of the outer ring spacer 40 does not need to be provided with a tapered surface, and the axial end surface 41 of the outer ring spacer 40, that is, Efficient oil drainage can be achieved by providing the discharge notch 42 at the portion where the outer ring 12 contacts the bearing in the rotation axis direction. Therefore, the outer ring spacer 40 may be formed in a ring shape having a uniform height. Other configurations and operations are the same as those in the first embodiment.
  • annular grooves 19 are formed along the circumferential direction on both sides in the axial direction across the concave groove 16.
  • the oil leakage may be prevented by disposing a seal member 20, which is an annular elastic member such as an O-ring, in the groove 19.
  • the inner diameter D 41 of the axial end face 41 of the outer ring spacer 40 if it is set to at least the inner diameter D 12d of one axial end surface 12d of the outer ring 12 that contacts the outer ring spacer 40 It may be the same diameter as in the above embodiment. However, as in the second modification shown in FIG. 8, the inner diameter dimension D 41 of the axial end surface 41 of the outer ring spacer 40 is equal to the inner diameter dimension D of the one end face 12 d in the axial direction of the outer ring 12 in contact with the outer ring spacer 40. It may be designed to be larger than 12d .
  • the inner diameter side opening of the supply hole 15 is formed on the inner peripheral surface on the side opposite to the contact angle with respect to the groove bottom position A of the outer ring 12 so as to approach the outer ring spacer 30 having the discharge hole 34. It is preferable to be provided.
  • the inner diameter side opening of the supply hole 15 may be provided on the inner peripheral surface on the contact angle side with respect to the groove bottom position A of the outer ring 12.
  • the inner diameter side opening of the replenishment hole 15 is set so as to be spaced from the contact ellipse E between the ball 13 and the outer ring raceway groove 12a.
  • the seal member 20 is arranged on the outer peripheral surface of the outer ring 12. However, like FIG. 6, the seal member is not provided. Also good.
  • the outer ring spacer 30 of the first embodiment and the outer ring spacer 40 of the second embodiment may be simultaneously applied to the bearing device 1b.
  • the oil drainage can be further improved, and more stable bearing performance can be obtained in the high-speed rotation region.
  • the replenishment hole only needs to penetrate in the radial direction from the outer peripheral surface to the inner peripheral surface of the outer ring, and other than those formed along the radial direction (parallel to the radial cut plane) of the present embodiment. Moreover, you may make it incline in the rotating shaft direction or circumferential direction of a bearing.
  • wheel 12 is supposed to have one replenishment hole, it is not restricted to this, You may have several replenishment holes.
  • the discharge holes 34 and the discharge notches 42 may be provided at a plurality of locations in the circumferential direction.
  • oil mist lubrication may be employed in addition to oil-air lubrication as a method of replenishing the outer ring with the lubrication oil.
  • oil jet lubrication is also possible.
  • the replenishing hole 15 is formed to open into the outer ring raceway groove 12a. If it does so, the grease which is a semi-solid containing a thickener will be supplied in the outer ring raceway groove 12a.
  • ball bearings of the present invention are not limited to those applied to machine tool spindle devices, but can also be applied as ball bearings for general industrial machines and devices that rotate at high speeds such as motors.
  • chamfering may be applied to the inner peripheral surface of the outer ring on one side end surface in the axial direction and the inner peripheral surface of the other end surface in the axial direction.
  • the inner diameter dimension of the end face in the axial direction contacting the outer ring of the counter-bore side peripheral part and the counter-bore side peripheral part may be a chamfer dimension. That is, if the inner diameter dimension of the axial end face of each peripheral part is equal to or larger than the inner diameter dimension of the axial end face of the outer ring, excluding the chamfer dimension, the recess formed between the outer ring chamfer and each peripheral part is formed from inside the bearing. The discharged lubricating oil does not stagnate, and a more excellent discharging effect can be obtained.
  • the discharge hole 34 and the discharge notch 42 may be provided below the gravitational direction so that the lubricating oil may be discharged from a discharge passage of a housing (not shown) that communicates, or an external suction device (not shown). ), The lubricating oil may be discharged.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Rolling Contact Bearings (AREA)
  • Turning (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

軸受装置(1)は、アンギュラ玉軸受(10)の外輪(12)が、潤滑油を供給する少なくとも1つの補給孔(15)を有し、外輪間座(30)が、その内周面に、外輪(12)と接触する軸方向端面(31)から離間するにつれて拡径するテーパ面(32)を備えると共に、径方向に亘って貫通し、潤滑油を排出する排出孔(34)を備える。また、外輪間座(30)の軸方向端面(31)の内径寸法(D31)は、外輪間座(30)と接触する外輪(12)の軸方向他方側端面(12e)の内径寸法(D12e)以上に設定される。

Description

軸受装置、及び工作機械用主軸装置
 本発明は、軸受装置、及び工作機械用主軸装置に関し、より詳細には、外輪給油型の玉軸受を用いた軸受装置、及び工作機械用主軸装置に関する。
 近年、工作機械用主軸は切削効率の向上を目指して、高速化の要求が高まっている。また、該主軸には、最近、生産の高効率化のため複雑形状の被加工物を複数の工作機械を使用せず、かつ、段替えなしで加工することが可能な5軸加工機への対応ニーズも出てきている。
 工作機械用主軸の転がり軸受に対して、多く採用されている潤滑方法としては、グリース潤滑、オイルエア潤滑、オイルミスト潤滑などが挙げられる。一般的に、高速回転(dmn80万以上)の領域ではオイルエア潤滑が採用される。従来のオイルエア潤滑としては、図11(a)に示す軸受100の側方に配置された給油用ノズルこま101、又は、図11(b)に示す軸受100の側方に配置された外輪間座102の径方向貫通孔102aに挿入された給油用ノズルこま101を用いて、軸受側面から軸受内部に高圧エア及び微細な油粒を供給する方式が知られている。
 この方式では、ノズルこま101等の給油用部品が別に必要であり、スピンドルの部品点数が多くなるため、スピンドル全体のコストアップや管理の手間が増えることにつながる。また、ノズルこま101を使用するため外輪間座の形状やハウジングの構造が複雑になり、スピンドルの設計・加工の手間が増える。また、高速回転化に伴い発生するエアカーテン(エアカーテンとは、空気と高速回転する内輪外径表面との摩擦によって発生する円周方向の高速空気流の壁のことである)によって、給油用ノズルからの油粒の供給が阻害され、その結果、軸受内部へ確実に潤滑油が供給されにくい。このように従来のオイルエア潤滑は、高速回転下における潤滑性ではグリース潤滑に勝るものの、高速化が進むにつれて、その高速化対応が重要になってきている。
 また、他のオイルエア潤滑方式としては、図12に示すように、外輪111の外周面の周方向に油溝112を形成し、かつ、その油溝112と同じ軸方向位置に、径方向に向いた油孔113が形成された外輪給油型軸受110を用いることが知られている(例えば、特許文献1参照)。このような外輪給油型軸受では、軸受が高速回転で使用される場合でも、油粒の供給がエアカーテンによって阻害されることがない。そのため、高速回転でも安定したスピンドルの使用が可能となる。
 図13は、ノズルこま101を用いたオイルエア潤滑と外輪給油仕様のオイルエア潤滑それぞれの場合における主軸の概略図を示す。図13の上半分が外輪給油仕様のオイルエア潤滑のスピンドル120、下半分がノズルこま101を用いたオイルエア潤滑のスピンドル120Aである。なお、図13中、符号121は、回転軸であり、符号122は、回転軸121に嵌合するモータのロータである。このように、ノズルこま101を用いたオイルエア潤滑の場合には、軸受100の側面から潤滑油を供給するために一定以上の軸方向長さの間座が必要になる。それに対して、外輪給油仕様の場合は、給油用の間座が必要ないため、ノズルこまの削減や間座の構造を簡単にすることができる。このように、外輪給油型軸受には、従来の側面給油型軸受と比較して多くの利点を有しており、軸受の潤滑状況が厳しくなる高速回転領域において、特にその効果が得られる。
 また、外輪給油型軸受は、軸受内部に直接潤滑油を供給することができる反面、潤滑油の排油構造をしっかりと検討しなければ、軸受内部に潤滑に必要な量よりも多い潤滑油が滞留してしまう可能性がある。特に、高速回転領域においては、多量の潤滑油が軸受内部に存在すると、軸受回転時に発生する潤滑油の攪拌抵抗が大きくなりやすい。したがって、軸受内部に供給された潤滑油が効率よく排出される排油構造を検討する必要がある。
 このため、外輪給油型軸受において、軸受外輪の端面に切り欠きを設けて排油構造を外輪給油型軸受自体に設けることが知られている(例えば、特許文献2参照)。例えば、図14及び図15に示す排油構造を備えた外輪給油型軸受110a、110bは、外輪111の端面の一部に排油用の切り欠き114が設けられている。なお、図14は、切り欠き114が反カウンターボア側の外輪端面に形成される例を示しており、図15は、切り欠き114がカウンターボア側の外輪端面に形成される例を示している。
日本国特開2013-79711号公報 日本国特開2013-15152号公報
 ところで、図14に示すように、軸受は、保持器115が外輪案内仕様(外輪111の内径面が、保持器115の軸受径方向の動きを規制するように設計された仕様)のものを使用する場合がある。このような軸受においては、外輪111に切り欠き114を設けた場合、切り欠き114の軸方向深さによっては、外輪111の内径面と軸受の回転軸方向に垂直な切り欠き114の面とによって形成されるエッヂE1が、軸受回転中に保持器115の外径面と接触し、保持器115の外径面が摩耗してしまう懸念が生じる。
 特に、上述した保持器115が外輪案内仕様の軸受では、保持器115に働く遠心力が大きくなる高速回転領域においては、低速回転領域と比較して、保持器外径面と外輪内径面とが衝突するときの保持器115の運動量が大きくなってしまうため、上記エッヂE1と衝突した際に、保持器115の外径面が摩耗する可能性が高くなり、また、摩耗の度合いもひどくなることが想定される。また、上記エッヂE1と保持器115の外径面との衝突を防止するため、外輪111に設けた切り欠き114の軸方向深さを小さくした場合、潤滑油を排出するための空間が小さくなり、効率的な潤滑油の排出が困難となる。その結果、高速回転領域において、上述のような異常な昇温や早期焼付き、動力損失大などが発生する懸念がある。
 また、軸受サイズが小さい場合や、Oリングの回転軸方向の設置位置が外輪端面寄りである場合など、軸受の設計によっては、切り欠き114の軸方向深さが十分に確保できず、効率的な排油ができない可能性がある。このため、図15に示すような、外輪111のカウンターボア側端面に切り欠き114を設ける設計とすることができない。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、外輪に形成された補給孔から軸受内部に供給された潤滑油を、保持器が摩耗する懸念なく、効率良く排出することができ、高速回転領域において安定した軸受性能を得ることができる軸受装置、及び工作機械用主軸装置を提供することにある。
 本発明の上記目的は、下記の構成により達成される。
(1) 外周面に内輪軌道溝を有する内輪と、内周面に外輪軌道溝、及び該外輪軌道溝の軸方向一方側にカウンターボアを有する外輪と、前記内輪軌道溝と前記外輪軌道溝との間に転動自在に配置される複数の転動体と、を備え、前記外輪は、その外周面から内周面まで径方向に亘って貫通し、潤滑油を供給する少なくとも1つの補給孔を有し、前記潤滑油によって潤滑される転がり軸受と、
 前記外輪軌道溝の軸方向他方側である反カウンターボア側で前記外輪と隣接して配置される反カウンターボア側周辺部品と、
を備える軸受装置であって、
 前記反カウンターボア側周辺部品は、その内周面に、前記外輪と接触する軸方向端面から離間するにつれて拡径するテーパ面を備えると共に、径方向に亘って貫通し、前記潤滑油を排出する排出孔を備え、
 前記反カウンターボア側周辺部品の軸方向端面の内径寸法は、前記反カウンターボア側周辺部品と接触する前記外輪の軸方向他方側端面の内径寸法以上である、軸受装置。
(2) 前記外輪の内周面は、前記外輪軌道溝の軸方向他方側に溝肩を有し、
 前記外輪の軸方向他方側端面の内径寸法は、一様内径の前記溝肩の内径寸法によって規定される、(1)に記載の軸受装置。
(3) 前記内輪と軸方向他方側で隣接して配置される内輪側周辺部品をさらに備え、
 前記内輪側周辺部品は、前記反カウンターボア側周辺部品のテーパ面と対向し、該テーパ形状の内周面との間でラビリンスを形成するテーパ面を有する、(1)又は(2)に記載の軸受装置。
(4) 前記外輪とカウンターボア側で隣接して配置されるカウンターボア側周辺部品をさらに備え、
 前記カウンターボアは、前記外輪の軸方向一方側端面まで徐々に拡径する傾斜面を備え、
 前記カウンターボア側周辺部品は、前記外輪と接触する軸方向端面に径方向に亘って形成される切り欠きを備え、
 前記カウンターボア側周辺部品の軸方向端面の内径寸法は、前記カウンターボア側周辺部品と接触する前記外輪の軸方向一方側端面の内径寸法以上である、(1)~(3)のいずれかに記載の軸受装置。
(5) 外周面に内輪軌道溝を有する内輪と、内周面に外輪軌道溝、及び該外輪軌道溝の軸方向一方側にカウンターボアを有する外輪と、前記内輪軌道溝と前記外輪軌道溝との間に転動自在に配置される複数の転動体と、を備え、前記外輪は、その外周面から内周面まで径方向に亘って貫通し、潤滑油を供給する少なくとも1つの補給孔を有し、前記潤滑油によって潤滑される転がり軸受と、
 前記外輪とカウンターボア側で隣接して配置されるカウンターボア側周辺部品と、
を備える軸受装置であって、
 前記カウンターボアは、前記外輪の軸方向一方側端面まで徐々に拡径する傾斜面を備え、
 前記カウンターボア側周辺部品は、前記外輪と接触する軸方向端面に径方向に亘って形成される切り欠きを備え、
 前記カウンターボア側周辺部品の軸方向端面の内径寸法は、前記カウンターボア側周辺部品と接触する前記外輪の軸方向一方側端面の内径寸法以上である、軸受装置。
(6) (1)~(5)のいずれかに記載の軸受装置を備える、工作機械用主軸装置。
 なお、外輪、内輪、カウンターボア側周辺部品、及び、反カウンターボア側周辺部品における「軸方向」とは、転がり軸受の回転軸方向を表すものとする。
 本発明の軸受装置によれば、外輪が、潤滑油を供給する少なくとも1つの補給孔を有し、外輪軌道溝の軸方向他方側である反カウンターボア側で外輪と隣接して配置される反カウンターボア側周辺部品が、その内周面に、外輪と接触する軸方向端面から離間するにつれて拡径するテーパ面を備えると共に、径方向に亘って貫通し、潤滑油を排出する排出孔を備える。また、反カウンターボア側周辺部品の軸方向端面の内径寸法は、反カウンターボア側周辺部品と接触する外輪の軸方向他方側端面の内径寸法以上に設定される。これにより、外輪に形成された補給孔から軸受内部に供給された潤滑油を、保持器が摩耗する懸念なく、効率良く排出することができ、高速回転領域において安定した軸受性能を得ることができる。
 また、本発明の軸受装置によれば、外輪が、潤滑油を供給する少なくとも1つの補給孔を有し、外輪のカウンターボアは、前記外輪の軸方向一方側端面まで徐々に拡径する傾斜面を備える。外輪とカウンターボア側で隣接して配置されるカウンターボア側周辺部品が、外輪と接触する軸方向端面に径方向に亘って形成される切り欠きを備える。また、カウンターボア側周辺部品の軸方向端面の内径寸法は、前記カウンターボア側周辺部品と接触する前記外輪の軸方向一方側端面の内径寸法以上に設定される。これにより、外輪に形成された補給孔から軸受内部に供給された潤滑油を、保持器が摩耗する懸念なく、効率良く排出することができ、高速回転領域において安定した軸受性能を得ることができる。
本発明の第1実施形態に係る軸受装置の断面図である。 本発明の第1実施形態の第1変形例に係る軸受装置の断面図である。 本発明の第1実施形態の第2変形例に係る軸受装置の断面図である。 本発明の第1実施形態の第3変形例に係る軸受装置の断面図である。 本発明の第1実施形態の第4変形例に係る軸受装置の断面図である。 本発明の第2実施形態に係る軸受装置である。 本発明の第2実施形態の第1変形例に係る軸受装置の断面図である。 本発明の第2実施形態の第2変形例に係る軸受装置の断面図である。 本発明の第2実施形態の第3変形例に係る軸受装置の断面図である。 本発明の変形例に係る軸受装置の断面図である。 (a)及び(b)は、ノズルこまを用いた従来のオイルエア潤滑を示す断面図である。 外輪給油仕様のオイルエア潤滑の玉軸受の断面図である。 上半分が外輪給油仕様のオイルエア潤滑のスピンドル、及び下半分がノズルこまを用いたオイルエア潤滑のスピンドルの各断面図である。 (a)は、従来の排油構造を持った外輪給油仕様の玉軸受の断面図であり、(b)は、その側面図である。 (a)は、従来の他の排油構造を持った外輪給油仕様の玉軸受の断面図であり、(b)は、その側面図である。
 以下、本発明の各実施形態に係る軸受装置、及び工作機械用主軸装置について、図面に基づいて詳細に説明する。
(第1実施形態)
 図1に示すように、第1実施形態に係る軸受装置1は、工作機械用主軸装置に適用可能で、アンギュラ玉軸受(転がり軸受)10と、外輪間座(反カウンターボア側周辺部品)30と、を少なくとも備える。
 アンギュラ玉軸受10は、外周面に円弧状の内輪軌道溝11aを有する内輪11と、内周面に円弧状の外輪軌道溝12aを有する外輪12と、所定の接触角αをもって内輪軌道溝11aと外輪軌道溝12aとの間に転動自在に配置された複数の玉(転動体)13と、複数の玉13を保持する保持器14と、を備える。外輪12の軸方向一方側の内周面には、カウンターボア12bが設けられている一方、軸方向他方側の内周面には、溝肩12cが形成されている。カウンターボア12bは、外輪12の軸方向一方側端面12dまで徐々に拡径する傾斜面を備えている。また、溝肩12cは、外輪12の外輪軌道溝12aとの境界位置から外輪の軸方向他方側端面12eまで、一様の内径寸法を有している。保持器14は、外輪案内方式であり、具体的には、外輪12の溝肩12cの内周面によって案内される。
 このアンギュラ玉軸受10は、外輪給油型軸受であり、外輪12は、その外周面から内周面まで径方向に亘って貫通する補給孔15を有する。また、外輪12の外周面には、補給孔15と連通する凹状溝16が周方向に沿って形成される。これにより、アンギュラ玉軸受10では、図示しないハウジングの給油路から供給された油粒及び潤滑エアが、外輪12の凹状溝16及び補給孔15を介して、直接、玉13に供給され、オイルエア潤滑が行われる。
 なお、周状の凹状溝は、外輪12に設ける代わりに、ハウジングの内周面において、補給孔15と連通する給油路開口の位置に形成されてもよい。
 また、本実施形態では、補給孔15の内径側開口部は、外輪12の溝底位置Aに対して接触角側の内周面に設けられている。
 特に、補給孔15の内径側開口部は、軸受回転時の潤滑性の点から、外輪軌道溝12a内に設けられることが好ましい。
 また、内外輪11、12と玉13との接触位置での接触面圧の増加を抑制する観点から、補給孔15の内径側開口部は、玉13と外輪軌道溝12aとの間の接触楕円Eから離間した位置となるように設定される。この接触楕円Eとは、初期予圧荷重によってのみ発生する接触楕円、より好ましくは、被加工物加工時に発生する外部荷重を含めた軸受内部荷重によって発生する接触楕円のことである。
 なお、本実施形態では、補給孔15の直径は、潤滑油の供給性および、接触楕円Eとの干渉防止を考慮して、0.5~1.5mmに設定されている。また、本実施形態では、補給孔15は、径方向に亘って一様な直径を有している。
 また、外輪間座30は、外輪12と反カウンターボア側で隣接して配置されている。さらに、外輪間座30の軸方向端面31の内径寸法D31は、外輪間座30と接触する外輪12の軸方向他方側端面12eの内径寸法D12eと同一径に設計されている。
 外輪間座30の内周面は、外輪12と接触する軸方向端面31から離間するにつれて拡径するテーパ面32と、テーパ面32の大径側端部から延びる円筒面33と、を備える。
 また、外輪間座30は、径方向に亘って貫通し、潤滑油を排出する排出孔34を備える。本実施形態では、排出孔34は、テーパ面32と円筒面33とに跨るように形成されているが、これに限らず、テーパ面32の途中に設けられてもよい。
 なお、外輪12の補給孔15と外輪間座30の排出孔34は、図面の便宜上、同一位相に示されているが、これに限定されるものでない。
 このように構成された軸受装置1によれば、外輪間座30の内周面をテーパ面32とし、テーパ面32上に排出孔34を設けることで、遠心力で外輪側へ運ばれた潤滑油が効率的に外部へ排出される。つまり、高速回転時の玉13や保持器14の公転により、軸受内に円周方向の高速流が発生し、潤滑油は外輪12の内周面に付着した状態で円周方向に流動している。上記の現象から外輪間座30の内周面を、排出孔34側を大径とするテーパ面32とすることで、潤滑油はテーパ面32を螺旋回転しながら排出孔34に導くことができる。
 また、工作機械主軸用転がり軸受10において、高速回転領域での良好な軸受性能を実現するためには、軸受内部に供給された潤滑油を効率良く排出し、内部に滞留した潤滑油に起因する発熱等を極力抑えることが重要となる。上述したように、外輪間座30に本実施形態の排油構造を設けることで、保持器14の外径面と切り欠きエッヂとの衝突などの問題を解消しつつ、外輪12に形成された補給孔15から軸受内部に供給された潤滑油の効率的な排出を実現することができ、高速回転領域において安定した軸受性能を得ることができる。
 なお、本実施形態は、図2に示す第1変形例のように、外輪12の外周面において、凹状溝16を挟む軸方向両側に、環状溝19を周方向に沿って形成し、各環状溝19に、例えばO-リングなどの環状の弾性部材である、シール部材20を配置することで、この油漏れを防止するようにしてもよい。
 また、本実施形態では、外輪間座30の軸方向端面31の内径寸法D31は、外輪間座30と接触する外輪12の軸方向他方側端面12eの内径寸法D12e以上に設定されればよく、上記実施形態のように同一径であってもよい。ただし、図3に示す第2変形例のように、外輪間座30の軸方向端面31の内径寸法D31は、外輪間座30と接触する外輪12の軸方向他方側端面12eの内径寸法D12eより大きく設計されてもよい。
 さらに、本実施形態では、補給孔15の内径側開口部は、排出孔34を有する外輪間座30に近づくように、外輪12の溝底位置Aに対して接触角側の内周面に設けられていることが好ましい。ただし、図4に示す第3変形例のように、補給孔15の内径側開口部は、外輪12の溝底位置Aに対して反接触角側の内周面に設けられてもよい。
 また、図5に示す第4変形例のように、軸受装置1は、内輪11と軸方向他方側(外輪12の反カウンターボア側)で隣接して配置される内輪間座50(内輪側周辺部品)をさらに備える。内輪間座50は、外輪間座30のテーパ面32と対向し、該テーパ面32との間でラビリンスLを形成するテーパ形状の外周面51を有する。
 これにより、外輪間座30の内周面と内輪間座50の外周面との間でラビリンスLを形成し、ラビリンスLは、軸受10の回転軸方向において、内輪間座50のテーパ形状の外周面51が周速差を発生させると、それに伴い圧力差が生じ、排出孔34側への空気の流れができ、排油性が向上される。なお、内輪間座50のテーパ形状の外周面51は、内輪11と接触する軸方向端面から離れた位置から形成されている。
 なお、図3~図5に示す第2~第4変形例では、外輪12の外周面にシール部材20を配置する構成としたが、図1と同様に、シール部材を有しない構成であってもよい。
(第2実施形態)
 次に、第2実施形態の軸受装置について、図6を参照して説明する。なお、本実施形態では、補給孔15の位置、及び外輪間座の構成において、図1に示す第1実施形態と異なる。その他の構成については、第1実施形態のものと同様であり、第1実施形態と同一又は同等部分については同一符号を付して説明を省略或いは簡略化する。
 図6に示すように、第2実施形態に係る軸受装置1aは、工作機械用主軸装置に適用可能で、アンギュラ玉軸受(転がり軸受)10と、外輪間座(カウンターボア側周辺部品)40と、を少なくとも備える。
 本実施形態のアンギュラ玉軸受10では、第1実施形態の第3変形例と同様に、補給孔15の内径側開口部は、外輪12の溝底位置Aに対して反接触角側の内周面に設けられている。
 特に、補給孔15の内径側開口部は、軸受回転時の潤滑性の点から、外輪軌道溝12a内に設けられることが好ましい。
 外輪間座40は、外輪12とカウンターボア側で隣接して配置されている。外輪間座40の軸方向端面41の内径寸法D41は、外輪間座40と接触する外輪12の軸方向一方側端面12dの内径寸法D12dと同一径に設計されている。
 また、外輪間座40は、外輪12と接触する軸方向端面41に径方向に亘って形成される排出用切り欠き42を備える。
 なお、外輪12の補給孔15と外輪間座40の排出用切り欠き42は、図面の便宜上、同一位相に示されているが、これに限定されるものでない。
 これにより、本実施形態の軸受装置1aでは、高速回転時の玉13や保持器14の公転により、軸受内に円周方向の高速流が発生し、潤滑油は外輪12の内周面に付着した状態で円周方向に流動している。上記の現象から潤滑油は傾斜面であるカウンターボア12bを螺旋回転しながら排出用切り欠き42に導くことができる。
 また、本実施形態では、外輪12のカウンターボア12bは傾斜面となっているので、外輪間座40の内周面はテーパ面を設ける必要はなく、外輪間座40の軸方向端面41、すなわち、外輪12と軸受の回転軸方向で接する部分に排出用切り欠き42を設けることで、効率的な排油を達成することができる。したがって、外輪間座40は、一様高さのリング状に形成されればよい。
 その他の構成及び作用については、第1実施形態と同様である。
 なお、本実施形態は、図7に示す第1変形例のように、外輪12の外周面において、凹状溝16を挟む軸方向両側に、環状溝19を周方向に沿って形成し、各環状溝19に、例えばO-リングなどの環状の弾性部材である、シール部材20を配置することで、この油漏れを防止するようにしてもよい。
 また、本実施形態では、外輪間座40の軸方向端面41の内径寸法D41は、外輪間座40と接触する外輪12の軸方向一方側端面12dの内径寸法D12d以上に設定されればよく、上記実施形態のように同一径であってもよい。ただし、図8に示す第2変形例のように、外輪間座40の軸方向端面41の内径寸法D41は、外輪間座40と接触する外輪12の軸方向一方側端面12dの内径寸法D12dより大きく設計されてもよい。
 さらに、本実施形態では、補給孔15の内径側開口部は、排出孔34を有する外輪間座30に近づくように、外輪12の溝底位置Aに対して反接触角側の内周面に設けられていることが好ましい。ただし、図9に示す第3変形例のように、補給孔15の内径側開口部は、外輪12の溝底位置Aに対して接触角側の内周面に設けられてもよい。この場合にも、補給孔15の内径側開口部は、玉13と外輪軌道溝12aとの間の接触楕円Eから離間した位置となるように設定される。
 なお、図8及び図9に示す第2及び第3変形例では、外輪12の外周面にシール部材20を配置する構成としたが、図6と同様に、シール部材を有しない構成であってもよい。
 尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 例えば、図10に示す変形例のように、軸受装置1bは、第1実施形態の外輪間座30と第2実施形態の外輪間座40が同時に適用されてもよい。これにより、排油性をより向上することができ、高速回転領域においてより安定した軸受性能を得ることができる。
 また、補給孔は、外輪の外周面から内周面まで径方向に亘って貫通するものであればよく、本実施形態の半径方向(径方向断平面と平行)に沿って形成されるもの以外に、軸受の回転軸方向又は周方向に傾斜させても構わない。
 また、上記実施形態では、外輪12は、1本の補給孔を有するとしているが、これに限らず、複数本の補給孔を有してもよい。
 さらに、排出孔34や排出用切り欠き42は、円周方向に複数ヵ所に設けられても良い。
 なお、外輪の補給孔への潤滑油の補給方法は、オイルエア潤滑以外にオイルミスト潤滑を採用してもよい。場合によってはオイルジェット潤滑も可能である。しかしながら、グリースを軸受の周辺部や主軸外部の潤滑剤補給装置を用いて外輪12の補給孔15から給脂するグリース補給法の場合、補給孔15が外輪軌道溝12a内に開口するように形成されると、増ちょう剤が含まれる半固体であるグリースが外輪軌道溝12a内に供給されてしまう。
 この場合、グリースが外輪軌道溝12a内に噛み込まれるので、攪拌抵抗により、トルクの増大や異常発熱等の問題が生じる。特に、これらの問題は、本実施形態のような高速回転において生じ易い。従って、増ちょう剤を含まない潤滑油を供給する油潤滑方法が本発明において望ましい。
 更に、本発明の玉軸受は、工作機械用主軸装置に適用されるものに限定されるものでなく、一般産業機械や、モータなどの高速回転する装置の玉軸受としても適用することができる。
 また、外輪の軸方向一方側端面の内周面、及び軸方向他方側端面の内周面には、面取りが施されていてもよい。この場合、反カウンターボア側周辺部品及びカウンターボア側周辺部品の外輪と接触する軸方向端面の内径寸法は、面取り寸法を考慮したものであってもよい。
 即ち、各周辺部品の軸方向端面の内径寸法を、面取り寸法を除いた、外輪の軸方向端面の内径寸法以上とすれば、外輪の面取りと各周辺部品間に形成される凹部に軸受内部から排出された潤滑油が停滞することがなくなり、より優れた排出効果が得られる。
 なお、排出孔34や排出用切り欠き42は、重力方向下方に設けることで、連通する図示しないハウジングの排出通路から潤滑油を排出するようにしてもよいし、外部の吸引装置(図示せず)によって潤滑油を排出するようにしてもよい。
 本出願は、2016年8月15日出願の日本特許出願2016-159261に基づくものであり、その内容はここに参照として取り込まれる。
1、1a、1b  軸受装置
10  アンギュラ玉軸受(転がり軸受)
11  内輪
11a  内輪軌道溝
12  外輪
12a  外輪軌道溝
12b  カウンターボア
12c  溝肩
13  玉(転動体)
14  保持器
15  補給孔
16  凹状溝
30  外輪間座(反カウンターボア側周辺部品)
32  テーパ面
34  排出孔
40  外輪間座(カウンターボア側周辺部品)
42  排出用切り欠き(切り欠き)
E  接触楕円

Claims (6)

  1.  外周面に内輪軌道溝を有する内輪と、内周面に外輪軌道溝、及び該外輪軌道溝の軸方向一方側にカウンターボアを有する外輪と、前記内輪軌道溝と前記外輪軌道溝との間に転動自在に配置される複数の転動体と、を備え、前記外輪は、その外周面から内周面まで径方向に亘って貫通し、潤滑油を供給する少なくとも1つの補給孔を有し、前記潤滑油によって潤滑される転がり軸受と、
     前記外輪軌道溝の軸方向他方側である反カウンターボア側で前記外輪と隣接して配置される反カウンターボア側周辺部品と、
    を備える軸受装置であって、
     前記反カウンターボア側周辺部品は、その内周面に、前記外輪と接触する軸方向端面から離間するにつれて拡径するテーパ面を備えると共に、径方向に亘って貫通し、前記潤滑油を排出する排出孔を備え、
     前記反カウンターボア側周辺部品の軸方向端面の内径寸法は、前記反カウンターボア側周辺部品と接触する前記外輪の軸方向他方側端面の内径寸法以上である、軸受装置。
  2.  前記外輪の内周面は、前記外輪軌道溝の軸方向他方側に溝肩を有し、
     前記外輪の軸方向他方側端面の内径寸法は、一様内径の前記溝肩の内径寸法によって規定される、請求項1に記載の軸受装置。
  3.  前記内輪と軸方向他方側で隣接して配置される内輪側周辺部品をさらに備え、
     前記内輪側周辺部品は、前記反カウンターボア側周辺部品のテーパ面と対向し、該テーパ面との間でラビリンスを形成するテーパ形状の外周面を有する、請求項1又は2に記載の軸受装置。
  4.  前記外輪とカウンターボア側で隣接して配置されるカウンターボア側周辺部品をさらに備え、
     前記カウンターボアは、前記外輪の軸方向一方側端面まで徐々に拡径する傾斜面を備え、
     前記カウンターボア側周辺部品は、前記外輪と接触する軸方向端面に径方向に亘って形成される切り欠きを備え、
     前記カウンターボア側周辺部品の軸方向端面の内径寸法は、前記カウンターボア側周辺部品と接触する前記外輪の軸方向一方側端面の内径寸法以上である、請求項1~3のいずれか1項に記載の軸受装置。
  5.  外周面に内輪軌道溝を有する内輪と、内周面に外輪軌道溝、及び該外輪軌道溝の軸方向一方側にカウンターボアを有する外輪と、前記内輪軌道溝と前記外輪軌道溝との間に転動自在に配置される複数の転動体と、を備え、前記外輪は、その外周面から内周面まで径方向に亘って貫通し、潤滑油を供給する少なくとも1つの補給孔を有し、前記潤滑油によって潤滑される転がり軸受と、
     前記外輪とカウンターボア側で隣接して配置されるカウンターボア側周辺部品と、
    を備える軸受装置であって、
     前記カウンターボアは、前記外輪の軸方向一方側端面まで徐々に拡径する傾斜面を備え、
     前記カウンターボア側周辺部品は、前記外輪と接触する軸方向端面に径方向に亘って形成される切り欠きを備え、
     前記カウンターボア側周辺部品の軸方向端面の内径寸法は、前記カウンターボア側周辺部品と接触する前記外輪の軸方向一方側端面の内径寸法以上である、軸受装置。
  6.  請求項1~5のいずれか1項に記載の軸受装置を備える、工作機械用主軸装置。
     
PCT/JP2017/029161 2016-08-15 2017-08-10 軸受装置、及び工作機械用主軸装置 WO2018034245A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/325,477 US20190211874A1 (en) 2016-08-15 2017-08-10 Bearing device, and spidle device for machine tool
KR1020197004414A KR20190030716A (ko) 2016-08-15 2017-08-10 베어링 장치 및 공작 기계용 주축 장치
EP17841468.6A EP3499065A4 (en) 2016-08-15 2017-08-10 BEARING DEVICE, AND PIN DEVICE FOR MACHINE TOOL
CN201780050061.0A CN109642613A (zh) 2016-08-15 2017-08-10 轴承装置和机床用主轴装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016159261A JP2018028329A (ja) 2016-08-15 2016-08-15 軸受装置、及び工作機械用主軸装置
JP2016-159261 2016-08-15

Publications (1)

Publication Number Publication Date
WO2018034245A1 true WO2018034245A1 (ja) 2018-02-22

Family

ID=61196696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029161 WO2018034245A1 (ja) 2016-08-15 2017-08-10 軸受装置、及び工作機械用主軸装置

Country Status (7)

Country Link
US (1) US20190211874A1 (ja)
EP (1) EP3499065A4 (ja)
JP (1) JP2018028329A (ja)
KR (1) KR20190030716A (ja)
CN (1) CN109642613A (ja)
TW (1) TW201807328A (ja)
WO (1) WO2018034245A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104655B1 (fr) * 2019-12-16 2021-12-24 Safran Helicopter Engines Roulement à trois points de contact avec drain amélioré
CN111828483A (zh) * 2020-07-27 2020-10-27 安徽新诺精工股份有限公司 机床传动座轴承润滑结构
CN112059440B (zh) * 2020-09-11 2022-05-17 佛山市隆信激光科技有限公司 一种激光切割机及使用其的型材切割方法
CN112664808B (zh) * 2020-11-25 2022-09-20 浙江零跑科技股份有限公司 一种油冷电机轴承润滑结构
KR102677811B1 (ko) * 2022-09-28 2024-06-21 이관민 파이프 면취기

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006012001A1 (de) * 2006-03-16 2007-09-20 Schaeffler Kg Hochgeschwindigkeitslager, insbesondere direktgeschmiertes Spindellager für eine Werkzeugmaschine
JP2009216243A (ja) * 2008-02-12 2009-09-24 Nsk Ltd 主軸装置用軸受

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049851A (ja) * 2001-05-28 2003-02-21 Ntn Corp 転がり軸受のエアオイル潤滑装置
JP4189677B2 (ja) * 2003-04-15 2008-12-03 日本精工株式会社 軸受装置およびスピンドル装置
US20050063627A1 (en) * 2003-09-19 2005-03-24 Ntn Corporation Rolling element retainer and rolling bearing assembly using the same
JP5752385B2 (ja) * 2010-03-30 2015-07-22 Ntn株式会社 転がり軸受装置
JP5844596B2 (ja) 2010-10-21 2016-01-20 Ntn株式会社 転がり軸受装置
JP5917030B2 (ja) 2011-06-30 2016-05-11 Ntn株式会社 転がり軸受

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006012001A1 (de) * 2006-03-16 2007-09-20 Schaeffler Kg Hochgeschwindigkeitslager, insbesondere direktgeschmiertes Spindellager für eine Werkzeugmaschine
JP2009216243A (ja) * 2008-02-12 2009-09-24 Nsk Ltd 主軸装置用軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499065A4 *

Also Published As

Publication number Publication date
US20190211874A1 (en) 2019-07-11
EP3499065A4 (en) 2019-07-31
TW201807328A (zh) 2018-03-01
EP3499065A1 (en) 2019-06-19
CN109642613A (zh) 2019-04-16
JP2018028329A (ja) 2018-02-22
KR20190030716A (ko) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2018034245A1 (ja) 軸受装置、及び工作機械用主軸装置
CN109563879B (zh) 滚珠轴承、主轴装置以及机床
JP2010164122A (ja) アンギュラ玉軸受
KR102074125B1 (ko) 볼 베어링, 및 공작 기계용 주축 장치
WO2018034246A1 (ja) 玉軸受、及び工作機械用主軸装置
JP6881656B2 (ja) アンギュラ玉軸受、及び工作機械用主軸装置
CN109563877B (zh) 滚珠轴承和机床用主轴装置
WO2018181524A1 (ja) 転がり軸受用保持器および外輪給油孔付き転がり軸受
JP6911773B2 (ja) 玉軸受、及び工作機械用主軸装置
JP2005140160A (ja) 転がり軸受潤滑装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197004414

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017841468

Country of ref document: EP

Effective date: 20190315