WO2018028049A1 - 一种天线控制方法、装置及计算机存储介质 - Google Patents

一种天线控制方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2018028049A1
WO2018028049A1 PCT/CN2016/102278 CN2016102278W WO2018028049A1 WO 2018028049 A1 WO2018028049 A1 WO 2018028049A1 CN 2016102278 W CN2016102278 W CN 2016102278W WO 2018028049 A1 WO2018028049 A1 WO 2018028049A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
communication antenna
beacon
rotation
communication
Prior art date
Application number
PCT/CN2016/102278
Other languages
English (en)
French (fr)
Inventor
钟印成
任冠佼
王旭辉
蒲立
Original Assignee
纳恩博(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳恩博(北京)科技有限公司 filed Critical 纳恩博(北京)科技有限公司
Priority to US15/523,717 priority Critical patent/US10539650B2/en
Priority to EP16912503.6A priority patent/EP3399593B1/en
Publication of WO2018028049A1 publication Critical patent/WO2018028049A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/12Means for determining sense of direction, e.g. by combining signals from directional antenna or goniometer search coil with those from non-directional antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/38Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristic of an antenna or an antenna system to give a desired condition of signal derived from that antenna or antenna system, e.g. to give a maximum or minimum signal
    • G01S3/42Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristic of an antenna or an antenna system to give a desired condition of signal derived from that antenna or antenna system, e.g. to give a maximum or minimum signal the desired condition being maintained automatically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • H01Q3/10Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation to produce a conical or spiral scan
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial

Definitions

  • the present invention relates to the field of communication positioning technologies, and in particular, to an antenna control method, apparatus, and computer storage medium.
  • UWB Ultra Wideband
  • UWB positioning has the characteristics of high precision, small size, low power consumption, etc., and has broad application prospects.
  • high positioning accuracy can be achieved under ideal conditions.
  • the system is divided into two parts, one is called an anchor and the other is called a tag.
  • the beacon transmits a set of data packets containing timestamps, and the anchor node calculates the relative distance between the two based on the timestamp information.
  • the anchor node is provided with two sets of receiving chips and antennas, and the anchor node can calculate the orientation (angle) of the beacon by analyzing the phase difference of the signals received by the two sets of receiving chips.
  • an embodiment of the present invention provides an antenna control method, apparatus, and computer storage medium.
  • An embodiment of the present invention provides an antenna control method, which is applied to a communication positioning apparatus, where the communication positioning apparatus includes a communication antenna and a rotating device, the communication antenna includes at least two antennas, and the rotating device can drive the communication antenna Rotating, the method includes:
  • the first instruction is used to indicate that the positioning mode is turned on;
  • the rotation parameter includes at least a rotation direction and a rotation angle
  • the rotation parameter further includes a rotation speed, and the greater the absolute value of the angle between the communication antenna and the beacon in the angle information, the greater the rotation speed.
  • the method further includes:
  • the position detector obtains the a current rotation angle ⁇ of the rotating platform of the rotating device, and obtaining a current angle ⁇ between the communication antenna and the beacon;
  • the sum of ⁇ and ⁇ is obtained as the angle between the communication positioning device and the beacon.
  • the angle information between the communication antenna and the beacon includes a first angle value belonging to [-90°, 90°];
  • the first angle value When the first angle value is positive, obtaining the rotation direction as a first preset direction, wherein when the beacon is located on the front surface of the communication antenna, rotating the front surface in the first preset direction
  • the absolute value of the angle between the vertical line and the beacon becomes smaller; when the first angle is negative, the rotation direction is obtained as a second preset direction opposite to the first preset direction;
  • the method further includes:
  • the rotating device drives the communication antenna to rotate by a predetermined angle smaller than the rotation angle, obtaining a second angle value between the communication antenna and the beacon;
  • the beacon is located on the back side of the communication antenna.
  • the method further includes:
  • the embodiment of the present invention further provides a communication positioning device, where the communication positioning device includes a communication antenna and a rotating device, the communication antenna includes at least two antennas, and the rotating device can drive the communication antenna to rotate, and the communication positioning
  • the communication positioning device also includes:
  • An instruction acquiring unit configured to obtain a first instruction, where the first instruction is used to indicate that the positioning mode is turned on;
  • An angle obtaining unit configured to obtain angle information between the communication antenna and the beacon in response to the first instruction
  • a parameter obtaining unit configured to obtain a corresponding rotation parameter of the rotating device according to the angle information, where the rotation parameter includes at least a rotation direction and a rotation angle;
  • control unit configured to control the rotating device to rotate the communication antenna according to the rotation direction and the rotation angle according to the rotation parameter, so that a vertical line of the front surface of the communication antenna faces the beacon, or The beacon is caused to fall within a first angular range of the front surface of the communication antenna, the front vertical line being within a first angle of the front surface of the communication antenna.
  • the rotation parameter further includes a rotation speed, and the greater the absolute value of the angle between the communication antenna and the beacon in the angle information, the greater the rotation speed.
  • the rotating device comprises:
  • the motor is rotatably connected to the rotating platform, and the communication antenna is disposed on the rotating platform, so that the motor can drive the communication antenna to rotate;
  • a position detector disposed on the rotating platform or on the motor, is configured to detect an angle at which the rotating platform rotates relative to the motor.
  • the communication positioning apparatus further includes:
  • a positioning unit configured to obtain, by the position detector, when a vertical line in a front surface of the communication antenna faces the beacon, or the beacon falls within a first angle range of a front surface of the communication antenna a current rotation angle ⁇ of the rotating platform, and obtaining a current angle ⁇ between the communication antenna and the beacon; obtaining a sum of ⁇ and ⁇ as an angle between the communication positioning device and the beacon .
  • the rotating device comprises:
  • the communication antenna is disposed on the device body
  • the device body has a steering adjustment device configured to adjust steering of the device body, and steering of the device body causes the communication antenna on the device body to steer accordingly.
  • the angle information between the communication antenna and the beacon includes a first angle value belonging to [-90°, 90°];
  • the parameter obtaining unit is configured to:
  • the first angle value When the first angle value is positive, obtaining the rotation direction as a first preset direction, wherein when the beacon is located on the front surface of the communication antenna, rotating the front surface in the first preset direction
  • the absolute value of the angle between the vertical line and the beacon becomes smaller; when the first angle is negative, the rotation direction is obtained as a second preset direction opposite to the first preset direction;
  • the angle obtaining unit is further configured to: after the rotating device drives the communication antenna to rotate by a preset angle smaller than the rotation angle, obtain a first between the communication antenna and the beacon Two angle value;
  • the communication positioning device further includes: a first determining unit configured to determine an absolute value of the second angle value and the first angle value; if the absolute value of the second angle value is smaller than the first Determining an absolute value of an angle value, the beacon is located on a front side of the communication antenna; or, if an absolute value of the second angle value is greater than an absolute value of the first angle value, determining that the beacon is located The back side of the communication antenna.
  • a first determining unit configured to determine an absolute value of the second angle value and the first angle value; if the absolute value of the second angle value is smaller than the first Determining an absolute value of an angle value, the beacon is located on a front side of the communication antenna; or, if an absolute value of the second angle value is greater than an absolute value of the first angle value, determining that the beacon is located The back side of the communication antenna.
  • the communication positioning apparatus further includes:
  • a speed acquiring unit configured to obtain a first rotational speed of the rotating device when starting to rotate, and obtaining the rotating device after the rotating device drives the communication antenna to rotate by a preset angle smaller than the rotating angle Second rotational speed;
  • a second determining unit configured to determine whether the second rotational speed is less than the first rotation a speed; if the second rotational speed is less than the first rotational speed, determining that the beacon is located on a front side of the communication antenna; or, if the second rotational speed is greater than the first rotational speed, determining the The beacon is located on the back of the communication antenna.
  • the embodiment of the present invention further provides a communication positioning device, where the communication positioning device includes a communication antenna and a rotating device, the communication antenna includes at least two antennas, and the rotating device can drive the communication antenna to rotate.
  • the communication positioning device further includes:
  • the controller is configured to obtain a first instruction, where the first instruction is used to indicate that the positioning mode is turned on; in response to the first instruction, obtain angle information between the communication antenna and the beacon; and obtain the location according to the angle information Corresponding rotation parameters of the rotating device, the rotation parameters including at least a rotation direction and a rotation angle; and controlling the rotation device to drive the communication antenna to rotate according to the rotation direction and the rotation angle according to the rotation parameter, so that the The vertical line of the front side of the communication antenna is opposite to the beacon, or the beacon falls within a first angle range of the front surface of the communication antenna, and the vertical line in the front side belongs to the first side of the communication antenna Within the angle range.
  • Embodiments of the present invention also provide a computer storage medium, the computer storage medium comprising a set of instructions that, when executed, cause at least one processor to perform the antenna control method described above.
  • the solution provided by the embodiment of the present invention when performing antenna control, obtains a first instruction, where the first instruction is used to indicate that the positioning mode is turned on; and in response to the first instruction, obtaining angle information between the communication antenna and the beacon; Obtaining a corresponding rotation parameter of the rotating device according to the angle information, the rotation parameter includes at least a rotation direction and a rotation angle; and according to the rotation parameter, controlling the rotation device to drive the communication antenna according to the rotation direction and rotating Rotating at an angle such that a vertical line of the front side of the communication antenna faces the beacon, or the beacon falls within a first angle range of the front surface of the communication antenna, the front vertical line belonging to the Within the first angle of the front of the communication antenna, the antenna is rotated to keep the beacon within the high-precision measurement range with the best performance of the antenna, thereby improving the measurement accuracy and ensuring the accuracy and omnidirectionality of the positioning.
  • 1 is a schematic diagram showing measurement accuracy of different positions between an antenna and a beacon in the prior art
  • FIG. 2 is a flowchart of an antenna control method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a rotating device according to an embodiment of the present invention.
  • 4a is a schematic diagram of antenna rotation when a beacon is located in a right half of a front side of a communication antenna according to an embodiment of the present invention
  • 4b is a schematic diagram of antenna rotation when a beacon is located in a right half of a back side of a communication antenna according to an embodiment of the present invention
  • 5a is a schematic diagram of antenna rotation when a beacon is located in a left half of a front side of a communication antenna according to an embodiment of the present invention
  • 5b is a schematic diagram of antenna rotation when a beacon is located in a left half of a back side of a communication antenna according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a communication positioning apparatus according to an embodiment of the present invention.
  • the measurement accuracy is improved by controlling the rotation of the antenna to keep the beacon within the high-precision measurement range with the best performance of the antenna, thereby solving the UWB based signal arrival angle in the prior art.
  • the measurement accuracy of the range is low, and the measurement accuracy is improved.
  • an embodiment of the present invention provides an antenna control method, which is applied to a communication positioning apparatus, where the communication positioning apparatus includes a communication antenna and a rotating device, and the communication antenna includes at least two antennas, and the rotating device can drive The communication antenna is rotated, and the method includes:
  • S24 controlling the rotating device to rotate the communication antenna according to the rotation direction and the rotation angle according to the rotation parameter, so that a vertical line of the front surface of the communication antenna faces the beacon, or The beacon falls within a first angular range of the front surface of the communication antenna, the front vertical line being within a first angle of the front surface of the communication antenna.
  • the first instruction is obtained, and the first instruction may be obtained from an instruction sent by the communication positioning apparatus itself, or the first instruction may be obtained from an instruction sent by another control device such as a remote controller.
  • the communication positioning device may automatically issue the first instruction when detecting the movement of the beacon, or may issue the first instruction in response to the operation when detecting that a button is operated.
  • the angle information between the communication antenna and the beacon may be calculated based on the phase difference of the beacon signal received by the at least two antennas of the communication antenna.
  • the angle information between the communication antenna and the beacon includes: a first angle value between the vertical line of the communication antenna and the beacon.
  • the first angle value belongs to [-90°, 90°], and the positive and negative values of the first angle value characterize which side of the mid-perpendicular line of the communication antenna is located, for example, when the first angle value is positive, the letter can be characterized
  • the marker is located on the right side of the mid-perpendicular line of the communication antenna, and the first angle value is negative to indicate that the beacon is located to the left of the mid-perpendicular line of the communication antenna.
  • the rotation parameter of the rotating device is obtained based on the angle information between the communication antenna and the beacon.
  • the rotation parameter may include a rotation speed in addition to the rotation direction and the rotation angle.
  • Rotation direction when the first angle value between the communication antenna and the beacon is positive, the rotation direction of the rotating device is obtained as the first preset direction, wherein when the beacon is located on the front side of the communication antenna, along the first pre-pre The absolute value of the angle between the vertical line and the beacon of the front side of the communication antenna is reduced; when the first angle value between the communication antenna and the beacon is negative, the rotation direction of the rotating device is obtained with the first preset direction.
  • the opposite second preset direction when the beacon is located on the front of the communication antenna, The absolute value of the angle between the vertical line of the front side of the communication antenna and the beacon is reduced in the second predetermined direction.
  • the first preset direction and the second preset direction may be set by pre-commissioning: placing the beacon on the front side of the communication antenna, and setting the first preset direction to be clockwise by default, and detecting the first angle value as + ⁇ for the first time. 1st , the control rotation device drives the communication antenna to rotate the clockwise direction by a small angle to detect the first angle value + ⁇ 2 , if ⁇ 2 ⁇ ⁇ 1 , then the first preset direction is determined to be clockwise, the second pre- Let the direction be counterclockwise; if ⁇ 2 > ⁇ 1 , then the first preset direction is determined to be counterclockwise, and the second preset direction is clockwise.
  • Rotation speed According to the absolute value of the angle between the communication antenna and the beacon, the rotation speed is obtained.
  • the larger the absolute value of the angle the larger the rotation speed obtained, so that the communication antenna can quickly turn to the front vertical line and the beacon is directly opposite. Or causing the beacon to fall within the first angle range of the front surface of the communication antenna; conversely, the smaller the absolute value of the angle, the smaller the rotational speed obtained, so that the communication antenna can accurately turn to the front vertical line and the beacon is directly opposite, or
  • the beacon is placed in the first angle range of the front side of the communication antenna.
  • the control rotation device drives the communication antenna to rotate according to the obtained rotation direction and the rotation angle, and during the rotation process, the absolute value of the angle between the communication antenna and the beacon is continuously obtained to continuously correct the rotation angle.
  • the vertical line of the front side of the communication antenna is opposite to the beacon (ie, the angle between the communication antenna and the beacon is zero degrees), or the beacon falls within the first angle range of the front surface of the communication antenna (ie, the high precision area of the communication antenna)
  • the front vertical line belongs to the first angle range of the front surface of the communication antenna.
  • between the communication antenna and the beacon can be obtained in real time during the rotation, and
  • PID Proportion Integral Derivative
  • the controller the PID controller outputs the rotational speed of the rotating device according to the input parameter
  • the absolute value of the angle between the communication antenna and the beacon is gradually reduced according to the obtained rotation direction and the rotation angle, but if the beacon is located in the communication antenna
  • the absolute value of the angle between the communication antenna and the beacon will gradually become larger, and continue to rotate according to the rotation direction, and the beacon falls into the communication antenna when the communication antenna turns 90°.
  • the front side continue to rotate in the direction of rotation until the vertical line of the front side of the communication antenna is facing the beacon, or the beacon falls into the high-precision area on the front side of the communication antenna.
  • the embodiment of the present invention obtains a second angle value between the communication antenna and the beacon after the rotating device drives the communication antenna to rotate by a preset angle smaller than the rotation angle; and then determines the second angle value and the first angle value.
  • the absolute value of the second value if the absolute value of the second angle value is less than the absolute value of the first angle value, it is determined that the beacon is located on the front side of the communication antenna; or if the absolute value of the second angle value is greater than the absolute value of the first angle value , determining that the beacon is located on the back of the communication antenna.
  • the preset angle is smaller than the rotation angle to ensure that the orientation relationship between the communication antenna and the beacon (ie, the beacon is located on the front or the back of the communication antenna) does not change, and the second angle value obtained at this time is used to determine that the beacon is located in the communication.
  • the front or back of the antenna is accurate.
  • the embodiment of the present invention does not limit the specific size of the preset angle, as long as it is smaller than the rotation angle, for example, the preset angle may be 0.5, 0.25 times of the rotation angle. For example, if it is detected that the first angle value between the communication antenna and the beacon is +30°, then the control rotation device is rotated by 15° in the first predetermined direction, such as clockwise, and then the first between the communication antenna and the beacon is detected. The two angle values, if the second angle value is 45°, then the beacon is determined to be located on the back side of the communication antenna, and if the second angle value is 15°, then the beacon is determined to be located on the front side of the communication antenna.
  • the rotation speed is larger. For this reason, it is also possible to determine whether the beacon is located on the front side or the back side of the communication antenna by the rotation speed change during the rotation of the rotating device. Similarly, obtaining a first rotational speed of the rotating device at the start of rotation, and a rotating device Driving the communication antenna to rotate a predetermined angle smaller than the rotation angle to obtain a second rotation speed of the rotating device; determining whether the second rotation speed is less than the first rotation speed; if the second rotation speed is less than the first a rotational speed determining that the beacon is located on a front side of the communication antenna; or, if the second rotational speed is greater than the first rotational speed, determining that the beacon is located on a back side of the communication antenna.
  • the embodiment of the present invention can further obtain an angle between the beacon and the communication positioning device when the rotating device drives the communication antenna to rotate to the front of the vertical line facing the beacon, or the beacon falls into the high-precision area of the front surface of the communication antenna.
  • the structure of the rotating device is different, and the angle between the beacon and the communication positioning device is calculated differently.
  • one of the rotating devices includes: a motor 31, a rotating platform 32, and a position detector.
  • the motor 31 is fixed on a base of the communication positioning device; the motor 31 is rotatably connected to the rotating platform 32 (such as a flange), and the communication antenna 33 is disposed on the rotating platform, so that the motor 31 can drive the communication antenna 33 to rotate; position detection
  • the device is disposed on the rotating platform 32 or the motor 31 and configured to detect an angle of rotation of the rotating platform 32 with respect to the motor 31.
  • the position detector may be a magnetic encoder, a potentiometer or the like.
  • the rotating device drives the communication antenna 31 to rotate by the rotating platform 32, and the entire communication positioning device does not rotate.
  • the current rotation angle ⁇ of the rotating platform is obtained by the position detector, and the current angle ⁇ between the communication antenna and the beacon is obtained; the sum of ⁇ and ⁇ is obtained as the angle between the communication positioning device and the beacon, that is, The angle between the communication positioning device and the beacon is located at ⁇ + ⁇ .
  • Another rotating device includes a device body, and a communication antenna is disposed on the device body.
  • the device body has a steering adjustment device configured to steer the adjustment device body, and the communication antenna on the steering body of the device body is steered accordingly.
  • the steering adjustment device may be a differential wheel or a rotor, and the main body of the device is rotated by adjusting the rotational speed of each differential wheel or each of the rotors to generate a lateral driving force.
  • the rotating device drives the communication antenna to rotate
  • the communication positioning device as a whole is also rotating, for which the communication antenna and the beacon are directly obtained when the vertical line of the front side of the communication antenna faces the beacon or the beacon falls within the first angle range of the front surface of the communication antenna.
  • the current angle ⁇ between them is the angle between the current communication positioning device and the beacon.
  • the communication antenna includes a UWB anchor node processing board and two antennas at the anchor node.
  • the UWB anchor processing board and the two antennas are integrated on a printed circuit board (PCB), that is, the communication antenna is a PCB antenna.
  • the center distance between the two antennas is less than the half wavelength of the communication. If the communication frequency used in this example is 6.5 GHz, the center distance between the two antennas is less than 2.31 cm.
  • the rotating device is a device that drives the flange to rotate by the motor.
  • the top of the PCB is fixed to the top of the PCB.
  • the first angle value belongs to ⁇ 1 ⁇ (0°, 90°)
  • the first angle value belongs to ⁇ 1 ⁇ [-90°, 0°)
  • the embodiment of the present invention further provides a communication positioning apparatus, where the communication positioning apparatus includes a communication antenna and a rotation apparatus, and the communication antenna includes at least two antennas, and the rotation apparatus The communication antenna can be rotated, and the communication positioning device further includes:
  • the instruction obtaining unit 61 is configured to obtain a first instruction, where the first instruction is used to indicate that the positioning mode is turned on;
  • the angle obtaining unit 62 is configured to obtain angle information between the communication antenna and the beacon in response to the first instruction
  • the parameter obtaining unit 63 is configured to obtain a corresponding rotation parameter of the rotating device according to the angle information, where the rotation parameter includes at least a rotation direction and a rotation angle;
  • the control unit 64 is configured to control, according to the rotation parameter, the rotating device to drive the communication antenna to rotate in the rotation direction and the rotation angle, so that the vertical line of the front surface of the communication antenna faces the beacon, or And causing the beacon to fall within a first angle range of the front surface of the communication antenna, wherein the front vertical line belongs to a first angle range of the front surface of the communication antenna.
  • the rotation parameter further includes a rotation speed, and the greater the absolute value of the angle between the communication antenna and the beacon in the angle information, the greater the rotation speed.
  • the rotating device in the communication positioning device comprises: a motor, a rotating platform and a position detector.
  • the motor is rotatably connected to the rotating platform, the communication antenna is disposed on the rotating platform, so that the motor can drive the communication antenna to rotate;
  • the position detector is disposed on the rotating platform or the motor And configured to detect an angle at which the rotating platform rotates relative to the motor.
  • the communication positioning device may further provide a positioning unit configured to face the beacon when the vertical line of the communication antenna is facing, or the beacon falls into the front of the communication antenna Obtaining a current rotation angle ⁇ of the rotating platform by the position detector, and obtaining a current angle ⁇ between the communication antenna and the beacon; obtaining a sum of ⁇ and ⁇ as an The angle between the communication positioning device and the beacon.
  • the rotating device in the communication positioning device may also include a device body, the communication antenna is disposed on the device body; the device body has a steering adjustment device, and the steering adjustment device is configured to adjust the device The main body of the device is turned, and the steering of the main body of the device drives the communication antenna on the main body of the device to turn.
  • the angle information between the communication antenna and the beacon includes a first angle value belonging to [-90°, 90°]; the parameter obtaining unit 63 is configured to:
  • the first angle value When the first angle value is positive, obtaining the rotation direction as a first preset direction, wherein when the beacon is located on the front surface of the communication antenna, rotating the front surface in the first preset direction
  • the absolute value of the angle between the vertical line and the beacon becomes smaller; when the first angle is negative, the rotation direction is obtained as a second preset direction opposite to the first preset direction;
  • the angle obtaining unit 62 is further configured to: after the rotating device drives the communication antenna to rotate by a preset angle smaller than the rotation angle, obtain the communication antenna and the beacon a second angle value; the communication positioning device further includes: a first determining unit configured to determine an absolute value of both the second angle value and the first angle value; if the second angle value The absolute value is less than the absolute value of the first angle value, determining that the beacon is located on the front side of the communication antenna; or, if the absolute value of the second angle value is greater than the absolute value of the first angle value, It is determined that the beacon is located on the back of the communication antenna.
  • the communication positioning apparatus may further include: a speed acquiring unit and a second determining unit.
  • the speed acquisition unit is configured to: obtain a first rotation speed when the rotation device starts to rotate, and obtain the rotation device after the rotation device drives the communication antenna to rotate by a preset angle smaller than the rotation angle a second rotation speed;
  • the second determination unit is configured to: determine whether the second rotation speed is less than the first rotation speed; if the second rotation speed is less than the first rotation speed, determine that the beacon is located at the The front side of the communication antenna; or, if the second rotational speed is greater than the first rotational speed, determining that the beacon is located on the back of the communication antenna.
  • the instruction acquisition unit 61, the angle acquisition unit 62, and the parameter acquisition unit 63 The control unit 64, the positioning unit, the first determining unit, the speed obtaining unit, and the second determining unit may be implemented by a controller in the communication positioning device.
  • the embodiment of the present invention obtains angle information between the communication antenna and the beacon; obtains corresponding rotation parameters of the rotating device according to the angle information, at least includes a rotation direction and a rotation angle; and according to the rotation parameter, controls the rotation device to drive the communication antenna according to the obtained Rotating direction and rotation angle, so that the vertical line in the front side of the communication antenna is facing the beacon, or the beacon falls into the first angle range of the front surface of the communication antenna, that is, controlling the rotation of the antenna to keep the beacon in the antenna
  • the best performance of the high-precision measurement range thereby improving the measurement accuracy, ensuring the accuracy and omnidirectionality of the positioning, and thus solving the prior art UWB based on the signal arrival angle for positioning when there are some areas of low measurement accuracy problem.
  • the antenna control method and apparatus of the embodiments of the present invention are not limited to the signal arrival angle measurement scenario based on the UWB technology, and are also applicable to the signal arrival angle measurement scenario based on other communication technologies.
  • the beacon is located on the front or the back of the communication antenna according to the change of the angle between the communication antenna and the beacon or the change of the rotational speed of the rotating device, and the prior art is solved.
  • the medium communication antenna cannot confirm the technical problem that the beacon is on the front or the back.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of embodiments incorporating software and hardware aspects. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • an embodiment of the present invention further provides a computer storage medium, which comprises a set of instructions, when executed, causing at least one processor to perform the antenna control method provided by the embodiment of the present invention.
  • the solution provided by the embodiment of the present invention when performing antenna control, obtains a first instruction, where the first instruction is used to indicate that the positioning mode is turned on; and in response to the first instruction, obtaining an angle information between the communication antenna and the beacon Obtaining a corresponding rotation parameter of the rotating device according to the angle information, the rotation parameter includes at least a rotation direction and a rotation angle; and according to the rotation parameter, controlling the rotation device to drive the communication antenna according to the rotation direction and Rotating the rotation angle so that the vertical line of the front side of the communication antenna faces the beacon, or the beacon falls within a first angle range of the front surface of the communication antenna, and the vertical line in the front side belongs to the Within the first angle range of the front side of the communication antenna, that is, by controlling the rotation of the antenna to keep the beacon within the high-precision measurement range with the best performance of the antenna, the measurement accuracy is improved, thereby ensuring the accuracy and omnidirectionality of the positioning. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线控制方法、通信定位装置及计算机存储介质,该方法应用于一通信定位装置,通信定位装置包含通信天线(33)和转动装置,通信天线(33)包含至少两根天线,转动装置能带动通信天线(33)转动,该方法包括:获得并响应第一指令,获得通信天线(33)与信标之间的角度信息;根据角度信息获得转动装置的对应转动参数,转动参数至少包括转动方向和转动角度;根据转动参数,控制转动装置带动通信天线(33)按转动方向和转动角度转动,使通信天线(33)的正面中垂线正对信标,或者,使信标落入通信天线(33)正面的第一夹角范围,正面中垂线属于通信天线(33)正面的第一夹角范围内。

Description

一种天线控制方法、装置及计算机存储介质 技术领域
本发明涉及通信定位技术领域,特别涉及一种天线控制方法、装置及计算机存储介质。
背景技术
随着科学技术的不断发展,通信定位技术得到了快速的发展,特别是超宽带(UWB,Ultra Wideband)无载波通信技术。UWB在早期被用来应用在近距离高速数据传输,近年来开始利用其亚纳秒级超窄脉冲来做近距离精确定位。
UWB定位具有精度高、体积小、功耗低等特点,具有广阔的应用前景。尤其是采用到达相位差(PDOA,Phase Difference of Arrival)基于信号到达角度的定位算法进行定位时,在理想情况下可以取得较高的定位精度。采用PDOA方法定位时,系统分为两部分,一部分叫做锚节点(anchor),另一部分叫做信标(tag)。信标会发射一组包含时间戳的数据包,锚节点接收后会根据时间戳信息计算出两者之间的相对距离。同时,锚节点上设置有两组接收芯片与天线,锚节点可以通过分析两组接收芯片接收到信号的相位差,从而计算出信标所在的方位(角度)。
然而,使用PDOA方法确定信标的方向和距离时,存在一个问题,如图1所示,当信标位于锚节点两根天线正面靠近中部的位置时测量精度较高;而当信标位于锚节点的两侧或背面时测量精度降低。可见,现有技术中UWB基于信号到达角度进行定位时存在某些范围内测量精度偏低的技术问题。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种天线控制方法、装置及计算机存储介质。
本发明实施例提供一种天线控制方法,应用于一通信定位装置,所述通信定位装置包含通信天线和转动装置,所述通信天线包含至少两根天线,所述转动装置能带动所述通信天线转动,所述方法包括:
获得第一指令,所述第一指令用于指示开启定位模式;
响应于所述第一指令,获得所述通信天线与信标之间的角度信息;
根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;
根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内。
可选地,所述转动参数还包括转动速度,所述角度信息中所述通信天线与所述信标之间的角度绝对值越大,所述转动速度越大。
可选地,所述方法还包括:
当所述通信天线的正面中垂线正对所述信标,或者,所述信标落入所述通信天线正面的第一夹角范围时,通过所述转动装置的位置检测器获得所述转动装置的转动平台的当前转动角度α,及获得所述通信天线与所述信标之间的当前角度θ;
获得α与θ之和,作为所述通信定位装置与所述信标之间的角度。
可选地,所述通信天线与信标之间的角度信息包含属于[-90°,90°]的第一角度值;
所述根据所述角度信息获得所述转动装置的对应转动参数,包括:
当所述第一角度值为正时,获得所述转动方向为第一预设方向,其中,当所述信标位于所述通信天线正面时,沿所述第一预设方向转动所述正面中垂线与所述信标之间的角度绝对值变小;当所述第一夹角为负时,获得所述转动方向为与所述第一预设方向相反的第二预设方向;
获得所述转动角度为所述第一角度值的绝对值。
可选地,所述方法还包括:
在所述转动装置带动所述通信天线转动一小于所述转动角度的预设角度后,获得所述通信天线与所述信标之间的第二角度值;
判断所述第二角度值和所述第一角度值两者的绝对值大小;
若所述第二角度值的绝对值小于所述第一角度值的绝对值,确定所述信标位于所述通信天线的正面;或者
若所述第二角度值的绝对值大于所述第一角度值的绝对值,确定所述信标位于所述通信天线的背面。
可选地,所述方法还包括:
获得所述转动装置在开始转动时的第一转动速度,及在所述转动装置带动所述通信天线转动一小于所述转动角度的预设角度后获得所述转动装置的第二转动速度;
判断所述第二转动速度是否小于所述第一转动速度;
若所述第二转动速度小于所述第一转动速度,确定所述信标位于所述通信天线的正面;或
若所述第二转动速度大于所述第一转动速度,确定所述信标位于所述通信天线的背面。
本发明实施例还提供一种通信定位装置,所述通信定位装置包含通信天线和转动装置,所述通信天线包含至少两根天线,所述转动装置能带动所述通信天线转动,所述通信定位装置还包括:
指令获取单元,配置为获得第一指令,所述第一指令用于指示开启定位模式;
角度获取单元,配置为响应于所述第一指令,获得所述通信天线与信标之间的角度信息;
参数获取单元,配置为根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;
控制单元,配置为根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内。
可选地,所述转动参数还包括转动速度,所述角度信息中所述通信天线与所述信标之间的角度绝对值越大,所述转动速度越大。
可选地,所述转动装置包括:
电机;
转动平台,所述电机与所述转动平台转动相连,所述通信天线设置在所述转动平台上,使得所述电机能够带动所述通信天线转动;
位置检测器,设置在所述转动平台上或者所述电机上,配置为检测所述转动平台相对所述电机转动的角度。
可选地,所述通信定位装置还包括:
定位单元,配置为当所述通信天线的正面中垂线正对所述信标,或者,所述信标落入所述通信天线正面的第一夹角范围时,通过所述位置检测器获得所述转动平台的当前转动角度α,及获得所述通信天线与所述信标之间的当前角度θ;获得α与θ之和,作为所述通信定位装置与所述信标之间的角度。
可选地,所述转动装置包括:
装置主体,所述通信天线设置在所述装置主体上;
所述装置主体具有转向调节装置,所述转向调节装置配置为调节所述装置主体转向,所述装置主体的转向带动所述装置主体上的通信天线随之转向。
可选地,所述通信天线与信标之间的角度信息包含属于[-90°,90°]的第一角度值;
所述参数获取单元配置为:
当所述第一角度值为正时,获得所述转动方向为第一预设方向,其中,当所述信标位于所述通信天线正面时,沿所述第一预设方向转动所述正面中垂线与所述信标之间的角度绝对值变小;当所述第一夹角为负时,获得所述转动方向为与所述第一预设方向相反的第二预设方向;
获得所述转动角度为所述第一角度值的绝对值。
可选地,所述角度获取单元还配置为:在所述转动装置带动所述通信天线转动一小于所述转动角度的预设角度后,获得所述通信天线与所述信标之间的第二角度值;
所述通信定位装置还包括:第一判断单元,配置为判断所述第二角度值和所述第一角度值两者的绝对值大小;若所述第二角度值的绝对值小于所述第一角度值的绝对值,确定所述信标位于所述通信天线的正面;或者,若所述第二角度值的绝对值大于所述第一角度值的绝对值,确定所述信标位于所述通信天线的背面。
可选地,所述通信定位装置还包括:
速度获取单元,配置为获得所述转动装置在开始转动时的第一转动速度,及在所述转动装置带动所述通信天线转动一小于所述转动角度的预设角度后获得所述转动装置的第二转动速度;
第二判断单元,配置为判断所述第二转动速度是否小于所述第一转动 速度;若所述第二转动速度小于所述第一转动速度,确定所述信标位于所述通信天线的正面;或,若所述第二转动速度大于所述第一转动速度,确定所述信标位于所述通信天线的背面。
本发明实施例又提供了一种通信定位装置,所述所述通信定位装置包含通信天线和转动装置,所述通信天线包含至少两根天线,所述转动装置能带动所述通信天线转动,所述通信定位装置还包括:
控制器,配置为获得第一指令,所述第一指令用于指示开启定位模式;响应于所述第一指令,获得所述通信天线与信标之间的角度信息;根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;以及根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行上述的天线控制方法。
本发明实施例提供的方案,在进行天线控制时,获得第一指令,所述第一指令用于指示开启定位模式;响应于所述第一指令,获得通信天线与信标之间的角度信息;根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内,即通过控制天线转动以使信标保持在天线性能最好的高精度测量范围内,从而提高测量精度,保证定位的准确性和全方向性。
附图说明
图1为现有技术中天线与信标之间不同位置的测量精度示意图;
图2为本发明实施例提供的一种天线控制方法的流程图;
图3为本发明实施例提供的一种转动装置的示意图;
图4a为本发明实施例提供的信标位于通信天线正面右半区时天线转动示意图;
图4b为本发明实施例提供的信标位于通信天线背面右半区时天线转动示意图;
图5a为本发明实施例提供的信标位于通信天线正面左半区时天线转动示意图;
图5b为本发明实施例提供的信标位于通信天线背面左半区时天线转动示意图;
图6为本发明实施例提供的一种通信定位装置的示意图。
具体实施方式
在本发明实施例提供的各种实施例中,通过控制天线转动以使信标保持在天线性能最好的高精度测量范围内来提高测量精度,以解决了现有技术中UWB基于信号到达角度进行定位时存在某些范围测量精度偏低的技术问题,提高提高测量精度。
下面结合附图对本发明实施例技术方案的主要实现原理、具体实施方式及其对应能够达到的有益效果进行详细的阐述。
实施例
请参考图2,本发明实例提供一种天线控制方法,应用于一通信定位装置,所述通信定位装置包含通信天线和转动装置,所述通信天线包含至少两根天线,所述转动装置能带动所述通信天线转动,所述方法包括:
S21:获得第一指令,所述第一指令用于指示开启定位模式;
S22:响应于所述第一指令,获得所述通信天线与信标之间的角度信息;
S23:根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;
S24:根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内。
在具体实施过程中,S21中,获得第一指令,可以从通信定位装置自身发出的指令中获取第一指令,也可从其它控制设备如遥控器发送的指令中获得第一指令。其中,通信定位装置可以在检测到信标移动时自动发出第一指令,也可以在检测到某一按钮被操作时响应该操作发出第一指令。
S22中,响应第一指令,获得通信天线与信标之间的角度信息时,可以基于通信天线的至少两根天线接收到信标信号的相位差,来计算获得通信天线与信标之间的角度信息。其中,通信天线与信标之间的角度信息中包含:通信天线的中垂线与信标之间的第一角度值。第一角度值属于[-90°,90°],第一角度值的正负表征信标位于通信天线的中垂线的哪一侧,例如:第一角度值为正时可以表征信标位于通信天线的中垂线的右侧,第一角度值为负可以表征信标位于通信天线的中垂线的左侧。
S23中,根据通信天线与信标之间的角度信息获得转动装置的转动参数。转动参数中除了包含转动方向和转动角度之外,还可以包含转动速度。
(1)转动方向:当通信天线与信标之间的第一角度值为正时,获得转动装置的转动方向为第一预设方向,其中,当信标位于通信天线正面时,沿第一预设方向转动通信天线的正面中垂线与信标之间的角度绝对值变小;当通信天线与信标之间的第一角度值为负时,获得转动装置的转动方向为与第一预设方向相反的第二预设方向,当信标位于通信天线正面时, 沿第二预设方向转动通信天线的正面中垂线与信标之间的角度绝对值变小。
第一预设方向和第二预设方向可以通过预调试来设置:将信标置于通信天线正面,默认设置第一预设方向为顺时针方向,在初次检测到第一角度值为+θ1时,控制转动装置带动通信天线沿顺时针方向转动较小的角度后检测第一角度值+θ2,若θ2<θ1,那么确定第一预设方向为顺时针方向,第二预设方向为逆时针方向;反之,若θ2>θ1,那么确定第一预设方向为逆时针方向,第二预设方向为顺时针方向。
(2)转动角度:获得通信天线与信标之间的第一角度值的绝对作为转动角度。
(3)转动速度:根据通信天线与信标之间的角度绝对值来获得转动速度,角度绝对值越大,获得的转动速度越大,使得通信天线能够快速转到正面中垂线与信标正对,或者使信标落入通信天线正面的第一夹角范围;反之,角度绝对值越小,获得的转动速度越小,使得通信天线能够准确的转到正面中垂线与信标正对,或者使信标落入通信天线正面的第一夹角范围。
S24中,根据获得的转动参数,控制转动装置带动通信天线按获得的转动方向和转动角度转动,在转动的过程中,不断地获得通信天线与信标之间的角度绝对值来不断修正转动角度,直到通信天线的正面中垂线正对信标(即,通信天线与信标之间的角度为零度),或者,信标落入通信天线正面的第一夹角范围(即通信天线的高精度区域),所述正面中垂线属于通信天线正面的第一夹角范围内。具体地,可以在转动过程中实时地获得通信天线与信标之间的角度绝对值|θ|,并将|θ|作为输入参数输入通信定位装置上的比例-积分-微分(PID,Proportion Integral Derivative)控制器,由PID控制器根据输入参数|θ|输出转动装置的转动速度,这样形成一个实时控制系 统,实时转动转动装置使通信天线的正面一直面向信标。
在具体实施过程中,若信标位于通信天线的正面,那么按照获得的转动方向和转动角度转动,通信天线与信标之间的角度绝对值是逐步减小的,但是,若信标位于通信天线的背面,按照获得的转动方向和转动角度转动,那么通信天线与信标之间的角度绝对值则会逐步变大,继续按照转动方向转动,在通信天线转过90°时信标落入通信天线正面,继续按照转动方向转动直到通信天线的正面中垂线与信标正对,或者信标落入通信天线正面的高精度区域。
为此,本发明实施例还在转动装置带动通信天线转动一小于转动角度的预设角度后,获得通信天线与信标之间的第二角度值;然后判断第二角度值和第一角度值两者的绝对值大小;若第二角度值的绝对值小于第一角度值的绝对值,确定信标位于通信天线的正面;或者,若第二角度值的绝对值大于第一角度值的绝对值,确定信标位于通信天线的背面。其中,预设角度小于转动角度是为了保证通信天线与信标之间的面向关系(即信标位于通信天线正面或者背面)未发生改变,此时获得的第二角度值用于判断信标位于通信天线正面还是背面才具有准确性。本发明实施例并不限制预设角度的具体大小,只要小于转动角度即可,如预设角度可以为转动角度的0.5、0.25倍。例如,假设检测获得通信天线与信标之间的第一角度值为+30°,那么控制转动装置按第一预设方向如顺时针方向转动15°后,检测获得通信天线与信标之间的第二角度值,若第二角度值为45°,那么确定信标位于通信天线的背面,反之,若第二角度值为15°,那么确定信标位于通信天线的正面。
由于转动装置的转动角度越大,转动速度越大,为此,也可以通过转动装置转动过程中转动速度变化来确定信标位于通信天线的正面还是背面。同样地,获得转动装置在开始转动时的第一转动速度,及在转动装置 带动通信天线转动一小于转动角度的预设角度后获得转动装置的第二转动速度;判断所述第二转动速度是否小于所述第一转动速度;若所述第二转动速度小于所述第一转动速度,确定所述信标位于所述通信天线的正面;或,若所述第二转动速度大于所述第一转动速度,确定所述信标位于所述通信天线的背面。
在转动装置带动通信天线转动到正面中垂线正对信标,或者信标落入通信天线正面的高精度区域时,本发明实施例还可以进一步获得信标与通信定位装置之间的角度。其中,转动装置的结构不同,信标与通信定位装置之间的角度的计算方式不同。
请参考图3,本发明实施例提供的其中一种转动装置包括:电机31、转动平台32及位置检测器。其中,电机31固定在通信定位装置的一个基座上;电机31与转动平台32(如法兰)转动相连,通信天线33设置在转动平台上,使得电机31能够带动通信天线33转动;位置检测器设置在转动平台32或者电机31上,配置为检测转动平台32相对电机31转动的角度,该位置检测器可以是磁编码器、电位器等。该转动装置通过转动平台32带动通信天线31转动,而整个通信定位装置并未转动,为此,当通信天线的正面中垂线正对信标,或者,信标落入通信天线正面的第一夹角范围时,通过位置检测器获得转动平台的当前转动角度α,及获得通信天线与信标之间的当前角度θ;获得α与θ之和,作为通信定位装置与信标之间的角度,即定位出通信定位装置与信标之间的角度为α+θ。
本发明实施例提供的另一种转动装置包括一装置主体,通信天线设置在装置主体上。该装置主体具有转向调节装置,配置为调节装置主体转向,装置主体的转向带动装置主体上的通信天线随之转向。其中,该转向调节装置可以是差动轮,也可以是旋翼,通过调节各差动轮或者各旋翼的转速产生侧向的推动力来使装置主体转动。该转动装置在带动通信天线转动的 同时,通信定位装置整体也在随着转动,为此当通信天线的正面中垂线正对信标,或者,信标落入通信天线正面的第一夹角范围时,直接获得通信天线与信标之间的当前角度θ即为当前通信定位装置与信标之间的角度。
下面结合具体实例,对本发明提供的天线控制方法的具体实施过程进行举例说明。假设:通信天线包含UWB锚节点端处理板和锚节点端两根天线,UWB anchor端处理板和两根天线集成在印制电路板(PCB,Printed Circuit Board)上,即通信天线为PCB天线,两根天线的中心距小于通讯的半波长,如本例中使用的通讯频率为6.5GHz,那么两根天线的中心距小于2.31cm;转动装置为由电机带动法兰转动的装置,在法兰的顶部固定着PCB天线。下面针对PCB天线检测获得与信标之间的第一角度值的不同情况(特别说明,第一角度值为0°时,若通信天线正面中垂线与信标正对,转动装置不转动;若通信天线背面中垂线与信标正对,因为背面检测获得的第一角度值不稳定,会偏离0°,一旦偏离则会触发转动装置转动),转动装置的具体转动情况进行分别说明。
情形一、第一角度值属于θ1∈(0°,90°]
在检测出通信天线与信标之间的第一角度值θ1∈(0°,90°],如θ1=30°时,若获得的转动装置的第一预设方向为顺时针方向,那么转动装置带动通信天线顺时针转动一预设角度β如15°后,检测获得通信天线与信标之间的第二角度值θ2,此时θ2会出现以下两种情况:
1、请参考图4a,|θ2|<|θ1|,如θ2=15°,表明信标越来越靠近通信天线的正面中垂线,信标位于通信天线的正面,此时,|θ2|作为转动装置转动速度的反馈控制会使转动速度变慢,控制转动装置带动通信天线继续沿顺时针方向转动,直到通信天线与信标之间的角度值变为0°或接近0°,以完成此次对天线的控制过程。
2、请参考图4b,|θ2|>|θ1|,如θ2=45°,表明信标在逐渐远离通信天线 的正面中垂线,信标位于通信天线的背面,此时,|θ2|作为转动装置转动速度的反馈控制会使转动速度变快,控制转动装置带动通信天线快速沿顺时针方向转过90°使信标位于通信天线的正面,并继续沿顺时针方向转动,直到通信天线与信标之间的角度值变为0°或接近0°,以完成此次对天线的控制过程。
情形二、第一角度值属于θ1∈[-90°,0°)
在检测出通信天线与信标之间的第一角度值θ1∈[-90°,0°),如θ1=-60°时,若获得的转动装置的第二预设方向为逆时针方向,那么转动装置带动通信天线逆时针转动一预设角度β如15°后,检测获得通信天线与信标之间的第二角度值θ2,此时θ2会出现以下两种情况:
1、请参考图5a,|θ2|<|θ1|,如θ2=-45°,表明信标越来越靠近通信天线的正面中垂线,信标位于通信天线的正面,此时,|θ2|作为转动装置转动速度的反馈控制会使转动速度变慢,控制转动装置带动通信天线继续沿逆时针方向转动,直到通信天线与信标之间的角度值变为0°或接近0°,以完成此次对天线的控制过程。
2、请参考图5b,|θ2|>|θ1|,如θ2=-75°,表明信标在逐渐远离通信天线的正面中垂线,信标位于通信天线的背面,此时,|θ2|作为转动装置转动速度的反馈控制会使转动速度变快,控制转动装置带动通信天线快速沿逆时针方向转过90°使信标位于通信天线的正面,并继续沿逆时针方向转动,直到通信天线与信标之间的角度值变为0°或接近0°,以完成此次对天线的控制过程。
请参考图6,基于上述天线控制方法,本发明实施例还对应提供一种通信定位装置,所述通信定位装置包含通信天线和转动装置,所述通信天线包含至少两根天线,所述转动装置能带动所述通信天线转动,所述通信定位装置还包括:
指令获取单元61,配置为获得第一指令,所述第一指令用于指示开启定位模式;
角度获取单元62,配置为响应于所述第一指令,获得所述通信天线与信标之间的角度信息;
参数获取单元63,配置为根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;
控制单元64,配置为根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内。
其中,所述转动参数还包括转动速度,所述角度信息中所述通信天线与所述信标之间的角度绝对值越大,所述转动速度越大。
在具体实施过程中,通信定位装置中的转动装置包括:电机、转动平台及位置检测器。所述电机与所述转动平台转动相连,所述通信天线设置在所述转动平台上,使得所述电机能够带动所述通信天线转动;位置检测器设置在所述转动平台上或者所述电机上,配置为检测所述转动平台相对所述电机转动的角度。在一实施例中,通信定位装置还可以提供一定位单元,配置为当所述通信天线的正面中垂线正对所述信标,或者,所述信标落入所述通信天线正面的第一夹角范围时,通过所述位置检测器获得所述转动平台的当前转动角度α,及获得所述通信天线与所述信标之间的当前角度θ;获得α与θ之和,作为所述通信定位装置与所述信标之间的角度。
在一实施例中,通信定位装中的转动装置也可以包括一装置主体,所述通信天线设置在所述装置主体上;所述装置主体具有转向调节装置,所述转向调节装置配置为调节所述装置主体转向,所述装置主体的转向带动所述装置主体上的通信天线随之转向。
在具体实施过程中,所述通信天线与信标之间的角度信息包含属于[-90°,90°]的第一角度值;所述参数获取单元63配置为:
当所述第一角度值为正时,获得所述转动方向为第一预设方向,其中,当所述信标位于所述通信天线正面时,沿所述第一预设方向转动所述正面中垂线与所述信标之间的角度绝对值变小;当所述第一夹角为负时,获得所述转动方向为与所述第一预设方向相反的第二预设方向;
获得所述转动角度为所述第一角度值的绝对值。
在具体实施过程中,所述角度获取单元62还配置为:在所述转动装置带动所述通信天线转动一小于所述转动角度的预设角度后,获得所述通信天线与所述信标之间的第二角度值;所述通信定位装置还包括:第一判断单元,配置为判断所述第二角度值和所述第一角度值两者的绝对值大小;若所述第二角度值的绝对值小于所述第一角度值的绝对值,确定所述信标位于所述通信天线的正面;或者,若所述第二角度值的绝对值大于所述第一角度值的绝对值,确定所述信标位于所述通信天线的背面。
在具体实施过程中,通信定位装置还可以包括:速度获取单元和第二判断单元。速度获取单元配置为:获得所述转动装置在开始转动时的第一转动速度,及在所述转动装置带动所述通信天线转动一小于所述转动角度的预设角度后获得所述转动装置的第二转动速度;第二判断单元配置为:判断所述第二转动速度是否小于所述第一转动速度;若所述第二转动速度小于所述第一转动速度,确定所述信标位于所述通信天线的正面;或,若所述第二转动速度大于所述第一转动速度,确定所述信标位于所述通信天线的背面。
关于上述实施例中的装置,其中各个单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用时,指令获取单元61、角度获取单元62、参数获取单元63 控制单元64、定位单元、第一判断单元、速度获取单元、第二判断单元可由通信定位装置中的控制器实现。
通过本发明实施例中的一个或多个技术方案,可以实现如下一个或多个技术效果:
1、本发明实施例通过获得通信天线与信标之间的角度信息;根据角度信息获得转动装置的对应转动参数,至少包括转动方向和转动角度;根据转动参数,控制转动装置带动通信天线按获得的转动方向和转动角度转动,使通信天线的正面中垂线正对信标,或者,使信标落入所述通信天线正面的第一夹角范围,即控制天线转动以使信标保持在天线性能最好的高精度测量范围内,从而提高测量精度,保证定位的准确性和全方向性,进而解决了现有技术中UWB基于信号到达角度进行定位时存在某些范围测量精度偏低的技术问题。但需要说明的是,本发明实施例的天线控制方法及装置,其适用范围不仅限于基于UWB技术的信号到达角测量场景,也适用于基于其他通信技术的信号到达角测量场景。
2、本发明实施例通过的转动通信天线的过程中,根据通信天线与信标之间的角度变化或者转动装置转动速度的变化,来确认信标位于通信天线的正面还是背面,解决了现有技术中通信天线无法确认信标位于其正面还是背面的技术问题。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程 图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
基于此,本发明实施例还提供了一种计算机存储介质,该计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行本发明实施例所提供的天线控制方法。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在 内。
工业实用性
本发明实施例提供的方案,进行天线控制时,获得第一指令,所述第一指令用于指示开启定位模式;响应于所述第一指令,获得所述通信天线与信标之间的角度信息;根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内,即通过控制天线转动以使信标保持在天线性能最好的高精度测量范围内,提高了测量精度,从而保证了定位的准确性和全方向性。

Claims (16)

  1. 一种天线控制方法,应用于一通信定位装置,所述通信定位装置包含通信天线和转动装置,所述通信天线包含至少两根天线,所述转动装置能带动所述通信天线转动,所述方法包括:
    获得第一指令,所述第一指令用于指示开启定位模式;
    响应于所述第一指令,获得所述通信天线与信标之间的角度信息;
    根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;
    根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内。
  2. 如权利要1所述的方法,其中,所述转动参数还包括转动速度,所述角度信息中所述通信天线与所述信标之间的角度绝对值越大,所述转动速度越大。
  3. 如权利要求1所述的方法,其中,所述方法还包括:
    当所述通信天线的正面中垂线正对所述信标,或者,所述信标落入所述通信天线正面的第一夹角范围时,通过所述转动装置的位置检测器获得所述转动装置的转动平台的当前转动角度α,及获得所述通信天线与所述信标之间的当前角度θ;
    获得α与θ之和,作为所述通信定位装置与所述信标之间的角度。
  4. 如权利要求1~3任一项所述的方法,其中,所述通信天线与信标之间的角度信息包含属于[-90°,90°]的第一角度值;
    所述根据所述角度信息获得所述转动装置的对应转动参数,包括:
    当所述第一角度值为正时,获得所述转动方向为第一预设方向,其中, 当所述信标位于所述通信天线正面时,沿所述第一预设方向转动所述正面中垂线与所述信标之间的角度绝对值变小;当所述第一夹角为负时,获得所述转动方向为与所述第一预设方向相反的第二预设方向;
    获得所述转动角度为所述第一角度值的绝对值。
  5. 如权利要求4所述的方法,其中,所述方法还包括:
    在所述转动装置带动所述通信天线转动一小于所述转动角度的预设角度后,获得所述通信天线与所述信标之间的第二角度值;
    判断所述第二角度值和所述第一角度值两者的绝对值大小;
    若所述第二角度值的绝对值小于所述第一角度值的绝对值,确定所述信标位于所述通信天线的正面;或者
    若所述第二角度值的绝对值大于所述第一角度值的绝对值,确定所述信标位于所述通信天线的背面。
  6. 如权利要求5所述的方法,其中,所述方法还包括:
    获得所述转动装置在开始转动时的第一转动速度,及在所述转动装置带动所述通信天线转动一小于所述转动角度的预设角度后获得所述转动装置的第二转动速度;
    判断所述第二转动速度是否小于所述第一转动速度;
    若所述第二转动速度小于所述第一转动速度,确定所述信标位于所述通信天线的正面;或
    若所述第二转动速度大于所述第一转动速度,确定所述信标位于所述通信天线的背面。
  7. 一种通信定位装置,所述通信定位装置包含通信天线和转动装置,所述通信天线包含至少两根天线,所述转动装置能带动所述通信天线转动,所述通信定位装置还包括:
    指令获取单元,配置为获得第一指令,所述第一指令用于指示开启定 位模式;
    角度获取单元,配置为响应于所述第一指令,获得所述通信天线与信标之间的角度信息;
    参数获取单元,配置为根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;
    控制单元,配置为根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内。
  8. 如权利要7所述的通信定位装置,其中,所述转动参数还包括转动速度,所述角度信息中所述通信天线与所述信标之间的角度绝对值越大,所述转动速度越大。
  9. 如权利要求7所述的通信定位装置,其中,所述转动装置包括:
    电机;
    转动平台,所述电机与所述转动平台转动相连,所述通信天线设置在所述转动平台上,使得所述电机能够带动所述通信天线转动;
    位置检测器,设置在所述转动平台上或者所述电机上,配置为检测所述转动平台相对所述电机转动的角度。
  10. 如权利要求9所述的通信定位装置,其中,所述通信定位装置还包括:
    定位单元,配置为当所述通信天线的正面中垂线正对所述信标,或者,所述信标落入所述通信天线正面的第一夹角范围时,通过所述位置检测器获得所述转动平台的当前转动角度α,及获得所述通信天线与所述信标之间的当前角度θ;获得α与θ之和,作为所述通信定位装置与所述信标之间的角度。
  11. 如权利要求7所述的通信定位装置,其中,所述转动装置包括:
    装置主体,所述通信天线设置在所述装置主体上;
    所述装置主体具有转向调节装置,所述转向调节装置配置为调节所述装置主体转向,所述装置主体的转向带动所述装置主体上的通信天线随之转向。
  12. 如权利要求7~11任一项所述的通信定位装置,其中,所述通信天线与信标之间的角度信息包含属于[-90°,90°]的第一角度值;
    所述参数获取单元配置为:
    当所述第一角度值为正时,获得所述转动方向为第一预设方向,其中,当所述信标位于所述通信天线正面时,沿所述第一预设方向转动所述正面中垂线与所述信标之间的角度绝对值变小;当所述第一夹角为负时,获得所述转动方向为与所述第一预设方向相反的第二预设方向;
    获得所述转动角度为所述第一角度值的绝对值。
  13. 如权利要求12所述的通信定位装置,其中,所述角度获取单元还配置为:在所述转动装置带动所述通信天线转动一小于所述转动角度的预设角度后,获得所述通信天线与所述信标之间的第二角度值;
    所述通信定位装置还包括:第一判断单元,配置为判断所述第二角度值和所述第一角度值两者的绝对值大小;若所述第二角度值的绝对值小于所述第一角度值的绝对值,确定所述信标位于所述通信天线的正面;或者,若所述第二角度值的绝对值大于所述第一角度值的绝对值,确定所述信标位于所述通信天线的背面。
  14. 如权利要求13所述的通信定位装置,其中,所述通信定位装置装置还包括:
    速度获取单元,配置为获得所述转动装置在开始转动时的第一转动速度,及在所述转动装置带动所述通信天线转动一小于所述转动角度的预设 角度后获得所述转动装置的第二转动速度;
    第一判断单元,配置为判断所述第二转动速度是否小于所述第一转动速度;若所述第二转动速度小于所述第一转动速度,确定所述信标位于所述通信天线的正面;或,若所述第二转动速度大于所述第一转动速度,确定所述信标位于所述通信天线的背面。
  15. 一种通信定位装置,所述所述通信定位装置包含通信天线和转动装置,所述通信天线包含至少两根天线,所述转动装置能带动所述通信天线转动,所述通信定位装置还包括:
    控制器,配置为获得第一指令,所述第一指令用于指示开启定位模式;响应于所述第一指令,获得所述通信天线与信标之间的角度信息;根据所述角度信息获得所述转动装置的对应转动参数,所述转动参数至少包括转动方向和转动角度;以及根据所述转动参数,控制所述转动装置带动所述通信天线按所述转动方向和转动角度转动,使所述通信天线的正面中垂线正对所述信标,或者,使所述信标落入所述通信天线正面的第一夹角范围,所述正面中垂线属于所述通信天线正面的第一夹角范围内。
  16. 一种计算机存储介质,所述计算机存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行如权利要求1至6任一项所述的天线控制方法。
PCT/CN2016/102278 2016-08-08 2016-10-17 一种天线控制方法、装置及计算机存储介质 WO2018028049A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/523,717 US10539650B2 (en) 2016-08-08 2016-10-17 Antenna control method, apparatus and computer storage medium
EP16912503.6A EP3399593B1 (en) 2016-08-08 2016-10-17 Antenna control method, apparatus and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610643795.7 2016-08-08
CN201610643795.7A CN106207458B (zh) 2016-08-08 2016-08-08 一种天线控制方法及装置

Publications (1)

Publication Number Publication Date
WO2018028049A1 true WO2018028049A1 (zh) 2018-02-15

Family

ID=57513693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102278 WO2018028049A1 (zh) 2016-08-08 2016-10-17 一种天线控制方法、装置及计算机存储介质

Country Status (4)

Country Link
US (1) US10539650B2 (zh)
EP (1) EP3399593B1 (zh)
CN (1) CN106207458B (zh)
WO (1) WO2018028049A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449975B (zh) * 2017-08-25 2024-03-29 卡斯柯信号有限公司 一种应答器天线mtbf旋转测试装置
KR102292263B1 (ko) 2018-08-03 2021-08-24 엘지전자 주식회사 이동 로봇, 이동 로봇 시스템 및 이동 로봇의 충전대 이동 방법
EP3829833A4 (en) 2018-08-05 2022-06-08 LG Electronics Inc. MOVABLE ROBOT AND CONTROL METHOD THEREOF
KR102238352B1 (ko) * 2018-08-05 2021-04-09 엘지전자 주식회사 스테이션 장치 및 이동 로봇 시스템
CN109302245A (zh) * 2018-10-11 2019-02-01 北京布科思科技有限公司 一种天线对准方法及装置
CN109946650B (zh) * 2019-04-12 2023-09-15 扬州市职业大学(扬州市广播电视大学) 一种无线同步收发分离的定位系统及方法
CN110673091B (zh) * 2019-09-10 2022-04-05 清研讯科(北京)科技有限公司 基于超宽带的定位方法及装置、系统
CN110784878B (zh) * 2019-10-31 2022-10-21 Oppo广东移动通信有限公司 天线方向控制方法以及相关产品
CN111244603B (zh) * 2020-01-10 2021-06-04 赛特斯信息科技股份有限公司 一种5g移动通信信号感应器
CN111885254B (zh) * 2020-06-30 2022-03-29 达闼机器人有限公司 调整终端设备角度的方法、装置、存储介质及终端设备
CN112511975B (zh) * 2020-12-28 2023-08-08 武汉慧联无限科技有限公司 通信网关、定位方法、定位系统及存储介质
CN113363711A (zh) * 2021-06-01 2021-09-07 Oppo广东移动通信有限公司 天线装置、通信系统及天线装置的控制方法
CN114980308A (zh) * 2022-05-10 2022-08-30 Oppo广东移动通信有限公司 一种定位方法、定位设备及计算机存储介质
CN114783150B (zh) * 2022-06-16 2022-09-09 武昌理工学院 一种基于电磁辐射的地质变化实时采集报警装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2770113Y (zh) * 2004-12-30 2006-04-05 大通电子股份有限公司 天线装置
US20110043433A1 (en) * 2009-08-24 2011-02-24 Jurgen Zimmermann Positioning equipment for aligning a device
CN103853197A (zh) * 2012-11-30 2014-06-11 北京北广科技股份有限公司 大功率转动天线的定位控制方法和装置
CN104167606A (zh) * 2014-08-15 2014-11-26 西南交通大学 一种毫米波天线对中控制系统
CN204927527U (zh) * 2015-09-25 2015-12-30 上海市计量测试技术研究院 一种三环天线的自动校准装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034643A (en) * 1997-03-28 2000-03-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Directional beam antenna device and directional beam controlling apparatus
US8704711B2 (en) * 2011-08-25 2014-04-22 Fimax Technology Limited Wireless cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2770113Y (zh) * 2004-12-30 2006-04-05 大通电子股份有限公司 天线装置
US20110043433A1 (en) * 2009-08-24 2011-02-24 Jurgen Zimmermann Positioning equipment for aligning a device
CN103853197A (zh) * 2012-11-30 2014-06-11 北京北广科技股份有限公司 大功率转动天线的定位控制方法和装置
CN104167606A (zh) * 2014-08-15 2014-11-26 西南交通大学 一种毫米波天线对中控制系统
CN204927527U (zh) * 2015-09-25 2015-12-30 上海市计量测试技术研究院 一种三环天线的自动校准装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399593A4 *

Also Published As

Publication number Publication date
US10539650B2 (en) 2020-01-21
EP3399593B1 (en) 2020-05-27
US20180267136A1 (en) 2018-09-20
EP3399593A1 (en) 2018-11-07
EP3399593A4 (en) 2019-03-20
CN106207458B (zh) 2018-03-16
CN106207458A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018028049A1 (zh) 一种天线控制方法、装置及计算机存储介质
JP6574764B2 (ja) 感磁穿孔装置及びその方法
CN106919171B (zh) 一种机器人室内定位导航系统及方法
US10871778B2 (en) Robot charging control method, apparatus, and robot thereof
WO2018076572A1 (zh) 一种目标跟踪方法及目标跟踪装置、存储介质
TWI564193B (zh) 車輛轉向控制系統及方法
JP2018040786A (ja) 飛翔体の位置決め制御方法
CN103317541B (zh) 一种基于平板切割机的刀具补偿方法
CN103259089A (zh) 一种x波段气象雷达天线控制方法和控制装置
JP2019025632A (ja) キャリブレーションシステムおよびキャリブレーション方法
CN105301598A (zh) 一种带有组合传感器的空间距离激光测量装置及测量方法
CN105869150A (zh) 一种基于视觉识别的可移动平台标定装置及标定方法
CN103606738A (zh) 一种用于移动载体上的卫星天线及其控制方法
WO2018108087A1 (zh) 实体目标的跟随方法、机器人和计算机可读存储介质
CN203553351U (zh) 一种用于移动载体上的卫星天线
CN110355758A (zh) 一种机器跟随方法、设备及跟随机器人系统
US9588520B2 (en) Positioning navigation method and electronic apparatus thereof
EP3822732A1 (en) Control method and apparatus for unmanned aerial vehicle and unmanned aerial vehicle
CN111251303B (zh) 一种周期性姿态调整的机器人运动控制方法
JP6427320B2 (ja) ウエハ研削装置及びウエハ製造方法
Wang et al. Measurement error correction model of TOF depth camera
CN203224622U (zh) 一种x波段气象雷达天线控制装置
CN202661883U (zh) 一种采用虚拟调平技术的随动转台
CN109213109A (zh) 编码器分辨率检测方法
JP5193129B2 (ja) 操舵制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15523717

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016912503

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016912503

Country of ref document: EP

Effective date: 20180803

NENP Non-entry into the national phase

Ref country code: DE