WO2018033161A1 - 一种改性酚醛树脂纤维及其制备方法和用途,以及由这种改性酚醛树脂纤维制成的用于电极的复合材料 - Google Patents

一种改性酚醛树脂纤维及其制备方法和用途,以及由这种改性酚醛树脂纤维制成的用于电极的复合材料 Download PDF

Info

Publication number
WO2018033161A1
WO2018033161A1 PCT/CN2017/098335 CN2017098335W WO2018033161A1 WO 2018033161 A1 WO2018033161 A1 WO 2018033161A1 CN 2017098335 W CN2017098335 W CN 2017098335W WO 2018033161 A1 WO2018033161 A1 WO 2018033161A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
phenolic
phenol resin
phenol
reaction
Prior art date
Application number
PCT/CN2017/098335
Other languages
English (en)
French (fr)
Inventor
张金柱
盛杰
张安
任方华
栾峰
刘顶
Original Assignee
山东圣泉新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610695780.5A external-priority patent/CN106847533A/zh
Priority claimed from CN201611180405.3A external-priority patent/CN106811825B/zh
Priority claimed from CN201611178258.6A external-priority patent/CN106811822B/zh
Priority claimed from CN201611179326.0A external-priority patent/CN106811824B/zh
Priority claimed from CN201611179317.1A external-priority patent/CN106811823B/zh
Application filed by 山东圣泉新材料股份有限公司 filed Critical 山东圣泉新材料股份有限公司
Publication of WO2018033161A1 publication Critical patent/WO2018033161A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/08Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein

Definitions

  • the invention relates to a modified phenolic resin fiber and a preparation method thereof.
  • the present invention also relates to a composite material for an electrode which can be made of the above modified phenol resin fiber, a preparation method thereof, and an electrode produced.
  • Phenolic fiber is a three-dimensional network structure fiber obtained by spinning and solidifying phenolic resin. It was first developed by American Emery Co., Ltd. in 1968 [J.Economy, RAClark.Fibers from Nocolacs[P].US Pat.3650102 , 1968]. Phenolic fiber has outstanding characteristics of high temperature resistance, flame resistance, corrosion resistance and melting resistance, high polar oxygen index, and self-extinguishing property; small shrinkage during combustion and less smoke; based on the above excellent properties, the application range of phenolic fiber is extensive Industrial field.
  • CN 102383216 discloses a preparation method of superfine phenolic fiber by adding a certain ratio of polyvinyl alcohol solution in the process of synthesizing phenolic resin, and by adjusting the ratio of phenol, aldehyde, polyvinyl alcohol and catalyst to obtain A phenolic spinning dope having good spinnability, and the additive has no effect on the inherent properties of the phenolic fiber.
  • This patent increases the strength of the fiber by reducing the diameter of the fiber, but this method has a very limited increase in fiber strength.
  • Graphene oxide modified phenolic resin-based ultrafine porous carbon fiber and preparation method thereof by ultrasonically dispersing graphene oxide in an organic solvent, and then adding a thermosetting phenol resin and a high molecular weight linear polymer to the above solution until completely dissolved And by electrospinning into composite fibers, followed by solidification and carbonization to obtain graphene/phenolic resin-based carbon fibers; the dispersibility of graphene oxide in organic solvents in this patent is generally poor.
  • the electrode material determines the overall performance of the supercapacitor.
  • phenolic resin is not only mature in production process, low in cost, but also has the characteristics of high carbonization yield, single component, low impurity content and easy activation and pore formation. Therefore, phenolic-based activated carbon has broad application prospects as an electrode material.
  • the energy of the electric double layer capacitor is mainly stored in the electric double layer formed by the charge separation at the pore wall of the porous carbon electrode and the liquid electrolyte interface. It is generally believed that the larger the specific surface area of the material, the larger the specific capacitance. However, this is not the case.
  • the specific capacitance of carbon materials is often much lower than its theoretical value, and it exhibits a lower energy density when used in supercapacitors, which greatly limits the application of carbon materials.
  • the reason for this is that on the one hand, a large part of the specific surface area cannot be effectively utilized.
  • a higher specific surface area tends to lower the conductivity of the material, so that the material cannot be simply pursued during the preparation of the material.
  • High specific surface area Some studies have found that the surface modification or element doping of the material can greatly improve the electrochemical performance, which provides a good idea for the preparation of high performance electrode materials.
  • activated carbon has a very rich pore structure, which causes the surface structure of the material to be destroyed, and there is often a problem of poor conductivity.
  • Graphene with excellent electrical conductivity is considered to be a material that can effectively solve the problem of poor conductivity of activated carbon.
  • the strong van der Waals force between the graphene sheets makes the graphene very easy to aggregate, so that the advantages of graphene cannot be exerted, and the problem of lower specific capacitance cannot be solved.
  • the object of the present invention is to provide a method for preparing a modified phenolic resin fiber, which comprises:
  • the obtained graphene-containing phenol resin is spun to obtain a phenolic fiber strand, and then cured and crosslinked to obtain a modified phenol resin fiber.
  • the method for preparing the modified phenolic resin fiber comprises the following steps:
  • the graphene-containing phenol resin obtained in the step (2) is spun to obtain a phenolic fiber precursor, and then cured and crosslinked to obtain a modified phenol resin fiber.
  • the method for preparing the modified phenolic resin fiber comprises the following steps:
  • the graphene-containing phenol resin obtained in the step (2) is spun to obtain a phenolic fiber strand, and then cured and crosslinked to obtain a modified phenol resin fiber.
  • the present invention also provides a composite material for an electrode that solves the problem of lower specific capacitance.
  • the above preparation method for a composite material for an electrode is provided, which alleviates the agglomeration problem of the graphene-based substance and improves the conductivity and specific capacitance of the material.
  • An electrode which is higher in specific capacitance and can be used as an excellent supercapacitor material.
  • a method for preparing a modified phenolic resin fiber comprises the following steps:
  • the phenolic resin spinning dope obtained in the step (2) is electrospun to obtain a phenolic fiber precursor, and then cured and crosslinked to obtain a modified phenol resin fiber.
  • a method for preparing a modified phenolic resin fiber comprises the following steps:
  • the modified phenol resin obtained in the step (2) is spun into a phenolic fiber strand, and then cured and crosslinked to obtain a modified phenol resin fiber.
  • the invention adds a spin-on polymer to the prepolymer of the phenolic resin, the spin-on polymer and the phenolic resin pre-polymer are uniformly dispersed, and after the graphene-based substance is added, the graphene-based substance can be combined with the spin-on polymer.
  • the weaker bonds and effects (such as van der Waals force) can effectively prevent the agglomeration of graphenes and achieve uniform dispersion of graphenes in the phenolic resin.
  • the addition of the spin-on polymer can also omit the step of the spin-on polymer added in order to improve the spinnability in the subsequent spinning step.
  • the spin-on polymer of the present invention is not particularly limited, and any polymer capable of increasing spinnability can be used in the present invention.
  • the spin-on polymer may comprise any one or a combination of at least two of rubber, polyacrylamide, polyacrylic acid, polyvinylpyrrolidone, polyvinyl alcohol or polyethylene glycol, preferably polyvinyl alcohol.
  • the combination of the spin-on polymers includes a combination of polyacrylamide and polyacrylic acid, a combination of polyvinylpyrrolidone and polyethylene glycol, a combination of polyvinyl alcohol and polyacrylic acid, and the like.
  • the rubber may be one or more of nitrile rubber, styrene butadiene rubber, and natural rubber.
  • the molar ratio of the prepolymer of the phenolic resin to the spin-on polymer is from 1:0.05 to 0.1, such as 1:0.05, 1:0.06, 1:0.07, 1:0.08, 1 based on the aldehyde species. : 0.09, 1:0.1, and the like.
  • the mass of the graphene-based substance is 0.01 to 15% by weight of the phenol resin, for example, 0.05% by weight, 0.1% by weight, 0.6 wt%, 0.9 wt%, 2 wt%, 3.5 wt%, 4.2 wt%, 4.6 wt%, 5.8 wt%, 7 wt%, 8 wt%, 9 wt%, 10 wt%, 11 wt%, 12 wt%, 13 wt%, 14 wt%
  • the amount is preferably 0.01 to 10% by weight, more preferably 0.01 to 5% by weight, particularly preferably 0.01 to 2% by weight, most preferably 0.1 to 1% by weight.
  • the graphene-based substance includes a mixture of any one or at least two of graphene, biomass graphene, graphene oxide, and graphene derivatives, and the graphene derivative includes element-doped graphene.
  • the graphene-based substance is preferably graphene oxide.
  • graphene oxide As a precursor or derivative of graphene, graphene oxide has the same performance as graphene. Moreover, the surface of graphene oxide is rich in oxygen-containing functional groups, which can further chemically react the graphene oxide to enhance the active site.
  • the introduction of graphene oxide can co-cure with the resin or form a partial interpenetrating network structure with a polymer intermediate group, and has good compatibility, no phase separation, and increased spinnability of the phenolic fiber. And mechanical properties.
  • the graphene derivative comprises any one or a combination of at least two of element-doped graphene or functionalized graphene.
  • the element doped graphene comprises any one or a combination of at least two of metal doped graphene or non-metal element doped graphene.
  • the metal-doped metal elements include potassium, sodium, gold, silver, iron, copper, nickel, chromium, titanium, vanadium Or any one or a combination of at least two of cobalt.
  • the non-metallic element doped with graphene is a non-metal element including any one or a combination of at least two of nitrogen, phosphorus, silicon, boron or oxygen.
  • the non-metal element doped graphene comprises any one or a combination of at least two of nitrogen-doped graphene, phosphorus-doped graphene or sulfur-doped graphene.
  • the functionalized graphene comprises graphene grafted with a functional group.
  • the functionalized graphene comprises graphene grafted with any one or a combination of at least two of a hydroxyl group, a carboxyl group or an amino group.
  • the hydroxyl group includes -R 1 -OH
  • the R 1 includes a hydrocarbon group, preferably including any one of a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a vinyl group, a propylene group or A combination of at least two.
  • the carboxyl group includes -R 2 -COOH
  • the R 2 includes a hydrocarbon group, preferably including any one of a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, or a combination of at least two.
  • the carboxyl group includes R 3 -NH 3
  • the R 3 includes an alkane group, preferably including any one of a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a combination of at least two .
  • the graphene-based substance in the step (2) is added in the form of a dispersion.
  • the solvent of the dispersion comprises any one or a combination of at least two of ethanol, water, ethylene glycol, DMF, NMP or acetone; preferably ethanol or water.
  • the solvent of the graphene-based substance solution has various options, as long as the solubility to the graphene-based substance is high, and the polymerization reaction is not excessively adversely affected, for example, selected from the group consisting of water, ethanol, ethylene glycol, and DMF.
  • the concentration of the graphene-based substance in the dispersion is 15 mg/g or less, preferably 1 to 10 mg/g, and more preferably 3 to 5 mg/g.
  • the dispersion of the graphene-like substance is added to the spin-on polymer-prepolymer solution in the form of dropwise addition;
  • the dropping rate is preferably 0.5 to 2 mL/min, for example, 0.6 mL/min, 0.9. mL/min, 1.3 mL/min, 1.6 mL/min, 1.9 mL/min, and the like.
  • the spin-on polymer of step (1) comprises any one or a combination of at least two of rubber, polyacrylamide, polyacrylic acid, polyvinylpyrrolidone, polyvinyl alcohol or polyethylene glycol, preferably polyethylene. alcohol.
  • the combination of the spin-on polymers includes a combination of polyacrylamide and polyacrylic acid, a combination of polyvinylpyrrolidone and polyethylene glycol, a combination of polyvinyl alcohol and polyacrylic acid, and the like.
  • the rubber is one or more of nitrile rubber, styrene butadiene rubber, and natural rubber.
  • the prepolymer of the phenolic resin is obtained by prepolymerization of a polymerized monomer of the phenol resin.
  • the phenol of the phenolic resin polymerizable monomer comprises phenol and a derivative thereof, preferably phenol, cresol, xylenol, naphthol, alkyl-substituted phenol, alkyl-substituted naphthol, bisphenol A or double Any one or a combination of at least two of phenol F.
  • the aldehyde of the phenolic resin polymerizable monomer includes formaldehyde and a derivative thereof, preferably any one or a combination of at least two of formaldehyde, acetaldehyde or furfural.
  • the prepolymerization reaction comprises the steps of mixing a polymerization monomer of a phenolic resin and a catalyst, and reacting at 60 to 80 ° C, for example, 62 ° C, 68 ° C, 73 ° C, 78 ° C, etc., for 0.5 to 4 h, for example, 0.6h, 0.8h, 1h, 2h, 3h, 4h, etc.
  • the molar ratio of the phenol monomer, the aldehyde monomer and the catalyst in terms of hydroxy groups is 1: (1.1 to 1.4): (0.005 to 0.05), for example, 1:1.11. : 0.008, 1:1.20:0.01, 1:1.25:0.02, 1:1.30:0.03, 1:1.32:0.04, and the like.
  • the catalyst comprises a basic catalyst.
  • the basic catalyst comprises any one or a combination of at least two of sodium hydroxide, potassium hydroxide or ammonia water.
  • the molar ratio of the phenol monomer, the aldehyde monomer based on the aldehyde group, and the catalyst in terms of hydroxy groups is 1: (0.7-1): (0.005 to 0.05), for example, 1:0.8. : 0.008, 1:0.9:0.01, 1:0.8:0.02, 1:0.9:0.03, 1:0.8:0.04, and the like.
  • the catalyst comprises an acidic catalyst.
  • the acidic catalyst comprises any one or a combination of at least two of hydrochloric acid, oxalic acid, acetic acid or sulfuric acid.
  • the reaction temperature of the polymerization reaction of the thermosetting phenolic resin is 80 to 95 ° C, for example, 82 ° C, 83 ° C, 85 ° C, 88 ° C, etc.
  • the reaction time is 0.5 to 4 h, for example, 0.6 h, 0.8 h, 1 h, 2h, 3h, 4h, etc.
  • the reaction temperature of the polymerization reaction of the thermoplastic phenolic resin is 80 to 95 ° C, for example, 82 ° C, 83 ° C, 85 ° C, 88 ° C, etc.
  • the reaction time is 0.5 to 4 h, for example, 0.6 h, 0.8 h, 1 h, 2h, 3h, 4h, etc.
  • the preparation method of the modified phenolic resin fiber of the present invention comprises the following steps:
  • the phenolic resin spinning dope is electrospun to form a phenolic fiber precursor, and then cured and crosslinked to obtain a modified phenolic resin fiber.
  • the method for preparing the modified phenolic resin fiber of the present invention comprises the following steps:
  • the phenolic resin is melt-spun into a phenolic fiber strand, and then cured and crosslinked to obtain a modified phenol resin fiber.
  • a method for preparing a modified phenolic resin fiber comprises the following steps:
  • the modified thermoplastic phenol resin obtained in the step (2) is purified, melt-spun to obtain a phenolic fiber precursor, and then cured and crosslinked to obtain a modified phenol resin fiber.
  • a method for preparing a modified phenolic resin fiber comprises the following steps:
  • graphene oxide As a precursor or derivative of graphene, graphene oxide has the same performance as graphene. Moreover, the surface of graphene oxide is rich in oxygen-containing functional groups, which can further chemically react the graphene oxide to enhance the active site.
  • the introduction of graphene oxide can co-cure with the resin or form a partial interpenetrating network structure mosaic-assisted polymer intermediate group, and has good compatibility, no phase separation, and increased phenolic fiber Spinning and mechanical properties, while improving its electrical properties.
  • the invention is doped into a graphene-based substance in a form of a mixture of a graphene-based substance and a spin-spun polymer in a phenolic resin, and a weak bond and a function between a graphene-based substance and a spin-spinning polymer (such as van der Waals force, etc.) ), effectively preventing the agglomeration of graphene-like substances, and achieving uniform dispersion of graphene-based substances in the phenolic resin.
  • the addition of the spin-on polymer can also omit the polymer added in order to improve the spinnability in the subsequent spinning step.
  • the mass of the graphene-based substance is 0.01 to 15% by weight of the phenolic resin, for example, 0.05% by weight, 0.1% by weight, 0.6% by weight, 0.9% by weight, 2 wt%, 3.5 wt%, 4.2 wt%, 4.6 wt%, 5.8 wt%, 7 wt%, 8 wt%, 9 wt%, 10 wt%, 11 wt%, 12 wt%, 13 wt%, 14 wt%, etc., preferably 0.01 to 10 wt%, It is further preferably from 0.01 to 5% by weight, particularly preferably from 0.01 to 2% by weight, most preferably from 0.1 to 1% by weight.
  • the manner in which the graphene-based substance is compounded with the phenolic resin in the form of the mixed liquid of the step (1) includes the following:
  • Method 1 The mixed liquid of the step (1) is added to the synthetic monomer of the phenolic resin, and the polymerization reaction of the phenol resin is carried out together with the synthetic monomer.
  • Method 2 adding the mixed liquid of the step (1) to the polymerization of the phenol resin.
  • Method 3 The polymerization monomer of the phenolic resin is subjected to polymerization of a phenol resin, and the mixed liquid of the step (1) is added to the obtained phenol resin.
  • the graphene-based substance of the present invention may be in the form of the mixed liquid of the step (1) before the synthesis of the phenol resin (when the monomer is synthesized), during (after the partial prepolymerization reaction occurs) or after (the phenol resin is obtained). After) join.
  • the graphene-based substance of the present invention may also be added in any one or a combination of at least two of the first mode, the second mode or the third mode, for example, at the same time as the monomer is synthesized and pre-polymerized. It may be added at the time, or may be added to the phenol resin obtained by synthesizing the monomer.
  • the mixed liquid is added in the form of dropwise addition, and the acceleration rate of the drop is 0.5 to 2 mL/min, for example, 0.6 mL/min, 0.9 mL/min, 1.3 mL/min, 1.6 mL/min, and 1.9 mL/ Min et al.
  • the mixed liquid of the step (1) comprises a liquid spin-on polymer in which a graphene-based substance is dispersed;
  • the mixed solution includes a solvent in which a spin-on polymer and a graphene-based substance are dispersed.
  • the spin-on polymer and the graphene-based substance undergo partial or complete graft reaction.
  • the spin-on polymer comprises any one or a combination of at least two of rubber, polyacrylamide, polyacrylic acid, polyvinylpyrrolidone, polyvinyl alcohol or polyethylene glycol, preferably polyvinyl alcohol.
  • the combination of the spin-on polymers includes a combination of polyacrylamide and polyacrylic acid, a combination of polyvinylpyrrolidone and polyethylene glycol, a combination of polyvinyl alcohol and polyacrylic acid, and the like.
  • the rubber is one or more of nitrile rubber, styrene butadiene rubber, and natural rubber.
  • the solvent comprises any one or a combination of at least two of ethanol, water, ethylene glycol, DMF, NMP or acetone; preferably ethanol or water.
  • the solvent of the graphene-based substance solution has various options, as long as the solubility to the graphene-based substance is high, and the polymerization reaction is not excessively adversely affected, for example, selected from the group consisting of water, ethanol, ethylene glycol, and DMF.
  • the mass ratio of the graphene-based material to the spin-spun polymer is 1:0.01 to 10, for example, 1:0.1, 1:0.3, 1:0.6, 1:0.9, 1:1.3, 1:3, 1:5, 1:6, 1:7, 1:8, 1:9, and the like.
  • the concentration of the spin-on polymer is 10 to 20% by weight, for example, 11% by weight, 12% by weight, 13% by weight, and 14% by weight. 15wt%, 16wt%, 17wt%, 18wt%, 19wt%, etc., the concentration of the graphene substance is 15mg / g or less, preferably 1 ⁇ 10mg / g, preferably 3 ⁇ 5mg / g;
  • the stirring time in the step (1) is 1 min to 2 h, for example, 5 min, 20 min, 36 min, 50 min, 65 min, 80 min, 90 min, 110 min, and the like.
  • the graphene-based substance comprises a mixture of any one or at least two of graphene, biomass graphene, graphene oxide, and graphene derivatives, and the graphene derivative includes element-doped graphene. .
  • the graphene derivative comprises an element doped graphene or a functionalized graphene Any one or a combination of at least two.
  • the element doped graphene comprises any one or a combination of at least two of metal doped graphene or non-metal element doped graphene.
  • the metal-doped metal element includes any one or a combination of at least two of potassium, sodium, gold, silver, iron, copper, nickel, chromium, titanium, vanadium or cobalt.
  • the non-metallic element doped with graphene is a non-metal element including any one or a combination of at least two of nitrogen, phosphorus, silicon, boron or oxygen.
  • the non-metal element doped graphene comprises any one or a combination of at least two of nitrogen-doped graphene, phosphorus-doped graphene or sulfur-doped graphene.
  • the functionalized graphene comprises graphene grafted with a functional group.
  • the functionalized graphene comprises graphene grafted with any one or a combination of at least two of a hydroxyl group, a carboxyl group or an amino group.
  • the hydroxyl group includes -R 1 -OH
  • the R 1 includes a hydrocarbon group, preferably including any one of a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a vinyl group, a propylene group or A combination of at least two.
  • the carboxyl group includes -R 2 -COOH
  • the R 2 includes a hydrocarbon group, preferably including any one of a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, or a combination of at least two.
  • the amino group comprises R 3 —NH 3
  • the R 3 includes an alkane group, preferably including any one of a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, or a combination of at least two .
  • the polymerization reaction of the phenol resin includes a prepolymerization reaction and a polycondensation reaction which are sequentially performed.
  • the temperature of the prepolymerization reaction is 60 to 80 ° C, for example, 62 ° C, 68 ° C, 73 ° C, 78 ° C, etc.
  • the reaction time is 0.5 to 5 h, for example, 0.6 h, 0.8 h, 1 h, 2 h, 3 h, 4h and so on.
  • the temperature of the polycondensation reaction is 80 to 90 ° C, for example, 82 ° C, 83 ° C, 85 ° C, 88 ° C, etc.
  • the reaction time is 0.5 to 5 h, for example, 0.6 h, 0.8 h, 1 h, 2 h, 3 h, 4 h. Wait.
  • the molar ratio of the phenol monomer based on the hydroxy group, the aldehyde monomer based on the aldehyde group, and the catalyst is 1: (0.7 to 1): (0.005 to 0.05), for example, 1 0.8: 0.008, 1:0.9:0.01, 1:0.8:0.02, 1:0.9:0.03, 1:0.8:0.04, and the like.
  • the acidic catalyst preferably comprises any one or a combination of at least two of hydrochloric acid, oxalic acid, acetic acid or sulfuric acid.
  • the molar ratio of the phenol monomer, the aldehyde monomer based on the aldehyde group, and the basic catalyst is (1 to 1.4): 1: (0.005 to 0.05);
  • the basic catalyst is preferably sodium hydroxide or ammonia Any one or a combination of at least two of them.
  • the phenolic monomer comprises phenol and its derivatives, preferably phenol, cresol, xylenol, naphthol, alkyl substituted phenol, alkyl substituted naphthol, bisphenol A or bisphenol F Any one or a combination of at least two;
  • the aldehyde compound comprises formaldehyde and a derivative thereof, preferably any one or a combination of at least two of formaldehyde, acetaldehyde or furfural.
  • the preparation method of the modified phenolic resin fiber of the present invention comprises the following steps:
  • step (a2) adding the mixed liquid obtained in the step (a1) to the polymerization monomer of the phenolic resin by dropwise addition, and conducting a polymerization reaction of the thermoplastic phenol resin to obtain a reaction liquid, which is purified to obtain a modified phenol resin;
  • the method for preparing the modified phenolic resin fiber of the present invention comprises the following steps:
  • step (b2) after reacting the phenolic compound and the aldehyde compound for a period of time, adding the mixed liquid described in the step (b1) to the reaction liquid, and reacting to obtain a reaction liquid, which is purified to obtain a modified phenol resin;
  • the method for preparing the modified phenolic resin fiber of the present invention comprises the following steps:
  • the phenol resin of the present invention is not particularly limited, and may include a reaction liquid formed by reacting two phenolic compounds and an aldehyde compound as follows, and a finished phenol resin.
  • the method for preparing the modified phenolic resin fiber of the present invention comprises the following steps:
  • step (a2) adding the mixed liquid obtained in the step (a1) to the polymerization monomer of the phenolic resin in a dropping manner, and performing a polymerization reaction of the thermosetting phenol resin to obtain a reaction liquid, that is, a modified thermosetting phenolic resin spinning dope;
  • the modified thermosetting phenolic resin spinning dope obtained in the step (a2) is subjected to electrospinning to obtain a phenolic fiber precursor, and then cured and crosslinked to obtain a modified phenol resin fiber.
  • the method for preparing the modified phenolic resin fiber of the present invention comprises the following steps:
  • reaction liquid which is a modified thermosetting phenolic resin spinning dope
  • thermosetting phenolic resin spinning dope is electrospun to obtain a phenolic fiber precursor, and then cured and crosslinked to obtain a modified phenolic resin fiber;
  • the method for preparing the modified phenolic resin fiber of the present invention comprises the following steps:
  • thermosetting phenolic resin adding the mixed liquid of the step (c1) to the thermosetting phenolic resin to obtain a modified thermosetting phenolic resin spinning dope;
  • thermosetting phenolic resin spinning dope is subjected to electrospinning to obtain a phenolic fiber precursor, and then cured and crosslinked to obtain a modified phenol resin fiber.
  • the phenol resin of the present invention is not particularly limited, and may include a reaction liquid formed by reacting two phenolic compounds and an aldehyde compound as follows, and a finished phenol resin.
  • the curing cross-linking of the present invention is a well-known technique in the art.
  • the obtained fiber membrane can be placed in a constant temperature drying oven and cured at 100 to 180 ° C for 1 to 6 hours.
  • a fifth object of the present invention is to provide a modified phenolic resin fiber, which has a purpose of sterilizing a phenolic resin fiber according to one of the objectives, the second object, the third object, and the fourth object.
  • the preparation method is obtained.
  • a sixth object of the present invention is to provide an electrode composite material obtained by carbonizing the modified phenol resin fiber of the fifth object;
  • the carbonization temperature is 600 to 1000 ° C, such as 650 ° C, 700 ° C, 730 ° C, 760 ° C, 790 ° C, 820 ° C, 850 ° C, 880 ° C, 930 ° C, 960 ° C, 980 ° C, etc., preferably 800 °C.
  • a modified phenol resin is obtained by combining graphene with a phenol resin, and a modified phenolic fiber is obtained after spinning.
  • the invention is characterized in that the phenolic resin prepolymer and the spin-spun polymer are uniformly mixed, the graphene is added, and the weak bond of the graphene and the spin-bonding polymer is connected to realize the uniform dispersion of the graphene to solve the simple addition of graphene. It is easy to agglomerate and has poor dispersibility, which improves the strength and toughness of phenolic fibers.
  • the PVA is mixed with the phenolic resin prepolymer, and the graphene oxide is oxidized by the action of the oxygen-containing group and the PVA.
  • the uniform dispersion of graphene improves the toughness of the phenolic resin, the tensile strength is 153 to 330 MPa, the elongation is 6.2 to 20%, and the strength and heat resistance are obtained.
  • Nano carbon obtained by carbonization of modified phenolic fiber The fiber has good strength and electrical conductivity and is suitable as a supercapacitor electrode material.
  • a modified phenol resin is obtained by combining graphene with a phenol resin, and a modified phenolic fiber is obtained after spinning.
  • the innovative method of adding the phenolic resin to the form of mixing the graphene and the spin-spun polymer solves the problem that the simple addition of graphene is easy to agglomerate and the dispersibility is not good, and the strength, toughness and electrical properties of the phenolic fiber are improved.
  • graphene oxide when the graphene is graphene oxide and the spin-on polymer is polyvinylpyrrolidone PVA, in the synthesis of the phenolic resin, graphene oxide can co-cure or form a mutual transmission with the phenolic resin in a uniformly dispersed state.
  • the network realizes the effect of improving the toughness of the phenolic resin, the tensile strength is 159-330 MPa, the elongation is 6.7-20%, strength and heat resistance.
  • a composite material for an electrode is mainly composed of a nitrogen-doped phenolic-based activated carbon and a graphene-based material; the composite material has a specific capacitance of 150 F/g or more;
  • the graphene-based substance is selected from one or more of graphene and its derivatives, graphene oxide and its derivatives, and biomass graphene, preferably graphene oxide.
  • the invention finds that the incorporation of graphene and nitrogen-containing substances in the synthesis of phenolic resin can greatly increase the specific capacitance of the capacitor, and the possible principle is that: in the electrolyte, especially in the acidic electrolyte, nitrogen is contained.
  • the tantalum capacitor generated by the interaction between the functional group and the proton can greatly increase the specific capacitance of the material, thereby increasing the energy density of the material.
  • the presence of the nitrogen-containing functional group improves the surface wetting property of the material and reduces the diffusion of electrolyte ions in the pores.
  • the composite material provided by the present invention has a specific capacitance of at least 150 F/g or more, preferably 200 F/g or more, at 0.1 A/g.
  • the nitrogen-containing substance of the present invention may be either an exogenous nitrogen-containing compound or a polymerizable monomer itself, such as the phenolic compound or the aldehyde compound which itself contains nitrogen, if the specific monomer itself contains Nitrogen, there is no need to add additional nitrogenous substances, of course, additional additions are also possible.
  • the phenolic compound containing nitrogen contains a phenolic compound of one or more of a primary amino group, a secondary amino group, and a quaternary amine group, preferably a phenolic compound containing a primary amino group, and more preferably an m-aminophenol.
  • the exogenous nitrogen-containing substance may be selected from the group consisting of nitrogen-containing inorganic substances and other nitrogen-containing organic substances, preferably one or a mixture of organic amines and nitrates, preferably one of ethylenediamine, melamine, hexamethylenediamine and urea. Species Or more, preferably melamine.
  • the phenol according to the present invention means any phenol, and the aldehyde means any aldehyde, and the phenolic resin can be efficiently produced by polymerization before and after, and may be thermoplastic or thermosetting.
  • the phenolic compound is selected from the group consisting of phenol and its derivatives, preferably phenol, cresol, xylenol or resorcinol;
  • the aldehyde compound is selected from the group consisting of formaldehyde and its derivatives, preferably formaldehyde, acetaldehyde or Furfural
  • the preferred composite method is:
  • the composite method is characterized in that a graphene-based substance and a nitrogen-containing substance are added during or after the reaction of the phenolic compound and the aldehyde compound to form a phenolic resin, followed by solidification and carbonization, preferably, during the reaction. better result.
  • the addition of the graphene-based substance and the nitrogen-containing substance may be simultaneously added, or may be added under the premise of satisfying the above conditions (during the reaction or after the reaction is completed).
  • the nitrogen-containing substance is added, and the reaction is continued for 0.5 h, and then the graphene-based substance is added; for example, after the reaction is carried out for 0.5 h, the graphene-like substance is added, and the reaction is continued for 0.5 h, and then Add nitrogenous material.
  • the graphene according to the present invention may be commercially available graphene, or graphene obtained by different preparation methods, such as mechanical stripping method, epitaxial growth method, chemical vapor deposition method, graphite redox method, or biomass.
  • Graphene by graphene prepared by hydrothermal carbonization of biomass resources, and other methods in the prior art).
  • some methods are difficult to achieve large-scale preparation of graphene in a strictly theoretical sense.
  • some of the graphenes prepared by the prior art may have certain impurity elements, other allotropes of carbon elements or layers.
  • the layer or even the multilayer graphene structure for example, 3 layers, 5 layers, 10 layers, 20 layers, etc.
  • the graphene utilized in the present invention also includes the above-mentioned non-strict theoretical graphene.
  • Biomass graphene can be processed by Jinan Shengquan Company, and the porous biomass graphene composite with excellent conductive properties is obtained by the steps of hydrolysis, catalytic treatment and heat treatment with the agricultural and forestry waste as the main raw material. Its main feature is the graphite contained.
  • the number of olefin layers is between 1 and 10 layers, and the content of non-carbon non-oxygen elements is from 0.5% by weight to 6% by weight.
  • the graphene oxide according to the present invention may be a graphene which may be commercially available graphene or a graphene prepared by partial reduction cross-linking, or may be an oxidized product of graphene prepared by PECVD. It is also possible to produce graphene oxide by other methods.
  • the graphene oxide derivative described in the present invention may be a modified graphene oxide.
  • the graphene oxide derivative comprises any one or a combination of at least two of elemental doped graphene oxide or functionalized graphene oxide.
  • the element-doped graphene oxide comprises any one or a combination of at least two of metal-doped graphene oxide or non-metal element-doped graphene oxide.
  • the metal-doped metal element typically, but not limited to, includes potassium, sodium, gold, silver, iron, copper, nickel, chrome titanium, vanadium or cobalt.
  • the non-metallic element doped graphene typically includes, but is not limited to, nitrogen, phosphorus, sulfur, silicon, boron or silicon.
  • the non-metal element doped graphene oxide comprises any one or a combination of at least two of nitrogen-doped graphene oxide, phosphorus-doped graphene oxide or sulfur-doped graphene oxide.
  • the functionalized graphene oxide comprises graphene oxide grafted with a functional group.
  • the functionalized graphene oxide comprises graphene oxide grafted with any one or a combination of at least two of a hydroxyl group, a carboxyl group or an amino group.
  • the hydroxyl group of the present invention includes -R 1 -OH, and the R 1 includes an alkane group, and a typical but non-limiting hydroxyl group may be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group. Hydroxyl and the like.
  • the carboxyl group of the present invention includes -R 2 -COOH, and the R 2 includes an alkane group, and a typical but non-limiting hydroxyl group may be a methylhydroxy group, an ethylhydroxy group, a propylhydroxy group, a butylhydroxy group, a pentylhydroxy group, a hexyl group. Hydroxyl and the like.
  • the amino group of the present invention includes -R 3 -NH 3 , and the R 3 includes an alkane group, and a typical but non-limiting hydroxyl group may be a methylhydroxy group, an ethylhydroxy group, a propylhydroxy group, a butylhydroxy group, a pentylhydroxy group, Hexyl hydroxyl group and the like.
  • the graphene derivative of the present invention is the same as the above graphite oxide derivative.
  • the conditions of the addition reaction and the polycondensation reaction according to the present invention may be carried out under the usual conditions for synthesizing a phenol resin.
  • the graphene-based substance is preferably added to the reaction liquid in the form of a solution.
  • the solvent of the graphene-based substance solution has various options, as long as the solubility to the graphene-based substance is high, and the polymerization reaction is not excessively adversely affected, for example, selected from water, ethanol, ethylene glycol, One or more of DMF, NMP, acetone, preferably ethanol or water.
  • the graphene-based substance is added in an amount of 0.01 to 1% by weight, more preferably 0.1 to 1% by weight, based on the total amount of the phenolic compound and the aldehyde compound;
  • the phenolic compound when it does not contain nitrogen, it is 1:0.01 to 1, more preferably 1:0.04 to 0.5, more preferably 1: 0.04 to 0.2.
  • an activator is added during the carbonization to further increase the pore volume and specific surface area of the composite.
  • the activator is selected from one or more of alkali metal hydroxides, zinc chlorides, phosphoric acids, preferably alkali metal hydroxides, more preferably potassium hydroxide and/or sodium hydroxide.
  • the weight ratio of the activator to the carbonized material is from 0.5 to 4:1, more preferably from 1 to 4:1.
  • the basic route of the preparation method of all the above composite materials for electrodes is polymerization-doping ⁇ curing ⁇ carbonization, and the conditions of carbonization are preferably:
  • a graphene-based substance and/or a nitrogen-containing substance are added in the middle of the polymerization reaction, it may be added after the polymerization reaction is carried out for 0.2 to 4 hours, more preferably after the reaction for 0.2 to 3 hours, and more preferably after the reaction for 0.2 to 2.5 hours.
  • the polymerization reaction is preferably: using a base as a catalyst, reacting at 60-80 ° C for 0.5-4 h, adding graphene-like substances. And nitrogen-containing substances, continue to react at 80-95 ° C for 1-4h.
  • the base is a substance which can provide an alkaline environment in the prior art, including but not limited to sodium hydroxide, ammonia water and the like.
  • the polymerization is preferably carried out by reacting with an acid as a catalyst at 60-80 ° C for 0.5-4 h; adding a graphene-based substance and a nitrogen-containing substance, and continuing to react at 80-95 ° C for 1-4 h.
  • the acid is a substance which can provide an acidic environment in the prior art, including but not limited to hydrochloric acid, oxalic acid, acetic acid and the like.
  • the method of adding the activator described above may be carried out by a method of addition in the prior art, preferably as follows:
  • the solidified product is warmed to 600-700 ° C for 0.5-1.5 h, then the activator is added and the temperature is continued to 800-1000 ° C for 1-3 h.
  • the composite material for electrodes described above is mainly used as an electrode, and can of course be used in other fields as well.
  • the ratio of the phenol, the aldehyde and the catalyst is the molar ratio of the phenol monomer based on the hydroxy group, the aldehyde monomer based on the aldehyde group, and the catalyst.
  • the graphene used in all the following examples and comparative examples is commercially available HX-G;
  • Graphene oxide is obtained by ultrasonic dispersion of commercially available graphite oxide (SE2430) (see Example 1 for the specific dispersion method).
  • the carboxylated graphene oxide, the biomass graphene, and the oxidized biomass graphene can be obtained by the following method, but are not limited to the following methods, and can also be obtained by a method of graphene and graphene oxide in the prior art. Commercially available graphene and graphene oxide are used directly.
  • the commercially available biomass graphene of the present invention is prepared by using biomass graphene produced by Jinan Shengquan Group or by Preparation 2.
  • Step 1 First prepare cellulose:
  • the treated wheat straw is cooked using an organic acid solution of formic acid and acetic acid having a total acid concentration of 80% by weight, and the quality of acetic acid and formic acid in the organic acid solution of the present embodiment
  • the ratio is 1:12, and 1 wt% of hydrogen peroxide (H2O2), which is the raw material of wheat straw, is added as a catalyst before the feedstock is added.
  • the reaction temperature is controlled at 120 ° C, the reaction is carried out for 30 min, and the solid-liquid mass ratio is 1:10.
  • the reaction solution is subjected to a first solid-liquid separation;
  • step (3) collecting the liquid obtained by the first and second solid-liquid separation, performing high-temperature and high-pressure evaporation at 120 ° C, 301 kPa until evaporation to dryness, and condensing the obtained formic acid and acetic acid vapor back to the reaction kettle of the step (1). Used as a cooking liquor for the cooking of step (1);
  • step (5) collecting the liquid obtained by the third solid-liquid separation, performing water and acid distillation, and returning the obtained mixed acid solution to the reaction vessel of the step (1) for use as a cooking liquid for the cooking of the step (1).
  • Water is used in step (5) to act as water for washing;
  • Step 2 Preparation of graphene from the cellulose prepared above as raw material:
  • the precursor was heated to 170 ° C at a rate of 3 ° C / min, kept for 2 h, then programmed to 400 ° C, heat for 3 h, then warmed to 1200 ° C, after 3 h of heat to obtain a crude product;
  • the heating rate is 15 ° C / min;
  • Biomass graphene has a porous structure, and the sheet layer is already open relative to graphite, so the oxidation condition is weaker than that of graphite.
  • the specific implementation process is as follows:
  • a preparation method of a modified phenolic resin fiber comprises the following steps:
  • a phenol:formaldehyde:sodium hydroxide was added to a four-necked flask at a molar ratio of 1:1.32:0.05, and stirred under reflux at 70 ° C for 2 hours to obtain a prepolymer of a phenol resin; and then to the phenolic resin prepolymer.
  • Adding PVA obtaining a spin-on polymer-prepolymer solution; wherein, in terms of aldehydes, the molar ratio of the phenolic resin prepolymer to the spin-on polymer PVA is 1:0.07;
  • the phenolic resin spinning dope is subjected to electrospinning, and the spinning parameters are: a spinning voltage of 15 to 30 kV, a spinning distance of 15 to 25 cm, a spinning temperature of 20 to 40 ° C, and a spinning humidity of 30 ⁇ . 50%, the spinning solution advance rate is 1 ⁇ 3mL / h, then the primary spinning obtained by electrospinning is placed in a constant temperature drying oven, cured at 100-180 ° C for 1 ⁇ 6h, dried to obtain graphene modification Phenolic fiber.
  • the spinning parameters are: a spinning voltage of 15 to 30 kV, a spinning distance of 15 to 25 cm, a spinning temperature of 20 to 40 ° C, and a spinning humidity of 30 ⁇ . 50%, the spinning solution advance rate is 1 ⁇ 3mL / h, then the primary spinning obtained by electrospinning is placed in a constant temperature drying oven, cured at 100-180 ° C for 1 ⁇ 6h, dried to obtain graphene modification Phenolic fiber
  • the amount of graphene oxide added was 0.5% of the phenol resin product.
  • Example 1-1 The difference from Example 1-1 is that the replacement graphene oxide is a carboxylated graphene oxide.
  • Example 1-1 The difference from Example 1-1 is that the replacement graphene oxide is graphene.
  • Example 1-1 The difference from Example 1-1 is that the replacement graphene oxide is biomass graphene.
  • Example 1-1 The difference from Example 1-1 is that the replacement of graphene oxide is oxidized biomass graphene.
  • Example 1-1 The difference from Example 1-1 is that the graphene oxide is added in an amount of 0.01 wt%, 1 wt%, 10 wt%, 15 wt% of the phenol resin product.
  • Example 1-1 The difference from Example 1-1 was that the solubility of the graphene oxide solution added was 1 mg/g, 5 mg/g, and 15 mg/g, respectively.
  • Example 1-1 The difference from Example 1-1 is that the solvent of the graphene oxide solution is different, and is ethanol, DMF, and acetone, respectively.
  • Example 1-14 The difference from Example 1-14 (solvent is DMF) was that polyvinyl alcohol was replaced with polyvinylpyrrolidone, polyethylene glycol, nitrile rubber, styrene butadiene rubber, polyurethane, and natural rubber, respectively.
  • Example 1-1 The difference from Example 1-1 is that the types of phenol and aldehyde are different.
  • the ratio of phenolic resin to PVA is different from that of Example 1-1.
  • the molar ratio of the prepolymer of the phenolic resin to the spin-on polymer PVA was 1:0.05 based on the aldehyde species.
  • the ratio of phenolic resin to PVA is different from that of Example 1-1.
  • the molar ratio of the prepolymer of the phenolic resin to the spin-on polymer PVA was 1:0.1 based on the aldehyde species.
  • Example 1-1 The difference from Example 1-1 was that a graphene and a polyvinyl alcohol were added thereto in one step when the phenol resin started the reaction.
  • the phenolic resin is electrospun at 130 ° C and 0.2 MPa, and the spinning parameters are: a spinning voltage of 15 to 30 kV, a spinning distance of 15 to 25 cm, a spinning temperature of 20 to 40 ° C, and a spinning humidity of 30 ⁇ . 50%, the spinning solution advance rate is 1 ⁇ 3mL / h, then the primary spinning obtained by electrospinning is placed in a constant temperature drying oven, cured at 100 ⁇ 180 ° C for 1 ⁇ 6h, dried to obtain graphene modification Phenolic fiber.
  • the concentration of graphene oxide is 10 mg / g
  • the graphene oxide was added in an amount of 0.5% of the phenol resin product.
  • Example 1-1 The difference from Example 1-1 is that no PVA is added.
  • Example 1-1 The difference from Example 1-1 is that no GO is added.
  • Comparative Example 1-1 The difference from Comparative Example 1-1 was that PVA and graphene oxide were not added.
  • Table 1 below shows the data of the above Examples 1-1 to 1-23.
  • the phenolic resin fibers obtained in Examples 1-1 to 1-24 and Comparative Examples 1-1 and 1-2 to 1-4 were placed in a tubular resistance furnace, and were heated at a temperature increase rate of 3 ° C/min under a nitrogen atmosphere.
  • a temperature increase rate of 3 ° C/min under a nitrogen atmosphere.
  • 800 ° C constant temperature 3 h, obtain nano carbon fiber, determine its conductivity and specific surface area data (using multi-function electrical measurement digital four-probe tester to determine its conductivity; according to the method of GB/T 10722-2003, the ratio Surface area and porosity analyzer to determine its specific surface area), the test results are shown in Table 3 below:
  • Example 1-11 1552 806 Example 1-12 1536 752
  • Example 1-13 1512 819 Example 1-14 1498 849
  • Example 1-15 1467 860 Example 1-16 1530 830
  • Example 1-17 1320 811 Example 1-18 1402 798
  • Example 1-19 1218 803 Example 1-20 1296 786
  • Example 1-21 1301 785 Example 1-22 1520 826
  • Comparative example 1-4 Can't be silk Can't be silk
  • the phenolic resin fibers obtained in Examples 1-1 to 1-23 and Comparative Examples 1-1 to 1-4 were placed in a tube type electric resistance furnace, and were raised to 800 ° C at a heating rate of 3 ° C / min under a nitrogen atmosphere. At a constant temperature of 3 h, nano carbon fibers were obtained and applied to the preparation of electrodes.
  • Electrode preparation The above-mentioned nano carbon fiber film was cut into 1 ⁇ 1 cm electrode sheets, weighed and placed between two pieces of foamed nickel, and taken out with nickel sheets, and compacted at 8 MPa using a tableting machine to obtain electrodes to be tested. .
  • the electrode to be tested was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitance at 0.1 A/g is shown in Table 1-3 below.
  • a preparation method of modified phenolic fiber comprises the following steps:
  • the graphene oxide dispersion is added to a polyvinyl alcohol aqueous solution (concentration of the polyvinyl alcohol aqueous solution is 15% by weight), and stirred to obtain a mixed liquid, the concentration of the graphene oxide in the mixed liquid is 10 mg / g;
  • the molar ratio of the prepolymer of the phenolic resin to the spin-on polymer PVA is 1:0.05;
  • the amount of graphene oxide added was 0.5% of the phenol resin product.
  • the only difference from the embodiment 2-1 is that the graphene oxide is replaced by the carboxylated graphene oxide, and the other amounts and conditions are the same, and the graphene-modified phenolic fiber is obtained.
  • the only difference from the embodiment 2-1 is that the graphene oxide is replaced by graphene, and the other amounts and conditions are the same, and the graphene-modified phenolic fiber is obtained.
  • the only difference from the embodiment 2-1 is that the graphene oxide is replaced by the biomass graphene, and the other amounts and conditions are the same, and the graphene-modified phenolic fiber is obtained.
  • the only difference from the embodiment 2-1 is that the graphene oxide is replaced by the oxidized biomass graphene, and the other amounts and conditions are the same, and the graphene-modified phenolic fiber is obtained.
  • Example 2-1 Compared with Example 2-1, the difference was only in the amount of graphene oxide used, and the amount of graphene oxide added was 0.01%, 1%, 10%, and 15% of the phenol resin product.
  • Example 2-1 Compared with Example 2-1, the only difference is that the concentration of graphene oxide in the mixed solution is different, respectively It is 1 mg/g, 5 mg/g, and 15 mg/g.
  • Example 2-14 to 2-16 and Example 2-1 The difference between Examples 2-14 to 2-16 and Example 2-1 is only that the solvent used for the ultrasonic dispersion of graphene oxide is different, and they are ethanol, DMF, and acetone, respectively.
  • Examples 2-17 to 2-22 differ from Examples 2-15 (solvent is DMF) only in that polyvinyl alcohol is replaced by polyvinylpyrrolidone, polyethylene glycol, nitrile rubber, styrene butadiene rubber, polyurethane, respectively. Natural rubber, other amounts and conditions are the same, and graphene modified phenolic fiber is obtained. Polyvinyl alcohol has a good effect, rubber is relatively poor, and others are similar to polyvinyl alcohol.
  • Example 2-1 The difference from Example 2-1 is that the type of phenol and aldehyde are different, that is, step (2) is different, that is,
  • the ratio of phenolic resin to PVA is different from that of Example 2-1.
  • step (1) PVA is added to the phenolic resin prepolymer (the molar ratio of the phenolic resin prepolymer to the spin-on polymer PVA is 1:0.01 based on the aldehyde substance).
  • the ratio of phenolic resin to PVA is different from that of Example 2-1.
  • step (1) PVA is added to the phenol resin prepolymer (the molar ratio of the phenol resin prepolymer to the spin-on polymer PVA is 1:0.1 based on the aldehyde substance).
  • step (1) is not carried out, and a mixed liquid of graphene oxide and an aqueous polyvinyl alcohol solution is not added in the step (2).
  • step (1) is not carried out, and the mixture of graphene oxide and polyvinyl alcohol aqueous solution is added in step (2) instead of adding only the graphene oxide aqueous solution.
  • step (1) is not carried out, and the mixture of graphene oxide and polyvinyl alcohol aqueous solution is added in step (2) instead of only adding polyvinyl alcohol aqueous solution.
  • Example 2-1 The difference from Example 2-1 was that a graphene and a polyvinyl alcohol were added thereto in one step when the phenol resin started the reaction.
  • the phenolic resin is melt-spun at 130 ° C and 0.2 MPa, and the phenolic fiber is drawn to obtain a phenolic phenolic fiber, which is solidified into a coagulation bath for 10%, a hydrochloric acid content of 15%, and a water content of 75. %, the temperature is 80-100 ° C, the heating rate is 10 ° C ⁇ 20 ° C / h, then constant temperature, curing 1 ⁇ 2h, washed with water, dried to obtain graphene modified phenolic fiber.
  • the concentration of graphene oxide is 10 mg / g
  • the graphene oxide was added in an amount of 0.5% of the phenol resin product.
  • the content of the spin-on polymer is the molar ratio of the spin-on polymer to the phenol resin.
  • the phenolic resin fibers obtained in Examples 2-1 to 2-25 and Comparative Examples 2-1 to 2-4 were placed in a tubular resistance furnace, and were raised to 800 ° C at a temperature increase rate of 3 ° C/min under a nitrogen atmosphere.
  • the electrode material was obtained at a constant temperature of 3 h and applied to the preparation of the electrode.
  • the above electrode material, conductive carbon black and binder were mixed at a mass ratio of 85:10:5, then subjected to overspeed shear mixing at a speed of 5000 rpm, and then subjected to vertical rolling and horizontal rolling at 80 MPa.
  • a film of uniform thickness was formed and the film was placed at 100 ° C for 24 h.
  • the dried film was cut into 1 ⁇ 1 cm electrode sheets, weighed and placed between two pieces of foamed nickel, and taken out with nickel sheets.
  • the tablet press was compacted at 8 MPa to obtain the electrode to be tested.
  • the electrode to be tested was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitance at 0.1 A/g is shown in Table 2-1 below.
  • Example 2-15 Example 2-17 148.5
  • Example 2-18 Example 2-19 139.8
  • Example 2-20 132.6
  • Example 2-23 145.3 Example 2-24 149.6
  • a preparation method of a modified phenolic resin fiber comprises the following steps:
  • a phenol:formaldehyde:oxalic acid was added to a four-necked flask at a molar ratio of 1:0.8:0.05, and heated under stirring at 70 ° C for 2 hours to obtain a prepolymer of a phenol resin; then PVA was added to the phenolic resin prepolymer. (in a molar ratio of the phenolic resin prepolymer to the spin-on polymer PVA of 1:0.005), a spin-on polymer-prepolymer solution is obtained;
  • the phenolic resin is melt-spun at 130 ° C and 0.2 MPa, and the phenolic fiber is drawn to obtain a phenolic phenolic fiber, which is solidified into a coagulation bath, and the formaldehyde content in the coagulation bath is 10%, and the hydrochloric acid content is 15%.
  • the content is 75%
  • the temperature is 80-100 ° C
  • the heating rate is 10 ° C ⁇ 20 ° C / h
  • constant temperature curing 1-2 h
  • washing with water drying to obtain graphene modified phenolic fiber.
  • the amount of graphene oxide added was 0.5% of the phenol resin product.
  • Example 3-1 The difference from Example 3-1 is that the replacement graphene oxide is a carboxylated graphene oxide.
  • Example 3-1 The difference from Example 3-1 is that the replacement graphene oxide is graphene.
  • Example 3-1 The difference from Example 3-1 is that the replacement graphene oxide is biomass graphene.
  • Example 3-1 The difference from Example 3-1 is that the replacement of graphene oxide is oxidized biomass graphene.
  • Example 3-1 The difference from Example 3-1 is that the graphene oxide is added in an amount of 0.01 wt%, 1 wt%, 10 wt%, 15 wt% of the phenol resin product.
  • Example 3-1 The difference from Example 3-1 was that the solubility of the graphene oxide solution added was 1 mg/g, 5 mg/g, and 15 mg/g, respectively.
  • Example 3-1 The difference from Example 3-1 is that the solvent of the graphene oxide solution is different, and is ethanol, DMF, and acetone, respectively.
  • Example 3-14 The difference from Example 3-14 (solvent is DMF) was that polyvinyl alcohol was replaced with polyvinylpyrrolidone, polyethylene glycol, nitrile rubber, styrene butadiene rubber, polyurethane, and natural rubber, respectively.
  • Example 3-1 The difference from Example 3-1 is that the types of phenol and aldehyde are different.
  • the ratio of phenolic resin to PVA is different from that of Example 3-1.
  • the ratio of phenolic resin to PVA is different from that of Example 3-1.
  • Example 1 The difference from Example 1 is that a graphene and a polyvinyl alcohol are added thereto in one step when the phenol resin starts to react.
  • the phenolic resin is melt-spun at 130 ° C and 0.2 MPa, and the phenolic fiber is drawn to obtain a phenolic phenolic fiber, which is solidified into a coagulation bath for 10%, a hydrochloric acid content of 15%, and a water content of 75. %, the temperature is 80-100 ° C, the heating rate is 10 ° C ⁇ 20 ° C / h, then constant temperature, curing 1 ⁇ 2h, washed with water, dried to obtain graphene modified phenolic fiber.
  • the concentration of graphene oxide is 10 mg / g
  • the graphene oxide was added in an amount of 0.5% of the phenol resin product.
  • Example 3-1 The difference from Example 3-1 is that no PVA is added.
  • Example 3-1 The difference from Example 3-1 was that PVA and graphene oxide were not added.
  • Example 3-1 The difference from Example 3-1 was that no graphene oxide was added.
  • the content of the spin-on polymer is the molar ratio of the spin-on polymer to the phenol resin.
  • the phenol resin fibers obtained in Examples 3-1 to 3-24 and Comparative Examples 3-1 to 3-4 were placed in a tubular resistance furnace. In the middle, under the protection of nitrogen at a temperature increase rate of 3 ° C / min to 800 ° C, constant temperature 3h, the electrode material was obtained and applied to the preparation of the electrode.
  • the above electrode material, conductive carbon black and binder were mixed at a mass ratio of 85:10:5, then subjected to overspeed shear mixing at a speed of 5000 rpm, and then subjected to vertical rolling and horizontal rolling at 80 MPa.
  • a film of uniform thickness was formed and the film was placed at 100 ° C for 24 h.
  • the dried film was cut into 1 ⁇ 1 cm electrode sheets, weighed and placed between two pieces of foamed nickel, and taken out with nickel sheets, and compacted at 8 MPa using a tableting machine to obtain electrodes to be tested.
  • the electrode to be tested was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitance at 0.1 A/g is shown in Table 3-2 below.
  • Example 3-1 Serial number Specific capacitance at 0.1A/g (F/g)
  • Example 3-1 153.9
  • Example 3-2 152.3
  • Example 3-3 157.5
  • Example 3-4 130.1
  • Example 3-5 125.7
  • Example 3-6 117.5
  • Example 3-7 147.9
  • Example 3-8 119.5
  • Example 3-9 117.9
  • Example 3-10 140.7
  • Example 3-11 123.7
  • Example 3-13 156.8 Example 3-14 136.7
  • Example 3-15 128.8 Example 3-16 145.5
  • Example 3-18 136.8 Example 3-19 130.1
  • Example 3-20 126.9 Example 3-21 121.9
  • Example 3-23 Example 3-24 146.2 Comparative example 3-1 109.6 Comparative example 3-2 131.2 Comparative 3-3 123.9 Comparative example 3-4 113.6
  • a preparation method of modified phenolic fiber comprises the following steps:
  • Electrospinning the phenolic resin spinning dope the spinning parameters are: spinning voltage 15 ⁇ 30kV, spinning distance 15 ⁇ 25cm, spinning temperature 20 ⁇ 40 ° C, spinning humidity 30 ⁇ 50%
  • the spinning solution is advanced at a rate of 1 to 3 mL/h, and then the nascent spinning obtained by electrospinning is placed in a constant temperature drying oven and cured at 100-180 ° C for 1 to 6 hours to obtain graphene-modified phenolic fibers.
  • the amount of graphene oxide added was 0.5% of the phenol resin product.
  • Example 4-1 The only difference from Example 4-1 is that the graphene oxide is replaced by carboxylated graphene oxide, which The amount and conditions are the same, and graphene modified phenolic fiber is obtained.
  • the only difference from the embodiment 4-1 is that the graphene oxide is replaced by the biomass graphene, and the other amounts and conditions are the same, and the graphene-modified phenolic fiber is obtained.
  • the only difference from the embodiment 4-1 is that the graphene oxide is replaced by the oxidized biomass graphene, and the other amounts and conditions are the same, and the graphene-modified phenolic fiber is obtained.
  • Example 4-1 Compared with Example 4-1, the difference was only in the amount of graphene oxide used, and the amount of graphene oxide added was 0.01%, 1%, 10%, and 15% of the phenol resin product.
  • Example 4-1 The difference from Example 4-1 was that the concentration of graphene oxide in the mixed solution was 1 mg/g, 5 mg/g, and 15 mg/g, respectively.
  • Example 4-1 The difference between Examples 4-13 to 4-15 and Example 4-1 is only that the solvent used in the ultrasonic dispersion of graphene oxide is different, and they are ethanol, DMF, and acetone, respectively.
  • Examples 4-16 to 4-21 differ from Examples 4-14 (solvent is DMF) only in that polyvinyl alcohol is replaced by polyvinylpyrrolidone, polyethylene glycol, nitrile rubber, styrene butadiene rubber, polyurethane, respectively. Natural rubber, other amounts and conditions are the same, and graphene modified phenolic fiber is obtained. Polyvinyl alcohol has a good effect, rubber is relatively poor, and others are similar to polyvinyl alcohol.
  • Example 4-1 The difference from Example 4-1 is that the type of phenol and aldehyde are different, that is, step (2) is different, that is,
  • the ratio of phenolic resin to PVA is different from that of Example 4-1.
  • the molar ratio of the prepolymer of the phenolic resin to the spin-on polymer PVA was 1:0.05 based on the aldehyde species.
  • the ratio of phenolic resin to PVA is different from that of Example 4-1.
  • the molar ratio of the prepolymer of the phenolic resin to the spin-on polymer PVA was 1:0.1 based on the aldehyde species.
  • step (1) is not carried out, and a mixed liquid of graphene oxide and an aqueous polyvinyl alcohol solution is not added in the step (2).
  • step (1) is not carried out, and the mixture of graphene oxide and polyvinyl alcohol aqueous solution is added in step (2) instead of adding only the graphene oxide aqueous solution.
  • step (1) is not carried out, and the mixture of graphene oxide and polyvinyl alcohol aqueous solution is added in step (2) instead of only adding polyvinyl alcohol aqueous solution.
  • Example 4-1 The difference from Example 4-1 was that a graphene and a polyvinyl alcohol were added thereto in one step when the phenol resin started to react.
  • Phenol, formaldehyde, and ammonia water were added to a four-neck round bottom flask equipped with a stirrer, a thermometer, and a condenser in a molar ratio of 1.2:1:0.05, and then uniformly stirred, and then a solution of polyvinyl alcohol and graphene oxide was added, and the mixture was heated at 70 ° C. Stirring for 2 h, heating to 85 ° C, heating and stirring for 3 h, stopping the stirring to obtain a phenolic resin spinning dope;
  • the phenolic resin spinning dope is electrospun, and the spinning parameters are: spinning voltage 15-30 kV, spinning distance 15-25 cm, spinning temperature 20-40 ° C, spinning humidity 30-50%, spinning
  • the advancing rate of the solution is 1 to 3 mL/h, and then the nascent spinning obtained by electrospinning is placed in a constant temperature drying oven and cured at 100-180 ° C for 1 to 6 hours to obtain graphene-modified phenolic fibers.
  • the concentration of graphene oxide is 10 mg / g
  • the graphene oxide was added in an amount of 0.5% of the phenol resin product.
  • the phenolic resin fibers obtained in Examples 4-1 to 4-24 and Comparative Examples 4-1 to 4-4 were placed in a tube type electric resistance furnace, and were raised to 800 ° C at a heating rate of 3 ° C / min under a nitrogen atmosphere.
  • the electrode material was obtained at a constant temperature of 3 h and applied to the preparation of the electrode.
  • the above electrode material, conductive carbon black and binder were mixed at a mass ratio of 85:10:5, then subjected to overspeed shear mixing at a speed of 5000 rpm, and then subjected to vertical rolling and horizontal rolling at 80 MPa.
  • a film of uniform thickness was formed and the film was placed at 100 ° C for 24 h.
  • the dried film was cut into 1 ⁇ 1 cm electrode sheets, weighed and placed between two pieces of foamed nickel, and taken out with nickel sheets, and compacted at 8 MPa using a tableting machine to obtain electrodes to be tested.
  • the electrode to be tested was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitance at 0.1 A/g is shown in Table 4-2 below.
  • Example 4-3 169 Example 4-4 143 Example 4-5 159 Example 4-6 132 Example 4-7 189 Example 4-8 150 Example 4-9 143 Example 4-10 170 Example 4-11 156 Example 4-12 143 Example 4-13 176 Example 4-14 172 Example 4-15 179 Example 4-16 169 Example 4-17 165 Example 4-18 156 Example 4-19 167 Example 4-20 156 Example 4-21 160 Example 4-22 173 Example 4-23 168 Example 4-24 183 Comparative Example 4-1 no Comparative Example 4-2 no Comparative Example 4-3 127 Comparative Example 4-4 168
  • Graphene A and graphene oxide A used in the following examples a1 to a35 and comparative examples a1 to a4 were all commercially available.
  • the preparation method of the carboxylated graphene oxide A is as follows:
  • the preparation method of the biomass graphene used in the following examples is as follows: (The preparation method of the biomass graphene in the prior art can also be used, and the biomass graphene produced by Jinan Shengquan Group can also be used)
  • the treated wheat straw is cooked using an organic acid solution of formic acid and acetic acid with a total acid concentration of 80% by weight.
  • the mass ratio of acetic acid to formic acid in the organic acid solution is 1: 12, and before adding the raw material, add 1wt% of hydrogen peroxide (H 2 O 2 ) as the catalyst, control the reaction temperature at 120 ° C, react for 30 min, the solid-liquid mass ratio is 1:10, and the obtained
  • the reaction liquid is subjected to a first solid-liquid separation;
  • the solid obtained by the first solid-liquid separation is added to an organic acid solution having a total acid concentration of 75 wt% of formic acid and acetic acid for acid washing, wherein the total acid concentration of 75 wt% of the organic acid solution is added to the wheat straw.
  • the liquid is subjected to a second solid-liquid separation;
  • step (3) collecting the liquid obtained by the first and second solid-liquid separation, performing high-temperature and high-pressure evaporation at 120 ° C, 301 kPa until evaporation to dryness, and condensing the obtained formic acid and acetic acid vapor back to the reaction kettle of the step (1). Used as a cooking liquor for the cooking of step (1);
  • step (5) collecting the liquid obtained by the third solid-liquid separation, performing water and acid distillation, and returning the obtained mixed acid solution to the reaction vessel of the step (1) for use as a cooking liquid for the cooking of the step (1).
  • Water is used in step (5) to act as water for washing;
  • the precursor was heated to 170 ° C at a rate of 3 ° C / min, kept for 2 h, then programmed to 400 ° C, held for 3 h, then heated to 1200 ° C, after 3 h to obtain a crude product;
  • the heating rate of the heating is 15 ° C / min;
  • Biomass graphene has a porous structure, and the sheet layer is already open relative to graphite, so the oxidation condition is weaker than that of graphite.
  • the specific implementation process is as follows:
  • the graphene oxide dispersion may also be added at the same time as the melamine, or may be optionally exchanged with melamine.
  • a certain amount of graphene oxide/phenolic resin composite material was taken and cured in a constant temperature blast oven at 200 ° C for 6 h.
  • the phenolic resin/GO composite material after curing was pulverized by a micro high-speed pulverizer, and the pulverized material was placed in a tubular resistance furnace, and raised to 800 ° C at a heating rate of 3 ° C / min under a nitrogen atmosphere, and the temperature was maintained for 3 hours, and finally obtained.
  • Graphene/nitrogen-containing carbon material The specific surface area was 520 m 2 /g by nitrogen adsorption desorption test.
  • the graphene/nitrogen-containing carbon, the conductive carbon black, and the binder are mixed at a mass ratio of 85:10:5, then subjected to overspeed shear mixing at a speed of 5000 rpm, and then formed by vertical rolling and horizontal rolling at 80 MPa.
  • a film of uniform thickness was placed and placed at 100 ° C for 24 h. The dried film was cut into 1*1 cm electrode sheets, weighed and placed between two pieces of foamed nickel, and taken out with nickel sheets, and compacted at 8 MPa using a tableting machine to obtain electrodes to be tested.
  • the electrode to be tested was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitance is 231 F/g at 0.1 A/g.
  • Example a2 differs from Example a1 only in that the molar ratio of phenol, formaldehyde (37%), sodium hydroxide (20%) and melamine is 1:1.32:0.08:0.001. Others are the same as embodiment a1.
  • the electrode to be tested obtained in the present example was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitance is 158 F/g at 0.1 A/g.
  • the aminophenol was placed in a three-necked flask, stirred in an oil bath at 45 ° C for 10 min, and an aqueous solution of NaOH (20%) and formaldehyde were added thereto, and the mixture was heated to 70 ° C and stirred for 1 h. Then, the temperature was raised to 90 ° C, and then the graphene oxide dispersion was slowly added. The amount of graphene oxide added was 0.1 wt% of the total amount of phenol and formaldehyde, and stirring was continued for 3.5 h.
  • the pH was adjusted to neutral using a 2 mol/L HCl solution, and the phenol resin was transferred to a rotary evaporation flask, and the temperature was raised to 50 ° C under vacuum to remove water to obtain a nitrogen-containing graphene oxide/phenolic resin.
  • Steps (2) and (3) are the same as in embodiment a1.
  • the electrode to be tested is immersed in 6M KOH solution for 24 hours, it is connected to the electrochemical workstation.
  • the test was carried out using a three-electrode system.
  • the specific capacitance is 208 F/g at 0.1 A/g.
  • the graphene oxide dispersion was slowly added, and the amount of graphene oxide added was 0.1 wt% of the total amount of phenol and formaldehyde, and stirring was continued for 3.5 hours.
  • the pH was adjusted to neutral using a 2 mol/L HCl solution, the phenol resin was transferred to a rotary evaporation flask, and the temperature was raised to 50 ° C under vacuum to remove water, and finally a graphene oxide/phenolic resin composite was obtained. .
  • Steps (2) and (3) are the same as in embodiment a1.
  • the electrode to be tested was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitance is 222 F/g at 0.1 A/g.
  • step (2) is:
  • a certain amount of graphene oxide/phenolic resin composite material was taken and cured in a constant temperature blast oven at 200 ° C for 6 h.
  • the phenolic resin/GO composite material after curing was pulverized by a micro high-speed pulverizer, and the pulverized material was placed in a tubular resistance furnace, and raised to 600 ° C at a heating rate of 3 ° C / min under a nitrogen atmosphere, and the temperature was maintained for 1 h, and preliminary Carbonized material.
  • the obtained carbonized material and KOH were sufficiently ground and mixed at a mass ratio of 1:1, 1:2, and 1:4 (corresponding to Example a5-a7, respectively), and then placed again in a tubular resistance furnace, and the temperature was raised to 800 ° C.
  • the obtained product is subjected to pickling, water washing, drying, etc. to obtain graphene/nitrogen-containing activated carbon.
  • the samples were designated as PNG-KOH-1, PNG-KOH-2, and PNG-KOH-4 according to the KOH addition ratio.
  • Nitrogen adsorption-desorption test, PNG-KOH-1, PNG -KOH-2, PNG-KOH-4 specific surface area were 1123m 2 / g, 1817m 2 / g and 2187m 2 / g.
  • Step (3) is the same as Example a4.
  • the electrode to be tested was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitances of the products of Examples a5-a7 were 262 F/g, 308 F/g and 322 F/g at 0.1 A/g, respectively.
  • the difference from the example a4 is that the graphene oxide A is replaced with graphene A in an amount (relative to the ratio of phenol to aldehyde) and the reaction conditions are the same to obtain a composite material.
  • the difference from the example a6 is that the graphene oxide A is replaced with graphene A, and the amount thereof (the ratio with respect to the phenol and the aldehyde) and the reaction conditions are the same, and a composite material is obtained.
  • the only difference from the example a4 is that the graphene oxide A is replaced with the carboxylated graphene oxide A, and the amount thereof (the ratio with respect to the phenol and the aldehyde) and the reaction conditions are the same, and a composite material is obtained.
  • the only difference from the embodiment a6 is that the graphene oxide A is replaced with the carboxylated graphene oxide A, and the amount thereof (the ratio with respect to the phenol and the aldehyde) and the reaction conditions are the same, and a composite material is obtained.
  • the only difference from the embodiment a4 is that the graphene oxide A is replaced with the biomass graphene, and the amount thereof (the ratio with respect to the phenol and the aldehyde) and the reaction conditions are the same, and a composite material is obtained.
  • the only difference from the embodiment a6 is that the graphene oxide A is replaced with the biomass graphene, and the amount thereof (the ratio with respect to the phenol and the aldehyde) and the reaction conditions are the same, and a composite material is obtained.
  • the only difference from the embodiment a4 is that the graphene oxide A is replaced with the oxidized biomass graphene, and the amount thereof (the ratio with respect to the phenol and the aldehyde) and the reaction conditions are the same to obtain a composite material.
  • the only difference from the embodiment a6 is that the graphene oxide A is replaced with the oxidized biomass graphene, and the amount thereof (the ratio with respect to the phenol and the aldehyde) and the reaction conditions are the same, and a composite material is obtained.
  • the difference between the examples a16-a18 and the example a4 is only that the amount of the graphene oxide A is different, and the use thereof
  • the amounts are 0.01 wt%, 0.5 wt%, and 1 wt%, respectively, of the total amount of phenol and formaldehyde.
  • Examples a19-a20 differed from Example a4 only in that the amount of melamine used was different, and the molar ratio of melamine to phenol was 0.04:1 and 0.1:1, respectively.
  • Example a21 differs from Example a4 only in that formaldehyde is replaced by furfural.
  • the difference between the example a22 and the example a4 is that the melamine is replaced by ethylenediamine, the amount thereof (molar ratio with respect to phenol and aldehyde) and the reaction conditions are the same, and a composite material is obtained.
  • the difference between the example a23 and the example a4 is that the potassium hydroxide is replaced with phosphoric acid during carbonization, the amount thereof (ratio to the carbonized material) and the reaction conditions are the same, and a composite material is obtained.
  • thermoplastic resin is produced, as follows.
  • the graphene oxide dispersion was slowly added, and the amount of graphene oxide added was 0.1 wt% of the total amount of phenol and formaldehyde, and stirring was continued for 3.5 hours.
  • the pH was adjusted to neutral using a 2 mol/L NaOH solution, the phenolic resin was transferred to a rotary evaporation flask, and the temperature was raised to 50 ° C under vacuum to remove water, and finally a graphene oxide/phenolic resin composite was obtained. .
  • a certain amount of graphene oxide/phenolic resin composite material was taken, and a curing agent (10% of the mass of the phenolic resin) of hexamethylenetetramine was added, and the mixture was cured in a constant temperature blast oven at 150 ° C for 6 hours.
  • the phenolic resin/GO composite material after curing was pulverized by a micro high-speed pulverizer, and the pulverized material was placed in a tubular resistance furnace, and raised to 800 ° C at a heating rate of 3 ° C / min under a nitrogen atmosphere, and the temperature was maintained for 3 hours, and finally obtained.
  • Graphene/nitrogen-containing carbon material The specific surface area was 520 m 2 /g by nitrogen adsorption desorption test.
  • Step (3)(4) is the same as Example a4.
  • a certain amount of graphene oxide/phenolic resin composite material was taken, and a curing agent (10% of the mass of the phenolic resin) of hexamethylenetetramine was added, and the mixture was cured in a constant temperature blast oven at 150 ° C for 6 hours.
  • the cured phenolic resin/GO composite material was pulverized using a micro high-speed pulverizer, and the obtained pulverized material and KOH were sufficiently ground and mixed at a mass ratio of 1:2, and then placed in a tubular resistance furnace under nitrogen protection.
  • the temperature rising rate of 3 ° C / min was raised to 800 ° C, and the temperature was maintained for 3 h to finally obtain a graphene/nitrogen-containing carbon material.
  • the specific surface area of the test material by nitrogen adsorption desorption was 1721 m 2 /g.
  • Example a4 The only difference from Example a4 was that the graphene oxide dispersion was 2 mg/g.
  • Example a4 The only difference from Example a4 was that the graphene oxide dispersion was 4 mg/g.
  • the graphene oxide was dispersed by ultrasonication in ethanol to obtain a 3 mg/g graphene oxide dispersion for use.
  • the graphene oxide was dispersed by ultrasonication in acetone to obtain a 3 mg/g graphene oxide dispersion for use.
  • Graphene oxide was dispersed by ultrasonication in DMF to obtain 3 mg/g of graphene oxide dispersion for use.
  • Example a4 The only difference from Example a4 is that the molar ratio of phenol, formaldehyde (37%), sodium hydroxide (20%) and melamine is 1:1.32:0.08:0.15.
  • Example a4 The only difference from Example a4 is that the molar ratio of phenol, formaldehyde (37%), sodium hydroxide (20%) and melamine is 1:1.32:0.08:0.1.
  • Example a3 The only difference from Example a3 is that the meta-aminophenol is replaced by p-aminophenol.
  • Example a3 The only difference from Example a3 is that the meta-aminophenol is replaced by 3-diethylaminophenol.
  • the amount of graphene oxide added was 0.1 wt% of the total amount of phenol and formaldehyde, and stirring was continued for 3.5 h. After the reaction was completed, the pH was adjusted to neutral using a 2 mol/L HCl solution, the phenol resin was transferred to a rotary evaporation flask, and the temperature was raised to 50 ° C under vacuum to remove water, and finally a graphene oxide/phenolic resin composite was obtained. .
  • a certain amount of graphene oxide/phenolic resin composite material was taken and cured in a constant temperature blast oven at 200 ° C for 6 h.
  • the phenolic resin/GO composite material after curing was pulverized by a micro high-speed pulverizer, and the pulverized material was placed in a tubular resistance furnace, and raised to 600 ° C at a heating rate of 3 ° C / min under a nitrogen atmosphere, and the temperature was maintained for 1 h, and preliminary Carbonized material.
  • the obtained carbonized material and KOH were sufficiently ground and mixed at a mass ratio of 1:2, and then placed again in a tubular resistance furnace, and the temperature was raised to 800 ° C, and the temperature was maintained for 2 hours.
  • the obtained product is subjected to pickling, water washing, drying, etc. to obtain graphene activated carbon.
  • the specific surface area of the test material by nitrogen adsorption desorption was 1948 m 2 /g.
  • the graphene/nitrogen-containing carbon, the conductive carbon black, and the binder are mixed at a mass ratio of 85:10:5, then subjected to overspeed shear mixing at a speed of 5000 rpm, and then formed by vertical rolling and horizontal rolling at 80 MPa.
  • a film of uniform thickness was placed and placed at 100 ° C for 24 h. The dried film was cut into 1*1 cm electrode sheets, weighed and placed between two pieces of foamed nickel, and taken out with nickel sheets, and compacted at 8 MPa using a tableting machine to obtain electrodes to be tested.
  • the electrode to be tested was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitance is 166 F/g at 0.1 A/g.
  • Comparative example a2 differs from comparative example a1 in step (2).
  • a certain amount of graphene oxide/phenolic resin composite material was taken and cured in a constant temperature blast oven at 200 ° C for 6 h.
  • the phenolic resin/GO composite material after curing was pulverized by a micro high-speed pulverizer, and the pulverized material was placed in a tubular resistance furnace, and raised to 800 ° C at a heating rate of 3 ° C / min under a nitrogen atmosphere, and the temperature was maintained for 3 hours, and finally obtained.
  • Graphene/nitrogen-containing carbon material The specific surface area of the test material by nitrogen adsorption desorption was 501 m 2 /g.
  • the electrode to be tested was immersed in a 6 M KOH solution for 24 hours, and then connected to an electrochemical workstation for testing using a three-electrode system.
  • the specific capacitance is 98 F/g at 0.1 A/g.
  • Comparative Example a3 differs from Example a6 only in that the timing of addition of graphene oxide A and melamine in step (1) is different, specifically:
  • Steps (2), (3) and (4) are the same as in the sixth embodiment.
  • Comparative Example a4 differs from Example a6 only in that the timing of addition of graphene oxide A and melamine in step (1) is different, specifically:
  • Steps (2), (3) and (4) are the same as in the sixth embodiment.
  • the present invention illustrates the process of the present invention by the above-described embodiments, but the present invention is not limited to the above process steps, that is, it does not mean that the present invention must rely on the above process steps to be implemented. It will be apparent to those skilled in the art that any modifications of the present invention, equivalent substitutions of the materials selected for the present invention, and the addition of the auxiliary ingredients, the selection of the specific means, etc., are all within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种改性的酚醛树脂纤维的制备方法,其包括将石墨烯类物质、助纺聚合物与酚醛树脂相复合,得到含石墨烯的酚醛树脂;和将所得含石墨烯的酚醛树脂经纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。还提供了一促用于电极的复合材料及其制备方法,所述复合材料可由上述改性酚醛树脂纤维制成。

Description

一种改性酚醛树脂纤维及其制备方法和用途,以及由这种改性酚醛树脂纤维制成的用于电极的复合材料 技术领域
本发明涉及一种改性酚醛树脂纤维及其制备方法。本发明还涉及一种可由上述改性酚醛树脂纤维制成的用于电极的复合材料,及其制备方法、制成的电极。
背景技术
酚醛纤维是酚醛树脂经过纺丝、固化得到的一种三维网状结构的纤维,1968年,由美国金刚砂公司首次研制成功[J.Economy,R.A.Clark.Fibers from Nocolacs[P].US Pat.3650102,1968]。酚醛纤维具有突出的耐高温,耐燃,耐腐蚀和抗熔融等特性,极氧指数高,并且具有自熄性;燃烧时收缩率小,烟少;基于以上优异性能,酚醛纤维的应用范围遍布大量工业领域。但由于其苯环密度高,两相邻苯环间只有亚甲基相连,因而很脆,造成酚醛纤维的韧性低、断裂伸长率小,酚羟基易氧化,使其耐热性、耐氧化性、耐碱性受到一定程度的影响,这些缺点使产品的性能降低,使用受到一定限制。
针对酚醛纤维强度低这一问题,研究人员业做了大量的工作。CN 102383216公开了一种超细酚醛纤维的制备方法是通过在合成酚醛树脂的过程中加入一定配比的聚乙烯醇溶液,并通过调节酚、醛、聚乙烯醇、催化剂的配比得到具有可纺性良好的酚醛纺丝原液,并且添加物对酚醛纤维固有性能无影响的优点。该专利通过减小纤维的直径使得纤维的强度增加,但这种方法对纤维强度的提高十分有限。
CN 103215693氧化石墨烯修饰的酚醛树脂基超细多孔炭纤维及制备方法是通过将氧化石墨烯超声分散在有机溶剂中,然后将热固性酚醛树脂以及高分子量线性聚合物加入到上述溶液中直到完全溶解,并通过静电纺丝成复合纤维,后经固化炭化得到石墨烯/酚醛树脂基炭纤维;该专利中氧化石墨烯在有机溶剂中的分散性是普遍不好的。
本领域有需求开发一种具有优异耐热性、高强度和高韧性的酚醛纤维。
石墨烯的加入虽然能够改善酚醛纤维的强度等特性,但是石墨烯容易团聚,在酚醛树脂中分散不好,反而影响其在酚醛树脂中的效果。
电极材料作为超级电容器的核心,决定了超级电容器的整体性能。作为世界上最早人工合成的树脂,酚醛树脂不仅生产工艺成熟,价格低廉,而且具有炭化收率高、组分单一、杂质含量低以及易于活化和成孔等特点。因此,酚醛基活性炭作为电极材料具有广阔的应用前景。双电层电容器的能量主要储存在多孔炭电极的孔壁和液体电解质界面处电荷分离形成的双电层中。一般认为材料的比表面积越大,比电容越大。但实际情况并非如此,炭材料的比电容值往往远低于其理论值,用于超级电容器时表现出较低的能量密度,这大大限制了炭材料的应用。出现这种情况的原因,一方面是比表面积有很大一部分不能被有效利用,另一方面较高的比表面积往往使得材料的导电性下降,因此在材料的制备过程中不能单纯的追求材料的高比表面积。有研究发现通过对材料进行表面改性或者元素掺杂能大幅度提升电化学性能,这为制备高性能的电极材料提供了很好的思路。比如,活性炭由于具有非常丰富的孔隙结构,使得材料表面结构被破坏,往往存在导电性较差的问题,具有优异导电特性的石墨烯被认为是一种能够有效解决活性炭导电性差问题的材料。但是石墨烯片层之间较强的范德华力使得石墨烯非常容易聚集,使得石墨烯的优势无法发挥出来,依然无法解决比电容低的问题。
发明内容
针对现有技术中,酚醛纤维力学性能差、力学强度不高,耐热性能不好等不足,本发明的目的在于提供了一种改性的酚醛树脂纤维的制备方法,其包括:
将石墨烯类物质、助纺聚合物与酚醛树脂相复合,得到
含石墨烯的酚醛树脂;和
将所得含石墨烯的酚醛树脂经纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
具体地,所述的改性的酚醛树脂纤维的制备方法包括如下步骤:
(1)向酚醛树脂的预聚物中加入助纺聚合物,得到助纺聚合物-预聚物溶液;
(2)向所述助纺聚合物-预聚物溶液中加入石墨烯类物质,进行酚醛树脂的聚合反应,得到含石墨烯的酚醛树脂;
(3)将步骤(2)得到的含石墨烯的酚醛树脂经纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
或者,所述改性的酚醛树脂纤维的制备方法包括如下步骤:
(1)混合石墨烯类物质和助纺聚合物,搅拌得到混合液;
(2)将所述石墨烯类物质以步骤(1)所述混合液的形式与酚醛树脂进行复合,得到含石墨烯的酚醛树脂;
(3)将步骤(2)得到的含石墨烯的酚醛树脂纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
另一方面,本发明还提供一种用于电极的复合材料,所述的复合材料解决了比电容低的问题。
提供上述用于电极的复合材料的制备方法,所述的制备方法缓解了石墨烯类物质的团聚问题,提高了材料的导电性和比电容。
提供一种电极,所述的电极比电容高,可作为优异的超级电容器材料。
根据本发明的一个具体技术方案,提供了一种改性的酚醛树脂纤维的制备方法,所述方法包括如下步骤:
(1)向酚醛树脂的预聚物中加入助纺聚合物,得到助纺聚合物-预聚物溶液;
(2)向所述助纺聚合物-预聚物溶液中加入石墨烯类物质,进行热固性酚醛树脂的聚合反应,得到反应液,即为酚醛树脂纺丝原液;
(3)将步骤(2)得到的酚醛树脂纺丝原液静电纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
根据本发明的一个具体技术方案,提供了一种改性的酚醛树脂纤维的制备方法,所述方法包括如下步骤:
(1)向酚醛树脂的预聚物中加入助纺聚合物,得到助纺聚合物-预聚物溶液;
(2)向所述助纺聚合物-预聚物溶液中加入石墨烯类物质,进行热塑性酚醛树脂的聚合反应,得到反应液,纯化后得到改性的酚醛树脂;
(3)将步骤(2)得到的改性的酚醛树脂纺丝成酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
本发明在酚醛树脂的预聚体中加入助纺聚合物,所述助纺聚合物与酚醛树脂预聚体均匀分散,加入石墨烯类物质后,石墨烯类物质能够与助纺聚合物之 间产生较弱的键和作用(如范德华力等),能够有效阻止石墨烯类物质的团聚,实现了石墨烯类物质在酚醛树脂中的均匀分散。
此外,在酚醛树脂的制备过程中,助纺聚合物的加入还能够省略后续纺丝步骤中为了提高可纺性加入的助纺聚合物,简化步骤。
本发明所述助纺聚合物没有特殊限定,任何能够增加可纺性的聚合物均可用于本发明。例如,所述助纺聚合物可以包括橡胶、聚丙烯酰胺、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇或聚乙二醇中的任意1种或至少2种的组合,优选聚乙烯醇。示例性地,所述助纺聚合物的组合包括聚丙烯酰胺和聚丙烯酸的组合、聚乙烯吡咯烷酮和聚乙二醇的组合、聚乙烯醇和聚丙烯酸的组合等。所述橡胶可以为丁腈橡胶、丁苯橡胶、天然橡胶中的一种或多种。
优选地,以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物的摩尔比为1∶0.05~0.1,例如1∶0.05、1∶0.06、1∶0.07、1∶0.08、1∶0.09、1∶0.1等。
所述石墨烯类物质与助纺聚合物-预聚物混合进行热固性酚醛树脂的聚合反应过程中,石墨烯类物质的质量为酚醛树脂的0.01~15wt%,例如0.05wt%、0.1wt%、0.6wt%、0.9wt%、2wt%、3.5wt%、4.2wt%、4.6wt%、5.8wt%、7wt%、8wt%、9wt%、10wt%、11wt%、12wt%、13wt%、14wt%等,优选0.01~10wt%,进一步优选0.01~5wt%,特别优选0.01~2wt%,最优选0.1~1wt%。
所述石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的任意1种或至少2种的混合,所述石墨烯衍生物包括元素掺杂的石墨烯。
优选地,所述石墨烯类物质优选氧化石墨烯。
氧化石墨烯作为一种石墨烯的前驱体或者衍生物,性能不亚于石墨烯,不仅如此氧化石墨烯表面含有丰富的含氧官能团,为氧化石墨烯能够进一步发生化学反应提高了活性位点;氧化石墨烯的引入可以与树脂发生共固化反应或形成部分互穿网络结构镶嵌聚合物中间体基团,并且具有良好的相容性,不存在相分离的情况,增加了酚醛纤维的可纺性及力学性能。
优选地,所述石墨烯衍生物包括元素掺杂石墨烯或官能团化石墨烯物中的任意1种或至少2种的组合。
优选地,所述元素掺杂石墨烯包括金属掺杂石墨烯或非金属元素掺杂石墨烯中的任意1种或至少2种的组合。
所述金属掺杂的金属元素包括钾、钠、金、银、铁、铜、镍、铬、钛、钒 或钴中的任意1种或至少2种的组合。
所述非金属元素掺杂石墨烯的非金属元素包括氮、磷、硅、硼或氧中的任意1种或至少2种的组合。
优选地,所述非金属元素掺杂石墨烯包括氮掺杂石墨烯、磷掺杂石墨烯或硫掺杂石墨烯中的任意1种或至少2种的组合。
优选地,所述官能团化石墨烯包括接枝有官能团的石墨烯。
优选地,所述官能团化石墨烯包括接枝有羟基、羧基或氨基中的任意1种或至少2种的组合的石墨烯。
优选地,所述羟基包括-R1-OH,所述R1包括烃基,优选包括甲基、乙基、丙基、丁基、戊基、己基、乙烯基、丙烯基中的任意1种或至少2种的组合。
优选地,所述羧基包括-R2-COOH,所述R2包括烃基,优选包括甲基、乙基、丙基、丁基、戊基、己基中的任意1种或至少2种的组合。
优选地,所述羧基包括R3-NH3,所述R3包括烷烃基,优选包括甲基、乙基、丙基、丁基、戊基、己基中的任意1种或至少2种的组合。
优选地,步骤(2)所述石墨烯类物质以分散液的形式加入。
优选地,所述分散液的溶剂包括乙醇、水、乙二醇、DMF、NMP或丙酮中的任意1种或至少2种的组合;优选乙醇或水。
所述石墨烯类物质溶液的溶剂有多种选择,只要对石墨烯类物质的溶解度高,对聚合反应又没有过大的不利影响即可,例如选自水、乙醇、乙二醇、DMF、NMP、丙酮中的一种或多种,优选乙醇或水。
优选地,所述分散液中,石墨烯类物质的浓度为15mg/g以下,优选1~10mg/g,进一步优选3~5mg/g。
优选地,所述石墨烯类物质的分散液以滴加的形式加入至助纺聚合物-预聚物溶液中;所述滴加速率优选为0.5~2mL/min,例如0.6mL/min、0.9mL/min、1.3mL/min、1.6mL/min、1.9mL/min等。
优选地,步骤(1)所述助纺聚合物包括橡胶、聚丙烯酰胺、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇或聚乙二醇中的任意1种或至少2种的组合,优选聚乙烯醇。
示例性地,所述助纺聚合物的组合包括聚丙烯酰胺和聚丙烯酸的组合、聚乙烯吡咯烷酮和聚乙二醇的组合、聚乙烯醇和聚丙烯酸的组合等。
所述橡胶为丁腈橡胶、丁苯橡胶、天然橡胶中的一种或多种。
优选地,所述酚醛树脂的预聚物通过酚醛树脂的聚合单体发生预聚反应得到。
优选地,所述酚醛树脂聚合单体的酚包括苯酚及其衍生物,优选苯酚、甲酚、二甲酚、萘酚、烷基取代的苯酚、烷基取代的萘酚、双酚A或双酚F中的任意1种或至少2种的组合。
优选地,所述酚醛树脂聚合单体的醛包括甲醛及其衍生物,优选甲醛、乙醛或糠醛中任意1种或至少2种的组合。
优选地,所述预聚反应包括如下步骤:将酚醛树脂的聚合单体和催化剂混合,在60~80℃下,例如62℃、68℃、73℃、78℃等,反应0.5~4h,例如0.6h、0.8h、1h、2h、3h、4h等。
优选地,所述预聚反应中,以羟基计的酚单体、以醛基计的醛单体和催化剂的摩尔比为1∶(1.1~1.4)∶(0.005~0.05),例如1∶1.11∶0.008、1∶1.20∶0.01、1∶1.25∶0.02、1∶1.30∶0.03、1∶1.32∶0.04等。优选地,所述催化剂包括碱性催化剂。优选地,所述碱性催化剂包括氢氧化钠、氢氧化钾或氨水中的任意1种或至少2种的组合。
优选地,所述预聚反应中,以羟基计的酚单体、以醛基计的醛单体和催化剂的摩尔比为1∶(0.7~1)∶(0.005~0.05),例如1∶0.8∶0.008、1∶0.9∶0.01、1∶0.8∶0.02、1∶0.9∶0.03、1∶0.8∶0.04等。优选地,所述催化剂包括酸性催化剂。优选地,所述酸性催化剂包括盐酸、草酸、醋酸或硫酸中的任意1种或至少2种的组合。
优选地,所述热固性酚醛树脂的聚合反应的反应温度为80~95℃,例如82℃、83℃、85℃、88℃等,反应时间为0.5~4h,例如0.6h、0.8h、1h、2h、3h、4h等。
优选地,所述热塑性酚醛树脂的聚合反应的反应温度为80~95℃,例如82℃、83℃、85℃、88℃等,反应时间为0.5~4h,例如0.6h、0.8h、1h、2h、3h、4h等。
作为优选技术方案之一,本发明所述改性酚醛树脂纤维的制备方法包括如下步骤:
(1)向酚醛树脂的预聚物中加入助纺聚合物,得到助纺聚合物-预聚物溶液;
(2’)分散石墨烯类物质于溶剂中,得到石墨烯类物质分散液;
(2)向步骤(1)助纺聚合物-预聚物溶液中滴加步骤(2’)得到的石墨烯类物质分散液,进行热固性酚醛树脂的聚合反应得到反应液,即为酚醛树脂纺丝原液;
(3)将所述酚醛树脂纺丝原液经静电纺丝制成酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
作为另一优选技术方案,本发明所述改性酚醛树脂纤维的制备方法包括如下步骤:
(1)向酚醛树脂的预聚物中加入助纺聚合物,得到助纺聚合物-预聚物溶液;
(2’)分散石墨烯类物质于溶剂中,得到石墨烯类物质分散液;
(2)向步骤(1)助纺聚合物-预聚物溶液中滴加步骤(2’)得到的石墨烯类物质分散液,进行热塑性酚醛树脂的聚合反应得到反应液,纯化后得到酚醛树脂;
(3)将所述酚醛树脂经熔融纺丝制成酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
根据本发明的一个具体技术方案,提供了一种改性的酚醛树脂纤维的制备方法,所述方法包括如下步骤:
(1)混合石墨烯类物质和助纺聚合物,搅拌得到混合液;
(2)将所述石墨烯类物质以步骤(1)所述混合液的形式与酚醛树脂进行复合,得到改性的热塑性酚醛树脂;
(3)将步骤(2)得到的改性的热塑性酚醛树脂经提纯,熔融纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
根据本发明的一个具体技术方案,提供了一种改性的酚醛树脂纤维的制备方法,所述方法包括如下步骤:
(1)混合石墨烯类物质和助纺聚合物,搅拌得到混合液;
(2)将所述石墨烯类物质以步骤(1)所述混合液的形式与酚醛树脂进行复合,得到改性的热固性酚醛树脂纺丝原液;
(3)将步骤(2)得到的改性的热固性酚醛树脂纺丝原液静电纺丝得到酚 醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
氧化石墨烯作为一种石墨烯的前驱体或者衍生物,性能不亚于石墨烯,不仅如此氧化石墨烯表面含有丰富的含氧官能团,为氧化石墨烯能够进一步发生化学反应提高了活性位点;氧化石墨烯的引入可以与树脂发生共固化反应或形成部分互穿网络结构镶嵌助纺聚合物中间体基团,并且具有良好的相容性,不存在相分离的情况,增加了酚醛纤维的可纺性及力学性能,同时提高其电学性能。
本发明在酚醛树脂中以石墨烯类物质和助纺聚合物混合的形式掺杂进石墨烯类物质,石墨烯类物质和助纺聚合物之间存在较弱的键和作用(如范德华力等),有效阻止了石墨烯类物质的团聚,实现了石墨烯类物质在酚醛树脂中的均匀分散。
此外,在酚醛树脂的制备过程中,助纺聚合物的加入还能够省略后续纺丝步骤中为了提高可纺性加入的聚合物。
优选地,所述石墨烯类物质与酚醛树脂进行复合的过程中,石墨烯类物质的质量为酚醛树脂的0.01~15wt%,例如0.05wt%、0.1wt%、0.6wt%、0.9wt%、2wt%、3.5wt%、4.2wt%、4.6wt%、5.8wt%、7wt%、8wt%、9wt%、10wt%、11wt%、12wt%、13wt%、14wt%等,优选0.01~10wt%,进一步优选0.01~5wt%,特别优选0.01~2wt%,最优选0.1~1wt%。
优选地,将所述石墨烯类物质以步骤(1)所述混合液的形式与酚醛树脂进行复合的方式包括如下:
方式一:在酚醛树脂的合成单体中加入步骤(1)所述混合液,与合成单体一起进行酚醛树脂的聚合反应。
方式二:在酚醛树脂的聚合反应中加入步骤(1)所述混合液。
方式三:将酚醛树脂的聚合单体进行酚醛树脂的聚合反应,在得到的酚醛树脂中加入步骤(1)所述混合液。
换言之,本发明所述石墨烯类物质可以以步骤(1)所述混合液的形式在酚醛树脂合成之前(合成单体时)、之中(发生部分预聚反应后)或之后(得到酚醛树脂之后)加入。
当然,本发明所述石墨烯类物质还可以以方式一、方式二或方式三的任意1种或至少2种的组合的形式加入,例如可以同时在合成单体的时候和预聚的 时候都加入,也可以在合成单体的时候和合成完毕得到的酚醛树脂中加入等。
优选地,所述混合液的加入形式为滴加,所述滴加速率为0.5~2mL/min,例如0.6mL/min、0.9mL/min、1.3mL/min、1.6mL/min、1.9mL/min等。
优选地,步骤(1)所述混合液包括分散有石墨烯类物质的液态助纺聚合物;
或者,所述混合液包括分散有助纺聚合物和石墨烯类物质的溶剂。
优选地,所述分散有助纺聚合物和石墨烯类物质的溶剂中,所述助纺聚合物和石墨烯类物质发生部分或全部的接枝反应。
优选地,所述助纺聚合物包括橡胶、聚丙烯酰胺、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇或聚乙二醇中的任意1种或至少2种的组合,优选聚乙烯醇。
示例性地,所述助纺聚合物的组合包括聚丙烯酰胺和聚丙烯酸的组合、聚乙烯吡咯烷酮和聚乙二醇的组合、聚乙烯醇和聚丙烯酸的组合等。
所述橡胶为丁腈橡胶、丁苯橡胶、天然橡胶中的一种或多种。
优选地,所述溶剂包括乙醇、水、乙二醇、DMF、NMP或丙酮中的任意1种或至少2种的组合;优选乙醇或水。
所述石墨烯类物质溶液的溶剂有多种选择,只要对石墨烯类物质的溶解度高,对聚合反应又没有过大的不利影响即可,例如选自水、乙醇、乙二醇、DMF、NMP、丙酮中的一种或多种,优选乙醇或水。
优选地,当所述混合液为分散有石墨类物质的液态助纺聚合物时,石墨烯类物质和助纺聚合物的质量比为1∶0.01~10,例如1∶0.1、1∶0.3、1∶0.6、1∶0.9、1∶1.3、1∶3、1∶5、1∶6、1∶7、1∶8、1∶9等。
优选地,当所述混合液为分散有助纺聚合物和石墨烯类物质的溶剂时,所述助纺聚合物的浓度为10~20wt%,例如11wt%、12wt%、13wt%、14wt%、15wt%、16wt%、17wt%、18wt%、19wt%等,所述石墨烯类物质的浓度为15mg/g以下,优选1~10mg/g,优选3~5mg/g;
优选地,步骤(1)所述搅拌的时间为1min~2h,例如5min、20min、36min、50min、65min、80min、90min、110min等。
优选地,所述石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的任意1种或至少2种的混合,所述石墨烯衍生物包括元素掺杂的石墨烯。
优选地,所述石墨烯衍生物包括元素掺杂石墨烯或官能团化石墨烯物中的 任意1种或至少2种的组合。
优选地,所述元素掺杂石墨烯包括金属掺杂石墨烯或非金属元素掺杂石墨烯中的任意1种或至少2种的组合。
所述金属掺杂的金属元素包括钾、钠、金、银、铁、铜、镍、铬、钛、钒或钴中的任意1种或至少2种的组合。
所述非金属元素掺杂石墨烯的非金属元素包括氮、磷、硅、硼或氧中的任意1种或至少2种的组合。
优选地,所述非金属元素掺杂石墨烯包括氮掺杂石墨烯、磷掺杂石墨烯或硫掺杂石墨烯中的任意1种或至少2种的组合。
优选地,所述官能团化石墨烯包括接枝有官能团的石墨烯。
优选地,所述官能团化石墨烯包括接枝有羟基、羧基或氨基中的任意1种或至少2种的组合的石墨烯。
优选地,所述羟基包括-R1-OH,所述R1包括烃基,优选包括甲基、乙基、丙基、丁基、戊基、己基、乙烯基、丙烯基中的任意1种或至少2种的组合。
优选地,所述羧基包括-R2-COOH,所述R2包括烃基,优选包括甲基、乙基、丙基、丁基、戊基、己基中的任意1种或至少2种的组合。
优选地,所述氨基包括R3-NH3,所述R3包括烷烃基,优选包括甲基、乙基、丙基、丁基、戊基、己基中的任意1种或至少2种的组合。
优选地,所述酚醛树脂的聚合反应包括依次进行的预聚反应和缩聚反应。
优选地,所述预聚反应的温度为60~80℃,例如62℃、68℃、73℃、78℃等,反应时间为0.5~5h,例如0.6h、0.8h、1h、2h、3h、4h等。
优选地,所述缩聚反应的温度为80~90℃,例如82℃、83℃、85℃、88℃等,反应时间为0.5~5h,例如0.6h、0.8h、1h、2h、3h、4h等。
优选地,所述酚醛树脂的聚合反应中,以羟基计的酚单体、以醛基计的醛单体和催化剂的摩尔比为1∶(0.7~1)∶(0.005~0.05),例如1∶0.8∶0.008、1∶0.9∶0.01、1∶0.8∶0.02、1∶0.9∶0.03、1∶0.8∶0.04等。优选地,所述酸性催化剂优选包括盐酸、草酸、醋酸或硫酸中的任意1种或至少2种的组合。
优选地,所述酚醛树脂的聚合反应中,以羟基计的酚单体、以醛基计的醛单体和碱性催化剂的摩尔比为(1~1.4)∶1∶(0.005~0.05);例如1.1∶1∶0.008、1.4∶1∶0.02、1.3∶1∶0.03、1.2∶1∶0.04等。优选地,所述碱性催化剂优选氢氧化钠,氨水 中的任意1种或至少2种的组合。
优选地,所述酚单体包括苯酚及其衍生物,优选苯酚、甲酚、二甲酚、萘酚、烷基取代的苯酚、烷基取代的萘酚、双酚A或双酚F中的任意1种或至少2种的组合;
优选地,所述醛类化合物包括甲醛及其衍生物,优选甲醛、乙醛或糠醛中任意1种或至少2种的组合。
作为优选技术方案之一,本发明所述改性酚醛树脂纤维的制备方法包括如下步骤:
(a1’)分散石墨烯类物质于溶剂中,得到石墨烯类物质分散液;分散助纺聚合物于溶剂中,得到助纺聚合物分散液;
(a1)将步骤(a1’)得到的石墨烯类物质分散液和助纺聚合物分散液混合,搅拌得到石墨烯类物质和助纺聚合物的混合液;
(a2)向酚醛树脂的聚合单体中以滴加的方式加入步骤(a1)得到的混合液,进行热塑性酚醛树脂的聚合反应得到反应液,纯化后得到改性的酚醛树脂;
(a3)将所述酚醛树脂熔融纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
作为另一优选技术方案,本发明所述改性酚醛树脂纤维的制备方法包括如下步骤:
(b1’)分散石墨烯类物质于溶剂中,得到石墨烯类物质分散液;分散助纺聚合物于溶剂中,得到助纺聚合物分散液;
(b1)将步骤(b1’)得到的石墨烯类物质分散液和助纺聚合物分散液混合,搅拌得到石墨烯类物质和助纺聚合物的混合液;
(b2)将酚类化合物和醛类化合物反应一段时间后,向反应液中加入步骤(b1)所述的混合液,反应得到反应液,纯化后得到改性的酚醛树脂;
(b3)将所述酚醛树脂经熔融纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维;
作为另一优选技术方案,本发明所述改性酚醛树脂纤维的制备方法包括如下步骤:
(c1’)分散石墨烯类物质于溶剂中,得到石墨烯类物质分散液;分散助纺聚合物于溶剂中,得到助纺聚合物分散液;
(c1)将步骤(c1’)得到的石墨烯类物质分散液和助纺聚合物分散液混合,搅拌得到石墨烯类物质和助纺聚合物的混合液;
(c2)在酚醛树脂中加入步骤(c1)所述的混合液,得到改性的酚醛树脂;
(c3)将所述酚醛树脂经熔融纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
本发明所述酚醛树脂没有具体限定,可以包括如下两种①酚类化合物和醛类化合物反应完全后形成的反应液,②成品的酚醛树脂。
作为另一优选技术方案,本发明所述改性酚醛树脂纤维的制备方法包括如下步骤:
(a1’)分散石墨烯类物质于溶剂中,得到石墨烯类物质分散液;分散助纺聚合物于溶剂中,得到助纺聚合物分散液;
(a1)将步骤(a1’)得到的石墨烯类物质分散液和助纺聚合物分散液混合,搅拌得到石墨烯类物质和助纺聚合物的混合液;
(a2)向酚醛树脂的聚合单体中以滴加的方式加入步骤(a1)得到的混合液,进行热固性酚醛树脂的聚合反应得到反应液,即为改性的热固性酚醛树脂纺丝原液;
(a3)将步骤(a2)得到的改性的热固性酚醛树脂纺丝原液经静电纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
作为另一优选技术方案,本发明所述改性酚醛树脂纤维的制备方法包括如下步骤:
(b1’)分散石墨烯类物质于溶剂中,得到石墨烯类物质分散液;分散助纺聚合物于溶剂中,得到助纺聚合物分散液;
(b1)将步骤(b1’)得到的石墨烯类物质分散液和助纺聚合物分散液混合,搅拌得到石墨烯类物质和助纺聚合物的混合液;
(b2)将酚类化合物和醛类化合物反应一段时间后,向反应液中加入步骤(b1)所述的混合液,反应得到反应液,即为改性的热固性酚醛树脂纺丝原液;
(b3)将改性的热固性酚醛树脂纺丝原液经静电纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维;
作为另一优选技术方案,本发明所述改性酚醛树脂纤维的制备方法包括如下步骤:
(c1’)分散石墨烯类物质于溶剂中,得到石墨烯类物质分散液;分散助纺聚合物于溶剂中,得到助纺聚合物分散液;
(c1)将步骤(c1’)得到的石墨烯类物质分散液和助纺聚合物分散液混合,搅拌得到石墨烯类物质和助纺聚合物的混合液;
(c2)在热固性酚醛树脂中加入步骤(c1)所述的混合液,得到改性的热固性酚醛树脂纺丝原液;
(c3)将所述改性的热固性酚醛树脂纺丝原液经静电纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
本发明所述酚醛树脂没有具体限定,可以包括如下两种①酚类化合物和醛类化合物反应完全后形成的反应液,②成品的酚醛树脂。
本发明所述固化交联是本领域的公知技术,示例性的可以是:将得到的纤维膜置于恒温干燥箱中,在100~180℃下固化1~6h。
本发明目的之五是提供一种改性的酚醛树脂纤维,所述改性的酚醛树脂纤维通过目的之一、目的之二、目的之三、目的之四所述的改性的酚醛树脂纤维的制备方法得到。
本发明的目的之六是提供一种电极复合材料,所述电极复合材料通过将目的之五所述改性的酚醛树脂纤维碳化得到;
优选地,所述碳化温度为600~1000℃,例如650℃、700℃、730℃、760℃、790℃、820℃、850℃、880℃、930℃、960℃、980℃等,优选800℃。
本发明具有以下有益效果:
(1)本发明通过将石墨烯与酚醛树脂复合,获得了改性的酚醛树脂,经过纺丝后得到改性酚醛纤维。本发明创新性的通过将酚醛树脂预聚物与助纺聚合物均匀混合后,加入石墨烯,通过石墨烯与助纺聚合物的弱键连接,实现石墨烯的均匀分散解决了单纯加入石墨烯容易团聚,分散性不好的问题,提高了酚醛纤维的强度和韧度等。
尤其是当石墨烯类物质为氧化石墨烯,助纺聚合物为聚乙烯醇PVA时,PVA与酚醛树脂预聚体混合,氧化石墨烯通过所带有的含氧基团与PVA作用,实现氧化石墨烯的均匀分散,实现提高酚醛树脂韧性,拉伸强度在153~330MPa,伸长率在6.2~20%、强度和耐热性的效果。改性酚醛纤维经碳化后得到的纳米炭 纤维具有较好的强度和导电性,适合作为超级电容器电极材料。
(2)本发明通过将石墨烯与酚醛树脂复合,获得了改性的酚醛树脂,经过纺丝后得到改性酚醛纤维。本发明创新性的通过将石墨烯与助纺聚合物混合的形式加入酚醛树脂解决了单纯加入石墨烯容易团聚,分散性不好的问题,提高了酚醛纤维的强度、韧度和电学性能。
尤其是当石墨烯类物质为氧化石墨烯,助纺聚合物为聚乙烯吡咯烷酮PVA时,在酚醛树脂的合成过程中,氧化石墨烯能够以均匀分散的状态与酚醛树脂发生共固化或形成互传网络,实现提高酚醛树脂韧性,拉伸强度在159~330Mpa,伸长率在6.7~20%、强度和耐热性的效果。
本发明还提供了以下技术方案:
一种用于电极的复合材料,所述复合材料主要由氮掺杂的酚醛基活性炭和石墨烯类物质复合而成;所述复合材料的比电容为150F/g以上;
所述石墨烯类物质选自石墨烯及其衍生物、氧化石墨烯及其衍生物、生物质石墨烯中的一种或多种,优选氧化石墨烯。
本发明发现,在合成酚醛树脂时掺入石墨烯类物质及含氮物质,可以极大增加电容器的比电容,猜测可能的原理为:在电解液中,尤其是在酸性电解液中,含氮官能团和质子发生相互作用产生的赝电容能大大提高材料的比电容,进而提高材料的能量密度;同时,含氮官能团的存在提高了材料的表面润湿性能,降低电解液离子在孔隙中的扩散阻力,从而提高电极材料的比表面积利用率,增加电容器的比电容;此外,在聚合反应之后再加入石墨烯类物质可以缓解其团聚现象,从而提高电极材料的比表面积利用率。
经检测,本发明提供的复合材料在0.1A/g下比电容至少达到150F/g以上,优选地为200F/g以上。
本发明所述的含氮物质既可以是外源性的含氮化合物,也可以是聚合单体本身,例如本身含氮的所述酚类化合物或所述醛类化合物,如果具体单体本身含有氮,则无需再额外加入含氮物质,当然额外加入也可以。
含氮的所述酚类化合物含有伯胺基、仲胺基、季胺基中一种或多种的酚类化合物,优选含有伯胺基的酚类化合物,更优选间氨基苯酚。
外源性的含氮物质可以选自含氮无机物及其它含氮有机物,优选有机胺、硝酸盐中的一种或两种混合,优选乙二胺、三聚氰胺、己二胺、尿素中的一种 或多种,优选三聚氰胺。
本发明所述的酚是指任意酚,所述的醛指任意醛,前后聚合可以有效生成酚醛树脂,既可以是热塑性,也可以是热固性。
进一步的,所述酚类化合物选自苯酚及其衍生物,优选苯酚、甲酚、二甲酚或间苯二酚;所述醛类化合物选自甲醛及其衍生物,优选甲醛、乙醛或糠醛;
为了获得预设的比电容,或者进一步提高比电容,优选的复合方法为:
所述复合方法为在酚类化合物与醛类化合物聚合生成酚醛树脂的反应过程中或反应结束后加入石墨烯类物质及含氮物质,之后经过固化、炭化而得,优选地,反应过程中加入效果更好。
其中,石墨烯类物质和含氮物质的加入可以是同时加入,也可以是满足上述条件(反应过程中或反应结束后)的前提下先后加入。
例如,在反应进行0.5h后,加入含氮物质,继续反应0.5h后,再加入石墨烯类物质;再例如,在反应进行0.5h后,加入石墨烯类物质,继续反应0.5h后,再加入含氮物质。
本发明所述的石墨烯可以为市售的石墨烯,也可通过不同制备方法得到的石墨烯,例如机械剥离法、外延生长法、化学气相沉淀法,石墨氧化还原法,还可以是生物质石墨烯(通过对生物质资源水热碳化法,以及现有技术中其它方法制备的石墨烯)。但是,有些方法很难实现大规模制备得到严格意义理论上的石墨烯,例如一部分现有技术制备得到的石墨烯中会存在某些杂质元素、碳元素的其它同素异形体或层数非单层甚至多层的石墨烯结构(例如3层、5层、10层、20层等),本发明所利用的石墨烯也包括上述非严格意义理论上的石墨烯。
生物质石墨烯可采用济南圣泉公司工艺,以农林废弃物为主要原料,通过水解、催化处理、热处理等步骤获得具有优良导电性质的多孔生物质石墨烯复合物,其主要特征为所含石墨烯层数为1~10层之间,非碳非氧元素含量为0.5wt%~6wt%。
本发明所述的氧化石墨烯可以是可以为市售的石墨烯,也可以是部分还原交联制备的石墨烯经氧化后的产物,亦可以是PECVD法制备的石墨烯经氧化后的产物,也可以是其它方法制得的氧化石墨烯。
本发明所述的所述氧化石墨烯衍生物可以为经过改性的氧化石墨烯。
优选地,所述氧化石墨烯衍生物包括元素掺杂氧化石墨烯或官能团化氧化石墨烯物中的任意1种或至少2种的组合。
优选地,所述元素掺杂氧化石墨烯包括金属掺杂氧化石墨烯或非金属元素掺杂氧化石墨烯中的任意1种或至少2种的组合。
所述金属掺杂的金属元素典型但非限制性的包括钾、钠、金、银、铁、铜、镍、铬钛、钒或钴。
所述非金属元素掺杂石墨烯典型但非限制性的包括氮、磷、硫、硅、硼或硅。
优选地,所述非金属元素掺杂氧化石墨烯包括氮掺杂氧化石墨烯、磷掺杂氧化石墨烯或硫掺杂氧化石墨烯中的任意1种或至少2种的组合。
优选地,所述官能团化氧化石墨烯包括接枝有官能团的氧化石墨烯。
优选地,所述官能团化氧化石墨烯包括接枝有羟基、羧基或氨基中的任意1种或至少2种的组合的氧化石墨烯。
本发明所述羟基包括-R1-OH,所述R1包括烷烃基,典型但非限制性的羟基可以是甲基羟基、乙基羟基、丙基羟基、丁基羟基、戊基羟基、己基羟基等。
本发明所述羧基包括-R2-COOH,所述R2包括烷烃基,典型但非限制性的羟基可以是甲基羟基、乙基羟基、丙基羟基、丁基羟基、戊基羟基、己基羟基等。
本发明所述氨基包括-R3-NH3,所述R3包括烷烃基,典型但非限制性的羟基可以是甲基羟基、乙基羟基、丙基羟基、丁基羟基、戊基羟基、己基羟基等。
本发明的石墨烯衍生物同以上氧化石墨衍生物。
本发明所述的加成反应和缩聚反应的条件采用合成酚醛树脂的常规条件即可。
在本发明中,所述石墨烯类物质优选以溶液的形式加入所述反应液中。
其中,所述石墨烯类物质溶液的溶剂有多种选择,只要对石墨烯类物质的溶解度高,对聚合反应又没有过大的不利影响即可,例如选自水、乙醇、乙二醇、DMF、NMP、丙酮中的一种或多种,优选乙醇或水。
优选地,所述石墨烯类物质的加入量为所述酚类化合物与所述醛类化合物总量的0.01~1wt%,更优选0.1~1wt%;
优选地,所述酚类化合物不含氮时,1∶0.01~1,更优选1∶0.04~0.5,更优选 1∶0.04~0.2。
优选地,在所述炭化的过程中加入活化剂,更进一步增加复合物的孔体积和比表面积。
所述活化剂选自碱金属的氢氧化物、氯化锌、磷酸中的一种或多种,优选碱金属的氢氧化物,更优选氢氧化钾和/或氢氧化钠。
优选地,所述活化剂与炭化物料的重量比为0.5~4∶1,更优选1~4∶1。以上所有用于电极的复合材料的制备方法基本路线为聚合-掺杂→固化→炭化,炭化的条件优选为:
在600-1000℃下炭化,在此条件下炭化所得比表面积大。
若在聚合反应中途加入石墨烯类物质,和/或含氮物质,则可以在聚合反应进行0.2-4h后加入,更优选反应0.2-3h后加入,更优选反应0.2-2.5h后加入。
当然,由于聚合物的性质不同,所需的反应条件有所不同,对于热固性的酚醛树脂,聚合反应优选为:以碱为催化剂,在60-80℃下反应0.5-4h,加入石墨烯类物质及含氮物质,继续在80-95℃下反应1-4h。
所述的碱为现有技术中,可提供碱性环境的物质,包括但不限于氢氧化钠,氨水等。
对于热塑性的酚醛树脂,聚合反应优选为:以酸为催化剂,在60-80℃下反应0.5-4h;加入石墨烯类物质及含氮物质,继续在80-95℃下反应1-4h。
所述的酸为现有技术中,可提供酸性环境的物质,包括但不限于盐酸、草酸、醋酸等。
上文所述的活化剂的加入方法可采用现有技术中的加入方法,优选如下:
将所述固化的产物升温至600-700℃,保持0.5-1.5h,然后加入活化剂,继续升温至800-1000℃,保持1-3h。
上文所述的用于电极的复合材料主要用作电极,当然也可以用于其它领域。当用作电极时,优选可以与导电剂、粘结剂复合制成电极,所述导电剂优选炭黑。
本发明达到了以下技术效果:
(1)以酚醛树脂为前驱体,掺入石墨烯类物质及氮元素,极大提高了材料的比电容,为制作超级电容器提供了新型材料;
(2)在掺杂石墨烯类物质及氮元素的基础上,增加活化程序,进一步提高 了材料的比电容。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。
本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
以下实施例中,酚、醛和催化剂的比例,是以羟基计的酚单体、以醛基计的醛单体和催化剂的摩尔比。
以下所有实施例和对比例中所用石墨烯为市售HX-G;
氧化石墨烯均为市售氧化石墨(SE2430)经超声分散得到(具体分散方法见实施例1)。
羧基化氧化石墨烯、生物质石墨烯、氧化生物质石墨烯可通过下述方法制得,但不限于以下方法,也可采用现有技术中石墨烯及氧化石墨烯的方法制得,也可直接采用市售的石墨烯及氧化石墨烯。
本发明所述商购生物质石墨烯采用济南圣泉集团生产的生物质石墨烯或通过制备例2制备得到。
制备例1:羧基化的氧化石墨烯
将100mg氧化石墨超声分散在100ml水中,得到1mg/ml的氧化石墨烯水溶液,然后加入6g氢氧化钠和5g氯乙酸超声3h,使得氧化石墨烯表面的环氧基和羟基转化为羧基,趁热过滤,去除杂质,之后再65℃真空干燥得到羧基化氧化石墨烯。
制备例2:生物质石墨烯
步骤一、先制备纤维素:
(1)将小麦秸杆粉碎预处理后,使用总酸浓为80wt%的甲酸和乙酸的有机酸液对处理后的小麦秸杆进行蒸煮,本实施例的有机酸液中乙酸与甲酸的质量比为1∶12,并在加入原料前加入占小麦秸杆原料1wt%的过氧化氢(H2O2)作为催化剂,控制反应温度120℃,反应30min,固液质量比为1∶10,并将得到的反应液进行第一次固液分离;
(2)将第一次固液分离得到的固体加入总酸浓为75wt%的甲酸和乙酸的有机酸液进行酸洗涤,其中上述总酸浓为75wt%的有机酸液中加入了占小麦秸杆 原料8wt%的过氧化氢(H2O2)作为催化剂且乙酸与甲酸的质量比为1∶12,控制温度为90℃,洗涤时间1h,固液质量比为1∶9,并将反应液进行第二次固液分离;
(3)收集第一次和第二次固液分离得到的液体,于120℃,301kPa下进行高温高压蒸发,直至蒸干,将得到的甲酸和乙酸蒸气冷凝回流至步骤(1)的反应釜中作为蒸煮液,用于步骤(1)的蒸煮;
(4)收集第二次固液分离得到的固体,并进行水洗,控制水洗温度为80℃,水洗浆浓为6wt%,并将得到的水洗浆进行第三次固液分离;
(5)收集第三次固液分离得到的液体,进行水、酸精馏,得到的混合酸液回用于步骤(1)的反应釜中作为蒸煮液用于步骤(1)的蒸煮,得到的水回用于步骤(5)作用水洗用水;
(6)收集第三次固液分离得到的固体并进行筛选得到所需的细浆纤维素。
步骤二、以上文制备的纤维素为原料制备石墨烯:
(1)按质量比1∶1混合纤维素和氯化亚铁,在150℃下搅拌进行催化处理4h,干燥至前驱体水分含量10wt%,得到前驱体;
(2)N2气氛中,以3℃/min速率将前驱体升温至170℃,保温2h,之后程序升温至400℃,保温3h,之后升温至1200℃,保温3h后得到粗品;所述程序升温的升温速率为15℃/min;
(3)55~65℃下,将粗品经过浓度为10%的氢氧化钠溶液、4wt%的盐酸酸洗后,水洗得到生物质石墨烯。
制备例3:氧化生物质石墨烯
生物质石墨烯由于存在多孔结构,同时片层相对于石墨而言已呈打开状态,因此氧化条件相比石墨氧化条件要弱。具体实施过程如下:
在反应器内将2g生物质石墨烯与30mL浓硫酸进行混合,冰水浴条件下搅拌10min后,逐渐加入7g高锰酸钾,控制温度不高于35℃,高锰酸钾加样完成后常温条件下继续搅拌2h,之后升温至40℃,反应30min后加入约5mL体积的30wt%双氧水,溶液颜色变为金黄色,之后加入150mL蒸馏水稀释,趁热抽滤反应液,分别用4mL质量分数为10%的稀盐酸和100mL去离子水清洗2-3次,离心后浆料喷雾干燥即可得到氧化生物质石墨烯。
实施例1-1
一种改性酚醛树脂纤维的制备方法包括如下步骤:
(1)将苯酚∶甲醛∶氢氧化钠按照1∶1.32∶0.05的摩尔比加入四口烧瓶中,70℃加热搅拌回流2h得到酚醛树脂的预聚物;之后向所述酚醛树脂预聚物中加入PVA,得到助纺聚合物-预聚物溶液;其中,以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.07;
(2)超声分散氧化石墨烯于水中,得到石墨烯类物质分散液;石墨烯类物质分散液的浓度为10mg/g;
(3)聚合反应:85℃条件下,向步骤(1)助纺聚合物-预聚物溶液中滴加步骤(2)得到的石墨烯类物质分散液,加热搅拌回流3h,停止搅拌,即为酚醛树脂纺丝原液;
(4)将所述酚醛树脂纺丝原液经静电纺丝,纺丝参数为:纺丝电压15~30kV,纺丝距离15~25cm,纺丝温度为20~40℃,纺丝湿度为30~50%,纺丝溶液的推进速率为1~3mL/h,之后将静电纺丝得到的初生纺丝置于恒温干燥箱中,在100-180℃下固化1~6h,干燥得石墨烯改性酚醛纤维。
其中,氧化石墨烯的加入量为酚醛树脂产品的0.5%。
实施例1-2
与实施例1-1的区别在于:替换氧化石墨烯为羧基化的氧化石墨烯。
实施例1-3
与实施例1-1的区别在于,替换氧化石墨烯为石墨烯。
实施例1-4
与实施例1-1的区别在于,替换氧化石墨烯为生物质石墨烯。
实施例1-5
与实施例1-1的区别在于,替换氧化石墨烯为氧化生物质石墨烯。
实施例1-6~1-9
与实施例1-1的区别在于,氧化石墨烯的加入量为酚醛树脂产品的0.01wt%、1wt%、10wt%、15wt%。
实施例1-10~1-12
与实施例1-1的区别在于,所加入氧化石墨烯溶液的溶度不同,分别为1mg/g、5mg/g、15mg/g。
实施例1-13~1-15
与实施例1-1的区别在于氧化石墨烯的溶液的溶剂不同,分别为乙醇、DMF、丙酮。
实施例1-16~1-21
与实施例1-14(溶剂为DMF)的区别在于,分别将聚乙烯醇替换为聚乙烯吡咯烷酮、聚乙二醇、丁腈橡胶、丁苯橡胶、聚氨酯、天然橡胶。
实施例1-22
与实施例1-1的区别在于酚和醛的种类不同,
将“苯酚∶甲醛∶氢氧化钠按照1∶1.32∶0.05”替换为“苯酚∶糠醛∶氢氧化钠按照1∶1.32∶0.05”。
实施例1-23
与实施例1-1相比,酚醛树脂和PVA的比例不同,
以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.05。
实施例1-24
与实施例1-1相比,酚醛树脂和PVA的比例不同,
以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.1。
对比例1-1
与实施例1-1的区别在于,在酚醛树脂开始反应时,将石墨烯和聚乙烯醇一锅加入其中。
具体包括如下步骤:
将苯酚∶甲醛∶氢氧化钠按照1∶1.32∶0.05的摩尔比加入到装有搅拌器、温度计、冷凝管的四口圆底烧瓶中搅拌均匀,然后加入聚乙烯醇和氧化石墨烯溶液,70℃下加热搅拌2h,升温至85℃,继续加热搅拌3h,停止搅拌,得到酚醛树脂纺丝原液;
将所述酚醛树脂在130℃、0.2MPa进行静电纺丝,纺丝参数为:纺丝电压15~30kV,纺丝距离15~25cm,纺丝温度为20~40℃,纺丝湿度为30~50%,纺丝溶液的推进速率为1~3mL/h,之后将静电纺丝得到的初生纺丝置于恒温干燥箱中,在100~180℃下固化1~6h,干燥得石墨烯改性酚醛纤维。
其中,氧化石墨烯的浓度为10mg/g;
氧化石墨烯的加入量为酚醛树脂产品的0.5%。
对比例1-2
与实施例1-1的区别在于,不加入PVA。
对比例1-3
与实施例1-1的区别在于,不加入GO。
对比例1-4
与对比例1-1的区别在于,不加入PVA和氧化石墨烯。
下表1为以上实施例1-1~1-23的数据。
表1-1实施例1-1~1-23和对比例1、1-1~1-4的工艺条件
Figure PCTCN2017098335-appb-000001
Figure PCTCN2017098335-appb-000002
将实施例1-1~1-24和对比例1-1、1-2~1-4得到的酚醛树脂纤维置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至800℃,恒温3h,得到纳米炭纤维,测定其电导率和比表面积数据(采用多功能电测数字式四探针测试仪测定其电导率;根据GB/T 10722-2003的方法,采用比表面积及孔隙率分析仪测定其比表面积),测试结果具体见下表3:
表1-2实施例1-1~1-23和对比例1-1~1-4经碳化得到的纳米炭纤维的电导率和比表面积。
序号 电导率(S/m) 比表面积(m2/g)
实施例1-1 1521 852
实施例1-2 1565 856
实施例1-3 1513 829
实施例1-4 1201 785
实施例1-5 1236 798
实施例1-6 798 732
实施例1-7 1625 859
实施例1-8 1532 756
实施例1-9 1520 736
实施例1-10 1565 839
实施例1-11 1552 806
实施例1-12 1536 752
实施例1-13 1512 819
实施例1-14 1498 849
实施例1-15 1467 860
实施例1-16 1530 830
实施例1-17 1320 811
实施例1-18 1402 798
实施例1-19 1218 803
实施例1-20 1296 786
实施例1-21 1301 785
实施例1-22 1520 826
实施例1-23 1536 802
实施例1-24 1518 862
对比例1-1 1492 789
对比例1-2 不能成丝 不能成丝
对比例1-3 653 702
对比例1-4 不能成丝 不能成丝
将实施例1-1~1-23和对比例1-1~1-4得到的酚醛树脂纤维置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至800℃,恒温3h,得到纳米炭纤维,并将其应用于电极的制备。
电极的制备:将上述纳米炭纤维薄膜剪成1×1cm电极片,称重后置于两片泡沫镍之间,并以镍片引出,使用压片机在8MPa下压实,得到待测电极。
电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下比电容见下表1-3。
表1-3
序号 0.1A/g下比电容(F/g)
实施例1-1 180
实施例1-2 182
实施例1-3 176
实施例1-4 151
实施例1-5 162
实施例1-6 138
实施例1-7 190
实施例1-8 152
实施例1-9 149
实施例1-10 178
实施例1-11 165
实施例1-12 150
实施例1-13 175
实施例1-14 180
实施例1-15 185
实施例1-16 176
实施例1-17 173
实施例1-18 165
实施例1-19 170
实施例1-20 166
实施例1-21 168
实施例1-22 175
实施例1-23 170
实施例1-24 185
对比例1-1 169
对比例1-2
对比例1-3 126
对比例1-4
实施例2-1
一种改性酚醛纤维的制备方法,包括如下步骤:
(1)将氧化石墨烯分散液加入聚乙烯醇水溶液(聚乙烯醇水溶液的浓度为15wt%)中,搅拌得到混合液,所述混合液中氧化石墨烯的浓度为10mg/g;
其中,以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.05;
(2)将苯酚、甲醛、草酸按照1∶0.8∶0.05的摩尔配比加入四口烧瓶中,70℃加热搅拌回流2h之后,加入步骤(1)的混合溶液,升温至85℃继续反应3h,停止加热搅拌;
(3)加入乙醇,通过水蒸气蒸馏,去除游离酚提纯,所得高纯树脂在130℃、0.2MPa进行熔融纺丝,牵伸得到初生酚醛纤维,将其进入凝固浴进行固化,凝固浴中甲醛含量为10%,盐酸含量为15%,水含量为75%,温度为80~100℃,升温速率10℃~20℃/h,之后恒温,固化1~2h,水洗,干燥得石墨烯改性酚醛纤维。
其中,氧化石墨烯的加入量为酚醛树脂产品的0.5%。
实施例2-2
与实施例2-1的区别仅在于将氧化石墨烯替换为羧基化的氧化石墨烯,其它用量及条件均相同,制得石墨烯改性酚醛纤维。
实施例2-3
与实施例2-1的区别仅在于将氧化石墨烯替换为石墨烯,其它用量及条件均相同,制得石墨烯改性酚醛纤维。
实施例2-4
与实施例2-1的区别仅在于将氧化石墨烯替换为生物质石墨烯,其它用量及条件均相同,制得石墨烯改性酚醛纤维。
实施例2-5
与实施例2-1的区别仅在于将氧化石墨烯替换为氧化生物质石墨烯,其它用量及条件均相同,制得石墨烯改性酚醛纤维。
实施例2-6~2-9
与实施例2-1相比,区别仅在于氧化石墨烯的用量不同,氧化石墨烯的加入量为酚醛树脂产品的0.01%、1%、10%、15%。
实施例2-10~2-12
与实施例2-1相比,区别仅在于,混合液中氧化石墨烯的浓度不同,分别 为1mg/g、5mg/g、15mg/g。
实施例2-14~2-16
实施例2-14~2-16与实施例2-1的区别仅在于氧化石墨烯超声分散时所用的溶剂不同,分别为乙醇、DMF、丙酮。
实施例2-17~2-22
实施例2-17~2-22与实施例2-15(溶剂是DMF)的区别仅在于分别将聚乙烯醇替换为聚乙烯吡咯烷酮、聚乙二醇、丁腈橡胶、丁苯橡胶、聚氨酯、天然橡胶,其它用量及条件均相同,制得石墨烯改性酚醛纤维。聚乙烯醇效果较好,橡胶类相对差,其他和聚乙烯醇差不多。
实施例2-23
与实施例2-1的区别在于酚和醛的种类不同,也就是步骤(2)不同,即
(2)将苯酚、糠醛、草酸按照1∶0.8∶0.05的摩尔配比加入四口烧瓶中,70℃加热搅拌回流2h之后,加入步骤(1)的混合溶液,升温至85℃继续反应3h,停止加热搅拌。
其他步骤同实施例2-1。
实施例2-24
与实施例2-1相比,酚醛树脂和PVA的比例不同,
步骤(1)中,向所述酚醛树脂预聚物中加入PVA(以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.01)。
实施例2-25
与实施例2-1相比,酚醛树脂和PVA的比例不同,
步骤(1)中,向所述酚醛树脂预聚物中加入PVA(以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.1)。
对比例2-1
与实施例2-1的区别仅在于不进行步骤(1),步骤(2)中不加入氧化石墨烯与聚乙烯醇水溶液的混合液。
对比例2-2
与实施例2-1的区别仅在于不进行步骤(1),步骤(2)中加入氧化石墨烯与聚乙烯醇水溶液的混合液替换为仅加入氧化石墨烯水溶液。
对比例2-3
与实施例2-1的区别仅在于不进行步骤(1),步骤(2)中加入氧化石墨烯与聚乙烯醇水溶液的混合液替换为仅加入聚乙烯醇水溶液。
对比例2-4
与实施例2-1的区别在于,在酚醛树脂开始反应时,将石墨烯和聚乙烯醇一锅加入其中。
具体包括如下步骤:
将苯酚∶甲醛∶草酸按照1∶0.8∶0.05的摩尔比加入到装有搅拌器、温度计、冷凝管的四口圆底烧瓶中搅拌均匀,然后加入聚乙烯醇和氧化石墨烯溶液,70℃下加热搅拌2h,升温至85℃,继续加热搅拌3h,停止搅拌,加入乙醇,通过水蒸气蒸馏,去除游离酚提纯,得到酚醛树脂;
将所述酚醛树脂在130℃、0.2MPa进行熔融纺丝,牵伸得到初生酚醛纤维,将其进入凝固浴进行固化,凝固浴中甲醛含量为10%,盐酸含量为15%,水含量为75%,温度为80~100℃,升温速率10℃~20℃/h,之后恒温,固化1~2h,水洗,干燥得石墨烯改性酚醛纤维。
其中,氧化石墨烯的浓度为10mg/g;
氧化石墨烯的加入量为酚醛树脂产品的0.5%。
以上实施例2-1~2-25和对比例2-1~2-4所有石墨烯改性酚醛纤维的实验数据见下表2-1。
表2-1实施例和对比例的复合材料的实验数据
Figure PCTCN2017098335-appb-000003
Figure PCTCN2017098335-appb-000004
表2-1中,助纺聚合物的含量为助纺聚合物与酚醛树脂的摩尔比。
将实施例2-1~2-25和对比例2-1~2-4得到的酚醛树脂纤维置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至800℃,恒温3h,得到电极材料,并将其应用于电极的制备。
电极的制备:将上述电极材料、导电炭黑以及粘结剂按照85∶10∶5的质量比混合,然后再5000rpm的速度下超速剪切混合,然后在80MPa下通过垂直碾压和水平碾压形成厚度均一的薄膜,并将薄膜置于100℃下放置24h。将干燥好的薄膜剪成1×1cm电极片,称重后置于两片泡沫镍之间,并以镍片引出,使用 压片机在8MPa下压实,得到待测电极。
电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下比电容见下表2-1。
表2-1
序号 0.1A/g下比电容(F/g)
实施例2-1 158.6
实施例2-2 156.4
实施例2-3 159.6
实施例2-4 131.2
实施例2-5 128.9
实施例2-6 119.6
实施例2-7 151.4
实施例2-8 121.3
实施例2-9 118.8
实施例2-10 142.7
实施例2-11 126.8
实施例2-12 160.3
实施例2-14 159.2
实施例2-15 139.6
实施例2-16 131.8
实施例2-17 148.5
实施例2-18 141.8
实施例2-19 139.8
实施例2-20 132.6
实施例2-21 129.8
实施例2-22 123.7
实施例2-23 145.3
实施例2-24 149.6
实施例2-25 151.2
对比例2-1 109.6
对比例2-2 135.6
对比例2-3 113.7
对比例2-4 128.6
实施例3-1
一种改性酚醛树脂纤维的制备方法包括如下步骤:
(1)将苯酚∶甲醛∶草酸按照1∶0.8∶0.05的摩尔比加入四口烧瓶中,70℃加热搅拌回流2h得到酚醛树脂的预聚物;之后向所述酚醛树脂预聚物中加入PVA(以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.005),得到助纺聚合物-预聚物溶液;
(2)分散氧化石墨烯于水中,得到石墨烯类物质分散液;石墨烯类物质分散液的浓度为10mg/g;
(3)聚合反应:85℃条件下,向步骤(1)助纺聚合物-预聚物溶液中滴加步骤(2)得到的石墨烯类物质分散液,加热搅拌回流3h,停止搅拌,加入乙醇,通过水蒸气蒸馏,去除游离酚提纯,得到酚醛树脂;
(4)将所述酚醛树脂在130℃、0.2MPa进行熔融纺丝,牵伸得到初生酚醛纤维,将其进入凝固浴进行固化,凝固浴中甲醛含量为10%,盐酸含量为15%,水含量为75%,温度为80~100℃,升温速率10℃~20℃/h,之后恒温,固化1~2h,水洗,干燥得石墨烯改性酚醛纤维。
其中,氧化石墨烯的加入量为酚醛树脂产品的0.5%。
实施例3-2
与实施例3-1的区别在于:替换氧化石墨烯为羧基化的氧化石墨烯。
实施例3-3
与实施例3-1的区别在于,替换氧化石墨烯为石墨烯。
实施例3-4
与实施例3-1的区别在于,替换氧化石墨烯为生物质石墨烯。
实施例3-5
与实施例3-1的区别在于,替换氧化石墨烯为氧化生物质石墨烯。
实施例3-6~3-9
与实施例3-1的区别在于,氧化石墨烯的加入量为酚醛树脂产品的0.01wt%、1wt%、10wt%、15wt%。
实施例3-10~3-12
与实施例3-1的区别在于,所加入氧化石墨烯溶液的溶度不同,分别为1mg/g、5mg/g、15mg/g。
实施例3-13~3-15
与实施例3-1的区别在于氧化石墨烯的溶液的溶剂不同,分别为乙醇、DMF、丙酮。
实施例3-16~3-21
与实施例3-14(溶剂是DMF)的区别在于,分别将聚乙烯醇替换为聚乙烯吡咯烷酮、聚乙二醇、丁腈橡胶、丁苯橡胶、聚氨酯、天然橡胶。
实施例3-22
与实施例3-1的区别在于酚和醛的种类不同,
将“苯酚∶甲醛∶草酸按照1∶0.8∶0.05”替换为“苯酚∶糠醛∶草酸按照1∶0.8∶0.05”。
实施例3-23
与实施例3-1相比,酚醛树脂和PVA的比例不同,
向所述酚醛树脂预聚物中加入PVA(以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.01)。
实施例3-24
与实施例3-1相比,酚醛树脂和PVA的比例不同,
向所述酚醛树脂预聚物中加入PVA(以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.1)。
对比例3-1
与实施例1的区别在于,在酚醛树脂开始反应时,将石墨烯和聚乙烯醇一锅加入其中。
具体包括如下步骤:
将苯酚∶甲醛∶草酸按照1∶0.8∶0.05的摩尔比加入到装有搅拌器、温度计、冷凝管的四口圆底烧瓶中搅拌均匀,然后加入聚乙烯醇和氧化石墨烯溶液,70℃ 下加热搅拌2h,升温至85℃,继续加热搅拌3h,停止搅拌,加入乙醇,通过水蒸气蒸馏,去除游离酚提纯,得到酚醛树脂;
将所述酚醛树脂在130℃、0.2MPa进行熔融纺丝,牵伸得到初生酚醛纤维,将其进入凝固浴进行固化,凝固浴中甲醛含量为10%,盐酸含量为15%,水含量为75%,温度为80~100℃,升温速率10℃~20℃/h,之后恒温,固化1~2h,水洗,干燥得石墨烯改性酚醛纤维。
其中,氧化石墨烯的浓度为10mg/g;
氧化石墨烯的加入量为酚醛树脂产品的0.5%。
对比例3-2
与实施例3-1的区别在于,不加入PVA。
对比例3-3
与实施例3-1的区别在于,不加入PVA和氧化石墨烯。
对比例3-4
与实施例3-1的区别在于,不加入氧化石墨烯。
以上实施例3-1~3-24和对比例1、3-2~3-4所有石墨烯改性酚醛纤维的工艺条件见下表3-1。
表3-1实施例和对比例3-1~3-4的工艺条件
Figure PCTCN2017098335-appb-000005
Figure PCTCN2017098335-appb-000006
表3-1中,助纺聚合物的含量为助纺聚合物与酚醛树脂的摩尔比。
将实施例3-1~3-24和对比例3-1~3-4得到的酚醛树脂纤维置于管式电阻炉 中,在氮气保护下以3℃/min的升温速率升至800℃,恒温3h,得到电极材料,并将其应用于电极的制备。
电极的制备:将上述电极材料、导电炭黑以及粘结剂按照85∶10∶5的质量比混合,然后再5000rpm的速度下超速剪切混合,然后在80MPa下通过垂直碾压和水平碾压形成厚度均一的薄膜,并将薄膜置于100℃下放置24h。将干燥好的薄膜剪成1×1cm电极片,称重后置于两片泡沫镍之间,并以镍片引出,使用压片机在8MPa下压实,得到待测电极。
电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下比电容见下表3-2。
表3-2
序号 0.1A/g下比电容(F/g)
实施例3-1 153.9
实施例3-2 152.3
实施例3-3 157.5
实施例3-4 130.1
实施例3-5 125.7
实施例3-6 117.5
实施例3-7 147.9
实施例3-8 119.5
实施例3-9 117.9
实施例3-10 140.7
实施例3-11 123.7
实施例3-12 157.9
实施例3-13 156.8
实施例3-14 136.7
实施例3-15 128.8
实施例3-16 145.5
实施例3-17 138.5
实施例3-18 136.8
实施例3-19 130.1
实施例3-20 126.9
实施例3-21 121.9
实施例3-22 145.6
实施例3-23 142.3
实施例3-24 146.2
对比例3-1 109.6
对比例3-2 131.2
对比例3-3 123.9
对比例3-4 113.6
实施例4-1
一种改性酚醛纤维的制备方法,包括如下步骤:
(1)将氧化石墨烯加入聚乙烯醇水溶液(聚乙烯醇水溶液的浓度为15%)中,搅拌超声得到混合液,所述混合液中氧化石墨烯的浓度为10mg/g;
其中,以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.07;
(2)将苯酚、甲醛、氨水按照1.2∶1∶0.05的摩尔配比加入四口烧瓶中,70℃加热搅拌回流2h之后,加入步骤(1)的混合溶液,升温至85℃继续反应3h,停止加热搅拌,得到酚醛树脂纺丝原液;
(3)将酚醛树脂纺丝原液进行静电纺丝,纺丝参数为:纺丝电压15~30kV,纺丝距离15~25cm,纺丝温度为20~40℃,纺丝湿度为30~50%,纺丝溶液的推进速率为1~3mL/h,之后将静电纺丝得到的初生纺丝置于恒温干燥箱中,在100-180℃下固化1~6h,得石墨烯改性酚醛纤维。
其中,氧化石墨烯的加入量为酚醛树脂产品的0.5%。
实施例4-2
与实施例4-1的区别仅在于将氧化石墨烯替换为羧基化的氧化石墨烯,其 它用量及条件均相同,制得石墨烯改性酚醛纤维。
实施例4-3
与实施例4-1的区别仅在于将氧化石墨烯替换为石墨烯,其它用量及条件均相同,制得石墨烯改性酚醛纤维。
实施例4-4
与实施例4-1的区别仅在于将氧化石墨烯替换为生物质石墨烯,其它用量及条件均相同,制得石墨烯改性酚醛纤维。
实施例4-5
与实施例4-1的区别仅在于将氧化石墨烯替换为氧化生物质石墨烯,其它用量及条件均相同,制得石墨烯改性酚醛纤维。
实施例4-6~4-9
与实施例4-1相比,区别仅在于氧化石墨烯的用量不同,氧化石墨烯的加入量为酚醛树脂产品的0.01%、1%、10%、15%。
实施例4-10~4-12
与实施例4-1相比,区别仅在于,混合液中氧化石墨烯的浓度不同,分别为1mg/g、5mg/g、15mg/g。
实施例4-13~4-15
实施例4-13~4-15与实施例4-1的区别仅在于氧化石墨烯超声分散时所用的溶剂不同,分别为乙醇、DMF、丙酮。
实施例4-16~4-21
实施例4-16~4-21与实施例4-14(溶剂为DMF)的区别仅在于分别将聚乙烯醇替换为聚乙烯吡咯烷酮、聚乙二醇、丁腈橡胶、丁苯橡胶、聚氨酯、天然橡胶,其它用量及条件均相同,制得石墨烯改性酚醛纤维。聚乙烯醇效果较好,橡胶类相对差,其他和聚乙烯醇差不多。
实施例4-22
与实施例4-1的区别在于酚和醛的种类不同,也就是步骤(2)不同,即
(2)将苯酚、糠醛、草酸按照1∶0.8∶0.05的摩尔配比加入四口烧瓶中,70℃加热搅拌回流2h之后,加入步骤(1)的混合溶液,升温至85℃继续反应3h,停止加热搅拌。
其他步骤同实施例4-1。
实施例4-23
与实施例4-1相比,酚醛树脂和PVA的比例不同,
以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.05。
实施例4-24
与实施例4-1相比,酚醛树脂和PVA的比例不同,
以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物PVA的摩尔比为1∶0.1。
对比例4-1
与实施例4-1的区别仅在于不进行步骤(1),步骤(2)中不加入氧化石墨烯与聚乙烯醇水溶液的混合液。
对比例4-2
与实施例4-1的区别仅在于不进行步骤(1),步骤(2)中加入氧化石墨烯与聚乙烯醇水溶液的混合液替换为仅加入氧化石墨烯水溶液。
对比例4-3
与实施例4-1的区别仅在于不进行步骤(1),步骤(2)中加入氧化石墨烯与聚乙烯醇水溶液的混合液替换为仅加入聚乙烯醇水溶液。
对比例4-4
与实施例4-1的区别在于,在酚醛树脂开始反应时,将石墨烯和聚乙烯醇一锅加入其中。
具体包括如下步骤:
将苯酚、甲醛、氨水按照1.2∶1∶0.05的摩尔比加入到装有搅拌器、温度计、冷凝管的四口圆底烧瓶中搅拌均匀,然后加入聚乙烯醇和氧化石墨烯溶液,70℃下加热搅拌2h,升温至85℃,继续加热搅拌3h,停止搅拌,得到酚醛树脂纺丝原液;
将酚醛树脂纺丝原液进行静电纺丝,纺丝参数为:纺丝电压15~30kV,纺丝距离15~25cm,纺丝温度为20~40℃,纺丝湿度为30~50%,纺丝溶液的推进速率为1~3mL/h,之后将静电纺丝得到的初生纺丝置于恒温干燥箱中,在100-180℃下固化1~6h,得石墨烯改性酚醛纤维。
其中,氧化石墨烯的浓度为10mg/g;
氧化石墨烯的加入量为酚醛树脂产品的0.5%。
下表4-1为以上实施例的数据。
表4-1实施例4-1~4-24和对比例4-1~4-4的复合材料的性能数据
Figure PCTCN2017098335-appb-000007
Figure PCTCN2017098335-appb-000008
将实施例4-1~4-24和对比例4-1~4-4得到的酚醛树脂纤维置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至800℃,恒温3h,得到电极材料,并将其应用于电极的制备。
电极的制备:将上述电极材料、导电炭黑以及粘结剂按照85∶10∶5的质量比混合,然后再5000rpm的速度下超速剪切混合,然后在80MPa下通过垂直碾压和水平碾压形成厚度均一的薄膜,并将薄膜置于100℃下放置24h。将干燥好的薄膜剪成1×1cm电极片,称重后置于两片泡沫镍之间,并以镍片引出,使用压片机在8MPa下压实,得到待测电极。
电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下比电容见下表4-2。
表4-2
序号 0.1A/g下比电容(F/g)
实施例4-1 175
实施例4-2 180
实施例4-3 169
实施例4-4 143
实施例4-5 159
实施例4-6 132
实施例4-7 189
实施例4-8 150
实施例4-9 143
实施例4-10 170
实施例4-11 156
实施例4-12 143
实施例4-13 176
实施例4-14 172
实施例4-15 179
实施例4-16 169
实施例4-17 165
实施例4-18 156
实施例4-19 167
实施例4-20 156
实施例4-21 160
实施例4-22 173
实施例4-23 168
实施例4-24 183
对比例4-1
对比例4-2
对比例4-3 127
对比例4-4 168
以下实施例a1-a35和对比例a1-a4中所用石墨烯A和氧化石墨烯A均为市售。
羧基化的氧化石墨烯A的制备方法如下:
将100mg氧化石墨超声分散在100ml水中,得到1mg/ml的氧化石墨烯分散液,然后加入6g氢氧化钠和5g氯乙酸超声3h,使得氧化石墨烯表面的环氧基和羟基转化为羧基,趁热过滤,去除杂质,之后再65℃下真空干燥得到羧基化氧化石墨烯,备用。
以下实施例中所用生物质石墨烯制备方法如下:(也可采用现有技术中生物质石墨烯的制备方法制备,也可以采用济南圣泉集团生产的生物质石墨烯)
先制备纤维素:
(1)将小麦秸杆粉碎预处理后,使用总酸浓为80wt%的甲酸和乙酸的有机酸液对处理后的小麦秸杆进行蒸煮,有机酸液中乙酸与甲酸的质量比为1∶12,并在加入原料前加入占小麦秸杆原料1wt%的过氧化氢(H2O2)作为催化剂,控制反应温度120℃,反应30min,固液质量比为1∶10,并将得到的反应液进行第一次固液分离;
(2)将第一次固液分离得到的固体加入总酸浓为75wt%的甲酸和乙酸的有机酸液进行酸洗涤,其中上述总酸浓为75wt%的有机酸液中加入了占小麦秸杆原料8wt%的过氧化氢(H2O2)作为催化剂且乙酸与甲酸的质量比为1∶12,控制温度为90℃,洗涤时间1h,固液质量比为1∶9,并将反应液进行第二次固液分离;
(3)收集第一次和第二次固液分离得到的液体,于120℃,301kPa下进行高温高压蒸发,直至蒸干,将得到的甲酸和乙酸蒸气冷凝回流至步骤(1)的反应釜中作为蒸煮液,用于步骤(1)的蒸煮;
(4)收集第二次固液分离得到的固体,并进行水洗,控制水洗温度为80℃,水洗浆浓为6wt%,并将得到的水洗浆进行第三次固液分离;
(5)收集第三次固液分离得到的液体,进行水、酸精馏,得到的混合酸液回用于步骤(1)的反应釜中作为蒸煮液用于步骤(1)的蒸煮,得到的水回用于步骤(5)作用水洗用水;
(6)收集第三次固液分离得到的固体并进行筛选得到所需的细浆纤维素。
然后以上文制备的纤维素为原料制备生物质石墨烯:
(1)按质量比1∶1混合纤维素和氯化亚铁,在150℃下搅拌进行催化处理4h,干燥至前驱体水分含量10wt%,得到前驱体;
(2)N2气氛中,以3℃/min速率将前驱体升温至170℃,保温2h,之后程 序升温至400℃,保温3h,之后升温至1200℃,保温3h后得到粗品;所述程序升温的升温速率为15℃/min;
(3)55-65℃下,将粗品经过浓度为10%的氢氧化钠溶液、4wt%的盐酸酸洗后,水洗得到生物质石墨烯。
氧化生物质石墨烯
生物质石墨烯由于存在多孔结构,同时片层相对于石墨而言已呈打开状态,因此氧化条件相比石墨氧化条件要弱。具体实施过程如下:
在反应器内将2g生物质石墨烯与30mL浓硫酸进行混合,冰水浴条件下搅拌10min后,逐渐加入7g高锰酸钾,控制温度不高于35℃,高锰酸钾加样完成后常温条件下继续搅拌2h,之后升温至40℃,反应30min后加入约5mL体积的30wt%双氧水,溶液颜色变为金黄色,之后加入150mL蒸馏水稀释,趁热抽滤反应液,分别用4mL质量分数为10%的稀盐酸和100mL去离子水清洗2-3次,离心后浆料喷雾干燥即可得到氧化生物质石墨烯。
实施例a1
(1)原位聚合法制备含氮酚醛树脂/GO复合前驱体:
制备改性石墨烯/酚醛树脂复合材料,按照1∶1.32∶0.08∶0.07的比例(指摩尔比,下文同)取苯酚、甲醛(37%)、氢氧化钠(20%)和三聚氰胺;氧化石墨烯在水中通过超声分散得到3mg/g的氧化石墨烯分散液待用;将苯酚置于三口烧瓶中,在45℃油浴下搅拌10min,加入NaOH(20%)水溶液和4/5的甲醛,升温至70℃,搅拌1h。然后加入三聚氰胺和剩余1/5的甲醛,升温至90℃,之后缓慢加入氧化石墨烯分散液,氧化石墨烯的添加量占苯酚与甲醛总量的0.1wt%,继续搅拌3.5h。反应结束后,使用2mol/L的HCl溶液将pH调至中性,将酚醛树脂转移至旋转蒸发瓶中,在真空状态下升温至50℃,除去水分,最后得到氧化石墨烯/酚醛树脂复合材料。
在本实施例中,氧化石墨烯分散液也可以与三聚氰胺同一时机加入,也可选择与三聚氰胺互换加入时机。
(2)石墨烯/含氮炭材料的制备:
取一定质量的氧化石墨烯/酚醛树脂复合材料,置于200℃恒温鼓风干燥箱中固化6h。使用微型高速粉碎机将固化后的酚醛树脂/GO复合材料粉碎,将粉 碎料置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至800℃,恒温3h,最终得到石墨烯/含氮炭材料。经氮气吸附脱附测试,比表面积为520m2/g。
(3)电极的制备:
将石墨烯/含氮炭、导电炭黑以及粘结剂按照85∶10∶5的质量比混合,然后再5000rpm的速度下超速剪切混合,然后在80MPa下通过垂直碾压和水平碾压形成厚度均一的薄膜,并将薄膜置于100℃下放置24h。将干燥好的薄膜剪成1*1cm电极片,称重后置于两片泡沫镍之间,并以镍片引出,使用压片机在8MPa下压实,得到待测电极。
(4)电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下比电容为231F/g。
实施例a2:
实施例a2与实施例a1的区别仅在于,苯酚、甲醛(37%)、氢氧化钠(20%)和三聚氰胺的摩尔比为1∶1.32∶0.08∶0.001。其他同实施例a1。
将本实施例中得到的待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下比电容为158F/g。
实施例a3:
(1)含氮氧化石墨烯/酚醛树脂的制备:
制备氧化石墨烯/酚醛树脂复合材料,按照1∶1.32∶0.07的比例(指摩尔比,下文同)取间氨基苯酚、甲醛(37%)和氢氧化钠(20%);氧化石墨烯在水中通过超声分散得到3mg/g的氧化石墨烯分散液待用;
将氨基苯酚置于三口烧瓶中,在45℃油浴下搅拌10min,加入NaOH(20%)水溶液和甲醛,升温至70℃,搅拌1h。然后升温至90℃,之后缓慢加入氧化石墨烯分散液,氧化石墨烯的添加量占苯酚与甲醛总量的0.1wt%,继续搅拌3.5h。反应结束后,使用2mol/L的HCl溶液将pH调至中性,将酚醛树脂转移至旋转蒸发瓶中,在真空状态下升温至50℃,除去水分,得到含氮氧化石墨烯/酚醛树脂。
步骤(2)和(3)同实施例a1。
(4)电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采 用三电极体系进行测试。在0.1A/g下比电容为208F/g。
实施例a4:
(1)原位聚合法制备含氮酚醛树脂/GO复合前驱体:
制备改性石墨烯/酚醛树脂复合材料,按照1∶1.32∶0.08∶0.07的比例(指摩尔比,下文同)取苯酚、甲醛(37%)、氢氧化钠(20%)和三聚氰胺;氧化石墨烯在水中通过超声分散得到3mg/g的氧化石墨烯分散液待用;将苯酚置于三口烧瓶中,在45℃油浴下搅拌10min,加入NaOH(20%)水溶液和甲醛,升温至70℃,搅拌1h。然后加入三聚氰胺,升温至90℃,之后缓慢加入氧化石墨烯分散液,氧化石墨烯的添加量占苯酚与甲醛总量的0.1wt%,继续搅拌3.5h。反应结束后,使用2mol/L的HCl溶液将pH调至中性,将酚醛树脂转移至旋转蒸发瓶中,在真空状态下升温至50℃,除去水分,最后得到氧化石墨烯/酚醛树脂复合材料。
步骤(2)和(3)同实施例a1。
(4)电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下比电容为222F/g。
实施例a5-a7:
与实施例a4的区别在于,步骤(2)为:
(2)石墨烯/含氮活性炭的制备:
取一定质量的氧化石墨烯/酚醛树脂复合材料,置于200℃恒温鼓风干燥箱中固化6h。使用微型高速粉碎机将固化后的酚醛树脂/GO复合材料粉碎,将粉碎料置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至600℃,恒温1h,得到初步炭化料。将得到的炭化料与KOH分别按照1∶1,1∶2以及1∶4(分别对应实施例a5-a7)的质量比充分研磨混合后,再次置于管式电阻炉中,升温至800℃,恒温2h。将得到的产物经酸洗、水洗以及烘干等得到石墨烯/含氮活性炭。按KOH添加比例不同将样品记为P-N-G-KOH-1、P-N-G-KOH-2、P-N-G-KOH-4。经氮气吸附脱附测试,P-N-G-KOH-1、P-N-G-KOH-2、P-N-G-KOH-4的比表面积分别为1123m2/g、1817m2/g和2187m2/g。
步骤(3)同实施例a4。
(4)电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下,实施例a5-a7的产品比电容分别为262F/g、308F/g和322F/g。
实施例a8
与实施例a4的区别在于将氧化石墨烯A替换为石墨烯A,其用量(相对于酚、醛的比例)及反应条件均相同,制得复合材料。
实施例a9
与实施例a6的区别在于将氧化石墨烯A替换为石墨烯A,其用量(相对于酚、醛的比例)及反应条件均相同,制得复合材料。
实施例a10
与实施例a4的区别仅在于将氧化石墨烯A替换为羧基化的氧化石墨烯A,其用量(相对于酚、醛的比例)及反应条件均相同,制得复合材料。
实施例a11
与实施例a6的区别仅在于将氧化石墨烯A替换为羧基化的氧化石墨烯A,其用量(相对于酚、醛的比例)及反应条件均相同,制得复合材料。
实施例a12
与实施例a4的区别仅在于将氧化石墨烯A替换为生物质石墨烯,其用量(相对于酚、醛的比例)及反应条件均相同,制得复合材料。
实施例a13
与实施例a6的区别仅在于将氧化石墨烯A替换为生物质石墨烯,其用量(相对于酚、醛的比例)及反应条件均相同,制得复合材料。
实施例a14
与实施例a4的区别仅在于将氧化石墨烯A替换为氧化生物质石墨烯,其用量(相对于酚、醛的比例)及反应条件均相同,制得复合材料。
实施例a15
与实施例a6的区别仅在于将氧化石墨烯A替换为氧化生物质石墨烯,其用量(相对于酚、醛的比例)及反应条件均相同,制得复合材料。
实施例a16-a18
实施例a16-a18与实施例a4的区别仅在于氧化石墨烯A的用量不同,其用 量分别为苯酚与甲醛总量的0.01wt%、0.5wt%、1wt%。
实施例a19-a20
实施例a19-a20与实施例a4的区别仅在于三聚氰胺的用量不同,三聚氰胺与苯酚的摩尔比分别为0.04∶1和0.1∶1。
实施例a21
实施例a21与实施例a4的区别仅在于甲醛替换为糠醛。
实施例a22
实施例a22与实施例a4的区别仅在于三聚氰胺替换为乙二胺,其用量(相对于酚、醛的摩尔比)及反应条件均相同,制得复合材料。
实施例a23
实施例a23与实施例a4的区别仅在于炭化时氢氧化钾替换为磷酸,其用量(相对于炭化料的比例)及反应条件均相同,制得复合材料。
实施例a24
实施例a24与实施例a4的区别在于制成的是热塑性树脂,具体如下。
(1)原位聚合法制备含氮酚醛树脂/GO复合前驱体:
制备改性石墨烯/酚醛树脂复合材料,按照1.25∶1∶0.08∶0.07的比例(指摩尔比,下文同)取苯酚、甲醛(37%)、盐酸和三聚氰胺;氧化石墨烯在水中通过超声分散得到3mg/g的氧化石墨烯分散液待用;将苯酚置于三口烧瓶中,在45℃油浴下搅拌10min,加入盐酸水溶液和甲醛,升温至70℃,搅拌1h。然后加入三聚氰胺,升温至90℃,之后缓慢加入氧化石墨烯分散液,氧化石墨烯的添加量占苯酚与甲醛总量的0.1wt%,继续搅拌3.5h。反应结束后,使用2mol/L的NaOH溶液将pH调至中性,将酚醛树脂转移至旋转蒸发瓶中,在真空状态下升温至50℃,除去水分,最后得到氧化石墨烯/酚醛树脂复合材料。
(2)石墨烯/含氮活性炭的制备:
取一定质量的氧化石墨烯/酚醛树脂复合材料,加入固化剂(加入量为酚醛树脂质量的10%)六次甲基四胺,置于150℃恒温鼓风干燥箱中固化6h。使用微型高速粉碎机将固化后的酚醛树脂/GO复合材料粉碎,将粉碎料置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至800℃,恒温3h,最终得到石墨烯/含氮炭材料。经氮气吸附脱附测试,比表面积为520m2/g。
步骤(3)(4)同实施例a4。
实施例a25
与实施例a24的不同之处仅在于(2)
(2)石墨烯/炭材料的制备:
取一定质量的氧化石墨烯/酚醛树脂复合材料,加入固化剂(加入量为酚醛树脂质量的10%)六次甲基四胺,置于150℃恒温鼓风干燥箱中固化6h。使用微型高速粉碎机将固化后的酚醛树脂/GO复合材料粉碎,将得到的粉碎料与KOH分别按照1∶2的质量比充分研磨混合后,置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至800℃,恒温3h,最终得到石墨烯/含氮炭材料。经氮气吸附脱附测试材料的比表面积为1721m2/g。
实施例a26
与实施例a4的不同之处仅在于,氧化石墨烯分散液为2mg/g。
实施例a27
与实施例a4的不同之处仅在于,氧化石墨烯分散液为4mg/g。
实施例a28
与实施例a4的区别仅在于:
氧化石墨烯在乙醇中通过超声分散得到3mg/g的氧化石墨烯分散液待用。
实施例a29
与实施例a4的区别仅在于:
氧化石墨烯在丙酮中通过超声分散得到3mg/g的氧化石墨烯分散液待用。
实施例a30
与实施例a4的区别仅在于:
氧化石墨烯在DMF中通过超声分散得到3mg/g的氧化石墨烯分散液待用。
实施例a31
与实施例a4的区别仅在于:苯酚、甲醛(37%)、氢氧化钠(20%)和三聚氰胺的摩尔比为1∶1.32∶0.08∶0.15。
实施例a32
与实施例a4的区别仅在于:苯酚、甲醛(37%)、氢氧化钠(20%)和三聚氰胺的摩尔比为1∶1.32∶0.08∶0.1。
实施例a33
与实施例a4的区别仅在于:苯酚、甲醛(37%)、氢氧化钠(20%)和三聚 氰胺的摩尔比为1∶1.32∶0.08∶0.03。
实施例a34
与实施例a3的区别仅在于:将间氨基苯酚替换为对氨基苯酚。
实施例a35
与实施例a3的区别仅在于:将间氨基苯酚替换为3-二乙氨基酚。
对比例a1
(1)原位聚合法制备酚醛树脂/GO复合前驱体:
制备改性石墨烯/酚醛树脂复合材料,按照1∶1.32∶0.08的比例(指摩尔比,下文同)取苯酚、甲醛(37%)和氢氧化钠(20%);氧化石墨烯在水中通过超声分散得到3mg/g的氧化石墨烯分散液待用;将苯酚置于三口烧瓶中,在45℃油浴下搅拌10min,加入NaOH(20%)水溶液和甲醛,升温至70℃,搅拌1h。升温至90℃,之后缓慢加入氧化石墨烯分散液,氧化石墨烯的添加量占苯酚与甲醛总量的0.1wt%,继续搅拌3.5h。反应结束后,使用2mol/L的HCl溶液将pH调至中性,将酚醛树脂转移至旋转蒸发瓶中,在真空状态下升温至50℃,除去水分,最后得到氧化石墨烯/酚醛树脂复合材料。
(2)石墨烯/含氮活性炭的制备:
取一定质量的氧化石墨烯/酚醛树脂复合材料,置于200℃恒温鼓风干燥箱中固化6h。使用微型高速粉碎机将固化后的酚醛树脂/GO复合材料粉碎,将粉碎料置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至600℃,恒温1h,得到初步炭化料。将得到的炭化料与KOH分别按照1∶2的质量比充分研磨混合后,再次置于管式电阻炉中,升温至800℃,恒温2h。将得到的产物经酸洗、水洗以及烘干等得到石墨烯活性炭。经氮气吸附脱附测试材料的比表面积为1948m2/g。
(3)电极的制备:
将石墨烯/含氮炭、导电炭黑以及粘结剂按照85∶10∶5的质量比混合,然后再5000rpm的速度下超速剪切混合,然后在80MPa下通过垂直碾压和水平碾压形成厚度均一的薄膜,并将薄膜置于100℃下放置24h。将干燥好的薄膜剪成1*1cm电极片,称重后置于两片泡沫镍之间,并以镍片引出,使用压片机在8MPa下压实,得到待测电极。
(4)电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下比电容为166F/g。
对比例a2
对比例a2与对比例a1的区别在于步骤(2)。
(2)石墨烯/含氮炭材料的制备:
取一定质量的氧化石墨烯/酚醛树脂复合材料,置于200℃恒温鼓风干燥箱中固化6h。使用微型高速粉碎机将固化后的酚醛树脂/GO复合材料粉碎,将粉碎料置于管式电阻炉中,在氮气保护下以3℃/min的升温速率升至800℃,恒温3h,最终得到石墨烯/含氮炭材料。经氮气吸附脱附测试材料的比表面积为501m2/g。
(3)同对比例a1。
(4)电化学性能测试:
将待测电极置于6M的KOH溶液中浸泡24h后,接入电化学工作站,采用三电极体系进行测试。在0.1A/g下比电容为98F/g。
对比例a3
对比例a3与实施例a6的区别仅在于步骤(1)中氧化石墨烯A和三聚氰胺的加入时机不同,具体为:
(1)制备改性石墨烯/酚醛树脂复合材料,按照1∶1.32∶0.08∶0.07的比例(指摩尔比,下文同)取苯酚、甲醛(37%)、氢氧化钠(20%)和三聚氰胺;氧化石墨烯在水中通过超声分散得到3mg/g的氧化石墨烯分散液待用;将苯酚置于三口烧瓶中,在45℃油浴下搅拌10min,然后加入NaOH(20%)水溶液、甲醛、三聚氰胺和氧化石墨烯分散液,然后升温至70℃,搅拌1h,再升温至90℃,继续搅拌3.5h。反应结束后,使用2mol/L的HCl溶液将pH调至中性,将酚醛树脂转移至旋转蒸发瓶中,在真空状态下升温至50℃,除去水分,最后得到氧化石墨烯/酚醛树脂复合材料。
步骤(2)(3)(4)同实施例6。
对比例a4
对比例a4与实施例a6的区别仅在于步骤(1)中氧化石墨烯A和三聚氰胺的加入时机不同,具体为:
(1)制备改性石墨烯/酚醛树脂复合材料,按照1∶1.32∶0.08∶0.07的比例(指摩尔比,下文同)取苯酚、甲醛(37%)、氢氧化钠(20%)和三聚氰胺;氧化石墨烯在水中通过超声分散得到3mg/g的氧化石墨烯分散液待用;将苯酚置于三口烧瓶中,在45℃油浴下搅拌10min,然后加入NaOH(20%)水溶液、甲醛、三聚氰胺,然后升温至70℃,搅拌1h,再升温至90℃,继续搅拌3.5h。反应结束后,使用2mol/L的HCl溶液将pH调至中性,之后缓慢加入氧化石墨烯A溶液,混合均匀,然后将酚醛树脂转移至旋转蒸发瓶中,在真空状态下升温至50℃,除去水分,最后得到氧化石墨烯/酚醛树脂复合材料。
步骤(2)(3)(4)同实施例6。
检测以上所有复合材料的电学性能,检测方法同实施例a1,结果见下表1。
表1实施例a1-a35和对比例a1-a4的复合材料的性能数据
Figure PCTCN2017098335-appb-000009
Figure PCTCN2017098335-appb-000010
申请人声明,本发明通过上述实施例来说明本发明的工艺方法,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (30)

  1. 一种改性的酚醛树脂纤维的制备方法,其包括:
    将石墨烯类物质、助纺聚合物与酚醛树脂相复合,得到含石墨烯的酚醛树脂;和
    将所得含石墨烯的酚醛树脂经纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
  2. 如权利要求1所述的改性的酚醛树脂纤维的制备方法,其中,所述方法包括如下步骤:
    (1)向酚醛树脂的预聚物中加入助纺聚合物,得到助纺聚合物-预聚物溶液;
    (2)向所述助纺聚合物-预聚物溶液中加入石墨烯类物质,进行酚醛树脂的聚合反应,得到含石墨烯的酚醛树脂;
    (3)将步骤(2)得到的含石墨烯的酚醛树脂经纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
  3. 如权利要求2所述的改性的酚醛树脂纤维的制备方法,其中,
    步骤(2)中所述的酚醛树脂的聚合反应为热固性酚醛树脂的聚合反应,得到反应液,即为酚醛树脂纺丝原液;并且
    在步骤(3)中,将步骤(2)得到的酚醛树脂纺丝原液静电纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
  4. 如权利要求2所述的改性的酚醛树脂纤维的制备方法,其中,
    步骤(2)中所述的酚醛树脂的聚合反应为热塑性酚醛树脂的聚合反应,得到反应液,纯化后得到改性的酚醛树脂;并且
    在步骤(3)中,将步骤(2)得到的改性的酚醛树脂纺丝成酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
  5. 如权利要求3或4所述的制备方法,其中,以醛类物质计,所述酚醛树脂的预聚物与助纺聚合物的摩尔比为1∶0.05~0.1;
    所述石墨烯类物质与助纺聚合物-预聚物混合进行热固性酚醛树脂的聚合反应过程中,石墨烯类物质的质量为酚醛树脂的0.01~15wt%,优选0.01~10wt%,进一步优选0.01~5wt%,特别优选0.01~2wt%,最优选0.1~1wt%;
    所述石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的任意1种或至少2种的混合,所述石墨烯衍生物包括元素掺杂的石墨烯;
    优选地,所述石墨烯类物质为氧化石墨烯;
    优选地,所述石墨烯衍生物包括元素掺杂石墨烯或官能团化石墨烯物中的任意1种或至少2种的组合。
  6. 如权利要求3~5之一所述的制备方法,其中,步骤(2)所述石墨烯类物质以分散液的形式加入;
    优选地,所述分散液的溶剂包括乙醇、水、乙二醇、DMF、NMP或丙酮中的任意1种或至少2种的组合;
    优选地,所述分散液中,石墨烯类物质的浓度为15mg/g以下,优选1~10mg/g,进一步优选3~5mg/g;
    优选地,所述石墨烯类物质的分散液以滴加的形式加入至助纺聚合物-预聚物溶液中;所述滴加速率优选为0.5-2mL/min。
  7. 如权利要求3-6之一所述的制备方法,其中,步骤(1)所述助纺聚合物包括橡胶、聚丙烯酰胺、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇或聚乙二醇中的任意1种或至少2种的组合,优选聚乙烯醇;
    所述橡胶为丁腈橡胶、丁苯橡胶、天然橡胶中的一种或多种。
  8. 如权利要求3-7之一所述的制备方法,其中,所述酚醛树脂的预聚物通过酚醛树脂的聚合单体发生预聚反应得到;
    优选地,所述酚醛树脂聚合单体的酚包括苯酚及其衍生物,优选苯酚、甲酚、二甲酚、萘酚、烷基取代的苯酚、烷基取代的萘酚、双酚A或双酚F中的任意1种或至少2种的组合;
    优选地,所述酚醛树脂聚合单体的醛包括甲醛及其衍生物,优选甲醛、乙醛或糠醛中任意1种或至少2种的组合;
    优选地,所述预聚反应包括如下步骤:将酚醛树脂的聚合单体和催化剂混合,在60~80℃下反应0.5~4h;
    优选地,当所述酚醛树脂为热固性酚醛树脂时,在所述预聚反应中,以羟基计的酚单体、以醛基计的醛单体和催化剂的摩尔比为1∶(1.1~1.4)∶(0.005~0.05);所述催化剂优选包括碱性催化剂;所述碱性催化剂优选包括氢氧化钠、氢氧化钾或氨水中的任意1种或至少2种的组合;
    优选地,当所述酚醛树脂为热塑性酚醛树脂时,在所述预聚反应中,以羟基计的酚单体、以醛基计的醛单体和催化剂的摩尔比为1∶(0.7~1)∶(0.005~0.05); 所述催化剂优选包括酸性催化剂;所述酸性催化剂优选包括盐酸、草酸、醋酸或硫酸中的任意1种或至少2种的组合。
  9. 如权利要求3~8之一所述的制备方法,其中,所述热固性酚醛树脂的聚合反应的反应温度为80~95℃,反应时间为0.5~4h;
    所述热塑性酚醛树脂的聚合反应的反应温度为80~95℃,反应时间为0.5~4h。
  10. 如权利要求1所述的改性的酚醛树脂纤维的制备方法,其中,所述方法包括如下步骤:
    (1)混合石墨烯类物质和助纺聚合物,搅拌得到混合液;
    (2)将所述石墨烯类物质以步骤(1)所述混合液的形式与酚醛树脂进行复合,得到含石墨烯的酚醛树脂;
    (3)将步骤(2)得到的含石墨烯的酚醛树脂纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
  11. 如权利要求10所述的改性的酚醛树脂纤维的制备方法,其中,
    步骤(2)得到的含石墨烯的酚醛树脂是改性的热塑性酚醛树脂;并且
    在步骤(3)中,将步骤(2)得到的改性的热塑性酚醛树脂经提纯,熔融纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
  12. 如权利要求10所述的改性的酚醛树脂纤维的制备方法,其中,
    步骤(2)得到的含石墨烯的酚醛树脂是改性的热固性酚醛树脂纺丝原液;并且
    在步骤(3)中,将步骤(2)得到的改性的热固性酚醛树脂纺丝原液静电纺丝得到酚醛纤维原丝后,固化交联得到改性的酚醛树脂纤维。
  13. 如权利要求11或12所述的制备方法,其中,所述石墨烯类物质与酚醛树脂进行复合的过程中,石墨烯类物质的质量为酚醛树脂的0.01~15wt%,优选0.01~10wt%,进一步优选0.01~5wt%,特别优选0.01~2wt%,最优选0.1~1wt%;
    优选地,将所述石墨烯类物质以步骤(1)所述混合液的形式与酚醛树脂进行复合的方式包括:在酚醛树脂的合成单体中加入步骤(1)所述混合液,与合成单体一起进行酚醛树脂的聚合反应;
    或者,在酚醛树脂的聚合反应中加入步骤(1)所述混合液;
    或者,将酚醛树脂的聚合单体进行酚醛树脂的聚合反应,在得到的酚醛树 脂中加入步骤(1)所述混合液;
    优选地,所述混合液的加入形式为滴加,所述滴加速率为0.5-2mL/min。
  14. 如权利要求11~13之一所述的制备方法,其中,步骤(1)所述混合液包括分散有石墨烯类物质的液态助纺聚合物;
    或者,所述混合液包括分散有助纺聚合物和石墨烯类物质的溶剂;
    优选地,所述分散有助纺聚合物和石墨烯类物质的溶剂中,所述助纺聚合物和石墨烯类物质发生部分或全部的接枝反应;
    优选地,所述助纺聚合物包括橡胶、聚丙烯酰胺、聚丙烯酸、聚乙烯吡咯烷酮、聚乙烯醇或聚乙二醇中的任意1种或至少2种的组合,优选聚乙烯醇;
    所述橡胶为丁腈橡胶、丁苯橡胶、天然橡胶中的一种或多种;
    优选地,所述溶剂包括乙醇、水、乙二醇、DMF、NMP或丙酮中的任意1种或至少2种的组合;优选乙醇或水;
    优选地,当所述混合液为分散有石墨类物质的液态助纺聚合物时,石墨烯类物质和助纺聚合物的质量比为1∶0.01~10;
    优选地,当所述混合液为分散有助纺聚合物和石墨烯类物质的溶剂时,所述助纺聚合物的浓度为10~20wt%,所述石墨烯类物质的浓度为15mg/g以下,优选1~10mg/g,优选3~5mg/g;
    优选地,步骤(1)所述搅拌的时间为1min-2h。
  15. 如权利要求11~14之一所述的制备方法,其中,所述石墨烯类物质包括石墨烯、生物质石墨烯、氧化石墨烯、石墨烯衍生物的任意1种或至少2种的混合,所述石墨烯衍生物包括元素掺杂的石墨烯;
    优选地,所述石墨烯衍生物包括元素掺杂石墨烯或官能团化石墨烯物中的任意1种或至少2种的组合。
  16. 根据权利要求11~15任一所述的制备方法,其中,所述酚醛树脂的聚合反应包括依次进行的预聚反应和缩聚反应;
    优选地,所述预聚反应的温度为60~80℃,反应时间为0.5~5h;
    优选地,所述缩聚反应的温度为80~90℃,反应时间为0.5~5h;
    优选地,当所述酚醛树脂为热塑性酚醛树脂时,所述酚醛树脂的聚合反应中,以羟基计的酚单体、以醛基计的醛单体和催化剂的摩尔比为1∶(0.7~1)∶(0.005~0.05);所述酸性催化剂优选包括盐酸、草酸、醋酸或硫酸中的任意1 种或至少2种的组合;
    优选地,当所述酚醛树脂为热固性酚醛树脂时,所述酚醛树脂的聚合反应中,以羟基计的酚单体、以醛基计的醛单体和碱性催化剂的摩尔比为(1~1.4)∶1∶(0.005~0.05);所述碱性催化剂优选氢氧化钠,氨水中的任意1种或至少2种的组合。
  17. 如权利要求11~16之一所述的制备方法,其中,所述酚类化合物包括苯酚及其衍生物,优选苯酚、甲酚、二甲酚、萘酚、烷基取代的苯酚、烷基取代的萘酚、双酚A或双酚F中的任意1种或至少2种的组合;
    优选地,所述醛类化合物包括甲醛及其衍生物,优选甲醛、乙醛或糠醛中任意1种或至少2种的组合。
  18. 一种改性的酚醛树脂纤维,其中,所述改性的酚醛树脂纤维通过权利要求1~17之一所述的改性的酚醛树脂纤维的制备方法得到。
  19. 一种用于电极的复合材料,其中,所述复合材料主要由氮掺杂的酚醛基活性炭和石墨烯类物质复合而成;所述复合材料的比电容为150F/g以上;
    所述石墨烯类物质选自石墨烯及其衍生物、氧化石墨烯及其衍生物、生物质石墨烯及其衍生物中的一种或多种;
    所述复合方法为在酚类化合物与醛类化合物聚合生成酚醛树脂的反应过程中或反应结束后加入石墨烯类物质及含氮物质,之后经过炭化而得。
  20. 如权利要求19所述的用于电极的复合材料,其中,所述含氮物质选自含氮无机物、含氮酚类化合物及其它含氮有机物中的一种或多种,优选有机胺、硝酸盐中的一种或两种混合,优选乙二胺、己二胺、尿素、三聚氰胺中的一种或多种,优选三聚氰胺;
    所述含氮酚类化合物优选含有伯胺基、仲胺基、季胺基中一种或多种的酚类化合物,优选含有伯胺基的酚类化合物,更优选间氨基苯酚。
  21. 根据权利要求19所述的用于电极的复合材料,其中,所述酚类化合物选自苯酚及其衍生物,优选苯酚、甲酚、二甲酚或间苯二酚;所述醛类化合物选自甲醛及其衍生物,优选甲醛、乙醛或糠醛;
    优选地,所述石墨烯类物质为氧化石墨烯;
    优选地,所述石墨烯的衍生物为经过改性的石墨烯;
    优选地,所述氧化石墨烯的衍生物为经过改性的氧化石墨烯;
    优选地,所述石墨烯衍生物包括元素掺杂石墨烯或官能团化石墨烯中的任意1种或至少2种的组合;
    优选地,所述氧化石墨烯衍生物包括元素掺杂氧化石墨烯或官能团化氧化石墨烯物中的任意1种或至少2种的组合;
    优选地,所述元素掺杂石墨烯包括金属掺杂石墨烯或非金属元素掺杂石墨烯中的任意1种或至少2种的组合;
    优选地,所述元素掺杂氧化石墨烯包括金属掺杂氧化石墨烯或非金属元素掺杂氧化石墨烯中的任意1种或至少2种的组合;
    优选地,所述金属掺杂的金属元素包括钾、钠、金、银、铁、铜、镍、铬钛、钒、钴中的一种或多种;
    优选地,所述非金属元素掺杂石墨烯包括氮、磷、硫、硅、硼、硅中的一种或多种;
    优选地,所述非金属元素掺杂石墨烯包括氮掺杂石墨烯、磷掺杂石墨烯、硫掺杂石墨烯中的任意1种或至少2种的组合;
    优选地,所述非金属元素掺杂氧化石墨烯包括氮掺杂氧化石墨烯、磷掺杂氧化石墨烯、硫掺杂氧化石墨烯中的任意1种或至少2种的组合;
    优选地,所述官能团化石墨烯包括接枝有羟基、羧基或氨基中的任意1种或至少2种官能团的石墨烯;
    优选地,所述官能团化氧化石墨烯包括接枝有羟基、羧基或氨基中的任意1种或至少2种官能团的氧化石墨烯。
  22. 根据权利要求19或20所述的用于电极的复合材料,其特征在于,所述石墨烯类物质的加入量为所述酚类化合物与所述醛类化合物总量的0.01~1wt%,优选0.1~1wt%;
    优选地,所述酚类化合物不含氮时,所述含氮物质与所述酚类化合物的摩尔比为1∶0.01~1,更优选1∶0.04~0.5,更优选1∶0.04~0.2。
  23. 根据权利要求19-21任一项所述的用于电极的复合材料,其特征在于,在所述炭化的过程中加入活化剂,所述活化剂选自碱金属的氢氧化物、氯化锌、磷酸中的一种或多种,优选碱金属的氢氧化物,更优选氢氧化钾和/或氢氧化钠;
    优选地,所述活化剂与炭化物料的重量比为0.5~4∶1,更优选1~4∶1;
    优选地,所述复合材料的比电容为200F/g以上。
  24. 权利要求19或20所述的用于电极的复合材料,其是由权利要求18所述的改性的酚醛树脂纤维加入含氮物质,之后经过固化、炭化而得。
  25. 权利要求19-22任一项所述的用于电极的复合材料的制备方法,其特征在于,包括下列步骤:
    取酚类化合物与醛类化合物,使两者在催化剂作用下发生聚合反应;在所述聚合反应过程中或反应结束后加入石墨烯类物质及含氮物质;之后固化,炭化;
    优选地,所述炭化温度为600-1000℃。
  26. 根据权利要求25所述的用于电极的复合材料的制备方法,其使用如权利要求18所述的改性的酚醛树脂纤维,加入含氮物质,之后经过炭化而得。
  27. 根据权利要求25所述的用于电极的复合材料的制备方法,其特征在于,在所述聚合反应过程中加入石墨烯类物质及含氮物质时机为:
    在酚类化合物和醛类化合物反应0.2-4h后,加入石墨烯类物质及含氮物质,继续反应;
    优选反应0.2-3h后加入石墨烯类物质及含氮物质,更优选0.2-2.5h。
  28. 根据权利要求27所述的用于电极的复合材料的制备方法,其特征在于,所述聚合反应为:以碱为催化剂,在60-80℃下反应0.5-4h,加入石墨烯类物质及含氮物质,在80-95℃下继续反应1-4h;
    或者,所述聚合反应为:以酸为催化剂,在60-80℃下反应0.5-4h,加入石墨烯类物质及含氮物质,在80-95℃下反应1-4h。
  29. 根据权利要求24-28任一项所述的用于电极的复合材料的制备方法,其特征在于,所述炭化进一步为:
    将所述固化的产物升温至600-700℃,保持0.5-1.5h,然后加入活化剂,继续升温至800-1000℃,保持1-3h;所述活化剂选自碱金属的氢氧化物、氯化锌、磷酸中的一种或多种,优选碱金属的氢氧化物,更优选氢氧化钾和/或氢氧化钠;
    所述活化剂与炭化物料的重量比为0.5~4∶1,更优选1~4∶1。
  30. 一种电极,其特征在于,包括权利要求18-23任一项所述的用于电极的复合材料;
    优选地,所述电极主要由导电剂、粘结剂以及权利要求18-23任一项所述的用于电极的复合材料制得,所述导电剂优选炭黑。
PCT/CN2017/098335 2016-08-19 2017-08-21 一种改性酚醛树脂纤维及其制备方法和用途,以及由这种改性酚醛树脂纤维制成的用于电极的复合材料 WO2018033161A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201610695780.5A CN106847533A (zh) 2016-08-19 2016-08-19 一种用于电极的复合材料及其制备方法、制成的电极
CN201610695780.5 2016-08-19
CN201611179326.0 2016-12-19
CN201611180405.3A CN106811825B (zh) 2016-12-19 2016-12-19 一种改性酚醛树脂纤维及其制备方法和用途
CN201611178258.6A CN106811822B (zh) 2016-12-19 2016-12-19 一种改性酚醛树脂纤维及其制备方法和用途
CN201611179326.0A CN106811824B (zh) 2016-12-19 2016-12-19 一种改性酚醛树脂纤维及其制备方法和用途
CN201611178258.6 2016-12-19
CN201611180405.3 2016-12-19
CN201611179317.1A CN106811823B (zh) 2016-12-19 2016-12-19 一种改性酚醛树脂纤维及其制备方法和用途
CN201611179317.1 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018033161A1 true WO2018033161A1 (zh) 2018-02-22

Family

ID=61196347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098335 WO2018033161A1 (zh) 2016-08-19 2017-08-21 一种改性酚醛树脂纤维及其制备方法和用途,以及由这种改性酚醛树脂纤维制成的用于电极的复合材料

Country Status (1)

Country Link
WO (1) WO2018033161A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746739A (zh) * 2019-11-12 2020-02-04 华育昌(肇庆)智能科技研究有限公司 一种适用于新能源汽车的电池外壳的新型材料
CN110993367A (zh) * 2019-12-18 2020-04-10 上海应用技术大学 球状碳@锰氧化物@碳@铁氧化物复合材料及制备与应用
CN111647907A (zh) * 2020-05-21 2020-09-11 天津大学 一种自支撑杂原子掺杂污泥炭电极材料的制备方法
CN113911382A (zh) * 2021-11-02 2022-01-11 中国商用飞机有限责任公司 风腔搁架、制作风腔搁架的方法以及电子设备架
CN114783789A (zh) * 2022-04-29 2022-07-22 晋江瑞碧科技有限公司 氮掺杂石墨烯接枝聚(n-氨基甘氨酸)/纤维素纳米纤维膜柔性电极材料的制备方法
CN115072720A (zh) * 2022-07-22 2022-09-20 燕山大学 具有高赝电容活性的氧掺杂多孔碳电极材料及其制备方法
CN115232272A (zh) * 2022-09-20 2022-10-25 西南林业大学 一种端氨基聚合物-糠醛热固性树脂及其应用
CN118472287A (zh) * 2024-07-10 2024-08-09 杭州幄肯新材料科技有限公司 一种梯度刚度的碳纤维毡电极及其制备方法
CN118600640A (zh) * 2024-08-08 2024-09-06 沈阳富莱碳纤维有限公司 一种高纯黏胶基碳纤维复合材料石墨毡及其制备工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108424A (ja) * 2007-10-26 2009-05-21 Teijin Ltd 熱伝導性フィラー及びそれを用いた成形体
CN103215693A (zh) * 2013-02-01 2013-07-24 清华大学 氧化石墨烯修饰的酚醛树脂基超细多孔炭纤维及制备方法
WO2014060685A1 (fr) * 2012-10-19 2014-04-24 Arkema France Procédé de préparation d'un matériau composite thermodurcissable a base de graphène
CN104403264A (zh) * 2014-12-11 2015-03-11 山东圣泉新材料股份有限公司 一种石墨烯酚醛树脂复合材料及其制备方法和应用
CN106811824A (zh) * 2016-12-19 2017-06-09 山东圣泉新材料股份有限公司 一种改性酚醛树脂纤维及其制备方法和用途
CN106811825A (zh) * 2016-12-19 2017-06-09 山东圣泉新材料股份有限公司 一种改性酚醛树脂纤维及其制备方法和用途
CN106811823A (zh) * 2016-12-19 2017-06-09 山东圣泉新材料股份有限公司 一种改性酚醛树脂纤维及其制备方法和用途
CN106811822A (zh) * 2016-12-19 2017-06-09 山东圣泉新材料股份有限公司 一种改性酚醛树脂纤维及其制备方法和用途
CN106847533A (zh) * 2016-08-19 2017-06-13 山东圣泉新材料股份有限公司 一种用于电极的复合材料及其制备方法、制成的电极

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108424A (ja) * 2007-10-26 2009-05-21 Teijin Ltd 熱伝導性フィラー及びそれを用いた成形体
WO2014060685A1 (fr) * 2012-10-19 2014-04-24 Arkema France Procédé de préparation d'un matériau composite thermodurcissable a base de graphène
CN103215693A (zh) * 2013-02-01 2013-07-24 清华大学 氧化石墨烯修饰的酚醛树脂基超细多孔炭纤维及制备方法
CN104403264A (zh) * 2014-12-11 2015-03-11 山东圣泉新材料股份有限公司 一种石墨烯酚醛树脂复合材料及其制备方法和应用
CN106847533A (zh) * 2016-08-19 2017-06-13 山东圣泉新材料股份有限公司 一种用于电极的复合材料及其制备方法、制成的电极
CN106811824A (zh) * 2016-12-19 2017-06-09 山东圣泉新材料股份有限公司 一种改性酚醛树脂纤维及其制备方法和用途
CN106811825A (zh) * 2016-12-19 2017-06-09 山东圣泉新材料股份有限公司 一种改性酚醛树脂纤维及其制备方法和用途
CN106811823A (zh) * 2016-12-19 2017-06-09 山东圣泉新材料股份有限公司 一种改性酚醛树脂纤维及其制备方法和用途
CN106811822A (zh) * 2016-12-19 2017-06-09 山东圣泉新材料股份有限公司 一种改性酚醛树脂纤维及其制备方法和用途

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746739A (zh) * 2019-11-12 2020-02-04 华育昌(肇庆)智能科技研究有限公司 一种适用于新能源汽车的电池外壳的新型材料
CN110993367A (zh) * 2019-12-18 2020-04-10 上海应用技术大学 球状碳@锰氧化物@碳@铁氧化物复合材料及制备与应用
CN110993367B (zh) * 2019-12-18 2022-05-27 上海应用技术大学 球状碳@锰氧化物@碳@铁氧化物复合材料及制备与应用
CN111647907A (zh) * 2020-05-21 2020-09-11 天津大学 一种自支撑杂原子掺杂污泥炭电极材料的制备方法
CN113911382A (zh) * 2021-11-02 2022-01-11 中国商用飞机有限责任公司 风腔搁架、制作风腔搁架的方法以及电子设备架
CN114783789B (zh) * 2022-04-29 2023-08-04 武夷学院 氮掺杂石墨烯接枝聚(n-氨基甘氨酸)/纤维素纳米纤维膜柔性电极材料的制备方法
CN114783789A (zh) * 2022-04-29 2022-07-22 晋江瑞碧科技有限公司 氮掺杂石墨烯接枝聚(n-氨基甘氨酸)/纤维素纳米纤维膜柔性电极材料的制备方法
CN115072720A (zh) * 2022-07-22 2022-09-20 燕山大学 具有高赝电容活性的氧掺杂多孔碳电极材料及其制备方法
CN115072720B (zh) * 2022-07-22 2024-04-02 燕山大学 具有高赝电容活性的氧掺杂多孔碳电极材料及其制备方法
CN115232272A (zh) * 2022-09-20 2022-10-25 西南林业大学 一种端氨基聚合物-糠醛热固性树脂及其应用
CN115232272B (zh) * 2022-09-20 2022-11-22 西南林业大学 一种端氨基聚合物-糠醛热固性树脂及其应用
CN118472287A (zh) * 2024-07-10 2024-08-09 杭州幄肯新材料科技有限公司 一种梯度刚度的碳纤维毡电极及其制备方法
CN118600640A (zh) * 2024-08-08 2024-09-06 沈阳富莱碳纤维有限公司 一种高纯黏胶基碳纤维复合材料石墨毡及其制备工艺

Similar Documents

Publication Publication Date Title
WO2018033161A1 (zh) 一种改性酚醛树脂纤维及其制备方法和用途,以及由这种改性酚醛树脂纤维制成的用于电极的复合材料
CN106811825B (zh) 一种改性酚醛树脂纤维及其制备方法和用途
CN106832757B (zh) 一种石墨烯改性酚醛树脂的复合材料及其制备方法、应用
CN106811822B (zh) 一种改性酚醛树脂纤维及其制备方法和用途
CA2975634C (en) Composite containing carbon nanostructure, high molecular material using same and preparation method
CN104627994A (zh) 一种还原氧化石墨烯/酚醛树脂基活性炭原位复合材料的制备方法
CN104403275B (zh) 一种改性石墨烯/热固性树脂复合材料及其制备方法
KR102033268B1 (ko) 기능성 재생 셀룰로오스 섬유 및 그 제조방법과 응용
CN107500291A (zh) 一种木质素基酚醛树脂电容炭的制备方法
US11306416B2 (en) Functional regenerated viscose fiber
CN109970038A (zh) 以中低温煤焦油为原料生产中间相炭微球的方法
CN104947244A (zh) 一种原位萃取与制备木质素复合纳米纤维的方法
CN103014918B (zh) 一种煤系通用级沥青炭纤维的制备方法
CN109423702A (zh) 一种高强度、高储氢量的石墨烯基碳纤维及其制备方法
CN109208375A (zh) 一种低紧度免碳化固态电解电容器纸及其制备方法
WO2017084621A1 (zh) 一种功能性合成材料及其制备方法、制品
CN106811823B (zh) 一种改性酚醛树脂纤维及其制备方法和用途
CN103774266A (zh) 一种聚乙烯醇缩甲醛纤维的制备方法
CN101560727B (zh) 一种碳纤维的制备方法
CN107936916B (zh) 一种改性碳纤维摩擦颗粒的制备方法
CN106811824B (zh) 一种改性酚醛树脂纤维及其制备方法和用途
CN106847533A (zh) 一种用于电极的复合材料及其制备方法、制成的电极
CN109183187A (zh) 一种利用湿法纺丝制备硼改性高邻位酚醛纤维的方法
CN106904591A (zh) 一种梯级孔烟杆碳的制备方法及应用
CN110767883B (zh) 改性纤维、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841133

Country of ref document: EP

Kind code of ref document: A1