WO2018028420A1 - 脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用 - Google Patents

脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用 Download PDF

Info

Publication number
WO2018028420A1
WO2018028420A1 PCT/CN2017/094066 CN2017094066W WO2018028420A1 WO 2018028420 A1 WO2018028420 A1 WO 2018028420A1 CN 2017094066 W CN2017094066 W CN 2017094066W WO 2018028420 A1 WO2018028420 A1 WO 2018028420A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
butyl
tert
water
piperazine
Prior art date
Application number
PCT/CN2017/094066
Other languages
English (en)
French (fr)
Inventor
李文保
王世潇
丁忠鹏
侯英伟
管华诗
Original Assignee
青岛海洋生物医药研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610665377.8A external-priority patent/CN107011331A/zh
Priority claimed from CN201610664088.6A external-priority patent/CN107011322B/zh
Priority claimed from CN201610664196.3A external-priority patent/CN107778297B/zh
Application filed by 青岛海洋生物医药研究院股份有限公司 filed Critical 青岛海洋生物医药研究院股份有限公司
Priority to EP22175200.9A priority Critical patent/EP4089085B1/en
Priority to EP17838550.6A priority patent/EP3498702B1/en
Priority to CN202111486744.5A priority patent/CN114276332B/zh
Priority to CN201780049392.2A priority patent/CN109563079B/zh
Priority to US16/325,166 priority patent/US10851086B2/en
Publication of WO2018028420A1 publication Critical patent/WO2018028420A1/zh
Priority to US16/995,098 priority patent/US11608325B2/en
Priority to US16/995,045 priority patent/US11578057B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of medicinal chemistry, and relates to a polymorph of a dehydrogenated phenyl aristotle compound and a preparation and purification method and application thereof.
  • Plinabulin This compound, also known as Plinabulin (KPU-2, NPI-2358), was developed by Nereus Pharmaceuticals, Inc. and is a synthetic derivative of the low molecular ring dipeptide phenylahistin or halimide derived from Aspergillus niger. It is a tubulin binding. Agent. Plinabulin binds to the colchicine binding site of tubulin, acts on cells, stops cells in the early stages of mitosis, and induces cell death. At the same time, it also inhibits microtubule formation, migration of endothelial cells and MM cells, and dysfunction of the tumor vasculature. Currently, the drug candidate has completed Phase II clinical trials in the United States, and is conducting Phase III clinical trials in China and the United States.
  • This compound is a novel tubulin binding agent obtained by structural modification using Plinabulin as a lead compound. It has good antitumor activity and can overcome the resistance of paclitaxel. It selectively acts on the endothelin of tubulin. Near the narcistic-binding site, it inhibits tubulin polymerization, blocks microtubule formation, and stops cells in the early stages of mitosis, thereby inducing cell death. At the same time, it inhibits neovascularization and blocks cancer cell feeding, thereby synergistically inhibiting the rapid increase of cancer cells.
  • Plinabulin is currently applying a clinically formulated dosage form for the addition of a solvent-enhancing concentrated solution for injection. Because it is an injection, the quality and stability of the plinabulin solid drug substance must be strictly required, especially for the preparation of a crystal having high purity and stability. Drug polymorphism is a common phenomenon in drug development. Different crystal forms of the same drug molecule may have significant differences in appearance, melting point, solubility, dissolution, bioavailability, etc., which directly affect drug stability, biology. Utilization and efficacy. Therefore, screening of the plinabulin polymorph is necessary.
  • the invention provides (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl) as shown in formula (I) a crystalline form of -1H-imidazol-4-yl)deutery methylene]piperazine-2,5-dione having at least 3 diffraction angles at 2 ⁇ of 8.415° ⁇ 0.2°, 11.512° ⁇ X-ray powder at 0.2°, 14.824° ⁇ 0.2°, 17.087° ⁇ 0.2°, 17.278° ⁇ 0.2°, 19.461° ⁇ 0.2°, 21.350° ⁇ 0.2°, 22.344° ⁇ 0.2° or 27.621° ⁇ 0.2° Diffraction characteristic peak;
  • the crystal form has a diffraction angle at the 2 ⁇ of 8.415° ⁇ 0.2°, 11.512° ⁇ 0.2°, 14.824° ⁇ 0.2°, 17.278° ⁇ 0.2°, 19.461° ⁇ 0.2°, 21.350° ⁇ 0.2°, 22.344 X-ray powder diffraction characteristic peaks at ° ⁇ 0.2° and 27.621° ⁇ 0.2°;
  • the crystal form has a diffraction angle at the 2 ⁇ of 8.415° ⁇ 0.2°, 11.512° ⁇ 0.2°, 14.824° ⁇ 0.2°, 17.087° ⁇ 0.2°, 17.278° ⁇ 0.2°, 19.461° ⁇ 0.2°.
  • X-ray powder diffraction characteristic peak at 21.350 ° ⁇ 0.2 °, 22.344 ° ⁇ 0.2 ° and 27.621 ° ⁇ 0.2 °;
  • the crystal form has a diffraction angle at the 2 ⁇ of 8.415° ⁇ 0.2°, 11.512° ⁇ 0.2°, 12.271° ⁇ 0.2°, 13.126° ⁇ 0.2°, 13.618° ⁇ 0.2°, 14.824° ⁇ 0.2°, 16.011° ⁇ 0.2°, 16.282° ⁇ 0.2°, 17.087° ⁇ 0.2°, 17.278° ⁇ 0.2°, 17.608° ⁇ 0.2°, 18.134° ⁇ 0.2°, 18.408° ⁇ 0.2°, 19.461° ⁇ 0.2°, 19.735° ⁇ 0.2°, 20.745° ⁇ 0.2°, 21.350° ⁇ 0.2°, 22.344° ⁇ 0.2°, 23.198° ⁇ 0.2°, 24.874° ⁇ 0.2°, 25.168° ⁇ 0.2°, 26.997° ⁇ 0.2°, 27.621° ⁇ 0.2 X-ray powder diffraction characteristic peak at ° and 28.479 ⁇ 0.2 °;
  • the crystal form is named as the alpha crystal form, and the preparation method thereof comprises the following steps:
  • Ethyl isocyanoacetate and trimethylacetic anhydride are cyclized under basic conditions to give ethyl 5-(tert-butyl)oxazole-4-carboxylate;
  • Ethyl 5-(tert-butyl)oxazole-4-carboxylate is converted to the imidazole ring by heating with a formamide solvent, then reduced by lithium aluminum hydride, oxidized by manganese dioxide, reduced by sodium borohydride, and reoxidized by manganese dioxide.
  • the present invention provides a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine- a crystal form of 2,5-dione having at least 3 diffraction angles at 2 ⁇ of 7.629° ⁇ 0.2°, 8.052° ⁇ 0.2°, 12.967° ⁇ 0.2°, 15.327° ⁇ 0.2°, 16.195° ⁇ X-ray powder diffraction characteristic peak at 0.2°, 23.194° ⁇ 0.2°, 23.760° ⁇ 0.2°, 24.129° ⁇ 0.2°, 24.419° ⁇ 0.2°, 26.465° ⁇ 0.2° or 29.213° ⁇ 0.2°;
  • the crystal form has a diffraction angle at the 2 ⁇ of 7.629° ⁇ 0.2°, 8.052° ⁇ 0.2°, 12.967° ⁇ 0.2°, 15.327° ⁇ 0.2°, 16.195° ⁇ 0.2°, 23.194° ⁇ 0.2°, 23.760 X-ray powder diffraction characteristic peaks at ° ⁇ 0.2°, 24.129° ⁇ 0.2°, 24.419° ⁇ 0.2°, 26.465° ⁇ 0.2° and 29.213° ⁇ 0.2°;
  • the crystal form has a diffraction angle at the 2 ⁇ of 7.629° ⁇ 0.2°, 8.052° ⁇ 0.2°, 8.958° ⁇ 0.2°, 12.967° ⁇ 0.2°, 15.327° ⁇ 0.2°, 16.195° ⁇ 0.2°, 16.606° ⁇ 0.2°, 17.410° ⁇ 0.2°, 23.194° ⁇ 0.2°, 23.760° ⁇ 0.2°, 24.129° ⁇ 0.2°, 24.419° ⁇ 0.2°, 25.256° ⁇ 0.2°, 26.465° ⁇ 0.2° and 29.213° X-ray powder diffraction characteristic peak at ⁇ 0.2°;
  • the X-ray powder diffraction pattern of the crystalline form is consistent with Figure 2.
  • the crystal form is named as a ⁇ crystal form, and the preparation method comprises the steps of: (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl) with a solvent at 15 ° C - 100 ° C.
  • the ⁇ crystal form obtained is a single crystal in which one molecule (3Z, 6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)fluorene Submethylene]piperazine-2,5-dione is combined with one molecule of methanol, and its appearance is cubic. It is monoclinic single crystal by X-ray single crystal diffraction, and the space group is P2(1)/n. The structural formula is consistent with that of Figure 3, and the melting point is 263.6-264.4 °C.
  • the present invention also provides (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazole-4- a crystalline form of deuterated methylene]piperazine-2,5-dione having at least 3 diffraction angles at the 2 ⁇ of 8.075° ⁇ 0.2°, 12.986° ⁇ 0.2°, 16.217° ⁇ 0.2 X, X-ray powder diffraction characteristic peak at 19.709 ° ⁇ 0.2 ° or 24.441 ° ⁇ 0.2 °;
  • the crystalline form has X-ray powder diffraction characteristics at 2 ⁇ diffraction angles of 8.075° ⁇ 0.2°, 12.986° ⁇ 0.2°, 16.217° ⁇ 0.2°, 19.709° ⁇ 0.2°, and 24.441° ⁇ 0.2°. peak;
  • the X-ray powder diffraction pattern of the crystalline form is consistent with Figure 4.
  • the crystal form is named ⁇ crystal form, and the preparation method thereof comprises the following steps: using a single solvent of methanol, ethanol, isopropanol, acetone, water or at least two mixed solvents, at 15 ° C - 100 ° C ( 3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene]piperazine-2,5-dione completely dissolved and saturated , in the dark, cooled to 15-20 ° C, and naturally volatilized to obtain (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl) ) Deuterated methylene] piperazine-2,5-dione ⁇ crystal form.
  • the obtained ⁇ crystal form is a single crystal in which one molecule (3Z, 6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)anthracene Submethylene]piperazine-2,5-dione is combined with two molecules of methanol, and its appearance is rhomboidal. It is analyzed by X-ray single crystal diffraction to be a triclinic single crystal, space group is P-1, analytical structure and graph 5 consistent, melting point of 263.6-265.1 ° C.
  • the present invention provides a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine- a monohydrate crystal form of 2,5-dione; the crystal form having at least 3 diffraction angles at 2 ⁇ of 8.075° ⁇ 0.2°, 12.988° ⁇ 0.2°, 16.201° ⁇ 0.2°, 17.545° ⁇ 0.2° X-ray powder diffraction characteristic peak at 19.084° ⁇ 0.2°, 19.724° ⁇ 0.2°, 23.710° ⁇ 0.2°, 24.422° ⁇ 0.2°, 26.485° ⁇ 0.2° or 29.234° ⁇ 0.2°;
  • the crystalline form has a diffraction angle of 8.07 ° ⁇ 0.2 °, 12.988 ° ⁇ 0.2 °, 16.201 ° ⁇ 0.2 °, 19.084 ° ⁇ 0.2 °, 19.724 ° ⁇ 0.2 °, 24.422 ° ⁇ 0.2 ° and X-ray powder diffraction characteristic peak at 29.234 ° ⁇ 0.2 °;
  • the crystal form has a diffraction angle of 8.07 ° ⁇ 0.2 °, 12.988 ° ⁇ 0.2 °, 16.201 ° ⁇ 0.2 °, 17.545 ° ⁇ 0.2 °, 19.084 ° ⁇ 0.2 °, 19.724 ° ⁇ 0.2 °, X-ray powder diffraction characteristic peaks at 23.710° ⁇ 0.2°, 24.422° ⁇ 0.2°, 26.485° ⁇ 0.2°, and 29.234° ⁇ 0.2°;
  • the crystal form has a diffraction angle of 2.75° ⁇ 0.2° and 9.145° ⁇ 0.2° at 2 ⁇ . 12.988° ⁇ 0.2°, 14.740° ⁇ 0.2°, 16.201° ⁇ 0.2°, 17.545° ⁇ 0.2°, 18.367° ⁇ 0.2°, 19.084° ⁇ 0.2°, 19.724° ⁇ 0.2°, 22.781° ⁇ 0.2°, 23.710°
  • the crystal form is named ⁇ crystal form, and the preparation method thereof comprises the steps of: using a mixed solvent of water and an organic solvent selected from at least one of an alkane saturated alcohol, an unsaturated alcohol, an alkane saturated amine, and an unsaturated amine.
  • the organic solvent is preferably methanol, ethanol, isopropanol or acetone;
  • (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene]piperazine-2,5-dione The crude product is placed in a reaction vessel, protected from light, isopropanol is added as a solvent, heated to complete dissolution, and water is added.
  • the volume ratio of isopropanol to water used is V water :
  • V isopropanol 1:100 to 1 :1, placed at -10-30 ° C, stirred and cooled to crystallize, filtered, washed and dried to obtain a pale yellow solid with a high purity (3Z, 6Z)-3- with a trans isomer content of less than 0.1%.
  • the single crystal preparation method comprises the following steps: using a single solvent of methanol, ethanol, isopropanol, acetone, water or at least two mixed solvents, (3Z, 6Z)-3-benzene under heating at 25-100 ° C Methylene-6-((5-tert-butyl-1H-imidazol-4-yl)deuterymethyl)piperazine-2,5-dione is completely dissolved and saturated, in the dark, Allow to stand to cool to 10-50 ° C, and naturally volatilize to obtain (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene] A single crystal of the azine-2,5-dione
  • the ⁇ crystal form obtained is a single crystal in which one molecule of (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)anthracene Submethylene]piperazine-2,5-dione is combined with one molecule of water and has a needle-like appearance. It is monoclinic single crystal by X-ray single crystal diffraction analysis, and the space group is P2(1)/n. The structural formula is consistent with that of Figure 7, and the melting point is 263-267 °C.
  • the present invention provides a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-
  • the isopropanol crystal form of 2,5-dione is named as ⁇ crystal form, and the preparation method thereof comprises the following steps: using a mixed solvent of isopropyl alcohol and water at a temperature of 10-100 ° C (3Z, 6Z)-3-Benzylmethylene-6-[(5-tert-butyl-1H-imidazol-4-yl)deutery methylene]piperazine-2,5-dione is completely dissolved and reaches saturation.
  • the obtained epsilon crystal form is a single crystal in which one molecule (3Z, 6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)anthracene Submethylene]piperazine-2,5-dione is combined with one molecule of isopropanol and has a rhomboid appearance. It is monoclinic single crystal by X-ray single crystal diffraction, and the space group is P2(1)/n. The analytical structural formula is consistent with that of Figure 9, and the melting point is 264.1-264.7 °C.
  • the present invention provides the above (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene]piperazine- The use of a crystal form of 2,5-dione in the preparation of an antitumor drug.
  • the present invention provides a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl) ya group represented by formula (II).
  • a crystalline form of methyl]piperazine-2,5-dione having at least 3 diffraction angles at 2 ⁇ of 7.670° ⁇ 0.2°, 9.069° ⁇ 0.2°, 15.383° ⁇ 0.2°, 16.668° ⁇ 0.2°, 17.468° ⁇ 0.2°, 18.109° ⁇ 0.2°, 19.960° ⁇ 0.2°, 23.307° ⁇ 0.2°, 23.836° ⁇ 0.2°, 24.462° ⁇ 0.2°, 28.046° ⁇ 0.2° or 28.827° ⁇ 0.2°
  • the crystal form has a diffraction angle of 2.76° ⁇ 0.2°, 9.069° ⁇ 0.2°, 15.383° ⁇ 0.2° at 2 ⁇ , X-ray powder diffraction characteristic peaks at 16.668 ° ⁇ 0.2 ° and 23.836 ° ⁇ 0.2 °;
  • the crystal form has a 2 ⁇ diffraction angle of 7.670° ⁇ 0.2°, 9.069° ⁇ 0.2°, 15.383° ⁇ 0.2°, 16.668° ⁇ 0.2°, 17.468° ⁇ 0.2°, 18.109° ⁇ 0.2°, X-ray powder diffraction characteristic peaks at 19.960° ⁇ 0.2°, 23.307° ⁇ 0.2°, 23.836° ⁇ 0.2°, 24.462° ⁇ 0.2°, 28.046° ⁇ 0.2°, and 28.827° ⁇ 0.2°;
  • the crystal form has a diffraction angle at the 2 ⁇ of 7.356° ⁇ 0.2°, 7.670° ⁇ 0.2°, 8.097° ⁇ 0.2°, 9.069° ⁇ 0.2°, 12.032° ⁇ 0.2°, 12.500° ⁇ 0.2°, 13.063° ⁇ 0.2°, 15.383° ⁇ 0.2°, 16.241° ⁇ 0.2°, 16.668° ⁇ 0.2°, 17.468° ⁇ 0.2°, 18.109° ⁇ 0.2°, 18.694° ⁇ 0.2°, 19.960° ⁇ 0.2°, 23.307° X-ray powder diffraction characteristic peaks at ⁇ 0.2°, 23.836° ⁇ 0.2°, 24.462° ⁇ 0.2°, 28.046° ⁇ 0.2°, 28.827° ⁇ 0.2°, and 30.226° ⁇ 0.2°;
  • the mixed solvent water and methanol V water : V methanol 1:1000 to 1:100; the complete dissolution temperature is 60 ° C - 80 ° C.
  • the prepared b crystal form is a single crystal in which one molecule of (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene Piperazine-2,5-dione is combined with one molecule of methanol, and the crystal appearance is cubic. It is monoclinic by X-ray single crystal diffraction, and the space group is P2(1)/n. The analytical structure is consistent with Figure 12. The melting point is 264.0 ° C - 264.9 ° C.
  • the present invention provides a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2, a crystal form of 5-dione having at least 3 diffraction angles at 2 ⁇ of 7.918° ⁇ 0.2°, 9.168° ⁇ 0.2°, 12.014° ⁇ 0.2°, 12.985° ⁇ 0.2°, 18.382° ⁇ 0.2°
  • X-ray powder diffraction characteristic peak at 18.616 ° ⁇ 0.2 °, 23.367 ° ⁇ 0.2 °, 25.203 ° ⁇ 0.2 ° or 27.771 ° ⁇ 0.2 °;
  • the crystalline form has an X-ray powder diffraction characteristic peak at a 2 ⁇ diffraction angle of 7.918° ⁇ 0.2°, 9.168° ⁇ 0.2°, 18.382° ⁇ 0.2°, and 18.616° ⁇ 0.2°;
  • the crystal form has a diffraction angle of 2.71 ° ⁇ 0.2 °, 9.168 ° ⁇ 0.2 °, 12.014 ° ⁇ 0.2 °, 12.985 ° ⁇ 0.2 °, 18.382 ° ⁇ 0.2 °, 18.616 ° ⁇ 0.2 °, X-ray powder diffraction characteristic peaks at 23.367° ⁇ 0.2°, 25.203° ⁇ 0.2°, and 27.771° ⁇ 0.2°;
  • the crystal form has a 2 ⁇ diffraction angle of 7.918° ⁇ 0.2°, 9.168° ⁇ 0.2°, 9.905° ⁇ 0.2°, 12.014° ⁇ 0.2°, 12.985° ⁇ 0.2°, 14.970° ⁇ 0.2°, 15.873° ⁇ 0.2°, 18.382° ⁇ 0.2°, 18.616° ⁇ 0.2°, 19.081° ⁇ 0.2°, 19.881° ⁇ 0.2°, 22.862° ⁇ 0.2°, 23.367° ⁇ 0.2°, 23.719° ⁇ 0.2°, 24.073°
  • the prepared crystal form of c is a single crystal in which one molecule (3Z, 6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene Piperazine-2,5-dione is combined with one molecule of methanol, and the appearance of the crystal is needle-shaped. It is monoclinic by X-ray single crystal diffraction, and the space group is P2(1)/n. The analytical structure is consistent with Figure 14. The melting point is 263.2 ° C - 264.0 ° C.
  • the present invention provides a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2, a crystalline form of 5-dione, the crystal form being (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine a monohydrate of 2,5-dione; preferably the crystal form has at least 3 diffraction angles at 2 ⁇ of 8.037° ⁇ 0.2°, 13.005° ⁇ 0.2°, 17.544° ⁇ 0.2°, 18.382° ⁇ 0.2°.
  • the crystalline form has X-ray powder diffraction characteristics at 2 ⁇ diffraction angles of 8.073 ° ⁇ 0.2 °, 13.005 ° ⁇ 0.2 °, 19.082 ° ⁇ 0.2 °, 19.707 ° ⁇ 0.2 °, and 23.759 ° ⁇ 0.2 °. peak;
  • the crystal form has a diffraction angle of 2 ⁇ of 8.037° ⁇ 0.2° and 13.005° ⁇ 0.2°, 17.544° ⁇ 0.2°, 18.382° ⁇ 0.2°, 19.082° ⁇ 0.2°, 19.707° ⁇ 0.2°, 22.766° ⁇ 0.2°, 23.759° ⁇ 0.2°, 24.438° ⁇ 0.2°, 25.277° ⁇ 0.2°, 26.486°
  • the crystal form has a diffraction angle of 8.73 ° ⁇ 0.2 °, 9.146 ° ⁇ 0.2 °, 13.005 ° ⁇ 0.2 °, 14.740 ° ⁇ 0.2 °, 16.184 ° ⁇ 0.2 °, 17.544 ° ⁇ 0.2 °, 18.382° ⁇ 0.2°, 19.082° ⁇ 0.2°, 19.707° ⁇ 0.2°, 22.766° ⁇ 0.2°, 23.759° ⁇ 0.2°, 24.438° ⁇ 0.2°, 25.277° ⁇ 0.2°, 26.486° ⁇ 0.2°, 27.883°
  • X-ray powder diffraction characteristic peaks at ⁇ 0.2° and 29.234° ⁇ 0.2°;
  • the crystal form is named as a crystal form of d, and the preparation method thereof comprises the following steps: using a mixed solvent of water and an organic solvent, the organic solvent being at least one of an alkane saturated alcohol, an unsaturated alcohol, an alkane saturated amine or an unsaturated amine.
  • the present invention provides d crystals of (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione
  • the method for preparing a single crystal comprises the following steps: using a single solvent of methanol, ethanol, isopropanol, acetone or water or at least two mixed solvents, (3Z, 6Z)-3- under heating at 25-100 °C Benzamethylene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione is completely dissolved and saturated.
  • the d crystal form obtained is a single crystal in which one molecule (3Z, 6Z)-3-benzylidene-6-[(5-tert-butyl- 1H-imidazol-4-yl)methylene]piperazine-2,5-dione binds to one molecule of water and has a long columnar or needle-like appearance. It is monoclinic single crystal and space by X-ray single crystal diffraction analysis. The group is P2(1)/n, and the analytical structure is the same as that of Fig. 17, and the melting point is 263-267 °C.
  • the present invention also provides a method for preparing and purifying a high-purity dehydrophenyl phenyl aristotin compound, the preparation and purification method comprising the steps of: dehydrogenating a phenyl adenine compound
  • the crude product is placed in a reaction vessel, protected from light, heated under isopropanol or methanol or ethanol or n-butanol until completely dissolved, and then water is added without crystal precipitation, placed at 15-30 ° C, stirred and cooled to crystallize After filtration, washing and drying, a high-purity dehydrophenyl arsenate compound is obtained.
  • dehydrophenyl phenyl aztec compound has a structure represented by the general formula (III):
  • R 1 is a monosubstituted to penta-substituted polysubstituted substituent on the benzene ring, and the substituent is selected from a hydrogen atom, a halogen atom, a 3-benzoylphenyl group, and a 3-(4-methyl group).
  • R 2 is a hydrogen atom or a halogen atom
  • R 3 is a hydrogen atom or a halogen atom
  • X 1 is an oxygen atom or a sulfur atom
  • X 2 is an oxygen atom or a sulfur atom
  • X 3 is -NH, an oxygen atom or a sulfur atom
  • dehydrophenyl phenyl aztec compound is (3Z, 6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)indole
  • 3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazole-4-) is prepared in high purity.
  • the dehydrophenyl phenyl aristotle compound is (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene] Piperazine-2,5-dione, compound (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2
  • the preparation method of the crude 5-dione is as follows:
  • Ethyl isocyanoacetate and trimethylacetic anhydride are cyclized under basic conditions to give ethyl 5-(tert-butyl)oxazole-4-carboxylate;
  • ethyl 5-(tert-butyl)oxazole-4-carboxylate is converted into an imidazole ring by heating with a formamide solvent, and then reduced by lithium aluminum hydride, and manganese dioxide is oxidized to obtain 5-(tert-butyl)-1H-imidazole.
  • -4-carbaldehyde the glycine anhydride is dissolved in acetic anhydride solvent to obtain 1,4-diacetylpiperazine-2,5-dione;
  • the ethyl 5-(tert-butyl)-1H-imidazole-4-carboxylate was purified by the following procedure: ethyl 5-(tert-butyl)-1H-oxazole-4-carboxylate and formamide
  • the reaction is heated. After the reaction is completed, the mother liquid is cooled, extracted with sodium carbonate and petroleum ether, and the petroleum ether layer impurities are separated, extracted with ethyl acetate, and the organic phase is combined, washed with water, dried and concentrated under reduced pressure to obtain a concentrated liquid. Pour into water and stir to beat, solid precipitated, suction filtration, washing, and vacuum drying to obtain the purified ethyl 5-(tert-butyl)-1H-imidazole-4-carboxylate.
  • 1,4-diacetylpiperazine-2,5-dione is purified by the following steps: refluxing the glycine anhydride with acetic anhydride, and after the reaction is completed, the mother liquid is cooled to room temperature, and concentrated under reduced pressure. Solvent, the concentrate was dissolved in dichloromethane, filtered through Celite, and concentrated under reduced pressure to remove dichloromethane, and then recrystallized from ethyl acetate, crystallized at low temperature, filtered and dried to give purified 1,4-diacetyl. Piperazine-2,5-dione.
  • ⁇ crystal form is a monohydrate, which is quite stable in the high temperature, high humidity and light influencing factors test, and the accelerated stability test, and is easily converted into ⁇ crystal form, ⁇ , ⁇ and ⁇ under the ⁇ crystal form and high humidity condition. It is not stable enough under high temperature conditions, and there is a loss of crystallization solvent. Under high humidity conditions, some crystal forms will change into ⁇ crystal form.
  • ⁇ of (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-dione ⁇ and ⁇ contain a crystallization solvent. From the viewpoint of dissolving the raw material, the dissolving of the three crystal forms exceeds the standard, so it is not suitable for medicine. Comprehensive consideration and experimental verification, ⁇ crystal form has good stability and safety.
  • Plinabulin has been clinically in Phase III. Because its dosage form is an injection, the quality stability of the drug substance is more important.
  • the present invention studies the polymorph of Plinabulin, and comprehensively considers the stability of the drug form of the crystal form, and the present invention determines The crystal form of 3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione is monohydrate
  • the crystal form is simple and easy to handle, and the quality is stable.
  • the a crystal form has a certain wettability, and is easily converted into a d crystal form under high humidity conditions, and the b and c crystal forms contain an organic solvent, resulting in a high residual solvent, which is not suitable for medicine.
  • the crystal form As a monohydrate, the crystal form is not easy to lose, and has good molecular stability during preparation and preservation. The quality and efficacy of the drug are unchanged. Therefore, the d crystal form is the most beneficial crystal form of the compound.
  • Figure 1 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention.
  • Figure 2 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention.
  • Figure 3 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention.
  • Figure 4 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention.
  • Figure 5 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention.
  • Figure 6 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention.
  • Figure 7 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention.
  • Figure 8 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention. Thermogravimetric analysis of the ketone delta crystal form.
  • Figure 9 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention.
  • Figure 10 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine of the present invention.
  • X-ray powder diffraction pattern of the -2,5-dione a crystal form.
  • Figure 11 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione b according to the invention.
  • Figure 12 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione b according to the invention.
  • Figure 13 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione c of the present invention.
  • Figure 14 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione c of the present invention.
  • Figure 15 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione d of the present invention.
  • Figure 16 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione d of the present invention. Thermogravimetric analysis of the crystal form.
  • Figure 17 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione d of the present invention.
  • Figure 18 is a high purity (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5 of the present invention.
  • Figure 19 is a high purity (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5 of the present invention.
  • Figure 20 is a high purity (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-di of the present invention.
  • Figure 21 is a high purity (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-di of the present invention. Thermogravimetric analysis of ketone monohydrate.
  • the specific preparation process includes the following steps:
  • the insoluble matter was filtered off, concentrated under reduced pressure, and water was taken from anhydrous ethanol. It was then beaten with ethyl acetate (250 mL).
  • Table 1 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterymethyl]piperazine-2,5-di of the present invention.
  • the specific preparation process comprises the following steps: weigh (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene]piperazine-2 , 5-dione (200 mg, 0.59 mmol), dissolved in a mixed solution of 20 mL of methanol and 0.1 mL of water, dissolved at 70 ° C, filtered into a crystallizing dish, covered with a plastic wrap, on the plastic wrap. The hole was immersed in a capillary having an outer diameter of 0.5 mm, and volatilized at 25 ° C in the dark.
  • the ⁇ crystal form prepared above is detected as a single crystal in which one molecule (3Z, 6Z)-3-benzylidene -6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene]piperazine-2,5-dione in combination with one molecule of methanol, X-ray single crystal diffraction test conditions: using Bruker X
  • Table 2 The test results of the crystallographic parameters are shown in Table 2 below, and the analytical structure is shown in Figure 3.
  • the specific preparation process comprises the following steps: weigh (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene]piperazine-2 , 5-dione (100 mg, 0.30 mmol), dissolved in a mixed solvent of 13 mL of methanol and 0.52 mL of water at 30 ° C, filtered into a crystallizing dish, seeded, and covered with a plastic wrap to cover the mouth of the crystallized dish.
  • the capillary was immersed in a capillary with an outer diameter of 0.5 mm, and was volatilized in the dark at 18 ° C.
  • the ⁇ crystal form was detected as a single crystal in which one molecule (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene]piperidine
  • Two molecules of methanol were combined in the pyridazine-2,5-dione, X-ray single crystal diffraction test conditions: using a Bruker X-ray single crystal diffractometer, the compound size was selected to be 0.50 mm ⁇ 0.40 mm ⁇ 0.18 mm, and the test temperature was 293 K.
  • Cu-K ⁇ ray ( ⁇ 1.54178A) radiation, ⁇ angle data collection range 3.79-66.38 degrees.
  • Table 3 Table 3 below, and the analytical structure is shown in Fig. 5.
  • the specific preparation process comprises the steps of: weighing the (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuteromethyl]piperazine -2,5-dione solid (1.00 g, 2.96 mmol), dissolved in 60 mL of isopropanol at 80 ° C, filtered while hot, the filtrate was placed at 80 ° C, 12 ml of water was added dropwise, the clear solution The mixture was stirred and crystallized at room temperature for 6 hours, filtered, and dried to give a white powdery crystal solid (yield: 0.95 g).
  • the obtained ⁇ crystal form was tested by X-ray powder diffraction, and the characteristic absorption peaks of the 2 ⁇ diffraction angle were 8.075°, 9.145°, 12.988°, 14.740°, 16.201°, 17.545°, 18.367°, 19.084°, 19.724°, 22.781°, 23.710°. , 24.422°, 25.279°, 26.485°, 27.867°, 29.234°, 2 ⁇
  • the diffraction angle error is ⁇ 0.2°, see Figure 6.
  • the specific preparation process comprises the following steps: weigh (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene]piperazine-2 , 5-dione (100 mg, 0.30 mmol), dissolved in a mixed solvent of 13 mL of methanol and 0.52 mL of water at 30 ° C, filtered into a crystallizing dish, seeded, and covered with a plastic wrap to cover the mouth of the crystallized dish.
  • the capillary was immersed in a capillary with an outer diameter of 0.5 mm, and was volatilized in the dark at 13 ° C.
  • Table 5-1 Table 5-1 below, and the analytical structure is shown in the structure shown in a of Fig. 7.
  • the specific preparation process comprises the following steps: weigh (3Z, 6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazole) -4-yl) deuterated methylene] piperazine-2,5-dione (100 mg, 0.30 mmol), dissolved in a mixed solvent of 15 mL of absolute ethanol and 1 mL of water at 65 ° C, and filtered into a crystallizing dish. Cover the mouth of the crystallizing dish with plastic wrap, puncture the hole on the cling film with a capillary of 0.5 mm in outer diameter, and volatilize in the dark at 26 ° C.
  • Table 5-2 The test results of the crystallographic parameters are shown in Table 5-2 below, and the analytical structure is shown in the structure shown in b of Fig. 7.
  • the percentage of ⁇ crystal form weight gain was less than 0.2%. From this, it can be seen that the ⁇ crystal form has substantially no hygroscopicity according to the definition of the wettability characteristic of the Chinese Pharmacopoeia and the definition of wet weight gain.
  • ⁇ and ⁇ contain a crystallization solvent, and the dissolving angle of the raw materials is considered to be excessive, so it is not suitable for the drug.
  • ⁇ crystal form has good stability and safety.
  • the specific preparation process comprises the following steps: weigh (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)deuterated methylene]piperazine-2 , 5-dione (100 mg, 0.30 mmol), dissolved in a mixed solvent of 15 mL of isopropanol and 0.30 mL of purified water at 55 ° C, filtered into a crystallizing dish, covered with a plastic wrap, and used on a plastic wrap.
  • the capillary hole with an outer diameter of 0.5 mm was volatilized in the dark at 15 ° C, and precipitated from the crystal of ⁇ crystal form after 48 hours, filtered and dried to obtain 45 mg of a rhombohedral solid, the yield was 45%, and the melting point of the obtained ⁇ crystal form was 264.1-264.7 ° C.
  • Table 11 The test results of the crystallographic parameters are shown in Table 11 below, and the analytical structure is shown in Fig. 9.
  • the specific preparation process includes the following steps:
  • the insoluble material was filtered off, concentrated under reduced pressure, and water was taken from anhydrous ethanol. It was then beaten with ethyl acetate (50 mL).
  • the main characteristic peaks of the X-ray powder 2 ⁇ angle diffraction peak of the a crystal form are: 8.446°, 11.546°, 12.285°, 13.161°, 14.855°, 16.043°, 16.647°, 17.136°, 17.639°, 18.130. °, 18.459, 19.473, 19.804, 20.742, 21.343, 22.338, 23.235, 24.868, 25.145, 27.596.
  • the specific preparation process comprises the steps of: weighing the (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2 , 5-dione (200 mg, 0.59 mmol), dissolved in a mixed solution of 20 mL of methanol and 0.1 mL of water, dissolved at 70 ° C, filtered into a crystallizing dish, covered with a plastic wrap, on the plastic wrap. The hole was immersed in a capillary having an outer diameter of 0.5 mm, and allowed to volatilize in the dark at room temperature.
  • Table 12 Table 12 below, and the analytical structure is shown in Fig. 12.
  • the specific preparation process comprises the steps of: weighing the (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2 , 5-dione (200 mg, 0.59 mmol), dissolved in a mixed solution of 20 mL of methanol and 0.8 mL of water, dissolved at 68 ° C, filtered into a crystallizing dish, seeded, and covered with a plastic wrap. The film was punched with a capillary having an outer diameter of 0.5 mm on the wrap film, and volatilized at room temperature in the dark.
  • Table 13 The test results of the crystallographic parameters are shown in Table 13 below, and the analytical structure is shown in Fig. 14.
  • Hydrogen bond solvent molecules in the conformation (Fig. 11) and c crystal conformation (Fig. 14) are not limited to methanol, including other alkane saturated alcohols, unsaturated alcohols, alkane saturated amines, unsaturated amines, etc. Binding molecules.
  • the specific preparation process comprises the steps of: weighing the (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2 , 5-dione solid (1.00 g, 2.96 mmol), dissolved in 60 mL of isopropanol at 80 ° C, filtered while hot, the filtrate was placed under an atmosphere of 80 ° C, 12 ml of water was added dropwise, and the clear solution was placed. The mixture was stirred and crystallized at room temperature for 6 hours, filtered, and dried to give a white powdery crystal solid (yield: 0.96 g).
  • the obtained d crystal form was tested by X-ray powder diffraction, and the characteristic absorption peak of the 2 ⁇ diffraction angle was 8.073, 9.146, 13.005, 14.740, 16.184, 17.544, 18.382, 19.082, 19.707, 22.766, 23.759, 24.438, 25.277, 26.486, 27.883, 29.234, 2? diffraction
  • the angular error is ⁇ 0.2°
  • the specific X-ray powder diffraction spectrum is shown in Fig. 15, and the obtained d crystal has a melting point of 264.5-266.3 °C.
  • Table 14 is a (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione of the present invention.
  • the specific preparation process comprises the following steps: weigh (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5 - Diketone (100 mg, 0.30 mmol), dissolved in a mixed solvent of 15 mL of absolute ethanol and 1 mL of water at 65 ° C, filtered into a crystallizing dish, covered with a plastic wrap to cover the mouth of the crystallized dish, with an outer diameter of 0.5 on the wrap film.
  • the capillary of mm was immersed in 16 wells, and it was volatilized in the dark at 25 ° C. After 72 hours, it was precipitated from crystal form d, filtered and dried to obtain 52 mg of a long columnar solid. The yield was 49.5%, and the melting point of the obtained d crystal form was 264.2-265.3 °C.
  • Table 15 Table 15 below, and the analytical structure is shown in Fig. 17.
  • the specific preparation process includes the following steps:
  • the insoluble matter was filtered off, concentrated under reduced pressure, and water was taken from anhydrous ethanol. It was then beaten with ethyl acetate (250 mL).
  • Example 2 2.0 g of the crude product described in Example 1 was placed in a brown bottle, and 125 mL of isopropanol was added under heating to completely dissolve, and 50 mL of water was added thereto, and no crystals were precipitated. The mixture was allowed to stand at room temperature, stirred and cooled, and subjected to suction filtration.
  • the specific preparation process includes the following steps:
  • the insoluble material was filtered off, concentrated under reduced pressure, and water was taken from anhydrous ethanol. It was further beaten with ethyl acetate (50 mL) to give a brown solid (Z)-1-acetyl-3-[(5-(tert-butyl)-1H-imidazol-4-yl)methylene]piperazine- 2,5-dione 0.89 g, yield 46.9%.
  • the product obtained is (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H-imidazol-4-yl)methylene]piperazine-2,5-dione monohydrate
  • the measured moisture content was 5.326%.
  • Figure 21 is the supporting data for the thermogravimetric analysis.
  • the preparation method provided by the present invention can be used not only for the high purity (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl-1H) which has been disclosed in the examples. -imidazol-4-yl)deuterated methylene]piperazine-2,5-dione monohydrate and high purity (3Z,6Z)-3-benzylidene-6-[(5-tert-butyl) -1H-imidazol-4-yl)methylene]piperazine-2,5-dione monohydrate preparation, also suitable for the preparation of all dehydrophenyl phenyl aristotin compounds with similar structure purification.
  • dehydrophenyl phenyl aristotin compounds may be various dehydrophenyl phenyl aristotin compounds as indicated in the patents WO2001053290A1, WO2004054498A, WO2007035841A1 or WO2016192586A1, and may also be derivatives of these compounds.
  • the dehydrophenyl phenyl aztec compound has a structure represented by the following formula:
  • R 1 is a monosubstituted to penta-substituted polysubstituted substituent on the benzene ring, and the substituent is selected from a hydrogen atom, a halogen atom, a 3-benzoylphenyl group, and a 3-(4-methoxybenzene group).
  • R 2 is a hydrogen atom or a halogen atom
  • R 3 is a hydrogen atom or a halogen atom
  • X 1 is an oxygen atom or a sulfur atom
  • X 2 is an oxygen atom or a sulfur atom
  • X 3 is -NH, an oxygen atom or a sulfur atom.
  • Such a dehydrophenyl phenyl aristotin compound has a double bond capable of forming a cis-trans isomer, and is highly susceptible to cis-trans isomerization under illumination conditions.
  • the invention optimizes the purification method of various similar compounds, and then obtains the preparation method of the high-purity dehydrophenyl phenyl aristotin compound disclosed in the claims of the present invention, which can significantly reduce the content of the isomer impurities and obtain An active compound having a purity higher than 99.9%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用。其中(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮一水合物晶型和(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮一水合物晶型为质量稳定的优势晶型,其制备纯化方法简单易操作,可有效的控制反式异构体杂质的产生,得到高纯度的产物。脱氢苯基阿夕斯丁类化合物的多种晶型在制备抗肿瘤的药物中具有一定的应用价值。

Description

脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用 技术领域
本发明属于药物化学技术领域,涉及脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用。
背景技术
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮属于脱氢苯基阿夕斯丁类化合物,其结构式为:
Figure PCTCN2017094066-appb-000001
该化合物又称为Plinabulin(KPU-2,NPI-2358),由美国Nereus制药公司研制,是源自海洋曲霉菌的低分子环二肽phenylahistin或halimide的合成衍生物,是一种微管蛋白结合剂。Plinabulin可结合到微管蛋白的秋水仙素结合位点附近,作用于细胞,使细胞停在有丝分裂早期,而诱导细胞死亡。同时,它也抑制微管形成,及内皮细胞和MM细胞的迁移,使肿瘤脉管系统功能失常。目前该候选药物已在美国完成临床II期,正在中国及美国开展临床III期实验。
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮属于氘代脱氢苯基阿夕斯丁类化合物,其结构式为:
Figure PCTCN2017094066-appb-000002
该化合物是以Plinabulin为先导化合物,通过结构改造获得的一种新型微管蛋白结合剂,具有良好的抗肿瘤活性,并且能够克服紫杉醇的耐药性,它选择性作用于内皮微管蛋白的秋水仙碱结合位点附近,抑制微管蛋白聚合,阻断微管形成,使细胞停在有丝分裂早期,进而诱导细胞死亡。同时抑制新生血管生成,阻断癌细胞供养,从而协同抑制癌细胞的快速增值。
经研究,(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪 -2,5-二酮IC50低于其类似物plinabulin,但其水溶性却只有39.90ng/mL,严重制约了其在临床药物中的应用。前期,本发明申请人通过大量研究已经取得制备(3Z,6Z)-3-苯亚甲基-6-((5-叔丁基-1H-咪唑-4-基)氘代亚甲基)哌嗪-2,5-二酮的关键技术。且申请了中国发明专利和PCT,专利名称为氘代脱氢苯基阿夕斯丁类化合物及其制备方法和在制备抗瘤的药物中的应用,专利申请号为201510293269.8。
Plinabulin目前申报临床的剂型为添加促溶剂的注射用浓溶液,因为是注射剂,所以对于plinabulin固体原料药的质量和稳定性必须严格要求,尤其是制得纯度高、稳定性好的晶型。药物多晶型是药物研发中的常见现象,同一药物分子的不同晶型在外观、熔点、溶解度、溶出度、生物有效性等性质方面可能会有显著差异,从而直接影响药物的稳定性、生物利用度及疗效。因此,对plinabulin多晶型的研究筛选很有必要。
同时,目前还没有关于(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的晶型及其制备方法的报道。
同时,(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮和氘代脱氢苯基阿夕斯丁类化合物(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的光敏性较强,尤其是在溶液中,所以在制备过程中会产生较多(3E,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮和(3E,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮异构体,该异构体不易去除,这也给后续的制剂带来了难题,更会对药品的申报和临床安全性产生影响,因此制备高纯度的(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮具有重要的意义。而且目前关于(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮所报道的制备纯化方法较为复杂,其中部分中间体的柱层析纯化制约了该药物的工业化生产,因此建立一套适合工业化生产的工艺意义重大。
发明内容
本发明的目的是提供了脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用。
为实现上述发明目的,本发明采用以下技术方案予以实现:
一方面,本发明提供一种如式(I)所示的(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基 -1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的晶型,所述晶型具有至少3个在2θ衍射角为8.415°±0.2°,11.512°±0.2°,14.824°±0.2°,17.087°±0.2°,17.278°±0.2°,19.461°±0.2°,21.350°±0.2°,22.344°±0.2°或27.621°±0.2°处的X-射线粉末衍射特征峰;
Figure PCTCN2017094066-appb-000003
优选地,所述晶型具有在2θ衍射角为8.415°±0.2°,11.512°±0.2°,14.824°±0.2°,17.278°±0.2°,19.461°±0.2°,21.350°±0.2°,22.344°±0.2°和27.621°±0.2°处的X-射线粉末衍射特征峰;
更有选地,所述晶型具有在2θ衍射角为8.415°±0.2°,11.512°±0.2°,14.824°±0.2°,17.087°±0.2°,17.278°±0.2°,19.461°±0.2°,21.350°±0.2°,22.344°±0.2°和27.621°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为8.415°±0.2°,11.512°±0.2°,12.271°±0.2°,13.126°±0.2°,13.618°±0.2°,14.824°±0.2°,16.011°±0.2°,16.282°±0.2°,17.087°±0.2°,17.278°±0.2°,17.608°±0.2°,18.134°±0.2°,18.408°±0.2°,19.461°±0.2°,19.735°±0.2°,20.745°±0.2°,21.350°±0.2°,22.344°±0.2°,23.198°±0.2°,24.874°±0.2°,25.168°±0.2°,26.997°±0.2°,27.621°±0.2°和28.479±0.2°处的X-射线粉末衍射特征峰;
最优选地,所述晶型的X射线粉末衍射谱图与图1一致。
该晶型被命名为α晶型,其制备方法包括以下步骤:
在碱性条件下,异氰基乙酸乙酯、三甲基乙酸酐环合得5-(叔丁基)噁唑-4-甲酸乙酯;
将5-(叔丁基)噁唑-4-甲酸乙酯用甲酰胺溶剂加热转换为咪唑环,再经氢化铝锂还原,二氧化锰氧化,氘代硼氢化钠还原,二氧化锰再氧化得到5-(叔丁基)-1H-咪唑-4-氘代甲醛;将甘氨酸酐用乙酸酐溶剂解得1,4-二乙酰基哌嗪-2,5-二酮;
在碱性条件下,将5-(叔丁基)-1H-咪唑-4-氘代甲醛与1,4-二乙酰基哌嗪-2,5-二酮缩合,再与苯甲醛缩合并纯化处理,得到淡黄色结晶性粉末状的(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮α晶型。
再一方面,本发明还提供一种(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的晶型,所述晶型具有至少3个在2θ衍射角为7.629°±0.2°,8.052°±0.2°,12.967°±0.2°,15.327°±0.2°,16.195°±0.2°,23.194°±0.2°,23.760°±0.2°,24.129°±0.2°,24.419°±0.2°,26.465°±0.2°或29.213°±0.2°处的X-射线粉末衍射特征峰;
优选地,所述晶型具有在2θ衍射角为7.629°±0.2°,8.052°±0.2°,12.967°±0.2°,15.327°±0.2°,16.195°±0.2°,23.194°±0.2°,23.760°±0.2°,24.129°±0.2°,24.419°±0.2°,26.465°±0.2°和29.213°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为7.629°±0.2°,8.052°±0.2°,8.958°±0.2°,12.967°±0.2°,15.327°±0.2°,16.195°±0.2°,16.606°±0.2°,17.410°±0.2°,23.194°±0.2°,23.760°±0.2°,24.129°±0.2°,24.419°±0.2°,25.256°±0.2°,26.465°±0.2°和29.213°±0.2°处的X-射线粉末衍射特征峰;
最优选地,所述晶型的X射线粉末衍射谱图与图2一致。
该晶型被命名为β晶型,其制备方法包括以下步骤:用溶剂在15℃-100℃条件下将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮完全溶解,达到饱和,在避光条件下,经静置冷却至20-30℃、自然挥发获得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的β晶型,所述溶剂为甲醇、乙醇、异丙醇、丙酮、水的单一溶剂或两种或多种混合的溶剂;
优选地,所述溶剂为水和甲醇的体积比为V:V甲醇=1:1000至3:100的混合溶剂,加热溶解温度为60-80℃。
进一步的,制得的所述β晶型为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮结合一分子甲醇,外观为立方体状,经X射线单晶衍射分析为单斜晶系单晶、空间群为P2(1)/n、解析结构式与图3一致,熔点为263.6-264.4℃。
再一方面,本发明还提供一种(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4- 基)氘代亚甲基]哌嗪-2,5-二酮的晶型,所述晶型具有至少3个在2θ衍射角为8.075°±0.2°,12.986°±0.2°,16.217°±0.2°,19.709°±0.2°或24.441°±0.2°处的X-射线粉末衍射特征峰;
优选地,所述晶型具有在2θ衍射角为8.075°±0.2°,12.986°±0.2°,16.217°±0.2°,19.709°±0.2°和24.441°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型的X射线粉末衍射谱图与图4一致。
该晶型被命名为γ晶型,其制备方法包括以下步骤:使用甲醇、乙醇、异丙醇、丙酮、水的单一溶剂或至少两种混合的溶剂,在15℃-100℃条件下将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮完全溶解,达到饱和,在避光条件下,经静置冷却至15-20℃、自然挥发获得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮γ晶型。
进一步的,所用溶剂为水和甲醇的体积比为V:V甲醇=3:100至1:5,加热溶解温度为25-50℃。
进一步的,制得的所述γ晶型为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮结合两分子甲醇,外观为菱形状,经X射线单晶衍射分析为三斜晶系单晶、空间群为P-1、解析结构式与图5一致,熔点为263.6-265.1℃。
再一方面,本发明还提供一种(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的的一水合物晶型;所述晶型具有至少3个在2θ衍射角为8.075°±0.2°、12.988°±0.2°、16.201°±0.2°、17.545°±0.2°、19.084°±0.2°、19.724°±0.2°、23.710°±0.2°、24.422°±0.2°、26.485°±0.2°或29.234°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为8.075°±0.2°、12.988°±0.2°、16.201°±0.2°、19.084°±0.2°、19.724°±0.2°、24.422°±0.2°和29.234°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为8.075°±0.2°、12.988°±0.2°、16.201°±0.2°、17.545°±0.2°、19.084°±0.2°、19.724°±0.2°、23.710°±0.2°、24.422°±0.2°、26.485°±0.2°和29.234°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为8.075°±0.2°、9.145°±0.2°、 12.988°±0.2°、14.740°±0.2°、16.201°±0.2°、17.545°±0.2°、18.367°±0.2°、19.084°±0.2°、19.724°±0.2°、22.781°±0.2°、23.710°±0.2°、24.422°±0.2°、25.279°±0.2°、26.485°±0.2°、27.867°±0.2°和29.234°±0.2°处的X-射线粉末衍射特征峰;
最优选地,所述晶型的X射线粉末衍射谱图与图6一致。
该晶型被命名为δ晶型,其制备方法包括以下步骤:使用水和有机溶剂的混合溶剂,所述有机溶剂选自烷烃饱和醇、不饱和醇、烷烃饱和胺和不饱和胺中的至少一种,将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮用所述混合溶剂进行重结晶,冷却搅拌析晶得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的δ晶型,此晶型为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的一水合物,熔点为:263.5-266.5℃。
进一步的,所述有机溶剂优选甲醇、乙醇、异丙醇或丙酮;所述混合溶剂为体积比为V:V异丙醇=1:100至10:1的水和异丙醇,所述混合溶剂为体积比为V:V甲醇=1:100至10:1的水和甲醇,所述混合溶剂为体积比为V:V乙醇=1:100至10:1的水和乙醇。
进一步的,将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮粗品置于反应容器中,避光,加入异丙醇做溶剂,加热条件下至完全溶解,再加入水,所用异丙醇和水的体积比为V:V异丙醇=1:100至1:1,置于-10-30℃下,搅拌冷却析晶,经抽滤、洗涤和干燥,得淡黄色固体为反式异构体含量小于0.1%的高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮一水合物,即δ晶型。
进一步的,所述异丙醇和水的体积比为V异丙醇:V=5:2,析晶温度优选为-5-10℃。
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的δ晶型的单晶制备方法包括以下步骤:使用甲醇、乙醇、异丙醇、丙酮、水的单一溶剂或至少两种混合的溶剂,在25-100℃加热条件下将(3Z,6Z)-3-苯亚甲基-6-((5-叔丁基-1H-咪唑-4-基)氘代亚甲基)哌嗪-2,5-二酮完全溶解,达到饱和,在避光条件下,经静置冷却至10-50℃,自然挥发获得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型的单晶。
进一步的,制得的所述δ晶型为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮结合一分子水,外观为针柱状,经X射线单晶衍射分析为单斜晶系单晶、空间群为P2(1)/n、解析结构式与图7一致,熔点为263-267℃。
再一方面,本发明还提供一种(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的一异丙醇合物晶型,被命名为ε晶型,其制备方法包括以下步骤:使用异丙醇和水的混合溶剂,在10-100℃条件下将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮完全溶解,达到饱和,在避光条件下,经静置冷却至10-50℃、自然挥发获得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮ε晶型。
进一步的,所用溶剂为纯化水和异丙醇的体积百分比为V:V异丙醇=1:200至1:10。
进一步的,制得的所述ε晶型为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮结合一分子异丙醇,外观为菱形,经X射线单晶衍射分析为单斜晶系单晶、空间群为P2(1)/n、解析结构式与图9一致,熔点为264.1-264.7℃。
再一方面,本发明还提供上述的(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的晶型在制备抗肿瘤的药物中的应用。
再一方面,本发明还提供一种如式(II)所示的(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的晶型,所述晶型具有至少3个在2θ衍射角为7.670°±0.2°、9.069°±0.2°、15.383°±0.2°、16.668°±0.2°、17.468°±0.2°、18.109°±0.2°、19.960°±0.2°、23.307°±0.2°、23.836°±0.2°、24.462°±0.2°、28.046°±0.2°或28.827°±0.2°处的X-射线粉末衍射特征峰;
Figure PCTCN2017094066-appb-000004
优选地,所述晶型具有在2θ衍射角为7.670°±0.2°、9.069°±0.2°、15.383°±0.2°、 16.668°±0.2°和23.836°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为7.670°±0.2°、9.069°±0.2°、15.383°±0.2°、16.668°±0.2°、17.468°±0.2°、18.109°±0.2°、19.960°±0.2°、23.307°±0.2°、23.836°±0.2°、24.462°±0.2°、28.046°±0.2°和28.827°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为7.356°±0.2°、7.670°±0.2°、8.097°±0.2°、9.069°±0.2°、12.032°±0.2°、12.500°±0.2°、13.063°±0.2°、15.383°±0.2°、16.241°±0.2°、16.668°±0.2°、17.468°±0.2°、18.109°±0.2°、18.694°±0.2°、19.960°±0.2°、23.307°±0.2°、23.836°±0.2°、24.462°±0.2°、28.046°±0.2°、28.827°±0.2°和30.226°±0.2°处的X-射线粉末衍射特征峰;
最优选地,所述晶型的X射线粉末衍射谱图与图11一致。
该晶型被命名为b晶型,其制备方法包括以下步骤:使用体积比为V:V甲醇=1:1000至3:100的水和甲醇的混合溶剂,将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮加入到所述混合溶剂中在40℃-100℃加热条件下完全溶解,达到饱和,在避光条件下,经静置冷却至15℃-30℃、自然挥发获得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的b晶型。
进一步的,所述混合溶剂水和甲醇的V:V甲醇=1:1000至1:100;完全溶解的温度为60℃-80℃。
进一步的,所制备的b晶型为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮结合一分子甲醇,晶体外观为立方体状,经X射线单晶衍射分析属单斜晶系、空间群为P2(1)/n、解析结构式与图12一致,熔点为264.0℃-264.9℃。
再一方面,本发明还提供一种(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的晶型,所述晶型具有至少3个在2θ衍射角为7.918°±0.2°、9.168°±0.2°、12.014°±0.2°、12.985°±0.2°、18.382°±0.2°、18.616°±0.2°、23.367°±0.2°、25.203°±0.2°或27.771°±0.2°处的X-射线粉末衍射特征峰;
优选地,所述晶型具有在2θ衍射角为7.918°±0.2°、9.168°±0.2°、、18.382°±0.2°和18.616°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为7.918°±0.2°、9.168°±0.2°、12.014°±0.2°、12.985°±0.2°、18.382°±0.2°、18.616°±0.2°、23.367°±0.2°、25.203°±0.2°和27.771°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为7.918°±0.2°、9.168°±0.2°、9.905°±0.2°、12.014°±0.2°、12.985°±0.2°、14.970°±0.2°、15.873°±0.2°、18.382°±0.2°、18.616°±0.2°、19.081°±0.2°、19.881°±0.2°、22.862°±0.2°、23.367°±0.2°、23.719°±0.2°、24.073°±0.2°、25.203°±0.2°、26.447°±0.2°、27.771°±0.2°和37.787°±0.2°处的X-射线粉末衍射特征峰;
最优选地,所述晶型的X射线粉末衍射谱图与图13一致。
该晶型被命名为c晶型,其制备方法包括以下步骤:使用体积比为V:V甲醇=3:100至1:5的水和甲醇的混合溶剂,将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮加入混合溶剂中在60℃-100℃下完全溶解,在避光条件下,经静置冷却至15℃-30℃,自然挥发获得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮c晶型。
进一步的,所述混合溶剂中水和甲醇的体积比为V:V甲醇=3:100至1:20。
进一步的,所制备的c晶型为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮结合一分子甲醇,晶体外观为针柱状,经X射线单晶衍射分析属于单斜晶系、空间群为P2(1)/n、解析结构式与图14一致,熔点为263.2℃-264.0℃。
再一方面,本发明还提供一种(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的晶型,所述晶型为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的一水合物;优选地所述晶型具有至少3个在2θ衍射角为8.073°±0.2°、13.005°±0.2°、17.544°±0.2°、18.382°±0.2°、19.082°±0.2°、19.707°±0.2°、22.766°±0.2°、23.759°±0.2°、24.438°±0.2°、25.277°±0.2°、26.486°±0.2°或29.234°±0.2°处的X-射线粉末衍射特征峰;
优选地,所述晶型具有在2θ衍射角为8.073°±0.2°、13.005°±0.2°、19.082°±0.2°、19.707°±0.2°和23.759°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为8.073°±0.2°、13.005°±0.2°、 17.544°±0.2°、18.382°±0.2°、19.082°±0.2°、19.707°±0.2°、22.766°±0.2°、23.759°±0.2°、24.438°±0.2°、25.277°±0.2°、26.486°±0.2°和29.234°±0.2°处的X-射线粉末衍射特征峰;
更优选地,所述晶型具有在2θ衍射角为8.073°±0.2°、9.146°±0.2°、13.005°±0.2°、14.740°±0.2°、16.184°±0.2°、17.544°±0.2°、18.382°±0.2°、19.082°±0.2°、19.707°±0.2°、22.766°±0.2°、23.759°±0.2°、24.438°±0.2°、25.277°±0.2°、26.486°±0.2°、27.883°±0.2°和29.234°±0.2°处的X-射线粉末衍射特征峰;
最优选地,所述晶型的X射线粉末衍射谱图与图15一致。
该晶型被命名为d晶型,其制备方法包括以下步骤:使用水和有机溶剂的混合溶剂,所述有机溶剂为烷烃饱和醇、不饱和醇、烷烃饱和胺或不饱和胺中的至少一种,将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮进行重结晶,冷却搅拌析晶得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮d晶型,此晶型为一水合物,熔点为:263.5-266.5℃。
进一步的,所述混合溶剂中水和异丙醇的体积比为V:V异丙醇=1:100至99:100。
进一步的,所用混合溶剂中水和异丙醇的体积比为V:V异丙醇=1:10至9:10。
进一步的,将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮粗品置于反应容器中,避光,加入异丙醇做溶剂,加热条件下至完全溶解,再加入水,所用异丙醇和水的体积比为V异丙醇:V=1:10至100:1,置于-15-30℃下,搅拌冷却析晶,经抽滤、洗涤和干燥,得淡黄色固体为反式异构体含量小于0.1%的高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮一水合物。
进一步的,所述异丙醇和水的体积比为V异丙醇:V=5:2。
本发明提供(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的d晶型的单晶制备方法包括以下步骤:使用甲醇、乙醇、异丙醇、丙酮或水的单一溶剂或至少两种混合的溶剂,在25-100℃加热条件下将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮完全溶解,达到饱和, 在避光条件下,经静置冷却至10-50℃、自然挥发获得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮d晶型。
进一步的,所用溶剂为水和异丙醇的体积比为V:V异丙醇=1:200至7:20。
进一步的,所用溶剂为水和乙醇的体积比为V:V乙醇=1:200至1:2。
所述的d晶型的单晶制备方法,制得的所述d晶型为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮结合一分子水,外观为长柱状或针柱状,经X射线单晶衍射分析为单斜晶系单晶、空间群为P2(1)/n、解析结构式与图17一致,熔点为263-267℃。
再一方面,本发明还提供一种高纯度脱氢苯基阿夕斯丁类化合物的制备纯化方法,所述制备纯化方法包括以下步骤:将所述脱氢苯基阿夕斯丁类化合物的粗品置于反应容器中,避光,加热条件下加入异丙醇或甲醇或乙醇或正丁醇直至完全溶解,再加入水且未有晶体析出,置于15-30℃下,搅拌冷却析晶,经抽滤、洗涤和干燥,得高纯度脱氢苯基阿夕斯丁类化合物。
进一步地,所述脱氢苯基阿夕斯丁类化合物具有通式(III)所示结构:
Figure PCTCN2017094066-appb-000005
通式(III)中R1为苯环上的一取代到五取代不等的多取代取代基,取代基选自氢原子、氘原子、3-苯甲酰苯基、3-(4-甲氧基苯甲酰)苯基、3-(4-氟苯甲酰)苯基、卤素原子、羟基、甲氧基、氨基、苯基、氨基甲基苯基、C1-C24烷基、C2-C24烯基、C2-C24炔基、芳基烷基、杂环芳基烷基、C1-C24的酰基、C1-C24的烷氧基、羧基、羧酸酯基、酰胺基、N-单取代或N,N-双取代酰胺基、磺酸基、磺酸酯基、磺酰胺基、N-取代磺酰胺基、烷氧基、芳基烷氧基、烷硫基、氰基、氨基、取代的氨基、硝基;环烷基、环烯基、芳香基、取代的芳香基、芳香杂环基、芳氧基、芳酰基、环氧基、环酰基、芳香硫基、芳磺酰基;
R2为氢原子或氘原子,R3为氢原子或氘原子;
X1为氧原子或硫原子,X2为氧原子或硫原子;
X3为-NH、氧原子或硫原子;
进一步的,当所述脱氢苯基阿夕斯丁类化合物为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮时,特别是制备高纯度的(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的一水合物时,可将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮粗品置于反应容器中,避光,加入异丙醇做溶剂,加热条件下至完全溶解,再加入水,所用异丙醇和水的体积比为V异丙醇:V=1:5至100:1,置于-10-30℃下,搅拌冷却析晶,经抽滤、洗涤和干燥,得淡黄色固体为反式异构体含量小于0.1%的高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮一水合物。
进一步的,所述异丙醇和水的体积比为V异丙醇:V=5:2。
或者,所述脱氢苯基阿夕斯丁类化合物为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮,化合物(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮粗品的制备方法为:
在碱性条件下,异氰基乙酸乙酯、三甲基乙酸酐环合得5-(叔丁基)噁唑-4-甲酸乙酯;
然后将5-(叔丁基)噁唑-4-甲酸乙酯用甲酰胺溶剂加热转换为咪唑环,再经氢化铝锂还原,二氧化锰氧化得到5-(叔丁基)-1H-咪唑-4-甲醛;将甘氨酸酐用乙酸酐溶剂溶解得1,4-二乙酰基哌嗪-2,5-二酮;
在碱性条件下,将5-(叔丁基)-1H-咪唑-4-甲醛与1,4-二乙酰基哌嗪-2,5-二酮缩合,再与苯甲醛缩合得到(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮粗品。
进一步的,将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮粗品置于反应容器中,避光,加入异丙醇做溶剂,加热条件下至完全溶解,再加入水,所用异丙醇和水的体积比为V异丙醇:V=1:10至100:1,置于-15-30℃下,搅拌冷却析晶,经抽滤、洗涤和干燥,得淡黄色固体为反式异构体含量小于0.1%的高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮一水合物。
进一步的,所述异丙醇和水的体积比为V异丙醇:V=5:2。
进一步的,所述5-(叔丁基)-1H-咪唑-4-甲酸乙酯通过以下步骤予以纯化:将5-(叔丁基)-1H-噁唑-4-甲酸乙酯和甲酰胺加热反应,反应结束后,母液冷却,用碳酸钠和石油醚萃取并分除石油醚层杂质,经乙酸乙酯萃取,合并有机相,再经水洗、干燥和减压浓缩得浓缩液,趁热倒入水中搅拌打浆,有固体析出,抽滤、洗涤、真空干燥,得产物为纯化的所述5-(叔丁基)-1H-咪唑-4-甲酸乙酯。
进一步的,所述1,4-二乙酰基哌嗪-2,5-二酮通过以下步骤予以纯化:将甘氨酸酐和乙酸酐回流反应,反应结束后,母液冷却至室温,减压浓缩蒸出溶剂,浓缩液用二氯甲烷溶解,硅藻土过滤,减压浓缩除去二氯甲烷,用乙酸乙酯重结晶,低温析晶,过滤,干燥得产物为纯化的所述1,4-二乙酰基哌嗪-2,5-二酮。
本发明的优点和技术效果是:鉴于药物存在多晶型现象,优势药物晶型对于药物质量稳定性具有重要的意义,且目前未发现关于(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮多晶型的描述,本发明对其多晶型进行了充分的研究。发现其中,(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的δ晶型为一水合物,在高温、高湿和光照的影响因素试验,以及加速稳定性试验中相当稳定,而其α晶型高湿条件下容易转变为δ晶型,β、γ和ε在高温条件下不够稳定,会有结晶溶剂丢失,在高湿条件下会有部分晶型转变为δ晶型。同时,(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的β、γ和ε中含有结晶溶剂,从原料药溶残角度考虑,三种晶型中溶残均超标,因此不宜成药。综合考虑,并经实验验证,δ晶型具有良好的稳定性和安全性。
Plinabulin已经在三期临床,因其剂型为注射剂,所以原料药的质量稳定性更为重要,本发明对Plinabulin的多晶型进行了研究,并综合考虑晶型的成药稳定性,本发明确定(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的d晶型是一水合物,该晶型制备简单易操作,质量稳定。而a晶型具有一定的引湿性,容易在高湿条件下转变为d晶型,同时b、c晶型中含有有机溶剂,导致残留溶剂偏高,不宜成药。d晶型作为一水合物,水分子不易失去,在制备及保存过程中具有很好的分子稳定性,成药后的质量和药效不变,因此d晶型是该化合物最有益的晶型。
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮和 (3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮结构中的苯亚甲基是双键,在光照条件下极易发生顺反异构化,从而产生异构体杂质,对于药物成药具有一定的安全性风险,本发明提供的高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮一水合物和高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮一水合物的制备纯化方法,具有易操作、收率高、纯度高的优点,可将产物异构体杂质控制在0.1%以下,且所述一水合物固体原料药,在影响因素试验的高温、高湿和光照条件下能够保持稳定,不会发生异构化现象,具有杂质含量不变的优势。
附图说明
图1是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮α晶型的X射线粉末衍射谱图。
图2是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮β晶型的X射线粉末衍射谱图。
图3是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮β晶型的X射线单晶衍射结构解析图。
图4是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮γ晶型的X射线粉末衍射谱图。
图5是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮γ晶型的X射线单晶衍射结构解析图。
图6是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型的X射线粉末衍射谱图。
图7是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型的X射线单晶衍射结构解析图,其中a为方法一获得的晶体解析结构式,b为方法二获得的晶体解析结构式。
图8是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型的热重分析图。
图9是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮ε晶型的X射线单晶衍射结构解析图。
图10是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪 -2,5-二酮a晶型的X射线粉末衍射谱图。
图11是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮b晶型的X射线粉末衍射谱图。
图12是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮b晶型的X射线单晶衍射结构解析图。
图13是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮c晶型的X射线粉末衍射谱图。
图14是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮c晶型的X射线单晶衍射结构解析图。
图15是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮d晶型的X射线粉末衍射谱图。
图16是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮d晶型的热重分析谱图。
图17是本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮d晶型的X射线单晶衍射结构解析图。
图18是本发明高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮一水合物在254nm波长下的HPLC谱图;
图19是本发明高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮一水合物的热重分析图;
图20是本发明高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮一水合物在254nm波长下的HPLC谱图;
图21是本发明高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮一水合物的热重分析图。
具体实施方式
以下结合附图和具体实施例对本发明的技术方案做进一步详细的说明。
实施例1
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的制备
其具体制备过程包括以下步骤:
1)5-(叔丁基)噁唑-4-甲酸乙酯的制备
将90g(796mmol)异氰基乙酸乙酯加入到1000mL四氢呋喃,缓慢滴加145g(955mmol)DBU,然后滴加178g(955mmol)三甲基乙酸酐,滴毕室温下搅拌反应48h。反应毕,减压浓缩。萃取,加1500mL二氯甲烷,依次用800mL 10%碳酸钠、800mL 10%柠檬酸、800mL饱和食盐水洗,1000mL二氯甲烷反萃水相两次。合并有机相,无水硫酸钠干燥,半小时后抽滤,减压浓缩。过硅胶(200~300目)柱(EA:PE=1:10、1:8、1:5),得黄色液体177g为所述5-(叔丁基)噁唑-4-甲酸乙酯。
2)5-(叔丁基)-1H-咪唑-4-甲酸乙酯的制备
将157g(796mmol)5-(叔丁基)-1H-恶唑-4-甲酸乙酯加到717g(15.914mol)甲酰胺,油浴180℃搅拌回流反应30h。冷却到室温,萃取,加入800mL 10%碳酸钠,加入500mL石油醚萃取并弃掉有机层,再用乙酸乙酯(1000mL*3)萃取三次,合并有机相并用饱和食盐水(800mL*2)洗两次,水相用乙酸乙酯(500mL*2)反萃两次,合并有机相无水硫酸钠干燥。抽滤,减压浓缩。打浆,加入1000mL水搅拌,抽滤,滤饼水洗,50℃真空干燥。得土黄色固体71g为所述5-(叔丁基)-1H-咪唑-4-甲酸乙酯,收率45%。
3)5-(叔丁基)-1H-咪唑-4-甲醇的制备
在-10℃冷肼中,将40g(1054mmol)氢化铝锂加到干燥的300mL四氢呋喃中,将用200mL四氢呋喃溶解的70g(357mmol)5-(叔丁基)-1H-咪唑-4-甲酸乙酯缓慢滴加到氢化铝锂的混浊液中,滴毕移至室温下搅拌反应3h。冰水淬灭反应,用量杯取适量的冰,将反应液逐滴滴入。抽滤,滤饼依次用水(1000mL*2)洗两次、四氢呋喃(500mL*2)洗两次,无水乙醇(500mL*2)洗两次,减压浓缩,95%乙醇带一遍水,无水乙醇带两遍水。得淡黄色固体51g为所述5-(叔丁基)-1H-咪唑-4-甲醇,收率93%。
4)5-(叔丁基)-1H-咪唑-4-甲醛的制备
将50g(324mmol)5-(叔丁基)-1H-咪唑-4-甲醇加到500mL二氯甲烷中,再加入282g(3242mmol)二氧化锰,室温下搅拌反应24h。抽滤,加硅藻土,滤饼用无水乙醇(500mL*3)洗三次,减压浓缩。得淡黄色固体43g为所述5-(叔丁基)-1H-咪唑-4-甲醛,收率87%。
5)5-(叔丁基)-1H-咪唑-4-氘代甲醇的制备
在-10℃下,将17g(112mmol)5-(叔丁基)-1H-咪唑-4-甲醛溶解在110mL乙醇中,分批加入14g(336mmol)氘代硼氢化钠,反应20h。200mL饱和氯化铵淬灭反应,减压浓缩。用500mL饱和碳酸钾和乙酸乙酯萃取,合并有机相,干燥,减压浓缩,石油醚:乙酸乙酯=50:1打浆,得白色固体13g为所述5-(叔丁基)-1H-咪唑-4-氘代甲醇,产率74%。
6)5-(叔丁基)-1H-咪唑-4-氘代甲醛的制备
将12.90g(82.57mmol)5-(叔丁基)-1H-咪唑-4-氘代甲醇加入到150mL二氯甲烷中,再加入71.79g(825.74mmol)二氧化锰,30℃下搅拌反应40h。抽滤,用乙酸乙酯(1000mL)洗涤,减压浓缩得5-(叔丁基)-1H-咪唑-4-氘代甲醛10.00g,收率为79%。
7)N,N-二乙酰基哌嗪-2,5-二酮的制备
将50g(438mmol)甘氨酸酐加入到179g(1753mmol)的乙酸酐中,至于155℃油浴下搅拌回流反应30h,减压浓缩。再用二氯甲烷溶解,铺硅藻土及硅胶溶过滤,滤饼用二氯甲烷淋洗,减压浓缩,70℃用乙酸乙酯溶解重结晶,得褐色固体74g为所述N,N-二乙酰基哌嗪-2,5-二酮,收率85%。
8)(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的制备
将10.00g(65.27mmol)5-(叔丁基)-1H-咪唑-4-氘代甲醛加入到50mL DMF,再加入25.88g(130.59mmol)N,N-二乙酰基哌嗪-2,5-二酮氮气保护排气三次,加入31.91g(97.94mmol)碳酸铯,氮气保护排气三次,室温下避光搅拌反应20h。将反应液倾入(400mL)冰水中,抽滤,滤饼依次用水(200mL*2)、石油醚:乙酸乙酯=8:1(200mL)洗,滤饼用乙醇和二氯甲烷超声分散,滤去不容物,减压浓缩,无水乙醇带水。再用乙酸乙酯(250mL)打浆。得棕黄色固体8.96g为所述(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮,收率47.11%。
9)(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的制备
将8.84g(30.33mmol)(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)氘代亚甲 基]哌嗪-2,5-二酮加入到25mL DMF,再加入4.83g(45.51mmol)苯甲醛氮气保护排三次气,加入碳酸铯14.82g(45.49mmol)氮气保护排三次气,程序升温到50℃搅拌反应24h。将反应液倾入冰水(300mL)中,抽滤,滤饼依次用200mL*2水、200mL石油醚:乙酸乙酯=8:1洗,滤饼用乙醇(50mL)和乙酸乙酯(160mL)超声分散,滤去不容物,减压浓缩,无水乙醇带水。150mL用乙酸乙酯超声分散,静置于-18℃过夜。抽滤,滤饼用冰乙酸乙酯(50mL)洗涤,得黄绿色固体6.66g为所述(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮,收率65.09%。1H NMR(500MHz,dmso)δ12.30(s,1H),δ12.22(s,1H),10.00(brs,1H),7.82(d,J=12.7Hz,1H),7.51(d,J=7.6Hz,2H),7.40(t,J=7.7Hz,2H),7.30(t,J=7.4Hz,1H),6.73(s,1H),1.37(s,9H)。
实施例2
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的纯化工艺以及α晶型的制备
将6.66g上述制得的(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮粗品置于棕色瓶中,加热条件下加入400mL异丙醇至完全溶解,再加入水160mL未有晶体析出,置于室温下,搅拌冷却析晶,抽滤,异丙醇:水=1:1洗滤饼,滤饼用100mL乙酸乙酯打浆10h,过滤,滤饼用乙酸乙酯洗涤,干燥,得黄色粉末状固体5.323g,所得固体晶型为α晶型,收率80.0%。α晶型的X射线粉末2θ角衍射峰主要特征峰见表1,具体的衍射谱图见图1。
表1为本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的α、β、γ、δ晶型XRD粉末衍射数据。
表1  α、β、γ、δ晶型的XRD粉末衍射特征峰
Figure PCTCN2017094066-appb-000006
Figure PCTCN2017094066-appb-000007
实施例3
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮β晶型的制备
具体制备过程包括以下步骤:称取(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮(200mg,0.59mmol),用20mL甲醇和0.1mL水的混合溶液作溶剂,在70℃下溶解,过滤到结晶皿中,用保鲜膜覆盖结晶皿瓶口,在保鲜膜上用外径0.5mm的毛细管扎孔,25℃下避光静置挥发,72小时后由β晶型晶体析出,过滤,干燥,得立方体状固体142mg,收率为71%,所得β晶型的熔点为263.6-264.4℃。所得β晶型经X射线粉末衍射测试,2θ衍射角特征峰见表1所示,具体的X射线粉末衍射谱图见图2所示。
上述所制备的β晶型晶体经检测为单晶,其中一分子(3Z,6Z)-3-苯亚甲基 -6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮结合一分子甲醇,X射线单晶衍射测试条件:使用Bruker X-射线单晶衍射仪,选取化合物尺寸为0.45mm×0.43mm×0.36mm,测试温度293.2K,采用Cu-Kα射线(λ=1.54178A)辐射,θ角数据收集范围4.05-66.40度。晶体学参数的测试结果如下表2,解析结构式见图3所示。
表2  晶体学参数
Figure PCTCN2017094066-appb-000008
Figure PCTCN2017094066-appb-000009
实施例4
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮γ晶型的制备
具体制备过程包括以下步骤:称取(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮(100mg,0.30mmol),用13mL甲醇和0.52mL水的混合溶剂于30℃下溶解,过滤到结晶皿中,加入晶种,用保鲜膜覆盖结晶皿瓶口,在保鲜膜上用外径0.5mm的毛细管扎孔,18℃下避光静置挥发,72小时后由γ晶型晶体析出,过滤,干燥,得菱形状固体38mg,收率为38%,所得γ晶型的熔点为263.6-265.1℃。所得γ晶型经X射线粉末衍射测试,2θ衍射角特征峰见表1所示,具体的X射线粉末衍射谱图见图4所示。
γ晶型经检测为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮中结合两分子甲醇,X射线单晶衍射测试条件:使用Bruker X-射线单晶衍射仪,选取化合物尺寸为0.50mm×0.40mm×0.18mm,测试温度293K,采用Cu-Kα射线(λ=1.54178A)辐射,θ角数据收集范围3.79-66.38度。晶体学参数的测试结果如下表3,解析结构式见图5所示。
表3  晶体学参数
Figure PCTCN2017094066-appb-000010
Figure PCTCN2017094066-appb-000011
实施例5
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型的制备
具体制备过程包括以下步骤:称取所述(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮固体(1.00g,2.96mmol),用60mL异丙醇在80℃条件下溶解,趁热过滤,将滤液置于80℃氛围下,滴加12ml水,将澄清的溶液置于室温下搅拌析晶6小时,过滤,干燥,得黄色粉末状结晶固体0.95g,收率为90.41%。所得δ晶型经X射线粉末衍射测试,2θ衍射角特征吸收峰有8.075°、9.145°、12.988°、14.740°、16.201°、17.545°、18.367°、19.084°、19.724°、22.781°、23.710°、24.422°、25.279°、26.485°、27.867°、29.234°,2θ 衍射角误差为±0.2°,见图6。
所得δ晶型为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的一水合物,经卡氏水分测定仪测试水分含量为5.314%,图8为热重分析图谱的数据支持。其中元素分析见下表4:
表4  δ晶型的元素分析数据
Figure PCTCN2017094066-appb-000012
实施例6
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型单晶的制备
方法一:
具体制备过程包括以下步骤:称取(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮(100mg,0.30mmol),用13mL甲醇和0.52mL水的混合溶剂于30℃下溶解,过滤到结晶皿中,加入晶种,用保鲜膜覆盖结晶皿瓶口,在保鲜膜上用外径0.5mm的毛细管扎孔,13℃下避光静置挥发,72小时后由δ晶型晶体析出,过滤,干燥,得针棒状固体34mg,收率为34%,所得δ晶型的熔点为264.4-266.2℃,经X射线粉末衍射测试,其2θ衍射角特征吸收峰与δ晶型图6的特征峰一致。
上述制备的δ晶型经检测为单晶,其中个一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮结合一分子水,X射线单晶衍射测试条件:使用Bruker X-射线单晶衍射仪,选取化合物尺寸为0.42mm×0.41mm×0.40mm,测试温度293K,采用Cu-Kα射线(λ=1.54178A)辐射,θ角数据收集范围4.05-66.40度。晶体学参数的测试结果如下表5-1,解析结构式见图7中a所示结构。
表5-1  晶体学参数
Figure PCTCN2017094066-appb-000013
方法二:
具体制备过程包括以下步骤:称取(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑 -4-基)氘代亚甲基]哌嗪-2,5-二酮(100mg,0.30mmol),用15mL无水乙醇和1mL水的混合溶剂于65℃下溶解,过滤到结晶皿中,用保鲜膜覆盖结晶皿瓶口,在保鲜膜上用外径0.5mm的毛细管扎孔,26℃下避光静置挥发,72小时后由δ晶型晶体析出,过滤,干燥,得长柱状固体51mg,收率为49%,所得δ晶型的熔点为264.9-266.1℃,经X射线粉末衍射测试,其2θ衍射角特征吸收峰与δ晶型图6的特征峰一致。
上述制备的δ晶型经检测为单晶,其中个一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮结合一分子水,X射线单晶衍射测试条件:使用Bruker X-射线单晶衍射仪,选取化合物尺寸为0.45mm×0.43mm×0.32mm,测试温度293K,采用Cu-Kα射线(λ=1.54178A)辐射,θ角数据收集范围4.05-66.20度。晶体学参数的测试结果如下表5-2,解析结构式见图7中b所示结构。
表5-2  晶体学参数
Figure PCTCN2017094066-appb-000014
Figure PCTCN2017094066-appb-000015
实施例7
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型的引湿性实验
按照中国药典2015年版四部通则9103药物引湿性试验指导原则进行试验,结果见表6。
表6  引湿性试验结果
Figure PCTCN2017094066-appb-000016
在敞开放置24小时后,δ晶型增重百分率均小于0.2%,由此可以看出,按照中国药典关于引湿性特征描述与引湿增重的界定,δ晶型基本无引湿性。
对(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的其他晶型进行研究发现,α晶型具有一定的引湿性,在60%湿度条件下会有部分晶型转化为δ晶型,同时,β和γ晶型虽然无引湿性,但在水中搅拌3小时,会有 大部分晶型转化为δ晶型。
实施例8
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型的影响因素试验和加速试验
按照中国药典2015年版四部指导原则9001原料药物与制剂稳定性试验指导原则,我们对高温、高湿和光照条件下(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型的影响因素进行试验考察,所取样品批号为样品批号为20150401批次,结果见下表7、8、9。
表7  δ晶型的高温影响因素试验数据
Figure PCTCN2017094066-appb-000017
表8  δ晶型的高湿影响因素试验数据
Figure PCTCN2017094066-appb-000018
Figure PCTCN2017094066-appb-000019
表9  δ晶型的光照影响因素试验数据
Figure PCTCN2017094066-appb-000020
实验表明,(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮δ晶型样品,在高温(60℃)条件下放置10天,样品比较稳定;在高湿(25℃,90%RH)条件下放置10天,样品比较稳定;在光照(4500Lx±500Lx)条件下放置10天,样品比较稳定。而(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的α晶型在高湿条件下容易吸潮转变为δ晶型,β、γ和ε在高温条件下不够稳定,会有结晶溶剂丢失,同时,在高湿条件下会有部分晶型转变为δ晶型。鉴于(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的β、γ和ε中含有结晶溶剂,原料药溶残角度考虑,三种晶型中溶残均超标,因此不宜成药。综合考虑,并经实验验证,δ晶型具有良好的稳定性和安全性。
同时,对(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪 -2,5-二酮的δ晶型进行了6个月加速稳定性试验的考察,样品批号为20150404,模拟出厂包装,试验条件为40℃±2℃/75%±5%RH,试验结果见下表10。
表10  δ晶型的加速稳定性试验数据
Figure PCTCN2017094066-appb-000021
研究表明,(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的δ晶型在6个月加速试验中具有很好的稳定性,也为该晶型的药学研究提供了坚实的基础。
实施例9
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮ε晶型的制备
具体制备过程包括以下步骤:称取(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮(100mg,0.30mmol),用15mL异丙醇和0.30mL纯化水的混合溶剂于55℃下溶解,过滤到结晶皿中,用保鲜膜覆盖结晶皿瓶口,在保鲜膜上用外径0.5mm的毛细管扎孔,15℃下避光静置挥发,48小时后由ε晶型晶体析出,过滤,干燥,得菱形固体45mg,收率为45%,所得δ晶型的熔点为264.1-264.7℃。
ε晶型经检测为单晶,其中个一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮结合一分子异丙醇,X射线单晶衍射测试条件:使用Bruker X-射线单晶衍射仪,选取化合物尺寸为0.42x 0.28x 0.12mm,测试温度293K,采用Cu-Kα射线(λ=1.54178A)辐射,θ角数据收集范围3.82到66.05度。晶体学参数的测试结果如下表11,解析结构式见图9所示。
表11  晶体学参数
Figure PCTCN2017094066-appb-000022
Figure PCTCN2017094066-appb-000023
实施例10
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮a晶型的制备
其具体制备过程工艺包括以下步骤:
1)5-(叔丁基)噁唑-4-甲酸乙酯的制备
将90g(796mmol)异氰基乙酸乙酯加入到1000mL四氢呋喃,缓慢滴加145g(955mmol)DBU,然后滴加178g(955mmol)三甲基乙酸酐,滴毕室温下搅拌反应48h。反应毕,减压浓缩。萃取,加适量1500mL二氯甲烷,依次用800mL10%碳酸钠、800mL 10%柠檬酸、800mL饱和食盐水洗,1000mL二氯甲烷反萃水相两次。合并有机相,无水硫酸钠干燥,半小时后抽滤,减压浓缩。过硅胶(200~300目)柱(EA:PE=1:10、1:8、1:5),得黄色液体177g为所述5-(叔丁基)噁唑-4-甲酸乙酯,收率113%。
2)5-(叔丁基)-1H-咪唑-4-甲酸乙酯的制备
将157g(796mmol)5-(叔丁基)-1H-噁唑-4-甲酸乙酯加到717g(15.914mmol)甲酰胺,油浴180℃搅拌回流反应30h。冷却到室温,萃取,加入800mL10%碳酸钠,加入500mL石油醚萃取并弃掉有机层,再用乙酸乙酯(1000mL*3)萃取三次,合并有机相并用饱和食盐水(800mL*2)洗两次,水相用乙酸乙酯(500mL*2)反萃两次,合并有机相无水硫酸钠干燥。抽滤,减压浓缩。打浆,加入1000mL水搅拌,抽滤,滤饼水洗,50℃真空干燥。得土黄色固体71g为所述5-(叔丁基)-1H-咪唑-4-甲酸乙酯,收率45%。
3)5-(叔丁基)-1H-咪唑-4-甲醇的制备
在-10℃冷肼中,将40g(1054mmol)氢化铝锂加到干燥的300mL四氢呋喃中,将用200mL四氢呋喃溶解的70g(357mmol)5-(叔丁基)-1H-咪唑-4-甲酸乙酯缓慢滴加到氢化铝锂的混浊液中,滴毕移至室温下搅拌反应3h。冰水 淬灭反应,用量杯量取适量的冰,将反应液逐滴滴入。抽滤,滤饼依次用水(1000mL*2)洗两次、四氢呋喃(500mL*2)洗两次,无水乙醇(500mL*2)洗两次,减压浓缩,无水乙醇带水。得淡黄色固体51g为所述5-(叔丁基)-1H-咪唑-4-甲醇,收率93%。
4)5-(叔丁基)-1H-咪唑-4-甲醛的制备
将50g(324mmol)5-(叔丁基)-1H-咪唑-4-甲醇加到500mL二氯甲烷中,再加入282g(3242mmol)二氧化锰,室温下搅拌反应24h。抽滤,加硅藻土,滤饼用无水乙醇(500mL*3)洗三次,减压浓缩。得淡黄色固体43g为所述5-(叔丁基)-1H-咪唑-4-甲醛,收率87%。
5)N,N-二乙酰基哌嗪-2,5-二酮的制备
将50g(438mmol)甘氨酸酐加入到179g(1753mmol)的乙酸酐中,至于155℃油浴下搅拌回流反应30h,减压浓缩。再用二氯甲烷溶解,铺硅藻土及硅胶溶过滤,滤饼用二氯甲烷淋洗,减压浓缩,70℃用乙酸乙酯溶解重结晶,得褐色固体74g为所述N,N-二乙酰基哌嗪-2,5-二酮,收率85%。
6)(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的制备
将1g(6.5mmol)5-(叔丁基)-1H-咪唑-4-甲醛加入到7mL DMF,再加入2.59g(13mmol)N,N-二乙酰基哌嗪-2,5-二酮氮气保护排三次气,加入3.19g(9.8mmol)碳酸铯,氮气保护排三次气,室温下避光搅拌反应20h。将反应液倾入(100mL)冰水中,抽滤,滤饼依次用水(100mL*2)、石油醚:乙酸乙酯=8:1(90mL)洗,滤饼用乙醇和二氯甲烷超声分散,滤去不溶物,减压浓缩,无水乙醇带水。再用乙酸乙酯(50mL)打浆。得棕黄色固体0.89g为所述(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮,收率46.9%。
7)(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的制备
将0.85g(2.9mmol)(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮加入到DMF,再加入0.56g(5.25mmol)苯甲醛氮气保护排三次气,加入碳酸铯0.95g(2.9mmol)氮气保护排三次气,程序升温到80℃避光搅拌反应24h。将反应液倾入冰水(100mL)中,抽滤,滤饼依次用100mL*2水、90mL石油醚:乙酸乙酯=8:1洗,滤饼用乙醇(30mL)和乙酸乙酯(100mL)超声分 散,滤去不溶物,减压浓缩,无水乙醇带水。50mL用乙酸乙酯分散,静置于-30℃过夜。抽滤,滤饼用冰乙酸乙酯(5mL)洗涤,得黄色粉末状固体0.59g,此晶型为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的a晶型,收率60.1%。
1H NMR(400MHz,DMSO-d6)δ12.31(s,1H),12.22(s,1H),10.00(s,1H),7.84(s,1H),7.52(d,J=8Hz,2H),7.39(t,J=8Hz,2H),7.32(t,J=8Hz,1H),6.86(s,1H),6.73(s,1H),1.37(s,9H);MS(ESI)m/z 338.1715(M+H)+(calcd for C19H21N4O2 338.1722)。如图10所示,a晶型的X射线粉末2θ角衍射峰主要特征峰有:8.446°,11.546°,12.285°,13.161°,14.855°,16.043°,16.647°,17.136°,17.639°,18.130°,18.459°,19.473°,19.804°,20.742°,21.343°,22.338°,23.235°,24.868°,25.145°,27.596°。
实施例11
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的b晶型的制备
具体制备过程包括以下步骤:称取所述(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮(200mg,0.59mmol),用20mL甲醇和0.1mL水的混合溶液作溶剂,在70℃下溶解,过滤到结晶皿中,用保鲜膜覆盖结晶皿瓶口,在保鲜膜上用外径0.5mm的毛细管扎孔,室温下避光静置挥发,72小时后有b晶型晶体析出,过滤,干燥,得立方状固体148mg,收率为74%。所得b晶型经X射线粉末衍射测试,2θ衍射角特征吸收峰有7.356°、7.670°、8.097°、9.069°、12.032°、12.500°、13.063°、15.383°、16.241°、16.668°、17.468°、18.109°、18.694°、19.960°、23.307°、23.836°、24.462°、28.046°、28.827°、30.226°,2θ衍射角误差为±0.2°,具体的X射线粉末衍射谱图如图11所示。所得b晶型的熔点为264.0-264.9℃。
所得b晶型经检测为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮结合一分子甲醇,X射线单晶衍射测试条件:使用Bruker X-射线单晶衍射仪,选取化合物尺寸为0.45mm×0.43mm×0.32mm,测试温度293K,采用Cu-Kα射线(λ=1.54178A)辐射,θ角数据收集范围4.05-66.40度。晶体学参数的测试结果如下表12,解析结构式见图12所示。
表12  晶体学参数
Figure PCTCN2017094066-appb-000024
实施例12
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮c晶型的制备
具体制备过程包括以下步骤:称取所述(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮(200mg,0.59mmol),用20mL甲醇和0.8mL水的混合溶液作溶剂,在68℃下溶解,过滤到结晶皿中,加入晶种,用保鲜膜覆盖结晶皿瓶口,在保鲜膜上用外径0.5mm的毛细管扎孔,室温下避光静置挥发,72小时后有c晶型晶体析出,过滤,干燥,得针柱状固体98mg,收率为49%。所得c晶型经X射线粉末衍射测试,2θ衍射角特征吸收峰有7.918°、9.168°、9.905°、12.014°、12.985°、14.970°、15.873°、18.382°、18.616°、19.081°、19.881°、22.862°、23.367°、23.719°、24.073°、25.203°、26.447°、27.771°、37.787°,2θ衍射角误差为±0.2°,具体的X射线粉末衍射谱图见图13所示,所得c晶型的熔点为263.2-264.0℃。
所得c晶型为单晶,其中一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮结合一分子甲醇,X射线单晶衍射测试条件:使用Bruker X-射线单晶衍射仪,选取化合物尺寸为0.45mm×0.30mm×0.23mm,测试温度293K,采用Cu-Kα射线(λ=1.54178A)辐射,θ角数据收集范围4.05-66.40度。晶体学参数的测试结果如下表13,解析结构式见图14所示。
表13  晶体学参数表
Figure PCTCN2017094066-appb-000025
Figure PCTCN2017094066-appb-000026
本发明所得(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的b晶型构象(如图11)和c晶型构象(如图14)中的氢键溶剂分子不限于甲醇,包括其他烷烃饱和醇,不饱和醇,烷烃饱和胺,不饱和胺等易与羰基氢键结合的分子。
实施例13
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮d晶型的制备
具体制备过程包括以下步骤:称取所述(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮固体(1.00g,2.96mmol),用60mL异丙醇在80℃条件下溶解,趁热过滤,将滤液置于80℃氛围下,滴加12ml水,将澄清的溶液置于室温下搅拌析晶6小时,过滤,干燥,得黄色粉末状结晶固体0.96g,收率为91.61%。所得d晶型经X射线粉末衍射测试,2θ衍射角特征吸收峰有 8.073°、9.146°、13.005°、14.740°、16.184°、17.544°、18.382°、19.082°、19.707°、22.766°、23.759°、24.438°、25.277°、26.486°、27.883°、29.234°,2θ衍射角误差为±0.2°,具体的X射线粉末衍射谱图见图15所示,所得d晶型的熔点为264.5-266.3℃。
所得d晶型为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的一水合物,经卡氏水分测定仪测试水分含量为5.326%,图16是热重分析谱图的支持数据。
表14为本发明(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的a、b、c和d晶型XRD粉末衍射数据。
表14  a、b、c和d晶型的XRD粉末衍射数据
Figure PCTCN2017094066-appb-000027
Figure PCTCN2017094066-appb-000028
实施例14
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮d晶型单晶的制备
具体制备过程包括以下步骤:称取(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮(100mg,0.30mmol),用15mL无水乙醇和1mL水的混合溶剂于65℃下溶解,过滤到结晶皿中,用保鲜膜覆盖结晶皿瓶口,在保鲜膜上用外径0.5mm的毛细管扎16个孔,25℃下避光静置挥发,72小时后由d晶型晶体析出,过滤,干燥,得长柱状固体52mg,收率为49.5%,所得d晶型的熔点为264.2-265.3℃。
d晶型经检测为单晶,其中个一分子(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮结合一分子水,X射线单晶衍射测试条件:使用Bruker X-射线单晶衍射仪,选取化合物尺寸为0.41mm×0.40mm×0.30mm,测试温度293K,采用Cu-Kα射线(λ=1.54178A)辐射,θ角数据收集范围4.06-66.19度。晶体学参数的测试结果如下表15,解析结构式见图17所示。
表15  晶体学参数
Figure PCTCN2017094066-appb-000029
Figure PCTCN2017094066-appb-000030
实施例15
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮粗品的制备
其具体制备过程包括以下步骤:
1)(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的制备
将10.00g(65.29mmol)5-(叔丁基)-1H-咪唑-4-氘代甲醛加入到50mL DMF,再加入25.88g(130.59mmol)N,N-二乙酰基哌嗪-2,5-二酮氮气保护排气三次,加入31.91g(97.94mmol)碳酸铯,氮气保护排气三次,室温下避光搅拌反应20h。将反应液倾入冰水(400mL)中,抽滤,滤饼依次用水(200mL*2)、石油醚:乙酸乙酯=8:1(200mL)洗,滤饼用乙醇和二氯甲烷超声分散,滤去不溶物,减压浓缩,无水乙醇带水。再用乙酸乙酯(250mL)打浆。得棕黄色固体(Z)-1-乙酰 基-3-[(5-(叔丁基)-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮8.96g,收率47.11%。
2)(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮粗品的制备
将8.84g(30.33mmol)(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮加入到25mL DMF,再加入4.83g(45.51mmol)苯甲醛氮气保护排三次气,加入碳酸铯14.82g(45.49mmol)氮气保护排三次气,程序升温到50℃搅拌反应24h。将反应液倾入冰水(300mL)中,抽滤,滤饼依次用200mL*2水、200mL石油醚:乙酸乙酯=8:1洗,滤饼用乙醇(50mL)和乙酸乙酯(160mL)超声分散,滤去不溶物,减压浓缩,无水乙醇带水。150mL用乙酸乙酯超声分散,静置于-30℃过夜。抽滤,滤饼用冰乙酸乙酯(50mL)洗涤,得黄绿色固体6.66g,收率65.09%。
实施例16
高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮一水合物的制备
Figure PCTCN2017094066-appb-000031
将2.0g实施例1所述的粗品置于棕色瓶中,加热条件下加入125mL异丙醇至完全溶解,再加入水50mL未有晶体析出,置于室温下,搅拌冷却析晶,抽滤,异丙醇:水=1:1洗滤饼,干燥,得黄色粉末状固体1.642g,收率78.13%,产物在254nm下的纯度均为99.94%,其中异构体(3E,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮为0.06%,见图18。1H NMR(500MHz,dmso)δ12.22(brs,2H),10.00(brs,1H),7.82(d,J=12.7Hz,1H),7.51(d,J=7.6Hz,2H),7.40(t,J=7.7Hz,2H),7.30(t,J=7.4Hz,1H),6.73(s,1H),1.37(s,9H)。MS(ESI)m/z 338.1715(M+H)+(calcd for C19H20DN4O2)。
所得产物为(3Z,6Z)-3-苯亚甲基-6-((5-叔丁基-1H-咪唑-4-基)氘代亚甲基)哌嗪-2,5-二酮的一水合物,测试水分含量为5.314%,图19为热重分析图谱的数据支持,其中元素分析见下表4。
实施例17
(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮粗品的制备方法
其具体制备过程工艺包括以下步骤:
1)5-(叔丁基)噁唑-4-甲酸乙酯的制备
将90g(796mmol)异氰基乙酸乙酯加入到1000mL四氢呋喃,缓慢滴加145g(955mmol)DBU,然后滴加178g(955mmol)三甲基乙酸酐,滴毕室温下搅拌反应48h。反应毕,减压浓缩。萃取,加适量1500mL二氯甲烷,依次用800mL10%碳酸钠、800mL 10%柠檬酸、800mL饱和食盐水洗,1000mL二氯甲烷反萃水相两次。合并有机相,无水硫酸钠干燥,半小时后抽滤,减压浓缩。过硅胶(200~300目)柱(EA:PE=1:10、1:8、1:5),得黄色液体177g为所述5-(叔丁基)噁唑-4-甲酸乙酯,收率113%。
2)5-(叔丁基)-1H-咪唑-4-甲酸乙酯的制备
将157g(796mmol)5-(叔丁基)-1H-噁唑-4-甲酸乙酯加到717g(15.914mmol)甲酰胺,油浴180℃搅拌回流反应30h。冷却到室温,萃取,加入800mL 10%碳酸钠,加入500mL石油醚萃取并弃掉有机层,再用乙酸乙酯(1000mL*3)萃取三次,合并有机相并用饱和食盐水(800mL*2)洗两次,水相用乙酸乙酯(500mL*2)反萃两次,合并有机相无水硫酸钠干燥。抽滤,减压浓缩。打浆,加入1000mL水搅拌,抽滤,滤饼水洗,50℃真空干燥。得土黄色固体71g为所述5-(叔丁基)-1H-咪唑-4-甲酸乙酯,收率45%。
3)5-(叔丁基)-1H-咪唑-4-甲醇的制备
在-10℃冷肼中,将40g(1054mmol)氢化铝锂加到干燥的300mL四氢呋喃中,将用200mL四氢呋喃溶解的70g(357mmol)5-(叔丁基)-1H-咪唑-4-甲酸乙酯缓慢滴加到氢化铝锂的混浊液中,滴毕移至室温下搅拌反应3h。冰水淬灭反应,用量杯量取适量的冰,将反应液逐滴滴入。抽滤,滤饼依次用水(1000mL*2)洗两次、四氢呋喃(500mL*2)洗两次,无水乙醇(500mL*2)洗两次,减压浓缩,无水乙醇带水。得淡黄色固体51g为所述5-(叔丁基)-1H-咪唑-4-甲醇,收率93%。
4)5-(叔丁基)-1H-咪唑-4-甲醛的制备
将50g(324mmol)5-(叔丁基)-1H-咪唑-4-甲醇加到500mL二氯甲烷中,再加入282g(3242mmol)二氧化锰,室温下搅拌反应24h。抽滤,加硅藻土,滤饼用无水乙醇(500mL*3)洗三次,减压浓缩。得淡黄色固体43g为所述5-(叔丁基)-1H-咪唑-4-甲醛,收率87%。
5)N,N-二乙酰基哌嗪-2,5-二酮的制备
将50g(438mmol)甘氨酸酐加入到179g(1753mmol)的乙酸酐中,至于155℃油浴下搅拌回流反应30h,减压浓缩。再用二氯甲烷溶解,铺硅藻土及硅胶溶过滤,滤饼用二氯甲烷淋洗,减压浓缩,70℃用乙酸乙酯溶解重结晶,得褐色固体74g为所述N,N-二乙酰基哌嗪-2,5-二酮,收率85%。
6)(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的制备
将1g(6.5mmol)5-(叔丁基)-1H-咪唑-4-甲醛加入到7mL DMF,再加入2.59g(13mmol)N,N-二乙酰基哌嗪-2,5-二酮氮气保护排三次气,加入3.19g(9.8mmol)碳酸铯,氮气保护排三次气,室温下避光搅拌反应20h。将反应液倾入(100mL)冰水中,抽滤,滤饼依次用水(100mL*2)、石油醚:乙酸乙酯=8:1(90mL)洗,滤饼用乙醇和二氯甲烷超声分散,滤去不溶物,减压浓缩,无水乙醇带水。再用乙酸乙酯(50mL)打浆,得棕黄色固体(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮0.89g,收率46.9%。
7)(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮粗品的制备
将0.85g(2.9mmol)(Z)-1-乙酰基-3-[(5-(叔丁基)-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮加入到DMF,再加入0.56g(5.25mmol)苯甲醛氮气保护排三次气,加入碳酸铯0.95g(2.9mmol)氮气保护排三次气,程序升温到80℃避光搅拌反应24h。将反应液倾入冰水(100mL)中,抽滤,滤饼依次用100mL*2水、90mL石油醚:乙酸乙酯=8:1洗,滤饼用乙醇(30mL)和乙酸乙酯(100mL)超声分散,滤去不溶物,减压浓缩,无水乙醇带水。50mL用乙酸乙酯分散,静置于-30℃过夜,抽滤,滤饼用冰乙酸乙酯(5mL)洗涤,得粗品产物0.73g。
Figure PCTCN2017094066-appb-000032
实施例18
高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮一水合物的制备
将0.73g所述粗品置于棕色瓶中,加热条件下加入45mL异丙醇至完全溶解,再加入水18mL未有晶体析出,置于室温下,搅拌冷却析晶,抽滤,异丙醇:水=1:1洗滤饼,干燥,得黄色粉末状固体0.59g,收率76.71%,产物在254nm下纯度为99.91%,其中异构体(3E,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮为0.09%,见图20所示;1H NMR(400MHz,DMSO-d6)δ12.31(s,1H),12.22(s,1H),10.00(s,1H),7.84(s,1H),7.52(d,J=8Hz,2H),7.39(t,J=8Hz,2H),7.32(t,J=8Hz,1H),6.86(s,1H),6.73(s,1H),1.37(s,9H);MS(ESI)m/z 337.1659(M+H)+(calcd for C19H21N4O2)。
所得产物为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的一水合物,测试水分含量为5.326%,图21是热重分析谱图的支持数据。
实施例19
中间体5-(叔丁基)-1H-咪唑-4-甲酸乙酯的制备
将157g(796mmol)5-(叔丁基)-1H-噁唑-4-甲酸乙酯加到717g(15.91mmol)甲酰胺,油浴180℃搅拌回流反应30h。冷却到室温,萃取,加入800mL10%碳酸钠,加入500mL石油醚萃取并弃掉有机层,再用乙酸乙酯(1000mL*3)萃取三次,合并有机相并用饱和食盐水(800*2)洗两次,水相用乙酸乙酯(500mL*2)反萃两次,合并有机相无水硫酸钠干燥。抽滤,减压浓缩。打浆,加入1000mL水搅拌,抽滤,滤饼水洗,50℃真空干燥。得土黄色固体5-(叔丁基)-1H-咪唑-4-甲酸乙酯71g,收率45%。
实施例20
中间体N,N-二乙酰基哌嗪-2,5-二酮的制备
将50g(438mmol)甘氨酸酐加入到179g(1753mmol)的乙酸酐中,至于155℃油浴下搅拌回流反应30h,减压浓缩。再用二氯甲烷溶解,铺硅藻土及硅胶溶过滤,滤饼用二氯甲烷淋洗,减压浓缩,70℃用乙酸乙酯溶解重结晶,得褐色固体N,N-二乙酰基哌嗪-2,5-二酮74g,收率85%。
需要说明的是,本发明所提供的制备方法不仅能用于本发明是实施例已经揭示的高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮一水合物和高纯度(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮一水合物的制备,也适用于具备类似结构的所有的脱氢苯基阿夕斯丁类化合物的制备和纯化。这些脱氢苯基阿夕斯丁类化合物可以是如专利WO2001053290A1、WO2004054498A、WO2007035841A1或WO2016192586A1中所指出的各种脱氢苯基阿夕斯丁类化合物,也可以是这些化合物的衍生物。优选地,所述脱氢苯基阿夕斯丁类化合物具有如下通式所示结构:
Figure PCTCN2017094066-appb-000033
通式中R1为苯环上的一取代到五取代不等的多取代取代基,取代基选自氢原子、氘原子、3-苯甲酰苯基、3-(4-甲氧基苯甲酰)苯基、3-(4-氟苯甲酰)苯基、卤素原子、羟基、甲氧基、氨基、苯基、氨基甲基苯基、C1-C24烷基、C2-C24烯基、C2-C24炔基、芳基烷基、杂环芳基烷基、C1-C24的酰基、C1-C24的烷氧基、羧基、羧酸酯基、酰胺基、N-单取代或N,N-双取代酰胺基、磺酸基、磺酸酯基、磺酰胺基、N-取代磺酰胺基、烷氧基、芳基烷氧基、烷硫基、氰基、氨基、取代的氨基、硝基;环烷基、环烯基、芳香基、取代的芳香基、芳香杂环基、芳氧基、芳酰基、环氧基、环酰基、芳香硫基、芳磺酰基;
R2为氢原子或氘原子,R3为氢原子或氘原子;
X1为氧原子或硫原子,X2为氧原子或硫原子;
X3为-NH、氧原子或硫原子。
这类脱氢苯基阿夕斯丁类化合物的结构中都存在可形成顺反异构体的双键,并且在光照条件下极易发生顺反异构化。本发明对多种类似化合物进行纯化方法的优化之后得出本发明权利要求中所揭示的高纯度脱氢苯基阿夕斯丁类化合物的制备方法,可以显著降低异构体杂质的含量,得到纯度高于99.9%的活性化合物。
尽管上文出于举例说明的目的已经描述了本发明的具体实施方案,然而本领域技术人员将领会,可以对细节进行许多改变而不背离如权利要求所描述的本发明。

Claims (28)

  1. 如式(I)所示的(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的α晶型,其特征在于,所述α晶型具有至少3个在2θ衍射角为8.415°±0.2°,11.512°±0.2°,14.824°±0.2°,17.087°±0.2°,17.278°±0.2°,19.461°±0.2°,21.350°±0.2°,22.344°±0.2°或27.621°±0.2°处的X-射线粉末衍射特征峰;
    Figure PCTCN2017094066-appb-100001
  2. 根据权利要求1所述的α晶型,其特征在于,所述α晶型的X射线粉末衍射谱图与图1一致。
  3. (3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的β晶型,其特征在于,所述β晶型具有至少3个在2θ衍射角为7.629°±0.2°,8.052°±0.2°,12.967°±0.2°,15.327°±0.2°,16.195°±0.2°,23.194°±0.2°,23.760°±0.2°,24.129°±0.2°,24.419°±0.2°,26.465°±0.2°或29.213°±0.2°处的X-射线粉末衍射特征峰。
  4. 根据权利要求3所述的β晶型,其特征在于,所述β晶型的X射线粉末衍射谱图与图2一致。
  5. (3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的γ晶型,其特征在于,所述γ晶型具有至少3个在2θ衍射角为8.075°±0.2°,12.986°±0.2°,16.217°±0.2°,19.709°±0.2°或24.441°±0.2°处的X-射线粉末衍射特征峰。
  6. 根据权利要求5所述的γ晶型,其特征在于,所述γ晶型的X射线粉末衍射谱图与图4一致。
  7. (3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的δ晶型,其特征在于,所述δ晶型为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮的一水合物。
  8. 根据权利要求7所述的δ晶型,其特征在于,所述δ晶型具有至少3个在2θ衍射角为8.075°±0.2°、12.988°±0.2°、16.201°±0.2°、17.545°±0.2°、19.084°±0.2°、19.724°±0.2°、23.710°±0.2°、24.422°±0.2°、26.485°±0.2°或29.234°±0.2°处的X-射线粉末衍射特征峰。
  9. 根据权利要求8所述的δ晶型,其特征在于,所述δ晶型的X射线粉末衍射谱图与图6一致。
  10. 根据权利要求9所述的δ晶型,其特征在于,所述δ晶型培养成单晶,经X射线单晶衍射分析为单斜晶系单晶、空间群为P2(1)/n、解析结构式与图7一致,熔点为263-267℃。
  11. 权利要求7所述的δ晶型的制备方法,其特征在于,所述δ晶型的制备方法包括以下步骤:
    使用水和有机溶剂的混合溶剂作为结晶溶剂,所述有机溶剂选自烷烃饱和醇、不饱和醇、烷烃饱和胺和不饱和胺中的至少一种;
    将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮用所述混合溶剂进行重结晶,冷却搅拌,析出得到所述δ晶型。
  12. 根据权利要求11所述的制备方法,其特征在于:所述有机溶剂和混合溶剂的选配为下列方式中的任意一种:
    1)所述有机溶剂为甲醇,并且所述混合溶剂为体积比为V:V甲醇=1:100至10:1的水和甲醇;或者
    2)所述有机溶剂为乙醇,并且所述混合溶剂为体积比为V:V乙醇=1:100至10:1的水和乙醇;或者
    3)所述有机溶剂为异丙醇,并且所述混合溶剂为体积比为V:V异丙醇=1:100至10:1的水和异丙醇。
  13. 根据权利要求11所述的制备方法,其特征在于包括以下步骤:将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)氘代亚甲基]哌嗪-2,5-二酮置于反应容器中,避光,加入异丙醇做溶剂,加热条件下至完全溶解,再加入水,所用异丙醇和水的体积比为V:V异丙醇=1:100至1:1,置于-10-30℃下,搅拌冷却析晶,经抽滤、洗涤和干燥,得所述δ晶型。
  14. 根据权利要求13所述的制备方法,其特征在于:所述异丙醇和水的体积比为V:V异丙醇=2:5,优选地置于-5-10℃下,搅拌冷却析晶。
  15. 权利要求1-10任一所述的晶型在制备抗肿瘤的药物中的应用。
  16. 如式(II)所示的(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的b晶型,其特征在于,所述b晶型具有至少3个在2θ衍射角为7.670°±0.2°、9.069°±0.2°、15.383°±0.2°、16.668°±0.2°、17.468°±0.2°、18.109°±0.2°、19.960°±0.2°、23.307°±0.2°、23.836°±0.2°、24.462°±0.2°、28.046°±0.2°或28.827°±0.2°处的X-射线粉末衍射特征峰;
    Figure PCTCN2017094066-appb-100002
  17. 根据权利要求16所述的b晶型,其特征在于,所述b晶型的X射线粉末衍射谱图与图11一致。
  18. 一种(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的c晶型,其特征在于,所述c晶型具有至少3个在2θ衍射角为7.918°±0.2°、9.168°±0.2°、12.014°±0.2°、12.985°±0.2°、18.382°±0.2°、18.616°±0.2°、23.367°±0.2°、25.203°±0.2°或27.771°±0.2°处的X-射线粉末衍射特征峰。
  19. 根据权利要求18所述的c晶型,其特征在于,所述c晶型的X射线粉末衍射谱图与图13一致。
  20. (3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的d晶型,其特征在于,所述d晶型为(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮的一水合物。
  21. 根据权利要求20所述的d晶型,其特征在于,所述d晶型具有至少3个在2θ衍射角为8.073°±0.2°、13.005°±0.2°、17.544°±0.2°、18.382°±0.2°、19.082°±0.2°、19.707°±0.2°、22.766°±0.2°、23.759°±0.2°、24.438°±0.2°、25.277°±0.2°、26.486°±0.2°或29.234°±0.2°处的X-射线粉末衍射特征峰。
  22. 根据权利要求21所述的d晶型,其特征在于,所述d晶型的X射线粉末衍射谱图与图15一致。
  23. 权利要求20所述的d晶型的制备方法,其特征在于所述制备方法包括以下步骤:
    使用水和有机溶剂的混合溶剂作为结晶溶剂,所述有机溶剂选自烷烃饱和醇、不饱和醇、烷烃饱和胺和不饱和胺中的至少一种;
    将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮用所述混合溶剂进行重结晶,冷却搅拌析晶,得所述d晶型。
  24. 根据权利要求23所述的制备方法,其特征在于:所述混合溶剂为体积比为V:V 丙醇=1:100至99:100的水和异丙醇。
  25. 根据权利要求24所述的制备方法,其特征在于:所述混合溶剂中水和异丙醇的体积 比为V:V异丙醇=1:10至9:10。
  26. 根据权利要求23所述的制备方法,其特征在于:所述制备方法包括以下步骤:将(3Z,6Z)-3-苯亚甲基-6-[(5-叔丁基-1H-咪唑-4-基)亚甲基]哌嗪-2,5-二酮置于反应容器中,避光,加入异丙醇做溶剂,加热条件下至完全溶解,再加入水,所用异丙醇和水的体积比为V异丙醇:V=1:10至100:1,置于-15-30℃下,搅拌冷却析晶,经抽滤、洗涤和干燥,得所述d晶型。
  27. 根据权利要求26所述的制备方法,其特征在于:所述异丙醇和水的体积比为V异丙醇:V=5:2,优选地,置于-5-10℃下,搅拌冷却析晶。
  28. 一种高纯度脱氢苯基阿夕斯丁类化合物的制备纯化方法,其特征在于:
    所述制备纯化方法包括以下步骤:将所述脱氢苯基阿夕斯丁类化合物的粗品置于反应容器中,避光,加热条件下加入异丙醇或甲醇或乙醇或正丁醇直至完全溶解,再加入水且未有晶型析出,置于15-30℃下,搅拌冷却析晶,经抽滤、洗涤和干燥,得高纯度脱氢苯基阿夕斯丁类化合物。
PCT/CN2017/094066 2016-08-12 2017-07-24 脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用 WO2018028420A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22175200.9A EP4089085B1 (en) 2016-08-12 2017-07-24 Manufacturing and purification method of polycrystalline form of dehydrophenylahistin-like compound
EP17838550.6A EP3498702B1 (en) 2016-08-12 2017-07-24 Polycrystalline form of dehydrophenylahistin-like compound, and manufacturing and purification method and application thereof
CN202111486744.5A CN114276332B (zh) 2016-08-12 2017-07-24 脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用
CN201780049392.2A CN109563079B (zh) 2016-08-12 2017-07-24 脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用
US16/325,166 US10851086B2 (en) 2016-08-12 2017-07-24 Polycrystalline form of dehydrophenylahistin-like compound, and manufacturing and purification method and application thereof
US16/995,098 US11608325B2 (en) 2016-08-12 2020-08-17 Polycrystalline form of dehydrophenylahistin-like compound, and manufacturing and purification method and application thereof
US16/995,045 US11578057B2 (en) 2016-08-12 2020-08-17 Polycrystalline form of dehydrophenylahistin-like compound, and manufacturing and purification method and application thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610665377.8 2016-08-12
CN201610665377.8A CN107011331A (zh) 2016-08-12 2016-08-12 脱氢苯基阿夕斯丁类化合物的多晶型及其制备方法
CN201610664088.6A CN107011322B (zh) 2016-08-12 2016-08-12 一种脱氢苯基阿夕斯丁类化合物的制备纯化方法
CN201610664088.6 2016-08-12
CN201610664196.3 2016-08-12
CN201610664196.3A CN107778297B (zh) 2016-08-12 2016-08-12 氘代脱氢苯基阿夕斯丁类化合物的多晶型及其制备方法和应用

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/325,166 A-371-Of-International US10851086B2 (en) 2016-08-12 2017-07-24 Polycrystalline form of dehydrophenylahistin-like compound, and manufacturing and purification method and application thereof
US16/995,098 Division US11608325B2 (en) 2016-08-12 2020-08-17 Polycrystalline form of dehydrophenylahistin-like compound, and manufacturing and purification method and application thereof
US16/995,045 Division US11578057B2 (en) 2016-08-12 2020-08-17 Polycrystalline form of dehydrophenylahistin-like compound, and manufacturing and purification method and application thereof

Publications (1)

Publication Number Publication Date
WO2018028420A1 true WO2018028420A1 (zh) 2018-02-15

Family

ID=61162675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094066 WO2018028420A1 (zh) 2016-08-12 2017-07-24 脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用

Country Status (4)

Country Link
US (3) US10851086B2 (zh)
EP (2) EP4089085B1 (zh)
CN (2) CN109563079B (zh)
WO (1) WO2018028420A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028144A1 (en) 2017-08-03 2019-02-07 Teva Pharmaceuticals Usa, Inc. SALTS AND FORMS IN THE SOLID STATE OF PLINABULIN

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563079B (zh) * 2016-08-12 2021-10-26 深圳华大海洋科技有限公司 脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1684955A (zh) * 2002-08-02 2005-10-19 尼瑞斯药品公司 脱氢苯基阿夕斯丁及其类似物以及脱氢苯基阿夕斯丁及其类似物的合成
CN106279039A (zh) * 2015-06-02 2017-01-04 青岛海洋生物医药研究院股份有限公司 氘代脱氢苯基阿夕斯丁类化合物及其制备方法和在制备抗肿瘤的药物中的应用
WO2017011399A1 (en) * 2015-07-13 2017-01-19 Beyondspring Pharmaceuticals, Inc Plinabulin compositions

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053290A1 (fr) 2000-01-18 2001-07-26 Nippon Steel Corporation Inhibiteurs de la division cellulaire et procede de production de ces inhibiteurs
CN101633655B (zh) 2002-08-02 2014-04-30 大连万春药业有限公司 脱氢苯基阿夕斯丁及其类似物以及脱氢苯基阿夕斯丁及其类似物的合成
US7919497B2 (en) * 2002-08-02 2011-04-05 Nereus Pharmaceuticals, Inc. Analogs of dehydrophenylahistins and their therapeutic use
CN1934101B (zh) * 2004-02-04 2011-10-12 尼瑞斯药品公司 脱氢苯基阿夕斯丁及其类似物以及脱氢苯基阿夕斯丁及其类似物的合成
EP1711487A1 (en) * 2004-02-04 2006-10-18 Nereus Pharmaceuticals, Inc. Dehydrophenylahistins and analogs thereof and the synthesis of dehydrophenylahistins and analogs thereof
WO2007035841A1 (en) 2005-09-21 2007-03-29 Nereus Pharmaceuticals, Inc. Analogs of dehydrophenylahistins and their therapeutic use
US8129527B2 (en) 2006-11-03 2012-03-06 Nereus Pharmacuticals, Inc. Analogs of dehydrophenylahistins and their therapeutic use
WO2012035436A1 (en) 2010-09-15 2012-03-22 Tokyo University Of Pharmacy And Life Sciences Plinabulin prodrug analogs and therapeutic uses thereof
CN105348186B (zh) 2015-10-15 2018-05-22 青岛海洋生物医药研究院股份有限公司 氘代双芳基脲类化合物及其制备方法和在制备抗肿瘤的药物中的应用
CN107286139B (zh) * 2016-04-12 2020-02-21 青岛海洋生物医药研究院股份有限公司 氘代脱氢苯基阿夕斯丁类化合物的酸加成盐及其在制备抗肿瘤的药物中的应用
CN109563079B (zh) * 2016-08-12 2021-10-26 深圳华大海洋科技有限公司 脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用
CN107778297B (zh) * 2016-08-12 2021-11-19 深圳华大海洋科技有限公司 氘代脱氢苯基阿夕斯丁类化合物的多晶型及其制备方法和应用
EP3661927A1 (en) 2017-08-03 2020-06-10 Pliva Hrvatska D.O.O. Salts and solid state forms of plinabulin
CN109498627B (zh) * 2017-09-15 2021-06-04 深圳华大海洋科技有限公司 一种治疗肿瘤的药物组合物及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1684955A (zh) * 2002-08-02 2005-10-19 尼瑞斯药品公司 脱氢苯基阿夕斯丁及其类似物以及脱氢苯基阿夕斯丁及其类似物的合成
CN106279039A (zh) * 2015-06-02 2017-01-04 青岛海洋生物医药研究院股份有限公司 氘代脱氢苯基阿夕斯丁类化合物及其制备方法和在制备抗肿瘤的药物中的应用
WO2017011399A1 (en) * 2015-07-13 2017-01-19 Beyondspring Pharmaceuticals, Inc Plinabulin compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028144A1 (en) 2017-08-03 2019-02-07 Teva Pharmaceuticals Usa, Inc. SALTS AND FORMS IN THE SOLID STATE OF PLINABULIN
US11434225B2 (en) 2017-08-03 2022-09-06 Pliva Hrvatska D.O.O. Salts and solid state forms of plinabulin

Also Published As

Publication number Publication date
EP3498702A4 (en) 2020-06-03
CN114276332B (zh) 2023-08-18
US20190177302A1 (en) 2019-06-13
EP3498702B1 (en) 2022-05-25
CN109563079A (zh) 2019-04-02
US20210002259A1 (en) 2021-01-07
EP3498702A1 (en) 2019-06-19
EP4089085B1 (en) 2024-04-03
US11578057B2 (en) 2023-02-14
US10851086B2 (en) 2020-12-01
EP4089085A1 (en) 2022-11-16
US11608325B2 (en) 2023-03-21
US20210070738A1 (en) 2021-03-11
CN109563079B (zh) 2021-10-26
CN114276332A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
JP6609065B2 (ja) 1−(5−(2,4−ジフルオロフェニル)−1−((3−フルオロフェニル)スルホニル)−4−メトキシ−1h−ピロール−3−イル)−n−メチルメタンアミンの新規な酸付加塩
US8933114B2 (en) Polymorphic forms of asenapine maleate and processes for their preparation
WO2011106226A2 (en) Prolylhydroxylase inhibitors and methods of use
CN108602772A (zh) 1-(5-(2,4-二氟苯基)-1-((3-氟苯基)磺酰基)-4-甲氧基-1h-吡咯-3-基)-n-甲基甲胺盐新晶型
WO2018028420A1 (zh) 脱氢苯基阿夕斯丁类化合物的多晶型及其制备纯化方法和应用
WO2011020288A1 (zh) 取代酰肼类化合物及其应用
KR20220155575A (ko) Taar1 작용제의 염 및 결정질 형태
CA2664115A1 (fr) Nouveaux derives du fluorene, compositions les contenant et utilisation comme inhibiteurs de la proteine chaperone hsp90
CN107778297B (zh) 氘代脱氢苯基阿夕斯丁类化合物的多晶型及其制备方法和应用
WO2023193563A1 (zh) 一种噻吩并吡啶化合物的晶型a、制备方法及其药物组合物
WO2019165951A1 (zh) 一种氧代吡啶酰胺类衍生物的晶型及其制备方法
WO2002030900A1 (fr) Sel non-deliquescent d'un derive de 4-hydroxypiperidine
CN107011322B (zh) 一种脱氢苯基阿夕斯丁类化合物的制备纯化方法
AU2017238341A1 (en) Physical form of a SGR modulator
WO2016050134A1 (zh) 一种钠-葡萄糖协同转运蛋白2抑制剂的l-脯氨酸复合物、其一水合物及晶体
WO2016110243A1 (zh) 一种酪氨酸激酶抑制剂的苹果酸盐的结晶形式及其制备方法
US10561667B2 (en) Orbit azine-fumarate, hydrate, crystal form and preparation method therefor
WO2017107791A1 (zh) 取代的氨基吡喃衍生物的晶型
US20080004313A1 (en) Preparation of crystalline polymorphs of rimonabant hydrochloride
EP4317133A1 (en) Crystalline form of pyrrole amide compound, preparation method therefor and use thereof
US20230106142A1 (en) Crystals of alkynyl-containing compound, salt and solvate thereof, preparation method, and applications
JP6944372B2 (ja) ピペラジン化合物の新規結晶
TW202415661A (zh) 4-〔(5-氯吡啶-2-基)甲氧基〕-1-〔3-(丙-2-基)-1H,2H,3H,4H,5H-〔1,4〕二氮呯并〔1,7-a〕吲哚-9-基〕-1,2-二氫吡啶-2-酮之晶形及其鹽,製備方法,及其用途
CZ20004018A3 (cs) Způsob výroby inhibitoru sodíko-vodíkových měničů typu 1
CN116854762A (zh) 熊去氧胆酸类化合物及其制法、药物组合物和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838550

Country of ref document: EP

Effective date: 20190312