WO2018028563A1 - 锂二次电池充电方法 - Google Patents

锂二次电池充电方法 Download PDF

Info

Publication number
WO2018028563A1
WO2018028563A1 PCT/CN2017/096417 CN2017096417W WO2018028563A1 WO 2018028563 A1 WO2018028563 A1 WO 2018028563A1 CN 2017096417 W CN2017096417 W CN 2017096417W WO 2018028563 A1 WO2018028563 A1 WO 2018028563A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
current
voltage
secondary battery
lithium secondary
Prior art date
Application number
PCT/CN2017/096417
Other languages
English (en)
French (fr)
Inventor
张莹
曾巧
骆福平
王蒙蒙
Original Assignee
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能源科技有限公司 filed Critical 东莞新能源科技有限公司
Publication of WO2018028563A1 publication Critical patent/WO2018028563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of secondary battery charging technologies, and in particular, to a lithium secondary battery charging method.
  • lithium-ion batteries have become the leading products for secondary batteries, and the demand and expectations of end-users for lithium-ion batteries are becoming more stringent.
  • the two most urgent needs are the increase in battery energy density and the increase in charging speed, but often these two requirements cannot be taken into consideration at the same time. Therefore, a lithium-ion battery that can achieve fast charging without guaranteeing a reduction in energy density will stand out in the future competition.
  • the current charging method of a lithium ion battery is to continue charging at a constant potential through a constant current, and then continue charging at this potential.
  • this charging method causes the cathode potential to rise continuously, and the anode potential to continuously decrease; when the anode potential reaches 0 V or less, lithium ions are reduced to lithium metal on the anode surface to precipitate.
  • the degree of polarization will be aggravated during the charging process.
  • the way of continuous charging will make this polarization more obvious and increase the analysis.
  • the possibility of lithium As is known to those skilled in the art, the accumulation of lithium dendrites on the surface of the electrode can greatly threaten the safety performance of the battery.
  • the purpose of the present application is to provide a charging method capable of improving the charging safety performance and charging speed of a lithium secondary battery to meet the needs of the end user.
  • an embodiment of the present application provides a method for charging a lithium secondary battery, including:
  • the battery is subjected to constant current charging with currents I c1 , I c2 , I c3 , . . . , I ci , . . . , I cn ; in this process, when constant current charging is performed with any current I ci , Once the voltage reaches the corresponding V i , the charging is stopped, and then the constant current charging is continued with the current I ci+1 until the constant current is charged by the current I cn to reach the cutoff voltage V n ; wherein, ⁇ I c1 , I c2 , I c3 ,...,I ci ,I ci+1 ,...,I cn ⁇ is a set of sequentially decreasing current values, ⁇ V 1 , V 2 , V 3 ,..., V i , V i+1 ,...
  • V n ⁇ is a set of voltage values respectively corresponding to the current values; wherein n is an integer greater than or equal to 2, V i ⁇ V i+1 ⁇ V n , and V n is a system-set battery Cutoff voltage; I ci >I ci+1 >I cn , and I cn requirement to satisfy the following formula: I 0 ⁇ I cn ⁇ I 1 , I 0 is the maximum current that the system can withstand when the voltage is V n , I 1 is Set the off current when constant voltage V n is charged;
  • any of the currents I, I c1 , I c2 , I c3 , . . . , I ci , I ci+1 , . . . , I cn The value of ci is 0.01 C-10C.
  • the battery cutoff voltage V n set by the system is any greater than 0 and less than or equal to 100% SOC (State of Charge) Voltage value.
  • the maximum current I 0 that the system can withstand when the voltage is V n is 0.01-10 C.
  • the set off current I 1 when the constant voltage V n is charged is 0.01 C-1 C.
  • the charging process is performed at a normal temperature.
  • the charging method of the lithium secondary battery provided by the embodiment of the present application, by using the method of increasing the charging current in the low voltage section, fully utilizing the lithium insertion capability of the battery at a low voltage, significantly increasing the charging speed of the battery;
  • the constant voltage charging commonly used in the charging mode is changed to a small current constant current charging, which avoids the problem of anodic lithium deposition during high voltage charging, and greatly improves the safety of the battery.
  • FIG. 1 is a schematic diagram showing current and voltage relationships of a lithium secondary battery charging method in an embodiment of the present application
  • Example 2 is a schematic diagram showing the relationship between current and voltage in Example 1 of the present application.
  • Example 3 is a schematic diagram showing the relationship between current and voltage in Example 2 of the present application.
  • Example 4 is a schematic diagram showing the relationship between current and voltage in Example 3 of the present application.
  • Example 5 is a graph showing actual charging current curves and voltages in Example 3 of the present application.
  • Figure 6 is a graph showing the relationship between charge SOC and time in Comparative Example 3 of the present application.
  • the embodiment of the present application provides a charging method for a lithium secondary battery, which may include:
  • Step S1 starting from I c1 , the battery is subjected to constant current charging by currents I c1 , I c2 , I c3 , . . . , I ci , . . . , I cn ; in this process, when any current I ci is used for constant current During charging, once the voltage reaches the corresponding V i , the charging is stopped, and then the constant current charging is continued with the current I ci+1 until the constant current is charged by the current I cn to reach the cutoff voltage V n ; wherein, ⁇ I c1 , I c2 , I c3 ,...,I ci ,I ci+1 ,...,I cn ⁇ is a set of sequentially decreasing current values, ⁇ V 1 , V 2 , V 3 , .
  • V n is a set of voltage values respectively corresponding to the current values; wherein n is an integer greater than or equal to 2, V i ⁇ V i+1 ⁇ V n , V n is an system design
  • I ci >I ci+1 >I cn , and I cn requirements satisfy the following formula: I 0 ⁇ I cn ⁇ I 1 , I 0 is the maximum current that the system can withstand when the voltage is V n , I 1 is the set off current when charging with constant voltage V n ;
  • Step S2 If it is determined that I cn is equal to I 1 , the charging is ended; if I cn is determined to be greater than I 1 , the voltage is fixed by the voltage V n until the current reaches I 1 and the charging is terminated.
  • step S1 starting from I c1 , the battery is subjected to constant current charging by currents I c1 , I c2 , I c3 , . . . , I ci , . . . , I cn ; in this process, when any current I is used
  • the charging is stopped once the voltage reaches the corresponding V i , and then the constant current charging is continued with the current I ci+1 until the constant current is charged by the current I cn to reach the cutoff voltage V n .
  • the method may include: setting the current values ⁇ I c1 , I c2 , I c3 , . . .
  • FIG. 1 A specific implementation manner of the charging method of the lithium secondary battery provided by the embodiment of the present application is as shown in FIG. 1 .
  • the charging method of the lithium secondary battery is performed at normal temperature, and may include the following steps:
  • V n V n ⁇ ; wherein n is an integer greater than or equal to 2, V i ⁇ V i+1 ⁇ V n ,V n is the battery cut-off voltage set by the system; I ci >I ci+1 >I cn , and I cn requirements satisfy the following formula: I 0 ⁇ I cn ⁇ I 1 , I 0 is the system can withstand when the voltage is V n The maximum current, I 1 is the set off current when charging at a constant voltage V n ;
  • the battery is subjected to constant current charging by currents I c1 , I c2 , I c3 , ..., I ci , ..., I cn ; during this process, constant current charging is performed with any current I ci At the same time, once the voltage reaches the corresponding V i , the charging is stopped, and then the constant current charging is continued with the current I ci+1 until the constant current is charged by the current I cn to reach the cutoff voltage V n ;
  • step 3 If I cn is equal to I 1 , the charging is completed after completion of step 2); if I cn is greater than I 1 , the voltage is again charged with the voltage V n until the current reaches I 1 , and the charging is terminated.
  • the value of any current I ci in I c1 , I c2 , I c3 , . . . , I ci , I ci+1 , . . . , I cn is 0.01 C-10 C;
  • the battery cutoff voltage V n set by the system is Any voltage value greater than 0 and less than or equal to 100% SOC.
  • the above current values ⁇ I c1 , I c2 , I c3 , . . . , I ci , I ci+1 , . . . , I cn ⁇ and voltage values ⁇ V 1 , V 2 , V 3 , . . . , V i , V i+1 ,...,V n ⁇ is obtained by the charging capacity and charging speed of the battery system; using the charging window of the three-electrode test anode to determine the corresponding upper voltage limit for different charging currents, and selecting the appropriate current group and voltage group in combination with the charging speed requirement .
  • the combination of sequentially decreasing the current value and the constant small voltage value is to increase the charging speed as much as possible at a low SOC (or low voltage section).
  • the embodiment of the present application adopts a multi-step charging method.
  • a large current is charged to a certain voltage, and then a small current is used for charging, and the constant voltage charging is changed to a small current charging.
  • the purpose of this is to make full use of the anode.
  • the characteristics of gradually reducing lithium insertion capacity under different voltage conditions charging with a large current when the anode is in a low voltage state, and charging with a small current when the anode is at a high voltage state, thereby not affecting the performance of the anode, and achieving the purpose of increasing the charging speed.
  • the lithium secondary battery charging method provided by the embodiment of the present application will be described in detail below by taking specific examples and comparative examples as examples.
  • the battery systems involved in the following examples and comparative examples are made of LiCoO 2 as a cathode, graphite as an anode, and a separator, an electrolyte and a package, which are produced by processes such as assembly, formation and aging.
  • the cathode is composed of 96.7% LiCoO 2 + 1.7% PVDF (as a binder) + 1.6% SP (as a conductive agent), and the anode is composed of 98% artificial graphite + 1.0% SBR (as a binder) + 1.0% CMC (as a thickener) mixed composition
  • the separator is PP / PE / PP composite film
  • the electrolyte consists of organic solvent (30% EC + 30% PC + 40% DEC) and 1mol / L LiPF 6 , and then add additives (0.5% VC, 5% FEC, 4% VEC).
  • the full charge capacity of this battery is 2150 mAh (0.2 C)
  • the cutoff voltage V n is 4.4V.
  • charging the battery by using the lithium secondary battery charging method provided by the embodiment of the present application at a temperature of 25 ° C may specifically include the following steps:
  • charging the battery by using the lithium secondary battery charging method provided by the embodiment of the present application at a temperature of 25 ° C may specifically include the following steps:
  • charging the battery by using the lithium secondary battery charging method provided by the embodiment of the present application at a temperature of 25 ° C may specifically include the following steps:
  • the charging method of the lithium secondary battery provided by the embodiment of the present application is used at a temperature of 25 ° C
  • the charging of the above battery may specifically include the following steps:
  • the battery is charged by a conventional constant current and constant voltage charging method at a temperature of 25 ° C.
  • the specific steps may include:
  • the battery is charged by a conventional constant current and constant voltage charging method at a temperature of 25 ° C.
  • the specific steps may include:
  • Table 1 lists the charging parameters and charging times for Examples 1 to 4 and the comparative examples.
  • Table 1 example and comparison of charging parameters and charging speed comparison table
  • the charging method of the lithium secondary battery provided by the embodiment of the present application can greatly improve the charging speed of the lithium secondary battery. It is worth mentioning that, after detection, the multi-step charging method (multi-step pulse charging method) provided by the embodiment of the present application is used for charging, and the lithium secondary battery does not have anodic lithium deposition, and the comparative example is performed by 0.7C. Charging, the anode does not have lithium, but if the constant current and constant voltage charging is performed at a magnification greater than 0.7C, the battery will have anodized lithium, causing a safety accident.
  • FIG. 5 it is the actual charging current curve and voltage graph in the example 3 of the present application.
  • the multi-step charging method provided by the embodiment of the present application is in a low voltage section or The low SOC segment uses a large current to charge the battery, and in the high voltage segment or the high SOC segment, a small current is charged, thereby achieving the purpose of improving the lithium deposition of the battery and greatly increasing the charging speed of the battery.
  • embodiments of the present application can be provided as a method, apparatus (device), or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种锂二次电池充电方法,包括:自Ic1开始,依次以设定的电流值对电池进行恒流充电;当以任一电流Ici进行充电时,一旦电压达到对应的Vi则停止充电,再以电流Ici+1进行恒流充电,直至以电流Icn充电达到截止电压Vn;其中,{Ic1,…,Ici,Ici+1,…,Icn}为设定的一组依次减小的电流值,{V1,…,Vi,Vi+1,…,Vn}为一组设定的与所述电流值分别对应的电压值;Vi≤Vi+1≤Vn,I0≥Icn≥I1;若确定Icn等于I1,则结束充电;若确定Icn大于I1,则以电压Vn恒压充电至电流达到I1后结束充电;从而既可改善电池的析锂情况、又可提高电池充电速度。

Description

锂二次电池充电方法
本申请要求在2016年08月08日提交中国专利局、申请号为201610644595.3、发明名称为“锂二次电池充电方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及二次电池充电技术领域,尤其涉及一种锂二次电池充电方法。
背景技术
经过20多年的发展,锂离子电池已成为二次电池的领军产品,终端用户对于锂离子电芯的需求和期望也愈发严苛。其中,最为迫切的两个需求是电池能量密度的提升和充电速度的提升,但往往这两个需求不能同时兼顾。因此,能够在保证能量密度不降低的前提下实现快速充电的锂离子电池,将会在未来的竞争中脱颖而出。
锂离子电池的现有充电方式是通过恒定电流持续充电至某一电位后,继续在该电位恒压充电。但是,这种充电方式会使阴极电位不断升高,而阳极电位不断下降;当阳极电位达到0V以下时,就会造成锂离子在阳极表面还原成锂金属而析出。特别是在低温条件下,由于锂离子电池自身离子和电子的导电能力下降,充电过程中会引起极化程度的加剧,持续充电的方式会使得这种极化表现地愈加明显,同时增加了析锂的可能性。如本领域技术人员所知,锂枝晶在电极表面的积累,会极大地威胁到电池的安全性能。
有鉴于此,确有必要提供一种能够解决上述问题的锂二次电池充电方法。
发明内容
本申请的目的在于提供一种能够提高锂二次电池充电安全性能和充电速度的充电方法,以满足终端用户的需要。
第一方面,本申请实施例提供一种锂二次电池充电方法,包括:
自Ic1开始,依次以电流Ic1,Ic2,Ic3,…,Ici,…,Icn对电池进行恒流充电;此过程中,当以任一电流Ici进行恒流充电时,一旦电压达到对应的Vi则停止充电,然后再以电流Ici+1继续进行恒流充电,直至以电流Icn恒流充电达到截止电压Vn;其中,{Ic1,Ic2,Ic3,…,Ici,Ici+1,…,Icn}为设定的一组依次减小的电流值,{V1,V2,V3,…,Vi,Vi+1,…,Vn}为设定的一组与所述电流值分别对应的电压值;其中,n为大于等于2的整数,Vi≤Vi+1≤Vn,Vn为体系设定的电池截止电压;Ici>Ici+1>Icn,且Icn要求满足下式:I0≥Icn≥I1,I0是电压为Vn时体系可承受的最大电流,I1是以恒压Vn充电时的设定截止电流;
若确定Icn等于I1,则结束充电;若确定Icn大于I1,则以电压Vn恒压充电至电流达到I1后结束充电。
结合第一方面,在第一方面的第二种可能的实现方式中,所述Ic1,Ic2,Ic3,…,Ici,Ici+1,…,Icn中,任一电流Ici的值为0.01C-10C。
结合第一方面,在第一方面的第三种可能的实现方式中,所述体系设定的电池截止电压Vn为大于0、且小于等于100%SOC(State of Charge,剩余容量)的任意电压值。
结合第一方面,在第一方面的第四种可能的实现方式中,所述电压为Vn时体系可承受的最大电流I0为0.01-10C。
结合第一方面,在第一方面的第五种可能的实现方式中,所述以恒压Vn充电时的设定截止电流I1为0.01C-1C。
结合第一方面,在第一方面的第六种可能的实现方式中,所述充电过程在常温下进行。
本申请实施例提供的锂二次电池充电方法,通过在低电压段增大充电电流的方法,充分利用电芯在低电压的嵌锂能力,显著提高了电池充电速度;同时在高压段将常规充电方式中常用的恒压充电变更为小电流恒流充电,避免了在高电压充电过程中的阳极析锂问题,极大地改善了电池的使用安全性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中的锂二次电池充电方法的电流和电压关系示意图;
图2为本申请实例1中的电流和电压关系示意图;
图3为本申请实例2中的电流和电压关系示意图;
图4为本申请实例3中的电流和电压关系示意图;
图5为本申请实例3中的实际充电电流曲线和电压曲线图;
图6为本申请实例3中与对比例的充电SOC与时间的关系图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
本申请实施例提供一了种锂二次电池充电方法,可包括:
步骤S1:自Ic1开始,依次以电流Ic1,Ic2,Ic3,…,Ici,…,Icn对电池进行恒流充电;此过程中,当以任一电流Ici进行恒流充电时,一旦电压达到对应的Vi则停止充电,然后再以电流Ici+1继续进行恒流充电,直至以电流Icn恒流充电达到截止电压Vn;其中,{Ic1,Ic2,Ic3,…,Ici,Ici+1,…,Icn}为设定的一组依次减小的电流值,{V1,V2,V3,…,Vi,Vi+1,…,Vn}为设定的一组与所述电流值分别对应的电压值;其中,n为大于等于2的整数,Vi≤Vi+1≤Vn,Vn为体系设定的电池截止电压;Ici>Ici+1>Icn,且Icn要求满足下式:I0≥Icn≥I1,I0是电压 为Vn时体系可承受的最大电流,I1是以恒压Vn充电时的设定截止电流;
步骤S2:若确定Icn等于I1,则结束充电;若确定Icn大于I1,则以电压Vn恒压充电至电流达到I1后结束充电。
优选地,在步骤S1:自Ic1开始,依次以电流Ic1,Ic2,Ic3,…,Ici,…,Icn对电池进行恒流充电;此过程中,当以任一电流Ici进行恒流充电时,一旦电压达到对应的Vi则停止充电,然后再以电流Ici+1继续进行恒流充电,直至以电流Icn恒流充电达到截止电压Vn之前,所述方法可包括:设定所述电流值{Ic1,Ic2,Ic3,…,Ici,Ici+1,…,Icn}以及所述电压值{V1,V2,V3,…,Vi,Vi+1,…,Vn}。
本申请实施例提供的锂二次电池充电方法的一种具体可实现方式如图1所示,所述锂二次电池充电方法在常温下进行,可包括以下步骤:
1)设定一组依次减小的电流值{Ic1,Ic2,Ic3,…,Ici,Ici+1,…,Icn},以及一组与设定的电流值分别对应的电压值{V1,V2,V3,…,Vi,Vi+1,…,Vn};其中,n为大于等于2的整数,Vi≤Vi+1≤Vn,Vn为体系设定的电池截止电压;Ici>Ici+1>Icn,且Icn要求满足下式:I0≥Icn≥I1,I0是电压为Vn时体系可承受的最大电流,I1是以恒压Vn充电时的设定截止电流;
2)自Ic1开始,依次以电流Ic1,Ic2,Ic3,…,Ici,…,Icn对电池进行恒流充电;此过程中,当以任一电流Ici进行恒流充电时,一旦电压达到对应的Vi则停止充电,然后再以电流Ici+1继续进行恒流充电,直至以电流Icn恒流充电达到截止电压Vn
3)若Icn等于I1,则完成步骤2)后即结束充电;若Icn大于I1,则再以电压Vn恒压充电至电流达到I1,才结束充电。
其中,Ic1,Ic2,Ic3,…,Ici,Ici+1,…,Icn中的任一电流Ici的值为0.01C-10C;体系设定的电池截止电压Vn为大于0、且小于等于100%SOC的任意电压值。
上述电流值{Ic1,Ic2,Ic3,…,Ici,Ici+1,…,Icn}和电压值{V1,V2,V3,…,Vi,Vi+1,…,Vn}通过电池体系充电能力和充电速度需求得到;采用三电极测试阳极的充电窗口,确定不同充电电流时对应的电压上限,同时结合充电速度要求,选择合适的电流组和电压组。设置依次减小的电流值与不变小的电压值 组合是为了在低SOC(或低电压段)下尽可能地提高充电速度。
本申请实施例采用多步充电方法,在充电过程中,大电流充电至一定电压后改用小电流充电,并将恒压充电改为以小电流充电,这样做的目的是为了充分利用阳极在不同电压状态下嵌锂能力逐渐降低的特性:在阳极处于低电压状态下用大电流充电,在阳极处于高电压状态下用小电流充电,从而不影响阳极性能,并达到提升充电速度的目的。
下面将以具体实例和对比例为例对本申请实施例提供的所述锂二次电池充电方法进行详细说明。以下实例与对比例所涉及的电池体系,都是由LiCoO2作为阴极,石墨作为阳极,再加上隔膜、电解液及包装壳,通过组装、化成及陈化等工艺所制成。其中,阴极由96.7%LiCoO2+1.7%PVDF(作为粘结剂)+1.6%SP(作为导电剂)混合组成,阳极由98%人造石墨+1.0%SBR(作为粘结剂)+1.0%CMC(作为增稠剂)混合组成,隔膜为PP/PE/PP复合膜,电解液由有机溶剂(30%EC+30%PC+40%DEC)与1mol/L LiPF6,再加入添加剂(0.5%VC、5%FEC、4%VEC)组成。25℃时,此电池的满充充电容量为2150mAh(0.2C),截止电压Vn为4.4V。
实例1
如图2所示,在25℃的温度下,利用本申请实施例提供的所述锂二次电池充电方法对上述电池进行充电,可具体包括如下步骤:
1)设置依次减小的电流值{1.3C,1.1C,1.0C,0.7C,0.4C},以及依次增大的电压值{4.1V,4.2V,4.25V,4.4V,4.4V},I0为0.7C,I1为0.05C;
2)以电流1.3C充电至4.1V;
3)以电流1.1C充电至4.2V;
4)以电流1.0C充电至4.25V;
5)以电流0.7C充电至4.4V;
6)以电流0.4C充电至4.4V;
7)在4.4V下恒压充电至电流达到0.05C(I1)。
实例2
如图3所示,在25℃的温度下,利用本申请实施例提供的所述锂二次电池充电方法对上述电池进行充电,可具体包括如下步骤:
1)设置依次减小的电流值{1.1C,1.0C,0.7C,0.5C,0.2C,0.1C},以及不变的电压值{4.2V,4.3V,4.4V,4.4V,4.4V,4.4V},I0为0.7C,I1为0.05C;
2)以电流1.1C充电至4.2V,
3)以电流1.0C充电至4.3V;
4)以电流0.7C充电至4.4V;
5)以电流0.5C充电至4.4V;
6)以电流0.2C充电至4.4V;
7)以电流0.1C充电至4.4V;
8)在4.4V下恒压充电至电流达到0.05C(I1)。
实例3
如图4所示,在25℃的温度下,利用本申请实施例提供的所述锂二次电池充电方法对上述电池进行充电,可具体包括如下步骤:
1)设置依次减小的电流值{1.3C,1.2C,1.1C,0.7C,0.5C,0.2C,0.1C,0.05C},以及前期变大、后期不变的电压值{4.1V,4.2V,4.3V,4.4V,4.4V,4.4V,4.4V,4.4V},I0为0.7C,I1为0.05C;
2)以电流1.3C充电至4.1V,
3)以电流1.2C充电至4.2V;
4)以电流1.1C充电至4.3V;
5)以电流0.7C充电至4.4V;
6)以电流0.5C充电至4.4V;
7)以电流0.2C充电至4.4V;
8)以电流0.1C充电至4.4V;
9)以电流0.05C充电至4.4V(Icn=I1,至此即结束充电)。
实例4
在25℃的温度下,利用本申请实施例提供的所述锂二次电池充电方法对 上述电池进行充电,可具体包括如下步骤:
1)设置依次减小的电流值{9C,5C,1.0C,0.7C,0.5C,0.2C,0.1C,0.05C},以及前期变大、后期不变的电压值{3.2V,3.7V,4.25V,4.4V,4.4V,4.4V,4.4V,4.4V},I0为0.7C,I1为0.05C;
2)以电流9C充电至3.2V,
3)以电流5C充电至3.7V;
4)以电流1.0C充电至4.25V;
5)以电流0.7C充电至4.4V;
6)以电流0.5C充电至4.4V;
7)以电流0.2C充电至4.4V;
8)以电流0.1C充电至4.4V;
9)以电流0.05C充电至4.4V(Icn=I1,至此即结束充电)。
对比例1:
在25℃的温度下,采用常规的恒流恒压充电方法对上述电池进行充电,具体步骤可包括:
1)以0.7C进行恒流充电至电池的截止电压4.4V;
2)以恒定电压充电到截止电流0.05C。
对比例2:
在25℃的温度下,采用常规的恒流恒压充电方法对上述电池进行充电,具体步骤可包括:
1)以1C进行恒流充电至电池的截止电压4.4V;
2)以恒定电压充电到截止电流0.05C。
表1列出了实例1~4以及对比例的充电参数和充电时间。
表1、实例与对比例的充电参数和充电速度对比表
Figure PCTCN2017096417-appb-000001
从表1可以看出,采用本申请实施例提供的锂二次电池充电方法,可以极大地提高锂二次电池的充电速度。值得一提的是,经检测,采用本申请实施例提供的的多步充电方法(多步脉冲充电方法)进行充电,锂二次电池均没有发生阳极析锂的情况,对比例采用0.7C进行充电,阳极也没有析锂,但是如果采用大于0.7C的倍率进行恒流恒压充电,电池就会出现阳极析锂,引起安全事故。
如图5所示,其为本申请实例3中的的实际充电电流曲线和电压曲线图。
从图6所示的实例3与对比例的充电SOC与时间的关系图可以看出,与对比例相比,实例3的充电速度明显加快。可见,本申请实施例提供的所述锂二次电池充电方法不仅缩短了电池满充的时间,更重要的是,明显提高了充电前期的充电速度。
通过以上对比可知,本申请实施例提供的多步充电方法,在低电压段或 低SOC段,给电池采用大电流充电,而在高电压段或高SOC段,采用小电流充电,从而达到了既改善电池的析锂情况、又大大提高电池充电速度的目的。
根据上述原理,本申请还可以对上述实施方式进行适当的变更和修改。因此,本申请并不局限于上面揭示和描述的具体实施方式,对本申请实施例的一些修改和变更也应当落入本申请的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本申请构成任何限制。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (7)

  1. 一种锂二次电池充电方法,其特征在于,包括:
    自Ic1开始,依次以电流Ic1,Ic2,Ic3,…,Ici,…,Icn对电池进行恒流充电;此过程中,当以任一电流Ici进行恒流充电时,一旦电压达到对应的Vi则停止充电,然后再以电流Ici+1继续进行恒流充电,直至以电流Icn恒流充电达到截止电压Vn;其中,{Ic1,Ic2,Ic3,…,Ici,Ici+1,…,Icn}为设定的一组依次减小的电流值,{V1,V2,V3,…,Vi,Vi+1,…,Vn}为设定的一组与所述电流值分别对应的电压值;其中,n为大于等于2的整数,Vi≤Vi+1≤Vn,Vn为体系设定的电池截止电压;Ici>Ici+1>Icn,且Icn要求满足下式:I0≥Icn≥I1,I0是电压为Vn时体系可承受的最大电流,I1是以恒压Vn充电时的设定截止电流;
    若确定Icn等于I1,则结束充电;若确定Icn大于I1,则以电压Vn恒压充电至电流达到I1后结束充电。
  2. 根据权利要求1所述的锂二次电池充电方法,其特征在于:所述设定的电压值中,V1<Vn
  3. 根据权利要求1所述的锂二次电池充电方法,其特征在于:所述Ic1,Ic2,Ic3,…,Ici,Ici+1,…,Icn中,任一电流Ici的值为0.01C-10C。
  4. 根据权利要求1所述的锂二次电池充电方法,其特征在于:所述体系设定的电池截止电压Vn为大于0、且小于等于100%SOC的任意电压值。
  5. 根据权利要求1所述的锂二次电池充电方法,其特征在于:所述电压为Vn时体系可承受的最大电流I0为0.01-10C。
  6. 根据权利要求1所述的锂二次电池充电方法,其特征在于:所述以恒压Vn充电时的设定截止电流I1为0.01C-1C。
  7. 根据权利要求1所述的锂二次电池充电方法,其特点在于:所述充电过程在常温下进行。
PCT/CN2017/096417 2016-08-08 2017-08-08 锂二次电池充电方法 WO2018028563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610644595.3A CN107706471A (zh) 2016-08-08 2016-08-08 锂二次电池充电方法
CN201610644595.3 2016-08-08

Publications (1)

Publication Number Publication Date
WO2018028563A1 true WO2018028563A1 (zh) 2018-02-15

Family

ID=61162760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096417 WO2018028563A1 (zh) 2016-08-08 2017-08-08 锂二次电池充电方法

Country Status (2)

Country Link
CN (1) CN107706471A (zh)
WO (1) WO2018028563A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018437253B2 (en) * 2018-12-21 2021-03-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method, charging control device and computer storage medium
CN112713324A (zh) * 2020-12-29 2021-04-27 惠州亿纬创能电池有限公司 一种防止负极析锂的化成方法
CN112803510A (zh) * 2019-11-13 2021-05-14 Oppo广东移动通信有限公司 充电控制方法及装置、电子设备及计算机存储介质
CN113036244A (zh) * 2021-03-04 2021-06-25 江西安驰新能源科技有限公司 一种磷酸铁锂电池的低温充电方法
AU2018437254B2 (en) * 2018-12-21 2021-09-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method and apparatus, and computer storage medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728371A (zh) * 2018-12-29 2019-05-07 上海卡耐新能源有限公司 一种动力软包电芯阶梯充电控制方式
CN110061315A (zh) * 2019-03-29 2019-07-26 欣旺达电动汽车电池有限公司 一种锂离子电池快速充电方法
CN112448050B (zh) 2019-08-28 2022-06-24 北京小米移动软件有限公司 锂离子电池的充电方法和锂离子电池的充电装置
US11750012B2 (en) 2019-09-29 2023-09-05 Ningde Amperex Technology Limited Electronic device and method for charging a battery
CN112582696B (zh) * 2019-09-29 2022-05-20 宁德新能源科技有限公司 充电方法、电子装置及存储介质
CN112909366B (zh) * 2019-12-03 2022-11-04 北京小米移动软件有限公司 充电方法及装置、终端设备、存储介质
CN112994154A (zh) * 2021-02-25 2021-06-18 维沃移动通信有限公司 锂离子电池的低温充电方法、装置及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154746A (zh) * 2006-09-28 2008-04-02 比亚迪股份有限公司 一种锂离子二次电池的化成方法
CN101800344A (zh) * 2010-03-25 2010-08-11 江苏华富控股集团有限公司 一种用于锂离子动力蓄电池的充电方法
CN101953015A (zh) * 2009-01-07 2011-01-19 松下电器产业株式会社 组电池的充电方法及电池充电系统
CN102742067A (zh) * 2009-08-17 2012-10-17 苹果公司 增加充电锂电池单元中的能量密度
CN102769156A (zh) * 2012-07-17 2012-11-07 广东欧珀移动通信有限公司 一种快速充电方法
JP2014087200A (ja) * 2012-10-25 2014-05-12 Nec Personal Computers Ltd 充電装置、充電方法、プログラム、及び情報処理装置
CN105375072A (zh) * 2014-08-15 2016-03-02 艾默生网络能源有限公司 一种电池充电方法及装置
CN105634073A (zh) * 2016-03-10 2016-06-01 广东欧珀移动通信有限公司 快速充电电路及用户终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029154A (ja) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd 充電器
CN103151570A (zh) * 2013-03-06 2013-06-12 江苏恒迅中锂新能源科技有限公司 一种锂离子电池组充电器的充电方法
CN105322245B (zh) * 2014-07-31 2018-01-09 中信国安盟固利动力科技有限公司 一种提高锂离子电池充电效率的充电方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154746A (zh) * 2006-09-28 2008-04-02 比亚迪股份有限公司 一种锂离子二次电池的化成方法
CN101953015A (zh) * 2009-01-07 2011-01-19 松下电器产业株式会社 组电池的充电方法及电池充电系统
CN102742067A (zh) * 2009-08-17 2012-10-17 苹果公司 增加充电锂电池单元中的能量密度
CN101800344A (zh) * 2010-03-25 2010-08-11 江苏华富控股集团有限公司 一种用于锂离子动力蓄电池的充电方法
CN102769156A (zh) * 2012-07-17 2012-11-07 广东欧珀移动通信有限公司 一种快速充电方法
JP2014087200A (ja) * 2012-10-25 2014-05-12 Nec Personal Computers Ltd 充電装置、充電方法、プログラム、及び情報処理装置
CN105375072A (zh) * 2014-08-15 2016-03-02 艾默生网络能源有限公司 一种电池充电方法及装置
CN105634073A (zh) * 2016-03-10 2016-06-01 广东欧珀移动通信有限公司 快速充电电路及用户终端

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018437253B2 (en) * 2018-12-21 2021-03-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method, charging control device and computer storage medium
AU2018437254B2 (en) * 2018-12-21 2021-09-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method and apparatus, and computer storage medium
US11527903B2 (en) 2018-12-21 2022-12-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method used for device to-be-charged that involves controlling charged device to next constant-current charging phase
US11552493B2 (en) 2018-12-21 2023-01-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method, charging control device and device to be charged
CN112803510A (zh) * 2019-11-13 2021-05-14 Oppo广东移动通信有限公司 充电控制方法及装置、电子设备及计算机存储介质
CN112803510B (zh) * 2019-11-13 2023-10-24 Oppo广东移动通信有限公司 充电控制方法及装置、电子设备及计算机存储介质
CN112713324A (zh) * 2020-12-29 2021-04-27 惠州亿纬创能电池有限公司 一种防止负极析锂的化成方法
CN112713324B (zh) * 2020-12-29 2023-03-31 惠州亿纬创能电池有限公司 一种防止负极析锂的化成方法
CN113036244A (zh) * 2021-03-04 2021-06-25 江西安驰新能源科技有限公司 一种磷酸铁锂电池的低温充电方法

Also Published As

Publication number Publication date
CN107706471A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2018028563A1 (zh) 锂二次电池充电方法
JP6254232B2 (ja) リチウムイオン電池の充電方法
WO2017147741A1 (zh) 锂离子电池充电方法
KR101738543B1 (ko) 전지 쾌속 충전방법
CN109037811B (zh) 一种石墨负极体系锂离子电池的充电方法
US10886766B2 (en) Method and device for multi-stage battery charging
TWI516642B (zh) Electrolytic copper foil and secondary battery with negative current collector
JP6523450B2 (ja) 電池急速充電方法及び装置
CN107834630B (zh) 一种充电方法及充电装置
WO2018188225A1 (zh) 电池充电方法和装置
JP2007066834A (ja) 非水電解液二次電池
JP2016123251A (ja) リチウムイオン二次電池の充電方法及びその充電制御システム
CN110568363A (zh) 一种基于sei膜阻抗变化的退役电池产生锂枝晶预判方法
WO2019200655A1 (zh) 锂二次电池电解液及其锂二次电池
JP2002208440A (ja) リチウム二次電池の初期充電方法および製造方法
CN111276755A (zh) 一种长存储性能的锂离子电池的制备方法
WO2024125266A1 (zh) 脉冲换向化成方法、锂离子电池和存储介质
KR102477915B1 (ko) 리튬 이온 전지의 제조 방법
JP2019509610A (ja) リチウムイオン電池の生成処理
JP2018166108A (ja) リチウムイオン二次電池の充電方法及びその充電制御システム
WO2021184376A1 (zh) 改善电池循环性能的方法和电子装置
JP2023098228A (ja) リチウムイオン電池の回復処理方法、充放電装置およびプログラム
JP2018519645A (ja) 電極の急速フォーミング
WO2023184338A1 (zh) 电化学装置、充电方法和电子设备
Pan et al. Template‐Free Electrochemical Preparation of Hexagonal CuSn Prism‐Structural Electrode for Lithium‐Ion Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838693

Country of ref document: EP

Kind code of ref document: A1