WO2018202130A1 - 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质 - Google Patents

确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质 Download PDF

Info

Publication number
WO2018202130A1
WO2018202130A1 PCT/CN2018/085607 CN2018085607W WO2018202130A1 WO 2018202130 A1 WO2018202130 A1 WO 2018202130A1 CN 2018085607 W CN2018085607 W CN 2018085607W WO 2018202130 A1 WO2018202130 A1 WO 2018202130A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
indication information
reference signal
terminal device
signal sequence
Prior art date
Application number
PCT/CN2018/085607
Other languages
English (en)
French (fr)
Inventor
吴明
唐浩
张弛
丁梦颖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020197035656A priority Critical patent/KR102393630B1/ko
Priority to BR112019023158-7A priority patent/BR112019023158A2/pt
Priority to EP18782863.7A priority patent/EP3432505B1/en
Priority to JP2019560745A priority patent/JP7127063B2/ja
Priority to EP23205137.5A priority patent/EP4336754A3/en
Priority to EP21151987.1A priority patent/EP3869725B1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880029670.2A priority patent/CN110915159B/zh
Priority to US16/147,797 priority patent/US10903953B2/en
Publication of WO2018202130A1 publication Critical patent/WO2018202130A1/zh
Priority to US16/204,908 priority patent/US11258556B2/en
Priority to US17/675,363 priority patent/US11843492B2/en
Priority to US18/506,474 priority patent/US20240163147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of field communication and, more particularly, to a method, apparatus, computer program product, and computer readable storage medium for determining a reference signal sequence.
  • the maximum supported system bandwidth is 20 MHz, corresponding to a maximum of 110 resource blocks (RBs), and the downlink demodulation reference signal (demodulation)
  • the reference signal (DMRS) generates a reference signal sequence according to the number of RBs of the maximum bandwidth, and the DMRS on the corresponding RB uses a corresponding reference signal sequence.
  • CC Component carrier
  • the CC in the LTE-A can be regarded as a serving cell, and the terminal device only needs to know the cell bandwidth, that is, the system bandwidth of the CC.
  • the reference signal of the terminal device on the CC is generated according to the number of RBs corresponding to the maximum bandwidth of the LTE-A, and the physical resource block (PRB) is numbered starting from the frequency domain starting position of the CC.
  • the terminal device can use carrier aggregation (CA) to transmit data on multiple CCs, so that the terminal device can use more bandwidth for transmitting data and increase the data transmission rate.
  • CA carrier aggregation
  • NR new radio
  • BP bandwidth part
  • the resource allocation in the NR is more flexible. Many companies think that it is necessary to consider a more flexible multi-user multiple-input multiple-output (MU-MIMO), for example, the bandwidth of multi-terminal device access.
  • MU-MIMO, terminal equipment MU-MIMO, etc. on CC and wideband CC are partially overlapped. If the NR needs to support the terminal equipment working on the wideband (or wideband CC) and the terminal equipment working on one CC or using multiple CCs or the terminal equipment working on the BP to do MU-MIMO, then it is necessary to support both.
  • the DMRS can be configured to be orthogonal or quasi-orthogonal.
  • the DMRS sequence generation and mapping method on the wideband and the CC in the existing LTE-A cannot support the DMRS configuration of the user working on the wideband and the user working on one or more CCs to be orthogonal.
  • the present application provides a method for determining a reference signal sequence, a terminal device, and a network device, which are capable of determining a reference signal sequence according to a parameter of a first bandwidth and a parameter of a second bandwidth, such that a reference signal sequence and a second bandwidth on the first bandwidth
  • the reference signal sequence is the same, and the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth may be configured to be the same, orthogonal or quasi-orthogonal, and support the terminal device working on the first bandwidth and the second bandwidth as the MU.
  • - MIMO may be configured to be the same, orthogonal or quasi-orthogonal
  • a method for determining a reference signal sequence comprising: receiving first indication information sent by a network device; determining a bandwidth portion according to the first indication information; and starting a frequency domain according to the bandwidth portion An offset between the frequency domain start positions of the maximum bandwidth of the system determines a reference signal sequence; the bandwidth is used to transmit or receive the reference signal sequence.
  • the method further includes: receiving second indication information sent by the network device, and determining a frequency domain start position of the maximum bandwidth of the system according to the second indication information.
  • the method further includes: receiving third indication information sent by the network device, and determining a frequency domain start position of the bandwidth portion according to the third indication information.
  • determining a reference signal sequence according to an offset between a frequency domain start position of the bandwidth portion and a frequency domain start position of a maximum bandwidth of the system including: according to the bandwidth portion The offset between the frequency domain start position and the frequency domain start position of the system maximum bandwidth, and the subcarrier spacing, determines the reference signal sequence.
  • a method for determining a reference signal sequence includes: transmitting, to a terminal device, first indication information, where the first indication information is used to indicate a bandwidth portion; and sending, to the terminal device, second indication information, where The second indication information is used to indicate the frequency domain starting position of the maximum bandwidth of the system.
  • the method further includes: sending, to the terminal device, third indication information, where the third indication information is used to indicate a frequency domain start position of the bandwidth portion.
  • the offset between the frequency domain start position of the bandwidth portion and the frequency domain start position of the maximum bandwidth of the system is used by the terminal device to determine a reference signal sequence, and utilize the The bandwidth portion transmits the reference signal sequence.
  • an apparatus for determining a sequence of reference signals may be a terminal device or a chip within the terminal device.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the terminal device may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the terminal device to perform the method of determining the reference signal sequence in the first aspect and various implementations thereof.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored by the storage unit to make the terminal
  • the device performs the method for determining a reference signal sequence in the foregoing first aspect and various implementation manners thereof, where the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be located in the terminal device.
  • a memory unit external to the chip eg, read only memory, random access memory, etc.).
  • an apparatus for determining a sequence of reference signals may be a network device or a chip within a network device.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor, and the transceiver unit may be a transceiver;
  • the network device may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the network device to perform the method of determining a reference signal sequence in the second aspect and various implementations thereof.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored by the storage unit to make the network
  • the device performs the method for determining a reference signal sequence in the second aspect and various implementation manners thereof, where the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be located in the network device.
  • a memory unit external to the chip eg, read only memory, random access memory, etc.).
  • a fifth aspect provides a device for acquiring a resource indication value, the device comprising a processor and a storage medium, wherein the storage medium stores an instruction, when the instruction is executed by the processor, causing the processor to execute the first aspect and A method of determining a reference signal sequence in various implementations thereof.
  • the device can be a chip or chip system.
  • a sixth aspect provides a device for acquiring a resource indication value, the device comprising a processor and a storage medium, wherein the storage medium stores an instruction, when the instruction is executed by the processor, causing the processor to execute the second aspect and A method of determining a reference signal sequence in various implementations thereof.
  • the device can be a chip or chip system.
  • a computer program product comprising: computer program code, when the computer program code is executed by a communication device, causing the communication device to perform the first aspect and various implementations thereof A method of determining a reference signal sequence.
  • a computer program product comprising: computer program code, when the computer program code is executed by a communication device, causing the communication device to perform the second aspect and various implementations thereof A method of determining a reference signal sequence.
  • a computer readable storage medium for storing a computer program for executing instructions of a method of determining a reference signal sequence in the first aspect and various implementations thereof.
  • a computer readable storage medium for storing a computer program for executing instructions of a method of determining a reference signal sequence in the second aspect and various implementations thereof.
  • An eleventh aspect provides a method for determining a reference signal sequence, the method comprising: receiving, by a terminal device, first indication information sent by a network device; the terminal device determining, according to the first indication information, a target resource; The device determines a reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth; the terminal device sends or receives the reference signal sequence on the target resource.
  • the method for determining a reference signal according to the eleventh aspect wherein the reference signal sequence can be determined according to the parameter of the first bandwidth and the parameter of the second bandwidth, so that the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth are the same,
  • the first bandwidth reference signal sequence and the second bandwidth reference signal sequence may be configured to be the same, orthogonal or quasi-orthogonal, and support terminal devices operating on the first bandwidth and the second bandwidth to perform MU-MIMO.
  • the parameter of the second bandwidth includes at least one of the following: a center frequency of the second bandwidth, a bandwidth value of the second bandwidth, and the second bandwidth The starting position of the frequency domain.
  • the parameter of the first bandwidth includes at least one of: a center frequency point of the first bandwidth, a bandwidth value of the first bandwidth, and the first bandwidth The starting position of the frequency domain.
  • the method further includes: the terminal device receiving the second indication information sent by the network device; the terminal device determining, according to the second indication information, the parameter of the second bandwidth At least one of them.
  • the method further includes: the terminal device receiving the third indication information sent by the network device; the terminal device determining, according to the third indication information, the parameter of the first bandwidth at least one.
  • the terminal device determines the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth, including: the terminal device according to the parameter of the first bandwidth, the first The parameter of the second bandwidth and the subcarrier spacing determine the reference signal sequence.
  • the frequency domain of the target resource and the frequency domain of the first bandwidth are the same or partially overlapped.
  • the bandwidth value of the first bandwidth is less than or equal to the bandwidth value of the second bandwidth.
  • the first bandwidth is any one of a working bandwidth, a serving cell bandwidth, and a carrier bandwidth of the terminal device;
  • the second bandwidth is a system maximum bandwidth, a cell bandwidth, and Any of the wideband carrier bandwidths.
  • a method for determining a reference signal sequence includes: the network device sending, to the terminal device, first indication information, where the first indication information is used to indicate a target resource; and the network device sends the terminal information to the terminal device
  • the second indication information is used to indicate a parameter of the second bandwidth.
  • the indication information for indicating a parameter of the second bandwidth is sent to the terminal device by the network device, where the UE working on the first bandwidth and the second bandwidth are supported.
  • the terminal device performs MU-MIMO, that is, determines the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth, and finally causes the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth to be configured to be the same, Orthogonal or quasi-orthogonal, supporting terminal devices operating on the first bandwidth and the second bandwidth to perform MU-MIMO.
  • the method further includes: the network device sending, to the terminal device, third indication information, where the third indication information is used to indicate a parameter of the first bandwidth.
  • the parameter of the second bandwidth and the parameter of the first bandwidth are used by the terminal device to determine a reference signal sequence, and send the reference signal sequence on the target resource.
  • the parameter of the second bandwidth includes at least one of the following parameters: a center frequency of the second bandwidth, a bandwidth value of the second bandwidth, and the second bandwidth The starting position of the frequency domain.
  • the parameter of the first bandwidth includes at least one of: a center frequency of the first bandwidth, a bandwidth value of the first bandwidth, and the first bandwidth. The starting position of the frequency domain.
  • the bandwidth value of the first bandwidth is less than or equal to the bandwidth value of the second bandwidth.
  • the frequency domain of the target resource and the frequency domain of the first bandwidth are the same or partially overlapped.
  • the first bandwidth is any one of a working bandwidth, a serving cell bandwidth, and a carrier bandwidth of the terminal device;
  • the second bandwidth is a system maximum bandwidth, a cell bandwidth, and Any of the wideband carrier bandwidths.
  • a terminal device including a processor, a memory, and a transceiver, for supporting the terminal device to perform a corresponding function in the foregoing method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, the processor is configured to invoke the instruction to implement the first aspect and various implementation manners thereof A method of determining a reference signal sequence.
  • the fourteenth aspect provides a terminal device, including a processing module, a storage module, and a transceiver module, for supporting the terminal device to perform the functions of the terminal device in any of the foregoing first aspect or the first aspect of the first aspect.
  • the function can be implemented by hardware or by hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • a network device including a processor, a memory, and a transceiver for supporting the network device to perform a corresponding function in the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, the processor is configured to invoke the instruction to implement the second aspect and various implementations thereof A method of determining a reference signal sequence.
  • a network device including a processing module, a storage module, and a transceiver module, is configured to support the terminal device to perform the functions of the terminal device in any of the foregoing second aspect or the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • a communication system comprising the terminal device provided by the third aspect, and the network device provided by the fourth aspect.
  • the communication system can perform the method of determining a reference signal sequence provided by the first aspect and the second aspect above.
  • a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a nineteenth aspect a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of any of the above-described second or second possible implementations.
  • FIG. 1 is a schematic diagram of a sequence of reference signals corresponding to an existing UE accessing a CC and accessing a maximum bandwidth.
  • FIG. 2 is a schematic diagram of a typical application scenario of an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for determining a reference signal sequence according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of reference signal sequences of different bandwidths according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of determining an offset value according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of determining an offset value according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for determining a reference signal sequence according to another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a network device of another embodiment of the present application.
  • the maximum supported system bandwidth is 20 MHz, corresponding to a maximum of 110 RBs, and the downlink de-DMRS is based on the maximum bandwidth of the RB number to generate a reference signal sequence, corresponding to the DMRS on the corresponding RB.
  • the reference signal sequence, the formula for generating the DMRS sequence is as shown in equation (1):
  • c(m) is a pseudo-random sequence (PN sequence)
  • the reference signal sequence r(m) is composed of a PN sequence
  • c init is the initialization value
  • formula (2) is the generation formula of the initialization value c init . Indicates that the maximum downlink bandwidth is 110 RBs.
  • mapping formula (3) The mapping formula of LTE downlink DMRS port and time-frequency resource is shown in formula (3):
  • p is the antenna port corresponding to the DMRS
  • k is the frequency domain subcarrier position mapped to the time-frequency resource by the DMRS
  • 1 is the time domain symbol position mapped to the time-frequency resource by the DMRS
  • n PRB is the physical resource.
  • w p (l') is an orthogonal cover code (OCC) corresponding to the port number p.
  • multiple terminal devices can perform MU-MIMO on the same bandwidth.
  • the base station configures multiple orthogonal or orthogonal DMRSs for multiple UEs.
  • the quasi-orthogonal approach is to configure orthogonal ports for multiple users to achieve orthogonality by using different OCCs.
  • Table 1 shows a configuration method of a DMRS port and a layer in LTE-A. By configuring corresponding configuration items for the user, the network side device can support multi-user DM-MIMO to correctly demodulate the DMRS.
  • FIG. 1 is a schematic diagram of a sequence of reference signals corresponding to a conventional terminal device when accessing different CCs.
  • the numbers 0, 1, 2, .. m in the figure are RB numbers.
  • the corresponding reference signal sequence (RB number) is different when the terminal device accesses different CCs.
  • the DMRS sequence generation and mapping methods on the existing LTE-A CCs cannot support the terminal devices on the CC, the wideband CC, or the BP in the same frequency band.
  • the reference signals are configured to be orthogonal.
  • the present application provides a method for determining a reference signal sequence, which can better solve the problem that the NR supports the terminal device working on the wideband (or wideband CC).
  • the MU-MIMO is required for the terminal device that works in one CC or uses multiple CCs, or the terminal device that works on the BP, so that the base station can better demodulate the data of different terminal devices.
  • LTE/LTE-A LTE/LTE-A frequency division duplex (FDD) system
  • LTE/LTE-A time division double Time division duplex (TDD) system LTE/LTE-A time division double Time division duplex (TDD) system
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • Wi-Fi wireless local area networks
  • WLAN wireless local area networks
  • future 5G communication systems such as: LTE/LTE-A system, LTE/LTE-A frequency division duplex (FDD) system, LTE/LTE-A time division double Time division duplex (TDD) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, public land mobile network (public land mobile network, PLMN) system, device to device (D2D) network system or machine to machine (M2M) network system, wireless fidelity (W
  • the terminal device may also be referred to as a user equipment (UE), a mobile station (MS), a mobile terminal, etc., and the terminal device may be connected by using a wireless device.
  • a radio access network (RAN) communicates with one or more core network devices, for example, the terminal device may include various handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, or connected to a wireless modem. Other processing equipment. It may also include a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a wireless modem, and a handheld device.
  • PDA personal digital assistant
  • MTC machine type communication
  • ST staion
  • WLAN wireless local area networks
  • It can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, and a next-generation communication system, for example, fifth-generation communication (fifth-generation, 5G) a terminal device in a network or a terminal device in a publicly available Public Land Mobile Network (PLMN) network in the future.
  • 5G fifth-generation communication
  • PLMN Public Land Mobile Network
  • the base station may also be referred to as a network device, and the network device may be a device for communicating with the terminal device, and the network device may be an evolved base station (eNB or eNodeB) in the LTE system, in the NR.
  • eNB evolved base station
  • the network device may be an access point (AP) in a WLAN, or may be a global system for mobile communication (GSM) or code dvision multiple access (CDMA), in CDMA.
  • GSM global system for mobile communication
  • CDMA code dvision multiple access
  • BTS Base Transceiver Station
  • eNB evolved NodeB
  • eNodeB evolved NodeB
  • the network device may also be a Node B of a 3rd Generation (3G) system.
  • the network device may also be a relay station or an access point, or an in-vehicle device, a wearable device, and a future 5G network.
  • a network device in the network or a network device in a future evolved PLMN network are not limited herein.
  • the above devices for providing wireless communication functions to the MS are collectively referred to as network devices.
  • the reference signal may be a DMRS, a channel state information-reference signal (CSI-RS), a sounding reference signal (SRS), and a phase tracking reference signal (PTRS).
  • CSI-RS channel state information-reference signal
  • SRS sounding reference signal
  • PTRS phase tracking reference signal
  • the cell-specific reference signal, the location reference signal, and the like are not limited herein.
  • the embodiment of the present application is only described by using the application scenario shown in FIG. 2 as an example, but the embodiment of the present application is not limited thereto.
  • the system may include more terminal devices.
  • FIG. 3 is a schematic flowchart of a method 100 for determining a reference signal sequence implemented in the present application.
  • the method 100 can be applied to the scenario shown in FIG. It can be applied to other communication scenarios, and the embodiments of the present application are not limited herein.
  • the method 100 includes:
  • the terminal device receives the first indication information sent by the network device.
  • the terminal device determines the target resource according to the first indication information.
  • the terminal device determines the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth.
  • the terminal device sends or receives the reference signal sequence on the target resource.
  • the terminal device when the terminal device needs to send data on a certain time-frequency resource, the reference signal sequence needs to be sent on the resource, and the reference signal sequence is used by the network device for channel estimation, coherent detection, and solution. Tune in order for the network device to correctly demodulate the data of the terminal device. Therefore, the terminal device receives the first indication information sent by the network device, where the first indication information is used to indicate that the terminal device sends the time-frequency resource of the reference signal sequence, that is, the target resource. The terminal device can determine the target resource according to the first indication information.
  • the terminal device determines the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth, so that the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth are the same.
  • a plurality of terminal devices perform MU-MIMO, for example, it is required to support a terminal device operating on a first bandwidth and a terminal device operating on a second bandwidth to perform MU-MIMO due to a reference signal on the first bandwidth.
  • the sequence and the reference signal sequence on the second bandwidth are the same, so that the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth can be configured to be orthogonal or quasi-orthogonal, so that the network device can correctly parse out Data for different terminal devices.
  • the reference signal sequence on the first bandwidth is related to the parameter of the first bandwidth and the parameter of the second bandwidth, that is, the reference signal sequence on the first bandwidth is determined according to the parameter of the first bandwidth and the parameter of the second bandwidth.
  • 4 is a schematic diagram of a reference signal sequence of different bandwidths according to an embodiment of the present application. As shown in FIG. 4, the maximum bandwidth can be regarded as a second bandwidth, and CC1 or wideband CC2 (wideband CC2) or BP is regarded as a first bandwidth.
  • the cell bandwidth or the maximum bandwidth can be regarded as the second bandwidth
  • CC1 is regarded as the first bandwidth
  • the maximum bandwidth is the reference signal of the CC1 and the wideband CC2.
  • the sequence is generated according to the method for generating the reference signal sequence of the maximum bandwidth.
  • the maximum bandwidth, the reference signal sequence on CC1 and the wideband CC2 can be configured to be the same. Orthogonal or quasi-orthogonal (RB numbers are the same).
  • the reference signal sequence on the CC1 and the reference signal sequence on the maximum bandwidth may be configured to be orthogonal or quasi-orthogonal through the configuration in the foregoing Table 1. In this way, when the terminal device 1 accesses CC1 and the terminal device 2 accesses the maximum bandwidth, the network device can correctly demodulate different user data.
  • the method for determining the reference signal provided by the embodiment of the present application may also be applicable, and the embodiment of the present application is not limited herein.
  • the reference signal sequence is transmitted or received on the target resource for demodulating the demodulation of data of different users.
  • the target resource is a resource allocated by the network device to the terminal device, and the terminal device may send or receive data on the target resource.
  • the frequency domain of the target resource may be the same as the frequency domain of the first bandwidth, or may overlap with the frequency domain of the first bandwidth.
  • the frequency domain of the target resource may also be part of the frequency domain of the second bandwidth, or part of the frequency domain of the first bandwidth.
  • the first bandwidth may include any one of a working bandwidth of the terminal device, a cell bandwidth serving the terminal device, and a carrier bandwidth.
  • the first bandwidth may be a CC, a carrier. Multiple CCs after aggregation, BP, cell bandwidth, system maximum bandwidth, etc.
  • the second bandwidth may include any one of a system maximum bandwidth, a cell bandwidth, and a wideband carrier bandwidth.
  • the frequency domain of the first bandwidth may be part of the frequency domain of the second bandwidth, or the frequency domain of the first bandwidth and the partial frequency domain of the second bandwidth overlap, and the bandwidth value of the first bandwidth may be less than or equal to the bandwidth value of the second bandwidth. .
  • the embodiments of the present application are not limited herein.
  • the first bandwidth may be a CC
  • the CC may be a serving cell bandwidth, a continuous frequency domain resource in the cell transmission bandwidth, or a non-contiguous frequency domain resource in the cell transmission bandwidth. limit.
  • the first bandwidth may be a bandwidth part (BP), BP is a contiguous resource in the frequency domain, one BP may include consecutive K subcarriers, and K is an integer greater than 0; or, one BP may include N frequency domain resources in which non-overlapping consecutive PRBs are located, N is an integer greater than 0, the subcarrier spacing of the PRB is 15k, 30k, 60k or other subcarrier spacing; or, one BP includes N non-overlapping consecutive For the frequency domain resource where the PRB group is located, one PRB group contains M consecutive PRBs, and N and M are integers greater than 0, and the subcarrier spacing of the PRB is 15k, 30k, 60k or other subcarrier spacing.
  • the length of the BP may be less than or equal to the maximum bandwidth supported by the terminal device, which is not limited herein.
  • the first bandwidth may also be a bandwidth formed by the CA aggregation CC, which is not limited herein.
  • first bandwidth may also include other types of bandwidths
  • second bandwidth may also include other types of bandwidths, which are not limited herein.
  • the method for determining a reference signal sequence may determine the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth, so that the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth are the same.
  • the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth may be configured to be orthogonal or quasi-orthogonal, such that The data of different terminal devices can be correctly demodulated to improve the user experience.
  • the parameter of the second bandwidth includes at least one of the following: a center frequency of the second bandwidth, a bandwidth value of the second bandwidth, and a frequency domain start position of the second bandwidth. .
  • the parameter of the first bandwidth includes at least one of the following parameters: a center frequency point of the first bandwidth, a bandwidth value of the first bandwidth, and a frequency domain start position of the first bandwidth. .
  • the terminal device obtains the parameter of the first bandwidth that is accessed by the terminal device, for example, the center frequency of the first bandwidth and the bandwidth value of the first bandwidth, and also obtains the parameter of the second bandwidth.
  • the method for generating the reference signal on the bandwidth may be the same as or different from the method for generating the reference signal on the second bandwidth.
  • the length of the reference signal sequence generated by the two needs to be the maximum of the two bandwidths or another larger one.
  • the bandwidth value is generated.
  • the reference sequences of the overlapping portions of the first bandwidth and the second bandwidth frequency domain may be configured to be identical, orthogonal or quasi-orthogonal.
  • the starting position of the frequency domain that can be regarded as the first bandwidth has an offset value compared to the starting position of the frequency domain of the second bandwidth, corresponding to
  • the mapping formula of the reference signal sequence on the first bandwidth has an offset value compared to the mapping formula on the reference signal sequence on the second bandwidth.
  • the offset value is related to the parameters of the first bandwidth and the parameters of the second bandwidth.
  • the NR standard has agreed that for one subcarrier spacing, the number of subcarriers per NR carrier is at most 3300 or 6600. Therefore, the length of the reference signal sequence on all wideband CCs or CCs (or BPs) on one carrier is generated according to the maximum bandwidth or the maximum number of subcarriers.
  • the sequence generation method of reference signals on different CCs and wideband CCs or full bandwidths uses equation (4):
  • the bandwidth and maximum bandwidth (or the maximum number of subcarriers) of different cells may be different, the bandwidth that the cell can use may be smaller than the maximum bandwidth, so in the formula It can also represent the bandwidth of the cell, the bandwidth of the wideband, or the bandwidth of multiple CCs or the bandwidth of the broadband BP. That is, the length of the reference signal sequence generated on the CC or BP may be according to the maximum bandwidth, the cell bandwidth, or the wideband. Equal bandwidth to generate. It should be understood that the formula (4) is only described by taking the DMRS sequence generation method in the LTE as an example. In the embodiment of the present application, other reference signal sequence generation methods may also be used to determine the corresponding reference signal sequence in the NR. The method of the present invention is not limited herein.
  • mapping formula of the reference signal the DMRS is taken as an example for description.
  • mapping formula of the DMRS port and the video resource is the formula (3):
  • the reference signal sequences of the portions overlapping in the first bandwidth and the second bandwidth frequency domain can be configured to be identical, orthogonal or quasi-orthogonal.
  • the mapping formula of the DMRS on the first bandwidth needs to have an offset value, as shown in equation (5) or equation (6):
  • offset1 and offset2 is related to the design of the specific DMRS format, because the actual DMRS format affects the time-frequency resource location of the DMRS sequence mapping, and the corresponding mapping formula used is also different.
  • Equation (5) or Equation (6) is the mapping formula of the DMRS on the first bandwidth, and formula (5) or formula (6) is determined, that is, the reference signal sequence on the first bandwidth is determined. In this way, when different terminal devices access the first bandwidth and the second bandwidth respectively for MU-MIMO. Mapping the reference signal sequence on the first bandwidth by equation (5) or equation (6) such that the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth are identical, such that through the network device
  • the configuration can configure the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth to be orthogonal or quasi-orthogonal, and the network device can correctly parse the data sent by each terminal device.
  • the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth can be made by respective mapping formulas. The same, so that the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth can be configured to be orthogonal or quasi-orthogonal.
  • the terminal device may determine the frequency domain starting position f1 of the first bandwidth according to the central frequency point of the first bandwidth and the bandwidth value of the first bandwidth, according to the central frequency point of the second bandwidth and the bandwidth of the second bandwidth.
  • the value of the frequency domain start position f of the second bandwidth can be determined.
  • the frequency domain offset value of the first bandwidth relative to the second bandwidth is f-f1.
  • the terminal device determines the frequency domain length of one RB in the subcarrier interval according to the parameter configuration (numerology) or the subcarrier interval used by the current time of the second bandwidth, and can determine the number of RBs corresponding to f-f1, and can determine The value of offset is N. As shown in Figure 5.
  • FIG. 5 As shown in Figure 5.
  • a bandwidth can be regarded as a second bandwidth
  • CC1 or CC2 is regarded as a first bandwidth alone
  • CC1 and CC2 can be regarded as a wideband CC aggregated using a carrier
  • the wideband CC can be regarded as the first bandwidth.
  • the numbers on CC1, CC2, and BW are RB numbers.
  • the offset value of CC1 relative to BW can be determined. Offset1.
  • the value of the offset value offset2 of CC2 with respect to BW can also be determined.
  • the terminal device determines the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth, including:
  • the terminal device determines the reference signal sequence according to the parameter of the first bandwidth, the parameter of the second bandwidth, and the subcarrier spacing.
  • the numerology or subcarrier spacing may be different at different times, and the frequency domain length of one RB corresponding to different numerology or subcarrier spacing is also different.
  • the offset value is determined according to the numerology or subcarrier spacing of the current time, thereby determining the reference signal sequence, that is, determining the offset value needs to be determined according to the numerology or subcarrier spacing of the current time.
  • the offset value is related to the first bandwidth relative to the offset value of the frequency domain of the second bandwidth. Assuming that the offset of the frequency domain start position of the first bandwidth relative to the frequency domain start position of the second bandwidth is N RBs, the offset value is equal to N. The number of RBs of the offset value is calculated according to the subcarrier spacing on the carrier and how many subcarriers in one RB. In this way, it can be ensured that the terminal device accesses the first bandwidth or the second bandwidth. If the used OCC and the sequence initialization value are the same, the reference signal sequence used correspondingly is the same as long as the frequency domain position is fixed.
  • the terminal device may also access multiple CCs using the CA, and the reference signals on other CCs may also be determined according to a similar method. For example, if the terminal device accesses CC1, CC2, and CC3, CC1, CC2, and CC3 can be regarded as the first bandwidth. When accessing multiple CCs, it can be regarded as a CC of one primary cell, and other CCs are CCs of the secondary cell. .
  • the terminal device determines the center frequency and bandwidth of the CC1, and after receiving the CC1, can receive the indication information sent by the network device. And determining, according to the indication information, frequency domain offset values of CC2 and CC3 with respect to CC1, and determining values of offset2 and offset3 of the reference signal sequence on CC2 and CC3 with respect to the second bandwidth based on the correlation parameters of CC1 and the second bandwidth.
  • FIG. 6 is a schematic diagram of determining an offset value according to another embodiment of the present application. As shown in FIG. 6, in NR or LTE, if there is a protection bandwidth of N subcarriers between CCs, a reference signal of each CC is calculated. In order to offset the value, the frequency domain length of the guard band (GB) between CCs needs to be taken into account.
  • GB guard band
  • the reference signal sequence mapping method similar to LTE is taken as an example in the embodiment of the present application, but other reference signal sequences and mapping methods may also be included in the embodiments of the present application.
  • the essence of the method of the embodiment of the present application is equally applicable to other reference sequences having similar sequence generation and mapping rules, such as other uplink or downlink reference signal sequences.
  • the mapping of the reference signal is related to the number of its RB.
  • the embodiments of the present application are not limited herein.
  • parameters of the second bandwidth and the parameters of the first bandwidth may also include other parameters, which are not limited herein.
  • the method 100 further includes:
  • the terminal device determines at least one of the parameters of the second bandwidth according to the second indication information.
  • the terminal device detects the synchronization signal of the first bandwidth during the initial access to the first bandwidth. After determining the synchronization signal, the synchronization signal is detected at the center frequency of the first bandwidth. The synchronization signal can determine the center frequency of the first bandwidth. Then, the parameter of the first bandwidth is obtained according to the broadcast information of the network device. And for the parameter of the second bandwidth, the terminal device sends the second indication information, where the second indication information is used by the terminal device to determine at least one of the parameters of the second bandwidth, for example, the parameter of the second bandwidth. At least one of a bandwidth value of the second bandwidth, a frequency domain start position of the second bandwidth, and a center frequency of the second bandwidth.
  • the offset value of the frequency domain of the first bandwidth relative to the frequency domain of the second bandwidth may be determined according to the information, using the above formula (5) Or formula (6), determining a mapping formula of the reference signal sequence on the first bandwidth, and finally determining the reference signal sequence on the first bandwidth.
  • the network device may predefine M (M ⁇ 1) kinds of second bandwidth, for example, the second bandwidth may include a maximum bandwidth, a cell bandwidth, and a wideband CC, a plurality of CC aggregated bandwidth, or a broadband BP. One or more.
  • the network device may notify the terminal device of the parameter of the second bandwidth by using the second indication information of the log 2 M bit.
  • the embodiments of the present application are not limited herein.
  • the network device may not pre-define the parameters of the second bandwidth.
  • the network device may send the parameter values of all possible second bandwidths to the terminal device by using the indication information, which is not limited herein.
  • the network device may configure the terminal device with a frequency domain start position of the second bandwidth, which is equivalent to configuring the network device Virtual bandwidth, which may or may not be the same as the actual second bandwidth.
  • the length of the reference signal sequence is related to the frequency domain start position of the virtual bandwidth, and the generation length of the reference signal sequence on the wideband or wideband CC or BP where the terminal device that accesses the CC to perform MU-MIMO is also The frequency domain start position of the virtual bandwidth is related.
  • the reference signal sequence values of the terminal device accessing the CC and accessing the wideband may still be different, and thus cannot be configured to be orthogonal.
  • the network device may also predefine one or more virtual bandwidths, and configure the terminal device with one of the virtual bandwidths, and the terminal device determines the frequency domain start position of the second bandwidth by using the virtual bandwidth and the center frequency of the second bandwidth. Then, the frequency domain offset of the CC and the frequency domain offset of the virtual bandwidth start position are calculated, and the reference signal sequence generation length on the CC may also be generated according to the virtual bandwidth length.
  • the resource for carrying the second indication information includes: a broadcast message, a radio resource control (RRC) signaling, a synchronization signal, a synchronization signal block, and a media access control layer control unit (media access control) Control element, MAC CE), and downlink control information (DCI).
  • RRC radio resource control
  • a synchronization signal e.g., a synchronization signal block
  • a media access control layer control unit media access control
  • DCI downlink control information
  • the broadcast message may be a master information block (MIB) or a system information block (SIB), and may be other types of broadcast messages, which are not limited herein.
  • MIB master information block
  • SIB system information block
  • the terminal device receives the second indication information that is sent by the network device, where the second indication information can be carried on any one of broadcast signaling, high layer signaling, and physical signaling.
  • the terminal device may receive the UE-specific signaling, UE group specific signaling, cell specific signaling, group common signaling, etc. Second indication information.
  • the resource used to carry the second indication information may also be other resources or other signaling, which is not limited herein.
  • the terminal device may also determine other parameters of the second bandwidth by using the second indication message, which is not limited herein.
  • the method 100 further includes:
  • the terminal device determines at least one of the parameters of the first bandwidth according to the third indication information.
  • the synchronization signal of the second bandwidth is detected. After the synchronization signal is determined, since the synchronization signal is at the center frequency of the second bandwidth, the detection is performed. When the synchronization signal is reached, the center frequency of the second bandwidth can be determined. Then, the parameter of the second bandwidth is obtained according to the broadcast information of the network device.
  • the terminal device For the parameter of the first bandwidth, the terminal device sends the third indication information, where the third indication information is used by the terminal device to determine the parameter of the first bandwidth, for example, the bandwidth value of the first bandwidth, the first bandwidth. At least one of a frequency domain start position and a center frequency of the first bandwidth.
  • the offset value of the frequency domain of the first bandwidth relative to the frequency domain of the second bandwidth may be determined according to the information, using the above formula (5) And determining a mapping formula of the reference signal sequence on the first bandwidth to finally determine the reference signal sequence on the first bandwidth.
  • the network device may predefine M (M ⁇ 1) first bandwidths, for example, the first bandwidth may include one or more of bandwidths such as CC, BP, and wideband bandwidth.
  • the network device may notify the terminal device of the parameter of the first bandwidth by using the third indication information of the log 2 M bit.
  • the embodiments of the present application are not limited herein.
  • the network device may not pre-define the parameters of the first bandwidth.
  • the network device may send all the possible parameter values to the terminal device through the third indication information, which is not limited herein.
  • the resource used to carry the third indication information includes: any one of a broadcast message, an RRC signaling, a synchronization signal, a synchronization signal block, a MAC CE, and a DCI.
  • the terminal device receives the third indication information that is sent by the network device, where the third indication information can be carried on any one of broadcast signaling, high layer signaling, and physical signaling. Parameter information for informing the terminal device of the second bandwidth.
  • the terminal device may receive the third indication information on signaling of UE-specific signaling, UE group specific signaling, cell specific signaling, and group common.
  • the resource used to carry the third indication information may also be other resources or other signaling, which is not limited herein.
  • the terminal device may also determine other parameters of the first bandwidth by using the third indication message, which is not limited herein.
  • the terminal device may further determine, by using the second indication information, an offset value of the first bandwidth relative to a frequency domain of the second bandwidth, for example, may be a certain frequency domain resource unit as a basic unit, and the offset value is
  • the notification method may be that the notification offset value is N times the resource unit of the frequency domain.
  • the frequency domain resource unit may be an RB, a PRB, a resource block group (RBG), a precoding resource block group (PRG), or the like.
  • the frequency domain resource unit may have multiple candidate values, which are specified by the network device, or the selection of the frequency domain resource unit is related to the identity of the CC or the wideband CC.
  • the terminal device determines the offset value according to the indication information of the network device and the frequency domain size of the RB in the current system.
  • the embodiments of the present application are not limited herein.
  • the terminal device accessing the first bandwidth and the terminal device accessing the second bandwidth may also adjust the offset value in the reference signal mapping formula with the third bandwidth as a reference.
  • the first bandwidth is CC
  • the second bandwidth is wideband CC
  • the third bandwidth may be cell bandwidth or system maximum bandwidth.
  • the bandwidth of CC and wideband CCs is part of the cell bandwidth or the maximum bandwidth of the system.
  • the terminal device accessing the first bandwidth and the terminal device accessing the second bandwidth may calculate the frequency domain offset value of the first bandwidth relative to the third bandwidth based on the frequency domain starting position of the third bandwidth.
  • the method can also configure the terminal device on the first bandwidth and the terminal device on the second bandwidth to perform MU-MIMO, and only needs to satisfy the third bandwidth that is greater than the first bandwidth and the second bandwidth.
  • the embodiments of the present application are not limited herein.
  • the foregoing method for determining a reference signal sequence can not only satisfy CC, wideband CC, BP, and different terminal devices on the cell bandwidth to perform MU-MIMO. It can also be used to satisfy MU-MIMO for different terminal devices such as the maximum bandwidth of the system.
  • the reference signals can also be determined in accordance with the methods provided herein. The embodiments of the present application are not limited herein.
  • the value of the offset may also be 0. If the user does not need to support CC, wideband CC, BP, cell bandwidth, and the maximum bandwidth of the system, the user performs MU-MIMO.
  • the offset value offset in the signal mapping formula can be 0. Therefore, the network device can also indicate whether the terminal device uses the technical solution of the present application, that is, the indication, according to whether the terminal device on the first bandwidth (CC, BP or wideband CC, etc.) performs MU-MIMO with the terminal device on other bandwidths.
  • the offset value offset of the reference signal map is 0, or is related to parameters such as the first bandwidth and the second bandwidth.
  • the terminal device may determine, according to the indication information sent by the network device, whether the reference signal mapping offset value is 0 or needs to be calculated according to parameters such as the first bandwidth and the second bandwidth.
  • the network device may use the indication information, for example, the network device uses the indication information of X (X ⁇ 1) bits to indicate that the offset in the mapping formula is set to 0 at a certain time or a certain period of time, or the network device may pass the indication information. It is determined that the terminal device is required to calculate the value of the offset in the mapping formula.
  • the prior art solution that is, the offset value is 0
  • the solution of the present application the offset value is calculated according to parameters such as the first bandwidth and the second bandwidth
  • the embodiments of the present application are not limited herein.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to this application.
  • the implementation of the embodiment imposes any limitations.
  • the method for determining a reference signal provided by the embodiment of the present application, after determining the parameter of the second bandwidth according to the indication information sent by the network device, determining the reference signal sequence according to the parameter of the second bandwidth and the parameter of the first bandwidth, so that The reference signal sequence over a bandwidth and the reference signal sequence over a second bandwidth may be configured to be identical, orthogonal or quasi-orthogonal.
  • the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth may be configured to be orthogonal or quasi-orthogonal, and the support works.
  • the terminal devices on the first bandwidth and the second bandwidth do MU-MIMO. Improve the user experience.
  • FIG. 7 is a schematic flowchart of a method 200 for determining a reference signal sequence according to an embodiment of the present application. As shown in Figure 7, the method 200 includes:
  • the network device sends first indication information to the terminal device, where the first indication information indicates the target resource.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate at least one of the parameters of the second bandwidth.
  • the network device when the terminal device needs to send data on a certain time-frequency resource, the network device sends the first indication information to the terminal device, to indicate to the terminal device that the specific time-frequency resource, that is, the target A resource is a resource allocated by a network device to a terminal device, and the terminal device can send or receive data on the target resource.
  • the terminal device may send a reference signal sequence on the target resource, where the reference signal sequence is used by the network device to correctly perform channel estimation, coherent detection, and demodulation, so that the network device correctly demodulates the data of the terminal device.
  • the network device needs to be solved.
  • the data sent by different terminal devices is called.
  • the reference signal sequence sent by different terminal devices needs to be configured to be orthogonal or quasi-orthogonal.
  • the terminal device When the terminal device supports the terminal device working on the first bandwidth and the terminal device working on the second bandwidth to perform MU-MIMO, when the terminal device accesses the first bandwidth, the parameter according to the first bandwidth and the second bandwidth are required.
  • the parameters determine the reference signal sequence and send a reference signal sequence on the target resource.
  • the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth may be configured to be the same, orthogonal or quasi-orthogonal, and the terminal devices operating on the first bandwidth and the second bandwidth may be supported to perform MU-MIMO. Therefore, the network device sends a second indication information to the terminal device, where the second indication information is used by the terminal device to determine the parameter of the second bandwidth.
  • the terminal device When the terminal device accesses the first bandwidth, the terminal device detects the synchronization signal, and after determining the synchronization signal, since the synchronization signal is at the center frequency of the first bandwidth, the synchronization signal is detected. Determining a center frequency of the second bandwidth. After that, the network device notifies other parameters of the first bandwidth through broadcast information. For the second bandwidth parameter, the network device sends a second indication information to the terminal device, where the second indication information is used by the terminal device to determine at least one of the parameters of the second bandwidth, for example, the second bandwidth. At least one of a bandwidth value, a frequency domain start position of the second bandwidth, and a center frequency point of the second bandwidth.
  • the network device sends the indication information for indicating the parameter of the second bandwidth to the terminal device, where the terminal device that works on the first bandwidth and the second bandwidth are supported.
  • the terminal device performs MU-MIMO, that is, determines the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth, and finally causes the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth to be configured to be the same.
  • MU-MIMO that is, determines the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth, and finally causes the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth to be configured to be the same.
  • Orthogonal or quasi-orthogonal it is possible to support terminal devices operating on the first bandwidth and the second bandwidth to perform MU-MIMO.
  • the network device can correctly parse the data on different terminal devices.
  • the target resource is a resource allocated by the network device to the terminal device, and the terminal device may send or receive data on the target resource.
  • the frequency domain of the target resource may be the same as the frequency domain of the first bandwidth, or may overlap with the frequency domain of the first bandwidth.
  • the frequency domain of the target resource may also be part of the frequency domain of the second bandwidth, or part of the frequency domain of the first bandwidth.
  • the first bandwidth may include any one of a working bandwidth of the terminal device and a cell bandwidth serving the terminal device, for example, the first bandwidth may be CC or BP.
  • the second bandwidth may include any one of a system maximum bandwidth, a cell bandwidth, and a wideband carrier bandwidth.
  • the frequency domain of the first bandwidth may be a partial frequency domain of the second bandwidth, and the bandwidth value of the first bandwidth may be smaller than the bandwidth value of the second bandwidth.
  • the resource used to carry the second indication information includes: any one of a broadcast message, an RRC signaling, a synchronization signal, a synchronization signal block, a MAC CE, and a DCI.
  • the second indication information may be carried on any one of broadcast signaling, high layer signaling, and physical signaling. Parameter information for informing the terminal device of the second bandwidth.
  • the network device may carry the second indication information by using UE-specific signaling, UE group specific signaling, cell specific signaling, group common signaling, and the like.
  • the resource used to carry the second indication information may also be other resources or other signaling, which is not limited herein.
  • the network device may also notify other parameters of the second bandwidth by using the second indication message, which is not limited herein.
  • the network device may predefine M (M ⁇ 1) kinds of second bandwidth.
  • the bandwidth of the second bandwidth may include a maximum bandwidth, a cell bandwidth or a wideband bandwidth, a plurality of CC aggregated bandwidths, or a broadband BP.
  • the network device may notify at least one of the parameters of the second bandwidth of the terminal device using the second indication information of the log 2 M bits.
  • the embodiments of the present application are not limited herein.
  • the network device may not pre-define the parameters of the second bandwidth.
  • the network device may send all the possible parameter values to the terminal device by using the indication information, which is not limited herein.
  • the method 200 further includes:
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate at least one of the parameters of the first bandwidth.
  • the terminal device when the terminal device accesses the second bandwidth, the terminal device detects the synchronization signal, and after determining the synchronization signal, since the synchronization signal is at the center frequency of the second bandwidth, synchronization is detected.
  • the signal can determine the center frequency of the second bandwidth.
  • the network device notifies other parameters of the second bandwidth by broadcasting information.
  • the network device sends a third indication information to the terminal device, where the third indication information is used by the terminal device to determine the parameter of the first bandwidth, for example, the bandwidth value of the first bandwidth, At least one of a frequency domain start position of a bandwidth and a chip frequency domain start position of the first bandwidth.
  • the resource used to carry the third indication information includes: any one of a broadcast message, an RRC signaling, a synchronization signal, a synchronization signal block, a MAC CE, and a DCI.
  • the third indication information may be carried on any one of broadcast signaling, high layer signaling, and physical signaling. Parameter information for informing the terminal device of the first bandwidth.
  • the network device may carry the third indication information by using UE-specific signaling, UE group specific, cell specific signaling, and group common signaling.
  • the resource used to carry the third indication information may also be other resources or other signaling, which is not limited herein.
  • the network device may also notify other parameter information of the first bandwidth by using the third indication message, which is not limited herein.
  • the network device may predefine M (M ⁇ 1) kinds of first bandwidth, which may include one or more of bandwidths such as CC, BP, and wideband bandwidth, and the network device may use log 2 M bits.
  • M (M ⁇ 1) kinds of first bandwidth which may include one or more of bandwidths such as CC, BP, and wideband bandwidth
  • the third indication information informs the terminal device of the parameter of the first bandwidth.
  • the frequency domain of the target resource may be the same as the frequency domain of the first bandwidth, or may overlap with the frequency domain of the first bandwidth.
  • the frequency domain of the target resource may also be part of the frequency domain of the second bandwidth, or part of the frequency domain of the first bandwidth.
  • the first bandwidth may include any one of a working bandwidth of the terminal device, a cell bandwidth serving the terminal device, and a carrier bandwidth.
  • the first bandwidth may be a CC, a carrier. Multiple CCs after aggregation, BP, cell bandwidth, system maximum bandwidth, etc.
  • the second bandwidth may include any one of a system maximum bandwidth, a cell bandwidth, and a wideband carrier bandwidth.
  • the frequency domain of the first bandwidth may be part of the frequency domain of the second bandwidth, or the frequency domain of the first bandwidth and the partial frequency domain of the second bandwidth overlap, and the bandwidth value of the first bandwidth may be less than or equal to the bandwidth value of the second bandwidth. .
  • the embodiments of the present application are not limited herein.
  • the parameter of the second bandwidth includes at least one of the following: a center frequency of the second bandwidth, a bandwidth value of the second bandwidth, and a frequency domain start position of the second bandwidth. .
  • the parameter of the first bandwidth includes at least one of the following parameters: a center frequency of the first bandwidth, a bandwidth value of the first bandwidth, and a frequency domain start position of the first bandwidth. .
  • the method for generating the reference signal on the first bandwidth may be the same as the method for generating the reference signal on the second bandwidth, or may be different, or the length of the reference signal sequence generated by the two may be in accordance with the bandwidth of the two.
  • the maximum value or another larger bandwidth value is generated. That is, the length of the reference signal generated on the first bandwidth is generated according to the second bandwidth, or the reference signal on the first bandwidth and the reference signal sequence on the second bandwidth are generated according to the maximum bandwidth.
  • the reference sequences of the overlapping portions of the first bandwidth and the second bandwidth frequency domain may be configured to be the same, orthogonal or quasi-orthogonal, and may be regarded as the starting position of the frequency domain of the first bandwidth and the second bandwidth may be different.
  • the starting position of the frequency domain of the first bandwidth has an offset value compared to the frequency domain starting position of the second bandwidth, corresponding to the mapping formula of the reference signal sequence, that is, the mapping formula of the reference signal sequence on the first bandwidth
  • the parameter of the first bandwidth includes at least one of the following parameters: a center frequency point of the first bandwidth, a bandwidth value of the first bandwidth, and a frequency domain start position of the first bandwidth.
  • the offset value is related to the parameters of the first bandwidth and the parameters of the second bandwidth.
  • the parameter of the second bandwidth includes at least one of a center frequency point of the second bandwidth, a bandwidth value of the second bandwidth, and a frequency domain start position of the second bandwidth.
  • the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth are identical by respective mapping formulas, so that the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth can be configured to be orthogonal or Quasi-orthogonal.
  • the network device may notify the terminal device of the offset value of the first bandwidth with respect to the frequency domain of the second bandwidth by using the second indication information, for example, may be offset by using a certain frequency domain resource unit as a basic unit.
  • the notification method of the value may be that the notification offset value is N times the resource unit of the frequency domain.
  • the frequency domain resource unit may be an RB, a PRB, an RBG, a PRG, or the like.
  • the frequency domain resource unit may have multiple candidate values, which are specified by the network device, or the selection of the frequency domain resource unit is related to the identity of the CC or the wideband CC.
  • the terminal device determines the offset value according to the indication information of the network device and the frequency domain size of the RB in the current system.
  • the embodiments of the present application are not limited herein.
  • the network device may also send indication information to the terminal device for informing whether a plurality of terminal devices are required to perform MU-MIMO.
  • the network device may indicate the moment or the indication information of X (X ⁇ 1) bits or The offset in the mapping formula is set to 0 for a certain period of time.
  • the network device may determine, by using the indication information, that the terminal device is required to calculate a value of the offset in the mapping formula.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be addressed by the present application.
  • the implementation of the embodiments imposes any limitations.
  • the method for determining a reference signal provided by the embodiment of the present application, the second indication information for indicating a parameter of the second bandwidth and the third indication information indicating a parameter of the first bandwidth are sent by the network device to the terminal device, where the support operation may be
  • the terminal device on the first bandwidth and the terminal device operating on the second bandwidth do MU-MIMO, that is, determine the reference signal sequence according to the parameters of the first bandwidth and the parameters of the second bandwidth, and finally make the reference signal on the first bandwidth
  • the sequence and the reference signal sequence on the second bandwidth are configured to be the same, orthogonal or quasi-orthogonal, and support terminal devices operating on the first bandwidth and the second bandwidth to perform MU-MIMO.
  • the network device can correctly parse the data on different terminal devices.
  • the method for determining a reference signal sequence in the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 7.
  • the terminal device and the network device in the embodiments of the present application are described in detail below with reference to FIG. 8 to FIG.
  • FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application. It should be understood that the terminal device embodiment and the method embodiment correspond to each other, and a similar description may refer to the method embodiment.
  • the terminal device 300 shown in FIG. 8 may be used to perform the steps corresponding to the terminal device in FIG.
  • the terminal device 300 includes a processor 310, a memory 320 and a transceiver 330.
  • the processor 310, the memory 320 and the transceiver 330 are connected by communication, the memory 320 stores instructions, and the processor 310 is used to execute instructions stored in the memory 320.
  • 330 is used to perform specific signal transceiving under the driving of the processor 310.
  • the transceiver 330 is configured to receive first indication information sent by the network device.
  • the processor 310 is configured to determine a target resource according to the first indication information
  • the processor 310 is further configured to determine a reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth;
  • the transceiver 330 is further configured to send or receive the reference signal sequence on the target resource.
  • the terminal device may determine the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth, so that the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth are the same, when different
  • the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth may be configured to be the same, orthogonal or quasi-orthogonal, and the work is supported.
  • the terminal device on one bandwidth and the second bandwidth performs MU-MIMO to improve the user experience.
  • the various components in the terminal device 300 communicate with one another via a communication connection, i.e., between the processor 310, the memory 320, and the transceiver 330, through internal interconnect paths, and communicate control and/or data signals.
  • a communication connection i.e., between the processor 310, the memory 320, and the transceiver 330, through internal interconnect paths, and communicate control and/or data signals.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP, a digital signal processor (DSP), an application specific integrated circuit (application). Specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the parameter of the second bandwidth includes at least one of the following parameters: a center frequency of the second bandwidth, a bandwidth value of the second bandwidth, and the second bandwidth. The starting position of the frequency domain.
  • the parameter of the first bandwidth includes at least one of the following parameters: a center frequency of the first bandwidth, a bandwidth value of the first bandwidth, and the first bandwidth. The starting position of the frequency domain.
  • the transceiver 330 is further configured to receive second indication information sent by the network device.
  • the processor 310 is further configured to determine at least one of the parameters of the second bandwidth according to the second indication information.
  • the transceiver 330 is further configured to receive third indication information sent by the network device.
  • the processor 310 is further configured to determine at least one of the parameters of the first bandwidth according to the third indication information.
  • the processor 310 is specifically configured to determine the reference signal sequence according to the parameter of the first bandwidth, the parameter of the second bandwidth, and the subcarrier spacing.
  • the frequency domain of the target resource determined by the processor 330 is the same as or partially overlapped with the frequency domain of the first bandwidth.
  • the bandwidth value of the first bandwidth is smaller than the bandwidth value of the second bandwidth.
  • the first bandwidth is any one of a working bandwidth, a serving cell bandwidth, and a carrier bandwidth of the terminal device;
  • the second bandwidth is a system maximum bandwidth, a cell bandwidth, and Any of the wideband carrier bandwidths.
  • the processor 310 may be implemented by a processing module
  • the memory 320 may be implemented by a storage module
  • the transceiver 330 may be implemented by a transceiver module.
  • the terminal device 400 may include a processing module 410.
  • the terminal device 300 shown in FIG. 8 or the terminal device 400 shown in FIG. 9 can implement the steps performed by the terminal device in FIG. 3 described above. To avoid repetition, details are not described herein again.
  • FIG. 10 shows a schematic block diagram of a network device 500 of one embodiment of the present application. It should be understood that the network device embodiment and the method embodiment correspond to each other. For a similar description, refer to the method embodiment.
  • the network device 500 includes: a processor 510, a memory 520, and a transceiver 530, and a processor 510.
  • the memory 520 and the transceiver 530 are connected by communication, the memory 520 stores instructions, the processor 510 is used to execute instructions stored in the memory 520, and the transceiver 530 is configured to perform specific signal transceiving under the driving of the processor 510.
  • the transceiver 530 is configured to send, to the terminal device, first indication information, where the first indication information is used to indicate a target resource;
  • the transceiver 530 is further configured to send, to the terminal device, second indication information, where the second indication information is used to indicate at least one of the parameters of the second bandwidth.
  • the network device provided by the embodiment of the present application sends the indication information for indicating the parameter of the second bandwidth to the terminal device by using the network device, and may support the UE working on the first bandwidth and the UE working on the second bandwidth as the MU.
  • MIMO that is, determining the reference signal sequence according to the parameter of the first bandwidth and the parameter of the second bandwidth, and finally configuring the reference signal sequence on the first bandwidth and the reference signal sequence on the second bandwidth to be identical, orthogonal or quasi-positive Interworking, supporting terminal equipment working on the first bandwidth and the second bandwidth to do MU-MIMO.
  • the network device can correctly parse the data on different terminal devices.
  • the various components in network device 500 communicate with each other via a communication connection, i.e., processor 510, memory 520, and transceiver 530, through internal connection paths, to communicate control and/or data signals.
  • a communication connection i.e., processor 510, memory 520, and transceiver 530
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit CPU, NP or a combination of CPU and NP, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the transceiver 530 is further configured to send third indication information to the terminal device, where the third indication information is used to indicate at least one of the parameters of the first bandwidth.
  • the parameter of the second bandwidth and the parameter of the first bandwidth are used by the terminal device to determine a reference signal sequence, and send the reference signal sequence on the target resource.
  • the parameter of the second bandwidth includes at least one of the following parameters: a center frequency of the second bandwidth, a bandwidth value of the second bandwidth, and the second bandwidth. The starting position of the frequency domain.
  • the parameter of the first bandwidth includes at least one of the following parameters: a center frequency of the first bandwidth, a bandwidth value of the first bandwidth, and the first bandwidth. The starting position of the frequency domain.
  • the frequency domain of the target resource and the frequency domain of the first bandwidth are the same or partially overlapped.
  • the bandwidth value of the first bandwidth is smaller than the bandwidth value of the second bandwidth.
  • the first bandwidth is any one of a working bandwidth, a serving cell bandwidth, and a carrier bandwidth of the terminal device;
  • the second bandwidth is a system maximum bandwidth, a cell bandwidth, and Any of the wideband carrier bandwidths.
  • the processor 510 may be implemented by a processing module
  • the memory 520 may be implemented by a storage module
  • the transceiver 530 may be implemented by a transceiver module.
  • the network device 600 may include a processing module 610.
  • the network device 500 shown in FIG. 10 or the network device 600 shown in FIG. 11 can implement the steps performed by the network device in FIG. 7 described above. To avoid repetition, details are not described herein again.
  • the embodiment of the present application further provides a computer readable medium for storing computer program code, the computer program comprising instructions for performing the method for determining a reference signal sequence implemented by the present application in FIG. 3 and FIG. 7 above.
  • the readable medium may be a read-only memory (ROM) or a random access memory (RAM), which is not limited in this embodiment of the present application.
  • the embodiment of the present application further provides a communication system, which includes the terminal device provided by the foregoing embodiment of the present application, and the network device provided by the foregoing application embodiment, where the communication system can complete any determination provided by the embodiment of the present application.
  • a method of reference signal sequence is provided by the terminal device provided by the foregoing embodiment of the present application, and the network device provided by the foregoing application embodiment, where the communication system can complete any determination provided by the embodiment of the present application.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a ROM, a random access memory, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种确定参考信号序列的方法、终端设备和网络设备,该方法包括:终端设备接收网络设备发送的第一指示信息;该终端设备根据该第一指示信息确定目标资源;该终端设备根据第一带宽的参数和第二带宽的参数,确定参考信号序列;该终端设备在该目标资源上发送或接收该参考信号序列。本申请提供的确定参考信号序列的方法,能够根据第一带宽的参数和第二带宽的参数确定参考信号序列,使得第一带宽上的参考信号序列和第二带宽上的参考信号序列相同,可以将第一带宽上参考信号序列和第二带宽上参考信号序列配置成相同、正交或者准正交,支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO。

Description

确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质
本申请要求于2017年5月5日提交中国专利局、申请号为201710313804.0、申请名称为“确定参考信号序列的方法、终端设备、网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及领域通信领域,并且更具体地,涉及一种确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质。
背景技术
在长期演进技术升级(long term evolution-advanced,LTE-A)系统中,支持的最大系统带宽为20MHz,对应最大为110个资源块(resource block,RB),而下行的解调参考信号(demodulation reference signal,DMRS)是根据最大带宽的RB个数来生成参考信号序列的,对应RB上的DMRS使用对应的参考信号序列。
由于有些终端设备的自身能力不足(例如射频器件功能较差等)或其他原因,这些终端设备不能以最大带宽传输数据,可能只能接入带宽较小的一段频带,这段带宽可以称为载波单元(component carrier,CC)。LTE-A中CC可以看作是服务小区(serving cell),终端设备只需要知道小区带宽,即CC的系统带宽。终端设备在CC上的参考信号按LTE-A的最大带宽对应的RB数生成,物理资源快(physical resource block,PRB)从CC的频域起始位置开始编号。在LTE-A系统中,终端设备可以使用载波聚合(carrier aggregation,CA)来实现在多个CC上传输数据,这样终端设备可以用于传输数据的带宽更多,提高数据的传输速率。
针对第五代移动通信技术(5-Generation,5G)研发的新一代无线通信系统称为新无线(new radio,NR)。NR支持更大带宽,更多业务。由于终端设备的能力不同,因此NR支持不同能力的终端设备使用不同带宽的CC。NR中也提出一些新的概念,例如带宽部分(bandwidth part,BP)等。
NR中的资源分配更加灵活,多个公司都认为需要考虑更加灵活的多用户多入多出技术(multi-user Multiple-input multiple-output,MU-MIMO),例如,多终端设备接入的带宽之间部分重叠时做MU-MIMO,CC和wideband CC上的终端设备MU-MIMO等。NR中若需要支持工作在wideband(或wideband CC)上的终端设备可以和工作在一个CC或者使用多个CC聚合的终端设备或者工作在BP上的终端设备做MU-MIMO,那么需要支持两者的DMRS可以配置成正交或者准正交。而现有LTE-A中wideband和CC上的DMRS序列生成以及映射方法,无法支持工作在wideband上的用户和工作在一个或多个CC上的用户的DMRS配置成正交
发明内容
本申请提供一种确定参考信号序列的方法、终端设备和网络设备,能够根据第一带宽的参数和第二带宽的参数确定参考信号序列,使得第一带宽上的参考信号序列和第二带宽上的参考信号序列相同,可以将第一带宽上参考信号序列和第二带宽上参考信号序列配置成相同、正交或者准正交,支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO。
第一方面,提供了一种确定参考信号序列的方法,该方法包括:接收网络设备发送的第一指示信息;根据该第一指示信息确定带宽部分;根据该带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移,确定参考信号序列;利用该带宽部分发送或接收该参考信号序列。
在第一方面的一种可能的实现方式中,该方法还包括:接收该网络设备发送的第二指示信息;根据该第二指示信息确定该系统最大带宽的频域起始位置。
在第一方面的一种可能的实现方式中,该方法还包括:接收该网络设备发送的第三指示信息;根据该第三指示信息确定该带宽部分的频域起始位置。
在第一方面的一种可能的实现方式中,根据该带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移,确定参考信号序列,包括:根据该带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移、以及子载波间隔,确定该参考信号序列。
第二方面,提供了一种确定参考信号序列的方法,该包括:向终端设备发送第一指示信息,该第一指示信息用于指示带宽部分;向该终端设备发送第二指示信息,该第二指示信息用于指示系统最大带宽的频域起始位置。
在第二方面的一种可能的实现方式中,该方法还包括:向该终端设备发送第三指示信息,该第三指示信息用于指示该带宽部分的频域起始位置。
在第二方面的一种可能的实现方式中,该带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移用于该终端设备确定参考信号序列,并利用该带宽部分发送该参考信号序列。
第三方面,提供了一种确定参考信号序列的装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是终端设备时,该处理单元可以是处理器,该收发单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行上述第一方面及其各种实现方式中的确定参考信号序列的方法。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该终端设备执行上述第一方面及其各种实现方式中的确定参考信号序列的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,提供了一种确定参考信号序列的装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是网络设备时,该处理单元可以是处理器,该收发单元可以是收发器;该网络设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该网络设备执行上述第二方面及其各种实现方式中的确定参考信号序列的方法。 当该装置是网络设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该网络设备执行上述第二方面及其各种实现方式中的确定参考信号序列的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,提供了一种资源指示值的获取装置,该装置包括处理器和存储介质,该存储介质存储有指令,该指令被该处理器运行时,使得该处理器执行上述第一方面及其各种实现方式中的确定参考信号序列的方法。该装置可以是芯片或芯片系统。
第六方面,提供了一种资源指示值的获取装置,该装置包括处理器和存储介质,该存储介质存储有指令,该指令被该处理器运行时,使得该处理器执行上述第二方面及其各种实现方式中的确定参考信号序列的方法。该装置可以是芯片或芯片系统。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备运行时,使得该通信设备执行上述第一方面及其各种实现方式中的确定参考信号序列的方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备运行时,使得该通信设备执行上述第二方面及其各种实现方式中的确定参考信号序列的方法。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序用于执行上述第一方面及其各种实现方式中的确定参考信号序列的方法的指令。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序用于执行上述第二方面及其各种实现方式中的确定参考信号序列的方法的指令。
第十一方面,提供了一种确定参考信号序列的方法,该方法包括:终端设备接收网络设备发送的第一指示信息;所述终端设备根据所述第一指示信息确定目标资源;所述终端设备根据第一带宽的参数和第二带宽的参数,确定参考信号序列;所述终端设备在所述目标资源上发送或接收所述参考信号序列。
第十一方面提供的确定参考信号的方法,能够根据第一带宽的参数和第二带宽的参数确定参考信号序列,使得第一带宽上的参考信号序列和第二带宽上的参考信号序列相同,可以将第一带宽上参考信号序列和第二带宽上参考信号序列配置成相同、正交或者准正交,支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO。
在第十一方面的一种可能的实现方式中,该第二带宽的参数包括以下参数中的至少一个:该第二带宽的中心频点、该第二带宽的带宽值和该第二带宽的频域起始位置。
在第十一方面的一种可能的实现方式中,该第一带宽的参数包括以下参数中的至少一个:该第一带宽的中心频点、该第一带宽的带宽值和该第一带宽的频域起始位置。
在第十一方面的一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的第二指示信息;该终端设备根据该第二指示信息确定该第二带宽的参数中的至少一个。
在第十一方面的一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的第三指示信息;该终端设备根据该第三指示信息确定该第一带宽的参数的至少一个。
在第十一方面的一种可能的实现方式中,该终端设备根据第一带宽的参数和第二带宽的参数,确定参考信号序列,包括:该终端设备根据该第一带宽的参数、该第二带宽的参数以及子载波间隔,确定该参考信号序列。
在第十一方面的一种可能的实现方式中,该目标资源的频域和该第一带宽的频域相同或者部分重叠。
在第十一方面的一种可能的实现方式中,该第一带宽的带宽值小于或者等于该第二带宽的带宽值。
在第十一方面的一种可能的实现方式中,该第一带宽为该终端设备的工作带宽、服务小区带宽和载波带宽中的任意一种;该第二带宽为系统最大带宽、小区带宽和宽带载波带宽中的任意一种。
第十二方面,提供了一种确定参考信号序列的方法,该方法包括:网络设备向终端设备发送第一指示信息,该第一指示信息用于指示目标资源;该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示第二带宽的参数。
第十二方面提供的确定参考信号序列的方法,通过网络设备向终端设备发送用于指示第二带宽的参数的指示信息,可以是支持工作在第一带宽上的UE和工作在第二带宽上的终端设备做MU-MIMO,即根据第一带宽的参数和第二带宽的参数来确定参考信号序列,最终使得第一带宽上的参考信号序列和第二带宽上的参考信号序列配置成相同、正交或者准正交,支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO。
在第十二方面的一种可能的实现方式中,该方法还包括:该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该第一带宽的参数。
在第十二方面的一种可能的实现方式中,该第二带宽的参数和第一带宽的参数用于该终端设备确定参考信号序列,并在该目标资源上发送该参考信号序列。
在第十二方面的一种可能的实现方式中,该第二带宽的参数包括以下参数中的至少一种:该第二带宽的中心频点、该第二带宽的带宽值和该第二带宽的频域起始位置。
在第十二方面的一种可能的实现方式中,该第一带宽的参数包括以下参数中的至少一个:该第一带宽的中心频点、该第一带宽的带宽值和该第一带宽的频域起始位置。
在第十二方面的一种可能的实现方式中,该第一带宽的带宽值小于或等于该第二带宽的带宽值。
在第十二方面的一种可能的实现方式中,该目标资源的频域和该第一带宽的频域相同或者部分重叠。
在第十二方面的一种可能的实现方式中,该第一带宽为该终端设备的工作带宽、服务小区带宽和载波带宽中的任意一种;该第二带宽为系统最大带宽、小区带宽和宽带载波带宽中的任意一种。
第十三方面,提供了一种终端设备,包括处理器、存储器和收发器,用于支持该终端设备执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第一方面及其各种实现方式中的确定参考信号序列的方法。
第十四方面,提供了一种终端设备,包括处理模块、存储模块和收发模块,用于支持终端设备执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的功能。功能 可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第十五方面,提供了一种网络设备,包括处理器、存储器和收发器,用于支持该网络设备执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第二方面及其各种实现方式中的确定参考信号序列的方法。
第十六方面,提供了一种网络设备,包括处理模块、存储模块和收发模块,用于支持终端设备执行上述第二方面或第二方面的任意可能的实现方式中的终端设备的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第十七方面,提供了一种通信系统,该通信系统包括上述第三方面提供的终端设备以及上述第四方面提供的网络设备。该通信系统可以完成上述第一方面和第二方面提供的确定参考信号序列的方法。
第十八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第一方面或第一方面的任一种可能的实现方式的方法的指令。
第十九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第二方面或第二方面的任一种可能的实现方式的方法的指令。
附图说明
图1是现有的UE接入CC和接入最大带宽时对应的参考信号的序列的示意图。
图2是本申请实施例一个典型的应用场景的示意图。
图3是本申请一个实施例的确定参考信号序列的方法的示意性流程图。
图4是本申请一个实施例的不同带宽的参考信号序列的示意图。
图5是本申请一个实施例的确定偏置值的示意图。
图6是本申请另一个实施例确定偏置值的示意图。
图7是本申请另一个实施例的确定参考信号序列的方法的示意性流程图。
图8是本申请一个实施例的终端设备的示意性框图。
图9是本申请另一个实施例的终端设备的示意性框图。
图10是本申请一个实施例的网络设备的示意性框图。
图11是本申请另一个实施例的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在LTE-A系统中,支持的最大系统带宽为20MHz,对应最大为110个RB,而下行的解DMRS是根据最大带宽的RB个数来生成参考信号序列的,对应RB上的DMRS使用对应的参考信号序列,DMRS序列的生成公式如公式(1)所示:
Figure PCTCN2018085607-appb-000001
Figure PCTCN2018085607-appb-000002
其中,c(m)为伪随机序列(Pseudo-random sequence,PN序列),参考信号序列r(m)由PN序列构成。c init为初始化值,公式(2)为初始化值c init的生成公式。
Figure PCTCN2018085607-appb-000003
表示下行最大带宽110个RB。
LTE下行DMRS端口(port)与时频资源的映射公式如公式(3)所示:
Figure PCTCN2018085607-appb-000004
公式(3)中,p为DMRS对应的天线port,k为DMRS映射到时频资源上的频域子载波位置,1为DMRS映射到时频资源上的时域符号位置,n PRB为物理资源块(physical resource block,PRB)编号,w p(l')为port号为p对应的正交覆盖码(orthogonal cover code,OCC)。通过该映射公式(3),将不同的时频资源(频域编号为k,时域符号编号为L)的RE和序列值r(m)一一对应。根据上述序列生成和映射公式,可以唯一确定不同RB上DMRS序列值。
LTE-A的下行MU-MIMO中,多个终端设备在相同的带宽上可以做MU-MIMO,为了能够解调出不同用户的数据,基站给多个UE配置准正交或者正交的DMRS。使用准正交的方法是给多用户配置正交的port,通过使用不同的OCC达到正交。表1中为LTE-A中的一种DMRS port和层数(layer)的配置方法。网络侧设备通过给用户配置对应的配置项,可以支持多用户进行MU-MIMO时能够正确解调DMRS。
表1 参考信号的配置表
Figure PCTCN2018085607-appb-000005
图1是现有的终端设备接入不同的CC时对应的参考信号的序列的示意图。如图1所示,图中的编号0,1,2,..m为RB编号。对于在整个频域的相同位置,终端设备接入不同的CC时对应的参考信号序列(RB编号)是不同的。
若NR需要支持CC、wideband CC或BP上的终端设备做MU-MIMO,现有LTE-A各CC上的DMRS序列生成以及映射方法无法支持CC、wideband CC或BP上的终端设备在相同频段上的参考信号配置成正交。
基于上述的现有技术中参考信号的设计方法存在的问题,本申请提供了一种确定参考信号序列的方法,可以更好的解决NR中支持工作在wideband(或wideband CC)上的终端设备可以和工作在一个CC或者使用多个CC聚合的终端设备,或工作在BP上的终端设备做MU-MIMO的需求,使得基站可以更好的解调出不同终端设备的数据。
应理解,本申请的技术方案可以应用于各种通信系统,例如:LTE/LTE-A系统、LTE/LTE-A频分双工(frequency division duplex,FDD)系统、LTE/LTE-A时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、公共陆地移动网络(public land mobile network,PLMN)系统、设备对设备(device to device,D2D)网络系统或者机器对机器(machine to machine,M2M)网络系统、无线保真(wireless fidelity,Wi-Fi)系统、无线局域网(wireless local area networks,WLAN)以及未来的5G通信系统等。
还应理解,在本申请实施例中,终端设备也可称之为用户设备(user equipment,UE)、移动台mobile station,MS)、移动终端(mobile terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网设备进行通信,例如,终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。还可以包括用户单元、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type Communication,MTC)终端、无线局域网(wireless local area networks,WLAN)中的站点(staion,ST)。可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站以及下一代通信系统,例如,第五代通信(fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。本申请实施例在此不作限制。
还应理解,基站也可以称之为网络设备,网络设备可以是用于与终端设备通信的设备,网络设备可以是LTE系统中的演进型基站(evolutional Node B,eNB或eNodeB),NR中的gNB或接入点,基站收发器、收发节点等,或者车载设备、可穿戴设备,未来5G网络中的网络设备或者未来演进的PLMN系统中的网络设备。例如,网络设备可以是WLAN中的接入点(AccessPoint,AP),也可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code dvision multiple access,CDMA),CDMA中的基站(Base Transceiver Station,BTS)。还可以是LTE系统中的演进的节点B(evolved NodeB,eNB或者eNodeB)。或者,网络设备还可以是第三代(3rd Generation,3G)系统的节点B(Node B),另外,该网络设备还可以是中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。本申请实施例在此不作限制。为方便描述,本申请所有实施例中,上述为MS提供无线通信功能的 装置统称为网络设备。
图2是本申请实施例一个典型的应用场景的示意图,如图2所示,本申请的技术方案可以应用在网络设备与终端设备之间的上行和下行数据传输时的参考信号序列发送与接收,该参考信号可以是DMRS,信道状态信息参考信号(channel state information-reference signal,CSI-RS),探测参考信号(sounding reference signal,SRS),相位跟踪参考信号(phase tracking reference signal,PTRS),小区专用参考信号,位置参考信号等,本申请实施例在此不作限制。
应理解,本申请实施例仅以图2所示的应用场景为例进行说明,但本申请实施例并不限于此,例如,该系统可以包括更多的终端设备。
下面结合图3详细说明本申请提供的确定参考信号序列的方法,图3是本申请实施的确定参考信号序列的方法100的示意性流程图,该方法100可以应用在图2所示的场景中,当然也可以应用在其他通信场景中,本申请实施例在此不作限制。
如图3所示,该方法100包括:
S110,终端设备接收网络设备发送的第一指示信息。
S120,该终端设备根据该第一指示信息确定目标资源。
S130,该终端设备根据第一带宽的参数和第二带宽的参数,确定参考信号序列。
S140,该终端设备在该目标资源上发送或接收该参考信号序列。
具体而言,在S110和S120中,终端设备需要在某一个时频资源上发送数据时,也需要在这个资源上发送参考信号序列,参考信号序列用于网络设备进行信道估计、相干检测和解调,以便于网络设备正确解调出终端设备的数据。因此,终端设备会接收网络设备发送的第一指示信息,该第一指示信息用于指示终端设备发送参考信号序列的时频资源,即目标资源。终端设备根据该第一指示信息,便可以确定该目标资源。
在S130中,在确定目标资源后,终端设备会根据第一带宽的参数和第二带宽的参数,确定参考信号序列,这样第一带宽上的参考信号序列和第二带宽上的参考信号序列相同,这样,当多个终端设备做MU-MIMO时,例如,需要支持工作在第一带宽上的终端设备和工作在第二带宽上的终端设备做MU-MIMO,由于第一带宽上的参考信号序列和第二带宽上的参考信号序列相同,便可以将第一带宽上的参考信号序列和第二带宽上的参考信号序列配置成正交或者准正交,从而网络设备便可以正确解析出在不同的终端设备的数据。因此,第一带宽上的参考信号序列与第一带宽的参数和第二带宽的参数有关,即根据第一带宽的参数和第二带宽的参数来确定第一带宽上的参考信号序列。图4是本申请一个实施例的不同带宽的参考信号序列的示意图,如图4所示,可以将最大带宽看作第二带宽,将CC1或wideband CC2(宽带CC2)或者BP看作第一带宽;或者可以将wideband CC2,小区带宽或者最大带宽看作是第二带宽,CC1看作是第一带宽,CC1、wideband CC2和最大带宽上的编号为RB的编号,由于CC1和wideband CC2的参考信号序列是按照最大带宽的参考信号序列的生成方法生成的,从图4中可以看出,对于某一个固定的频域范围,最大带宽、CC1、wideband CC2上的参考信号序列是可以配置成相同、正交或者准正交(RB的编号相同)。当终端设备1接入CC1,终端设备2接入最大带宽时,可以通过前述表1中的配置,将CC1上的参考信号序列和最大带宽上的参考信号序列配置成正交或者准正交,这样,对于终端设备1接入CC1,终端设备2接入最大带宽时,网络设备便可以正确 解调出不同用户数据。
应理解,对于LTE/LTE-A系统中,即不在多个终端设备做MU-MIMO的情况下,本申请实施例提供的确定参考信号的方法也可以适用,本申请实施例在此不作限制。
在S140中,当终端设备确定参考信号序列之后,便在该目标资源上发送或者接收该参考信号序列,用于解调不同用户的数据的解调。
应理解,目标资源为网络设备给终端设备分配的资源,终端设备可在该目标资源上发送或接收数据。该目标资源的频域可以和该第一带宽的频域相同,也可以和该第一带宽的频域部分重叠。该目标资源的频域还可以是第二带宽的部分频域的,或者是第一带宽的部分频域。本申请实施例在此不作限制。
可选的,作为一个实施例,该第一带宽可以包括该终端设备的工作带宽、为该终端设备服务的小区带宽和载波带宽中的任意一种,例如,该第一带宽可以为CC,载波聚合后的多个CC,BP,小区带宽,系统最大带宽等。该第二带宽可以包括系统最大带宽、小区带宽和宽带载波带宽中的任意一种。该第一带宽的频域可以为第二带宽的部分频域,或者第一带宽的频域和第二带宽的部分频域重叠,第一带宽的带宽值可以小于或者等于第二带宽的带宽值。本申请实施例在此不作限制。
例如,该第一带宽可以是CC,该CC可以是服务小区带宽,小区传输带宽中一段连续的频域资源,或小区传输带宽中一段非连续的频域资源等,本申请实施例在此不作限制。
例如,该第一带宽可以是带宽部分(bandwidth part,BP),BP为频域上一段连续的资源,一个BP可以包括连续的K个子载波,K为大于0的整数;或者,一个BP可以包括N个不重叠的连续的PRB所在的频域资源,N为大于0的整数,该PRB的子载波间隔为15k,30k,60k或其它子载波间隔;或者,一个BP包括N个不重叠的连续PRB组所在的频域资源,一个PRB组包含M个连续的PRB,N和M为大于0的整数,该PRB的子载波间隔为15k,30k,60k或其它子载波间隔。对于一个终端设备而言,BP的长度可以小于或等于该终端设备支持的最大带宽,本申请实施例在此不作限制。
应理解,该第一带宽还可以是通过CA聚合CC形成的带宽,本申请实施例在此不作限制。
还应理解,该第一带宽还可以包括其他类型的带宽,该第二带宽也可以包括其他类型的带宽,本申请实施例在此不作限制。
本申请实施例提供的确定参考信号序列的方法,可以根据第一带宽的参数和第二带宽的参数确定参考信号序列,使得第一带宽上的参考信号序列和第二带宽上的参考信号序列相同,当不同的终端设备分别接入第一带宽和第二带宽做MU-MIMO时,可以将第一带宽上参考信号序列和第二带宽上参考信号序列配置成正交或者准正交,这样,便可以正确解调出不同终端设备的数据,提高用户体验。
可选的,作为一个实施例,该第二带宽的参数包括以下参数中的至少一个:该第二带宽的中心频点、该第二带宽的带宽值和该第二带宽的频域起始位置。
可选的,作为一个实施例,该第一带宽的参数包括以下参数中的至少一个:该第一带宽的中心频点,该第一带宽的带宽值和该第一带宽的频域起始位置。
具体而言,终端设备获取了自己接入的第一带宽的参数,例如可以是第一带宽的中心频点以及第一带宽的带宽值,同样也获取了第二带宽的参数后,在第一带宽上的参考信号 的生成方法与第二带宽上的参考信号的生成方法可以相同,也可以不同,两者生成的参考信号序列长度需要按照两者的带宽中的最大值或者另外一个更大的带宽值来生成。使得第一带宽和第二带宽频域上重叠部分的参考序列可以配置成相同,正交或者准正交。由于第一带宽和第二带宽的频域的起始位置可能不同,可以看成第一带宽的频域的起始位置相比于第二带宽的频域起始位置有一个偏置值,对应到参考信号序列的映射公式中,即第一带宽上的参考信号序列的映射公式相比于第二带宽上的参考信号序列上映射公式的有一个偏置(offset)值。该偏置值与第一带宽的参数和第二带宽的参数有关。
NR标准已经同意对于一种子载波间隔,每个NR载波的子载波个数最大为3300或6600。因此对于一个载波上的所有wideband CC或CC(或者BP)上的参考信号序列长度均按照最大带宽或者最大子载波个数生成。以LTE中DMRS序列生成方法为例,在不同CC以及wideband CC或者全带宽上的参考信号的序列生成方法,均使用公式(4):
Figure PCTCN2018085607-appb-000006
公式(4)中,
Figure PCTCN2018085607-appb-000007
表示最大的带宽值,由于NR的DMRS设计可能和LTE不同,因此前面的常数值用A代替。由于不同小区的带宽和最大带宽(或最大子载波个数)可能不同,小区可使用的带宽可能小于最大带宽,因此该公式中的
Figure PCTCN2018085607-appb-000008
还可表示小区的带宽、wideband带宽或者多个CC聚合后的带宽或者宽带BP带宽等。即CC或者BP上的参考信号序列生成的长度可以按照最大带宽、小区带宽或者wideband。等带宽来生成。应理解,公式(4)只是以LTE中的DMRS序列生成方法为例进行说明,在本申请实施例中,还可以使用其他的参考信号序列的生成方法来确定NR中相对应的参考信号序列的生成方法,本申请实施例在此不作限制。
对于参考信号的映射公式,以DMRS为例进行说明,上文指出,DMRS port与视频资源的映射公式为公式(3):
Figure PCTCN2018085607-appb-000009
要保证在第一带宽和第二带宽频域重叠的部分的参考信号序列可以配置成相同,正交或者准正交。DMRS在第一带宽上的映射公式需要有一个偏置值(offset),如公式(5)或者公式(6)所示:
Figure PCTCN2018085607-appb-000010
Figure PCTCN2018085607-appb-000011
公式(5)中的offset1和公式(6)中的offset2的关系为offset1=3offset2。offset1和offset2的关系和具体DMRS格式的设计有关,因为实际DMRS格式会影响DMRS序列映射的时频资源位置,对应使用的映射公式也不相同。
公式(5)或公式(6)即为DMRS在第一带宽上的映射公式,确定了公式(5)或公式(6),即确定了第一带宽上的参考信号序列。这样,当不同的终端设备分别接入第一带宽和第二带宽作MU-MIMO时。通过公式(5)或公式(6)来映射第一带宽上的参考信号序列,这样,第一带宽上的参考信号序列和第二带宽上的参考信号序列是相同的,这样,通过网络设备的配置,便可以将第一带宽上的参考信号序列和第二带宽上的参考信号序列配置成正交或者准正交,网络设备便可以正确解析出每个终端设备发送的数据。
应理解,上述公式(5)和公式(6)仅以LTE的DMRS映射公式为例,在本申请实施例中,在第一带宽的映射公式中加入offset的值也适用于其他的DMRS格式以及对应的映射公式。
因此,只要能够确定第一带宽相对于第二带宽在频域的起始位置的偏置值,便可以通过各自的映射公式使得第一带宽上的参考信号序列和第二带宽上的参考信号序列相同,从而可以将第一带宽上的参考信号序列和第二带宽上的参考信号序列配置成正交或者准正交。
例如,终端设备可以根据该第一带宽的中心频点和第一带宽的带宽值,可以确定该第一带宽的频域起始位置f1,根据第二带宽的中心频点和第二带宽的带宽值,可以确定第二带宽的频域起始位置f。那么第一带宽相对于第二带宽的频域偏移值为f-f1。终端设备根据该第二带宽当前时刻使用的参数配置(numerology)或子载波间隔确定该子载波间隔下的一个RB的频域长度,可以求出f-f1对应的RB个数N,便可以确定offset的值为N。如图5所示。图5是本申请一个实施例的确定偏置值的示意图,在图5中,可以将宽带(band wide,BW)看作是第二带宽,将CC1或CC2单独看作是第一带宽,或者可以将CC1和CC2看作是使用载波聚合成的一个wideband CC,该wideband CC可以看作是第一带宽。CC1、CC2和BW上的编号为RB编号,例如,根据CC1的频域的起始位置和带宽值,以及BW频域的起始位置和带宽值,便可以确定CC1相对于BW的偏置值offset1。同样,也可以确定CC2相对于BW的偏置值offset2的值。
可选的,作为一个实施例,在S130,该终端设备根据第一带宽的参数和第二带宽的参数,确定参考信号序列,包括:
该终端设备根据该第一带宽的参数、该第二带宽的参数以及子载波间隔,确定该参考信号序列。
具体而言,由于在不同的时刻,numerology或子载波间隔可能不同,并且不同numerology或子载波间隔对应的一个RB的频域长度也不同时,当不同时刻使用的numerology或子载波间隔不同时,就要根据当前时刻的numerology或子载波间隔来确定该偏置值,从而确定参考信号序列,即确定偏置值需要根据当前时刻的numerology或子载波间隔确定。
还应理解,该offset值与第一带宽相对与第二带宽的频域的偏置值有关。假设该第一带宽的频域起始位置相对第二带宽的频域起始位置的偏置值为N个RB,那么offset值等于N。偏置值的RB个数按照该载波上的子载波间隔以及一个RB内多少个子载波计算。这样可以保证终端设备不管是接入第一带宽或者是第二带宽,若使用的OCC和序列初始化值相同,那么只要频域位置固定,对应使用的参考信号序列就相同。
还应理解,上述给出了1个CC上确定参考信号序列的方法。终端设备还可能使用CA接入多个CC,其他CC上的参考信号也可以根据类似的方法确定。例如终端设备接入CC1、CC2和CC3等,可以将CC1、CC2和CC3分别看作是第一带宽,接入多个CC时可以看作有一个主小区的CC,其他CC为辅小区的CC。当终端设备检测的同步信号为主小区的CC的同步信号时,假设CC1为主小区的CC,终端设备确定了CC1的中心频点和带宽,接入CC1后,可以接收网络设备发送的指示信息,根据该指示信息确定CC2和CC3相对于CC1的频域偏置值,再基于CC1和第二带宽的相关参数确定CC2、CC3上的参考信号序列相对于第 二带宽的offset2和offset3的值。
还应理解,使用CA的情况下还需要考虑CC之间是否有保护带宽。LTE或者NR中不同CC之间会使用一些空白的子载波作为保护带宽。图6是本申请另一个实施例确定偏置值的示意图,如图6所示,在NR或LTE中,若CC之间存在N个子载波的保护带宽的情况下,计算每个CC的参考信号序的偏置值时,需要把CC之间的保护带宽(guard band,GB)的频域长度考虑进去。
还应理解,本申请实施例中仅以类似于LTE的参考信号序列映射方法为例,但本申请实施例还可以包括其他的参考信号序列和映射方法。并且本申请实施例的方法的本质同样适用于其他有类似序列生成和映射规则的参考序列,例如其他上行或者下行的参考信号序列。只要该参考信号的映射跟其RB的编号相关。本申请实施例在此不作限制。
还应理解,该第二带宽的参数和该第一带宽的参数还可以包括其他参数,本申请实施例在此不作限制。
可选的,作为一个实施例,该方法100还包括:
该终端设备接收该网络设备发送的第二指示信息;
该终端设备根据该第二指示信息确定该第二带宽的参数中的至少一个。
具体而言,终端设备在初始接入第一带宽的过程中,会检测第一带宽的同步信号,在确定该同步信号后,由于同步信号在第一带宽的中心频点上,因此,检测到了同步信号,便能确定该第一带宽的中心频点。之后,根据网络设备的广播信息获取该第一带宽的参数。而对于第二带宽的参数,终端设备会接收网络设备发送第二指示信息,该第二指示信息用于终端设备确定该第二带宽的参数中的至少一个,例如,可以是第二带宽的参数中的第二带宽的带宽值、第二带宽的频域起始位置和第二带宽的中心频点中的至少一个。
在终端设备获取了第一带宽的参数和第二带宽的参数后,便可以根据这些信息,确定第一带宽的频域相对于第二带宽的频域的偏置值,利用上述的公式(5)或公式(6),确定第一带宽上的参考信号序列的映射公式,最终确定第一带宽上的参考信号序列。
应理解,网络设备可以预定义M(M≥1)种第二带宽,例如,该第二带宽可以包括最大带宽、小区带宽和wideband CC、多个CC聚合后的带宽或宽带BP等带宽中的一种或多种。网络设备可使用log 2M比特的第二指示信息通知终端设备该第二带宽的参数。本申请实施例在此不作限制。
还应理解,网络设备也可以不预定义第二带宽的参数,此时,网络设备可以将所有可能的第二带宽的参数值通过指示信息发送给终端设备,本申请实施例在此不作限制。
还应理解,当终端设备通过第二指示信息确定该第二带宽的频域起始位置时,网络设备可以给终端设备配置一个第二带宽的频域起始位置,相当于网络设备配置了一个虚拟带宽,该虚拟带宽和实际的第二带宽可能不相同,也可能相同。此时参考信号序列的长度和该虚拟带宽的频域起始位置相关,且接入该CC做MU-MIMO的终端设备所处的wideband或wideband CC或BP上的参考信号序列的生成长度也与该虚拟带宽的频域起始位置相关,否则在相同频域上,接入CC和接入wideband的终端设备的参考信号序列值仍可能不一样,也就无法配置成正交。网络设备也可预定义一种或多种虚拟带宽,并且给终端设备配置其中一种虚拟带宽,终端设备通过虚拟带宽和第二带宽的中心频点确定该第二带宽的频域起始位置,然后计算CC的频域起始位置与该虚拟带宽起始位置的频域偏置,CC上的参考信 号序列生成长度也可以按照该虚拟带宽长度生成。
可选的,用于承载该第二指示信息的资源包括:广播消息、无线资源控制(radio resource control,RRC)信令、同步信号、同步信号块、媒体接入控制层控制单元(media access control control element,MAC CE)、下行控制信息(downlink control information,DCI)中的任意一种。
应理解,该广播消息可以是主信息块(master information block,MIB)或系统消息块(system information blocks,SIB),还可以是其他类型的广播消息,本申请实施例在此不作限制。
具体而言,终端设备接收网络设备发送的该第二指示信息,该第二指示信息可以承载在广播信令、高层信令和物理信令中的任一种信令上。用于通知终端设备第二带宽的参数。例如,终端设备可以在UE特定(UE-specific)信令,UE组特定(UE group specific)信令,小区特定(cell specific)信令,组通用(group common)信令等信令上接收该第二指示信息。
应理解,用于承载该第二指示信息的资源还可以是其他资源或者其他信令,本申请实施例在此不作限制。
还应理解,终端设备还可以通过第二指示消息确定第二带宽的其他参数,本申请实施例在此不作限制。
可选的,作为一个实施例,该方法100还包括:
该终端设备接收该网络设备发送的第三指示信息;
该终端设备根据该第三指示信息确定该第一带宽的参数中的至少一个。
具体而言,在终端设备在初始接入第二带宽的过程中,会检测第二带宽的同步信号,在确定该同步信号后,由于同步信号在第二带宽的中心频点上,因此,检测到了同步信号,便能确定该第二带宽的中心频点。之后,根据网络设备的广播信息获知该第二带宽的参数。
对于第一带宽的参数,终端设备会接收网络设备发送第三指示信息,该第三指示信息用于终端设备确定该第一带宽的参数,例如,可以是第一带宽的带宽值、第一带宽的频域起始位置和第一带宽的中心频点中的至少一个。
在终端设备获取了第一带宽的参数和第二带宽的参数后,便可以根据这些信息,确定第一带宽的频域相对于第二带宽的频域的偏置值,利用上述的公式(5),确定第一带宽上的参考信号序列的映射公式,最终确定第一带宽上的参考信号序列。
应理解,终端设备获取第一带宽参数和第二带宽参数还可以使用其他方法,本申请实施例在此不作限制。。
还应理解,网络设备可以预定义M(M≥1)种第一带宽,例如,该第一带宽可以包括CC、BP和wideband带宽等带宽中的一种或多种。网络设备可以使用log 2M比特的第三指示信息通知终端设备该第一带宽的参数。本申请实施例在此不作限制。
还应理解,网络设备可以不预定义第一带宽的参数,此时,网络设备可以将所有可能的参数值通过该第三指示信息发送给终端设备,本申请实施例在此不作限制。
可选的,用于承载该第三指示信息的资源包括:广播消息、RRC信令、同步信号、同步信号块、MAC CE、DCI中的任意一种。
具体而言,终端设备接收网络设备发送的该第三指示信息,该第三指示信息可以承载 在广播信令、高层信令和物理信令中的任一种信令上。用于通知终端设备第二带宽的参数信息。例如,终端设备可以在UE-specific信令,UE group specific信令,cell specific信令,group common等信令上接收该第三指示信息。
应理解,用于承载该第三指示信息的资源还可以是其他资源或者其他信令,本申请实施例在此不作限制。
还应理解,终端设备还可以通过该第三指示消息确定第一带宽的其他参数,本申请实施例在此不作限制。
可选的,终端设备还可以通过第二指示信息确定该第一带宽相对于该第二带宽的频域的偏置值,例如,可以以某一频域资源单元为基本单位,偏置值的通知方法可以是通知偏置值为该频域资源单元的N倍数。该频域资源单元可以为RB,PRB,资源块组(resource block group,RBG),预编码资源块组(precoding resource block group,PRG)等。该频域资源单元可以有多个候选值,由网络设备指定,或者该频域资源单元的选取和CC或wideband CC的标识相关。终端设备根据网络设备的指示信息以及当前所处系统中RB的频域大小来确定偏置值。本申请实施例在此不作限制。
应理解,接入第一带宽上的终端设备和接入第二带宽的终端设备还可以以第三带宽作为参考来调整参考信号映射公式中的偏移值。例如,第一带宽为CC,第二带宽为wideband CC,第三带宽可以为小区带宽或系统最大带宽。CC和wideband CC的带宽均为小区带宽或系统最大带宽中的一部分。此时,接入第一带宽的终端设备和接入第二带宽的终端设备均可以以第三带宽的频域起始位置为基准,计算第一带宽相对第三带宽的频域偏置值,以及第二带宽相对第三带宽的频域偏置值,进而可以得到第一带宽上参考信号映射的偏置值以及第二带宽上参考信号映射的偏置值。该方法同样可以配置第一带宽上的终端设备和第二带宽上的终端设备做MU-MIMO,只需满足第三带宽大于第一带宽和第二带宽即可。本申请实施例在此不作限制。
还应理解,在本申请实施例中,上述确定参考信号序列的方法不仅可以满足CC、wideband CC、BP、小区带宽上的不同终端设备做MU-MIMO。还可以满足在系统最大带宽等上的不同终端设备做MU-MIMO。在新的无线通信系统中,参考信号也可以均按照本申请提供的方法来确定。本申请实施例在此不作限制。
还应理解,在本申请实施例中,该offset的值还可以为0,若不需要支持CC,widebandCC,BP,小区带宽以及系统最大带宽之间的用户做MU-MIMO,上述带宽上的参考信号映射公式中的偏置值offset均可为0。因此,网络设备还可以根据第一带宽(CC,BP或wideband CC等)上的终端设备是否和其他带宽上的终端设备做MU-MIMO,来指示终端设备是否使用本申请的技术方案,即指示参考信号映射的偏置值offset为0,还是和第一带宽和第二带宽等参数相关。终端设备可以根据网络设备发送的指示信息来确定参考信号映射偏置值为0还是需要根据第一带宽和第二带宽等参数计算。网络设备可以通过该指示信息,例如网络设备使用X(X≥1)比特的指示信息指示某一时刻或某一段时间内,映射公式中的offset设置为0,或者,网络设备可以通过该指示信息确定需要终端设备计算映射公式中的offset的值。终端设备没有接收到网络侧设备的指示信息时,可以默认使用现有技术方案(即offset值为0)或本申请方案(根据第一带宽和第二带宽等参数计算offset值)。本申请实施例在此不作限制。
还应理解,在本申请的各个实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应该以其功能和内在的逻辑而定,而不应对本申请的实施例的实施过程造成任何限制。
本申请实施例提供的确定参考信号的方法,终端设备在根据网络设备发送的指示信息,确定第二带宽的参数后,根据第二带宽的参数和第一带宽的参数确定参考信号序列,使得第一带宽上的参考信号序列和第二带宽上的参考信号序列可以配置成相同、正交或者准正交。当不同的终端设备分别接入第一带宽和第二带宽做MU-MIMO时,可以将第一带宽上参考信号序列和第二带宽上参考信号序列配置成正交或者准正交,支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO。提高用户体验。
本申请还提供了一种确定参考信号序列的方法200,该方法200可以由网络设备来执行,图7示出了本申请实施例的确定参考信号序列的方法200的示意性流程图,如图7所示,该方法200包括:
S210,网络设备向终端设备发送第一指示信息,该第一指示信息指示目标资源。
S220,该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示第二带宽的参数中至少一个。
具体而言,在S210中,当终端设备需要在某一个时频资源上发送数据时,网络设备会向终端设备发送第一指示信息,用于向终端设备指示某一个特定时频资源,即目标资源,目标资源为网络设备给终端设备分配的资源,终端设备可在该目标资源上发送或接收数据。终端设备可以在该目标资源上发送参考信号序列,该参考信号序列用于网络设备正确进行信道估计、相干检测和解调,以便于网络设备正确解调出终端设备的数据。
在S220中,由于NR中若需要支持工作在wideband(或wideband CC)或者BP上的终端设备可以和工作在一个CC或者使用多个CC聚合的终端设备做MU-MIMO,因此,网络设备需要解调出不同终端设备发送的数据,此时,需要不同终端设备发送的参考信号序列配置成正交或者是准正交的。
当终端设备支持工作在第一带宽上的终端设备和工作在第二带宽上的终端设备做MU-MIMO时,当终端设备接入第一带宽,需要根据第一带宽的参数和第二带宽的参数来确定参考信号序列,并在目标资源上发送参考信号序列。使得第一带宽上的参考信号序列和第二带宽上的参考信号序列可以配置成相同,正交或者准正交,可以支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO。因此,网络设备会向终端设备会发送第二指示信息,该第二指示信息用于终端设备确定该第二带宽的参数。
当终端设备接入第一带宽时,终端设备通过检测第一带宽的同步信号,在确定该同步信号后,由于同步信号在第一带宽的中心频点上,因此,检测到了同步信号,便能确定该第二带宽的中心频点。之后,网络设备会通过广播信息通知该第一带宽的其他参数。而对于第二带宽的参数,网络设备会向终端设备会发送第二指示信息,该第二指示信息用于终端设备确定该第二带宽的参数中的至少一个,例如,可以是第二带宽的带宽值、第二带宽的频域起始位置和该第二带宽的中心频点中的至少一个。
本申请实施例提供的确定参考信号的方法,通过网络设备向终端设备发送用于指示第二带宽的参数的指示信息,可以是支持工作在第一带宽上的终端设备和工作在第二带宽上的终端设备做MU-MIMO,即根据第一带宽的参数和第二带宽的参数来确定参考信号序 列,最终使得第一带宽上的参考信号序列和第二带宽上的参考信号序列配置成相同,正交或者准正交,可以支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO。网络设备便可以正确解析不同终端设备上的数据。
应理解,目标资源为网络设备给终端设备分配的资源,终端设备可在该目标资源上发送或接收数据。该目标资源的频域可以和该第一带宽的频域相同,也可以和该第一带宽的频域部分重叠。该目标资源的频域还可以是第二带宽的部分频域的,或者是第一带宽的部分频域。本申请实施例在此不作限制。
还应理解,该第一带宽可以包括该终端设备的工作带宽和为该终端设备服务的小区带宽中的任意一种,例如,该第一带宽可以为CC或BP。该第二带宽可以包括系统最大带宽、小区带宽和宽带载波带宽中的任意一种。该第一带宽的频域可以为第二带宽的部分频域,第一带宽的带宽值可以小于第二带宽的带宽值。本申请实施例在此不作限制。
可选的,用于承载该第二指示信息的资源包括:广播消息、RRC信令、同步信号、同步信号块、MAC CE、DCI中的任意一种。
具体而言,在网络设备向终端设备发送该第二指示信息时,该第二指示信息可以承载在广播信令、高层信令和物理信令中的任意一种信令上。用于通知终端设备第二带宽的参数信息。例如,网络设备可以使用UE-specific信令、UE group specific信令,cell specific信令,group common信令等信令承载该第二指示信息。
应理解,用于承载该第二指示信息的资源还可以是其他资源或者其他信令,本申请实施例在此不作限制。
还应理解,网络设备还可以通过第二指示消息通知第二带宽的其他参数,本申请实施例在此不作限制。
还应理解,网络设备可以预定义M(M≥1)种第二带宽,例如,该第二带宽的带宽可以包括最大带宽,小区带宽或者wideband带宽、多个CC聚合后的带宽或宽带BP等带宽中的一种或多种。网络设备可使用log 2M比特的第二指示信息通知终端设备该第二带宽的参数中的至少一个。本申请实施例在此不作限制。
还应理解,网络设备可以不预定义第二带宽的参数,此时,网络设备可以将所有可能的参数值通过指示信息发送给终端设备,本申请实施例在此不作限制。
可选的,作为一个实施例,该方法200还包括:
该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示第一带宽的参数中的至少一个。
具体而言,当终端设备接入第二带宽时,终端设备通过检测第二带宽的同步信号,在确定该同步信号后,由于同步信号在第二带宽的中心频点上,因此,检测到了同步信号,便能确定该第二带宽的中心频点。之后,网络设备会通过广播信息通知该第二带宽的其他参数。而对于第一带宽的参数,网络设备会向终端设备会发送第三指示信息,该第三指示信息用于终端设备确定该第一带宽的参数,例如,可以是第一带宽的带宽值、第一带宽的频域起始位置和第一带宽的片频域起始位置中的至少一个。
可选的,用于承载该第三指示信息的资源包括:广播消息、RRC信令、同步信号、同步信号块、MAC CE、DCI中的任意一种。
具体而言,在网络设备向终端设备发送该第三指示信息时,该第三指示信息可以承载 在广播信令、高层信令和物理信令中的任一种信令上。用于通知终端设备第一带宽的参数信息。例如,网络设备可以使用UE-specific信令,UE group specific,cell specific信令,group common等信令承载该第三指示信息。
应理解,用于承载该第三指示信息的资源还可以是其他资源或者其他信令,本申请实施例在此不作限制。
还应理解,网络设备还可以通过第三指示消息通知第一带宽的其他参数信息,本申请实施例在此不作限制。
还应理解,网络设备可以预定义M(M≥1)种第一带宽,该第一带宽可以包括CC、BP和wideband带宽等带宽中的一种或多种,网络设备可使用log 2M比特的第三指示信息通知终端设备该第一带宽的参数。本申请实施例在此不作限制。
应理解,该目标资源的频域可以和该第一带宽的频域相同,也可以和该第一带宽的频域部分重叠。该目标资源的频域还可以是第二带宽的部分频域的,或者是第一带宽的部分频域。本申请实施例在此不作限制。
可选的,作为一个实施例,该第一带宽可以包括该终端设备的工作带宽、为该终端设备服务的小区带宽和载波带宽中的任意一种,例如,该第一带宽可以为CC,载波聚合后的多个CC,BP,小区带宽,系统最大带宽等。该第二带宽可以包括系统最大带宽、小区带宽和宽带载波带宽中的任意一种。该第一带宽的频域可以为第二带宽的部分频域,或者第一带宽的频域和第二带宽的部分频域重叠,第一带宽的带宽值可以小于或者等于第二带宽的带宽值。本申请实施例在此不作限制。
可选的,作为一个实施例,该第二带宽的参数包括以下参数中的至少一个:该第二带宽的中心频点、该第二带宽的带宽值和该第二带宽的频域起始位置。
可选的,作为一个实施例,该第一带宽的参数包括以下参数中的至少一个:该第一带宽的中心频点、该第一带宽的带宽值和该第一带宽的频域起始位置。
具体而言,在第一带宽上的参考信号的生成方法与第二带宽上的参考信号的生成方法可以相同,也可以不同,或者两者生成的参考信号序列长度需要按照两者的带宽中的最大值或者另外一个更大的带宽值来生成。即第一带宽上的参考信号生成的长度是按照第二带宽来生成的,或者第一带宽上的参考信号和第二带宽上的参考信号序列都是按照最大带宽来生成的。要使得第一带宽和第二带宽频域上重叠部分的参考序列可以配置成相同,正交或者准正交,由于第一带宽和第二带宽的频域的起始位置可能不同,可以看成第一带宽的频域的起始位置相比于第二带宽的频域起始位置有一个偏置值,对应到参考信号序列的映射公式中,即第一带宽上的参考信号序列的映射公式相比于第二带宽上的参考信号序列上映射公式有一个offset值。该第一带宽的参数包括以下参数中的至少一个:该第一带宽的中心频点、该第一带宽的带宽值和该第一带宽的频域起始位置。该偏置值与第一带宽的参数和第二带宽的参数有关。该第二带宽的参数该包括该第二带宽的中心频点、该第二带宽的带宽值和该第二带宽的频域起始位置的至少一个。
根据第一带宽的参数和第二带宽的参数,可以确定第一带宽相对于第二带宽在频域的起始位置的偏置值,得到第一带宽上的参考信号序列的映射公式,便可以通过各自的映射公式使得第一带宽上的参考信号序列和第二带宽上的参考信号序列相同,从而可以将第一带宽上的参考信号序列和第二带宽上的参考信号序列配置成正交或者准正交。
可选的,网络设备可以通过第二指示信息向终端设备通知该第一带宽相对于该第二带宽的频域的偏置值,例如,可以以某一频域资源单元为基本单位,偏置值的通知方法可以是通知偏置值为该频域资源单元的N倍数。该频域资源单元可以为RB,PRB,RBG,PRG等。该频域资源单元可以有多个候选值,由网络设备指定,或者该频域资源单元的选取和CC或wideband CC的标识相关。终端设备根据网络设备的指示信息以及当前所处系统中RB的频域大小来确定偏置值。本申请实施例在此不作限制。
还应理解,网络设备还可以向终端设备发送用于告知是否需要多个终端设备做MU-MIMO的指示信息,例如,网络设备可以使用X(X≥1)比特的指示信息指示某一时刻或某一段时间内,映射公式中的offset设置为0。或者,网络设备可以通过该指示信息确定告知终端设备需要计算映射公式中的offset的值。本申请实施例在此不作限制。
还应理解,在本申请各个实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应该以其功能和内在的逻辑而定,而不应对本申请的实施例的实施过程造成任何限制。
本申请实施例提供的确定参考信号的方法,通过网络设备向终端设备发送用于指示第二带宽的参数的第二指示信息和指示第一带宽的参数的第三指示信息,可以是支持工作在第一带宽上的终端设备和工作在第二带宽上的终端设备做MU-MIMO,即根据第一带宽的参数和第二带宽的参数来确定参考信号序列,最终使得第一带宽上的参考信号序列和第二带宽上的参考信号序列配置成相同、正交或者准正交,支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO。网络设备便可以正确解析不同终端设备上的数据。
上文结合图1至图7,详细描述了本申请实施例的确定参考信号序列的方法,下面将结合图8至图11,详细描述本申请实施例的终端设备和网络设备。
图8是本申请一个实施例的终端设备的示意性框图。应理解,终端设备实施例与方法实施例相互对应,类似的描述可以参照方法实施例,图8所示的终端设备300可以用于执行对应于图3中终端设备执行的步骤。该终端设备300包括:处理器310、存储器320和收发器330,处理器310、存储器320和收发器330通过通信连接,存储器320存储指令,处理器310用于执行存储器320存储的指令,收发器330用于在处理器310的驱动下执行具体的信号收发。
该收发器330,用于接收网络设备发送的第一指示信息;
该处理器310,用于根据该第一指示信息确定目标资源;
该处理器310还用于根据第一带宽的参数和第二带宽的参数,确定参考信号序列;
该收发器330还用于在该目标资源上发送或接收该参考信号序列。
本申请实施例提供的终端设备,可以根据第一带宽的参数和第二带宽的参数确定参考信号序列,使得第一带宽上的参考信号序列和第二带宽上的参考信号序列相同,当不同的终端设备分别接入第一带宽和第二带宽做MU-MIMO时,可以将第一带宽上参考信号序列和第二带宽上参考信号序列配置成相同,正交或者准正交,支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO,提高用户体验。
终端设备300中的各个组件通过通信连接,即处理器310、存储器320和收发器330之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路 芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,该第二带宽的参数包括以下参数中的至少一个:该第二带宽的中心频点、该第二带宽的带宽值和该第二带宽的频域起始位置。
可选的,在本申请的另一个实施例中,该第一带宽的参数包括以下参数中的至少一个:该第一带宽的中心频点、该第一带宽的带宽值和该第一带宽的频域起始位置。
可选的,在本申请的另一个实施例中,该收发器330还用于接收该网络设备发送的第二指示信息;
该处理器310还用于根据该第二指示信息确定该第二带宽的参数中的至少一个。
可选的,在本申请的另一个实施例中,该收发器330还用于接收该网络设备发送的第三指示信息;
该处理器310还用于根据该第三指示信息确定该第一带宽的参数中的至少一个。
可选的,在本申请的另一个实施例中,该处理器310具体用于根据该第一带宽的参数、该第二带宽的参数以及子载波间隔,确定该参考信号序列。
可选的,在本申请的另一个实施例中,该处理器330确定的该目标资源的频域和该第一带宽的频域相同或者部分重叠。
可选的,在本申请的另一个实施例中,该第一带宽的带宽值小于该第二带宽的带宽值。
可选的,在本申请的另一个实施例中,该第一带宽为该终端设备的工作带宽、服务小区带宽和载波带宽中的任意一种;该第二带宽为系统最大带宽、小区带宽和宽带载波带宽中的任意一种。
应注意,本申请实施例中,处理器310可以由处理模块实现,存储器320可以由存储模块实现,收发器330可以由收发模块实现,如图9所示,终端设备400可以包括处理模块410、存储模块420和收发模块430。
图8所示的终端设备300或图9所示的终端设备400能够实现前述图3中终端设备执行的步骤,为避免重复,这里不再赘述。
图10示出了本申请一个实施例的网络设备500的示意性框图。应理解,网络设备实施例与方法实施例相互对应,类似的描述可以参照方法实施例,如图10所示,该网络设备500包括:处理器510、存储器520和收发器530,处理器510、存储器520和收发器530通过通信连接,存储器520存储指令,处理器510用于执行存储器520存储的指令, 收发器530用于在处理器510的驱动下执行具体的信号收发。
该收发器530,用于向终端设备发送第一指示信息,该第一指示信息用于指示目标资源;
该收发器530还用于向该终端设备发送第二指示信息,该第二指示信息用于指示第二带宽的参数中的至少一个。
本申请实施例提供的网络设备,通过网络设备向终端设备发送用于指示第二带宽的参数的指示信息,可以是支持工作在第一带宽上的UE和工作在第二带宽上的UE做MU-MIMO,即根据第一带宽的参数和第二带宽的参数来确定参考信号序列,最终使得第一带宽上的参考信号序列和第二带宽上的参考信号序列配置成相同、正交或者准正交,支持工作在第一带宽和第二带宽上的终端设备做MU-MIMO。网络设备便可以正确解析不同终端设备上的数据。
网络设备500中的各个组件通过通信连接,即处理器510、存储器520和收发器530之间通过内部连接通路互相通信,传递控制和/或数据信号。应注意,本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器CPU,NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,该收发器530还用于向该终端设备发送第三指示信息,该第三指示信息用于指示该第一带宽的参数中的至少一个。
可选的,在本申请的另一个实施例中,该第二带宽的参数和第一带宽的参数用于该终端设备确定参考信号序列,并在该目标资源上发送该参考信号序列。
可选的,在本申请的另一个实施例中,该第二带宽的参数包括以下参数中的至少一种:该第二带宽的中心频点、该第二带宽的带宽值和该第二带宽的频域起始位置。
可选的,在本申请的另一个实施例中,该第一带宽的参数包括以下参数中的至少一个:该第一带宽的中心频点、该第一带宽的带宽值和该第一带宽的频域起始位置。
可选的,在本申请的另一个实施例中,
可选的,在本申请的另一个实施例中,该目标资源的频域和该第一带宽的频域相同或者部分重叠。该第一带宽的带宽值小于该第二带宽的带宽值。
可选的,在本申请的另一个实施例中,该第一带宽为该终端设备的工作带宽、服务小区带宽和载波带宽中的任意一种;该第二带宽为系统最大带宽、小区带宽和宽带载波带宽中的任意一种。
应注意,在发明实施例中,处理器510可以由处理模块实现,存储器520可以由存储 模块实现,收发器530可以由收发模块实现,如图11所示,网络设备600可以包括处理模块610、存储模块620和收发模块630。
图10所示的网络设备500或图11所示的网络设备600能够实现前述图7中网络设备执行的步骤,为避免重复,这里不再赘述。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述图3和图7中本申请实施的确定参考信号序列的方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请实施例还提供了一种通信系统,该通信系统包括上述本申请实施例提供的终端设备和上述本申请实施例提供网络设备,该通信系统可以完成本申请实施例提供的任一种确定参考信号序列的方法。
应理解,本文中术语“和/或”以及“A或B中的至少一种”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、随机存取存储器、RAM、磁碟或者光盘 等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种确定参考信号序列的方法,其特征在于,包括:
    接收网络设备发送的第一指示信息;
    根据所述第一指示信息确定带宽部分;
    根据所述带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移,确定参考信号序列;
    利用所述带宽部分发送或接收所述参考信号序列。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第二指示信息;
    根据所述第二指示信息确定所述系统最大带宽的频域起始位置。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的第三指示信息;
    根据所述第三指示信息确定所述带宽部分的频域起始位置。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,根据所述带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移,确定参考信号序列,包括:
    根据所述带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移、以及子载波间隔,确定所述参考信号序列。
  5. 一种确定参考信号序列的方法,其特征在于,包括:
    向终端设备发送第一指示信息,所述第一指示信息用于指示带宽部分;
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示系统最大带宽的频域起始位置。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述带宽部分的频域起始位置。
  7. 根据权利要求6所述的方法,其特征在于,所述带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移用于所述终端设备确定参考信号序列,并利用所述带宽部分发送所述参考信号序列。
  8. 一种确定参考信号序列的装置,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述收发器,用于接收网络设备发送的第一指示信息;
    所述处理器,用于根据所述第一指示信息确定带宽部分;
    所述处理器还用于根据所述带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移,确定参考信号序列;
    所述收发器还用于利用所述带宽部分发送或接收所述参考信号序列。
  9. 根据权利要求8所述的装置,其特征在于,所述收发器还用于接收所述网络设备发送的第二指示信息;
    所述处理器还用于根据所述第二指示信息确定所所述系统最大带宽的频域起始位置。
  10. 根据权利要求8或9所述的装置,其特征在于,所述收发器还用于接收所述网络设备发送的第三指示信息;
    所述处理器还用于根据所述第三指示信息确定所述带宽部分的频域起始位置。
  11. 根据权利要求8至10中任一项所述的装置,其特征在于,所述处理器还用于根据所述带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移、以及子载波间隔,确定所述参考信号序列。
  12. 一种确定参考信号序列的装置,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述收发器,用于向终端设备发送第一指示信息,所述第一指示信息用于指示带宽部分;
    所述收发器还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示系统最大带宽的频域起始位置。
  13. 根据权利要求12所述的装置,其特征在于,所述收发器还用于向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述带宽部分的频域起始位置。
  14. 根据权利要求13所述的装置,其特征在于,所述带宽部分的频域起始位置与系统最大带宽的频域起始位置之间的偏移用于所述终端设备确定参考信号序列,并利用所述带宽部分发送所述参考信号序列。
  15. 根据权利要求1至7中任一项所述的方法或者根据权利要求8至14中任一项所述的装置,其特征在于,所述带宽部分的带宽值小于或者等于所述系统最大带宽的带宽值。
  16. 一种计算机程序产品,其特征在于,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备运行时,使得所述通信设备执行权利要求1至7以及15中任一项所述的方法。
  17. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序用于执行根据权利要求1至7以及15中任一项所述的方法的指令。
  18. 一种资源指示值的获取装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述处理器执行根据权利要求1至7以及15中任一项所述的方法。
  19. 一种确定参考信号序列的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一指示信息;
    所述终端设备根据所述第一指示信息确定目标资源;
    所述终端设备根据第一带宽的参数和第二带宽的参数,确定参考信号序列;
    所述终端设备在所述目标资源上发送或接收所述参考信号序列。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二指示信息;
    所述终端设备根据所述第二指示信息确定所述第二带宽的参数中的至少一个。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第三指示信息;
    所述终端设备根据所述第三指示信息确定所述第一带宽的参数中的至少一个。
  22. 根据权利要求19至21中任一项所述的方法,其特征在于,所述终端设备根据第一带宽的参数和第二带宽的参数,确定参考信号序列,包括:
    所述终端设备根据所述第一带宽的参数、所述第二带宽的参数以及子载波间隔,确定所述参考信号序列。
  23. 一种确定参考信号序列的方法,其特征在于,包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示目标资源;
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示第二带宽的参数中的至少一个。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三指示信息,所述第三指示信息用于指示第一带宽的参数中的至少一个。
  25. 根据权利要求24所述的方法,其特征在于,所述第二带宽的参数和第一带宽的参数用于所述终端设备确定参考信号序列,并在所述目标资源上发送所述参考信号序列。
  26. 一种终端设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述收发器,用于接收网络设备发送的第一指示信息;
    所述处理器,用于根据所述第一指示信息确定目标资源;
    所述处理器还用于根据第一带宽的参数和第二带宽的参数,确定参考信号序列;
    所述收发器还用于在所述目标资源上发送或接收所述参考信号序列。
  27. 根据权利要求26所述的终端设备,其特征在于,所述收发器还用于接收所述网络设备发送的第二指示信息;
    所述处理器还用于根据所述第二指示信息确定所述第二带宽的参数中的至少一个。
  28. 根据权利要求求26或27所述的终端设备,其特征在于,所述收发器还用于接收所述网络设备发送的第三指示信息;
    所述处理器还用于根据所述第三指示信息确定所述第一带宽的参数中的至少一个。
  29. 根据权利要求26至28中任一项所述的终端设备,其特征在于,所述处理器还用于根据所述第一带宽的参数、所述第二带宽的参数以及子载波间隔,确定所述参考信号序列。
  30. 一种网络设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述收发器接收或发送信号;
    所述收发器,用于向终端设备发送第一指示信息,所述第一指示信息用于指示目标资源;
    所述收发器还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示第二带宽的参数中的至少一个。
  31. 根据权利要求30所述的网络设备,其特征在于,所述收发器还用于向所述终端设备发送第三指示信息,所述第三指示信息用于指示第一带宽的参数中的至少一个。
  32. 根据权利要求31所述的网络设备,其特征在于,所述第二带宽的参数和第一带宽的参数用于所述终端设备确定参考信号序列,并在所述目标资源上发送所述参考信号序 列。
  33. 根据权利要求19至25中任一项所述的方法或者根据权利要求26至32中任一项所述的设备,其特征在于,所述第二带宽的参数包括以下参数中的至少一个:所述第二带宽的中心频点、所述第二带宽的带宽值和所述第二带宽的频域起始位置。
  34. 根据权利要求19至25以及33中任一项所述的方法或者根据权利要求26至33中任一项所述的设备,其特征在于,所述第一带宽的参数包括以下参数中的至少一个:所述第一带宽的中心频点、所述第一带宽的带宽值和所述第一带宽的频域起始位置。
  35. 根据权利要求19至25以及33和34中任一项所述的方法或者根据权利要求26至34中任一项所述的设备,其特征在于,所述目标资源的频域和所述第一带宽的频域相同或者部分重叠。
  36. 根据权利要求19至25以及33至35中任一项所述的方法或者根据权利要求26至35中任一项所述的设备,其特征在于,所述第一带宽的带宽值小于或者等于所述第二带宽的带宽值。
  37. 根据权利要求19至25以及33至36中任一项所述的方法或者根据权利要求26至36中任一项所述的设备,其特征在于,所述第一带宽为所述终端设备的工作带宽、服务小区带宽和载波带宽中的任意一种;
    所述第二带宽为系统最大带宽、小区带宽和宽带载波带宽中的任意一种。
  38. 一种通信系统,其特征在于,所述通信系统包括根据权利要求26至29以及33至37中任一项所述的设备以及根据权利要求30至32以及33至37中任一项所述的设备。
  39. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序用于执行根据权利要求19至25以及33至37中任一项所述的方法的指令。
PCT/CN2018/085607 2017-05-05 2018-05-04 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质 WO2018202130A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112019023158-7A BR112019023158A2 (pt) 2017-05-05 2018-05-04 Método e aparelho para determinar sequência de sinais de referência, produto de programa de computador, e mídia de armazenamento legível por computador
EP18782863.7A EP3432505B1 (en) 2017-05-05 2018-05-04 Reference signal sequence determination method, apparatus, computer program product and computer readable storage medium
JP2019560745A JP7127063B2 (ja) 2017-05-05 2018-05-04 基準信号シーケンスを決定するための方法および装置、コンピュータプログラム製品、ならびにコンピュータ可読ストレージ媒体
EP23205137.5A EP4336754A3 (en) 2017-05-05 2018-05-04 Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium
EP21151987.1A EP3869725B1 (en) 2017-05-05 2018-05-04 Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium
KR1020197035656A KR102393630B1 (ko) 2017-05-05 2018-05-04 참조 신호 시퀀스를 결정하는 방법 및 장치, 컴퓨터 프로그램 제품 그리고 컴퓨터 판독 가능 저장 매체
CN201880029670.2A CN110915159B (zh) 2017-05-05 2018-05-04 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质
US16/147,797 US10903953B2 (en) 2017-05-05 2018-09-30 Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium
US16/204,908 US11258556B2 (en) 2017-05-05 2018-11-29 Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium
US17/675,363 US11843492B2 (en) 2017-05-05 2022-02-18 Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium
US18/506,474 US20240163147A1 (en) 2017-05-05 2023-11-10 Method and Apparatus for Determining Reference Signal Sequence, Computer Program Product, and Computer Readable Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313804.0 2017-05-05
CN201710313804.0A CN108809587B (zh) 2017-05-05 2017-05-05 确定参考信号序列的方法、终端设备、网络设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/147,797 Continuation US10903953B2 (en) 2017-05-05 2018-09-30 Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium
US16/204,908 Continuation US11258556B2 (en) 2017-05-05 2018-11-29 Method and apparatus for determining reference signal sequence, computer program product, and computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2018202130A1 true WO2018202130A1 (zh) 2018-11-08

Family

ID=63374838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085607 WO2018202130A1 (zh) 2017-05-05 2018-05-04 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质

Country Status (7)

Country Link
US (4) US10903953B2 (zh)
EP (3) EP3869725B1 (zh)
JP (2) JP7127063B2 (zh)
KR (1) KR102393630B1 (zh)
CN (3) CN108809587B (zh)
BR (1) BR112019023158A2 (zh)
WO (1) WO2018202130A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022507396A (ja) * 2018-11-13 2022-01-18 ホアウェイ・テクノロジーズ・カンパニー・リミテッド シーケンスを生成及び処理する方法並びに装置
JP2022541946A (ja) * 2019-07-26 2022-09-28 中興通訊股▲ふん▼有限公司 信号伝送方法、装置、通信ノードおよび記憶媒体
CN115669180A (zh) * 2020-07-31 2023-01-31 Oppo广东移动通信有限公司 带宽检查方法、装置、计算机设备及存储介质
US11588575B2 (en) 2018-09-28 2023-02-21 Zte Corporation Method and device for processing interference, storage medium and electronic device
RU2792412C2 (ru) * 2018-09-28 2023-03-22 ЗедТиИ КОРПОРЕЙШН Способ и устройство для обработки помех, носитель хранения и электронное устройство

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180077689A1 (en) * 2016-09-15 2018-03-15 Qualcomm Incorporated Multiple bandwidth operation
CN108809587B (zh) * 2017-05-05 2021-06-08 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
CN109495232B (zh) 2017-08-11 2020-04-14 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
US10575217B2 (en) 2017-08-11 2020-02-25 Qualcomm Incorporated Techniques and apparatuses for managing sounding reference signal (SRS) transmissions in a bandwidth part
CN115473617B (zh) * 2018-09-14 2024-06-04 华为技术有限公司 参考信号配置方法和装置
CN110958098B (zh) 2018-09-27 2021-03-30 华为技术有限公司 配置旁链路资源的方法和装置
WO2020103161A1 (zh) * 2018-11-23 2020-05-28 Oppo广东移动通信有限公司 确定同步信号块的方法、终端设备和网络设备
CN111669804B (zh) * 2019-03-05 2023-05-09 中国移动通信有限公司研究院 一种资源配置的方法及设备
EP3771126A1 (en) * 2019-07-25 2021-01-27 Mitsubishi Electric R&D Centre Europe B.V. Spectrum optimization in carrier aggregation communication system
CN113785618B (zh) * 2019-08-15 2023-06-02 华为技术有限公司 一种通信方法及装置
CN112448800A (zh) * 2019-08-30 2021-03-05 华为技术有限公司 一种srs的传输方法及装置
WO2021056593A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 通信方法、设备及系统
CN113810094B (zh) * 2020-06-11 2022-11-25 华为技术有限公司 一种信号传输的方法和通信装置
US12072360B2 (en) * 2020-09-11 2024-08-27 Dish Wireless L.L.C. Modular meter
WO2022099523A1 (zh) * 2020-11-11 2022-05-19 华为技术有限公司 一种信号发送、接收方法及装置
CN116981048A (zh) * 2022-04-24 2023-10-31 维沃移动通信有限公司 旁链路定位处理方法、装置、终端及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330325A (zh) * 2008-07-29 2008-12-24 中兴通讯股份有限公司 一种上行信道测量参考信号的传输方法
CN101394263A (zh) * 2008-10-29 2009-03-25 中兴通讯股份有限公司 上行信道测量参考信号及其带宽范围频域位置的映射方法
US20100118990A1 (en) * 2008-11-13 2010-05-13 Hwang-Soo Lee Apparatus for synchronizing ofdm signal using open-loop frequency synchronization method and frequency offset estimation scheme using the apparatus

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039451A1 (en) 2004-08-23 2006-02-23 Xiangyang Zhuang Method and apparatus for fast cell search
JP4601637B2 (ja) 2007-03-20 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ 移動局、送信方法及び無線通信システム
JP2010178129A (ja) * 2009-01-30 2010-08-12 Sharp Corp 基地局装置、移動局装置、無線通信システム、およびその参照信号送信方法
US20120082119A1 (en) 2009-05-08 2012-04-05 Lg Electronics Inc. Data transmission/reception method and apparatus using a transmission diversity technique in a wireless communication system
US8326251B2 (en) 2010-03-29 2012-12-04 Broadcom Corporation Method and system for estimating a receiver frequency offset in a communication system
EP2517491A4 (en) * 2009-12-25 2016-06-01 Nokia Solutions & Networks Oy CARTOGRAPHIC REFERENCE SIGNAL FOR MULTICELLULAR TRANSMISSION
CN102237926B (zh) * 2010-04-20 2014-03-19 中国移动通信集团公司 发送与接收信道探测参考信号的方法、装置与系统
CN102281642B (zh) 2010-06-10 2015-12-16 中兴通讯股份有限公司 一种lte系统中srs资源分配方法和装置
CN102437986B (zh) * 2010-09-29 2016-06-22 中兴通讯股份有限公司 参考信号映射方法及装置
WO2012057547A2 (ko) * 2010-10-28 2012-05-03 엘지전자 주식회사 협력적 통신을 지원하는 무선 접속 시스템에서 단말 간 채널 상태를 측정하기 위한 방법 및 장치
CN102957471B (zh) * 2011-08-19 2018-04-03 中兴通讯股份有限公司 一种解调参考信号的增强方法和系统
US9401790B2 (en) 2012-02-20 2016-07-26 Lg Electronics Inc. Method and apparatus for transmitting uplink signal in wireless communication system
US20140133395A1 (en) 2012-11-09 2014-05-15 Samsung Electronics Co. Ltd Methods and apparatus for identification of small cells
US9510260B2 (en) 2012-11-25 2016-11-29 Lg Electronics Inc. Method and apparatus for transmitting and receiving data in a wireless communication system
CN104854898A (zh) 2013-01-04 2015-08-19 富士通株式会社 信道测量方法、信道测量的配置方法和装置
CN103974315B (zh) 2013-02-05 2018-01-19 电信科学技术研究院 三维信道测量资源配置和质量测量方法及设备
US9596042B2 (en) * 2013-04-08 2017-03-14 Telefonaktiebolaget L M Ericsson (Publ) Methods of performing inter-frequency measurements in the IDLE state
WO2015035614A1 (zh) 2013-09-13 2015-03-19 华为技术有限公司 物理下行信道的物理资源的指示方法及装置
CN105580455B (zh) * 2013-09-27 2020-03-06 瑞典爱立信有限公司 用于估计大尺度信道特性的接收机和方法
CN110545133B (zh) * 2013-12-20 2022-12-06 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
CN104796218B (zh) 2014-01-17 2019-02-12 电信科学技术研究院 信号传输方法和装置
JP6393764B2 (ja) 2014-02-13 2018-09-19 エルジー エレクトロニクス インコーポレイティド 機械タイプ通信を支援する無線接続システムにおけるサウンディング参照信号送信方法及び装置
CN105103647B (zh) 2014-02-25 2019-05-10 华为技术有限公司 一种通知当前小区支持的终端类型的方法、设备及系统
US10291377B2 (en) 2014-04-20 2019-05-14 Lg Electronics Inc. Method and terminal for transmitting sounding reference signal in wireless communication system
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
US10476615B2 (en) * 2014-07-16 2019-11-12 Qualcomm Incorporated Techniques for scaling bandwidth of an unlicensed radio frequency spectrum band
US9451399B2 (en) 2014-07-24 2016-09-20 Lg Electronics Inc. Method and apparatus for position estimation in wireless communication
EP3183834B1 (en) 2014-08-18 2020-06-03 Telefonaktiebolaget LM Ericsson (publ) Simple rach (srach)
WO2016032293A2 (ko) * 2014-08-28 2016-03-03 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
US10064170B2 (en) * 2015-04-03 2018-08-28 Apple Inc. Enhanced physical downlink control channel supporting common search space
EP3286866B1 (en) 2015-04-22 2023-04-12 Apple Inc. Transmission designs for radio access technologies
US10326493B2 (en) 2015-05-13 2019-06-18 Samsung Electronics Co., Ltd. Control channel transmission and frequency error correction
CN107736074B (zh) * 2015-06-26 2022-02-08 Lg 电子株式会社 无线通信系统中收发设备对设备通信终端的信号的方法和装置
EP3335352A1 (en) 2015-08-12 2018-06-20 Intel Corporation Demodulation in wireless communications
WO2017029213A1 (en) * 2015-08-14 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Facilitated positioning of wireless communication devices
WO2017029036A1 (en) 2015-08-19 2017-02-23 Sony Corporation Mobile communications devices and methods
WO2017034238A1 (ko) * 2015-08-21 2017-03-02 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
US10893520B2 (en) * 2015-08-26 2021-01-12 Qualcomm Incorporated Downlink and synchronization techniques for narrowband wireless communications
WO2017039737A1 (en) 2015-08-28 2017-03-09 Intel IP Corporation BEAMFORMED PHYSICAL DOWNLINK CONTROL CHANNELS (BPDCCHs) FOR NARROW BEAM BASED WIRELESS COMMUNICATION
CN107925448B (zh) 2015-09-11 2021-11-19 苹果公司 用于增强的无缝移动性的设备和方法
US10849170B2 (en) 2015-10-08 2020-11-24 Apple Inc. Signaling methods for flexible radio resource management
CN108353054B (zh) 2015-10-29 2021-07-02 夏普株式会社 用于多物理结构体系的系统和方法
US11228462B2 (en) * 2016-01-19 2022-01-18 Lg Electronics Inc. Method for transmitting or receiving sounding reference signal in wireless communication system supporting unlicensed band, and device for supporting same
WO2017135773A1 (ko) * 2016-02-05 2017-08-10 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 이를 지원하는 장치
WO2017164639A2 (en) 2016-03-22 2017-09-28 Samsung Electronics Co., Ltd. Signal transmitting and receiving methods in a filtering-based carrier modulation system and apparatuses thereof
US11038557B2 (en) 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
WO2017177887A1 (en) * 2016-04-11 2017-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for facilitating reference signal transmission
US10367677B2 (en) 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN109417541B (zh) * 2016-07-01 2021-01-01 Oppo广东移动通信有限公司 信号检测的方法和装置
WO2018021951A1 (en) * 2016-07-26 2018-02-01 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting radio equipment, receiving radio equipment and corresponding methods for communicating using a reference signal
CN109644416B (zh) * 2016-07-29 2021-05-18 华为技术有限公司 参考信号序列的映射方法、配置方法、基站和用户设备
US11546802B2 (en) * 2016-08-10 2023-01-03 Samsung Electronics Co., Ltd. Method and apparatus for supporting flexible UE bandwidth in next generation communication system
KR102618292B1 (ko) * 2016-08-11 2023-12-28 삼성전자 주식회사 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치
US20180124784A1 (en) * 2016-11-01 2018-05-03 Qualcomm Incorporated Power efficient anchor carrier selection in lte advanced
KR102431635B1 (ko) 2016-11-04 2022-08-12 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 지연 감소를 위한 적응적 재전송 방법 및 장치
US11283575B2 (en) 2016-11-10 2022-03-22 Qualcomm Incorporated Sequence generation for systems supporting mixed numerologies
CN110024343B (zh) 2016-11-30 2022-01-21 瑞典爱立信有限公司 在多载波系统中发送和接收参考信号的方法及其设备
US10492157B2 (en) * 2017-01-04 2019-11-26 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
KR102280730B1 (ko) * 2017-01-05 2021-07-23 닛본 덴끼 가부시끼가이샤 기준 신호 송신 및 수신을 위한 방법 및 장치
CN114374499A (zh) * 2017-01-06 2022-04-19 瑞典爱立信有限公司 用于发信号通知和确定参考信号偏移的方法和装置
CN110121914B (zh) * 2017-01-08 2022-06-14 Lg 电子株式会社 在无线通信系统中在终端和基站之间发送或者接收上行链路信号的方法和支持该方法的设备
US10425264B2 (en) 2017-01-09 2019-09-24 Lg Electronics Inc. Method of transmitting synchronization signal and apparatus therefor
KR101971972B1 (ko) * 2017-01-09 2019-04-24 엘지전자 주식회사 무선 통신 시스템에서, 참조 신호를 전송하는 방법 및 이를 위한 장치
US10523476B2 (en) 2017-01-11 2019-12-31 Qualcomm Incorporated Signal scrambling sequence techniques for wireless communications
WO2018143719A1 (ko) 2017-02-05 2018-08-09 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
KR101979858B1 (ko) * 2017-02-05 2019-05-17 엘지전자 주식회사 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격, 또는 복수의 프로세싱 시간을 지원하기 위한 방법 및 이를 위한 장치
MX2019009421A (es) * 2017-02-07 2019-10-02 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de comunicacion inalambrica, dispositivo de terminal y dispositivo de red.
US10708028B2 (en) 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
US10856280B2 (en) 2017-03-15 2020-12-01 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination
CN108632193B (zh) 2017-03-24 2023-05-09 华为技术有限公司 一种资源指示方法及网络设备、终端设备
CN116437465A (zh) 2017-03-24 2023-07-14 北京三星通信技术研究有限公司 窄带物联网系统中调度请求上报的方法和装置
CN110463130B (zh) * 2017-03-25 2022-04-29 Lg 电子株式会社 在无线通信系统中分配相位跟踪参考信号的方法及其装置
US11483810B2 (en) * 2017-04-03 2022-10-25 Huawei Technologies Co., Ltd. Methods and systems for resource configuration of wireless communication systems
US10797842B2 (en) 2017-04-14 2020-10-06 Qualcomm Incorporated Multiplexing broadcast channels with synchronization signals in new radio
EP3852289B1 (en) * 2017-04-14 2024-10-09 LG Electronics Inc. Method and apparatus for performing initial connection in wireless communication system
WO2018203726A1 (en) 2017-05-04 2018-11-08 Innovative Technology Lab Co., Ltd. Method and apparatus for communicating reference signal for broadcast channel
CN108809587B (zh) * 2017-05-05 2021-06-08 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
EP3666001B1 (en) 2017-08-10 2022-10-05 Sharp Kabushiki Kaisha Procedures, base stations and user equipments for uplink transmission without grant
WO2021162524A1 (ko) * 2020-02-13 2021-08-19 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330325A (zh) * 2008-07-29 2008-12-24 中兴通讯股份有限公司 一种上行信道测量参考信号的传输方法
CN101394263A (zh) * 2008-10-29 2009-03-25 中兴通讯股份有限公司 上行信道测量参考信号及其带宽范围频域位置的映射方法
US20100118990A1 (en) * 2008-11-13 2010-05-13 Hwang-Soo Lee Apparatus for synchronizing ofdm signal using open-loop frequency synchronization method and frequency offset estimation scheme using the apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11588575B2 (en) 2018-09-28 2023-02-21 Zte Corporation Method and device for processing interference, storage medium and electronic device
RU2792412C2 (ru) * 2018-09-28 2023-03-22 ЗедТиИ КОРПОРЕЙШН Способ и устройство для обработки помех, носитель хранения и электронное устройство
JP2022507396A (ja) * 2018-11-13 2022-01-18 ホアウェイ・テクノロジーズ・カンパニー・リミテッド シーケンスを生成及び処理する方法並びに装置
JP7121199B2 (ja) 2018-11-13 2022-08-17 ホアウェイ・テクノロジーズ・カンパニー・リミテッド シーケンスを生成及び処理する方法並びに装置
US11894963B2 (en) 2018-11-13 2024-02-06 Huawei Technologies Co., Ltd. Sequence generating and processing method and apparatus
JP2022541946A (ja) * 2019-07-26 2022-09-28 中興通訊股▲ふん▼有限公司 信号伝送方法、装置、通信ノードおよび記憶媒体
JP7427765B2 (ja) 2019-07-26 2024-02-05 中興通訊股▲ふん▼有限公司 信号伝送方法、装置、通信ノードおよび記憶媒体
CN115669180A (zh) * 2020-07-31 2023-01-31 Oppo广东移动通信有限公司 带宽检查方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
KR102393630B1 (ko) 2022-05-02
EP4336754A3 (en) 2024-06-19
US11258556B2 (en) 2022-02-22
EP3432505B1 (en) 2021-03-24
CN108809587B (zh) 2021-06-08
US20190097775A1 (en) 2019-03-28
US20220255697A1 (en) 2022-08-11
JP2020519199A (ja) 2020-06-25
JP2022122914A (ja) 2022-08-23
KR20200003161A (ko) 2020-01-08
CN108809587A (zh) 2018-11-13
CN108512642A (zh) 2018-09-07
EP3869725A1 (en) 2021-08-25
US11843492B2 (en) 2023-12-12
EP4336754A2 (en) 2024-03-13
US20190044683A1 (en) 2019-02-07
US10903953B2 (en) 2021-01-26
CN110915159A (zh) 2020-03-24
EP3869725B1 (en) 2023-10-25
EP3432505A1 (en) 2019-01-23
BR112019023158A2 (pt) 2020-06-02
US20240163147A1 (en) 2024-05-16
CN108512642B (zh) 2021-03-02
EP3432505A4 (en) 2019-06-26
CN110915159B (zh) 2024-09-24
JP7127063B2 (ja) 2022-08-29

Similar Documents

Publication Publication Date Title
WO2018202130A1 (zh) 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质
US11323221B2 (en) Method for receiving reference signal and method for sending reference signal
CN108347778B (zh) 通信方法及装置
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
US10841055B2 (en) Method and apparatus for obtaining resource indication value
EP3562083B1 (en) Wireless communication method, terminal device and network device
US10623159B2 (en) Data communication method, terminal, and base station
US11700101B2 (en) Information transmission method, terminal device, and network device
US11477763B2 (en) Communication method and communications apparatus
WO2017070962A1 (zh) 指示资源的方法、基站和终端
JP6987242B2 (ja) リソース構成方法、端末装置及びネットワーク装置
WO2019047553A1 (zh) 一种时隙格式指示方法、设备及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018782863

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018782863

Country of ref document: EP

Effective date: 20181018

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18782863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019023158

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197035656

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019023158

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191104