WO2018030274A1 - 転がり軸受用保持器への電子線照射方法 - Google Patents

転がり軸受用保持器への電子線照射方法 Download PDF

Info

Publication number
WO2018030274A1
WO2018030274A1 PCT/JP2017/028261 JP2017028261W WO2018030274A1 WO 2018030274 A1 WO2018030274 A1 WO 2018030274A1 JP 2017028261 W JP2017028261 W JP 2017028261W WO 2018030274 A1 WO2018030274 A1 WO 2018030274A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
outer diameter
cage
diameter surface
rolling bearing
Prior art date
Application number
PCT/JP2017/028261
Other languages
English (en)
French (fr)
Inventor
晶美 多田
佐藤 洋司
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018030274A1 publication Critical patent/WO2018030274A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication

Definitions

  • the present invention relates to an electron beam irradiation method for a rolling bearing cage, and more particularly, to an electron beam irradiation method for a rolling bearing cage capable of simultaneously irradiating an outer diameter surface and both end surfaces of the rolling bearing cage. About.
  • Fluorine coated on a plurality of surfaces by coating a substrate surface machined to a desired shape with a fluororesin and irradiating a plurality of surfaces with different directions on the substrate surface from one direction with an electron beam
  • a method for producing a three-dimensionally shaped article having a crosslinked fluororesin coating layer characterized by crosslinking a resin This manufacturing method is characterized in that electron beam irradiation from one direction is performed in nitrogen, and thus a three-dimensional object, for example, a bottom surface and a side surface of an inner surface of a rice cooker can be irradiated with an electron beam at the same time.
  • the sliding surface of the rolling bearing cage is supplied with lubricating oil or lubricating grease to reduce rolling friction or sliding friction. Further, a surface treatment for improving the slidability is applied to the sliding surface. A method of forming a fluorine resin film as one of the surface treatments is known.
  • the fluorine-based resin film is formed by forming a base layer containing a heat-resistant resin and a first fluorine-based resin on the surface of the iron-based metal material, forming a second fluorine-based resin layer on the surface of the base layer,
  • the second fluororesin layer is a sliding layer formed by irradiating with radiation after firing
  • the heat-resistant resin is a resin that does not thermally decompose during firing
  • the conditions for radiation irradiation are the second fluororesin layer Is a condition for crosslinking (Patent Document 2).
  • JP 2011-224259 A Japanese Patent Laying-Open No. 2015-163469
  • patent document 1 can provide sufficient irradiation dose to the bottom face (horizontal stage upper side) and side surface of a rice cooking kiln inner surface, it is inner surface to the bottom face (horizontal base lower side) of rice cooking kiln outer surface.
  • this irradiation method is applied to a rolling bearing cage, the radiation dose to one side end surface that comes into contact with the installation base during irradiation becomes almost zero, and no coating reforming due to a crosslinking reaction can be expected, and both ends of the cage are not expected. Large non-uniformity occurs in the sliding properties of the surface coating.
  • the present invention has been made to cope with such a problem, and can irradiate the outer diameter surface and both end surfaces of the cage with an electron beam at the same time, and uniform electrons on each of the outer diameter surface and both end surfaces.
  • Electron beams to rolling bearing cages that can be irradiated with the highest electron beam energy application rate for outer diameter surface coatings that require the most sliding characteristics among rolling bearing cages
  • the purpose is to provide an irradiation method.
  • the electron beam irradiation method for the rolling bearing cage of the present invention is an electron beam irradiation method for a cylindrical rolling bearing cage having a plurality of pockets for holding rolling elements.
  • the cylindrical axis of the cage is centered from the direction of the outer diameter surface in a nitrogen atmosphere with respect to the resin layer formed on the outer diameter surface and both end surfaces of the cylindrical rolling bearing cage. It is characterized by irradiating with an electron beam while rotating it.
  • a rotating mechanism that rotates about the cylindrical shaft of the cage is a mechanism that rotates a cylinder that is fitted to the inner diameter portion of the cage by a motor connected to the rotating shaft of the cylinder. To do.
  • the electron beam irradiation acceleration voltage is less than 100 kV.
  • the resin layer is a fluorine-based resin layer, particularly a polytetrafluoroethylene resin layer.
  • the method of irradiating the rolling bearing cage of the present invention with the electron beam comprises: (1) While rotating around the cylindrical axis of the cage from the outer diameter surface direction of the cage in a nitrogen atmosphere, (3) Since the resin layer formed on the surface is irradiated with the electron beam, a uniform irradiation dose can be applied to each of the outer diameter surface and both end surfaces of the cage. In particular, more radiation dose can be applied to the outer diameter surface than to both end surfaces of the cage. As a result, it is possible to form a uniform cross-linked state in the resin layers on the outer diameter surface and both end surfaces, and to eliminate unevenness of the sliding characteristics on the cage surface.
  • the electron beam penetrates perpendicularly to the outer diameter surface resin layer that requires the most sliding characteristics in the rolling bearing cage. Since the energy application rate becomes high, it is a very effective irradiation method for a rolling bearing cage.
  • FIG. 1 It is a perspective view of the cage for needle bearings. It is a figure which shows the apparatus used for electron beam irradiation. It is a figure which shows the apparatus used for the irradiation method of the comparative example 1.
  • FIG. 1 It is a perspective view of the cage for needle bearings. It is a figure which shows the apparatus used for electron beam irradiation. It is a figure which shows the apparatus used for the irradiation method of the comparative example 1.
  • FIG. 1 is a perspective view of a needle bearing retainer.
  • the needle bearing retainer 1 includes a plurality of pocket portions 2 that hold rolling elements, a column portion 3 that is positioned between the pocket portions 2 and that extends along the axial direction, and a column portion 3. And a cylindrical portion 4 fixed on both sides in the axial direction.
  • the column portion 3 and the cylindrical portion 4 have an outer diameter surface 5 and an inner diameter surface 6, and the cylindrical portion 4 has two end surfaces 7.
  • the electron beam irradiation method of the present invention can be applied not only to a needle bearing retainer but also to a ball bearing retainer having a circular pocket portion.
  • an iron-based metal material is preferable.
  • the iron-based metal material include bearing steel used for rolling bearings, carburized steel, carbon steel for machine structure, cold rolled steel, hot rolled steel, and the like.
  • the iron-based metal material is adjusted to a predetermined surface hardness by quenching and tempering after processing into the shape of the sliding member.
  • a ferrous metal material cage using chromium molybdenum steel (SCM415) it is preferable to use an ferrous metal material whose Hv value is adjusted to 484 to 595.
  • a cage 1 having a plurality of pocket portions 2 for holding rolling elements is a method in which a cylinder is cut out from a shaped material, and the pocket portions 2 are formed by stamping by pressing. After pressing a flat plate, an appropriate length is obtained. It can manufacture by the method etc. which are cut
  • the resin layer on the surface of the cage 1 is formed on the surface of the cage 1 including the surface of the pocket portion 2 that comes into contact with the rolling elements.
  • the resin layer is formed on at least the outer diameter surface 5 and both end surfaces 7 of the cylindrical cage.
  • any resin that can be cross-linked by electron beam irradiation can be used.
  • resins include fluorine resins and polyethylene resins.
  • a fluororesin is preferred because of its excellent heat resistance.
  • fluororesins include polytetrafluoroethylene (hereinafter referred to as PTFE), tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, and ethylene-tetrafluoroethylene copolymer. , Polyvinylidene fluoride, polyvinyl fluoride and the like. These resins can be used alone or as a mixture.
  • PTFE is preferable because it undergoes a crosslinking reaction by irradiating with an electron beam near the melting point, and is excellent in heat resistance and slidability.
  • the resin layer mainly composed of fluororesin is (1) a two-layer structure in which the cage surface side is a mixed resin composition of fluororesin and heat-resistant resin, and the surface side is fluororesin, (2) surface Examples include an inclined structure in which the fluororesin continuously changes from a three-dimensional structure to a two-dimensional structure from the side toward the cage surface side.
  • the resin layer is formed on the outer diameter surface and both end surfaces of the cylindrical rolling bearing cage by applying and drying a fluororesin dispersion and / or solution on the substrate surface of the cage, followed by firing. Is done.
  • the layer thickness of the resin layer is 5 ⁇ m or more and less than 40 ⁇ m, preferably 15 ⁇ m or more and less than 30 ⁇ m. If the layer thickness is less than 5 ⁇ m, the metal substrate on the surface of the cage may be exposed due to peeling due to poor adhesion of the coating or wear due to initial wear. If it is 40 ⁇ m or more, there is a risk that cracking during the formation of the resin film or peeling during operation will deteriorate the lubrication state. By setting the layer thickness in the range of 5 ⁇ m or more and less than 40 ⁇ m, it is possible to prevent the metal substrate from being exposed due to initial wear and to prevent peeling during operation over a long period of time.
  • FIG. 2 (a) is an outline of the irradiation apparatus
  • FIG. 2 (b) shows a position where the film dosimeter is attached to the outer diameter surface of the cage.
  • the holder 1 is disposed in the electron beam irradiation chamber 8.
  • the holder 1 is irradiated with an electron beam from the electron beam irradiation window 8 a in a direction perpendicular to the direction of the outer diameter surface 5 while rotating around the cylindrical axis of the holder 1.
  • the cage 1 is rotated by rotational power obtained from a motor 11 connected to a rotary shaft 10 of a column 9 that is fitted to the inner diameter surface 6.
  • the cylinder 9 is fitted to the inner diameter portion of the cage 1 to the extent that the cage does not idle, and the rotation shaft 10 of the cylinder 9 is a fixture that is arranged in a direction perpendicular to the electron beam irradiation direction. Moreover, it is preferable to form the cylinder 9 with the substance which does not change by electron beam irradiation, and metal and especially aluminum are suitable.
  • the inside 8b of the electron beam irradiation chamber 8 is filled with nitrogen.
  • the electron beam is also irradiated in the direction of the two end surfaces 7 of the cage together with the outer diameter surface 5 of the cage 1.
  • a preferable nitrogen atmosphere includes convection of nitrogen so that the oxygen concentration is 300 ppm or less in the chamber.
  • a preferable rotational speed of the rotating shaft is 60 to 70 rpm.
  • the acceleration voltage of electron beam irradiation is preferably less than 100 kV, more preferably 50 to 70 kV.
  • the present invention can irradiate the two end surfaces 7 together with the outer diameter surface 5 of the cage 1 even when the acceleration voltage is low energy electron beam irradiation of several tens kV. Since the electron beam irradiation is direct irradiation in which the electron beam vertically enters the outer diameter surface 5 and the end surface 7 is irradiation by electron beam scattering, the outer diameter surface 5 is more than the both end surfaces 7 of the cage. The irradiation dose becomes larger. As a result, since the energy application rate of the electron beam is high with respect to the outer diameter surface resin layer that requires the most sliding characteristics in the rolling bearing cage, the irradiation method is suitable for the rolling bearing cage.
  • the electron beam irradiation dose can be confirmed by attaching a film dosimeter on the surface of the cage and irradiating it with an electron beam.
  • film dosimeters 12a and 12b affixed to the end surface 7 as shown in FIG. 2 (a), and film dosimeters 13a to 13g affixed evenly in the circumferential direction to the outer diameter surface 5 as shown in FIG. 2 (b). It can be measured.
  • Example 1 Prepared by quenching and tempering chromium molybdenum steel (SCM415) ⁇ 44 mm ⁇ width 22 mm needle bearing cage (base surface hardness Hv: 484 to 595) Daikin Co., Ltd., model number: EK-1909S21R) was applied by spraying to a thickness of about 10 ⁇ m, and dried in a constant temperature bath at 90 ° C. for 30 minutes to form an undercoat film. On top of this film, a top coating made of a fluororesin (model number: EK-3700C21R, manufactured by Daikin) is applied by spraying to a thickness of about 10 ⁇ m, and dried in a constant temperature bath at 90 ° C. for 30 minutes to form a resin layer. A film was formed. Then, it baked for 30 minutes in a 380 degreeC heating furnace.
  • SCM415) ⁇ 44 mm ⁇ width 22 mm needle bearing cage (base surface hardness Hv: 484 to 595)
  • the needle bearing cage 1 having a resin layer formed on the surface was irradiated with an electron beam.
  • Film dosimeters 12a and 12b, 13a to 13g were attached to the locations shown in FIG. 2 on the outer diameter surface and both end surfaces of the cage.
  • a radiochromic film “FWT-60-810” manufactured by FWT was used as a film dosimeter. Nitrogen is convected in the chamber so that the oxygen concentration is 300 ppm or less, and is fixed using an aluminum cylinder 9, while the cage 1 is rotated at 60 to 70 rpm, electrons are perpendicular to the outer diameter surface 5. Irradiated with rays.
  • the electron beam irradiation conditions are an acceleration voltage of 70 kV and an irradiation time of 25 to 35 seconds.
  • Example 1 From the results of Example 1 shown in Table 1, it was possible to simultaneously irradiate the outer diameter surface and both end surfaces with the electron beam. Further, uniform electron beam irradiation could be performed on each of the outer peripheral surface and both end surfaces. Furthermore, the outer diameter surface can give a higher radiation dose than both end surfaces, which is the application of electron beam energy to the outer diameter surface coating that requires the most sliding characteristics among rolling bearing cages. The rate is high.
  • FIG. Fig.3 (a) is an outline
  • FIG.3 (b) represents the sticking position of the film dosimeter on a holder outer diameter surface.
  • the cage 1 is placed on the installation table 14 so that one end face 7 b of the cage becomes the installation surface, and the side 15 a near the irradiation window of the cage outer diameter surface 5, the intermediate 15 b, Film dosimeters were affixed at a total of five locations, three irradiation areas on the side 15c close to the installation table and one on each of the end faces 7a and 7b.
  • the film dosimeters 16a to 16i in the circumferential direction of the cage outer diameter surface 5a in each of the irradiation areas 15a, 15b and 15c have angles of 0 °, 22.5 °, 45 °, 67.5 °, 90 °, 112. Half-circles were pasted at 5 °, 135 °, 157.5 °, and 180 ° positions, respectively.
  • the film dosimeter the same dosimeter as that used in Example 1 was used.
  • nitrogen was convected in the chamber so that the oxygen concentration was 300 ppm or less, and electron beam irradiation was performed under the same conditions as in Example 1, and the irradiation dose was measured.
  • Table 2 The results are shown in Table 2.
  • the irradiation dose applied to the outer diameter surface decreased with increasing distance from the irradiation window.
  • the end face it was confirmed that the irradiation dose was given to the end face on the irradiation window side, but the irradiation dose was zero on the end face on the installation table side. Therefore, the electron beam irradiation method of Comparative Example 1 cannot simultaneously irradiate the outer diameter surface and both end surfaces, and the irradiation dose to be applied may vary depending on the distance from the electron beam irradiation window for the outer diameter surface. all right. Furthermore, the irradiation dose to the end face is larger than the outer diameter surface coating that requires the most sliding characteristics among the rolling bearing cages, and the electron beam irradiation cannot be performed efficiently for the rolling bearing cages.
  • the irradiation method of the present invention is a very effective irradiation method for a rolling bearing cage, it can be applied to all rolling bearing cages having a cylindrical shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Rolling Contact Bearings (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

保持器の外径面および両端面へ同時に電子線を均一に照射することができ、電子線のエネルギー付与率が転がり軸受保持器の中で最も摺動特性が要求される外径面被膜に対して最も高く付与することができる転がり軸受用保持器への電子線照射方法を提供する。転動体を保持する複数のポケット部を有する円筒状の転がり軸受用保持器(1)への電子線照射方法であり、この照射方法は、円筒状の転がり軸受用保持器(1)の外径面(5)および両端面(7)に形成された樹脂層に対して、窒素雰囲気中で外径面方向から、保持器の円筒軸を中心に回転させながら電子線照射する。

Description

転がり軸受用保持器への電子線照射方法
 本発明は転がり軸受用保持器への電子線照射方法に関し、特に転がり軸受用保持器の外径面および両端面へ同時に電子線を照射することができる転がり軸受用保持器への電子線照射方法に関する。
 所望の形状に機械加工された基材表面をフッ素系樹脂で被覆して、この基材表面の方向が異なる複数の面を一方向から電子線照射して、複数の面に被覆されているフッ素系樹脂を架橋することを特徴とする架橋フッ素系樹脂被覆層を有する立体形状物の製造方法が知られている。この製造方法は、一方向からの電子線照射を窒素中で行なうことで、電子線の散乱現象を利用し、立体物、例えば炊飯釜内面の底面および側面へ同時に電子線照射できることを特徴としている(特許文献1)。
 転がり軸受用保持器の摺動面は、潤滑油や潤滑グリースなどが供給されて転がり摩擦またはすべり摩擦を低減している。また、更に摺動性を向上させるための表面処理が摺動面になされている。表面処理の1つにフッ素系樹脂被膜を形成する方法が知られている。このフッ素系樹脂被膜は、鉄系金属材表面に耐熱性樹脂および第一のフッ素系樹脂を含む下地層を形成し、この下地層表面に第二のフッ素系樹脂層を形成し、下地層および第二のフッ素系樹脂層を焼成後、放射線照射して形成された摺動層であり、耐熱性樹脂は焼成時において熱分解しない樹脂であり、放射線照射の条件は第二のフッ素系樹脂層が架橋する条件であることを特徴としている(特許文献2)。
特開2011-224259号公報 特開2015-163469号公報
 しかしながら、特許文献1に示される製造方法は、炊飯窯内面の底面(水平台上側)および側面には十分な照射線量を付与できるが、炊飯窯外面の底面(水平台下側)には、内面の15%程度と、ほとんど照射線量を付与できないという問題がある。この照射方法を転がり軸受保持器に適用した場合、照射時の設置台と接触する側となる片側端面への照射線量がほぼゼロとなり、架橋反応による被膜の改質が期待できず、保持器両端面被膜の摺動特性に大きな不均一性が生じる。また、電子線照射の中でも加速電圧が数10kV程度の低エネルギー電子線照射を用いた場合では、保持器外径面被膜への照射線量および電子線の侵入深さが照射窓に近い側から遠い側に向かって漸減していき、その結果、外径面被膜の摺動特性の不均一性が顕著に現れる。保持器外径面は炊飯窯内面の側面に対応する。さらにこの照射方法では、転がり軸受保持器の中で最も摺動特性が要求される外径面被膜への電子線照射が電子線散乱による回りこみによって行なわれてしまい、転がり軸受保持器にとって最適な電子線照射方法とは言えない。
 また、特許文献2に示す表面処理においては、照射方向についての記載がない。
 本発明はこのような問題に対処するためになされたものであり、保持器の外径面および両端面へ同時に電子線を照射することができ、かつ外径面、両端面それぞれについて均一な電子線照射ができ、電子線のエネルギー付与率が転がり軸受保持器の中で最も摺動特性が要求される外径面被膜に対して最も高く付与することができる転がり軸受用保持器への電子線照射方法の提供を目的とする。
 本発明の転がり軸受用保持器への電子線照射方法は、転動体を保持する複数のポケット部を有する円筒状の転がり軸受用保持器への電子線照射方法である。この照射方法は、上記円筒状の転がり軸受用保持器の外径面および両端面に形成された樹脂層に対して、窒素雰囲気中で上記外径面方向から、上記保持器の円筒軸を中心に回転させながら電子線照射することを特徴とする。
 上記保持器の円筒軸を中心に回転させる回転機構が保持器の内径部に嵌合して配置された円柱を、該円柱の回転軸に接続されたモーターにより回転させる機構であることを特徴とする。
 また、上記電子線照射の加速電圧が100kV未満であることを特徴とする。
 また、上記樹脂層がフッ素系樹脂層であることを特徴とし、特にポリテトラフルオロエチレン樹脂層であることを特徴とする。
 本発明の転がり軸受用保持器への電子線照射方法は、(1)窒素雰囲気中で保持器の外径面方向から、(2)保持器の円筒軸を中心に回転させながら、(3)表面に形成された樹脂層に電子線照射を行なうので、保持器の外径面および両端面へそれぞれについて均一な照射線量を付与することができる。特に保持器の両端面よりも外径面により多く照射線量を付与することができる。その結果、外径面および両端面の樹脂層にそれぞれについて均一な架橋状態を形成することが可能となり、保持器表面における摺動特性のムラを解消することができる。また、保持器の外径面方向から照射することにより、転がり軸受保持器の中で最も摺動特性が要求される外径面樹脂層に対して電子線が垂直に侵入するため、電子線のエネルギー付与率が高くなるので、転がり軸受用保持器にとって非常に効果的な照射方法である。
ニードル軸受用保持器の斜視図である。 電子線照射に使用する装置を示す図である。 比較例1の照射方法に用いた装置を示す図である。
 転がり軸受用保持器の一例を図1に示す。図1はニードル軸受用保持器の斜視図である。図1に示すように、ニードル軸受用保持器1は、転動体を保持する複数のポケット部2と、各ポケット部2の間に位置する軸方向に沿った柱部3と、柱部3を軸方向両側で固定する円筒部4とを備えている。柱部3および円筒部4には外径面5および内径面6を有し、円筒部4には2つの端面7を有している。
 本発明の電子線照射方法は、ニードル軸受用保持器に限らず、ポケット部が円形の玉軸受用保持器にも適用できる。
 転がり軸受用保持器の材質としては、鉄系金属材が好ましい。
 鉄系金属材は、転がり軸受などに使用される軸受鋼、浸炭鋼、機械構造用炭素鋼、冷間圧延鋼、または熱間圧延鋼等が挙げられる。鉄系金属材は摺動部材の形状に加工後、焼入焼戻し処理することで所定の表面硬度に調整する。例えばクロムモリブデン鋼(SCM415)を用いた鉄系金属材製保持器の場合、Hv値を484~595に調整した鉄系金属材を使用することが好ましい。
 転動体を保持する複数のポケット部2を有する保持器1は、素形材より円筒を削り出し、ポケット部2をプレス加工により打抜きで形成する方法、平板をプレス加工した後、適当な長さに切断し、円筒状に丸めて溶接により接合する方法などにより製造できる。
 保持器1の表面への樹脂層は、転動体と接触するポケット部2の表面を含めた保持器1の表面に形成される。特に、樹脂層は円筒状保持器の少なくとも外径面5および両端面7に形成される。
 表面の樹脂層を形成する樹脂材料としては、電子線照射により架橋する樹脂であれば使用できる。そのような樹脂としてはフッ素系樹脂、ポリエチレン樹脂等を挙げることができる。耐熱性に優れていることから、フッ素系樹脂が好ましい。フッ素系樹脂としては、ポリテトラフルオロエチレン(以下、PTFEという)、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、エチレン-テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル等が挙げられる。これらの樹脂は単独でも混合物としても使用できる。また、これらの中で、融点付近で電子線照射を行なうことにより架橋反応が進行し、耐熱性および摺動性に優れるPTFEが好ましい。
 フッ素系樹脂を主とする樹脂層は、(1)保持器表面側をフッ素系樹脂と耐熱性樹脂との混合樹脂組成物とし、表面側をフッ素系樹脂とする2層構造、(2)表面側から保持器表面側に向かってフッ素系樹脂が三次元構造から二次元構造へ連続的に変化する傾斜構造等を有する例が挙げられる。
 円筒状の転がり軸受用保持器の外径面および両端面への樹脂層の形成は、保持器の基材表面にフッ素系樹脂の分散液および/または溶液を塗布・乾燥後、焼成して形成される。
 樹脂層の層厚さは、5μm以上40μm未満、好ましくは15μm以上30μm未満である。層厚さが5μm未満であると、被膜の密着不良による剥離や初期摩耗の摩耗により、保持器表面の金属基材が露出するおそれがある。40μm以上であると、樹脂被膜形成時のクラック発生や運転中に剥離して潤滑状態が悪化するおそれがある。層厚さを5μm以上40μm未満の範囲とすることで、初期摩耗による金属基材の露出を防止でき、運転中における剥離を長期間にわたって防止できる。
 電子線照射に使用する装置を図2に示す。図2(a)は照射装置の概要であり、図2(b)は保持器外径面へのフィルム線量計の貼付位置を表す。
 電子線照射チャンバー8内に保持器1を配置する。保持器1は、保持器1の円筒軸を中心に回転させながら電子線照射窓8aより電子線が外径面5方向に対して垂直方向に向かって照射される。保持器1は、その内径面6に嵌合して配置された円柱9の回転軸10に接続されたモーター11から得た回転動力により回転される。円柱9は、保持器1の内径部に対して保持器が空転しない程度に嵌合され、円柱9の回転軸10は電子線照射方向に対して垂直方向に配置される固定具である。また、円柱9は、電子線照射により変質しない物質で形成することが好ましく、金属製、特にアルミニウム製が好適である。
 電子線照射チャンバー8の内部8bは窒素により満たされる。窒素雰囲気下で電子線照射することにより、保持器1の外径面5と共に、保持器の2つの端面7方向にも電子線が照射される。好ましい窒素雰囲気としては、チャンバー内を酸素濃度が300ppm以下になるよう窒素を対流させることが挙げられる。また、好ましい回転軸の回転数としては60~70rpmが挙げられる。
 電子線照射の加速電圧は、100kV未満であることが好ましく、より好ましくは50~70kVである。本発明は加速電圧が数10kV程度の低エネルギー電子線照射であっても、保持器1の外径面5と共に、2つの端面7にも照射できる。電子線照射は、外径面5へは電子線が垂直に侵入する直接照射であり、端面7へは電子線の散乱による照射であるので、保持器の両端面7よりも外径面5の方が照射線量が大きくなる。その結果、転がり軸受保持器の中で最も摺動特性が要求される外径面樹脂層に対して、電子線のエネルギー付与率が高くなので、転がり軸受用保持器にとって好適な照射方法となる。
 電子線照射線量は、保持器表面にフィルム線量計を貼付けて電子線照射することにより確認できる。例えば図2(a)に示すように端面7に貼付けたフィルム線量計12aおよび12b、図2(b)に示すように外径面5に円周方向均等に貼付けたフィルム線量計13a~13gにより計測できる。
実施例1
 焼入焼戻し処理したクロムモリブデン鋼(SCM415)製φ44mm×幅22mmのニードル軸受用保持器(基材表面硬度 Hv:484~595)を準備して、フッ素系樹脂および耐熱性樹脂からなるプライマー塗料(ダイキン社製 型番:EK-1909S21R)を約10μmとなるようにスプレー塗布し、90℃の恒温槽内で30分間乾燥して下地層被膜を形成した。この被膜の上に、フッ素系樹脂からなるトップ塗料(ダイキン社製 型番:EK-3700C21R)を約10μmとなるようにスプレー塗布し、90℃の恒温槽内で30分間乾燥して樹脂層となる被膜を形成した。その後、380℃の加熱炉内で30分間焼成した。
 図2に示す装置を用いて、表面に樹脂層が形成されたニードル軸受用保持器1に電子線を照射した。保持器の外径面および両端面にフィルム線量計12aおよび12b、13a~13gを図2に示す箇所に貼付けた。フィルム線量計は、FWT社製ラジオクロミックフィルム「FWT-60-810」を用いた。チャンバー内は酸素濃度が300ppm以下になるよう窒素を対流させ、アルミニウム製の円柱9を用いて固定し、保持器1を60~70rpmで回転させながら、外径面5に対して垂直方向に電子線を照射した。電子線照射条件は、加速電圧が70kV、照射時間が25~35秒である。
 電子線照射後、線量測定器(FWT社製FWT-92D型ラジオクロミックフィルムリーダー)により照射線量の測定を行なった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す実施例1の結果から外径面と両端面へ同時に電子線照射を行なうことができた。また、外周面と両端面それぞれについて均一な電子線照射を行なうことができた。さらに、外径面の方が両端面よりも高い照射線量を付与できており、これは転がり軸受用保持器の中で最も摺動特性が要求される外径面被膜への電子線のエネルギー付与率が高いことを示している。
比較例1
 比較例1の照射方法に用いた装置を図3に示す。図3(a)は照射装置の概要であり、図3(b)は保持器外径面へのフィルム線量計の貼付位置を表す。
 電子線照射チャンバー8内に保持器1を保持器の片側の端面7bが設置面になるよう保持器を設置台14に置き、保持器外径面5の照射窓に近い側15a、中間15b、設置台に近い側15cの照射領域3ヶ所、両端面7a、7bに1ヶ所ずつの計5ヶ所にフィルム線量計を貼付した。照射領域15a、15bおよび15cそれぞれの保持器外径面5円周方向のフィルム線量計16a~16iは、角度が0°、22.5°、45°、67.5°、90°、112.5°、135°、157.5°、180°の位置に、それぞれ半周分貼付した。フィルム線量計は実施例1で用いた線量計と同一の線量計を用いた。実施例1と同様に、チャンバー内は酸素濃度が300ppm以下になるよう窒素を対流させ、実施例1と同一の条件で電子線照射を行ない照射線量の測定を行なった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す比較例1の結果から外径面については照射窓からの距離が遠くなるほど付与される照射線量が減少した。また、端面については照射窓側の端面では照射線量の付与が確認されたが、設置台側の端面は照射線量がゼロとなった。したがって、比較例1の電子線照射方法では外径面および両端面を同時に照射できず、外径面については電子線照射窓からの距離の違いによって、付与される照射線量に差が生じることがわかった。さらに転がり軸受用保持器の中で最も摺動特性が要求される外径面被膜よりも端面への照射線量が大きく、転がり軸受保持器にとって効率的な電子線照射を行なうことができなかった。
 本発明の照射方法は、転がり軸受用保持器にとって非常に効果的な照射方法であるので、円筒形状を有する全ての転がり軸受用保持器に応用できる。
 1 ニードル軸受用保持器
 2 ポケット部
 3 柱部
 4 円筒部
 5 外径面
 6 内径面
 7 端面
 8 電子線照射チャンバー
 9 円柱
 10 回転軸
 11 モーター
 12、13、16 フィルム線量計
 14 設置台
 15 照射領域

Claims (5)

  1.  転動体を保持する複数のポケット部を有する円筒状の転がり軸受用保持器への電子線照射方法であって、
     前記円筒状の転がり軸受用保持器の外径面および両端面に形成された樹脂層に対して、窒素雰囲気中で前記外径面方向から、前記保持器の円筒軸を中心に回転させながら電子線照射することを特徴とする転がり軸受用保持器への電子線照射方法。
  2.  前記保持器の円筒軸を中心に回転させる回転機構が前記保持器の内径部に嵌合して配置された円柱を、該円柱の回転軸に接続されたモーターにより回転させる機構であることを特徴とする請求項1記載の転がり軸受用保持器への電子線照射方法。
  3.  前記電子線照射の加速電圧が100kV未満であることを特徴とする請求項1記載の転がり軸受用保持器への電子線照射方法。
  4.  前記樹脂層がフッ素系樹脂層であることを特徴とする請求項1記載の転がり軸受用保持器への電子線照射方法。
  5.  前記フッ素系樹脂層がポリテトラフルオロエチレン樹脂層であることを特徴とする請求項4記載の転がり軸受用保持器への電子線照射方法。
PCT/JP2017/028261 2016-08-10 2017-08-03 転がり軸受用保持器への電子線照射方法 WO2018030274A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016157687A JP2018025244A (ja) 2016-08-10 2016-08-10 転がり軸受用保持器への電子線照射方法
JP2016-157687 2016-08-10

Publications (1)

Publication Number Publication Date
WO2018030274A1 true WO2018030274A1 (ja) 2018-02-15

Family

ID=61162194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028261 WO2018030274A1 (ja) 2016-08-10 2017-08-03 転がり軸受用保持器への電子線照射方法

Country Status (2)

Country Link
JP (1) JP2018025244A (ja)
WO (1) WO2018030274A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129497A (ja) * 1999-11-09 2001-05-15 Nsk Ltd 転がり軸受の洗浄方法
JP2013076453A (ja) * 2011-09-30 2013-04-25 Seiko Instruments Inc 転がり軸受装置およびその製造方法、転がり軸受の製造装置、並びにハードディスク装置
JP2013209670A (ja) * 2007-06-20 2013-10-10 Sumitomo Electric Fine Polymer Inc フッ素樹脂チューブの製造方法、フッ素樹脂チューブおよびフッ素樹脂複合材
WO2015115655A1 (ja) * 2014-02-03 2015-08-06 Ntn株式会社 摺動部材、転がり軸受および保持器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129497A (ja) * 1999-11-09 2001-05-15 Nsk Ltd 転がり軸受の洗浄方法
JP2013209670A (ja) * 2007-06-20 2013-10-10 Sumitomo Electric Fine Polymer Inc フッ素樹脂チューブの製造方法、フッ素樹脂チューブおよびフッ素樹脂複合材
JP2013076453A (ja) * 2011-09-30 2013-04-25 Seiko Instruments Inc 転がり軸受装置およびその製造方法、転がり軸受の製造装置、並びにハードディスク装置
WO2015115655A1 (ja) * 2014-02-03 2015-08-06 Ntn株式会社 摺動部材、転がり軸受および保持器

Also Published As

Publication number Publication date
JP2018025244A (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
US8293028B2 (en) Method for carburizing steel components
WO2017022803A1 (ja) 摺動部材、転がり軸受および保持器
US20200141447A1 (en) Rolling bearing and production process therefor
WO2015115655A1 (ja) 摺動部材、転がり軸受および保持器
WO2017022795A1 (ja) フォイル軸受
WO2018030275A1 (ja) 転がり軸受用保持器の加熱方法
WO2018030274A1 (ja) 転がり軸受用保持器への電子線照射方法
KR20150133884A (ko) 슬라이딩 부재 및 그 제조방법
JP2018059629A (ja) 転がり軸受用保持器および転がり軸受
JP6457285B2 (ja) 転がり軸受用保持器および転がり軸受
JP2017032142A (ja) 摺動部材、転がり軸受および保持器
WO2020153243A1 (ja) 軌道部材および転がり軸受
WO2017022794A1 (ja) 転がり軸受用保持器および転がり軸受
JP6688113B2 (ja) すべり軸受の表面加工方法及びすべり軸受
WO2018062407A1 (ja) 転がり軸受用保持器および転がり軸受
JP6517523B2 (ja) 摺動部材、転がり軸受および保持器
WO2017022801A1 (ja) 摺動部材、転がり軸受および保持器
JP2017032143A (ja) 摺動部材、転がり軸受および保持器
JP6577193B2 (ja) 転がり軸受用保持器および転がり軸受
JP2016186354A (ja) 主電動機用軸受
JP2017032092A (ja) 転がり軸受用保持器および転がり軸受
JP2018059628A (ja) 転がり軸受用保持器および転がり軸受
JP2017032093A (ja) 転がり軸受用保持器および転がり軸受
JP2020051506A (ja) 転がり軸受用保持器および転がり軸受
WO2022138772A1 (ja) 転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839345

Country of ref document: EP

Kind code of ref document: A1