WO2019096238A1 - 一种通信方法和设备 - Google Patents

一种通信方法和设备 Download PDF

Info

Publication number
WO2019096238A1
WO2019096238A1 PCT/CN2018/115843 CN2018115843W WO2019096238A1 WO 2019096238 A1 WO2019096238 A1 WO 2019096238A1 CN 2018115843 W CN2018115843 W CN 2018115843W WO 2019096238 A1 WO2019096238 A1 WO 2019096238A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource set
dmrs sequence
information
time domain
sequence
Prior art date
Application number
PCT/CN2018/115843
Other languages
English (en)
French (fr)
Inventor
夏金环
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019096238A1 publication Critical patent/WO2019096238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications and, more particularly, to a communication method and apparatus.
  • the maximum supported system bandwidth is 20 MHz, corresponding to a maximum of 110 Resource Blocks (RBs), which are used to demodulate and enhance the physical downlink control channel (Enhanced).
  • RBs Resource Blocks
  • the Demodulation Reference Signal (DMRS) of the Physical Downlink Control Channel (EPDCCH) is a reference signal sequence generated based on the number of RBs of the maximum bandwidth.
  • a physical resource block includes 12 resource elements (Resource Element, RE) or 16 REs in a sub-frame in the time domain.
  • the number of PRBs included in the system bandwidth generates a DMRS sequence corresponding to the total number of PRBs included in the entire system bandwidth and 12 or 16 REs in each PRB, and then the frequency position of the EPDCCH in the entire system bandwidth according to the network device configuration.
  • the DMRS sequence corresponding to the PRB position is intercepted.
  • NR Next RAN
  • user equipment in the frequency domain can be configured in a carrier bandwidth part (BWP) of a carrier, so the user equipment does not know the bandwidth of the entire carrier.
  • BWP carrier bandwidth part
  • a user equipment can be configured with one or more Control-Resource Sets (CORESET), each CORESET can start from any symbol position in a slot, and CORESET is in the time domain. It can be configured as 1 symbol, 2 symbols or 3 symbols.
  • CORESET Control-Resource Sets
  • the present application provides a communication method and device.
  • the user equipment When configured as a flexible resource set, the user equipment helps the user equipment to clarify the generation of the DMRS sequence on the resource set.
  • a communication method comprising: determining, by a first device, a first demodulation reference signal DMRS sequence according to a predefined parameter; the first device determining a second DMRS sequence mapped in a first resource set
  • the second DMRS sequence is a subset of the first DMRS sequence, and the second DMRS sequence is obtained according to time domain information and/or frequency domain information of the first resource set.
  • the user equipment In the communication method of the embodiment of the present application, the user equipment generates a DMRS sequence by using predefined parameters, which helps the user equipment to specify the generation of the DMRS sequence on the resource set.
  • the predefined parameter is determined based on the number of time units; and/or the predefined parameter is determined based on the number of frequency domain units.
  • the user equipment determines the predefined parameters by the number of time units and/or the number of frequency domain units, which helps the user equipment to clarify the generation of the DMRS sequence on the resource set.
  • the number of time units is any one of 1, 3, 14.
  • the first resource set includes one or more time units in a time domain; the time domain information includes at least one of: a start time unit The index, the number of time units, or the index of each time unit.
  • the user equipment helps the user equipment to clear the resource set by determining at least one of an index of a start time unit, a number of time units, or an index of each time unit in the resource set.
  • Generation of DMRS sequences are generated by the user equipment.
  • an initialization value of the first DMRS sequence generator is related to an index value of a start time unit of the first resource set; or, the first DMRS The initialization value of the sequence generator is related to the index of each time unit in the first resource set.
  • the initial value of the DMRS sequence generator is determined according to an index of each time unit in the first resource set or an index of a start time unit, so that the DMRS sequences generated on each time unit are different, and It helps to randomize interference between time units, between different terminal devices, and between different cells, thereby helping to improve the performance of channel estimation by terminal devices.
  • the initial value is related to an index of each symbol or an index of a start symbol in the first resource set.
  • the initial value of the first DMRS sequence generator is related to an index of a time unit.
  • the initial value of the DMRS sequence generator is determined according to the index of the time unit, so that the DMRS sequences generated on each time unit are different, which is helpful for different time units and different terminal devices.
  • the interference between cells is randomized, thereby helping to improve the performance of the terminal device for channel estimation.
  • the first resource set is a control resource set
  • the initial value is related to an index of each symbol in one slot or an index of the slot itself.
  • the second DMRS sequence is a subset determined from the first DMRS sequence according to an index of each time unit in the first resource set and/or a number of time units.
  • the first resource set is a control resource set
  • the second DMRS sequence is a subset determined from the first DMRS sequence according to an index and/or a number of symbols of each symbol in the first resource set.
  • the first DMRS sequence is generated in multiple time units in the time domain, when mapping in the first resource set, it is required to follow the time unit included in the time domain of the first resource set.
  • the number of bits selects a subset of the first DMRS sequence.
  • each time unit in the time domain according to the first resource set needs to be A subset of the first DMRS sequence is selected on the time unit corresponding to the index.
  • the second DMRS sequence is a subset determined from the first DMRS sequence according to a frequency range in which the first resource set is located.
  • the user equipment helps the user equipment to clear the mapping of the DMRS sequence in the frequency domain by determining the frequency domain range in which the resource set is located.
  • the second DMRS sequence is a number of resource blocks determined from a starting point of the first resource set and a subcarrier spacing type of the first resource set in a frequency range in which the first resource set is located. A subset determined in the DMRS sequence.
  • the second DMRS sequence is a subset determined from a third DMRS sequence according to a subcarrier spacing type of the first resource set, the third DMRS The sequence is a subset of the first DMRS sequence determined according to a frequency range in which the first set of resources is located.
  • the user equipment determines the subcarrier spacing type of the resource set and the frequency domain range in which the resource set is located, which helps the user equipment to explicitly map the DMRS sequence in the frequency domain.
  • the second DMRS sequence is a number of resource blocks determined from a starting point of the first resource set and a subcarrier spacing type of the first resource set in a frequency range in which the first resource set is located. a subset determined in the DMRS sequence, the third DMRS sequence being a subset of the first DMRS sequence determined according to a frequency range in which the first resource set is located and a number of resource blocks determined by a subcarrier spacing type of the reference resource set.
  • the reference resource set is a carrier.
  • the first device is a network device
  • the method further includes: the first device sending the first indication information to the terminal device, where the first indication information is used by And indicating time domain information and/or frequency domain information of the first resource set.
  • the first device is a terminal device
  • the method further includes: receiving, by the first device, first indication information sent by the network device, the first indication information Time domain information and/or frequency domain information indicating the first resource set.
  • the first resource set is a control resource set
  • the indication information is high layer signaling
  • the first resource set is a data resource set
  • the indication information is high layer signaling and/or downlink control information
  • a communication method including: determining, by a second device, time domain information of a first resource set, where the first resource set includes one or more time units in a time domain, the time domain
  • the information includes at least one of the following: an index of a start time unit, a number of time units, or an index of each time unit; the second device determines a first sequence according to time domain information of the first resource set, where the The first sequence is first information used to scramble the bearer of the first resource set, or used to descramble the first information carried by the first resource set.
  • the communication method of the embodiment of the present application initializes the scrambling sequence according to the index of the start time unit of the resource set, or the number of time units, or the index of each time unit, which is helpful for different user equipments and different cells.
  • the interference between the randomization increases the detection performance of the PDCCH.
  • the second device is a network device
  • the first sequence is used to scramble the first information carried by the first resource set
  • the method further includes: The second device sends second indication information to the terminal device, where the second indication information is used to indicate time domain information of the first resource set.
  • the second device is a terminal device, where the first sequence is used to descramble the first information carried by the first resource set, the method further includes: The second device receives the second indication information sent by the network device, where the second indication information is used for time domain information of the first resource set.
  • the first resource set is a control resource set
  • the indication information is high layer signaling
  • the first resource set is a data resource set
  • the indication information is high layer signaling and/or downlink control information
  • a communication device for performing the method of the first aspect or any possible implementation of the first aspect.
  • the communication device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • the communication device for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the communication device comprises means for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • a communication device comprising: a transceiver, a memory, and a processor.
  • the transceiver, the memory and the processor are in communication with each other via an internal connection path for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and to control the transmitter to transmit signals
  • the processor executes the instructions stored by the memory, the executing causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a communication device comprising: a transceiver, a memory, and a processor.
  • the transceiver, the memory and the processor are in communication with each other via an internal connection path for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and to control the transmitter to transmit signals
  • the processor executes the instructions stored by the memory, the executing causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a computer program product comprising: computer program code, when the computer program code is executed by a computer, causing the computer to perform any of the first aspect or the first aspect described above Possible methods in the implementation.
  • a computer program product comprising: computer program code, when the computer program code is executed by a computer, causing the computer to perform any of the second aspect or the second aspect described above Possible methods in the implementation.
  • a ninth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a chip system for use in a communication device, the chip system comprising: one or more processors, one or more memories and interface circuits, the interface circuit being responsible for the chip system and the outside world Information exchange, the one or more memories, the interface circuit and the one or more processors are interconnected by a line, the one or more memories storing instructions; the instructions being the one or more The processor is operative to perform the operations of the first device in the first aspect or any of the possible implementations of the first aspect.
  • a chip system for use in a communication device, the chip system comprising: one or more processors, one or more memories, and interface circuits, wherein the interface circuit is responsible for the chip system and the outside world Information exchange, the one or more memories, the interface circuit and the one or more processors are interconnected by a line, the one or more memories storing instructions; the instructions being the one or more
  • the processor is operative to perform the operations of the second device in any of the possible implementations of the second aspect or the second aspect above.
  • Figure 1 shows the relationship between a wideband carrier and a BWP.
  • Figure 2 is a schematic diagram of a resource cell in the case of a normal cyclic prefix.
  • Figure 3 is a diagram showing the relationship between the number of carrier resource blocks on a carrier in the frequency domain.
  • FIG. 4 is a schematic diagram of a carrier resource block, a physical resource block, and a virtual resource block.
  • FIG. 5 is an application scenario of the technical solution of the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • Figure 7 is a schematic illustration of the time-frequency position of a CORESET.
  • Figure 8 is a diagram showing the DMRS sequence generated by fixing a time unit in the time domain.
  • Figure 9 is a schematic diagram of the DMRS sequence generated by fixing three time units in the time domain.
  • Figure 10 is a diagram showing the DMRS sequence generated by fixing 14 symbols in the time domain.
  • FIG. 11 is another schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is another schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is still another schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is still another schematic block diagram of a communication device according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, and the network device may be a Global System of Mobile communication (GSM) system or Code Division Multiple Access (CDMA).
  • Base Transceiver Station which may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in an LTE system (Evolutional The NodeB, eNB or eNodeB) may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future.
  • the network device in the 5G network or the network device in the PLMN network in the future is not limited in this embodiment.
  • a carrier bandwidth part is a continuous range of frequencies on a carrier. From the network equipment side, multiple BWPs can be divided on one carrier, and each BWP can have different subcarrier spacing types. From the terminal device side, one terminal device can be configured with multiple downlink or uplink BWPs.
  • the configured information includes: a subcarrier spacing type corresponding to the BWP, a Cyclic Prefix corresponding to the BWP, and a number of consecutive physical resource blocks PRB corresponding to the BWP, and may also include a BWP. Information such as the offset between the first physical resource block and the first physical resource block of the carrier.
  • the user equipment receives the downlink signal sent by the network device on the downlink BWP according to the subcarrier spacing type and the cyclic prefix of the BWP, and sends the uplink signal on the uplink BWP.
  • the terminal device configured with the BWP only needs to receive or transmit on the configured BWP, and does not need to know the bandwidth of the carrier.
  • FIG. 1 shows a relationship between a wideband carrier and a BWP.
  • a user equipment can be configured with one or more BWPs on one carrier, and the user equipment does not need to know the bandwidth of the carrier.
  • a BWP can support multiple subcarrier spacing types and cyclic prefix types.
  • Table 1 shows the correspondence between a seed carrier spacing type and a cyclic prefix type.
  • One subcarrier spacing type ⁇ corresponds to one subcarrier spacing.
  • the subcarrier spacing type ⁇ is 0, the subcarrier spacing is 15 kHz; when the subcarrier spacing type ⁇ is 1, the subcarrier spacing is 30 kHz.
  • Table 1 is only an example for understanding the technical solutions of the present application, and the present application includes but is not limited thereto.
  • the number of slots in one subframe is numbered in ascending order.
  • Table 2 shows the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols included in each slot in the case of a normal cyclic prefix. It should be noted that Table 2 is only an example for understanding the technical solutions of the present application, and the present application includes but is not limited thereto.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Table 3 shows the number of OFDM symbols included in each slot when the cyclic prefix is extended. It should be noted that Table 3 is only an example for understanding the technical solutions of the present application, and the present application includes but is not limited thereto.
  • Subcarriers form a resource grid, where Indicates that the subcarrier spacing type is ⁇ , and the number of symbols included in one subframe, Indicates that the subcarrier spacing type is the maximum number of subcarriers in the ⁇ frequency domain. Indicates the number of maximum resource blocks in the frequency domain when the subcarrier spacing type is ⁇ .
  • x represents downlink or uplink, respectively. It should be noted that Table 4 is only an example for understanding the technical solutions of the present application, and the present application includes but is not limited thereto.
  • each seed carrier spacing type configuration ⁇ corresponds to a resource cell. among them, Indicates the number of minimum resource blocks in the frequency domain when the downlink subcarrier spacing type is ⁇ . Indicates the maximum number of resource blocks in the frequency domain when the downlink subcarrier spacing type is ⁇ . Indicates the number of minimum resource blocks in the frequency domain when the uplink subcarrier spacing type is ⁇ . Indicates the maximum number of resource blocks in the frequency domain when the uplink subcarrier spacing type is ⁇ .
  • Figure 2 shows a schematic diagram of a resource cell in the case of a normal cyclic prefix.
  • Each element in the resource cell (corresponding to one OFDM symbol in the time domain and one subcarrier in the frequency domain) is defined as a resource unit and is uniquely identified by (k, l) p, ⁇ , where k is each subcarrier in the frequency domain Index, l is the index of each symbol in the time domain, and p is the antenna port number.
  • the carrier resource block (CRB) of ⁇ on one carrier is numbered from 0 to 0 in the frequency domain. among them, As shown in Table 4.
  • FIG. 3 shows the relationship between the numbers of carrier resource blocks on one carrier in the frequency domain when ⁇ is configured corresponding to different subcarrier spacing types.
  • a CRB is defined according to the subcarrier spacing type ⁇ of the carrier, and the maximum number of CRBs is the number of subcarriers of the carrier divided by 12, that is,
  • k is the index of the subcarrier, Represents the number of subcarriers contained in a resource block, The value is 12.
  • PRB Physical Resource Block
  • Is the i-th BWP is the size of the BWP allocated by CRB and satisfies
  • n CRB represents the index of the CRB
  • n PRB represents the index of the PRB.
  • a virtual resource block refers to dividing a resource block RB according to a BWP's own subcarrier spacing type in a BWP, and each RB contains an index of 12 RE-defined RBs, which is called an index. VRB index.
  • FIG. 4 is a schematic diagram of a carrier resource block, a physical resource block, and a virtual resource block. It can be seen that when the subcarrier spacing type of the BWP and the subcarrier spacing type of the carrier are the same, the PRB is equal to the VRB. One RB in the frequency domain contains the same frequency domain resources, and the indexes in the BWP are also the same.
  • a control resource set is in the frequency domain Component blocks, and the time domain is composed of Symbol composition with Both are configured by network devices.
  • Each CORESET is in a BWP.
  • a terminal device may be configured with one or more CORESETs by the network device, and each control resource set is associated with a mapping of a Control Channel Element (CCE) to a Resource Element Group (REG).
  • CCE Control Channel Element
  • REG Resource Element Group
  • the symbols carried by the Physical Downlink Control Channel (PDCCH) will be mapped on the control channel unit CCE in the CORESET.
  • the decoding of the downlink control channel PDCCH by the terminal device requires DMRS, and the DMRS is used to demodulate the downlink control channel.
  • the symbol mapping carried by the PDCCH is within the CORESET, and the terminal device demodulates the PDCCH according to the DMRS of the demodulated PDCCH mapped within the CORESET.
  • the DMRS sequence of the associated PDCCH channel is mapped to three resource elements (RE elements) in each REG, where each resource element group REG is equal to one Orthogonal Frequency Duplex Multiplexing (OFDM).
  • Each resource block (RB) corresponding to the symbol.
  • Each RB includes 12 subcarriers, that is, each REG includes 12 REs, and one symbol and one subcarrier correspond to one resource unit RE.
  • the network device sets the DMRS associated with the PDCCH to the wideband DMRS, the DMRS needs to map each symbol on the CORESET.
  • the terminal device assumes that the DMRS is mapped; if the network device does not set the DMRS associated with the PDCCH as the broadband DMRS, the user equipment can only assume the user equipment.
  • the DMRS is mapped in the REG in which the attempted decoding of the PDCCH is located.
  • c(m) is a Pseudo-random sequence
  • the generator that generates the pseudo-random sequence is initialized by c init
  • the formula for generating c init is as shown in formula (2):
  • the generation formula of the DMRS sequence is as shown in (1), and the value of m ranges from 0 to N-1, where N is the total length of the DMRS sequence.
  • FIG. 5 is an application scenario of the technical solution of the embodiment of the present application.
  • the network device sends one or more of configuration information, downlink control information, demodulation reference signals, and data channels to the terminal device.
  • the terminal device After receiving the configuration information, the downlink control information, the demodulation reference signal, and the data channel sent by the network device, the terminal device sends an uplink data channel and/or an uplink control channel to the network device.
  • FIG. 6 is a schematic flowchart of a communication method 100 according to an embodiment of the present application. As shown in FIG. 6 , the method 100 may be performed by a terminal device or may be performed by a network device. The method 100 includes:
  • the first device determines, according to the predefined parameter, a first demodulation reference signal DMRS sequence.
  • the first device determines that the mapping maps the second DMRS sequence in the first resource set, where the second DMRS sequence is a subset of the first DMRS sequence, where the second DMRS sequence is according to the first resource set. Time domain information and/or frequency domain information obtained.
  • the first device first determines a predefined parameter, determines a first DMRS sequence, and the first device determines a second DMRS sequence that is mapped in the first resource set, where the second DMRS sequence is a child of the first DMRS sequence
  • the second DMRS sequence is obtained according to time domain information and/or frequency domain information of the first resource set.
  • the network device may generate a first DMRS sequence according to a predefined parameter, where the network device maps a second DMRS sequence in the first resource set, where the second DMRS sequence is the first A subset of the DMRS sequence, the second DMRS sequence is obtained by the network device according to time domain information and/or frequency domain information of the first resource set.
  • the first device is a terminal device, and the terminal device may generate a local first DMRS sequence or determine a first DMRS sequence generated by the network device according to the predefined parameter, where the terminal device determines the first mapping in the first resource set.
  • a second DMRS sequence the second DMRS sequence is a subset of the first DMRS sequence, and the second DMRS sequence is obtained by the terminal device according to time domain information and/or frequency domain information of the first resource set, where the terminal device can Demodulating the PDCCH according to the second DMRS sequence.
  • the first resource set is a control resource set, where the control resource set includes 1, 2, or 3 symbols in the time domain.
  • the first resource set is a data resource set, where the data resource set includes one or more symbols, or one or more subframes, or one or more time slots in the time domain.
  • the predefined parameter is a first value, for example, the first value may be 12.
  • the time unit may be a symbol, a slot, a mini-slot, a slot or a subframe after a plurality of slots are aggregated, and the present application is not limited thereto.
  • the frequency domain unit may be a resource block RB.
  • A can also be twice the number of time units in the time domain
  • the predefined parameter can be 3 ⁇ 1/2 ⁇ A ⁇ B
  • B can also be the number of frequency domain units in the frequency domain.
  • the predefined parameter may be 3 ⁇ A ⁇ 2 ⁇ B, and the application is not limited thereto.
  • FIG. 7 is a schematic diagram showing a time-frequency position of a CORESET, the first resource set is a control resource set (CORESET), the CORESET resource is configured by a network device, and the network device can configure a BWP for the terminal device, and the CORESET is in the BWP.
  • the bandwidth of CORESET in the frequency domain is less than or equal to the bandwidth of BWP.
  • the number of symbols contained in CORESET in the time domain is 1 symbol, 2 symbols or 3 symbols.
  • the first resource set includes one or more time units on the time domain, and the time domain information includes at least one of: an index of a start time unit, a number of time units, and an index of each time unit. .
  • the predefined parameter is determined according to the number of time units.
  • the predefined parameter may be determined by the number information A of the time unit in the time domain, and A may be a fixed value, such as 1, 2, 3 or 14, regardless of whether the first resource set is configured in the time domain.
  • A may be a fixed value, such as 1, 2, 3 or 14, regardless of whether the first resource set is configured in the time domain.
  • time units are generated according to the number of time units in the time domain when the first DMRS sequence is generated.
  • Figure 8 shows a schematic diagram of the DMRS sequence generated by fixing a time unit in the time domain.
  • A is 1, and the DMRS sequences are generated according to a time unit.
  • the value is related, for example, formula (3) is a formula for calculating the initial value:
  • n symbol is the index of each time unit
  • i is the label of the first resource set.
  • the parameter of the ith first resource set configured for the network device.
  • an initialization value of the first DMRS sequence generator is related to an index of a start time unit in the first resource set;
  • the initialization value of the first DMRS sequence generator is related to the index of each time unit in the first resource set.
  • the first DMRS sequence is generated according to an index of each symbol, and is independent of an initial time unit of the first resource set and an index of each time unit, but when the time domain is mapped, according to the start of the first resource set A time unit index or an index of each time unit selects a subset of the first DMRS sequence.
  • the first resource set is a control resource set
  • the DMRS sequence may be generated according to an index of each symbol in the time domain according to the control resource set, and may also be generated according to an index of a symbol on a time slot.
  • the index of the starting symbol of the first resource set or the index of each symbol is irrelevant.
  • this time unit refers to the index of each symbol in a slot or to the index of the slot itself. When indexed, this index is equivalent to the index of each symbol in CORESET.
  • the DMRS included in the first resource set is intercepted by the DMRS sequence generated according to the length 3 ⁇ A ⁇ B. The portion of the second DMRS sequence is obtained.
  • the generator of the DMRS sequence is initialized according to the index value of the first time unit on the first time unit, and the DMRS generated according to the length 3 ⁇ A ⁇ B
  • the sequence intercepts a portion of the frequency domain within the first resource set; initializes the generator of the DMRS sequence according to the index value of the second time unit on the second time unit, and intercepts the DMRS sequence generated according to the length 3 ⁇ A ⁇ B A portion of a resource set within the inner frequency domain. It should be understood that A can be 1.
  • the generator of the DMRS sequence is initialized according to the index value of the first time unit on the first time unit, and the DMRS generated according to the length 3 ⁇ A ⁇ B
  • the sequence intercepts a portion of the frequency domain within the first resource set; initializes the generator of the DMRS sequence according to the index value of the second time unit on the second time unit, and intercepts the DMRS sequence generated according to the length 3 ⁇ A ⁇ B a portion of the inner frequency domain of the resource set; initializing the generator of the DMRS sequence according to the index value of the third time unit on the third time unit, and intercepting the first resource set according to the DMRS sequence generated by the length 3 ⁇ A ⁇ B The part on the inner frequency domain. It should be understood that A can be 1.
  • the initial value of the first DMRS sequence generator may be related to a parameter of the configuration of the resource set by the network device.
  • the communication method of the embodiment of the present application includes an index of each time unit in an initial value, so that DMRS sequences generated on each time unit are different, which is beneficial to time units, different terminal devices, and different cells.
  • the interference between the randomizations helps to improve the performance of the terminal device for channel estimation.
  • the initial value of the first DMRS sequence generator is independent of an index of each time unit in the first resource set.
  • the initialization value of the generator is independent of the index value of each time unit, that is, the initial value does not include the index value of the time unit, and the DMRS sequence generated on each time unit is the same, for the first resource set in the time domain.
  • the DMRS sequence generated on the second time unit or the third time unit is the same as the DMRS sequence generated on the first time unit.
  • the communication method of the embodiment of the present application regardless of the device configuration of several resource sets, whether each resource set includes several time units in the time domain, the device only needs to generate a DMRS sequence once, which helps to simplify the process of generating the DMRS sequence.
  • the first DMRS sequence is generated in one time unit as described above with reference to FIG. 8.
  • the following describes the generation of the first DMRS sequence in accordance with a plurality of time units in conjunction with FIG. 9 and FIG.
  • Figure 9 shows a schematic diagram of the DMRS sequence generated by fixing three time units in the time domain. As shown in Figure 9, A is 3, and the DMRS sequences are all generated in three time units.
  • the initialization value of the generator is related to an index value of a start time unit of the first resource set, for example, n symbol in the formula (3) is an index of a start time unit of the first resource set.
  • the first resource set includes one time unit in the time domain, and the start time unit of the first resource set is time unit 0;
  • the second resource set includes two time units in the time domain. And the start time unit of the second resource set is time unit 0;
  • the third resource set includes 3 time units on the time domain, and the start time unit of the third resource set is time unit 0.
  • the fourth resource set includes 2 time units in the time domain, and the start time unit of the fourth resource set is time unit 3, although the second resource set and the fourth resource set occupy 2 time units in the time domain.
  • the initial values of the DMRS sequences are different, the DMRS sequences in the second resource set and the fourth resource set are different.
  • the resource set is a control resource set
  • the DMRS sequences are all generated according to three symbols
  • the initialization value of the generator is related to the index value of the start symbol of the first resource set.
  • the initial value of the first DMRS sequence generator may be related to a parameter that the network device configures for the resource set.
  • the communication method of the embodiment of the present application includes an index of the start time unit in the initial value, so that the DMRS sequences generated on different initial time units are different, which is beneficial to time units, different terminal devices, and different cells.
  • the interference between the randomizations helps to improve the performance of the terminal device for channel estimation.
  • the initialization value of the generator is independent of the index value of the start time unit of the first resource set, that is, the initial value does not include the index value of the time unit, regardless of whether the device is configured with several resource sets, regardless of each resource set. With several time units in the time domain, the device only needs to generate a DMRS sequence once, which helps to simplify the process of DMRS sequence generation.
  • FIG. 10 shows a schematic diagram of a DMRS sequence generated by fixing 14 symbols in the time domain.
  • the first resource set is a control resource set
  • A is 14, and the DMRS sequences are all generated according to 14 symbols.
  • the control resource set is configured with several symbols in the time domain, and regardless of the configuration of the set control resource set and the control resource set appearing in the first symbol in one slot, the DMRS sequence is generated according to 14 time zones. The length of the symbol is generated.
  • the initial value of the generator is related to the index value of the time slot, that is, the start generator of each time slot is initialized once, and the DMRS sequence is generated by including 14 symbols according to the length of one time slot, for example, formula (3)
  • the n symbol is an index of a time slot.
  • n symbol represents the index of the symbol in one slot.
  • the terminal device When the advantages of the DRMS sequence are generated, no matter the terminal device is configured with several control resource sets, regardless of the first symbol of the control resource set appearing in one time slot, the DMRS sequence is generated only once, and then according to the control resource.
  • the configuration of the set separately intercepts the corresponding position of the generated DMRS sequence in the time domain, and the DMRS sequence corresponding to the location in the frequency domain, and maps to each RB according to the pre-frequency domain and the subsequent time domain.
  • the above describes the generation and mapping methods of DMRS sequences in the time domain.
  • the following describes the generation and mapping methods of DMRS sequences in the frequency domain.
  • the predefined parameter is determined by the number of frequency domain units.
  • the predefined parameter may also be determined by the number information B of the frequency domain unit on the frequency domain.
  • the first resource set is CORESET
  • the frequency domain unit is the number of resource blocks RB, regardless of the number of CORESETs configured by the terminal and the number of RBs occupied by the CORESET in the frequency domain, and the DMRS sequence is generated according to a fixed number.
  • the above describes the generation method of the DMRS sequence in the frequency domain.
  • the following describes the mapping method of the DMRS in the frequency domain.
  • the second DMRS sequence is a subset determined from the first DMRS sequence according to a frequency range in which the first resource set is located.
  • the first resource set is CORESET
  • the frequency domain unit is an RB.
  • the predefined time parameter may be generated according to the number of RBs in the frequency domain of the reference resource set (for example, BWP), the subcarrier spacing type of the CORESET and The subcarrier spacing type configuration of the BWP is the same.
  • the DMRS sent in the CORESET is intercepted according to the RB in the BWP according to the CORESET.
  • the CORESET configured by the main system information block is generated and mapped according to this method.
  • the second DMRS sequence is a subset determined from the first DMRS sequence according to a frequency range in which the first resource set is located and a subcarrier spacing type of the first resource set.
  • the second DMRS sequence is a subset determined from the first DMRS sequence according to a frequency range in which the first resource set is located and a number of resource blocks determined according to a subcarrier spacing type of the first resource set.
  • the second DMRS sequence is a subset determined from the first DMRS sequence according to a frequency range in which the first resource set is located and a subcarrier spacing type of the reference resource set.
  • the subcarrier spacing type of the first resource set may be determined by referring to the subcarrier spacing type of the resource set.
  • the second DMRS sequence is a subset determined from the first DMRS sequence according to a frequency range in which the first resource set is located and a number of resource blocks determined according to a subcarrier spacing type of the reference resource set.
  • the frequency range in which the first resource set is located may be determined by a starting point of the reference resource set in the frequency domain and a subcarrier spacing type of the reference subcarrier.
  • the reference resource set may be a BWP, and may also be a component carrier (CC, or a component carrier, a component carrier, etc. CC).
  • CC component carrier
  • CC component carrier
  • the second DMRS sequence is a subset determined from the third DMRS sequence according to a subcarrier spacing type of the first resource set, where the third DMRS sequence is determined according to a frequency range in which the first resource set is located. A subset of the first DMRS sequence.
  • the first resource set is CORESET
  • the frequency domain unit is RB, regardless of the number of CORESETs configured by the terminal, regardless of the type of subcarrier spacing of the CORESET, and the number of PRBs occupied by the CORESET in the frequency domain, generating a DMRS sequence.
  • mapping according to the frequency range of CORESET, the RS in the corresponding PRB is intercepted from the reference point, and then the intercepted RS is selected to be mapped on the VRB according to the subcarrier spacing type of CORESET.
  • This method is suitable for the terminal device to know the reference point, that is, the mapping of the DMRS in the CORESET configured by the network device through the terminal-specific high-level signaling configuration.
  • the value of m in the formula (1) is 0, 1, 2, ..., 824.
  • the terminal device is configured with the offset value of the BWP, and the subcarrier spacing of the carrier is 15 kHz, and the subcarrier spacing of the BWP is 30 kHz.
  • the CORESET is equal to the frequency domain range of the BWP in the frequency domain.
  • the BWP contains 4 PRBs, and the range is CRB2, CRB3, CRB4, and CRB5.
  • the DMRS starts to map according to CRB0. Then the BDM actually intercepts the DMRS range from the value of the first CRB index in the BWP*3 to the BWP. (The index value of the last CRB is +1) *3-1, that is, the value of m is from 6 to 17.
  • the number of m corresponding to this range is 12, that is, the symbols of the DMRS mapped on the 12 REs are intercepted, and need to be mapped to the two VRBs of the BWP.
  • the selected rules include, but are not limited to, the following two methods.
  • Method 1 In this way, the first six are extracted from the 12 in the order of mapping, that is, in the first frequency domain and from the low frequency to the high frequency, and the subcarrier numbers respectively mapped to each VRB are 1, 5, 9 Three REs.
  • Method 1 helps to simplify the selection process, and the method is relatively simple.
  • Method 2 6 out of 12 are equally spaced, that is, one out of every two.
  • Method 2 The equally spaced selection process facilitates orthogonality between DMRSs between cells, thereby contributing to interference minimization.
  • the first resource set may also be a data resource set, and the DMRS sequence is generated according to the above method, and the DMRS sequence may be used for data demodulation.
  • the first device is a network device, and the method further includes:
  • the first device sends first indication information to the terminal device, where the first indication information is used to indicate time domain information and/or frequency domain information of the first resource set.
  • the first device is a terminal device, and the method further includes:
  • the first device receives the first indication information sent by the network device, where the first indication information is used to indicate time domain information and/or frequency domain information of the first resource set.
  • the first resource set is a control resource set
  • the indication information is high layer signaling.
  • the first resource set is a data resource set
  • the indication information is high layer signaling and/or downlink control information.
  • the DMRS sequence generation and mapping method in the embodiment of the present application is described in detail with reference to FIG. 6 to FIG. 9 .
  • the method for generating the scrambling sequence in the embodiment of the present application is described in detail below with reference to FIG. 11 .
  • FIG. 11 is a schematic flowchart of a communication method 200 according to an embodiment of the present application.
  • the second device may be a network device
  • the first terminal device may also be a terminal device, where the method 200 includes :
  • the second device determines time domain information of the first resource set, where the first resource set includes one or more time units on the time domain, where the time domain information includes at least one of the following: an index and a time of the start time unit. The number of cells or the index of each time unit;
  • the second device determines, according to the time domain information of the first resource set, the first sequence, where the first sequence is used to scramble the first information of the first resource set bearer, or is used to descramble the The first information carried by the first resource set.
  • the network device determines time domain information of the first resource set, where the time domain information includes at least one of: an index of a start time unit, a number of time units, or each An index of the time unit, the network device determining, according to the time domain information of the first resource set, a first sequence, where the first sequence is first information used to scramble the bearer of the first resource set.
  • the second device is a terminal device, where the terminal device determines time domain information of the first resource set, where the time domain information includes at least one of: an index of a start time unit, a number of time units, or each time unit And determining, by the terminal device, the first sequence according to the time domain information of the first resource set, where the first sequence is first information used to descramble the first resource set bearer.
  • bit block transmitted on the PDCCH is b(0),...,b(M bit -1), and this bit block is scrambled by a scrambling sequence, scrambled according to the following method, and the scrambled sequence for
  • c(i) is a terminal device specific scrambling code sequence
  • the scrambling code sequence being a pseudo-random sequence, for example generated by the following equations (4), (5) and (6):
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod 2 (5)
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod 2 (6)
  • N C 1600
  • the second m-sequence initialization parameter and the CORESET start symbol are related to the symbol index in one slot and/or the parameter associated with the CORESET configured by the network device to the terminal, as represented by the following formula (7):
  • the index of the symbol indicating the starting symbol in one slot, and m is the number of CORESET. Indicates the parameter associated with the mth CORESET configured by the network device to the terminal.
  • the first device is a network device, and the first resource set is used to scramble the first information carried by the first resource set, the method further includes:
  • the first device sends second indication information to the terminal device, where the second indication information is used to indicate time domain information of the first resource set.
  • the first device is a terminal device, where the first sequence is used to descramble the first information carried by the first resource set, and the method 200 further includes:
  • the first device receives second indication information that is sent by the network device, where the second indication information is used for time domain information of the first resource set.
  • the first resource set is a control resource set
  • the indication information is high layer signaling.
  • the first resource set is a data resource set
  • the indication information is high layer signaling and/or downlink control information.
  • the initial scrambling code sequence is performed according to the index of the start symbol of the resource set, which helps the randomization of interference between different user equipments and different cells, and improves the detection performance of the PDCCH.
  • FIG. 12 shows a schematic block diagram of a communication device 300 according to an embodiment of the present application. As shown in FIG. 12, the communication device 300 includes:
  • the first processing module 310 is configured to determine, according to the predefined parameter, a first demodulation reference signal DMRS sequence
  • the second processing module 320 is configured to determine a second DMRS sequence that is mapped in the first resource set, where the second DMRS sequence is a subset of the first DMRS sequence, where the second DMRS sequence is based on the first resource
  • the time domain information and/or frequency domain information of the set is obtained.
  • the predefined parameter is determined according to the number of time units; and/or,
  • the predefined parameters are determined based on the number of frequency domain units.
  • the first resource set includes one or more time units on the time domain, and the time domain information includes at least one of: an index of a start time unit, a number of time units, or an index of each time unit. .
  • the initialization value of the first DMRS sequence generator is related to an index value of a start time unit of the first resource set;
  • the initialization value of the first DMRS sequence generator is related to the index of each time unit in the first resource set.
  • the initial value of the first DMRS sequence generator is related to an index of a time unit.
  • the second DMRS sequence is a subset determined according to a frequency range in which the first resource set is located and determined from the first DMRS sequence.
  • the second DMRS sequence is a subset determined from a third DMRS sequence according to a subcarrier spacing type of the first resource set, where the third DMRS sequence is determined according to a frequency range in which the first resource set is located. A subset of the first DMRS sequence.
  • the communication device is a network device, and the communication device 300 further includes:
  • the first transceiver module is configured to send first indication information to the terminal device, where the first indication information is used to indicate time domain information and/or frequency domain information of the first resource set.
  • the communication device is a terminal device, and the communication device 300 further includes:
  • the second transceiver module is configured to receive first indication information that is sent by the network device, where the first indication information is used to indicate time domain information and/or frequency domain information of the first resource set.
  • FIG. 13 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 includes:
  • the third processing module 410 is configured to determine time domain information of the first resource set, where the first resource set includes one or more time units on the time domain, and the time domain information includes at least one of the following: a start time unit The index, or the number of time units, or the index of each time unit;
  • the fourth processing module 420 is configured to determine, according to the time domain information of the first resource set, the first sequence, where the first sequence is used to scramble the first information of the first resource set bearer, or is used to solve The first information carried by the first resource set is disturbed.
  • the communications device 400 is a network device, the first sequence is used to scramble the first information carried by the first resource set, and the communications device 400 further includes:
  • the third transceiver module is configured to send second indication information to the terminal device, where the second indication information is used to indicate time domain information of the first resource set.
  • the communication device 300 is a terminal device, where the first sequence is used to descramble the first information carried by the first resource set, and the communications device further includes:
  • the fourth transceiver module is configured to receive second indication information that is sent by the network device, where the second indication information is used for time domain information of the first resource set.
  • FIG. 14 shows a schematic block diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 includes one or more processors 510, a memory 520, and a communication interface 530; the one or more processors 510, the memory 520, and the communication interface 530 are each connected by an internal path;
  • the memory 520 is configured to store a computer execution instruction
  • the one or more processors 510 are configured to execute computer executed instructions stored in the memory 520, so that the communication device 500 can perform data interaction with other devices through the communication interface 530 to perform the foregoing method embodiments. Communication method.
  • the one or more processors 510 are configured to perform the following operations:
  • the communication device 500 may be specifically the communication device 300 in the above embodiment, and may be used to perform various steps and/or processes corresponding to the communication device 300 in the above method embodiments.
  • FIG. 15 is a schematic block diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 includes one or more processors 610, a memory 620, and a communication interface 630; the one or more processors 610, the memory 620, and the communication interface 630 are each connected by an internal path;
  • the memory 620 is configured to store a computer execution instruction
  • the one or more processors 610 are configured to execute computer-executed instructions stored by the memory 620, so that the communication device 600 can perform data interaction with other devices through the communication interface 630 to perform the foregoing method embodiments. Communication method.
  • the one or more processors 610 are configured to perform the following operations:
  • the time domain information includes at least one of: an index of a start time unit, a number of time units, or The index of each time unit;
  • the communication device 600 may be specifically the communication device 400 in the above embodiment, and may be used to perform various steps and/or processes corresponding to the communication device 400 in the above method embodiments.
  • the embodiment of the present application further provides a chip system, the chip system includes: one or more processors, one or more memories, and an interface circuit, wherein the interface circuit is responsible for information interaction between the chip system and the outside world, One or more memories, the interface circuit, and the one or more processors are interconnected by a line, the one or more memories having instructions stored therein; the instructions being executed by the one or more processors to The communication device is caused to perform an operation of the communication device corresponding to the above method.
  • the embodiment of the present application further provides a computer program product, which is applied to a communication device, the computer program product comprising a series of instructions, when the instruction is executed, so that the communication device can perform a method corresponding to the above method.
  • the operation of the communication device is not limited to the above method.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the computer program product can include one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic disk), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a Solid State Disk (SSD)).
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic disk
  • an optical medium e.g., a DVD
  • a semiconductor medium e.g., a Solid State Disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和设备,该通信方法包括:第一设备根据预定义参数,确定第一解调参考信号DMRS序列;该第一设备确定映射在第一资源集合内的第二DMRS序列,该第二DMRS序列为该第一DMRS序列的子集,其中,该第二DMRS序列是根据该第一资源集合的时域信息和/或频域信息获得的。本申请实施例的通信方法,用户设备在配置为灵活的资源集合时,有助于用户设备明确资源集合上的DMRS序列的产生。

Description

一种通信方法和设备
本申请要求于2017年11月17日提交中国专利局、申请号为201711147772.8、申请名称为“一种通信方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和设备。
背景技术
长期演进升级版(Long Term Evolution Advanced,LTE-A)系统中,支持的最大系统带宽为20MHz,对应最大为110个资源块(Resource Block,RB),用于解调增强物理下行控制信道(Enhanced Physical Downlink control Channel,EPDCCH)的解调参考信号(Demodulation Reference Signal,DMRS)是根据最大带宽的RB个数来生成参考信号序列。
在LTE-A系统中,在时域上一个子帧内,频域上1个物理资源块(Physical Resource Block,PRB)内包括12个资源元素(Resource Element,RE)或者16个RE,根据整个系统带宽包含的PRB的数量,生成一个对应整个系统带宽包括的PRB个数、且每个PRB内包含12或16个RE的DMRS序列,然后按照网络设备配置的EPDCCH在整个系统带宽内的频率位置截取对应PRB位置上的DMRS序列。
在下一代接入网(New RAN,NR)系统中,频域上用户设备可以被配置在一个载波的带宽部分(Carrier bandwidth part,BWP)内,因此用户设备并不知道整个载波的带宽,此外在时域上,一个用户设备可以被配置一个或多个控制资源集合(Control-Resource Set,CORESET),每个CORESET在一个时隙(slot)中可以从任何符号位置开始,且CORESET在时域上可以被配置为1个符号、2个符号或者3个符号。
因此,对于NR系统的用户设备,如何产生DMRS序列是一个亟待解决的问题。
发明内容
本申请提供一种通信方法和设备,用户设备在配置为灵活的资源集合时,有助于用户设备明确资源集合上的DMRS序列的产生。
第一方面,提供了一种通信方法,该方法包括:第一设备根据预定义参数,确定第一解调参考信号DMRS序列;该第一设备确定映射在第一资源集合内的第二DMRS序列,该第二DMRS序列为该第一DMRS序列的子集,其中,该第二DMRS序列是根据该第一资源集合的时域信息和/或频域信息获得的。
本申请实施例通信方法,用户设备通过预定义参数生成DMRS序列,有助于用户设备明确资源集合上DMRS序列的产生。
结合第一方面,在第一方面的某些可能的实现方式中,该预定义参数是根据时间单元的数量确定的;和/或,该预定义参数是根据频域单元的数量确定的。
本申请实施例通信方法,用户设备通过时间单元的数量和/或频域单元的数量确定预定义参数,有助于用户设备明确资源集合上DMRS序列的产生。
在一些可能的时间方式中,该时间单元的数量为1、3、14中的任意一种。
结合第一方面,在第一方面的某些可能的实现方式中,该第一资源集合在时域上包括一个或者多个时间单元;该时域信息包括以下至少一种:起始时间单元的索引、时间单元的个数或者每个时间单元的索引。
本申请实施例的通信方法,用户设备通过确定资源集合中起始时间单元的索引、时间单元的个数或每个时间单元的索引中的至少一种,有助于用户设备明确资源集合上的DMRS序列的产生。
结合第一方面,在第一方面的某些可能的实现方式中,该第一DMRS序列产生器的初始化值和该第一资源集合的起始时间单元的索引值有关;或者,该第一DMRS序列产生器的初始化值和该第一资源集合中的每个时间单元的索引有关。
本申请实施例的通信方法,DMRS序列产生器的初始值根据第一资源集合中每个时间单元的索引或者起始时间单元的索引确定,使得每个时间单元上产生的DMRS序列不相同,有助于时间单元之间、不同终端设备之间、不同小区之间的干扰随机化,从而有助于提高终端设备进行信道估计的性能。
具体地,该第一资源集合为控制资源集合时,该初始值与该第一资源集合中每个符号的索引或者起始符号的索引有关。
结合第一方面,在第一方面的某些可能的实现方式中,该第一DMRS序列产生器的初始值和时间单元的索引有关。
本申请实施例的通信方法,DMRS序列产生器的初始值根据时间单元的索引确定,使得每个时间单元上产生的DMRS序列不相同,有助于时间单元之间、不同终端设备之间、不同小区之间的干扰随机化,从而有助于提高终端设备进行信道估计的性能。
具体地,该第一资源集合为控制资源集合,该初始值与一个时隙内每个符号的索引或者时隙本身的索引有关。
在一些可能的实现方式中,该第二DMRS序列是根据该第一资源集合中每个时间单元的索引和/或时间单元的个数从该第一DMRS序列中确定的子集。
具体地,该第一资源集合为控制资源集合,该第二DMRS序列是根据该第一资源集合中每个符号的索引和/或符号个数从该第一DMRS序列中确定的子集。
在一些可能的实现方式中,若第一DMRS序列在时域上是按照多个时间单元产生的,那么映射在第一资源集合内时,就需要按照第一资源集合时域上包含的时间单元的个数选择第一DMRS序列的子集。
在一些可能的实现方式中,若第一DMRS序列在时域上是按照每个时间单元产生的,那么映射在第一资源集合内时,就需要按照第一资源集合时域上每个时间单元的索引对应的时间单元上选择第一DMRS序列的子集。
结合第一方面,在第一方面的某些可能的实现方式中,该第二DMRS序列是根据该第一资源集合所在的频率范围、且从该第一DMRS序列中确定的子集。
本申请实施例的通信方法,用户设备通过确定资源集合所在的频域范围,有助于用户设备明确DMRS序列在频域上的映射。
在一些可能的实现方式中,该第二DMRS序列是在第一资源集合所在的频率范围从该第一资源集合起点和该第一资源集合的子载波间隔类型确定的资源块的数量从第三DMRS序列中确定的子集。
结合第一方面,在第一方面的某些可能的实现方式中,该第二DMRS序列是根据该第一资源集合的子载波间隔类型从第三DMRS序列中确定的子集,该第三DMRS序列是根据第一资源集合所在的频率范围确定的该第一DMRS序列的子集。
本申请实施例的通信方法,用户设备确定资源集合的子载波间隔类型和资源集合所在的频域范围,有助于用户设备明确DMRS序列在频域上的映射。
在一些可能的实现方式中,该第二DMRS序列是在第一资源集合所在的频率范围从该第一资源集合起点和该第一资源集合的子载波间隔类型确定的资源块的数量从第三DMRS序列中确定的子集,该第三DMRS序列是根据第一资源集合所在的频率范围和参考资源集合的子载波间隔类型确定的资源块的数量确定的该第一DMRS序列的子集。
在一些可能的实现方式中,该参考资源集合为一个载波。
结合第一方面,在第一方面的某些可能的实现方式中,该第一设备为网络设备,该方法还包括:该第一设备向终端设备发送第一指示信息,该第一指示信息用于指示该第一资源集合的时域信息和/或频域信息。
结合第一方面,在第一方面的某些可能的实现方式中,该第一设备为终端设备,该方法还包括:该第一设备接收网络设备发送的第一指示信息,该第一指示信息用于指示该第一资源集合的时域信息和/或频域信息。
在一些可能的实现方式中,该第一资源集合为控制资源集合,该指示信息为高层信令。
在一些可能的实现方式中,该第一资源集合为数据资源集合,该指示信息为高层信令和/或下行控制信息。
第二方面,提供了一种通信方法,其特征在于,包括:第二设备确定第一资源集合的时域信息,该第一资源集合在时域上包括一个或者多个时间单元,该时域信息包括以下至少一种:起始时间单元的索引、时间单元的个数或者每个时间单元的索引;该第二设备根据该第一资源集合的时域信息,确定第一序列,其中,该第一序列是用于加扰该第一资源集合承载的第一信息,或者用于解扰该第一资源集合承载的第一信息。
本申请实施例的通信方法,根据资源集合的起始时间单元的索引、或者时间单元的个数、或者每个时间单元的索引进行初始化扰码序列,有助于不同用户设备之间,不同小区之间干扰随机化,提高PDCCH的检测性能。
结合第二方面,在第二方面的某些可能的实现方式中,该第二设备为网络设备,该第一序列用于加扰该第一资源集合承载的第一信息,该方法还包括:该第二设备向终端设备发送第二指示信息,该第二指示信息用于指示该第一资源集合的时域信息。
结合第二方面,在第二方面的某些可能的实现方式中,该第二设备为终端设备,该第一序列用于解扰该第一资源集合承载的第一信息,该方法还包括:该第二设备接收网络设备发送的第二指示信息,该第二指示信息用于该第一资源集合的时域信息。
在一些可能的实现方式中,该第一资源集合为控制资源集合,该指示信息为高层信令。
在一些可能的实现方式中,该第一资源集合为数据资源集合,该指示信息为高层信令和/或下行控制信息。
第三方面,提供了一种通信设备,用于执行第一方面或第一方面任意可能的实现方式中的方法。具体地,该通信设备包括用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法的模块。
第四方面,提供了另一种通信设备,用于执行第二方面或第二方面任意可能的实现方式中的方法。具体地,该通信设备包括用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法的模块。
第五方面,提供了再一种通信设备,该通信设备包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任一种可能的实现方式中的方法。
第六方面,提供了再一种通信设备,该通信设备包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任一种可能的实现方式中的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述第一方面或第一方面任一种可能实现方式中的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述第二方面或第二方面任一种可能实现方式中的方法。
第九方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十一方面,提供了一种芯片系统,应用于通信设备中,该芯片系统包括:一个或多个处理器、一个或多个存储器和接口电路,所述接口电路负责所述芯片系统与外界的信息交互,所述一个或多个存储器、所述接口电路和所述一个或多个处理器通过线路互联,所述一个或多个存储器中存储有指令;所述指令被所述一个或多个处理器执行,以进行上述第一方面或第一方面的任意可能的实现方式中所述第一设备的操作。
第十二方面,提供了一种芯片系统,应用于通信设备中,该芯片系统包括:一个或多个处理器、一个或多个存储器和接口电路,所述接口电路负责所述芯片系统与外界的信息交互,所述一个或多个存储器、所述接口电路和所述一个或多个处理器通过线路互联,所述一个或多个存储器中存储有指令;所述指令被所述一个或多个处理器执行,以进行上述第二方面或第二方面的任意可能的实现方式中所述第二设备的操作。
附图说明
图1是一种宽带载波和BWP的关系。
图2是一种普通循环前缀时的资源格的示意图。
图3是一个载波上的载波资源块在频域上的编号之间的关系。
图4是一种载波资源块、物理资源块和虚拟资源块的示意图。
图5是本申请实施例的技术方案的一种应用场景。
图6是本申请实施例的通信方法的示意性流程图。
图7是一种CORESET的时频位置的示意图。
图8是DMRS序列按照时域上固定一个时间单元产生的示意图。
图9是DMRS序列按照时域上固定三个时间单元产生的示意图。
图10是DMRS序列按照时域上固定14个符号产生的示意图。
图11是本申请实施例的通信方法的另一示意性流程图。
图12是本申请实施例的通信设备的示意性框图。
图13是本申请实施例的通信设备的另一示意性框图。
图14是本申请实施例的通信设备的再一示意性框图。
图15是本申请实施例的通信设备的再一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB), 还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
一个载波带宽部分(Carrier bandwidth part,BWP)为一个载波上连续的一段频率范围,从网络设备侧,一个载波上可以划分多个BWP,每个BWP可以有不同的子载波间隔类型。从终端设备侧,一个终端设备可以被配置多个下行或上行BWP。当网络设备给终端设备配置BWP时,配置的信息包括:BWP对应的子载波间隔类型,BWP对应的循环前缀(Cyclic Prefix),BWP对应的连续的物理资源块PRB的数量,可能还包括BWP的第一个物理资源块距离载波第一个物理资源块之间的偏移量等信息。用户设备根据BWP的子载波间隔类型和循环前缀在下行BWP上接收网络设备发送的下行信号,在上行BWP上发送上行信号。被配置BWP的终端设备只需要在配置的BWP上接收或发送,不需要知道载波的带宽。
图1示出了一种宽带载波和BWP的关系,如图1所示,用户设备可以被配置在一个载波上的一个或多个BWP,用户设备不需要知道这个载波的带宽大小。
一个BWP可以支持多个子载波间隔类型和循环前缀类型,表1示出了一种子载波间隔类型和循环前缀类型的对应关系,一种子载波间隔类型μ对应一种子载波间隔。
例如:子载波间隔类型μ为0时,子载波间隔为15kHz;子载波间隔类型μ为1时,子载波间隔为30kHz。
需要特别说明的是,表1仅是为了理解本申请技术方案所举的例子,本申请包括但并不限于此。
表1 一种子载波间隔类型和循环前缀类型的对应关系
Figure PCTCN2018115843-appb-000001
对于子载波间隔类型配置为μ时,在一个子帧中的时隙(slot)的编号以升序排序编号为
Figure PCTCN2018115843-appb-000002
其中,
Figure PCTCN2018115843-appb-000003
表示子载波间隔类型为μ一个子帧内包含的时隙个数,
Figure PCTCN2018115843-appb-000004
表示子载波间隔类型为μ时一个子帧内的时隙的编号。
且在一个无线帧中的时隙slot的编号以升序排序编号为
Figure PCTCN2018115843-appb-000005
其中,
Figure PCTCN2018115843-appb-000006
表示子载波间隔类型为μ一个无线帧内包含的时隙个数,
Figure PCTCN2018115843-appb-000007
表示子载 波间隔类型为μ时一个无线帧内的时隙的编号。
在一个slot中共有
Figure PCTCN2018115843-appb-000008
个连续的符号,其中,
Figure PCTCN2018115843-appb-000009
和循环前缀的类型有关系。
表2示出了普通循环前缀时每个时隙内包含的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号个数
Figure PCTCN2018115843-appb-000010
需要特别说明的是,表2仅是为了理解本申请技术方案所举的例子,本申请包括但并不限于此。
表2 普通循环前缀时每个时隙内包含的OFDM符号个数
Figure PCTCN2018115843-appb-000011
表3示出了扩展循环前缀时每个时隙内包含的OFDM符号个数
Figure PCTCN2018115843-appb-000012
需要特别说明的是,表3仅是为了理解本申请技术方案所举的例子,本申请包括但并不限于此。
表3 扩展循环前缀时每个时隙内包含的OFDM符号个数
Figure PCTCN2018115843-appb-000013
对于每个载波和子载波间隔类型,时域上
Figure PCTCN2018115843-appb-000014
个OFDM符号且频域上
Figure PCTCN2018115843-appb-000015
个子载波构成资源格,其中
Figure PCTCN2018115843-appb-000016
表示子载波间隔类型为μ一个子帧内包含的符号个数,
Figure PCTCN2018115843-appb-000017
表示子载波间隔类型为μ频域上最大子载波的数量,
Figure PCTCN2018115843-appb-000018
表示子载波间隔类型为μ时频域上最大资源块的数量,如表4所示,x分别表示下行或上行。需要特别说明的是,表4仅是为了理解本申请技术方案所举的例子,本申请包括但并不限于此。
每一种传输方向(下行或上行),每一种子载波间隔类型配置μ都对应一种资源格。其中,
Figure PCTCN2018115843-appb-000019
表示下行子载波间隔类型为μ时频域上最小资源块的数量,
Figure PCTCN2018115843-appb-000020
表示下行子载波间隔类型为μ时频域上最大资源块的数量,
Figure PCTCN2018115843-appb-000021
表示上行子载波间隔类型为μ时频域上最小资源块的数量,
Figure PCTCN2018115843-appb-000022
表示上行子载波间隔类型为μ时频域上最大资源块的数量。
表4 最大和最小资源块的数量
Figure PCTCN2018115843-appb-000023
图2示出了一种普通循环前缀时的资源格的示意图。资源格里的每个元素(对应时域一个OFDM符号且频域一个子载波)被定义为资源单元,且唯一地由(k,l) p,μ标识,其中k 是频域上每个子载波的索引,l是时域上每个符号的索引,p代表天线端口号。
在频率域上12个连续子载波被定义为一个资源块(Resource Block,RB)。对于子载波间隔类型配置μ在一个载波上的载波资源块(Carrier Resource Block,CRB)在频域上的编号为从0到
Figure PCTCN2018115843-appb-000024
其中,
Figure PCTCN2018115843-appb-000025
如表4所示。
图3示出了对应不同子载波间隔类型配置μ时,一个载波上的载波资源块在频域上的编号之间的关系。
示例性的,一个CRB是按照这个载波的子载波间隔类型μ定义,最大的CRB的个数为载波的子载波个数除以12,即
Figure PCTCN2018115843-appb-000026
其中,k表示子载波的索引,
Figure PCTCN2018115843-appb-000027
表示一个资源块包含的子载波的数量,
Figure PCTCN2018115843-appb-000028
取值为12.。物理资源块(Physical Resource Block,PRB)定义在BWP里面,从PRB0开始到
Figure PCTCN2018115843-appb-000029
其中,
Figure PCTCN2018115843-appb-000030
是第i个BWP是以CRB为粒度分配的BWP的大小且满足
Figure PCTCN2018115843-appb-000031
其中,最大和最小值由表4示出,
Figure PCTCN2018115843-appb-000032
为以CRB为单位表示的BWP的起始位置,也就是BWP的偏移值。n CRB表示CRB的索引,n PRB表示PRB的索引。
示例性的,虚拟资源块(virtual resource block,VRB)是指在一个BWP内按照BWP自己的子载波间隔类型划分资源块RB,且每个RB里面包含12个RE定义的RB的索引,称为VRB索引。
图4示出了一种载波资源块、物理资源块和虚拟资源块的示意图,可以看出当BWP的子载波间隔类型和载波的子载波间隔类型相同时,PRB等于VRB。频域上1个RB包含的频域资源相同,且在BWP里面的索引也相同。
下面介绍CORESET内哪些资源单元RE承载DMRS。
示例性的,一个控制资源集合(CORESET)在频域上由
Figure PCTCN2018115843-appb-000033
个资源块组成,且时域上由
Figure PCTCN2018115843-appb-000034
个符号组成,参数
Figure PCTCN2018115843-appb-000035
Figure PCTCN2018115843-appb-000036
都由网络设备配置。每个CORESET都在一个BWP内。一个终端设备可以被网络设备配置1个或者多个CORESET,每个控制资源集合关联一种控制信道单元(Control channel element,CCE)到资源单元组(Resource Element Group,REG)的映射。物理下行控制信道(Physical Downlink control Channel,PDCCH)承载的符号将映射在CORESET内的控制信道单元CCE上。终端设备译码下行控制信道PDCCH需要DMRS,该DMRS用于解调下行控制信道。PDCCH承载的符号映射在CORESET内,终端设备会按照在CORESET内映射的解调PDCCH的DMRS来解调PDCCH。关联PDCCH信道的DMRS序列映射在每个REG内的3个资源单元(Resource element,RE)上,其中,每个资源单元组REG等于1个正交频分复用(Orthogonal Frequency Duplex Multiplexing,OFDM)符号上对应的1个资源块(RB)。每个RB包含12个子载波,即每个REG包含12个RE,一个符号一个子载波对应1个资源单元RE。每个REG中承载DMRS的RE为子载波编号分别为k=1,5,9,其中,k为子载波的编号。在一个REG中子载波k=1,5,9上是否映射DMRS序列取决于网络设备的配置,当网络设备设置关联PDCCH的DMRS为宽带DMRS时,DMRS需要映射在CORESET中每个符号上的每个REG中,在终端设备尝试译码PDCCH的整个CORESET内的每个REG中,终端设备都会假定映射了DMRS;如果网络设备没有设置关联PDCCH的DMRS为宽带DMRS时,用户设备只能假定用户设备尝试译码PDCCH所在的REG内映射了DMRS。
LTE中,DMRS序列的生成公式如公式(1)所示:
Figure PCTCN2018115843-appb-000037
其中,m为DMRS序列的长度取值,
Figure PCTCN2018115843-appb-000038
为下行最大的RB个数,c(m)为伪随机序列(Pseudo-random sequence),产生该伪随机序列的产生器由c init初始化,c init的生成公式如公式(2)所示:
Figure PCTCN2018115843-appb-000039
其中,
Figure PCTCN2018115843-appb-000040
为网络设备配置的第i个EPDCCH集合特定的参数,
Figure PCTCN2018115843-appb-000041
为一个固定值,如
Figure PCTCN2018115843-appb-000042
例如,NR中,该DMRS序列的生成公式如(1)所示,m的取值范围为0至N-1,其中,N为DMRS序列的总的长度。
图5是本申请实施例的技术方案的一种应用场景,如图5所示,网络设备向终端设备发送配置信息、下行控制信息、解调参考信号和数据信道中的一种或者多种,该终端设备接收到该网络设备发送的配置信息、下行控制信息、解调参考信号和数据信道中的一种或者多种后,向网络设备发送上行数据信道和/或上行控制信道。
图6示出了根据本申请实施例的通信方法100的示意性流程图,如图6所示,该方法100可以由终端设备执行,也可以由网络设备执行,该方法100包括:
S110,第一设备根据预定义参数,确定第一解调参考信号DMRS序列;
S120,该第一设备确定映射在第一资源集合内映射第二DMRS序列,该第二DMRS序列为该第一DMRS序列的子集,其中,该第二DMRS序列是根据该第一资源集合的时域信息和/或频域信息获得的。
具体而言,第一设备首先确定预定义参数,确定第一DMRS序列,该第一设备确定映射在第一资源集合内的第二DMRS序列,该第二DMRS序列为该第一DMRS序列的子集,该第二DMRS序列是根据第一资源集合的时域信息和/或频域信息获取的。
例如,该第一设备为网络设备时,该网络设备可以根据预定义参数,生成第一DMRS序列,该网络设备在第一资源集合中映射第二DMRS序列,该第二DMRS序列为该第一DMRS序列的子集,该第二DMRS序列是该网络设备根据第一资源集合的时域信息和/或频域信息获取的。
又例如,该第一设备为终端设备,该终端设备可以根据预定义参数,生成本地第一DMRS序列或者确定网络设备生成的第一DMRS序列,该终端设备确定映射在第一资源集合内的第二DMRS序列,该第二DMRS序列为该第一DMRS序列的子集,该第二DMRS序列是该终端设备根据第一资源集合的时域信息和/或频域信息获取的,该终端设备可以根据该第二DMRS序列解调PDCCH。
可选地,该第一资源集合为控制资源集合,该控制资源集合在时域上包括1个、2个或者3个符号。
可选地,该第一资源集合为数据资源集合,该数据资源集合在时域上包括一个或者多个符号,或者,一个或者多个子帧,或者,一个或者多个时隙。
具体而言,该预定义参数为第一数值,例如,该第一数值可以为12。
可选地,该预定义参数为N=3×A×B,其中,3表示1个时间单元上每个频域单元内内有3个RE映射了DMRS,A表示时域上时间单元的的个数信息,B表示频域上频域单元的个数信息,那么在时域上A个时间单元,且频域上B个频域单元内产生的DMRS序列的总长度为N=3×A×B。
应理解,本申请实施例中,时间单元可以为符号、时隙(slot)、小时隙(mini-slot)、多个时隙聚合后的时隙或子帧等,本申请并不限于此。
还应理解,该频域单元可以为资源块RB。
还应理解,A还可以为时域上时间单元个数的两倍,则该预定义参数可以为3×1/2×A×B,B也可以为频域上频域单元个数的1/2,则该预定义参数可以为3×A×2×B,本申请并不限于此。
图7示出了一种CORESET的时频位置的示意图,该第一资源集合为控制资源集合(CORESET),CORESET的资源由网络设备配置,网络设备可以给终端设备配置BWP,CORESET在BWP内,CORESET在频域上的带宽小于或者等于BWP的带宽,CORESET在时域上包含的符号数为1个符号,2个符号或者3个符号。
示例性的,该第一资源集合在时域上包括一个或者多个时间单元,该时域信息包括以下至少一种:起始时间单元的索引、时间单元的个数、每个时间单元的索引。
可选地,该预定义参数是根据时间单元的个数确定的。
具体而言,该预定义参数可以由时域上时间单元的个数信息A确定,A可以为一个固定数值,例如1,2,3或者14,无论第一资源集合在时域上被配置了几个时间单元,产生第一DMRS序列时都按照时域上时间单元的个数信息产生。
图8示出了DMRS序列按照时域上固定一个时间单元产生的示意图,如图1所示,A为1,DMRS序列都按照一个时间单元产生,产生器的初始化值和每个时间单元的索引值有关,例如,公式(3)为一种初始值的计算公式:
Figure PCTCN2018115843-appb-000043
其中,n symbol为每个时间单元的索引,i为第一资源集合的标号,
Figure PCTCN2018115843-appb-000044
为网络设备配置的第i个第一资源集合的参数。
可选地,该第一DMRS序列产生器的初始化值和该第一资源集合中起始时间单元的索引有关;或者,
该第一DMRS序列产生器的初始化值和该第一资源集合中每个时间单元的索引有关。
可选地,第一DMRS序列按照每个符号的索引产生,和第一资源集合的起始时间单元和每个时间单元的索引无关,但是时域映射的时候,按照第一资源集合的起始时间单元索引或每个时间单元的索引,选择第一DMRS序列的子集。
例如,该第一资源集合为控制资源集合,DMRS序列可以根据该控制资源集合在时域上每个符号的索引产生,还可以按照一个时隙上某个符号的索引产生,此时,与该第一资源集合的起始符号的索引或者每个符号的索引无关。
应理解,这个时间单元是说一个slot内每个符号的索引或者和slot本身的索引有关。按照符号产生时,这种索引和CORESET中每个符号的索引是等价的。
如图8所示,当第一资源集合时域上包含一个时间单元时,那么第一资源集合中包含的DMRS为按照长度3×A×B产生的DMRS序列截取第一资源集合内频域上的部分,得到 该第二DMRS序列。
当第一资源集合时域上包含两个时间单元时,那么在第一个时间单元上按照第一个时间单元的索引值初始化DMRS序列的产生器,并按照长度3×A×B产生的DMRS序列截取第一资源集合内频域上的部分;在第二个时间单元上按照第二个时间单元的索引值初始化DMRS序列的产生器,并按照长度3×A×B产生的DMRS序列截取第一资源集合内频域上的部分。应理解,A可以为1。
当第一资源集合时域上包含三个时间单元时,那么在第一个时间单元上按照第一个时间单元的索引值初始化DMRS序列的产生器,并按照长度3×A×B产生的DMRS序列截取第一资源集合内频域上的部分;在第二个时间单元上按照第二个时间单元的索引值初始化DMRS序列的产生器,并按照长度3×A×B产生的DMRS序列截取第一资源集合内频域上的部分;在第三个时间单元上按照第三个时间单元的索引值初始化DMRS序列的产生器,并按照长度3×A×B产生的DMRS序列截取第一资源集合内频域上的部分。应理解,A可以为1。
应理解,该第一DMRS序列产生器的初始值可以与网络设备给该资源集合的配置的一个参数有关。
本申请实施例的通信方法,在初始值中包含每个时间单元的索引,使得每个时间单元上产生的DMRS序列不相同,有助于时间单元之间、不同终端设备之间、不同小区之间的干扰随机化,从而有助于提高终端设备进行信道估计的性能。
可选地,该第一DMRS序列产生器的初始值和该第一资源集合中每个时间单元的索引无关。
具体而言,产生器的初始化值与每个时间单元的索引值无关,即初始值中不包含时间单元的索引值,每个时间单元上产生的DMRS序列相同,对于第一资源集合时域上包含两个时间单元或者三个时间单元的情况,第二个时间单元或者第三个时间单元上产生的DMRS序列和第一个时间单元上产生的DMRS序列相同。
本申请实施例的通信方法,无论设备配置了几个资源集合,无论每个资源集合在时域上包含几个时间单元,设备只需要产生一次DMRS序列,有助于简化DMRS序列产生的过程。
以上通过图8说明了第一DMRS序列按照1个时间单元生成,下面结合图9和图10,对第一DMRS序列按照多个时间单元生成进行说明。
图9示出了DMRS序列按照时域上固定三个时间单元产生的示意图,如图9所示,A为3,DMRS序列都按照三个时间单元产生。
可选地,产生器的初始化值和第一资源集合的起始时间单元的索引值有关,例如,公式(3)中n symbol为第一资源集合的起始时间单元的索引。
如图9所示,第一资源集合在时域上包含1个时间单元,且该第一资源集合的起始时间单元为时间单元0;第二资源集合在时域上包含2个时间单元,且该第二资源集合的起始时间单元为时间单元0;第三资源集合在时域上包含3个时间单元,且该第三资源集合的起始时间单元为时间单元0。第一资源集合、第二资源集合和第三资源集合都按照1个DMRS序列产生后,分别截取各自资源集合所在频域位置和时域上时间单元对应的序列。
第四资源集合在时域上包含2个时间单元,且该第四资源集合的起始时间单元为时间 单元3,虽然第二资源集合和第四资源集合在时域上都占2个时间单元,但是因为DMRS序列的初始值不同,因此,第二资源集合和第四资源集合中的DMRS序列不同。
应理解,该资源集合为控制资源集合,DMRS序列都按照三个符号产生,产生器的初始化值和第一资源集合的起始符号的索引值有关。
还应理解,该第一DMRS序列产生器的初始值可以与网络设备给该资源集合配置的一个参数有关。
本申请实施例的通信方法,在初始值中包含起始时间单元的索引,使得不同初始时间单元上产生的DMRS序列不相同,有助于时间单元之间、不同终端设备之间、不同小区之间的干扰随机化,从而有助于提高终端设备进行信道估计的性能。
可选地,产生器的初始化值和第一资源集合的起始时间单元的索引值无关,即初始值中不包含时间单元的索引值,无论设备配置了几个资源集合,无论每个资源集合在时域上包含几个时间单元,设备只需要产生一次DMRS序列,有助于简化DMRS序列产生的过程。
图10示出了DMRS序列按照时域上固定14个符号产生的示意图,如图10所示,该第一资源集合为控制资源集合,A为14,DMRS序列都按照14个符号产生。无论控制资源集合在时域上被配置了几个符号,也无论配置了集合控制资源集合以及控制资源集合在一个时隙中出现在第几个符号,产生DMRS序列时都按照时域上14个符号的长度产生,产生器的初始值和时隙的索引值有关,即每个时隙的开始产生器初始化一次,DMRS序列按照一个时隙的长度包含14个符号产生,例如,公式(3)中n symbol为一个时隙的索引。
应理解,若DMRS序列按照每个符号中产生一次,则n symbol表示一个时隙里的符号的索引。
这种产生DRMS序列的优点时,无论终端设备被配置了几个控制资源集合,无论控制资源集合出现在一个时隙中的第几个符号,产生DMRS序列时都只产生一次,然后按照控制资源集合的配置,分别截取产生的DMRS序列在时域上对应位置,以及频域上对应位置的DMRS序列,并按照先频域后时域映射到每个RB内。
以上介绍了DMRS序列在时域上的生成以及映射方法,下面介绍DMRS序列在频域上的生成以及映射方法。
可选地,该预定义参数由频域单元的个数确定。
具体而言,该预定义参数还可以由频域上频域单元的个数信息B确定。
例如,该第一资源集合为CORESET,该频域单元为资源块RB的数量,无论终端配置几个CORESET,以及CORESET在频域上占的RB的个数,产生DMRS序列时,都按照一个固定的数值如B=100RB或275RB。
以上介绍了DMRS序列在频域上的产生方法,下面介绍DMRS在频域上的映射方法。
可选地,该第二DMRS序列是根据该第一资源集合所在的频率范围从该第一DMRS序列中确定的子集。
例如,该第一资源集合为CORESET,该频域单元为RB,该预定义时间参数可以按照参考资源集合(例如,BWP)在频域上的RB的个数产生,CORESET的子载波间隔类型和BWP的子载波间隔类型配置相同。映射时,CORESET内发送的DMRS按照CORESET占BWP内的RB对应截取。如由主系统信息块配置的CORESET就按照这个方法产生并映射。
可选地,该第二DMRS序列是根据该第一资源集合所在的频率范围和该第一资源集合的子载波间隔类型从该第一DMRS序列中确定的子集。
可选地,该第二DMRS序列是根据该第一资源集合所在的频率范围和根据该第一资源集合的子载波间隔类型确定的资源块的数量从该第一DMRS序列中确定的子集。
可选地,该第二DMRS序列是根据该第一资源集合所在的频率范围和参考资源集合的子载波间隔类型从该第一DMRS序列中确定的子集。
应理解,该第一资源集合的子载波间隔类型可以通过参考资源集合的子载波间隔类型确定。
可选地,该第二DMRS序列是根据该第一资源集合所在的频率范围和根据参考资源集合的子载波间隔类型确定的资源块的数量从该第一DMRS序列中确定的子集。
应理解,该第一资源集合所在的频率范围可以由参考资源集合在频域上的起点和该参考子载波的子载波间隔类型确定。
应理解,该参考资源集合可以为BWP,还可以为载波单元(Component Carrier,CC,或者称,成员载波、组成载波等CC)。
可选地,该第二DMRS序列是根据该第一资源集合的子载波间隔类型从该第三DMRS序列中确定的子集,该第三DMRS序列是根据第一资源集合所在的频率范围确定的该第一DMRS序列的子集。
例如,该第一资源集合为CORESET,该频域单元为RB,无论终端配置几个CORESET,无论CORESET的子载波间隔类型是什么,以及CORESET在频域上占的PRB的个数,产生DMRS序列时,频域上都按照一个固定的数值如
Figure PCTCN2018115843-appb-000045
其中μ按照终端初始接入网络时检测的物理广播信道PBCH发送时使用的子载波间隔类型,或者该固定值就是一个比较大的值,如B=1000,和载波的带宽没有关系。映射时,按照CORESET所在频率范围,从参考点开始截取对应的PRB内上的RS,然后按照CORESET的子载波间隔类型,选择截取的RS在VRB上映射。这种方法适用于终端设备知道参考点,也就是适合于网络设备通过终端专用的高层信令配置的CORESET中的DMRS的映射。
具体而言,如图4所示,如果DMRS序列时域上按照1个符号产生,频域上按照275个PRB产生,每个RB有3个RE需要映射DMRS,1个符号上DMRS序列的长度就是275×3=825.那么按照下述公式产生的DMRS序列中,公式(1)中m的取值为0,1,2,…,824。
终端设备被配置了BWP的偏移值,以载波的子载波间隔为15kHz,BWP的子载波间隔为30kHz为例,假设CORESET在频域上等于BWP的频域范围。BWP包含4个PRB,所在的范围为CRB2,CRB3,CRB4和CRB5,DMRS按照CRB0开始映射,那么BWP实际截取的DMRS范围为m取值从BWP中第一个CRB的索引值*3到BWP中(最后一个CRB的索引值+1)*3-1,即m取值为从6到17。对应这个范围的m的个数为12个,也就是12个RE上映射的DMRS的符号被截取,需要映射到BWP的2个VRB上去,2个VRB需要承载DMRS的RE的个数为2*3=6个,因此,需要再从12个DMRS的符号中挑选出6个。
可选地,挑选的规则包括但不限于以下两种方法。
方法1:以此从12个中按照映射时的顺序,即先频域且从低频往高频的方向上截取前6个,分别映射到每个VRB中的子载波编号为1,5,9三个RE上。
方法1中有助于简化挑选过程,方法比较简单。
方法2:等间隔的从12个抽取出6个,即从每2个中抽取1个。
方法2等间隔的挑选过程有助于小区之间DMRS之间正交,从而有助于干扰最小化。
上述方法用公式概括起来就是:
第一个CRB的索引值*3到(最后一个CRB的索引值+1)*3-1,从而得到m的取值个数为Nm,令Nv=VRB的个数*3,其中Nm为Nv的整数倍,从Nm中依次,或者等间隔取Nv个DMRS符号映射到VRB中的子载波编号为1,5,9的RE上。
应理解,该第一资源集合还可以为数据资源集合,按照上面的方法产生DMRS序列,该DMRS序列可以用于数据解调。
可选地,第一设备为网络设备,该方法还包括:
该第一设备向终端设备发送第一指示信息,该第一指示信息用于指示该第一资源集合的时域信息和/或频域信息。
可选地,第一设备为终端设备,该方法还包括:
该第一设备接收网络设备发送的第一指示信息,该第一指示信息用于指示该第一资源集合的时域信息和/或频域信息。
可选地,该第一资源集合为控制资源集合,该指示信息为高层信令。
可选地,该第一资源集合为数据资源集合,该指示信息为高层信令和/或下行控制信息。
以上结合图6至图9,详细得描述了本申请实施例的DMRS序列生成以及映射方法,下面结合图11,详细得描述本申请实施例的加扰序列的生成方法。
图11示出了根据本申请实施例的通信方法200的示意性流程图,如图11所示,该第二设备可以为网络设备,该第一终端设备还可以是终端设备,该方法200包括:
S210,第二设备确定第一资源集合的时域信息,该第一资源集合在时域上包括一个或者多个时间单元,该时域信息包括以下至少一种:起始时间单元的索引、时间单元的个数或者每个时间单元的索引;
S220,该第二设备根据该第一资源集合的时域信息,确定第一序列,其中,该第一序列是用于加扰该第一资源集合承载的第一信息,或者用于解扰该第一资源集合承载的第一信息。
具体而言,该第二设备为网络设备时,该网络设备确定第一资源集合的时域信息,该时域信息包括以下至少一种:起始时间单元的索引、时间单元的个数或者每个时间单元的索引,该网络设备根据该第一资源集合的时域信息,确定第一序列,该第一序列是用于加扰该第一资源集合承载的第一信息。
或者,该第二设备为终端设备,该终端设备确定第一资源集合的时域信息,该时域信息包括以下至少一种:起始时间单元的索引、时间单元的个数或者每个时间单元的索引,该终端设备根据该第一资源集合的时域信息,确定第一序列,该第一序列是用于解扰该第一资源集合承载的第一信息。
例如,传输在PDCCH的比特块为b(0),...,b(M bit-1),这个比特块要经过一个扰码序列加扰,根据下面的方式加扰,加扰后的序列为
Figure PCTCN2018115843-appb-000046
Figure PCTCN2018115843-appb-000047
其中c(i)是一个终端设备特定的扰码序列,该扰码序列是一个伪随机序列,例如通过下面公式(4)、(5)和(6)产生:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2        (4)
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2        (5)
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2   (6)
其中N C=1600,其中第一个m序列通过x 1(0)=1,x 1(n)=0,n=1,2,...,30进行初始化。第二个m序列初始化参数和CORESET起始符号在1个时隙内的符号索引和/或网络设备给终端配置的CORESET关联的参数有关,如通过以下公式(7)表示初始化值:
Figure PCTCN2018115843-appb-000048
其中
Figure PCTCN2018115843-appb-000049
表示的起始符号在一个时隙内的符号索引,m表示CORESET的编号,
Figure PCTCN2018115843-appb-000050
表示网络设备给终端配置的第m个CORESET关联的参数。
该第一设备为网络设备,该第一资源集合用于加扰该第一资源集合承载的第一信息,该方法还包括:
该第一设备向终端设备发送第二指示信息,该第二指示信息用于指示该第一资源集合的时域信息。
可选地,该第一设备为终端设备,该第一序列用于解扰该第一资源集合承载的第一信息,该方法200还包括:
该第一设备接收网络设备发送的第二指示信息,该第二指示信息用于该第一资源集合的时域信息。
可选地,该第一资源集合为控制资源集合,该指示信息为高层信令。
可选地,该第一资源集合为数据资源集合,该指示信息为高层信令和/或下行控制信息。
本申请实施例的通信方法,根据资源集合的起始符号的索引进行初始化扰码序列,有助于不同用户设备之间,不同小区之间干扰随机化,提高PDCCH的检测性能。
上面通过图1至图11,详细得描述了根据本申请实施例的通信方法,下面结合图12至图15,详细描述根据本申请实施例的通信设备。
图12示出了根据本申请实施例的通信设备300的示意性框图,如图12所示,该通信设备300包括:
第一处理模块310,用于根据预定义参数,确定第一解调参考信号DMRS序列;
第二处理模块320,用于确定映射在第一资源集合内的第二DMRS序列,该第二DMRS序列为该第一DMRS序列的子集,其中,该第二DMRS序列是根据该第一资源集合的时域信息和/或频域信息获得的。
可选地,该预定义参数是根据时间单元的数量确定的;和/或,
该预定义参数是根据频域单元的数量确定的。
可选地,该第一资源集合在时域上包括一个或者多个时间单元,该时域信息包括以下至少一种:起始时间单元的索引、时间单元的个数或者每个时间单元的索引。
可选地,该第一DMRS序列产生器的初始化值和该第一资源集合的起始时间单元的索引值有关;或者,
该第一DMRS序列产生器的初始化值和该第一资源集合中的每个时间单元的索引有关。
可选地,该第一DMRS序列产生器的初始值和时间单元的索引有关。
可选地,该第二DMRS序列是根据该第一资源集合所在的频率范围、且从该第一DMRS序列中确定的子集。
可选地,该第二DMRS序列是根据该第一资源集合的子载波间隔类型从第三DMRS序列中确定的子集,该第三DMRS序列是根据第一资源集合所在的频率范围确定的该第一DMRS序列的子集。
可选地,该通信设备为网络设备,该通信设备300还包括:
第一收发模块,用于向终端设备发送第一指示信息,该第一指示信息用于指示该第一资源集合的时域信息和/或频域信息。
可选地,该通信设备为终端设备,该通信设备300还包括:
第二收发模块,用于接收网络设备发送的第一指示信息,该第一指示信息用于指示该第一资源集合的时域信息和/或频域信息。
图13示出了根据本申请实施例的通信设备400的示意性框图,如图13所示,该通信设备400包括:
第三处理模块410,用于确定第一资源集合的时域信息,该第一资源集合在时域上包括一个或者多个时间单元,该时域信息包括以下至少一种:起始时间单元的索引、或者时间单元的个数、或者每个时间单元的索引;
第四处理模块420,用于根据该第一资源集合的时域信息,确定第一序列,其中,该第一序列是用于加扰该第一资源集合承载的第一信息,或者用于解扰该第一资源集合承载的第一信息。
可选地,该通信设备400为网络设备,该第一序列用于加扰该第一资源集合承载的第一信息,该通信设备400还包括:
第三收发模块,用于向终端设备发送第二指示信息,该第二指示信息用于指示该第一资源集合的时域信息。
可选地,该通信设备300为终端设备,该第一序列用于解扰该第一资源集合承载的第一信息,该通信设备还包括:
第四收发模块,用于接收网络设备发送的第二指示信息,该第二指示信息用于该第一资源集合的时域信息。
图14示出了本申请实施例提供的通信设备500的示意性框图。该通信设备500包括一个或多个处理器510、存储器520和通信接口530;所述一个或多个处理器510、所述存储器520和所述通信接口530均通过内部通路连接;
所述存储器520,用于存储计算机执行指令;
所述一个或多个处理器510,用于执行所述存储器520存储的计算机执行指令,使得所述通信设备500可以通过所述通信接口530与其他装置进行数据交互来执行上述方法实施例提供的通信方法。
其中,该一个或多个处理器510用于执行以下操作:
根据预定义参数,确定第一解调参考信号DMRS序列;
确定映射在第一资源集合内的第二DMRS序列,该第二DMRS序列为该第一DMRS序列的子集,其中,该第二DMRS序列是根据该第一资源集合的时域信息和/或频域信息获得的。
应理解,通信设备500可以具体为上述实施例中的通信设备300,并且可以用于执行上述方法实施例中与通信设备300对应的各个步骤和/或流程。
图15示出了本申请实施例提供的通信设备600的示意性框图。该通信设备600包括一个或多个处理器610、存储器620和通信接口630;所述一个或多个处理器610、所述存储器620和所述通信接口630均通过内部通路连接;
所述存储器620,用于存储计算机执行指令;
所述一个或多个处理器610,用于执行所述存储器620存储的计算机执行指令,使得所述通信设备600可以通过所述通信接口630与其他装置进行数据交互来执行上述方法实施例提供的通信方法。
其中,该一个或多个处理器610用于执行以下操作:
确定第一资源集合的时域信息,该第一资源集合在时域上包括一个或者多个时间单元,该时域信息包括以下至少一种:起始时间单元的索引、时间单元的个数或者每个时间单元的索引;
根据该第一资源集合的时域信息,确定第一序列,其中,该第一序列是用于加扰该第一资源集合承载的第一信息,或者用于解扰该第一资源集合承载的第一信息。
应理解,通信设备600可以具体为上述实施例中的通信设备400,并且可以用于执行上述方法实施例中与通信设备400对应的各个步骤和/或流程。
本申请实施例还提供了一种芯片系统,该芯片系统包括:一个或多个处理器、一个或多个存储器和接口电路,所述接口电路负责所述芯片系统与外界的信息交互,所述一个或多个存储器、所述接口电路和所述一个或多个处理器通过线路互联,所述一个或多个存储器中存储有指令;所述指令被所述一个或多个处理器执行,以使得所述通信设备可以执行对应于上述方法的通信设备的操作。
本申请实施例还提供了一种计算机程序产品,应用于通信设备中,所述计算机程序产品包括一系列指令,当所述指令被运行时,以使得所述通信设备可以执行对应于上述方法的通信设备的操作。
在本申请实施例中,应注意,本申请实施例上述的方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬 件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的一个或多个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁盘)、光介质(例如,DVD)、或者半导体 介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种通信方法,其特征在于,包括:
    第一设备根据预定义参数,确定第一解调参考信号DMRS序列;
    所述第一设备确定映射在第一资源集合内的第二DMRS序列,所述第二DMRS序列为所述第一DMRS序列的子集,其中,所述第二DMRS序列是根据所述第一资源集合的时域信息和/或频域信息获得的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备为网络设备,所述方法还包括:
    所述第一设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述第一资源集合的时域信息和/或频域信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第一设备为终端设备,所述方法还包括:
    所述第一设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一资源集合的时域信息和/或频域信息。
  4. 一种通信设备,其特征在于,包括:
    第一处理模块,用于根据预定义参数,确定第一解调参考信号DMRS序列;
    第二处理模块,用于确定映射在第一资源集合内的第二DMRS序列,所述第二DMRS序列为所述第一处理模块确定的所述第一DMRS序列的子集,其中,所述第二DMRS序列是根据所述第一资源集合的时域信息和/或频域信息获得的。
  5. 根据权利要求4所述的通信设备,其特征在于,所述通信设备为网络设备,所述通信设备还包括:
    第一收发模块,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述第一资源集合的时域信息和/或频域信息。
  6. 根据权利要求4所述的通信设备,其特征在于,所述通信设备为终端设备,所述通信设备还包括:
    第二收发模块,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一资源集合的时域信息和/或频域信息。
  7. 根据权利要求1至3中任一权利要求所述的方法和权利要求4至6中任一权利要求所述的通信设备,其特征在于,所述预定义参数是根据时间单元的数量确定的;和/或,
    所述预定义参数是根据频域单元的数量确定的。
  8. 根据权利要求1至3、7中任一权利要求所述的方法和权利要求4至7中任一权利要求所述的通信设备,其特征在于,所述第一资源集合在时域上包括一个或者多个时间单元;
    所述时域信息包括以下至少一种:起始时间单元的索引、时间单元的个数或者每个时间单元的索引。
  9. 根据权利要求8所述的方法和权利要求8所述的通信设备,其特征在于,所述第一DMRS序列产生器的初始化值和所述第一资源集合的起始时间单元的索引值有关;或 者,
    所述第一DMRS序列产生器的初始化值和所述第一资源集合中的每个时间单元的索引有关。
  10. 根据权利要求8所述的方法和权利要求8所述的通信设备,其特征在于,所述第一DMRS序列产生器的初始值和时间单元的索引有关。
  11. 根据权利要求1至3,7至10中任一权利要求所述的方法和权利要求4至10中任一权利要求所述的通信设备,其特征在于,所述第二DMRS序列是根据所述第一资源集合所在的频率范围、且从所述第一DMRS序列中确定的子集。
  12. 根据权利要求1至3,7至11中任一权利要求所述的方法和权利要求4至11中任一权利要求所述的通信设备,其特征在于,所述第二DMRS序列是根据所述第一资源集合的子载波间隔类型从第三DMRS序列中确定的子集,所述第三DMRS序列是根据第一资源集合所在的频率范围确定的所述第一DMRS序列的子集。
  13. 一种通信方法,其特征在于,包括:
    第二设备确定第一资源集合的时域信息,所述第一资源集合在时域上包括一个或者多个时间单元,所述时域信息包括以下至少一种:起始时间单元的索引、或者时间单元的个数、或者每个时间单元的索引;
    所述第二设备根据所述第一资源集合的时域信息,确定第一序列,其中,所述第一序列是用于加扰所述第一资源集合承载的第一信息,或者用于解扰所述第一资源集合承载的第一信息。
  14. 根据权利要求13所述的方法,其特征在于,所述第二设备为网络设备,所述第一序列用于加扰所述第一资源集合承载的第一信息,所述方法还包括:
    所述第二设备向终端设备发送第二指示信息,所述第二指示信息用于指示所述第一资源集合的时域信息。
  15. 根据权利要求13所述的方法,其特征在于,所述第二设备为终端设备,所述第一序列用于解扰所述第一资源集合承载的第一信息,所述方法还包括:
    所述第二设备接收网络设备发送的第二指示信息,所述第二指示信息用于所述第一资源集合的时域信息。
  16. 一种通信设备,其特征在于,包括:
    第三处理模块,用于确定第一资源集合的时域信息,所述第一资源集合在时域上包括一个或者多个时间单元,所述时域信息包括以下至少一种:起始时间单元的索引、或者时间单元的个数、或者每个时间单元的索引;
    第四处理模块,用于根据所述第一资源集合的时域信息,确定第一序列,其中,所述第一序列是用于加扰所述第一资源集合承载的第一信息,或者用于解扰所述第一资源集合承载的第一信息。
  17. 根据权利要求16所述的通信设备,其特征在于,所述通信设备为网络设备,所述第一序列用于加扰所述第一资源集合承载的第一信息,所述通信设备还包括:
    第三收发模块,用于向终端设备发送第二指示信息,所述第二指示信息用于指示所述第一资源集合的时域信息。
  18. 根据权利要求16所述的通信设备,其特征在于,所述通信设备为终端设备,所 述第一序列用于解扰所述第一资源集合承载的第一信息,所述通信设备还包括:
    第四收发模块,用于接收网络设备发送的第二指示信息,所述第二指示信息用于所述第一资源集合的时域信息。
  19. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令用于执行权利要求1-3和7-12中任一权利要求所述的方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令用于执行权利要求13-15中任一权利要求所述的方法。
PCT/CN2018/115843 2017-11-17 2018-11-16 一种通信方法和设备 WO2019096238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711147772.8A CN109802790A (zh) 2017-11-17 2017-11-17 一种通信方法和设备
CN201711147772.8 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019096238A1 true WO2019096238A1 (zh) 2019-05-23

Family

ID=66540023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115843 WO2019096238A1 (zh) 2017-11-17 2018-11-16 一种通信方法和设备

Country Status (2)

Country Link
CN (1) CN109802790A (zh)
WO (1) WO2019096238A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518437A (zh) * 2020-04-10 2021-10-19 中兴通讯股份有限公司 数据业务的解析、发送方法、电子设备以及存储介质
CN114389769A (zh) * 2020-10-16 2022-04-22 维沃移动通信有限公司 解调参考信号dmrs传输方法、装置及通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103095631A (zh) * 2011-11-03 2013-05-08 中兴通讯股份有限公司 下行参考信号的发送方法、配置方法和装置
CN103248468A (zh) * 2012-02-01 2013-08-14 华为技术有限公司 解调导频信号处理方法、基站及用户设备
WO2013137625A1 (en) * 2012-03-12 2013-09-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control channel in wireless communication system
CN105827382A (zh) * 2010-09-29 2016-08-03 中兴通讯股份有限公司 参考信号映射方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014028039A8 (pt) * 2012-05-11 2021-06-15 Huawei Tech Co Ltd método, equipamento de usuário e estação de base para gerar sequência piloto
US8923207B2 (en) * 2012-05-17 2014-12-30 Industrial Technology Research Institute Method for initializing sequence of reference signal and base station using the same
CN103580790A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种dmrs处理方法和装置
KR102014918B1 (ko) * 2015-03-03 2019-08-27 후아웨이 테크놀러지 컴퍼니 리미티드 상향링크 데이터 전송 방법 및 장치
CN107040354B (zh) * 2016-02-04 2020-10-27 中兴通讯股份有限公司 上行dmrs的配置方法、网元、上行dmrs的传输方法和装置
CN106797611B (zh) * 2017-01-09 2021-03-30 北京小米移动软件有限公司 信息搜索方法、信息发送方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827382A (zh) * 2010-09-29 2016-08-03 中兴通讯股份有限公司 参考信号映射方法及装置
CN103095631A (zh) * 2011-11-03 2013-05-08 中兴通讯股份有限公司 下行参考信号的发送方法、配置方法和装置
CN103248468A (zh) * 2012-02-01 2013-08-14 华为技术有限公司 解调导频信号处理方法、基站及用户设备
WO2013137625A1 (en) * 2012-03-12 2013-09-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control channel in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "On NR-PDCCH Structure, Rl-1717061", 3GPP TSG RAN WGI MEETING #90BIS, 13 October 2017 (2017-10-13), XP051340252 *

Also Published As

Publication number Publication date
CN109802790A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
EP3624371B1 (en) Method and device for generating scrambling code sequence
EP3340521B1 (en) Physical downlink control channel transmission method and apparatus
WO2017185915A1 (zh) 分配时频资源的方法和装置
EP3637101B1 (en) Reference signal obtaining method and apparatus, and computer readable storage medium
US20190334680A1 (en) Resource Indication Method, User Equipment, and Network Device
WO2018202130A1 (zh) 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质
WO2019095828A1 (zh) 参考信号的传输方法和传输装置
WO2018170842A1 (zh) 传输上行解调参考信号的方法和设备
US11632207B2 (en) Method and apparatus for transmitting uplink signal
CN109661846B (zh) 通信方法、终端设备和网络设备
JP2022122973A (ja) システムメッセージの伝送方法及び装置
JP7467529B2 (ja) 放送信号送信方法、放送信号受信方法、ネットワークデバイス、および端末デバイス
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
CN111867038B (zh) 一种通信方法及装置
TW202008828A (zh) 資源配置的方法和終端設備
CN110890948A (zh) 解调参考信号的传输方法、网络侧设备及用户设备
TWI762531B (zh) 資源映射的方法和通訊設備
WO2019096238A1 (zh) 一种通信方法和设备
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
CN110890946B (zh) 解调参考信号的传输方法、网络侧设备及用户设备
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
JP7307227B2 (ja) 無線通信方法、ネットワーク装置及び端末装置
WO2019051788A1 (zh) 用于传输数据的方法和终端设备
WO2018137234A1 (zh) 下行控制信息的传输方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877999

Country of ref document: EP

Kind code of ref document: A1