WO2018027910A1 - 解调参考信号的复用方法、装置以及通信系统 - Google Patents

解调参考信号的复用方法、装置以及通信系统 Download PDF

Info

Publication number
WO2018027910A1
WO2018027910A1 PCT/CN2016/094890 CN2016094890W WO2018027910A1 WO 2018027910 A1 WO2018027910 A1 WO 2018027910A1 CN 2016094890 W CN2016094890 W CN 2016094890W WO 2018027910 A1 WO2018027910 A1 WO 2018027910A1
Authority
WO
WIPO (PCT)
Prior art keywords
demodulation reference
reference signal
frequency
multiplexing
same time
Prior art date
Application number
PCT/CN2016/094890
Other languages
English (en)
French (fr)
Inventor
张健
王昕�
郤伟
Original Assignee
富士通株式会社
张健
王昕�
郤伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 王昕�, 郤伟 filed Critical 富士通株式会社
Priority to JP2019506150A priority Critical patent/JP6816819B2/ja
Priority to PCT/CN2016/094890 priority patent/WO2018027910A1/zh
Priority to CN201680087992.3A priority patent/CN109565485B/zh
Publication of WO2018027910A1 publication Critical patent/WO2018027910A1/zh
Priority to US16/264,951 priority patent/US10911170B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/08Arrangements for combining channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J2013/165Joint allocation of code together with frequency or time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a multiplexing method, apparatus, and communication system for a Demodulation Reference Signal (DM-RS).
  • DM-RS Demodulation Reference Signal
  • the uplink DM-RS is defined in the standard of the Long Term Evolution (LTE) system.
  • LTE-A Long Term Evolution Advanced
  • the DM-RS can be used to support uplink single-user multiple input multiple output. (MIMO, Multiple Input Multiple Output) and multi-user MIMO.
  • MIMO Multiple Input Multiple Output
  • FIG. 1 is a schematic diagram of a location of a DM-RS in LTE/LTE-A.
  • a resource block (RB, Resource Block) is taken as an example to show a physical uplink shared channel (PUSCH, Physical Uplink Shared) in an LTE/LTE-A system.
  • Channel Estimate the location of the DM-RS used.
  • the DM-RS uses a ZC (Zadoff-Chu) sequence, and in the same cell, different user equipments use ZC sequences with different cyclic shifts.
  • the characteristics of the ZC sequence may be such that the DM-RSs of different user equipments are orthogonal to each other. Therefore, after receiving the DM-RSs that are superimposed by the channels, the base station can distinguish different user equipments, recover and estimate the respective user equipments. channel.
  • an Orthogonal Cover Code is a set of orthogonal codes of length 2, and the value is ⁇ 1, 1 ⁇ or ⁇ 1, -1 ⁇ , which can be positive in ZC. Based on the cross sequence, the orthogonality code is further used to provide orthogonality distinction for the user equipment.
  • machine type communication is an important trend in the development of future communication technologies. Compared with communication systems that used to be mainly natural people as users, machine type communication will have more user equipment access systems.
  • the future fifth-generation (5G) mobile communication systems need to meet the needs of large-scale machine communication, so non-orthogonal multiple access technology has been widely studied.
  • non-orthogonal multiple access can simultaneously accommodate more user equipments for data transmission, to a certain extent.
  • the "overload" gain is obtained to increase the connection density and spectral efficiency.
  • the inventors have found that since more user equipments transmit data at the same time in the future communication, the base station needs to perform channel estimation and demodulation on more user equipments, so more DM-RSs are needed. For large-scale multiple access, the number of DM-RSs required may exceed the number of DM-RSs defined by the LTE/LTE-A system. When more DM-RSs need to be transmitted, how to recover these DM-RSs Used in a given time-frequency resource is a problem that needs to be solved.
  • the DM-RSs of different user equipments in the LTE/LTE-A system are essentially multiplexed together by Code Division Multiplexing (CDM).
  • CDM Code Division Multiplexing
  • Embodiments of the present invention provide a multiplexing method, apparatus, and communication system for demodulating reference signals.
  • a DM-RS from different user equipments is multiplexed by using Frequency Division Multiplexing (FDM) in combination with CDM.
  • FDM Frequency Division Multiplexing
  • a multiplexing method for demodulating a reference signal includes:
  • the demodulation reference signal of each user equipment or data stream occupies part of the frequency domain resource of the time-frequency resource block; and the demodulation reference signals of some user equipments or data streams are superposed by frequency division multiplexing. On the same time domain resource, and the demodulation reference signals of some user equipments or data streams are superimposed on the same time-frequency resource in a code division multiplexing manner.
  • a multiplexing apparatus for demodulating a reference signal comprising:
  • a transmission unit that transmits data and demodulates a reference signal using one or more time-frequency resource blocks
  • the demodulation reference signal of each user equipment or data stream occupies part of the frequency domain resource of the time-frequency resource block; and the demodulation reference signals of some user equipments or data streams are superposed by frequency division multiplexing. On the same time domain resource, and the demodulation reference signals of some user equipments or data streams are superimposed on the same time-frequency resource in a code division multiplexing manner.
  • a communication system including:
  • a base station which receives the demodulation reference signal sent by the multiple user equipments, performs channel estimation, and data demodulation and decoding according to the demodulation reference signal;
  • the demodulation reference signal of each user equipment or data stream occupies part of the frequency domain resource of the time-frequency resource block; and the demodulation reference signals of some user equipments or data streams are superposed by frequency division multiplexing. On the same time domain resource, and the demodulation reference signals of some user equipments or data streams are superimposed on the same time-frequency resource in a code division multiplexing manner.
  • the beneficial effects of the embodiments of the present invention are: multiplexing the DM-RSs from different user equipments by using a combination of FDM and CDM.
  • FDM can completely avoid collision interference between DM-RSs of user equipments
  • CDM can use orthogonal codes to multiplex more user equipments within limited resources. Thereby, even in the case of large-scale user equipment access, the DM-RS can be multiplexed in both the timing and frequency resources, and the performance of the transmission can still be guaranteed.
  • 1 is a schematic diagram of a location of a DM-RS in LTE/LTE-A;
  • FIG. 2 is a schematic diagram of a multiplexing method of a demodulation reference signal according to Embodiment 1 of the present invention
  • FIG. 3 is a diagram showing an example of DM-RS multiplexing according to Embodiment 1 of the present invention.
  • FIG. 4 is another exemplary diagram of DM-RS multiplexing according to Embodiment 1 of the present invention.
  • FIG. 5 is another exemplary diagram of DM-RS multiplexing according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of abstracting and simplifying a resource block structure according to Embodiment 2 of the present invention.
  • FIG. 7 is a diagram showing an example of DM-RS multiplexing according to Embodiment 2 of the present invention.
  • FIG. 8 is another exemplary diagram of DM-RS multiplexing according to Embodiment 2 of the present invention.
  • FIG. 9 is another exemplary diagram of DM-RS multiplexing according to Embodiment 2 of the present invention.
  • Figure 10 is a schematic diagram of a multiplexing device for demodulating a reference signal according to Embodiment 3 of the present invention.
  • Figure 11 is a schematic diagram of a communication system according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic diagram of a user equipment according to Embodiment 4 of the present invention.
  • Figure 13 is a diagram showing a base station according to Embodiment 4 of the present invention.
  • a base station may be referred to as an access point, a broadcast transmitter, a Node B, an evolved Node B (eNB), etc., and may include some or all of their functions.
  • the term “base station” will be used herein. Each base station provides communication coverage for a particular geographic area.
  • the term “cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • a mobile station or device may be referred to as a "User Equipment” (UE).
  • UE User Equipment
  • a UE may be fixed or mobile and may also be referred to as a mobile station, terminal, access terminal, subscriber unit, station, and the like.
  • the UE may be a cellular telephone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless telephone, and the like.
  • PDA personal digital assistant
  • the DM-RS from different user equipments is multiplexed by using FDM and CDM.
  • FDM can completely avoid collision interference between DM-RSs of user equipments.
  • CDM can use orthogonality within limited resources. Code to reuse more user devices.
  • DM-RS is used to distinguish different channels, which can come from different user equipments or from different spatial data streams (also called layer), so different DM-RSs can be used for different user equipments or different spatial data streams.
  • the experienced channels are decoupled and estimated.
  • the transmitting end and the base station as the receiving end.
  • the present invention is not limited thereto.
  • the transmitting end and/or the receiving end may be other network devices.
  • FIG. 2 is a schematic diagram of a multiplexing method for demodulating a reference signal according to an embodiment of the present invention. As shown in FIG. 2, the multiplexing method includes:
  • Step 201 The user equipment uses one or more time-frequency resource blocks to transmit data and a DM-RS to the base station; wherein the DM-RS is multiplexed in a combination of FDM and CDM.
  • each user equipment or DM-RS of the data stream occupies part of the frequency domain resources of the time-frequency resource block; some of the user equipments or DM-RSs of the data streams
  • the FDM method is superimposed on the same time domain resource, and the DM-RS of some user equipments or data streams are superimposed on the same time-frequency resource in the CDM manner.
  • the base station may be a macro base station (for example, an eNB), and a macro cell (for example, a Macro cell) generated by the macro base station may provide a service for the user equipment.
  • the base station may also be a micro base station, and a micro cell (for example, a small cell or a Pico cell) generated by the micro base station may serve the user equipment.
  • the present invention is not limited thereto, and a specific scenario can be determined according to actual needs. For the sake of simplicity, only one user equipment is taken as an example in FIG. 2 .
  • the minimum granularity of time-frequency resources for data transmission and DM-RS transmission by the user equipment may be defined as a resource block (RB), and the RB in the LTE system is defined as a frequency direction including 12 subcarriers and time.
  • the direction contains one time-frequency resource block of 14 OFDM symbols.
  • the size (or size) of the RB may be redefined depending on the service or frequency.
  • the DM-RS when the user equipment uses one or more RBs for uplink data transmission, the DM-RS also transmits in the RB occupied by the data, and the base station performs equivalent channel estimation and data demodulation according to the DM-RS. Decoding.
  • time-frequency resource block a minimum resource allocation unit of 1 RB.
  • the present invention does not limit the specific content or composition of the time-frequency resource block.
  • FIG. 3 is a diagram showing an example of DM-RS multiplexing according to an embodiment of the present invention.
  • the four DM-RSs that need to be multiplexed into the same RB are taken as an example for description.
  • the gray areas A, B, and C are time-frequency resources occupied by data symbols
  • the shaded areas indicate time-frequency resources occupied by DM-RS symbols
  • the blank areas indicate "unused.”
  • each DM-RS may correspond to one user device or to a spatial data stream.
  • DM-RS 1 and DM-RS 3 occupy different frequency positions, that is, multiplex in FDM mode; DM-RS 1 and DM-RS 2 occupy the same frequency position, but are solved in CDM mode. Use, that is, use different OCC.
  • FIG. 4 is another exemplary diagram of DM-RS multiplexing according to an embodiment of the present invention, showing a situation in which a DM-RS exists only in one column time domain resource.
  • the gray areas A and B are time-frequency resources occupied by data symbols
  • the shaded areas represent time-frequency resources occupied by DM-RS symbols
  • the blank areas indicate “unused”.
  • DM-RS 1 and DM-RS 3 occupy different frequency positions, that is, multiplex in FDM mode; DM-RS 1 and DM-RS 2 occupy the same frequency position, but are solved in CDM mode. Use, that is, use different OCC.
  • each DM-RS in the present invention does not occupy all subcarriers in the frequency direction, that is, the DM-RS of the present invention is sparse in one RB, different.
  • DM-RSs are multiplexed by FDM, or different OCCs are used and multiplexed by CDM.
  • a part of the user equipment or the DM-RS of the data stream is also superimposed on different time domain resources by using Time Division Multiplexing (TDM). That is, if it is necessary to further increase the number of DM-RSs to support more user equipment access, it is possible to allocate more columns of time domain resources for the DM-RS.
  • TDM Time Division Multiplexing
  • FIG. 5 is another exemplary diagram of DM-RS multiplexing according to an embodiment of the present invention.
  • DM-RS 1 and DM-RS 2 may be multiplexed in a TDM manner, but correspondingly, a part of data resources need to be sacrificed.
  • the RB where the DM-RS 1 is located should vacate the data resource that coincides with the DM-RS 2 to avoid interference, and vice versa.
  • the power or energy per resource element of the transmitted DM-RS can be increased. That is, the per-resource element transmission power or energy of the DM-RS of the embodiment of the present invention may be further improved relative to the resource element energy or energy of the DM-RS transmitted in the LTE/LTE-A system.
  • the DM-RS is sparsely distributed in the frequency direction, and belongs to a list of other resource locations within the time domain resource (for example, one OFDM symbol) of the DM-RS (for example, a resource element (RE, Resource Element).
  • a resource element for example, a resource element (RE, Resource Element).
  • the power boosting per resource element of the DM-RS can be boosted. That is, transfer the energy that should have been on the "unused" RE to the DM-RS This also helps to improve the accuracy of channel estimation.
  • the DM-RSs from different user equipments are multiplexed using a combination of FDM and CDM.
  • FDM can completely avoid collision interference between DM-RSs of user equipments
  • CDM can use orthogonal codes to multiplex more user equipments within limited resources.
  • the DM-RS can be multiplexed in both the timing and frequency resources, and the performance of the transmission can still be guaranteed.
  • the embodiment of the present invention further illustrates multiplexing of the DM-RS by grouping.
  • the same contents as those of Embodiment 1 will not be described again.
  • the DM-RS of the user equipment or the data stream is divided into multiple groups; the DM-RSs in each group are superimposed on the same time-frequency resource in the CDM manner, and the DM- between the groups The RS is superimposed on the same time domain resource in FDM mode.
  • FIG. 6 is a schematic diagram of abstracting and simplifying a resource block structure according to an embodiment of the present invention.
  • a complete RB can be simplified to the form below FIG. 6, only the OFDM symbols in which 2 columns of DM-RSs are located are reserved, and the 6 OFDM symbols between the original 2 columns of DM-RSs are simplified. It is a column with a darker area. Since only DM-RS is the focus of the embodiments of the present invention, the omission and simplification of the data area does not affect the understanding and explanation of the present invention.
  • FIG. 7 is a diagram showing an example of DM-RS multiplexing according to an embodiment of the present invention, and shows a schematic diagram of a total of 12 DM-RS multiplexes of DM-RS 1 to DM-RS 12 in an RB of an LTE system.
  • the DM-RS in each RB is mapped to 8 REs, and r1 to r8 represent DM-RS sequences. It is assumed here that DM-RS 1 to DM-RS 12 use the same sequence, and actually different DM-RSs can also be used differently. sequence. When more than one RB is allocated, the length of the DM-RS sequence is also increased accordingly. For example, in 2 RBs, the DM-RS sequence length is 16.
  • DM-RSs are divided into 3 groups; among them, DM-RSs between groups 1, 2, and 3 (for example, DM-RS 1 to 4 and DM-RS 5 to 8) occupy each other.
  • Non-coincident REs are multiplexed using the FDM method; DM-RSs (such as DM-RS 1 to DM-RS 4) in the same group occupy the same RE and are multiplexed using the CDM method.
  • Each row of the matrix corresponds to an OCC, and the OCC is multiplied by the original DM-RS sequence by element.
  • the four DM-RSs in each group use 4 different OCCs respectively, and the use and superposition of the OCC can be as shown in the lower part of FIG.
  • the original DM-RS sequences r1 through r8 are omitted here, leaving only the OCC used.
  • the DM-RSs arranged in the time domain direction in the same time-frequency resource block may use a set of orthogonal OCCs, and the same time-frequency resource blocks are in the frequency domain.
  • a set of orthogonal OCCs can also be used for DM-RSs arranged in the direction.
  • a group of orthogonal OCCs may also be used for DM-RSs that are adjacently arranged across resource blocks in the frequency domain direction.
  • FIG. 8 is another exemplary diagram of DM-RS multiplexing according to an embodiment of the present invention.
  • the configuration of the OCC is further described by taking two RBs as an example.
  • the OCC configuration should provide as much orthogonality as possible to provide more flexibility for the base station's OCC despreading and channel interpolation operations.
  • four DM-RS REs (shown as 801 in FIG. 8) spanning two OFDM symbols in the time direction constitute a set of orthogonal OCCs; four in the same OFDM symbol along the frequency direction.
  • the DM-RS RE (shown as 802 in Figure 8) also constitutes a set of orthogonal OCCs.
  • four DM-RS REs (shown as 803 in FIG. 8) in the same OFDM symbol along the frequency direction across 2 RBs also constitute a set of orthogonal OCCs. That is, the configuration of the OCC has a time-frequency two-dimensional orthogonality.
  • FIG. 9 is another exemplary diagram of DM-RS multiplexing according to an embodiment of the present invention, and another example of multiplexing 12 DM-RSs in one RB is given.
  • each DM-RS pair of DM-RSs 1 to 12 (each pair of DM-RSs can be regarded as a group, for example, DM-RS 1 and DM-RS 2) is multiplexed using a CDM method.
  • Six DM-RS pairs are multiplexed in FDM mode.
  • OCC length 2
  • OCC matrix expression can be defined as
  • the configuration of the OCC is as shown in FIG. 9, and the OCC can also be made orthogonal in the time-frequency two-dimensional.
  • the DM-RSs from different user equipments are multiplexed using a combination of FDM and CDM.
  • FDM can completely avoid collision interference between DM-RSs of user equipments.
  • CDM can be in existence.
  • Orthogonal codes are used within the restricted resources to multiplex more user equipment. Thereby, even in the case of large-scale user equipment access, the DM-RS can be multiplexed in both the timing and frequency resources, and the performance of the transmission can still be guaranteed.
  • the embodiment of the present invention provides a multiplexing device for demodulating a reference signal, which may be configured in a user equipment or in a base station.
  • a multiplexing device for demodulating a reference signal which may be configured in a user equipment or in a base station.
  • the same content of the embodiment of the present invention and the first and second embodiments will not be described again.
  • FIG. 10 is a schematic diagram of a multiplexing apparatus for demodulating a reference signal according to an embodiment of the present invention. As shown in FIG. 10, the multiplexing apparatus 1000 for demodulating a reference signal includes:
  • a transmission unit 1001 which uses one or more time-frequency resource blocks to transmit data and a DM-RS;
  • the DM-RS of each user equipment or data stream occupies part of the frequency domain resource of the time-frequency resource block; the DM-RS of some user equipment or data stream is superimposed on the same time domain resource by using FDM mode, and The DM-RS of some user equipments or data streams is superimposed on the same time-frequency resource in CDM mode.
  • the DM-RS of some user equipments or data streams may also be superimposed on different time domain resources in a TDM manner.
  • the DM-RS of the user equipment or the data stream may be divided into multiple groups; the DM-RSs in each group are superimposed on the same time-frequency resource in a CDM manner, and between the groups.
  • the DM-RS is superimposed on the same time domain resource in FDM mode.
  • the DM-RSs arranged in the time domain direction in the same time-frequency resource block may use a set of orthogonal superposition codes, and the same time-frequency resource block is in the frequency domain.
  • a set of orthogonal superposition codes can also be used for the DM-RSs arranged in the direction.
  • a set of orthogonal superposition codes can also be used for DM-RSs that are adjacently arranged across resource blocks in the frequency domain direction.
  • the power or energy per resource element of the transmitted DM-RS can be increased.
  • the DM-RSs from different user equipments are multiplexed using a combination of FDM and CDM.
  • FDM can completely avoid collision interference between DM-RSs of user equipments
  • CDM can use orthogonal codes to multiplex more user equipments within limited resources.
  • the DM-RS can be multiplexed in both the timing and frequency resources, and the performance of the transmission can still be guaranteed.
  • the embodiment of the present invention further provides a communication system, and the same content as Embodiments 1 to 3 will not be described again.
  • Said The communication system includes:
  • a plurality of user equipments that use one or more time-frequency resource blocks to transmit data and DM-RS;
  • a base station which receives the DM-RSs sent by the multiple user equipments, performs channel estimation and data demodulation and decoding according to the DM-RSs;
  • the DM-RS of each user equipment or data stream occupies part of the frequency domain resource of the time-frequency resource block; the DM-RS of some user equipment or data stream is superimposed on the same time domain resource by using FDM mode, and The DM-RS of some user equipments or data streams is superimposed on the same time-frequency resource in CDM mode.
  • FIG. 11 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the schematic diagram illustrates a case where the transmitting end is a user equipment and the receiving end is a base station.
  • the communication system 1100 may include a base station 1101 and a user equipment 1102.
  • the base station 1101 and/or the user equipment 1102 may be configured with the multiplexing device 1000 for demodulating the reference signal as described in Embodiment 3.
  • the embodiment of the present invention further provides a sending end, which may be, for example, a user equipment, but the present invention is not limited thereto, and may be other network devices.
  • a sending end which may be, for example, a user equipment, but the present invention is not limited thereto, and may be other network devices.
  • the following uses the user equipment as an example for description.
  • FIG. 12 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 1200 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the central processing unit 100 may be configured to implement the multiplexing method of the demodulation reference signal described in Embodiment 1.
  • the central processing unit 100 can be configured to perform control of transmitting data and DM-RS using one or more time-frequency resource blocks; wherein each user equipment or DM-RS of the data stream occupies the time-frequency resource Part of the frequency domain resources of the block; DM-RSs of some user equipments or data streams are superimposed on the same time domain resources in FDM mode, and some user equipments or DM-RSs of data streams are superimposed in the same time by CDM method. On the frequency resource.
  • the user equipment 1200 may further include: a communication module 110, an input unit 120, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1200 does not have to include all the components shown in FIG. 12, and the above components are not required; in addition, the user equipment 1200 may further include components not shown in FIG. There are technologies.
  • the embodiment of the present invention further provides a receiving end, which may be, for example, a base station, but the present invention is not limited thereto, and may also It is another network device.
  • a receiving end which may be, for example, a base station, but the present invention is not limited thereto, and may also It is another network device.
  • the following takes a base station as an example for description.
  • FIG. 13 is a schematic diagram showing the structure of a base station according to an embodiment of the present invention.
  • base station 1300 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the central processing unit 200 may be configured to implement the multiplexing method of the demodulation reference signal described in Embodiment 1.
  • the central processing unit 200 can be configured to perform control of transmitting data and DM-RS using one or more time-frequency resource blocks; wherein each user equipment or DM-RS of the data stream occupies the time-frequency resource Part of the frequency domain resources of the block; DM-RSs of some user equipments or data streams are superimposed on the same time domain resources in FDM mode, and some user equipments or DM-RSs of data streams are superimposed in the same time by CDM method. On the frequency resource.
  • the base station 1300 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and details are not described herein again. It should be noted that the base station 1300 does not have to include all the components shown in FIG. 13; in addition, the base station 1300 may further include components not shown in FIG. 13, and reference may be made to the prior art.
  • Embodiments of the present invention also provide a computer readable program, wherein when the program is executed in a multiplexing device or a user equipment that demodulates a reference signal, the program causes the multiplexing device or user of the demodulation reference signal
  • the apparatus performs the multiplexing method of the demodulation reference signal described in Embodiment 1.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a multiplexing device or a user equipment that demodulates a reference signal to perform a complex of the demodulation reference signal described in Embodiment 1. Use the method.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a multiplexing device or a base station that demodulates a reference signal, the program causes the multiplexing device or the base station of the demodulation reference signal to perform The multiplexing method of the demodulation reference signal described in Embodiment 1.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a multiplexing device or a base station that demodulates a reference signal to perform multiplexing of the demodulation reference signal described in Embodiment 1. method.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program capable of enabling a logic component when the program is executed by a logic component
  • the apparatus or components described above, or the logic components implement the various methods or steps described above.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the information transmission method/device described in connection with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 10 and/or one or more combinations of functional block diagrams may correspond to individual software modules of a computer program flow, or may correspond to For each hardware module.
  • These software modules may correspond to the respective steps shown in FIG. 2, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Abstract

一种解调参考信号的复用方法、装置以及通信系统,所述复用方法包括:使用一个或多个时频资源块传输数据和DM-RS;其中,每一用户设备或者数据流的DM-RS占用所述时频资源块的部分频域资源;部分用户设备或者数据流的DM-RS采用FDM方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的DM-RS采用CDM方式被叠加在相同的时频资源上。由此,即使在大规模用户设备接入的情况下,也能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。

Description

解调参考信号的复用方法、装置以及通信系统 技术领域
本发明涉及通信技术领域,特别涉及一种解调参考信号(DM-RS,DeModulation Reference Signal)的复用方法、装置以及通信系统。
背景技术
长期演进(LTE,Long Term Evolution)系统的标准中定义了上行DM-RS,在增强的长期演进(LTE-A,LTE Advanced)系统中,DM-RS可以用来支持上行单用户多输入多输出(MIMO,Multiple Input Multiple Output)和多用户MIMO。
图1是LTE/LTE-A中DM-RS的位置示意图,以1个资源块(RB,Resource Block)为例,示出了LTE/LTE-A系统中物理上行共享信道(PUSCH,Physical Uplink Shared Channel)估计所使用的DM-RS的位置。
现有标准中,DM-RS使用ZC(Zadoff-Chu)序列,在同一个小区内,不同的用户设备使用具有不同循环移位的ZC序列。ZC序列的特性可以使得不同用户设备的DM-RS彼此正交,因此基站在接收到经过信道叠加在一起的DM-RS后,能够对不同用户设备进行区分,恢复和估计出不同用户设备各自的信道。
此外,如图1所示,正交叠加码(OCC,Orthogonal Cover Code)是一组长度为2的正交码,取值为{1,1}或{1,-1},可以在ZC正交序列的基础上进一步通过正交叠加码为用户设备提供正交性区分。
另一方面,机器类型通信是未来通信技术发展的一种重要趋势,与以往主要以自然人作为用户的通信系统相比,机器类型通信将会有更多的用户设备接入系统。未来第五代(5G)移动通信系统需要满足大规模机器通信的需求,因此非正交多址接入技术得到了广泛研究。
相比于正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)等传统的正交多址接入方式,非正交多址接入能够同时容纳更多的用户设备进行数据传输,在一定程度上获得“过载”(overload)增益,从而提高连接密度和频谱效率。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是,发明人发现:由于未来通信中有更多的用户设备同时进行数据传输,基站需要对更多的用户设备进行信道估计和解调,因此需要更多的DM-RS。对于大规模的多址接入,所需要的DM-RS数目可能超过LTE/LTE-A系统所定义的DM-RS数目,当更多的DM-RS需要传输时,如何将这些DM-RS复用在既定的时频资源内是一个需要解决的问题。
此外,LTE/LTE-A系统中不同用户设备的DM-RS本质上是以码分复用(CDM,Code Division Multiplexing)方式被复用在一起,当用户设备的数目持续增加时,码的正交性会更容易被信道衰落所破坏,所以在大规模用户设备接入时,使用CDM方式复用DM-RS不一定仍然能够保持性能上的优势。
本发明实施例提供一种解调参考信号的复用方法、装置以及通信系统。使用频分复用(FDM,Frequency Division Multiplexing)与CDM相结合的方式来复用来自不同用户设备的DM-RS。
根据本发明实施例的第一个方面,提供一种解调参考信号的复用方法,所述复用方法包括:
使用一个或多个时频资源块传输数据和解调参考信号;
其中,每一用户设备或者数据流的所述解调参考信号占用所述时频资源块的部分频域资源;部分用户设备或者数据流的所述解调参考信号采用频分复用方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的所述解调参考信号采用码分复用方式被叠加在相同的时频资源上。
根据本发明实施例的第二个方面,提供一种解调参考信号的复用装置,所述复用装置包括:
传输单元,其使用一个或多个时频资源块传输数据和解调参考信号;
其中,每一用户设备或者数据流的所述解调参考信号占用所述时频资源块的部分频域资源;部分用户设备或者数据流的所述解调参考信号采用频分复用方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的所述解调参考信号采用码分复用方式被叠加在相同的时频资源上。
根据本发明实施例的第三个方面,提供一种通信系统,包括:
多个用户设备,其使用一个或多个时频资源块传输数据和解调参考信号;
基站,其接收所述多个用户设备发送的所述解调参考信号,根据所述解调参考信号进行信道估计以及数据解调和译码;
其中,每一用户设备或者数据流的所述解调参考信号占用所述时频资源块的部分频域资源;部分用户设备或者数据流的所述解调参考信号采用频分复用方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的所述解调参考信号采用码分复用方式被叠加在相同的时频资源上。
本发明实施例的有益效果在于:使用FDM与CDM相结合的方式来复用来自不同用户设备的DM-RS。FDM可以完全避免用户设备的DM-RS之间的碰撞干扰,CDM可以在有限的资源内使用正交码来复用更多的用户设备。由此,即使在大规模用户设备接入的情况下,也能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是LTE/LTE-A中DM-RS的位置示意图;
图2是本发明实施例1的解调参考信号的复用方法的示意图;
图3是本发明实施例1的DM-RS复用的示例图;
图4是本发明实施例1的DM-RS复用的另一示例图;
图5是本发明实施例1的DM-RS复用的另一示例图;
图6是本发明实施例2的对资源块结构进行抽象和简化的示意图;
图7是本发明实施例2的DM-RS复用的示例图;
图8是本发明实施例2的DM-RS复用的另一示例图;
图9是本发明实施例2的DM-RS复用的另一示例图;
图10是本发明实施例3的解调参考信号的复用装置的示意图;
图11是本发明实施例4的通信系统的示意图;
图12是本发明实施例4的用户设备的示意图;
图13是本发明实施例4的基站的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请中,基站可以被称为接入点、广播发射机、节点B、演进节点B(eNB)等,并且可以包括它们的一些或所有功能。在文中将使用术语“基站”。每个基站对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请中,移动站或设备可以被称为“用户设备”(UE,User Equipment)。UE可以是固定的或移动的,并且也可以称为移动台、终端、接入终端、用户单元、站等。UE可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、膝上型计算机、无绳电话等。
在本申请中,使用FDM与CDM相结合的方式复用来自不同用户设备的DM-RS,FDM可以完全避免用户设备的DM-RS之间的碰撞干扰,CDM可以在有限的资源内使用正交码来复用更多的用户设备。DM-RS用于区分不同的信道,这些信道可以来自不同的用户设备,或者来自不同的空间数据流(也可称为layer),因此不同的DM-RS可以对不同用户设备或者不同空间数据流经历的信道进行解耦和估计。
以下以将通信系统中的用户设备作为发送端、将基站作为接收端为例进行说明,但本发明不限于此,例如发送端和/或接收端还可以是其他的网络设备。
实施例1
本发明实施例提供一种解调参考信号的复用方法,图2是本发明实施例的解调参考信号的复用方法的示意图。如图2所示,所述复用方法包括:
步骤201,用户设备使用一个或多个时频资源块向基站传输数据和DM-RS;其中DM-RS以FDM和CDM相结合的方式被复用。
即,多个用户设备向基站传输数据和DM-RS,每一用户设备或者数据流的DM-RS占用所述时频资源块的部分频域资源;其中部分用户设备或者数据流的DM-RS采用FDM方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的DM-RS采用CDM方式被叠加在相同的时频资源上。
在本实施例中,该基站可以为宏基站(例如eNB),该宏基站产生的宏小区(例如Macro cell)可以为该用户设备提供服务。或者,该基站也可以为微基站,该微基站产生的微小区(例如Small cell或Pico cell)可以为该用户设备提供服务。本发明不限于此,可以根据实际的需要确定具体的场景。其中,为了简单起见,图2中仅以一个用户设备为例进行说明。
在本实施例中,可以将用户设备进行数据和DM-RS传输的时频资源的最小粒度定义为资源块(RB,Resource Block),LTE系统中RB被定义为频率方向包含12个子载波和时间方向包含14个OFDM符号的一个时频资源块。
在未来通信系统(例如5G系统)中根据业务或频点的不同,可能会对RB的尺寸(或大小)重新进行定义。无论使用何种定义,当用户设备使用一个或多个RB进行上行数据传输时,DM-RS也会在数据所占用的RB内传输,基站根据DM-RS进行等效信道估计及数据解调和译码。
为便于说明,以下将以最小资源分配单位(本文称为时频资源块)是1个RB为例进行阐述。本发明对于时频资源块的具体内容或者构成并不进行限制。
图3是本发明实施例的DM-RS复用的示例图,以需要复用到同一个RB的4个DM-RS为例进行说明。如图3所示,灰色区域A、B、C为数据符号占用的时频资源,阴影区域表示DM-RS符号占用的时频资源,空白区域表示“未被使用”。
这里假设DM-RS存在于2列时域资源内,类比于LTE系统中的2个OFDM符号。使用不同的编号对不同的DM-RS进行标记,如前所述,每个DM-RS可以对应于一个用户设备或者对应于一个空间数据流。
如图3所示,DM-RS 1和DM-RS 3占据不同的频率位置,即以FDM方式进行复用;DM-RS 1和DM-RS 2占据相同的频率位置,但是以CDM方式进行复用,即使用了不同的OCC。
图4是本发明实施例的DM-RS复用的另一示例图,示出了当DM-RS仅存在于1列时域资源内的情形。如图4所示,灰色区域A、B为数据符号占用的时频资源,阴影区域表示DM-RS符号占用的时频资源,空白区域表示“未被使用”。
如图4所示,DM-RS 1和DM-RS 3占据不同的频率位置,即以FDM方式进行复用;DM-RS 1和DM-RS 2占据相同的频率位置,但是以CDM方式进行复用,即使用了不同的OCC。
如图3和4所示,与LTE标准不同,本发明中每个DM-RS并不在频率方向上占满所有子载波,即本发明的DM-RS在1个RB内是稀疏的,不同的DM-RS之间通过FDM方式复用,或者使用不同的OCC并通过CDM方式复用。
在本实施例中,一部分用户设备或者数据流的DM-RS还采用时分复用(TDM,Time Division Multiplexing)方式被叠加在不同的时域资源上。即,如果有必要可以进一步增加DM-RS数目以支持更多的用户设备接入,可能为DM-RS分配更多列的时域资源。
图5是本发明实施例的DM-RS复用的另一示例图,例如图5所示,DM-RS 1和DM-RS 2可以以TDM方式复用,但相应地需要牺牲一部分数据资源,例如DM-RS 1所在RB要空出与DM-RS 2重合的数据资源以避免干扰,反之亦然。
在本实施例中,传输DM-RS的每资源元素功率或者能量可以被增加。即,相对于LTE/LTE-A系统中传输DM-RS的每资源元素功率或者能量,可以进一步提升本发明实施例的DM-RS的每资源元素传输功率或者能量。
在本实施例中,由于DM-RS在频率方向上稀疏分布,并且与DM-RS同属于一列时域资源(例如一个OFDM符号)内的其他资源位置(例如称为资源元素(RE,Resource Element))上没有数据映射和传输,因此可以提升DM-RS的每资源元素发射功率/能量(power boosting)。即,将本应在“未使用”RE上的能量转移给DM-RS 使用,这也有助于提高信道估计的准确性。
由上述实施例可知,使用FDM与CDM相结合的方式来复用来自不同用户设备的DM-RS。FDM可以完全避免用户设备的DM-RS之间的碰撞干扰,CDM可以在有限的资源内使用正交码来复用更多的用户设备。由此,即使在大规模用户设备接入的情况下,也能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。
实施例2
在实施例1的基础上,本发明实施例通过分组对DM-RS的复用进行进一步说明。与实施例1相同的内容不再赘述。
在本实施例中,用户设备或者数据流的DM-RS被分为多个组;每一个组内的DM-RS采用CDM方式被叠加在相同的时频资源上,各组之间的DM-RS采用FDM方式被叠加在相同的时域资源上。
下面仍以LTE中的RB定义为例,在该假设条件下给出具体的DM-RS复用方法示例。为便于表示,可以对LTE中的RB结构进行抽象及简化。
图6是本发明实施例的对资源块结构进行抽象和简化的示意图。如图6所示,可以将一个完整的RB简化为图6下方的形式,仅保留了2列DM-RS所在的OFDM符号,并将原来2列DM-RS之间的6个OFDM符号简化表示为1列颜色较深的区域。由于仅DM-RS是本发明实施例关注的重点,对数据区域的省略及简化并不影响对本发明的理解及阐述。
图7是本发明实施例的DM-RS复用的示例图,给出了在一个LTE系统的RB内DM-RS 1至DM-RS 12共12个DM-RS复用的示意情况。每个RB内DM-RS映射到8个RE上,r1至r8表示DM-RS序列,这里假设DM-RS 1至DM-RS 12使用相同的序列,实际上不同的DM-RS也可以使用不同序列。当分配的资源多于1个RB时,DM-RS序列长度也相应增加,例如在2个RB时,DM-RS序列长度为16。
如图7所示,12个DM-RS被分为3组;其中组1、组2、组3之间的DM-RS(例如DM-RS 1~4和DM-RS 5~8)占据互不重合的RE,使用FDM方式进行复用;同一组内的DM-RS(如DM-RS 1至DM-RS 4)占据相同的RE,使用CDM方式进行复用。
这里可以使用长度为4的OCC,定义为如下矩阵形式:
Figure PCTCN2016094890-appb-000001
矩阵的每一行对应一个OCC,OCC与原始DM-RS序列逐元素相乘。每一组内的4个DM-RS分别使用4个不同的OCC,OCC的使用及叠加可以如图7的下方所示。为便于观察OCC配置,这里省略了原始的DM-RS序列r1至r8,仅保留所使用的OCC。
在本实施例中,对于每一组内的DM-RS,同一时频资源块中在时域方向上排列的DM-RS可以使用一组正交的OCC,同一时频资源块中在频域方向上排列的DM-RS也可以使用一组正交的OCC。此外,在至少两个时频资源块被使用的情况下,在频域方向上跨资源块地相邻排列的DM-RS也可以使用一组正交的OCC。
图8是本发明实施例的DM-RS复用的另一示例图,以2个RB为例,进一步对OCC的配置进行说明。OCC的配置应尽可能提供更多的正交性,从而为基站的OCC解扩及信道插值操作提供更多的灵活性。
如图8所示,沿时间方向跨越2个OFDM符号的4个DM-RS RE(如图8中801所示)构成一组正交的OCC;沿频率方向在同一个OFDM符号内的4个DM-RS RE(如图8中802所示)也构成一组正交的OCC。此外,跨越2个RB的沿频率方向在同一OFDM符号内的4个DM-RS RE(如图8中803所示)同样构成一组正交的OCC。即OCC的配置具有时频二维的正交性。
图9是本发明实施例的DM-RS复用的另一示例图,给出了另一种在1个RB内复用12个DM-RS的示例。如图9所示,DM-RS 1~12中每个DM-RS对(每对DM-RS可以看作一组,例如DM-RS 1和DM-RS 2)内使用CDM方式进行复用,6个DM-RS对(DM-RS pair)之间以FDM方式进行复用。
这里OCC长度为2,可以定义OCC矩阵表达式为
Figure PCTCN2016094890-appb-000002
则OCC的配置如图9所示,同样能够使OCC在时频二维均保持正交。
由上述实施例可知,使用FDM与CDM相结合的方式来复用来自不同用户设备的DM-RS。FDM可以完全避免用户设备的DM-RS之间的碰撞干扰,CDM可以在有 限的资源内使用正交码来复用更多的用户设备。由此,即使在大规模用户设备接入的情况下,也能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。
实施例3
本发明实施例提供一种解调参考信号的复用装置,可以配置在用户设备中,也可以配置在基站中。本发明实施例与实施例1和2相同的内容不再赘述。
图10是本发明实施例的解调参考信号的复用装置的示意图,如图10所示,解调参考信号的复用装置1000包括:
传输单元1001,其使用一个或多个时频资源块传输数据和DM-RS;
其中,每一用户设备或者数据流的DM-RS占用所述时频资源块的部分频域资源;部分用户设备或者数据流的DM-RS采用FDM方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的DM-RS采用CDM方式被叠加在相同的时频资源上。
在本实施例中,部分用户设备或者数据流的DM-RS还可以采用TDM方式被叠加在不同的时域资源上。
在本实施例中,所述用户设备或者数据流的DM-RS可以被分为多个组;每一组内的DM-RS采用CDM方式被叠加在相同的时频资源上,各组之间的DM-RS采用FDM方式被叠加在相同的时域资源上。
在本实施例中,对于每一组内的DM-RS,同一时频资源块中在时域方向上排列的DM-RS可以使用一组正交叠加码,同一时频资源块中在频域方向上排列的DM-RS也可以使用一组正交叠加码。此外,在至少两个时频资源块被使用的情况下,在频域方向上跨资源块地相邻排列的DM-RS也可以使用一组正交叠加码。
在本实施例中,传输DM-RS的每资源元素功率或者能量可以被增加。
由上述实施例可知,使用FDM与CDM相结合的方式来复用来自不同用户设备的DM-RS。FDM可以完全避免用户设备的DM-RS之间的碰撞干扰,CDM可以在有限的资源内使用正交码来复用更多的用户设备。由此,即使在大规模用户设备接入的情况下,也能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。
实施例3
本发明实施例还提供一种通信系统,与实施例1至3相同的内容不再赘述。所述 通信系统包括:
多个用户设备,其使用一个或多个时频资源块传输数据和DM-RS;
基站,其接收所述多个用户设备发送的DM-RS,根据DM-RS进行信道估计以及数据解调和译码;
其中,每一用户设备或者数据流的DM-RS占用所述时频资源块的部分频域资源;部分用户设备或者数据流的DM-RS采用FDM方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的DM-RS采用CDM方式被叠加在相同的时频资源上。
图11是本发明实施例的通信系统的示意图,示意性说明了发送端为用户设备以及接收端为基站的情况,如图11所示,通信系统1100可以包括基站1101和用户设备1102。其中,基站1101和/或用户设备1102可以配置有如实施例3所述的解调参考信号的复用装置1000。
本发明实施例还提供一种发送端,例如可以是用户设备,但本发明不限于此,还可以是其他的网络设备。以下以用户设备为例进行说明。
图12是本发明实施例的用户设备的示意图。如图12所示,该用户设备1200可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。其中,中央处理器100可以被配置为实现实施例1所述的解调参考信号的复用方法。
例如,中央处理器100可以被配置为进行如下的控制:使用一个或多个时频资源块传输数据和DM-RS;其中,每一用户设备或者数据流的DM-RS占用所述时频资源块的部分频域资源;部分用户设备或者数据流的DM-RS采用FDM方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的DM-RS采用CDM方式被叠加在相同的时频资源上。
如图12所示,该用户设备1200还可以包括:通信模块110、输入单元120、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1200也并不是必须要包括图12中所示的所有部件,上述部件并不是必需的;此外,用户设备1200还可以包括图12中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种接收端,例如可以是基站,但本发明不限于此,还可以 是其他的网络设备。以下以基站为例进行说明。
图13是本发明实施例的基站的构成示意图。如图13所示,基站1300可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。其中,中央处理器200可以被配置为实现实施例1所述的解调参考信号的复用方法。
例如,中央处理器200可以被配置为进行如下的控制:使用一个或多个时频资源块传输数据和DM-RS;其中,每一用户设备或者数据流的DM-RS占用所述时频资源块的部分频域资源;部分用户设备或者数据流的DM-RS采用FDM方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的DM-RS采用CDM方式被叠加在相同的时频资源上。
此外,如图13所示,基站1300还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1300也并不是必须要包括图13中所示的所有部件;此外,基站1300还可以包括图13中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种计算机可读程序,其中当在解调参考信号的复用装置或者用户设备中执行所述程序时,所述程序使得所述解调参考信号的复用装置或者用户设备执行实施例1所述的解调参考信号的复用方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得解调参考信号的复用装置或者用户设备执行实施例1所述的解调参考信号的复用方法。
本发明实施例还提供一种计算机可读程序,其中当在解调参考信号的复用装置或者基站中执行所述程序时,所述程序使得所述解调参考信号的复用装置或者基站执行实施例1所述的解调参考信号的复用方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得解调参考信号的复用装置或者基站执行实施例1所述的解调参考信号的复用方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现 上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的信息传输方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图10中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,传输单元等),既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图2所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (13)

  1. 一种解调参考信号的复用方法,所述复用方法包括:
    使用一个或多个时频资源块传输数据和解调参考信号;
    其中,每一用户设备或者数据流的所述解调参考信号占用所述时频资源块的部分频域资源;部分用户设备或者数据流的所述解调参考信号采用频分复用方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的所述解调参考信号采用码分复用方式被叠加在相同的时频资源上。
  2. 根据权利要求1所述的复用方法,其中,部分用户设备或者数据流的所述解调参考信号还采用时分复用方式被叠加在不同的时域资源上。
  3. 根据权利要求1所述的复用方法,其中,所述用户设备或者数据流的所述解调参考信号被分为多个组;每一组内的所述解调参考信号采用码分复用方式被叠加在相同的时频资源上,各组之间的所述解调参考信号采用频分复用方式被叠加在相同的时域资源上。
  4. 根据权利要求3所述的复用方法,其中,对于每一组内的所述解调参考信号,正交叠加码的使用满足如下条件:同一时频资源块中在时域方向上排列的所述解调参考信号使用一组正交叠加码,同一时频资源块中在频域方向上排列的所述解调参考信号也使用一组正交叠加码。
  5. 根据权利要求4所述的复用方法,其中,至少两个时频资源块被使用;正交叠加码的使用还满足如下条件:在频域方向上跨资源块地相邻排列的所述解调参考信号也使用一组正交叠加码。
  6. 根据权利要求1所述的复用方法,其中,传输所述解调参考信号的每资源元素功率或者能量被增加。
  7. 一种解调参考信号的复用装置,所述复用装置包括:
    传输单元,其使用一个或多个时频资源块传输数据和解调参考信号;
    其中,每一用户设备或者数据流的所述解调参考信号占用所述时频资源块的部分频域资源;部分用户设备或者数据流的所述解调参考信号采用频分复用方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的所述解调参考信号采用码分复用方式被叠加在相同的时频资源上。
  8. 根据权利要求7所述的复用装置,其中,部分用户设备或者数据流的所述解调参考信号还采用时分复用方式被叠加在不同的时域资源上。
  9. 根据权利要求7所述的复用装置,其中,所述用户设备或者数据流的所述解调参考信号被分为多个组;每一组内的所述解调参考信号采用码分复用方式被叠加在相同的时频资源上,各组之间的所述解调参考信号采用频分复用方式被叠加在相同的时域资源上。
  10. 根据权利要求9所述的复用装置,其中,对于每一组内的所述解调参考信号,正交叠加码的使用满足如下条件:同一时频资源块中在时域方向上排列的所述解调参考信号使用一组正交叠加码,同一时频资源块中在频域方向上排列的所述解调参考信号也使用一组正交叠加码。
  11. 根据权利要求10所述的复用装置,其中,至少两个时频资源块被使用;正交叠加码的使用还满足如下条件:在频域方向上跨资源块地相邻排列的所述解调参考信号也使用一组正交叠加码。
  12. 根据权利要求7所述的复用装置,其中,传输所述解调参考信号的每资源元素功率或者能量被增加。
  13. 一种通信系统,所述通信系统包括:
    多个用户设备,其使用一个或多个时频资源块传输数据和解调参考信号;
    基站,其接收所述多个用户设备发送的所述解调参考信号,根据所述解调参考信号进行信道估计以及数据解调和译码;
    其中,每一用户设备或者数据流的所述解调参考信号占用所述时频资源块的部分频域资源;部分用户设备或者数据流的所述解调参考信号采用频分复用方式被叠加在相同的时域资源上,并且部分用户设备或者数据流的所述解调参考信号采用码分复用方式被叠加在相同的时频资源上。
PCT/CN2016/094890 2016-08-12 2016-08-12 解调参考信号的复用方法、装置以及通信系统 WO2018027910A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019506150A JP6816819B2 (ja) 2016-08-12 2016-08-12 復調参照信号の多重化方法、装置及び通信システム
PCT/CN2016/094890 WO2018027910A1 (zh) 2016-08-12 2016-08-12 解调参考信号的复用方法、装置以及通信系统
CN201680087992.3A CN109565485B (zh) 2016-08-12 2016-08-12 解调参考信号的复用方法、装置以及通信系统
US16/264,951 US10911170B2 (en) 2016-08-12 2019-02-01 Method and apparatus for multiplexing demodulation reference signals and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094890 WO2018027910A1 (zh) 2016-08-12 2016-08-12 解调参考信号的复用方法、装置以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/264,951 Continuation US10911170B2 (en) 2016-08-12 2019-02-01 Method and apparatus for multiplexing demodulation reference signals and communication system

Publications (1)

Publication Number Publication Date
WO2018027910A1 true WO2018027910A1 (zh) 2018-02-15

Family

ID=61161301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094890 WO2018027910A1 (zh) 2016-08-12 2016-08-12 解调参考信号的复用方法、装置以及通信系统

Country Status (4)

Country Link
US (1) US10911170B2 (zh)
JP (1) JP6816819B2 (zh)
CN (1) CN109565485B (zh)
WO (1) WO2018027910A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112335194B (zh) * 2018-08-10 2023-07-04 株式会社Ntt都科摩 解调参考信号的资源分配方法和基站
US11658780B2 (en) * 2019-01-09 2023-05-23 Qualcomm Incorporated Demodulation reference signal multiplexing scheme selection for uplink transmission
CN116867068A (zh) * 2022-03-24 2023-10-10 大唐移动通信设备有限公司 一种参考信号传输方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989970A (zh) * 2009-08-07 2011-03-23 中国移动通信集团公司 一种解调导频信号的发送方法和设备
CN102882566A (zh) * 2011-07-12 2013-01-16 华为技术有限公司 降低多用户mimo系统中传输层间干扰的方法及设备
WO2014127676A1 (zh) * 2013-02-22 2014-08-28 中兴通讯股份有限公司 一种解调参考信号的传输方法及基站、用户设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011085509A1 (en) * 2010-01-12 2011-07-21 Telefonaktiebolaget L M Ericsson (Publ) Layer-to dm rs port mapping for lte-advanced
CN105763299B (zh) * 2010-01-18 2019-11-15 Lg电子株式会社 用于在无线通信系统中提供信道质量信息的方法和设备
JP5554799B2 (ja) 2012-03-19 2014-07-23 株式会社Nttドコモ 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
EP3079286B1 (en) * 2013-12-26 2019-11-06 Huawei Technologies Co., Ltd. Method and base station apparatus for processing data
WO2016127309A1 (en) * 2015-02-10 2016-08-18 Qualcomm Incorporated Dmrs enhancement for higher order mu-mimo
US10243713B2 (en) * 2015-03-13 2019-03-26 Qualcomm Incorporated DMRS based DL for low latency
US10396877B2 (en) * 2015-12-31 2019-08-27 Lg Electronics Inc. Method for reporting CSI in wireless communication system and apparatus therefor
WO2018030678A1 (ko) * 2016-08-08 2018-02-15 엘지전자 주식회사 가변 구조 참조신호

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989970A (zh) * 2009-08-07 2011-03-23 中国移动通信集团公司 一种解调导频信号的发送方法和设备
CN102882566A (zh) * 2011-07-12 2013-01-16 华为技术有限公司 降低多用户mimo系统中传输层间干扰的方法及设备
WO2014127676A1 (zh) * 2013-02-22 2014-08-28 中兴通讯股份有限公司 一种解调参考信号的传输方法及基站、用户设备

Also Published As

Publication number Publication date
US20190165873A1 (en) 2019-05-30
CN109565485B (zh) 2021-08-17
CN109565485A (zh) 2019-04-02
US10911170B2 (en) 2021-02-02
JP2019532536A (ja) 2019-11-07
JP6816819B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
EP3531646B1 (en) Method, device and system for transmitting reference signal
CN107040489A (zh) 发送和接收窄带同步信号的方法和装置
WO2017035808A1 (zh) 一种信号发送或接收方法和设备
WO2022033555A1 (zh) 信号传输方法和装置
KR20110031142A (ko) 클러스터드 디에프티 스프레드 오에프디엠 전송에 있어서 상향링크 복조용 레퍼런스 시그널의 생성 및 전송 방법
CN107040987A (zh) 发送和接收窄带同步信号的方法和装置
TW201218670A (en) Method for reference signal pattern allocation and related communication device
WO2022022579A1 (zh) 一种通信方法及装置
CN109661846A (zh) 通信方法、终端设备和网络设备
US20160134401A1 (en) Inter-cell interference
JP7164663B2 (ja) 情報伝送方法、ネットワーク機器及び端末装置
CN114079555A (zh) 信号传输方法和装置
US10911170B2 (en) Method and apparatus for multiplexing demodulation reference signals and communication system
CN107710853B (zh) 传输信息的方法和设备
WO2018028654A1 (zh) 参考信号映射方法及装置
WO2018027909A1 (zh) 解调参考信号的映射和复用方法、装置以及通信系统
WO2017173881A1 (zh) 参考信号的传输方法、设备和系统
WO2019096238A1 (zh) 一种通信方法和设备
JP2022166320A (ja) Pucch伝送方法、端末およびネットワーク側機器
WO2022036566A1 (zh) 控制信道的传输方法、终端、网络设备和存储介质
US10425961B2 (en) Non-orthogonal transmission method and apparatus in communication system
WO2011120584A1 (en) Sequence hopping in a communication system
KR20110033064A (ko) 페이크 mbsfn 서브 프레임의 dm-rs 전송 방법
WO2023125697A1 (zh) 一种通信方法、装置及设备
US20240106599A1 (en) 5G NR Enhancements for FD-OCC Length to Support DMRS Port Configurations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912365

Country of ref document: EP

Kind code of ref document: A1