WO2018032888A1 - 利用锌镍渗层形成的钢铁表面改性结构及其制备方法 - Google Patents
利用锌镍渗层形成的钢铁表面改性结构及其制备方法 Download PDFInfo
- Publication number
- WO2018032888A1 WO2018032888A1 PCT/CN2017/091034 CN2017091034W WO2018032888A1 WO 2018032888 A1 WO2018032888 A1 WO 2018032888A1 CN 2017091034 W CN2017091034 W CN 2017091034W WO 2018032888 A1 WO2018032888 A1 WO 2018032888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- surface modification
- zinc
- structure formed
- diffusion layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
- C23C10/52—Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in one step
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
- C23C10/36—Embedding in a powder mixture, i.e. pack cementation only one element being diffused
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/60—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
- C23C28/025—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/02—Pretreatment of the material to be coated
Definitions
- the invention relates to a steel modified structure, in particular to a steel surface modified structure with high corrosion resistance and a preparation method thereof.
- the surface to the inside is an alloy deposition layer and a metal diffusion layer, wherein the steel substrate is medium carbon steel or medium carbon low alloy steel, the alloy deposition layer is a zinc iron compound, and the diffusion layer includes pearlite and ferrite.
- the quenching and tempering structure wherein the steel substrate has a carbon content of between 0.30 and 0.65%, and the steel surface modified structure having high corrosion resistance has a micro Vickers hardness of between 240 and 500.
- the hardness of the metal diffusion layer is higher than the hardness of the steel substrate.
- the pearlite color in the metal diffusion layer is more pearlite than the pearlite in the steel matrix after being etched for 10 to 50 seconds by a solution of 1-5% by volume of nitric acid. Light color.
- the metal diffusion layer of the surface modification structure of the medium carbon steel and the medium carbon alloy steel is a quenching-tempering structure, and is immersed in a solution of 1-5% by volume of nitric acid.
- the metal diffusion layer is still white and bright after 10-50 seconds of etching.
- the alloy deposited layer has a thickness of 60-110 micrometers
- the metal diffusion layer has a thickness of 30-120 micrometers.
- the steel substrate of the surface-modified steel material with high corrosion resistance is medium carbon steel or medium carbon alloy steel.
- a method for preparing a steel surface modification structure with high corrosion resistance includes the following steps:
- heating layer - the infiltrant and the steel substrate are placed in a sealed steel container to heat the container, and the container is rotated while heating, the rotation speed is 5-10 rpm, and the heating temperature is 370 ° C - 430 ° C, wherein the osmotic agent
- the composition and mass ratio are uniformly mixed by the following powder components: Zn powder 25-30%, Ni powder 2-2.5%, Al powder 1-2.5%, rare earth 0.5-1.5%, ammonium chloride 1 ⁇ 4%, the balance is Al 2 O 3 powder;
- FIG. 1 is a schematic view showing the surface metallographic structure of a steel material with high corrosion resistance provided by the present invention
- FIG. 2 is a metallographic cross-sectional view of the non-quenched-tempered 45 steel provided by the present invention after surface modification treatment;
- FIG. 3 is a metallographic cross-sectional view of the quenched-tempered 45 steel provided by the present invention after surface modification treatment;
- FIG. 4 is a metallographic cross-sectional view of the quenched-tempered 42CrMoA steel provided by the present invention after surface modification treatment;
- Figure 5 is a metallographic cross-sectional view of the quenched-tempered 35CrMo steel provided by the present invention after surface modification treatment;
- FIG. 6 is a metallographic cross-sectional view of the quenched-tempered 35VB steel provided by the present invention after surface modification treatment;
- Fig. 7 is a metallographic cross-sectional view of the quenched-tempered 40Cr steel provided by the present invention after surface modification treatment.
- the invention provides a special process for surface modification of steel materials with anti-corrosion properties formed by zinc-nickel infiltration layer, which comprises the following steps:
- a steel substrate of one or more medium carbon steel or medium carbon low alloy steel is provided, the steel substrate being medium carbon steel or medium carbon alloy steel.
- the pretreatment of the surface of the steel substrate includes two processes of alkali washing (or ultrasonic cleaning, or low temperature heating) degreasing and shot blasting.
- Alkali-eluting fat refers to the cleaning of a steel substrate using an alkaline liquid.
- the main components of the alkaline liquid include alkaline or alkaline salts such as sodium hydroxide, sodium carbonate, sodium phosphate, sodium silicate, and sodium borate.
- the alkaline liquid is a mixture containing two or more of the above components.
- the alkaline liquid also contains a steel chelating agent such as EDTA, sodium citrate or triethanolamine, and an organic additive such as ethylene glycol or ethylene glycol monoethyl ether, which has an effect of helping the alkali lotion to improve the cleaning effect.
- Ultrasonic degreasing is the direct and indirect action of liquid and cavitation by the cavitation, acceleration and direct flow of ultrasonic waves in the liquid, so that the dirt layer is dispersed, emulsified and stripped to achieve cleaning purposes. It is necessary to prepare a suitable cleaning agent.
- Untreated steel substrates are usually coated with contaminants such as rolling oil, engine oil, powder and dust. If these contaminants are not cleaned, these contaminants are easily carbonized at high temperatures during surface modification. The carbon film not only affects the appearance but also seriously affects the surface modification effect. Degreasing can further remove surface contaminants and lay the foundation for subsequent processing.
- Shot blasting refers to the further surface cleaning of the degreased steel substrate by shot blasting.
- the shot blasting process uses a blasting machine to project steel balls onto the surface of the degreased steel substrate, and the surface of the degreased steel substrate can be removed by a shot blasting process to remove contaminants such as surface rust and scale, thereby making the surface of the steel substrate The roughness and cleanliness achieved are achieved and ready for subsequent processes.
- the surface modifying agent is disposed according to the type of the alloy and the anticorrosive effect that the alloy needs to achieve.
- the multi-permeation agent is powder-like as a whole, and its composition and composition are as follows; Zn powder 25-30%, Ni powder 2-2.5%, Al powder 1-2.5%, rare earth 0.5-1.5%, ammonium chloride 1 ⁇ 4%, the balance is Al 2 O 3 powder.
- the infiltrant can adjust the proportion of its parts according to different steel substrates or different uses.
- the steel substrate obtained in step S1 and the osmotic agent disposed in step S2 are placed together in a closed steel container, and then the closed steel container is heated, and the closed steel container is rotated while being heated.
- the infiltrant and the steel substrate can be at the same temperature, and at this temperature, the infiltration of the infiltrating steel into the surface of the steel substrate can be achieved to achieve the surface modification of the steel material.
- the closed steel vessel has a rotational speed of 5-10 rpm, so that the osmotic agent and the steel substrate are uniformly heated, thereby achieving uniform surface modification treatment on the steel substrate, and preparing the obtained Anti-corrosion properties of steel surface modification materials.
- the steel substrate may be medium carbon steel, medium carbon low alloy steel or the like.
- the temperature at which the closed steel container is heated is between 370 and 430 °C.
- the temperature has an important influence on the surface modification process of steel. As the temperature increases, the diffusion rate of atoms in the infiltration agent to the steel matrix will increase sharply.
- the heating temperature of the closed steel container and the time of surface modification treatment at this temperature are also different.
- the surface modification treatment time is between 1-10h.
- the steel substrate may be previously subjected to a heat treatment and then mixed with the osmotic agent: the steel substrate may be directly mixed with the osmotic agent at a normal temperature without heating treatment.
- the steel substrate and the osmotic agent are implemented in a process of heating the closed steel container.
- the steel substrate Before performing this step, the steel substrate may be optionally preheated according to actual needs, wherein the temperature of the preheating treatment is 400-420 °C.
- the steel substrate subjected to S3 treatment is cooled in a natural state, and the surface of the steel piece is removed and washed with water to remove the infiltrant powder or other impurities adhering to the surface.
- the quenching-tempering treatment may be performed before the surface pretreatment of the steel substrate, and the quenched-tempered steel matrix forms a quenched-tempered structure on the surface.
- FIG. 1 is a schematic diagram of the metallographic structure of the surface modified steel material provided by the present invention.
- the surface-modified steel material includes an alloy deposition layer, a metal diffusion layer, and a steel matrix in order from the outside to the inside.
- the metal diffusion layer is a transition interval of a side of the steel substrate and the deposition layer near a side of the steel substrate.
- FIG. 2 is a metallographic cross-sectional view of the non-quenched-tempered 45 steel provided by the present invention after surface modification treatment.
- the steel substrate is 45 steel in medium carbon steel
- the surface modification process of the non-quenched-tempered 45 steel is as follows:
- the steel substrate is medium carbon steel.
- the medium carbon steel is 45 steel, and the surface modification process is as follows:
- the modified infiltrant is disposed.
- the modified infiltrant is powder-like as a whole, and its composition and composition are as follows: Zn powder 30%, Ni powder 2%, Al powder 2.5%, rare earth 0.5%. 4% ammonium chloride, the balance is Al 2 O 3 powder.
- the steel substrate is subjected to surface modification treatment.
- the steel substrate and the infiltrant are co-located in a closed steel container, and then the closed steel container is heated, and the sealed steel container is rotated while being heated, through the The heat transfer of the osmotic agent can achieve that the osmotic agent and the steel substrate are at the same temperature, and the surface modification treatment is achieved at the temperature.
- the closed steel vessel has a rotational speed of 5 rpm so that the osmotic agent and the steel substrate are uniformly heated, thereby effecting surface modification treatment of the steel.
- the surface modification treatment time was 1 h
- the treatment temperature was 400 ° C
- a steel surface modification material having corrosion resistance was prepared.
- the 45 steel is not subjected to heat treatment during mixing with the infiltrant. That is, the two are directly mixed at ambient temperature and then co-heated in the steel vessel to complete the surface modification process. Specifically, when the steel substrate and the infiltrant are mixed, the steel substrate and the infiltrant are mixed at a normal temperature.
- the steel substrate is 45 steel, and a steel surface modification structure is formed on the surface of the 45 steel.
- Steel base steel base The steel surface modification structure of the 45 steel includes an alloy deposit layer and a metal diffusion layer from the surface to the inside. It can be understood that the innermost layer is a steel base.
- the metal diffusion layer can be seen from FIG. 2, in which the color of the pearlite is lighter than the color of the pearlite in the steel substrate to which it belongs.
- the metal diffusion layer has a Vickers hardness higher than that of the respective steel substrates, and the metal diffusion layer has a thickness of 100 ⁇ m.
- the metallographic structure of the metal diffusion layer includes pearlite and ferrite.
- FIG. 3 is a metallographic cross-sectional view of the quenched-tempered 45 steel provided by the present invention after surface modification
- FIG. 4 is a surface of the quenched-tempered 42CrMoA steel provided by the present invention.
- Metallographic cross-sectional view after modification treatment FIG. 5 is a metallographic cross-sectional view of the quenched-tempered 35CrMo steel provided by the present invention after surface modification
- FIG. 6 is a surface of the quenched-tempered 35VB steel provided by the present invention.
- FIG. 7 is a metallographic cross-sectional view of the quenched-tempered 40Cr steel provided by the present invention after surface modification treatment.
- the steel substrate is medium carbon steel or medium carbon alloy steel. Specifically includes 45 steel, 42CrMoA, 35CrMo steel, 35VB and 40Cr. Finally, a surface modification material of a plurality of different steel substrates is obtained.
- the modified infiltrant is entirely in powder form, and its composition and composition are as follows: Zn powder 25%, Ni powder 2.5%, Al powder 1%, rare earth 1.5%, chlorination 1% ammonium, the balance is Al 2 O 3 powder;
- the steel substrate of the present embodiment is subjected to a quenching-tempering treatment before surface pretreatment.
- the quenched-tempered steel surface modified structure having high corrosion resistance has a micro Vickers hardness of between 240 and 500.
- the surface-modified structure obtained by the surface modification treatment of the above-mentioned steel substrate in the present embodiment The steel surface modification structure from the surface to the inner alloy deposition layer and the metal diffusion layer, it can be understood that the innermost layer is a steel matrix.
- the quenched-tempered structure is formed after the steel substrate is subjected to quenching-tempering treatment.
- the metal diffusion layer is a quenched-tempered structure.
- the quenched-tempered structure is tempered sorbite and/or tempered tortrope.
- the surface-modified diffusion layer of each of the above steel substrates is etched for several tens of seconds (usually between 10 and 50 seconds) in a 1-5% nitric acid solution, it can be observed that all the diffusion layers are still white and bright. The color indicates that the metal diffusion layers of the above modified materials are not easily corroded. And the thickness of the metal diffusion layer is 30-100 micrometers, and the hardness of the metal diffusion layer modified by each of the above different materials is slightly lower than the micro Vickers hardness of the respective steel matrix.
- a metal diffusion layer is formed, and the metallographic structure of the metal diffusion layer is tempered sorbite and/or tempered torsite.
- the surface modification structure formed by the zinc-nickel nitride layer provided by the invention has a good anti-corrosion effect, and the loss due to steel corrosion can be greatly reduced.
- the surface-modified material surface protective layer has good wear resistance, good impact resistance, and does not change the original mechanical properties of the product.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Heat Treatment Of Articles (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
一种利用锌镍渗层形成的钢铁表面改性结构,钢铁表面改性结构是形成于钢铁基体表面的耐腐蚀的合金结构,具有高防腐蚀性能的钢铁表面改性结构包括从表面到内部依次为合金沉积层和金属扩散层,其中钢铁基体为中碳钢或中碳低合金钢,合金沉积层为锌铁化合物,扩散层包括铁素体、珠光体以及淬火回火组织,钢铁基体的含碳量介于0.30-0.65%之间,具有高防腐蚀性能的钢铁表面改性结构的显微维氏硬度介于240-500之间。还公开了一种利用锌镍渗层形成的钢铁表面改性结构的制备方法。获得的钢铁表面改性材料具有很好的防腐效果,可以减少因为钢铁腐蚀带来的损失。
Description
本发明涉及一种钢铁改性结构,特别涉及一种具有高防腐蚀性能的钢铁表面改性结构及其制备方法。
钢铁腐蚀给全球带来了巨大的损失,据相关资料报道。世界上每年因腐蚀而报废的钢铁材料相当于年生产量的20%以上,损失价值约7000亿美元。远远超过地震、水灾、台风等自然灾害造成的损失的总和。目前有多种的防腐技术,使得钢铁腐蚀问题得到了一些缓解,但是仍不能满足人们对防腐的需求。目前的防腐技术制备的防腐层的耐腐蚀性能尚不能满足人们对防腐的要求,同时硬度相对较低。其中锌镍渗层技术处理的工件具有较高的耐腐蚀性,同时还具有较高的耐磨、耐振动性。因此提供一种利用锌镍渗层形成的具有高防腐蚀性能的钢铁表面改性结构是非常必要的。
鉴于以上内容,有必要提供一种利用锌镍渗层形成的具有高防腐蚀性能的钢铁表面改性结构。
一种利用锌镍渗层形成的钢铁表面改性结构,所述钢铁表面改性结构是形成于钢铁基体表面的耐腐蚀的合金结构,所述具有高防腐蚀性能的钢铁表面改性结构包括从表面到内部依次为合金沉积层和金属扩散层,其中所述钢铁基体为中碳钢或中碳低合金钢,所述合金沉积层为锌铁化合物,所述扩散层包括珠光体、铁素体以及淬火回火组织,所述钢铁基体的含碳量介于0.30-0.65%之间,所述具有高防腐蚀性能的钢铁表面改性结构的显微维氏硬度介于240-500之间。
进一步的,所述具有高防腐性能的钢铁表面改性结构未进行淬火-回火处理时,所述金属扩散层的硬度高于所述钢铁基体的硬度。
进一步的,所述具有高防腐性能的钢铁表面改性结构还包括进行淬火-回火处理后形成的淬火-回火组织,所述金属扩散层的硬度不高于所述钢铁基体的硬度。
进一步的,未进行淬火-回火处理时,经1-5%体积分数的硝酸乙醇的溶液浸蚀10-50秒后所述金属扩散层中的珠光体颜色比所述钢铁基体中的珠光体颜色浅。
进一步的,经过淬火-回火处理后,所述中碳钢和中碳合金钢表面改性结构的金属扩散层为淬火-回火组织,且经1-5%体积分数的硝酸乙醇的溶液浸蚀10-50秒后所述金属扩散层仍呈白亮色。
进一步的,所述合金沉积层的厚度为60-110微米,所述金属扩散层的厚度为30-120微米。
进一步的,所述高防腐蚀性能的表面改性钢铁材料的钢铁基体为中碳钢或中碳合金钢。
一种具有高防腐蚀性能的钢铁表面改性结构的制备方法,包括如下步骤:
S1、提供中碳钢或中碳合金钢的钢铁基体;
S2、碱洗脱脂-对所述钢铁基体进行碱洗脱脂处理;
S3、抛丸除锈-对第一步处理后的所述钢铁进行抛丸除锈处理;
S4、加热渗层-将渗剂和钢铁基体置于密封的钢铁容器中对容器加热,边加热边旋转容器,转速为5-10转/分钟,加热温度为370℃-430℃,其中渗剂的组分及质量配比如由下的粉末组分均匀混合而成:Zn粉25~30%、Ni粉2~2.5%、Al粉1~2.5%、稀土0.5-1.5%、氯化铵1~4%,余量为Al2O3粉末;
S5、后续清洗处理。
图1是本发明提供的高防腐蚀性能的钢铁材料的表面金相组织示意图;
图2是本发明提供的非淬火-回火45钢经过表面改性处理后的金相截面图;
图3是本发明提供的淬火-回火45钢经过表面改性处理后的金相截面图;
图4是本发明提供的淬火-回火42CrMoA钢经过表面改性处理后的金相截面图;
图5是本发明提供的淬火-回火35CrMo钢经过表面改性处理后的金相截面图;
图6是本发明提供的淬火-回火35VB钢经过表面改性处理后的金相截面图;
图7是本发明提供的淬火-回火40Cr钢经过表面改性处理后的金相截面图。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。
本发明提供了一种利用锌镍渗层形成的具有防腐蚀性能的钢铁材料表面改性特殊工艺,具体包括如下步骤:
S1,提供中碳钢或中碳低合金钢的钢铁基体;
提供一个或多个中碳钢或中碳低合金钢的钢铁基体,所述钢铁基体为中碳钢或中碳合金钢。
S2,钢铁基体表面的前处理;
在本步骤中,钢铁基体表面的前处理包括碱洗(或超声波清洗、或低温加热)脱脂和抛丸除锈两个过程。
碱洗脱脂:是指使用碱性液体对钢铁基体进行清洗。碱性液体的主要成分包括氢氧化钠、碳酸钠、磷酸钠、硅酸钠、硼酸钠等碱性或显碱性的盐。通常碱性液体是含有上述两种或多种组分的混合物。此外,在碱性液体中还含有EDTA、柠檬酸钠、三乙醇胺等钢铁螯合剂以及乙二醇、乙二醇单乙醚等有机添加剂,它们有帮助碱洗剂提高清洗效果的作用。
超声波脱脂:超声波清洗是利用超声波在液体中的空化作用、加速度作用及直进流作用对液体和污物直接、间接的作用,使污物层被分散、乳化、剥离而达到清洗目的,清洗时需要配制合适的清洗剂。
低温加热脱脂:当温度达到油类物质燃点后,油类物质将发生燃烧、挥发、碳化,形成灰分。
未经过处理的钢铁基体表面通常附有轧制油、机油、粉末和灰尘等污染物,如果不将这些污染物清洗干净,在进行表面改性处理时,这些污染物容易在高温下发生碳化形成碳膜,不仅影响美观,也会严重影响表面改性效果。脱脂可以进一步去除表面的污染物,为后续的工艺处理打好基础。
抛丸除锈是指采用抛丸工艺对经过脱脂的钢铁基体进行进一步的表面清理。抛丸工艺采用抛丸器将钢铁小球抛射向经过脱脂的钢铁基体表面,通过抛丸工艺可以除掉经过脱脂的钢铁基体的表面锈蚀层和氧化皮等污染物,从而使所述钢铁基体表面达到所述的粗糙度和清洁度,为后续的工艺做好准备。
S3,配置改性渗剂;
根据合金的种类以及合金需要达到的防腐效果配置表面改性渗剂。所述多元渗剂整体呈粉末状,其组分及配比如下;Zn粉25~30%、Ni粉2~2.5%、Al粉1~2.5%、稀土0.5-1.5%、氯化铵1~4%,余量为Al2O3粉末。所述渗剂可以根据不同的钢铁基体或者不同用途调整其各部分的比例。
S4,对所述钢铁基体进行表面改性处理;
在步骤S1中得到的钢铁基体和步骤S2中配置的渗剂共同放置于密闭的钢铁容器中,然后对所述密闭的钢铁容器进行加热,在加热的同时对所述密闭的钢铁容器进行旋转,通过所述渗剂的热传导,可以实现所述渗剂和所述钢铁基体处于相同的温度,并在该温度下实现渗剂钢铁渗入钢铁基体表面达到钢铁材料表面改性的目的。在本发明中,所述密闭的钢铁容器的转速为5-10转/分,以使得渗剂和钢铁基体受热均匀,从而实现对所述钢铁基体进行均匀的表面改性处理,并制备得到具有防腐蚀性能的钢铁表面改性材料。
所述钢铁基体可以为中碳钢、中碳低合金钢等。
在本步骤中,对所述密闭的钢铁容器进行加热的温度介于370-430℃之间。温度的高低对钢铁表面改性处理过程有着重要的影响,随着温度的升高,渗剂中的原子向钢铁基体的扩散速率会急剧增大。根据不同的钢铁基体种类或者不同的用途,对所述密闭的钢铁容器的加热温度和在该温度下表面改性处理的时间也不相同。表面改性处理的时间介于1-10h之间。
在本步骤中,所述钢铁基体可以预先进行加热处理然后再与所述渗剂进行混合:所述钢铁基体也可以不进行加热处理,而是直接在常温状态下与所述渗剂混合。所述钢铁基体与所述渗剂在对所述密闭的钢铁容器进行加热的过程中实现。
在进行该步骤之前,根据实际需要,可选择的对所述钢铁基体进行预加热处理,其中预加热处理的温度为400-420℃。
S5,后续清洗处理;
经过S3处理的钢铁基体在自然状态下冷却,除去钢铁件表面浮灰后用清水对其进行清洗,去除其表面附着的渗剂粉末或者其他杂质。
其中在进行钢铁基体表面前处理前可选择的进行淬火-回火处理,经过淬火-回火处理的钢铁基体在表面形成淬火-回火组织。
所述钢铁基体经过上述的步骤后就可以得到利用锌镍渗层形成的具有高防腐蚀性能的钢铁表面改性结构。请参阅图1,是本发明提供的经过表面改性的钢铁材料金相组织示意图。所述表面改性钢铁材料由外向内依次包括合金沉积层、金属扩散层和钢铁基体。其中所述金属扩散层为所述钢铁基体与所述沉积层交界处靠近所述钢铁基体一侧的过渡区间。
实施例一
请参阅图2,是本发明提供的非淬火-回火45钢经过表面改性处理后的金相截面图。在本实施例中,所述钢铁基体为中碳钢中的45钢,所述非淬火-回火45钢表面改性处理过程如下:
在本实施例中,所述钢铁基体为中碳钢,具体地,所述中碳钢为45钢,表面改性处理过程如下:
首先对钢铁基体表面进行前处理,具体包括对所述钢铁基体进行碱洗脱脂和抛丸除锈。其中碱洗脱脂和抛丸除锈的具体步骤已在上面进行了说明,这里不再赘述。
然后配置改性渗剂,在本实施例中,所述改性渗剂整体呈粉末状,其组分及配比如下:Zn粉30%、Ni粉2%、Al粉2.5%、稀土0.5%、氯化铵4%,余量为Al2O3粉末。
再者,对所述钢铁基体进行表面改性处理。具体的,将所述钢铁基体和所述渗剂共同放置于密闭的钢铁容器中,然后对所述密闭的钢铁容器进行加热,在加热的同时对所述密闭的钢铁容器进行旋转,通过所述渗剂的热传导,可以实现所述渗剂和所述钢铁基体处于相同的温度,并在该温度下实现表面改性处理。在本发明中,所述密闭的钢铁容器的转速为5转/分,以使得渗剂和钢铁基体受热均匀,从而实现对所述钢铁进行表面改性处理。表面改性处理的时间为1h,处理温度为400℃,并制备得到具有防腐蚀性能的钢铁表面改性材料。
在本实施例中,所述45钢与所述渗剂的混合过程中未进行加热处理。即两者直接以环境温度进行混合,然后在所述钢铁容器中共同加热完成表面改性过程。具体地,将所述钢铁基体和所述渗剂混合时,所述钢铁基体和所述渗剂在常温下进行混合。
在本实施例中,所述钢铁基体为45钢,在所述45钢表面形成了钢铁表面改性结构。钢铁基体钢铁基体所述45钢的钢铁表面改性结构包括从表面到内部的合金沉积层和金属扩散层,可以理解,最内层为钢铁基体。
此时所述金属扩散层从图2中可以看出,其中珠光体的颜色比所属钢铁基体中珠光体的颜色浅。所述金属扩散层的维氏硬度高于二者各自的钢铁基体的硬度,并且所述金属扩散层的厚度为100微米。所述金属扩散层的金相组织包括珠光体和铁素体。
实施例二
请同时参阅图3-图7,其中图3是本发明提供的淬火-回火45钢经过表面改性处理后的金相截面图;图4是本发明提供的淬火-回火42CrMoA钢经过表面改性处理后的金相截面图;图5是本发明提供的淬火-回火35CrMo钢经过表面改性处理后的金相截面图;图6是本发明提供的淬火-回火35VB钢经过表面改性处理后的金相截面图;图7是本发明提供的淬火-回火40Cr钢经过表面改性处理后的金相截面图。
本实施例中,所述钢铁基体为中碳钢或中碳合金钢。具体包括45钢、42CrMoA、35CrMo钢、35VB和40Cr。最终得到多个不同钢铁基体的表面改性材料。
本实施例中与所述实施例一中的不同之处在于:
(1)、在本实施例中,所述改性渗剂整体呈粉末状,其组分及配比如下:Zn粉25%、Ni粉2.5%、Al粉1%、稀土1.5%、氯化铵1%,余量为Al2O3粉末;
(2)、在对本实施例中的各个所述钢铁基体进行表面前处理前先对其进行了淬火-回火处理。经过淬火-回火的所述具有高防腐蚀性能的钢铁表面改性结构的显微维氏硬度介于240-500之间。
本实施中的上述钢铁基体经过表面改性处理后得到的表面改性结构。所述钢铁表面改性结构从表面到内部的合金沉积层和金属扩散层,可以理解,最内层为钢铁基体。
所述钢铁基体进行淬火-回火处理后形成了淬火-回火组织。具体地,在本实施例中所述金属扩散层为淬火-回火组织。进一步地,所述淬火-回火组织为回火索氏体和/或回火托氏体。
此时上述各钢铁基体表面改性后的扩散层在1-5%硝酸乙醇溶液的浸蚀几十秒后(通常介于10-50秒之间),可以观察到所有的扩散层仍呈白亮色,说明上述改性材料的金属扩散层均不易被腐蚀。并且所述金属扩散层的厚度均为30-100微米,并且上述各个不同材料改性后的金属扩散层的硬度均略低于各自的钢铁基体的显微维氏硬度。上述各种不同的金属基体进行表面处理后均形成了金属扩散层,所述金属扩散层的金相组织为回火索氏体和/或回火托氏体。
相较于现有技术,通过本发明提供的利用锌镍渗层形成的表面改性结构具有很好的防腐效果,可以大大减少因为钢铁腐蚀带来的损失。此外,经过表面改性的材料表面防护层耐磨性好,具有很好的耐冲击性能,不改变产品原有的机械性能。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (8)
- 一种利用锌镍渗层形成的钢铁表面改性结构,所述钢铁表面改性结构是形成于钢铁基体表面的耐腐蚀的合金结构,其特征在于,所述具有高防腐蚀性能的钢铁表面改性结构包括从表面到内部依次为合金沉积层和金属扩散层,其中所述钢铁基体为中碳钢或中碳低合金钢,所述合金沉积层为锌铁化合物,所述扩散层包括铁素体、珠光体以及淬火回火组织,所述钢铁基体的含碳量介于0.30-0.65%之间,所述具有高防腐蚀性能的钢铁表面改性结构的显微维氏硬度介于240-500之间。
- 根据权利要求1所述的利用锌镍渗层形成的钢铁表面改性结构,其特征在于,所述具有高防腐性能的钢铁表面改性结构未进行淬火-回火处理时,所述金属扩散层的硬度高于所述钢铁基体的硬度。
- 根据权利要求1所述的利用锌镍渗层形成的钢铁表面改性结构,其特征在于,所述具有高防腐性能的钢铁表面改性结构还包括进行淬火-回火处理后形成的淬火-回火组织,所述金属扩散层的硬度不高于所述钢铁基体的硬度。
- 根据权利要求2所述的利用锌镍渗层形成的钢铁表面改性结构,其特征在于,未进行淬火-回火处理时,经1-5%体积分数的硝酸乙醇的溶液浸蚀10-50秒后所述金属扩散层中的珠光体颜色比所述钢铁基体中的珠光体颜色浅。
- 根据权利要求3所述的利用锌镍渗层形成的钢铁表面改性结构,其特征在于,经过淬火-回火处理后,所述中碳钢和中碳合金钢表面改性结构的金属扩散层为淬火-回火组织,且经1-5%体积分数的硝酸乙醇的溶液浸蚀10-50秒后所述金属扩散层仍呈白亮色。
- 根据权利要求1-5任意一项所述的利用锌镍渗层形成的钢铁表面改性结构,其特征在于,所述合金沉积层的厚度为60-110微米,所述金属扩散层的厚度为30-120微米。
- 根据权利要求6所述的利用锌镍渗层形成的钢铁表面改性结构,其特征在于,所述高防腐蚀性能的表面改性钢铁材料的钢铁基体为中碳钢或中碳合金钢。
- 一种利用锌镍渗层形成的钢铁表面改性结构的制备方法,包括如下步骤:S1、提供中碳钢或中碳合金钢的钢铁基体;S2、碱洗脱脂-对所述钢铁基体进行碱洗脱脂处理;S3、抛丸除锈-对第一步处理后的所述钢铁进行抛丸除锈处理;S4、加热渗层-将渗剂和钢铁基体置于密封的钢铁容器中对容器加热,边加热边旋转容器,转速为5-10转/分钟,加热温度为370℃-430℃,其中渗剂的组分及质量配比如由下的粉末组分均匀混合而成:Zn粉25~30%、Ni粉2~2.5%、Al粉1~2.5%、稀土0.5-1.5%、氯化铵1~4%,余量为Al2O3粉末;S5、后续清洗处理。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197007941A KR20190056368A (ko) | 2016-08-19 | 2017-06-30 | 니켈 및 아연 침투층을 이용하여 형성된 강철 표면 개질 구조 및 이의 제조 방법 |
RU2019107692A RU2721728C1 (ru) | 2016-08-19 | 2017-06-30 | Стальной элемент с модифицированной поверхностью, образованный путем пропитки никелем и цинком, и способ его изготовления |
EP17840864.7A EP3502304A4 (en) | 2016-08-19 | 2017-06-30 | USING A ZINC-NICKEL INFILTRATION LAYER SHAPED STEEL SURFACE MODIFIED STRUCTURE AND METHOD FOR PRODUCING IT |
US16/263,235 US20190161846A1 (en) | 2016-08-19 | 2019-01-31 | Surface modified steel member with anti-corrosion properties and method for modifying surface of steel material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610690168.9 | 2016-08-19 | ||
CN201610690168.9A CN106399925B (zh) | 2016-08-19 | 2016-08-19 | 利用锌镍渗层形成的钢铁表面改性结构及其制备方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/263,235 Continuation-In-Part US20190161846A1 (en) | 2016-08-19 | 2019-01-31 | Surface modified steel member with anti-corrosion properties and method for modifying surface of steel material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018032888A1 true WO2018032888A1 (zh) | 2018-02-22 |
Family
ID=58005000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/091034 WO2018032888A1 (zh) | 2016-08-19 | 2017-06-30 | 利用锌镍渗层形成的钢铁表面改性结构及其制备方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190161846A1 (zh) |
EP (1) | EP3502304A4 (zh) |
KR (1) | KR20190056368A (zh) |
CN (1) | CN106399925B (zh) |
RU (1) | RU2721728C1 (zh) |
WO (1) | WO2018032888A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106399925B (zh) * | 2016-08-19 | 2021-08-13 | 重庆大有表面技术有限公司 | 利用锌镍渗层形成的钢铁表面改性结构及其制备方法 |
CN109136828B (zh) * | 2018-09-27 | 2020-08-14 | 中国人民解放军陆军装甲兵学院 | 一种Zn-Al-Ni防腐功能渗层制备方法 |
RU2750671C1 (ru) * | 2020-08-28 | 2021-06-30 | Михаил Иванович Сердюк | Способ цинкового напыления на поверхности закладных деталей и арматуры железобетонных конструкций |
KR20220162291A (ko) * | 2021-06-01 | 2022-12-08 | 현대자동차주식회사 | 헤어핀 타입 고정자 코일의 와이드닝 장치 |
CN114381723B (zh) * | 2022-01-12 | 2022-12-20 | 南京工程学院 | 一种钢铁工件表面耐蚀层及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6353259B2 (zh) * | 1983-06-23 | 1988-10-21 | Japan Metals & Chem Co Ltd | |
CN1428454A (zh) * | 2001-12-22 | 2003-07-09 | 中国石油乌鲁木齐石油化工总厂 | 钢铁制品锌铝包埋共渗方法及其渗剂 |
CN101319300A (zh) * | 2008-07-10 | 2008-12-10 | 重庆大有表面技术有限公司 | 锌镍渗层黑色金属防腐工艺 |
CN101665898A (zh) * | 2009-10-14 | 2010-03-10 | 北京中路大成科技发展有限公司 | 在工件表面制备ZnAlNi多元合金防腐涂层的方法 |
CN102777468A (zh) * | 2012-08-21 | 2012-11-14 | 重庆大有表面技术有限公司 | 双高螺栓的生产工艺及得到的螺栓 |
CN105861982A (zh) * | 2016-05-24 | 2016-08-17 | 芜湖众源复合新材料有限公司 | 一种桥梁预埋件锌铝镍合金共渗剂 |
CN106399925A (zh) * | 2016-08-19 | 2017-02-15 | 重庆大有表面技术有限公司 | 利用锌镍渗层形成的钢铁表面改性结构及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2672827A1 (fr) * | 1991-02-14 | 1992-08-21 | Michelin & Cie | Fil metallique comportant un substrat en acier ayant une structure de type martensite revenue ecrouie, et un revetement; procede pour obtenir ce fil. |
CN103732781B (zh) * | 2011-07-29 | 2016-07-06 | 新日铁住金株式会社 | 合金化热浸镀锌层和具有该层的钢板以及其制造方法 |
CN105839047A (zh) * | 2016-06-16 | 2016-08-10 | 福建大统铁路精密装备股份有限公司 | 一种金属渗锌渗层防腐工艺 |
-
2016
- 2016-08-19 CN CN201610690168.9A patent/CN106399925B/zh active Active
-
2017
- 2017-06-30 EP EP17840864.7A patent/EP3502304A4/en active Pending
- 2017-06-30 WO PCT/CN2017/091034 patent/WO2018032888A1/zh unknown
- 2017-06-30 KR KR1020197007941A patent/KR20190056368A/ko not_active Application Discontinuation
- 2017-06-30 RU RU2019107692A patent/RU2721728C1/ru active
-
2019
- 2019-01-31 US US16/263,235 patent/US20190161846A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6353259B2 (zh) * | 1983-06-23 | 1988-10-21 | Japan Metals & Chem Co Ltd | |
CN1428454A (zh) * | 2001-12-22 | 2003-07-09 | 中国石油乌鲁木齐石油化工总厂 | 钢铁制品锌铝包埋共渗方法及其渗剂 |
CN101319300A (zh) * | 2008-07-10 | 2008-12-10 | 重庆大有表面技术有限公司 | 锌镍渗层黑色金属防腐工艺 |
CN101665898A (zh) * | 2009-10-14 | 2010-03-10 | 北京中路大成科技发展有限公司 | 在工件表面制备ZnAlNi多元合金防腐涂层的方法 |
CN102777468A (zh) * | 2012-08-21 | 2012-11-14 | 重庆大有表面技术有限公司 | 双高螺栓的生产工艺及得到的螺栓 |
CN105861982A (zh) * | 2016-05-24 | 2016-08-17 | 芜湖众源复合新材料有限公司 | 一种桥梁预埋件锌铝镍合金共渗剂 |
CN106399925A (zh) * | 2016-08-19 | 2017-02-15 | 重庆大有表面技术有限公司 | 利用锌镍渗层形成的钢铁表面改性结构及其制备方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3502304A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN106399925B (zh) | 2021-08-13 |
CN106399925A (zh) | 2017-02-15 |
EP3502304A4 (en) | 2020-01-08 |
RU2721728C1 (ru) | 2020-05-21 |
US20190161846A1 (en) | 2019-05-30 |
EP3502304A1 (en) | 2019-06-26 |
KR20190056368A (ko) | 2019-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018032888A1 (zh) | 利用锌镍渗层形成的钢铁表面改性结构及其制备方法 | |
WO2018032887A1 (zh) | 利用锌镍渗层形成的的钢铁表面改性结构及其制备方法 | |
CN101705480A (zh) | 化学镀镍磷合金镀层的化学改性技术 | |
CN101899635A (zh) | 一种热镀锌的方法 | |
CN109023331B (zh) | 一种无铬钝化剂及其使用方法 | |
CN110592625A (zh) | 一种钛合金表面石墨烯改性Cu-Zn复合镀层制备方法 | |
CN108277448B (zh) | 一种热浸共渗铝合金的方法 | |
KR20180111111A (ko) | 알루미늄 합금용 플라스마 전해 솔루션 배합기술 | |
CN108251788B (zh) | 一种经软氮化处理的动车组制动钢背及软氮化处理方法 | |
CN108411239B (zh) | 一种热浸共渗铝铜合金的方法 | |
CN109402693A (zh) | 负载缓蚀剂的介孔二氧化硅超疏水薄膜的制备方法及用途 | |
CN106702312A (zh) | 用于处理铁基锅具的方法及铁基锅具 | |
CN112480814B (zh) | 表面处理剂及多孔疏松材料表面防护方法 | |
CN107747037A (zh) | 一种合金钢表面渗碳淬火方法 | |
CN101418425A (zh) | 防氚渗透涂层热浸镀制备工艺 | |
JP3317461B2 (ja) | 油井管継手とその表面処理法 | |
CN104561873A (zh) | 一种基于表面预处理碳钢热浸铝工艺 | |
CN104328394A (zh) | 一种差异化复合式化学镀方法 | |
CN113322464B (zh) | 一种钛或钛合金表面制备Ti-Al系中间相/Ti-Al-N系MAX相复合涂层的方法 | |
CN116065118B (zh) | 一种钛合金离子渗氧的方法 | |
US1760603A (en) | Method of coating metals | |
JPS60194094A (ja) | 高耐食性アルミニウム溶射鋼材 | |
CN108866524A (zh) | 汽车减震器弹簧防腐处理的方法 | |
CN114959354A (zh) | 一种钢-黄铜双金属材料及其制作工艺、模具 | |
US3411995A (en) | Process and product for plating on cast,malleable,carburized and carbonitrided irons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17840864 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197007941 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017840864 Country of ref document: EP Effective date: 20190319 |