WO2018027909A1 - 解调参考信号的映射和复用方法、装置以及通信系统 - Google Patents

解调参考信号的映射和复用方法、装置以及通信系统 Download PDF

Info

Publication number
WO2018027909A1
WO2018027909A1 PCT/CN2016/094889 CN2016094889W WO2018027909A1 WO 2018027909 A1 WO2018027909 A1 WO 2018027909A1 CN 2016094889 W CN2016094889 W CN 2016094889W WO 2018027909 A1 WO2018027909 A1 WO 2018027909A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
demodulation reference
data
mapping
Prior art date
Application number
PCT/CN2016/094889
Other languages
English (en)
French (fr)
Inventor
张健
王昕�
莫斯利缇姆斯·J
周华
Original Assignee
富士通株式会社
张健
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健 filed Critical 富士通株式会社
Priority to PCT/CN2016/094889 priority Critical patent/WO2018027909A1/zh
Publication of WO2018027909A1 publication Critical patent/WO2018027909A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a mapping and multiplexing method, apparatus, and communication system for a Demodulation Reference Signal (DM-RS).
  • DM-RS Demodulation Reference Signal
  • Multiple access technology is one of the key technologies for the future fifth generation (5G) mobile communication system.
  • 5G fifth generation
  • massive machine type communication and ultra-high reliability and low latency communication non-orthogonal multiple access technology has been extensively studied.
  • LDS multiple access is a kind of non-orthogonal multiple access technology. It is characterized in that user equipment performs data transmission according to a sparse pattern, that is, data transmission does not occupy the allocated data.
  • the overall advantage of all time-frequency resources is that the interference between user equipment can be reduced through the sparse structure.
  • LDS-CDMA LDS-Code Division Multiple Access
  • SCMA Synchron Code Multiple Access
  • PDMA Packed Multiple Access
  • IGMA Interleave-Grid Multiple Access
  • DM-RS Demodulation Reference Signal
  • the DM-RS is designed with different data streams or multi-user MIMO (MU-MIMO) using sequence orthogonality for single-user multiple input multiple output (SU-MIMO).
  • MU-MIMO multi-user MIMO
  • SU-MIMO single-user multiple input multiple output
  • a ZC (Zadoff-Chu) sequence is used to generate an uplink DM-RS sequence, and for user equipment belonging to the same cell, cyclic shift (CS, Cyclic Shift) and orthogonal superposition code (OCC, Orthogonal Cover) Code) is typically used to construct and guarantee orthogonality between DM-RSs of different user equipments.
  • CS Cyclic Shift
  • OCC orthogonal superposition code
  • the inventors have found that the gain of non-orthogonal multiple access usually originates from more user equipments that can simultaneously transmit data, that is, the data channel of the user equipment is non-orthogonal, in contrast to the DM-RS of the user equipment. It is often necessary to maintain orthogonality to ensure channel estimation performance.
  • the orthogonality of the DM-RS of the user equipment will gradually deteriorate, which may become a performance bottleneck restricting non-orthogonal multiple access.
  • the DM-RS signal-to-noise ratio may also deteriorate, which may result in inaccurate channel estimation, which in turn affects the performance of data demodulation.
  • Embodiments of the present invention provide a mapping and multiplexing method, apparatus, and communication system for a demodulation reference signal. Based on the structural characteristics of LDS, the mapping and multiplexing scheme of DM-RS in LTE/LTE-A system is designed for LDS multiple access system.
  • a mapping and multiplexing method for a demodulation reference signal is provided, which is applied to a low-density spread spectrum multiple access system, and the mapping and multiplexing method of the demodulation reference signal include:
  • the data and the demodulation reference signal are transmitted using the plurality of time-frequency resource blocks, wherein the demodulation reference signals of a portion of user equipment or data streams are overlapped on each time-frequency resource block.
  • a mapping and multiplexing apparatus for a demodulation reference signal which is configured in a low-density spread spectrum multiple access system, and a mapping and multiplexing apparatus for the demodulation reference signal include:
  • mapping unit that maps data and demodulation reference signals onto a plurality of time-frequency resource blocks, wherein the data of each user equipment or data stream and the demodulation reference signal are mapped to the plurality of time-frequency resources Part of the time-frequency resource block in the block;
  • a transmission unit that transmits the data and the demodulation reference signal using the plurality of time-frequency resource blocks, wherein the demodulation reference signals of a portion of user equipment or data streams are overlapped on each time-frequency resource block.
  • a communication system using low density spread spectrum multiple access comprising:
  • a plurality of user equipments that map data and demodulation reference signals onto a plurality of time-frequency resource blocks, and transmit the data and the demodulation reference signals using the plurality of time-frequency resource blocks;
  • a base station which receives the demodulation reference signal sent by the multiple user equipments, performs channel estimation, and data demodulation and decoding according to the demodulation reference signal;
  • the data of each user equipment or data stream and the demodulation reference signal are mapped to a part of the time-frequency resource blocks of the plurality of time-frequency resource blocks; and, on each time-frequency resource block, part The demodulation reference signals of the user equipment or data stream are overlapped.
  • the beneficial effects of the embodiments of the present invention are: data and demodulation reference signals of each user equipment or data stream are mapped to partial time-frequency resource blocks of the plurality of time-frequency resource blocks; and solutions of some user equipments or data streams The tone reference signals are overlaid on the same time-frequency resource block.
  • the DM-RS can be multiplexed in both the timing and frequency resources in the LDS multiple access system, and the performance of the transmission can still be guaranteed.
  • 1 is a schematic diagram of reusing a DM-RS in an LTE-A system for an LDS multiple access system
  • FIG. 2 is another schematic diagram of reusing a DM-RS in an LTE-A system for an LDS multiple access system
  • FIG. 3 is another schematic diagram of reusing a DM-RS in an LTE-A system for an LDS multiple access system
  • FIG. 4 is a schematic diagram of a method of mapping and multiplexing a demodulation reference signal according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of a DM-RS according to Embodiment 1 of the present invention.
  • FIG. 6 is another schematic diagram of the DM-RS according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing an example of a CS and an OCC configuration according to Embodiment 1 of the present invention.
  • FIG. 8 is another exemplary diagram of a CS and OCC configuration of Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of a DM-RS collision according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a subframe structure according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram of DM-RS mapping and multiplexing according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic diagram of DM-RS mapping and multiplexing according to Embodiment 4 of the present invention.
  • FIG. 13 is another schematic diagram of DM-RS mapping and multiplexing according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic diagram of DM-RS mapping and multiplexing according to Embodiment 5 of the present invention.
  • 16 is another schematic diagram of DM-RS mapping and multiplexing according to Embodiment 5 of the present invention.
  • FIG. 17 is another schematic diagram of DM-RS mapping and multiplexing according to Embodiment 5 of the present invention.
  • FIG. 19 is a schematic diagram of a resource block sparse pattern according to Embodiment 6 of the present invention.
  • FIG. 20 is a schematic diagram of a mapping and multiplexing apparatus for demodulation reference signals according to Embodiment 9 of the present invention.
  • Figure 21 is a schematic diagram of a communication system according to Embodiment 10 of the present invention.
  • Figure 22 is a schematic diagram of a user equipment according to Embodiment 10 of the present invention.
  • Figure 23 is a diagram showing a base station according to Embodiment 10 of the present invention.
  • a base station may be referred to as an access point, a broadcast transmitter, a Node B, an evolved Node B (eNB), etc., and may include some or all of their functions.
  • the term “base station” will be used herein. Each base station provides communication coverage for a particular geographic area.
  • the term “cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • a mobile station or device may be referred to as a "User Equipment” (UE).
  • UE User Equipment
  • a UE may be fixed or mobile and may also be referred to as a mobile station, terminal, access terminal, subscriber unit, station, and the like.
  • the UE may be a cellular telephone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless telephone, and the like.
  • PDA personal digital assistant
  • the resource allocated for the physical uplink shared channel (PUSCH) of the user equipment is a physical resource block (PRB) pair.
  • FIG. 1 is a schematic diagram of reusing a DM-RS in an LTE-A system for an LDS multiple access system, showing an example in which a DM-RS is multiplexed with a PUSCH in this case.
  • a DM-RS is multiplexed with a PUSCH in this case.
  • FIG. 1 since non-orthogonal multiple access is used, six user equipments can initiate PUSCH transmission in one PRB at the same time.
  • the PUSCH of each user equipment does not occupy the entire PRB resource, but performs resource mapping according to a predefined sparse pattern, where different user equipments use different sparse patterns.
  • the DM-RS occupies the 4th and 11th Orthogonal Frequency Division Multiplexing (OFDM) symbols along the structure defined by the LTE-A system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the uplink DM-RS can be used to distinguish different data streams of the same user equipment SU-MIMO transmission, or to distinguish different user equipments that perform uplink MU-MIMO transmission.
  • DM-RS can be used here. Used to distinguish different user equipment or data streams that simultaneously initiate uplink PUSCH transmission.
  • FIG. 2 is another schematic diagram of reusing the DM-RS in the LTE-A system for the LDS multiple access system, showing the case of 6 user equipments;
  • FIG. 3 is the reuse of the DM-RS in the LTE-A system.
  • Another schematic diagram of the LDS multiple access system shows the case of an additional six user equipments. 2 and 3 together illustrate the case of multiplexing 12 user equipments within 4 PRBs.
  • the number of user equipments that need to be supported at the same time may exceed the number of user equipments in MU-MIMO in LTE-A or the number of data streams that SU-MIMO can support.
  • Supporting more user equipment simultaneous transmission also means that more user equipment DM-RSs will be multiplexed in the same time-frequency resources for channel estimation and data demodulation. Due to the channel fading of the user equipment, the orthogonally designed DM-RSs are not ideally orthogonal after going through the respective channels and arriving at the receiving end. As the number of DM-RSs increases, the DM-RSs of different user equipments The orthogonality between them will become more and more difficult to guarantee, which may cause loss of channel estimation and demodulation performance.
  • LDS multiple access is essentially a transmission using spread spectrum, for example, extending information transmitted on one subcarrier in an orthogonal case (for example, OFDM) to simultaneously transmitting on multiple subcarriers.
  • OFDM orthogonal case
  • data that can be transmitted in one RB in an OFDM system is spread over four RBs for transmission. Since the LDS structure is used, half of the REs in each RB are unused. Accordingly, the DM-RS is also extended to all subcarrier ranges of 4 RBs to ensure that each RB is capable of channel estimation and demodulation. Under the condition that the total power is fixed, since the DM-RS is extended to more subcarriers, the power of the DM-RS symbol on each RE decreases. Therefore, the DM-RS signal-to-noise ratio in the case of LDS multiple access will be lower than the DM-RS signal-to-noise ratio in the orthogonal case.
  • the present application is mainly directed to an uplink multiple access system, that is, multiple user equipments transmit data to a base station.
  • an uplink multiple access system that is, multiple user equipments transmit data to a base station.
  • the user equipment in the communication system as the transmitting end and the base station as the receiving end.
  • the present invention is not limited thereto.
  • the transmitting end and/or the receiving end may be other network devices.
  • DM-RS ports For different DM-RSs, they actually correspond to different antenna ports (DM-RS ports). It is assumed in the embodiment that one DM-RS port is configured for one user equipment, that is, each DM-RS corresponds to one user equipment, but the present invention is not limited thereto. In a practical application, one user equipment can be configured with multiple DM-RS ports, that is, multiple DM-RSs correspond to one user equipment. In this case, the user has multiple data streams, and each DM-RS corresponds to one data stream.
  • the user equipment is used as the sending end as an example.
  • Each user equipment or data stream can independently transmit signals. After each user equipment or a signal sent by the data stream experiences its own channel, an overlap occurs at the receiving end (or Superimposed).
  • mapping and multiplexing of signals reference may be made to related technologies, which are not described in detail herein.
  • Embodiments of the present invention provide a mapping and multiplexing method for a demodulation reference signal, which is applied to a low-density spread spectrum multiple access system.
  • 4 is a schematic diagram of a method for mapping and multiplexing a demodulation reference signal according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step 402 The user equipment uses the multiple time-frequency resource blocks to transmit data and demodulation reference signals to the base station.
  • multiple user equipments transmit data and DM-RS to the base station, and data and demodulation reference signals of each user equipment or data stream are mapped to some time-frequency resources in the plurality of time-frequency resource blocks.
  • the demodulation reference signals of some user equipment or data streams are overlapped (or may also be referred to as superposition).
  • the base station may be a macro base station (for example, an eNB), and a macro cell (for example, a Macro cell) generated by the macro base station may provide a service for the user equipment.
  • the base station may also be a micro base station, and a micro cell (for example, a small cell or a Pico cell) generated by the micro base station may serve the user equipment.
  • the present invention is not limited thereto, and a specific scenario can be determined according to actual needs. For the sake of simplicity, only one user equipment is taken as an example in FIG. 3 .
  • the minimum granularity of time-frequency resources for data transmission and DM-RS transmission by the user equipment may be defined as a resource block (RB), and the RB in the LTE system is defined as 12 frequency directions.
  • the subcarrier and the time direction include one time-frequency resource block of 14 OFDM symbols, and one subcarrier and one symbol corresponding time-frequency resource are called resource elements (RE, Resource Element).
  • the size (or size) of the RB may be redefined depending on the service or frequency.
  • the DM-RS when the user equipment uses one or more RBs for uplink data transmission, the DM-RS also transmits in the RB occupied by the data, and the base station performs equivalent channel estimation and data demodulation according to the DM-RS. Decoding.
  • time-frequency resource block a minimum resource allocation unit of 1 RB.
  • the present invention does not limit the specific content or composition of the time-frequency resource block.
  • the multiple time-frequency resource blocks are mapped to have a sparse pattern; wherein the multiple time-frequency resource blocks include: mapping the certain user equipment or The data of the data stream and the first time-frequency resource block of the demodulation reference signal do not map the data of the certain user equipment or the data stream and the second time-frequency resource block of the demodulation reference signal.
  • FIG. 5 is a schematic diagram of a DM-RS according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a DM-RS according to an embodiment of the present invention;
  • FIG. 5 and FIG. 6 together show an LD sparse LDS.
  • DM-RS example of address access.
  • each user equipment uses 4 RBs for uplink data transmission, and a total of 12 user equipments are multiplexed into 4 RBs.
  • data and DM-RS are mapped to RB 1 and RB 2 (ie, first time-frequency resource blocks), and RB 3 and RB 4 are blank (ie, second time-frequency resources) Piece).
  • the data and DM-RS are mapped to RB 1 and RB 2 (ie, the first time-frequency resource block), and RB 3 and RB 4 are blank (ie, the second time-frequency resource block).
  • the data and DM-RS are mapped to RB 1 and RB 3 (ie, the first time-frequency resource block), and RB 2 and RB 4 are blank (ie, the second time-frequency resource block).
  • the data and DM-RS are mapped to RB 3 and RB 4 (ie, the first time-frequency resource block), and RB 1 and RB 2 are blank (ie, the second time-frequency resource block).
  • the DM-RS of the user equipment exists only in the RB with data mapping, so the user
  • the DM-RS of the device also presents an LDS structure, and the DM-RS and the data always appear in one RB at the same time.
  • On each time-frequency resource block only DM-RSs with partial user equipment or data streams are superimposed (or overlapped); for example, for RB 1, only one of the 12 user equipments of 12 user equipments is superimposed (or overlapped) Data and DM-RS.
  • the DM-RSs in Figures 2 and 3 occupy 48 REs, while the DM-RSs in Figures 5 and 6 of the embodiment of the present invention occupy 24 REs, so the DM-RS in Figures 5 and 6 per RE
  • the energy is higher than in Figures 2 and 3, so that the DM-RS of Figures 5 and 6 has a higher RE signal to noise ratio.
  • the DM-RSs of the 12 user equipments in Figures 2 and 3 will be overlapped, that is, the DM-RS of each user equipment will be interfered by the other 11 user equipments; for Figures 5 and 6, due to the users
  • the DM-RS of the device is mapped in the RB sparse manner.
  • the DM-RSs of the six user equipments in each RB are overlapped, that is, the DM-RS of each user equipment will be received by the other five user equipments. interference. Therefore, the mapping and multiplexing method of the embodiment of the present invention reduces the number of DM-RSs of user equipments that interfere with each other to some extent.
  • the CAZAC Constant Amplitude Zero Auto Correlation
  • the DM-RS configuration principle (e.g., u value selection, etc.) of each cell may be the same as LTE/LTE-A, except that a short sequence of length 12 is always generated for each time slot.
  • the DM-RSs that are superimposed (or overlapped) in each RB need to provide sequence orthogonality of six user equipments, so that the channels of the six user equipments can be distinguished and estimated.
  • CS and/or OCC are also configured RB by RB. Both CS and OCC are here to produce orthogonal sequences. For the sequence generated in Table 1 based on a certain u value, different CSs will correspond differently. Sequence, and these sequences are orthogonal to each other.
  • the OCC utilizes two time slots and further provides orthogonality through orthogonal codes.
  • the DM-RS sequence orthogonality of the user equipment can be implemented by configuring different CSs and/or OCCs for them.
  • the CS and the OCC are independently configured RB by RB. For each RB, it is necessary to distinguish the channels of the six user equipments.
  • Table 2 shows an example of the configuration of CS and OCC.
  • the six user equipments multiplexed in the RB can be configured according to Table 2.
  • FIG. 7 is a diagram showing an example of a CS and OCC configuration of an embodiment of the present invention.
  • Figure 7 gives an example of CS and OCC configurations for different user equipments in different RBs.
  • the top-labeled CS and OCC represent the configuration of the user equipment in the first non-empty RB
  • the bottom label indicates the CS and OCC configuration of the user equipment in the second non-empty RB.
  • Figure 7 labels CS and OCC in the top and bottom blanks.
  • FIG. 8 is another exemplary diagram of a CS and OCC configuration in accordance with an embodiment of the present invention, with CS and OCC labeled within the configured RB.
  • the configuration of CS and OCC actually follows the established rules of Table 2.
  • Figure 8 can be abstracted into the tabular form of Table 3.
  • the six CS and OCC configurations indexed by RB i in Table 3 correspond to the six user equipments in the DM-RS mapping in RB i in FIG. Figure 8 and Table 3 are one-to-one correspondence.
  • Table 3 illustrates the CS and OCC configurations in tabular form.
  • the configuration principle of the CS and/or the OCC is to distinguish the multiplexed users in each RB.
  • the CSs configured by different user equipments may be different, or the OCCs are different, or the CS and the OCC are different.
  • the specific configuration parameters there may be different combinations, and since the RB-by-RB configuration mode is adopted, the parameter configuration is not limited by the number of RBs.
  • Table 4 presents another example of a CS and OCC configuration in tabular form, using a different CS configuration than Table 3 to distinguish user equipment.
  • Table 5 presents another example of the CS and OCC configuration in tabular form, using only CS to differentiate the user equipment, and fixing the OCC to [1, 1].
  • Table 6 provides another example of a CS and OCC configuration in tabular form. Different RBs in Table 6 use different CS and OCC configurations, ie, independent configurations between RBs.
  • the foregoing Tables 1 to 6 only exemplify the CS and/or the OCC, but the present invention is not limited thereto, and other parameter configurations are not listed one by one.
  • the CAZAC sequence defined when allocating resources for one RB in LTE/LTE-A is reused, and the cyclic shift is used to construct different orthogonal sequences, and the actual orthogonal sequence is generated.
  • the method is not limited thereto, and any other type of orthogonal sequence may be used in the present invention.
  • only one RB of the time-frequency resource block is taken as an example.
  • the time-frequency resource block is used.
  • the composition may change.
  • one time-frequency resource block may include multiple RBs, or one time-frequency resource block has a size less than one RB, and the length of the orthogonal sequence may change accordingly.
  • data and demodulation reference signals of each user equipment or data stream are mapped to partial time-frequency resource blocks of the plurality of time-frequency resource blocks; and demodulation reference signals of the part of the user equipment or the data stream Superimposed on the same time-frequency resource block.
  • the DM-RS can be multiplexed in both the timing and frequency resources in the LDS multiple access system, and the performance of the transmission can still be guaranteed.
  • Embodiment 1 The mapping and multiplexing of the DM-RS are further described on the basis of Embodiment 1 in the embodiment of the present invention.
  • the present embodiment 2 relates to a grant-free transmission scenario, and the same content as that of Embodiment 1 will not be described again.
  • the transmitting end may select an orthogonal sequence and/or an orthogonal superposition code from the pre-configured DM-RS configuration information, and use the corresponding sparse pattern mapping data and the DM-RS; and the receiving end passes the blind detection.
  • the DM-RS determines whether the user equipment transmits data or whether a data stream exists, and performs channel estimation and data demodulation based on the DM-RS.
  • Unscheduled transmission is an important feature of multi-access access in 5G systems.
  • the purpose is mainly to reduce the overhead caused by scheduling signaling in small packet services, and also to reduce the waiting time of user equipment before initiating data transmission.
  • the DM-RS mapping and multiplexing scheme of the embodiment of the present invention can be applied to a schedule-free transmission scenario.
  • the base station determines the DM-RS configuration used in advance, for example, obtains the DM-RS configuration of 12 user equipments according to FIG. 8; the base station notifies the DM-RS configuration to the waiting data.
  • the user equipment that is transmitted; when the user equipment has data arriving and needs to be transmitted, the user equipment can randomly select one of the 12 DM-RS configurations to perform corresponding DM-RS transmission, and the user equipment selects a sparse pattern. Data transfer.
  • the data sparse pattern is in a one-to-one correspondence with the DM-RS configuration in some way, for example, as shown in FIG.
  • the base station side needs to blindly check which user equipments actually initiate data transmission. For example, the base station can obtain this information by blindly checking the existence of the DM-RS sequence, DM-RS.
  • the existence of the sequence means that the user equipment performs effective data transmission, and the base station needs to perform DM-RS based channel estimation on the user equipment and demodulate the data.
  • the number of user equipments that initiate uplink transmission at the same time is not certain, and may be 1 to 12 Any value between them can even exceed 12.
  • the mapping and multiplexing scheme of the DM-RS in the embodiment of the present invention can completely or partially avoid the user DM-RS collision to a certain extent, and thus the blind detection is performed for the number of the user equipments and the sparse pattern of the user equipment selection. And channel estimation and demodulation bring benefits.
  • FIG. 9 is a schematic diagram of a DM-RS collision according to an embodiment of the present invention. As shown in FIG. 9, for example, when two user equipments initiate data transmission, the DM-RS does not collide at all, thereby facilitating the blind detection of the DM-RS by the base station. The probability of success.
  • data and demodulation reference signals of each user equipment or data stream are mapped to partial time-frequency resource blocks of the plurality of time-frequency resource blocks; and demodulation reference signals of the part of the user equipment or the data stream Superimposed on the same time-frequency resource block.
  • the DM-RS can be multiplexed in both the timing and frequency resources in the LDS multiple access system, and the performance of the transmission can still be guaranteed.
  • the mapping and multiplexing of the DM-RS are further described on the basis of Embodiment 1 in the embodiment of the present invention.
  • the third embodiment relates to the structure of the time-frequency resource block, and the same content as that of the first embodiment will not be described again.
  • the 5G system may redesign the frame structure, at this time, the subframe length and the OFDM included in each subframe.
  • the number of symbols and the number of subcarriers included in the RB may change, and the number of symbols and symbol positions occupied by the uplink DM-RS may also be different from LTE/LTE-A.
  • FIG. 10 is a schematic diagram of a subframe structure according to an embodiment of the present invention. As shown in FIG. 10, for example, there may be different subframe structures or time intervals, where a DM-RS may exist in two symbols, such as a subframe. Structure 1; or DM-RS exists only within 1 symbol, such as subframe structure 2.
  • A, B, and C indicate other areas in the time interval, which can be used to transmit downlink control information, downlink data, downlink reference signals, guard interval (GP), uplink data, uplink control information, uplink reference signals, and the like, and even A.
  • B, C may not exist.
  • the DM-RS can also occupy more than 2 OFDM symbols, which are not enumerated in this embodiment.
  • the above situation changes only the number and location of the DM-RS in one RB.
  • the RB-sparse DM-RS mapping method can also be extended and applied to the above various situations, and the DM-RS still maps to different RBs according to the RB sparse mode.
  • FIG. 11 is a schematic diagram of DM-RS mapping and multiplexing according to an embodiment of the present invention, showing a case where DM-RS mapping and multiplexing are performed when the subframe structure shown in FIG. 10 is employed.
  • the orthogonality of the DM-RS sequence is used to distinguish the user equipment.
  • the OCC may be omitted, and the user equipment is distinguished only by the orthogonality of the DM-RS sequence, if the subcarriers included in one RB are included.
  • the number of DM-RS sequences needs to be reselected and designed.
  • the embodiment of the present invention further describes the mapping and multiplexing of the DM-RS on the basis of the embodiments 1 to 3.
  • the same contents as those of Embodiments 1 to 3 will not be described again.
  • the design idea of the fourth embodiment is to avoid DM-RS collision between user equipments by means of Frequency Division Multiplexing (FDM).
  • FDM Frequency Division Multiplexing
  • each user equipment or data stream DM-RS that uses the time-frequency resource block to transmit data occupies the time-frequency resource block. Part of the frequency domain resources.
  • a DM-RS of a plurality of user equipments or data streams that use the time-frequency resource block to transmit data is mapped on the same time domain resource in an FDM manner.
  • FIG. 12 is a schematic diagram of DM-RS mapping and multiplexing according to an embodiment of the present invention.
  • six user equipments of the same RB are used (for example, user equipment 1-6 using RB 1; user equipment using RB 2; 1-2, 7-10, user equipment 3-4, 7-8, 11-12 using RB 3; DM-RS using user equipment 5-6, 9-12 of RB 4 are multiplexed in FDM mode
  • the DM-RSs of these different user equipments occupy different REs, thus completely avoiding the collision between the DM-RSs of the user equipments.
  • the channel estimation of the DM-RS location can be utilized to obtain a channel estimate of the data location by interpolating it. In order to improve channel estimation performance, it can be considered according to actual channel conditions.
  • the channel interpolates across the RB. Since the DM-RS is not transmitted on all subcarriers, the power/energy per RE of the DM-RS can be improved.
  • the number of REs occupied by the DM-RS of each user equipment is 8, so the user equipment can use a DM-RS sequence of length 8, which can be a PN pseudo-random sequence or a CAZAC sequence or Any other sequence, OCC does not need to be used because there is no DM-RS collision of the user equipment.
  • the base station may perform blind detection on the DM-RS sequence at all possible DM-RS locations, thereby determining which user equipments are performing data transmission by the existence of the DM-RS, without collision.
  • the DM-RS mapping method will help improve the reliability of blind detection.
  • FIG. 13 is another schematic diagram of DM-RS mapping and multiplexing according to an embodiment of the present invention.
  • FIG. 13 shows the schematic situation when the DM-RS exists only in one OFDM symbol, and it can still ensure that the DM-RSs of different user equipments do not interfere with each other.
  • the mapping and multiplexing of the DM-RS are further described on the basis of the embodiments 1 to 4 according to the embodiment of the present invention. The same contents as those of Embodiments 1 to 4 will not be described again.
  • the design idea of the fifth embodiment is to avoid DM-RS collision between user equipments by combining FDM and Code Division Multiplexing (CDM).
  • each user equipment or data stream DM-RS that uses the time-frequency resource block to transmit data occupies the time-frequency resource block. Part of the frequency domain resources.
  • some user equipments or DM-RSs of data streams are mapped on the same time domain resource by FDM, and some user equipments or data are used.
  • the streamed DM-RS is mapped to the same time-frequency resource in CDM mode.
  • FIG. 14 is a schematic diagram of DM-RS mapping and multiplexing according to an embodiment of the present invention. As shown in FIG. 14, within each RB, for example, DM-RSs of six user equipments are mapped in a combination of FDM and CDM.
  • the DM-RSs of the user equipment 1 and the user equipment 3 avoid collision by the FDM method, and the DM-RSs of the user equipment 1 and the user equipment 2 are resolved by the CDM method. More specifically, User Equipment 1 and User Equipment 2 may use different OCCs to construct orthogonality.
  • the use of the OCC may satisfy one or more of the following conditions: the DM-RSs arranged in the time domain direction in the same time-frequency resource block use a set of OCCs; A DM-RS arranged in the frequency domain direction in the same time-frequency resource block uses a set of OCCs; a DM-RS arranged adjacently across resource blocks in the frequency domain direction uses a set of OCCs.
  • the OCC of length 2 in FIG. 15 may be composed of two DM-RSs adjacent in the frequency direction, and the solid line and the dotted line block are alternately used as an example circle in FIG. Further, the OCC having a length of 2 may be composed of two DM-RSs adjacent in the time direction, and is schematically indicated by a broken line in the figure. Therefore, the OCC has time-frequency two-dimensional orthogonality, which provides more degrees of freedom for the base station to despread the OCC. The base station can select an appropriate OCC for despreading and subsequent channel estimation and channel interpolation according to actual conditions.
  • FIG. 17 is another schematic diagram of DM-RS mapping and multiplexing according to an embodiment of the present invention, and shows a schematic situation when a DM-RS exists only within 1 OFDM symbol, and the OCC configuration may be retained by only retaining FIG.
  • a column of DM-RSs is obtained, and two DM-RSs adjacent in the frequency direction constitute a set of orthogonal OCCs.
  • FIG. 18 is another schematic diagram of DM-RS mapping and multiplexing according to an embodiment of the present invention, and another method for multiplexing DM-RS using FDM and CDM is given.
  • two DM-RSs adjacent in time direction are provided.
  • FIG. 15 can also be equivalently regarded as uniformly arranging the DM-RS symbols in the frequency direction in FIG. 12, and the OCC can also be configured in accordance with the method of FIG.
  • DM-RSs of some user equipments or data streams are also superimposed in a Time Division Multiplexing (TDM) manner. Different time domain resources.
  • the mapping and multiplexing of the DM-RS are further described on the basis of Embodiment 1 in the embodiment of the present invention.
  • the sixth embodiment relates to the sparse pattern of the resource block, and the same content as that of the embodiment 1 will not be described again.
  • some or all of the first time-frequency resource blocks of the plurality of time-frequency resource blocks are consecutively arranged, or part or all of the second time-frequency resource blocks are consecutively arranged, or the first time-frequency resource block and Second time-frequency resource block Staggered.
  • the smallest sparse pattern can be defined as [1, 1, 0, 0], "1" indicates that the RB has a DM-RS mapping, and "0" indicates that the RB is empty, and the minimum sparse pattern occupies 4 RBs.
  • FIG. 19 is a schematic diagram of a resource block sparse pattern according to an embodiment of the present invention, as shown in FIG. 19(A).
  • the actual allocated RB resources may be more than 4 RBs.
  • FIG. 19 takes 8 RB resource allocations as an example, and gives two extension methods based on the minimum sparse pattern and corresponding DM-RS length changes. For other types of minimum sparse patterns and extensions to all allocated RBs, this can be derived by this method.
  • one extension method is continuous repetition, that is, repetition is [1, 1, 0, 0, 1, 1, 0, 0], and the minimum unit of the DM-RS is 1 RB. Therefore, the DM-RS is still generated and mapped on an RB-by-RB basis, which is the same as (A) in FIG. For example, when a sequence is generated according to Embodiment 1, the DM-RS sequence has a length of 12.
  • interval repetition that is, repetition is [1, 1, 1, 1, 0, 0, 0, 0] and RB numbers 1, 3, 5, and 7 correspond to each other. [1,1,0,0], RB numbers 2, 4, 6, and 8 also correspond to [1, 1, 0, 0].
  • the minimum unit of the DM-RS can be selected as 1 RB, and the DM-RS can be generated and mapped on an RB-by-RB basis (it is always feasible to select by 1 RB). In addition, the minimum unit of the DM-RS is also considered to be 2 RBs.
  • the DM-RS will generate mapping with the minimum granularity of 2 RBs, that is, a sparse pattern with 2 RBs as the minimum granularity is formed [1, 1, 0,0], where each element in [1,1,0,0] corresponds to whether there is a DM-RS mapping within 2 RBs.
  • the DM-RS sequence length is 24, which is mapped into 2 RBs, and the orthogonality between user equipments can be further enhanced by using the longer DM-RS sequence.
  • four RBs are uniformly represented by a minimum sparse pattern, wherein two RBs are empty, two RBs have data and DM-RS, for example, [1, 1, 0,0].
  • the present invention is not limited thereto, and can be extended to other types of LDS structures.
  • the method of Figure 19 can be used when extending the minimum sparse pattern onto more RBs.
  • DM-RS DM-RS
  • the function is to separate and estimate different channels.
  • the channels themselves, they can come from different user equipments or from different spatial data streams (also called layer).
  • the above embodiments only use the application angle of different user equipments. Descriptions and descriptions are made, and specific applications can be selected according to actual scenarios.
  • DM-RSs can actually be defined as different antenna ports (DM-RS ports), and antenna ports can be configured differently.
  • multiple antenna ports can be configured to the same user equipment, different The antenna ports correspond to different spatial data streams; or multiple antenna ports can be configured to multiple different user devices, and different antenna ports correspond to different user devices.
  • each box representing the user equipment allocation resource in the figure represents one RB.
  • the present invention can also be applied to other resource allocation granularities, for example, the minimum resource granularity is multiple RBs, or the minimum resource granularity is less than one RB.
  • the present invention is not limited thereto, and the resource allocation granularity can be appropriately adjusted according to actual conditions.
  • the embodiment of the invention provides a mapping and multiplexing device for demodulating a reference signal, which is configured in a low-density spread spectrum multiple access system.
  • a mapping and multiplexing device for demodulating a reference signal
  • it can be configured in the user equipment or in the base station.
  • each user equipment can use the device to perform mapping and multiplexing of demodulation reference signals
  • each data stream can also use the device to perform mapping and multiplexing of demodulation reference signals.
  • mapping and multiplexing apparatus 2000 for demodulation reference signals includes:
  • Mapping unit 2001 which maps data and demodulation reference signals onto a plurality of time-frequency resource blocks, wherein the data of each user equipment or data stream and the demodulation reference signal are mapped to the plurality of time-frequency Part of the time-frequency resource block in the resource block;
  • a transmission unit 2002 that transmits the data and the demodulation reference signal using the plurality of time-frequency resource blocks, wherein the demodulation reference signals of a portion of user equipment or data streams are overlapped on each time-frequency resource block .
  • the multiple time-frequency resource blocks are mapped to have a sparse pattern; wherein the multiple time-frequency resource blocks include: mapping the certain user equipment or The data of the data stream and the first time-frequency resource block of the DM-RS do not map the data of the certain user equipment or the data stream.
  • the second time-frequency resource block of the DM-RS is mapped to have a sparse pattern; wherein the multiple time-frequency resource blocks include: mapping the certain user equipment or The data of the data stream and the first time-frequency resource block of the DM-RS do not map the data of the certain user equipment or the data stream.
  • the second time-frequency resource block of the DM-RS are mapped to have a sparse pattern; wherein the multiple time-frequency resource blocks include: mapping the certain user equipment or The data of the data stream and the first time-frequency resource block of the DM-RS do not map the data of the certain user equipment or the data stream.
  • the second time-frequency resource block of the DM-RS is mapped to have a sparse
  • the DM-RSs that are superimposed (or overlapped) on the same time-frequency resource block may maintain orthogonality by orthogonal sequences and/or orthogonal superposition codes; and the orthogonal sequences and/or Or orthogonal superposition codes are independently configured between the time-frequency resource blocks.
  • the DM-RSs of multiple user equipments or data streams that use the time-frequency resource block to transmit data may be mapped on the same time domain resource in an FDM manner.
  • a part of the user equipment or a DM-RS of the data stream may be mapped to the same time domain resource by using an FDM manner. And some user equipments or DM-RSs of data streams can be mapped on the same time-frequency resource in CDM mode.
  • the use of the orthogonal superposition code may satisfy one or more of the following conditions: use of the DM-RS arranged in the time domain direction in the same time-frequency resource block a set of orthogonal superposition codes; a DM-RS arranged in the frequency domain direction in the same time-frequency resource block uses a set of orthogonal superposition codes; and a set of DM-RSs arranged adjacent to each other across resource blocks in the frequency domain direction Orthogonal superimposed code.
  • some or all of the first time-frequency resource blocks may be consecutively arranged in the plurality of time-frequency resource blocks, or part or all of the second time-frequency resource blocks may be consecutively arranged. Or the first time-frequency resource block and the second time-frequency resource block may be staggered.
  • data and demodulation reference signals of each user equipment or data stream are mapped to partial time-frequency resource blocks of the plurality of time-frequency resource blocks; and demodulation reference signals of the part of the user equipment or the data stream Superimposed on the same time-frequency resource block.
  • the DM-RS can be multiplexed in both the timing and frequency resources in the LDS multiple access system, and the performance of the transmission can still be guaranteed.
  • Embodiments of the present invention also provide a communication system that uses low-density spread spectrum multiple access. The same content of the embodiment of the present invention and the first to seventh embodiments will not be described again.
  • the communication system includes:
  • a plurality of user equipments that map data and demodulation reference signals onto a plurality of time-frequency resource blocks and use the Transmitting the data and the demodulation reference signal by a plurality of time-frequency resource blocks;
  • a base station which receives the demodulation reference signal sent by the multiple user equipments, performs channel estimation, and data demodulation and decoding according to the demodulation reference signal;
  • the data of each user equipment or data stream and the demodulation reference signal are mapped to a part of the time-frequency resource blocks of the plurality of time-frequency resource blocks; and, on each time-frequency resource block, part The demodulation reference signals of the user equipment or data stream are overlapped.
  • the user equipment may be further configured to select a cyclic shift and/or an orthogonal superposition code from the pre-configured demodulation reference signal configuration information, and map the data and the solution by using a corresponding sparse pattern. And adjusting the reference signal; and the base station is further configured to determine whether the user equipment transmits data or whether the data stream exists by blindly demodulating the reference signal, and perform channel estimation and data demodulation based on the demodulation reference signal.
  • FIG. 21 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the schematic diagram illustrates a case where the transmitting end is a user equipment and the receiving end is a base station.
  • the communication system 2100 may include a base station 2101 and a user equipment 2102.
  • the base station 2101 and/or the user equipment 2102 may be configured with a mapping and multiplexing apparatus 2000 for demodulating reference signals as described in Embodiment 7.
  • the embodiment of the present invention further provides a sending end, which may be, for example, a user equipment, but the present invention is not limited thereto, and may be other network devices.
  • a sending end which may be, for example, a user equipment, but the present invention is not limited thereto, and may be other network devices.
  • the following uses the user equipment as an example for description.
  • FIG. 22 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 2200 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the central processing unit 100 may be configured to implement the mapping and multiplexing method of the demodulation reference signals described in Embodiments 1 to 7.
  • the central processing unit 100 can be configured to perform control of mapping data and demodulation reference signals onto a plurality of time-frequency resource blocks, and transmitting the data and the solution using the plurality of time-frequency resource blocks. Adjusting a reference signal; wherein the data of each user equipment or data stream and the demodulation reference signal are mapped to a portion of the plurality of time-frequency resource blocks, and at each time-frequency resource The demodulation reference signals of some user equipment or data streams are overlapped on the block.
  • the user equipment 2200 may further include: a communication module 110, an input unit 120, a display 160, and a power source 170.
  • a communication module 110 The functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 2200 does not necessarily have to include all the components shown in FIG. 22, and the above components are It is not necessary; in addition, the user equipment 2200 may also include components not shown in FIG. 22, and reference may be made to the prior art.
  • the embodiment of the present invention further provides a receiving end, which may be, for example, a base station, but the present invention is not limited thereto, and may be other network devices.
  • a receiving end which may be, for example, a base station, but the present invention is not limited thereto, and may be other network devices.
  • the following takes a base station as an example for description.
  • FIG. 23 is a schematic diagram showing the structure of a base station according to an embodiment of the present invention.
  • the base station 2300 can include a central processing unit (CPU) 200 and a memory 210; the memory 210 is coupled to the central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the central processing unit 200 can be configured to implement the mapping and multiplexing method of the demodulation reference signals described in Embodiments 1 to 7.
  • central processor 200 can be configured to perform control of mapping data and demodulation reference signals onto a plurality of time-frequency resource blocks, and transmitting the data and the solution using the plurality of time-frequency resource blocks Adjusting a reference signal; wherein the data of each user equipment or data stream and the demodulation reference signal are mapped to a portion of the plurality of time-frequency resource blocks, and at each time-frequency resource The demodulation reference signals of some user equipment or data streams are overlapped on the block.
  • the base station 2300 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It should be noted that the base station 2300 does not have to include all of the components shown in FIG. 23; in addition, the base station 2300 may also include components not shown in FIG. 23, and reference may be made to the prior art.
  • Embodiments of the present invention also provide a computer readable program, wherein when the program is executed in a mapping and multiplexing device or a user equipment of a demodulation reference signal, the program causes mapping and multiplexing of the demodulation reference signal
  • the mapping and multiplexing method of the demodulation reference signals described in Embodiments 1 to 7 is performed by a device or a user equipment.
  • Embodiments of the present invention also provide a storage medium storing a computer readable program, wherein the computer readable program causes a mapping and multiplexing device of a demodulation reference signal or a user equipment to perform the demodulation described in Embodiments 1 to 7. Reference signal mapping and multiplexing methods.
  • Embodiments of the present invention also provide a computer readable program, wherein the program causes mapping and multiplexing of the demodulation reference signal when the program is executed in a mapping and multiplexing device or a base station of a demodulation reference signal
  • the apparatus or base station performs the mapping and multiplexing method of the demodulation reference signals described in Embodiments 1 to 7.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a mapping and multiplexing device or a base station of the demodulation reference signal to perform the demodulation parameters described in Embodiments 1 to 7. Test signal mapping and multiplexing methods.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the information transmission method/device described in connection with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 20 and/or one or more combinations of functional block diagrams may correspond to various software modules of a computer program flow. It can also correspond to each hardware module.
  • These software modules may correspond to the respective steps shown in FIG. 4, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种解调参考信号的映射和复用方法、装置以及通信系统,所述映射和复用方法包括:将数据和解调参考信号映射到多个时频资源块上,并使用所述多个时频资源块传输数据和解调参考信号;其中,每一用户设备或者数据流的数据和解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及在每一时频资源块上,部分用户设备或者数据流的解调参考信号被叠加。由此,在LDS多址接入系统中能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。

Description

解调参考信号的映射和复用方法、装置以及通信系统 技术领域
本发明涉及通信技术领域,特别涉及一种解调参考信号(DM-RS,DeModulation Reference Signal)的映射和复用方法、装置以及通信系统。
背景技术
多址接入技术是未来第五代(5G)移动通信系统的关键技术之一。为满足增强移动宽带、海量机器类通信和超高可靠低时延通信等需求,非正交多址接入技术得到了广泛研究。
低密度扩频(LDS,Low Density Spreading)多址接入是非正交多址接入技术的一种,特点在于用户设备按照一种稀疏图样进行数据传输,即数据传输并不占满所分配的全部时频资源,潜在优势在于可以通过稀疏结构降低用户设备间干扰。
目前,若干LDS多址接入技术已经在学术界和国际标准化会议中被提出,例如,LDS-CDMA(LDS-Code Division Multiple Access),SCMA(Sparse Code Multiple Access),PDMA(Pattern Division Multiple Access)和IGMA(Interleave-Grid Multiple Access),等等。上行多址接入是上述LDS多址接入的一个主要应用场景,例如支持海量机器类通信。
另一方面,信道估计是影响多址方案数据解调性能的重要因素。新型多址方案需要准确的信道估计来保障非正交技术所带来性能增益。例如在长期演进(LTE,Long Term Evolution)/LTE-A标准中,定义了上行解调参考信号(DM-RS,Demodulation Reference Signal)用于信道估计及数据解调。
在LTE-A系统中,DM-RS的设计考虑了利用序列正交性对单用户多输入多输出(SU-MIMO,Single User Multiple Input Multiple Output)的不同数据流或者多用户MIMO(MU-MIMO)的不同用户设备进行区分,并进行各自的信道估计及解调。在LTE-A系统中,ZC(Zadoff-Chu)序列被用于产生上行DM-RS序列,对于属于同一小区的用户设备,循环位移(CS,Cyclic Shift)和正交叠加码(OCC,Orthogonal Cover Code)通常被用于构造和保证不同用户设备的DM-RS之间的正交性。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
下面列出了对于理解本发明和常规技术有益的文献,通过引用将它们并入本文中,如同在本文中完全阐明了一样。
[1]Reza Hoshyar,Ferry P.Wathan,and Rahim Tafazolli,“Novel low-density signature for synchronous CDMA systems over AWGN channel,”IEEE trans.on signal processing,vol.56,no.4,pp.1616-1626,April 2008.
[2]Huawei,HiSilicon,“LLS results for uplink multiple access”,R1-164037,Nanjing,China,May 23-27,2016.
[3]CATT,“Performance of LLS of PDMA”,R1-164247,Nanjing,China,May 23-27,2016.
[4]Samsung,“Non-orthogonal multiple access candidate for NR”,R1-163992,Nanjing,China,May 23-27,2016.
[5]Fujitsu,“Initial LLS results for UL non-orthogonal multiple access”,R1-164329,Nanjing,China,May 23-27,2016.
发明内容
但是,发明人发现:非正交多址接入的增益通常来源于更多的用户设备可以同时进行数据传输,即用户设备的数据信道非正交,相比之下,用户设备的DM-RS通常需要保持正交性以保证信道估计性能。
因此,随着非正交多址接入用户设备数目的增加,用户设备的DM-RS的正交性将逐渐恶化,从而可能成为制约非正交多址接入的性能瓶颈。另外,DM-RS信噪比也会出现恶化的情况,这会导致信道估计不准确,进而影响数据解调的性能。
本发明实施例提供一种解调参考信号的映射和复用方法、装置以及通信系统。基于LDS的结构特征,为LDS多址接入系统设计不同于LTE/LTE-A系统中DM-RS的映射和复用方案。
根据本发明实施例的第一个方面,提供一种解调参考信号的映射和复用方法,应用于低密度扩频多址接入系统中,所述解调参考信号的映射和复用方法包括:
将数据和解调参考信号映射到多个时频资源块上,其中每一用户设备或者数据流 的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及
使用所述多个时频资源块传输所述数据和所述解调参考信号,其中在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
根据本发明实施例的第二个方面,提供一种解调参考信号的映射和复用装置,配置于低密度扩频多址接入系统中,所述解调参考信号的映射和复用装置包括:
映射单元,其将数据和解调参考信号映射到多个时频资源块上,其中每一用户设备或者数据流的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及
传输单元,其使用所述多个时频资源块传输所述数据和所述解调参考信号,其中在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
根据本发明实施例的第三个方面,提供一种通信系统,使用低密度扩频多址接入,所述通信系统包括:
多个用户设备,其将数据和解调参考信号映射到多个时频资源块上,并使用所述多个时频资源块传输所述数据和所述解调参考信号;
基站,其接收所述多个用户设备发送的所述解调参考信号,根据所述解调参考信号进行信道估计以及数据解调和译码;
其中,每一用户设备或者数据流的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
本发明实施例的有益效果在于:每一用户设备或者数据流的数据和解调参考信号被映射到多个时频资源块中的部分时频资源块上;以及部分用户设备或者数据流的解调参考信号被重叠在相同的时频资源块上。由此,在LDS多址接入系统中能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的 特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是将LTE-A系统中的DM-RS重用于LDS多址接入系统的示意图;
图2是将LTE-A系统中的DM-RS重用于LDS多址接入系统的另一示意图;
图3是将LTE-A系统中的DM-RS重用于LDS多址接入系统的另一示意图;
图4是本发明实施例1的解调参考信号的映射和复用方法的示意图;
图5是本发明实施例1的DM-RS被映射后的示意图;
图6是本发明实施例1的DM-RS被映射后的另一示意图;
图7是本发明实施例1的CS和OCC配置的示例图;
图8是本发明实施例1的CS和OCC配置的另一示例图;
图9是本发明实施例2的DM-RS碰撞的示意图;
图10是本发明实施例3的子帧结构的示意图;
图11是本发明实施例3的DM-RS映射和复用的示意图;
图12是本发明实施例4的DM-RS映射和复用的示意图;
图13是本发明实施例4的DM-RS映射和复用的另一示意图;
图14是本发明实施例5的DM-RS映射和复用的示意图;
图15是本发明实施例5的DM-RS映射和复用的另一示意图;
图16是本发明实施例5的DM-RS映射和复用的另一示意图;
图17是本发明实施例5的DM-RS映射和复用的另一示意图;
图18是本发明实施例5的DM-RS映射和复用的另一示意图;
图19是本发明实施例6的资源块稀疏图样的示意图;
图20是本发明实施例9的解调参考信号的映射和复用装置的示意图;
图21是本发明实施例10的通信系统的示意图;
图22是本发明实施例10的用户设备的示意图;
图23是本发明实施例10的基站的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请中,基站可以被称为接入点、广播发射机、节点B、演进节点B(eNB)等,并且可以包括它们的一些或所有功能。在文中将使用术语“基站”。每个基站对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请中,移动站或设备可以被称为“用户设备”(UE,User Equipment)。UE可以是固定的或移动的,并且也可以称为移动台、终端、接入终端、用户单元、站等。UE可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、膝上型计算机、无绳电话等。
对于LDS多址接入,更加需要考虑DM-RS对于不同用户设备信道估计的区分能力。一种相对比较直观的方法是将LTE-A系统中的上行DM-RS重用于LDS多址接入系统中。这里假设为用户设备的物理上行共享信道(PUSCH,Physical Uplink Shared Channel)分配的资源为1个物理资源块(PRB,Physical Resource Block)对。
图1是将LTE-A系统中的DM-RS重用于LDS多址接入系统的示意图,示出了该情况下DM-RS与PUSCH复用的示例。如图1所示,由于使用了非正交多址接入,6个用户设备可以同时在1个PRB内发起PUSCH传输。作为LDS多址接入,每个用户设备的PUSCH并不占满整个PRB资源,而是按照预先定义的稀疏图样进行资源映射,这里不同的用户设备使用了不同的稀疏图样。
如图1所示,DM-RS沿用LTE-A系统定义的结构,占据第4和第11个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号。在LTE-A系统中,上行DM-RS可以用于区分同一用户设备SU-MIMO传输的不同数据流,或者区分进行上行MU-MIMO传输的不同用户设备。沿用DM-RS的这一特性,这里DM-RS可 以用于区分同时发起上行PUSCH传输的不同用户设备或数据流。
由于非正交多址的引入,相同的时频资源可以容纳更多用户设备同时进行数据传输,例如图1示出了6个用户设备复用的情况,实际上还可以进一步复用12个用户设备,达到300%过载。
图2是将LTE-A系统中的DM-RS重用于LDS多址接入系统的另一示意图,示出了6个用户设备的情况;图3是将LTE-A系统中的DM-RS重用于LDS多址接入系统的另一示意图,示出了另外6个用户设备的情况。图2和图3一起示出了4个PRB内复用12个用户设备的情形。
这样,需要同时支持的用户设备数有可能会超过LTE-A中MU-MIMO的用户设备数或者SU-MIMO所能支持的数据流数。支持更多用户设备同时传输也意味着更多的用户设备的DM-RS将被复用在相同的时频资源内用于信道估计及数据解调。由于用户设备的信道衰落的影响,经过正交设计的DM-RS在经历各自信道而到达接收端后并不是理想地正交,随着DM-RS数目的增多,不同用户设备的DM-RS之间的正交性将愈加难以得到保证,从而有可能造成信道估计及解调性能损失。
另外,LDS多址接入本质上也是一种使用扩频(spreading)方式的传输,例如将正交情况下(例如OFDM)在1个子载波上传输的信息扩展到在多个子载波上同时进行传输。
例如图2和3所示,OFDM系统中原本能够在1个RB内传输的数据被扩展到4个RB上进行传输,由于使用LDS结构,每个RB内有一半RE未被使用。相应地,DM-RS也被扩展到4个RB的全部子载波范围,以确保每个RB都能够进行信道估计及解调。在总功率一定的条件下,由于DM-RS被扩展到更多的子载波,每个RE上的DM-RS符号功率下降。因此,LDS多址接入情况下的DM-RS信噪比会低于正交情况下的DM-RS信噪比。并且DM-RS信噪比会随着所分配RB数量的增加而降低,信噪比的恶化会导致信道估计不准确,进而影响数据解调的性能,有可能成为非正交多址接入在发掘增益上的限制。
研究发现,LDS结构可以被用来减少用户设备的DM-RS间干扰,并缓解DM-RS信噪比下降的趋势,本申请基于LDS结构特征,为LDS多址接入系统设计不同于LTE/LTE-A的DM-RS映射和复用方案。
在本申请中,主要针对上行多址接入系统,即多个用户设备向基站发送数据。以 下以将通信系统中的用户设备作为发送端、将基站作为接收端为例进行说明,但本发明不限于此,例如发送端和/或接收端还可以是其他的网络设备。
对于不同的DM-RS,实际上其对应不同的天线端口(DM-RS port)。实施例中假设一个DM-RS port被配置给一个用户设备,即每个DM-RS对应一个用户设备,但本发明不限于此。实际应用中,一个用户设备可以配置多个DM-RS port,即多个DM-RS对应一个用户设备,此时该用户有多个数据流传输,每个DM-RS对应一个数据流。
在本申请中,以用户设备作为发送端为例,各个用户设备或者数据流可以独立发送信号,各个用户设备或者数据流发送的信号经历各自的信道后,在接收端会发生重叠(或者称为叠加)。关于信号的映射和复用等具体过程或内容,可以参考相关技术,本申请不再详细说明。
实施例1
本发明实施例提供一种解调参考信号的映射和复用方法,应用于低密度扩频多址接入系统中。图4是本发明实施例的解调参考信号的映射和复用方法的示意图,如图4所示,所述方法包括:
步骤401,用户设备将数据和解调参考信号映射到多个时频资源块上;
步骤402,用户设备使用所述多个时频资源块向基站传输数据和解调参考信号。
在本实施例中,多个用户设备向基站传输数据和DM-RS,每一用户设备或者数据流的数据和解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠(或者也可以称为叠加)。
在本实施例中,该基站可以为宏基站(例如eNB),该宏基站产生的宏小区(例如Macro cell)可以为该用户设备提供服务。或者,该基站也可以为微基站,该微基站产生的微小区(例如Small cell或Pico cell)可以为该用户设备提供服务。本发明不限于此,可以根据实际的需要确定具体的场景。其中,为了简单起见,图3中仅以一个用户设备为例进行说明。
在本实施例中,可以将用户设备进行数据和DM-RS传输的时频资源的最小粒度定义为资源块(RB,Resource Block),LTE系统中RB被定义为频率方向包含12个 子载波和时间方向包含14个OFDM符号的一个时频资源块,一个子载波和一个符号对应时频资源称为资源元素(RE,Resource Element)。
在未来通信系统(例如5G系统)中根据业务或频点的不同,可能会对RB的尺寸(或大小)重新进行定义。无论使用何种定义,当用户设备使用一个或多个RB进行上行数据传输时,DM-RS也会在数据所占用的RB内传输,基站根据DM-RS进行等效信道估计及数据解调和译码。
为便于说明,以下将以最小资源分配单位(本文称为时频资源块)是1个RB为例进行阐述。本发明对于时频资源块的具体内容或者构成并不进行限制。
在本实施例中,对于某一用户设备或者数据流,所述多个时频资源块被映射为具有稀疏图样;其中所述多个时频资源块包括:映射了所述某一用户设备或者数据流的数据和解调参考信号的第一时频资源块,没有映射所述某一用户设备或者数据流的数据和解调参考信号的第二时频资源块。
例如,一种使用跨RB物理资源映射来实现LDS多址接入的方法已经在RAN1#85次会中提出(可以参考背景技术中的参考文献[5])。该方法产生出一种RB稀疏的LDS结构,即一部分RB完全映射满数据,而另一部分RB完全不映射任何数据,这实际上也是LDS的一种形式。对于这种RB稀疏的LDS结构,全部空白的RB中并没有数据传输,因此不需要映射DM-RS。
图5是本发明实施例的DM-RS被映射后的示意图,图6是本发明实施例的DM-RS被映射后的示意图;图5和图6一起给出了一种RB稀疏的LDS多址接入的DM-RS示例。如图5和6所示,每个用户设备使用4个RB进行上行数据传输,共有12个用户设备复用到4个RB。
如图5和6所示,对于用户设备1,数据和DM-RS被映射到RB 1和RB 2(即第一时频资源块),RB 3和RB 4为空白(即第二时频资源块)。对于用户设备2,数据和DM-RS被映射到RB 1和RB 2(即第一时频资源块),RB 3和RB 4为空白(即第二时频资源块)。对于用户设备3,数据和DM-RS被映射到RB 1和RB 3(即第一时频资源块),RB 2和RB 4为空白(即第二时频资源块)。……。对于用户设备12,数据和DM-RS被映射到RB 3和RB 4(即第一时频资源块),RB 1和RB 2为空白(即第二时频资源块)。
如图5和6所示,用户设备的DM-RS仅存在于有数据映射的RB内,因此用户 设备的DM-RS也呈现一种LDS结构,DM-RS与数据总是同时出现在一个RB内。在每一时频资源块上,仅叠加(或重叠)有部分用户设备或者数据流的DM-RS;例如,对于RB 1,仅叠加(或重叠)有12个用户设备中的6个用户设备的数据和DM-RS。
可以看到,图2和3中DM-RS占据了48个RE,而本发明实施例的图5和6中DM-RS占据了24个RE,因此图5和6中的DM-RS每RE能量要高于图2和3,从而使图5和6的DM-RS具有更高的RE信噪比。
此外,图2和3中12个用户设备的DM-RS将重叠在一起,即每个用户设备的DM-RS将会受到来自于其他11个用户设备的干扰;对于图5和6,由于用户设备的DM-RS以RB稀疏的方式进行映射,每个RB内有6个用户设备的DM-RS重叠在一起,即每个用户设备的DM-RS将会受到来自于其他5个用户设备的干扰。因此,本发明实施例的映射和复用方法在一定程度上减少了相互干扰的用户设备的DM-RS数目。
在本实施例中,被叠加(或重叠)在相同的时频资源块上的DMRS可以通过正交序列(例如通过CS产生)和/或OCC来保持正交性;并且正交序列和/或OCC在所述多个时频资源块之间被独立地配置。
例如,为了消除用户设备的DM-RS间干扰,需要保证不同用户DM-RS序列间的正交性。可以重用LTE/LTE-A中为1个RB分配资源时定义的CAZAC(Constant Amplitude Zero Auto Correlation)序列,即每个RB内的DM-RS序列可以基于如下方式产生。
Figure PCTCN2016094889-appb-000001
其中α0=2πnCS,0/12,nCS,0=0,1,...,11,表示CS值;
[w(0)(0) w(0)(1)]=[1 1],或者[w(0)(0) w(0)(1)]=[1 -1],表示OCC。
对于每个时隙,
Figure PCTCN2016094889-appb-000002
序列长度为12。其中
Figure PCTCN2016094889-appb-000003
定义如下:
Figure PCTCN2016094889-appb-000004
Figure PCTCN2016094889-appb-000005
其中
Figure PCTCN2016094889-appb-000006
和u按照表1定义给出。
表1
Figure PCTCN2016094889-appb-000007
每个小区的DM-RS配置原则(例如u值选择等)可以与LTE/LTE-A相同,不同之处在于这里对于每个时隙始终产生长度为12的短序列。
如图5和6所示,每个RB中叠加(或重叠)后的DM-RS需要提供6个用户设备的序列正交,从而能够区分和估计出6个用户设备的信道。为了保留DM-RS序列的正交性,相应地,CS和/或OCC也逐个RB地进行配置。这里CS和OCC都是为了产生正交的序列。对于表1中基于某一u值产生出的序列,不同的CS将对应不同 的序列,而这些序列彼此间两两正交。OCC利用了两个时隙,通过正交码来进一步提供正交性。
对于不同的用户设备,可以通过为他们配置不同的CS和/或OCC来实现用户设备的DM-RS序列正交。对于图5和6所示DM-RS的RB稀疏结构,CS和OCC逐个RB地独立进行配置。对于每个RB,需要区分出6个用户设备的信道。
表2给出了一种CS和OCC的配置示例,对于每个RB,均可按照表2对复用在该RB内的6个用户设备进行配置。
表2
CS 0 2 4 6 8 10
OCC [1,1] [1,-1] [1,1] [1,-1] [1,1] [1,-1]
图7是本发明实施例的CS和OCC配置的示例图。对于在4个RB内复用12个用户设备的情况,图7给出了对于不同用户设备在不同RB内的CS和OCC配置示例。如图7所示,顶部标注的CS和OCC表示用户设备在第一个非空RB内的配置,底部标注表示用户设备在第二个非空RB内的CS和OCC配置。
为了表示清晰,图7将CS和OCC标注在了顶部和底部空白处。
图8是本发明实施例的CS和OCC配置的另一示例图,将CS和OCC标注在所配置的RB内。由图8可以看到,在每一个RB内,CS和OCC的配置实际上均遵循表2的既定规则。
可以将图8抽象成表3的表格形式。表3中由RB i索引的6个CS和OCC配置对应于图8中RB i内存在DM-RS映射的6个用户设备。图8和表3是一一对应关系。为简单起见,表3以表格形式对CS和OCC配置进行示例。
表3
Figure PCTCN2016094889-appb-000008
在本实施例中,CS和/或OCC的配置原则在于能够在每个RB内区分出所复用的用户,例如可以使不同用户设备配置的CS不同,或者OCC不同,或者CS和OCC均不相同,至于具体的配置参数可以有不同组合,并且由于采用逐RB配置方式,参数配置也不受到RB数目限制。
例如,表4以表格形式对CS和OCC配置进行另一示例,使用了与表3不同的CS配置来区分用户设备。
表4
Figure PCTCN2016094889-appb-000009
例如,表5以表格形式对CS和OCC配置进行另一示例,仅使用CS对用户设备进行区分,而将OCC固定为[1,1]。
表5
Figure PCTCN2016094889-appb-000010
例如,表6以表格形式对CS和OCC配置进行另一示例,表6中不同的RB使用了不同的CS和OCC配置,即RB之间独立配置。
表6
Figure PCTCN2016094889-appb-000011
值得注意的是,以上表1至6仅对CS和/或OCC进行了实例性说明,但本发明不限于此,其他参数配置情况不再一一列举。作为具体示例,本实施例中重用了LTE/LTE-A中为1个RB分配资源时定义的CAZAC序列,循环位移的使用是为了构造产生出不同的正交序列,实际上正交序列的产生方法不局限于此,本发明也可以使用任何其他类型的正交序列。
另外,本实施例中仅以时频资源块为1个RB为例,实际应用中,时频资源块的 构成可能发生变化,例如1个时频资源块可以包含多个RB,或者1个时频资源块的大小不足一个RB,此时正交序列的长度也会相应发生变化。
由上述实施例可知,每一用户设备或者数据流的数据和解调参考信号被映射到多个时频资源块中的部分时频资源块上;以及部分用户设备或者数据流的解调参考信号被叠加在相同的时频资源块上。由此,在LDS多址接入系统中能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。
实施例2
本发明实施例在实施例1的基础上对DM-RS的映射和复用进行进一步说明。本实施例2涉及免调度传输(grant-free transmission)场景,与实施例1相同的内容不再赘述。
在本实施例中,发送端可以从预先配置的DM-RS配置信息中选择正交序列和/或正交叠加码,并采用对应的稀疏图样映射数据和DM-RS;以及接收端通过盲检DM-RS来确定用户设备是否发送数据或者数据流是否存在,并基于所述DM-RS来进行信道估计和数据解调。
免调度传输是5G系统多址接入的一个重要特点,目的主要是为了减少小包业务中调度信令所造成的开销,同时也能够减少用户设备在发起数据传输前的等待时间。本发明实施例的DM-RS映射和复用方案可以应用于免调度传输场景。
仍以12用户设备复用于4个RB为例,基站事先确定所使用的DM-RS配置,例如按照图8得到12个用户设备的DM-RS配置;基站将DM-RS配置通知给等待数据传输的用户设备;当用户设备自身有数据到达并需要传输时,用户设备可以随机从12种DM-RS配置中选择一种,进行相应的DM-RS传输,同时用户设备会选择一种稀疏图样进行数据传输。数据稀疏图样通过某种方式与DM-RS配置构成一一对应关系,例如图8所示。
由于用户设备的传输事先没有得到基站的调度,基站侧需要盲检当前有哪些用户设备真正发起了数据传输,例如基站可以通过盲检DM-RS序列的存在性来获得这一信息,DM-RS序列存在即意味着用户设备进行了有效的数据传输,基站需要对该用户设备进行基于DM-RS的信道估计并解调数据。
对于免调度传输,同时发起上行传输的用户设备数目并不确定,可能是1到12 间的任何值,甚至也可以超过12。对于某些突发的用户设备数目及用户设备选择的稀疏图样,本发明实施例的DM-RS的映射和复用方案可以在一定程度上完全或部分避免用户DM-RS碰撞,从而为盲检和信道估计及解调带来好处。
图9是本发明实施例的DM-RS碰撞的示意图,图9所示,例如当2个用户设备发起数据传输时,DM-RS完全没有发生碰撞,从而有利于提高基站对DM-RS盲检的成功概率。
如图9所示,当3个用户设备发起数据传输时,尽管部分RB内的DM-RS发生碰撞,但仍有部分RB内的DM-RS没有碰撞,没有碰撞的DM-RS也可以为盲检提供比较可靠的判断信息。同时,避免和减少DM-RS碰撞也有利于提升信道估计和数据解调性能。相比之下,如果重用LTE/LTE-A中的DM-RS映射和复用方案,只要多于1个用户设备同时发起数据传输,DM-RS就会发生碰撞。
由上述实施例可知,每一用户设备或者数据流的数据和解调参考信号被映射到多个时频资源块中的部分时频资源块上;以及部分用户设备或者数据流的解调参考信号被叠加在相同的时频资源块上。由此,在LDS多址接入系统中能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。
实施例3
本发明实施例在实施例1的基础上对DM-RS的映射和复用进行进一步说明。本实施例3涉及时频资源块的结构,与实施例1相同的内容不再赘述。
出于支持新型业务(例如机器类型通信、低时延高可靠通信等)或者支持更高频段的考虑,5G系统可能会对帧结构重新进行设计,此时子帧长度、每个子帧包含的OFDM符号个数、RB所包含的子载波个数均有可能发生变化,从而上行DM-RS所占的符号数和符号位置也可能与LTE/LTE-A不同。
图10是本发明实施例的子帧结构的示意图,图10所示,例如可能存在不同的子帧结构或时间间隔(time interval),其中DM-RS可能存在于2个符号内,如子帧结构1;或者DM-RS仅存在于1个符号内,如子帧结构2。
其中A、B、C表示该时间间隔内的其他区域,可用于传输下行控制信息、下行数据、下行参考信号、保护间隔(GP)、上行数据、上行控制信息、上行参考信号等等,甚至A、B、C中的一个或几个可以不存在。
为了进一步增加DM-RS数量,DM-RS也可以占用多于2个OFDM符号,本实施例不再一一列举。上述情况改变的只是DM-RS在1个RB内的数量及位置,RB稀疏的DM-RS映射方法同样可以推广和应用到以上各种情况,DM-RS仍然按照RB稀疏方式映射到不同RB。
图11是本发明实施例的DM-RS映射和复用的示意图,示出了采用图10所示的子帧结构时进行DM-RS映射和复用的情况。对于具体的DM-RS映射和复用方式,可以按照实施例1进行,利用DM-RS序列的正交性来区分用户设备。
使用实施例1方法时,如果DM-RS仅占一个符号,如子帧结构2,则可以不使用OCC,仅靠DM-RS序列的正交性区分用户设备,如果一个RB所包含的子载波个数发生变化,则DM-RS序列需要重新选择和设计。
实施例4
本发明实施例在实施例1至3的基础上对DM-RS的映射和复用进行进一步说明。与实施例1至3相同的内容不再赘述。本实施例4的设计思路是通过频分复用(FDM,Frequency Division Multiplexing)方式避免用户设备间的DM-RS碰撞。
例如对于每个RB有6个用户设备的DM-RS发生重叠碰撞,实施例1中依赖DM-RS序列的正交性对这6个用户设备进行区分,而本实施例通过FDM方式完全避免这6个用户设备间的DM-RS碰撞。
即在本实施例中,对于某一映射了数据和解调参考信号的时频资源块,使用该时频资源块传输数据的每一用户设备或者数据流的DM-RS占用该时频资源块的部分频域资源。使用该时频资源块传输数据的多个用户设备或者数据流的DM-RS采用FDM方式被映射在相同的时域资源上。
图12是本发明实施例的DM-RS映射和复用的示意图,如图12所示,使用同一RB的6个用户设备(例如使用RB 1的用户设备1-6;使用RB 2的用户设备1-2、7-10,使用RB 3的用户设备3-4、7-8、11-12;使用RB 4的用户设备5-6、9-12)的DM-RS以FDM方式进行复用,这些不同用户设备的DM-RS占用不同的RE,因此完全避免了用户设备的DM-RS间的碰撞。
对于某一用户设备而言,可以利用DM-RS位置的信道估计值,通过对其进行插值来得到数据位置的信道估计。为提升信道估计性能,可以根据实际信道条件考虑进 行跨RB的信道插值。由于DM-RS并不在所有子载波上传输,因此DM-RS的每RE功率/能量可以得到提升。
在图12所示的示例中,每一用户设备的DM-RS所占用RE数为8,所以用户设备可以使用长度为8的DM-RS序列,该序列可以是PN伪随机序列或者CAZAC序列或者其它任何序列,由于不存在用户设备的DM-RS碰撞,OCC也无需使用。
对于图12的免调度传输情况,基站可以在所有可能出现DM-RS的位置对DM-RS序列进行盲检,从而通过DM-RS的存在性来判断哪些用户设备正在进行数据传输,无碰撞的DM-RS映射方法将有利于提高盲检可靠性。
图13是本发明实施例的DM-RS映射和复用的另一示意图。对于在帧结构及DM-RS变化情况下的扩展,图13给出了当DM-RS仅存在于1个OFDM符号内时的示意情况,仍然能够保证不同用户设备的DM-RS互不干扰。
实施例5
本发明实施例在实施例1至4的基础上对DM-RS的映射和复用进行进一步说明。与实施例1至4相同的内容不再赘述。本实施例5的设计思路是通过FDM和码分复用(CDM,Code Division Multiplexing)相结合的方式避免用户设备间的DM-RS碰撞。
即在本实施例中,对于某一映射了数据和解调参考信号的时频资源块,使用该时频资源块传输数据的每一用户设备或者数据流的DM-RS占用该时频资源块的部分频域资源。
其中,使用所述时频资源块传输数据的多个用户设备或者数据流中,部分用户设备或者数据流的DM-RS采用FDM方式被映射在相同的时域资源上,并且部分用户设备或者数据流的DM-RS采用CDM方式被映射在相同的时频资源上。
图14是本发明实施例的DM-RS映射和复用的示意图。如图14所示,在每个RB内,例如6个用户设备的DM-RS采用FDM和CDM相结合的方式进行映射。
如图14所示,例如用户设备1和用户设备3的DM-RS通过FDM方式避免碰撞,而用户1设备和用户设备2的DM-RS则通过CDM方式得到分辨。更具体地,用户设备1和用户设备2可以使用不同的OCC来构造正交性。
这里可以使用长度为2的OCC,定义与实施例1相同,即[w(0) w(1)]=[1 1]或 者[w(0) w(1)]=[1 -1]。
在本实施例中,对于采用CDM方式的DM-RS,OCC的使用可以满足如下条件的一项或多项:同一时频资源块中在时域方向上排列的DM-RS使用一组OCC;同一时频资源块中在频域方向上排列的DM-RS使用一组OCC;在频域方向上跨资源块地相邻排列的DM-RS使用一组OCC。
图15是本发明实施例的DM-RS映射和复用的另一示意图,示出了6个用户设备的情况;图16是本发明实施例的DM-RS映射和复用的另一示意图,示出了另6个用户设备的情况。图15和图16一起示出了为不同用户设备配置OCC的情况。
以图15为例,图15中长度为2的OCC可以由频率方向相邻的2个DM-RS构成,在图15中交替使用实线和虚线方框作为示例圈出。另外,长度为2的OCC也可由时间方向相邻的2个DM-RS构成,在图中使用虚线方框示意性标出。因此,OCC具有时频二维正交性,为基站对OCC解扩提供了更多的自由度,基站可以根据实际情况选择合适的OCC进行解扩以及后续的信道估计和信道插值。
图17是本发明实施例的DM-RS映射和复用的另一示意图,给出了当DM-RS仅存在于1个OFDM符号内时的示意情况,OCC配置可以通过仅保留图14中的一列DM-RS得到,频率方向上相邻的2个DM-RS构成一组正交的OCC。
图18是本发明实施例的DM-RS映射和复用的另一示意图,给出了DM-RS使用FDM和CDM复用的另一种方式,这里对时间方向相邻的2个DM-RS使用长度为2的OCC。图15也可以等效看作是将图12中频率方向的DM-RS符号进行了均匀排列,OCC同样可以按照图13的方法进行配置。
在本实施例中,使用某一时频资源块传输数据的多个用户设备或者数据流中,部分用户设备或者数据流的DM-RS还采用时分复用(TDM,Time Division Multiplexing)方式被叠加在不同的时域资源上。
实施例6
本发明实施例在实施例1的基础上对DM-RS的映射和复用进行进一步说明。本实施例6涉及资源块的稀疏图样,与实施例1相同的内容不再赘述。
在本实施例中,多个时频资源块中部分或全部的第一时频资源块被连续排列,或者部分或全部的第二时频资源块被连续排列,或者第一时频资源块和第二时频资源块 被交错排列。
例如,可以定义最小的稀疏图样为[1,1,0,0],“1”表示该RB有DM-RS映射,“0”表示该RB为空,则最小稀疏图样占据4个RB。
图19是本发明实施例的资源块稀疏图样的示意图,如图19中(A)所示。实际分配的RB资源可能多于4个RB。图19以8个RB资源分配为例,给出了2种基于最小稀疏图样的扩展方法以及对应的DM-RS长度变化。对于其他类型的最小稀疏图样以及扩展到所分配的所有RB,均可按此方法类推得到。
如图19中(B)所示,一种扩展方法为连续重复,即重复为[1,1,0,0,1,1,0,0],DM-RS的最小单位为1个RB,因此DM-RS仍然按照逐个RB进行生成和映射,与图19中(A)相同。例如当按照实施例1生成序列时,DM-RS序列长度为12。
如图19中(C)所示,另一种扩展方法为间隔重复,即重复为[1,1,1,1,0,0,0,0],RB编号1、3、5、7对应[1,1,0,0],RB编号2、4、6、8也对应[1,1,0,0]。DM-RS的最小单位可以选为1个RB,此时DM-RS可以按照逐个RB生成和映射(按照1个RB选取总是可行的)。另外,也可以认为DM-RS的最小单位为2个RB,此时DM-RS将以2个RB为最小粒度进行生成映射,即形成以2个RB为最小粒度的稀疏图样[1,1,0,0],其中[1,1,0,0]中的每个元素对应于2个RB内是否有DM-RS映射。例如当按照实施例1生成DM-RS序列时,DM-RS序列长度为24,将其映射到2个RB内,使用更长DM-RS序列可以进一步增强用户设备间的正交性。
在以上各实施例中,为便于表述LDS结构,统一以最小稀疏图样为4个RB为例进行说明,其中2个RB为空,2个RB存在数据和DM-RS,例如[1,1,0,0]。但本发明不限于此,还可以扩展到其他类型的LDS结构。
例如6个RB的LDS图样[1,0,1,0,1,1],其中包含6个“0”、“1”元素。更广义地,例如扩展到m个RB资源分配情况,此时最小稀疏图样为m个RB,假设其中n个RB为空,p个RB用于数据传输和DM-RS映射,其中m=n+p,最小稀疏图样将会有更多不同的“0”、“1”排列组合。
当将最小稀疏图样扩展到更多的RB上时,可以沿用图19的方法。
实施例7
以上实施例均按照不同DM-RS对应不同的用户设备进行阐述,实际上DM-RS 的功能在于分离和估计不同的信道,至于这些信道本身,可以来自不同的用户设备,或者来自不同的空间数据流(也可以称为layer),以上实施例仅从区分不同用户设备这一应用角度进行说明和描述,其具体应用可以根据实际场景进行选择。
更广义地,不同的DM-RS实际上可以被定义为不同的天线端口(DM-RS port),可以对天线端口进行不同的配置,例如,多个天线端口可以被配置给同一用户设备,不同的天线端口对应不同的空间数据流;或者多个天线端口可以被配置给多个不同的用户设备,不同的天线端口对应不同的用户设备。
实施例8
为便于阐述,以上实施例均以RB作为最小单位进行资源分配,即图中表示用户设备分配资源的每个方框代表一个RB。本发明也可以应用于其他资源分配粒度,例如最小资源粒度为多个RB,或者最小资源粒度小于一个RB。本发明不限于此,可以根据实际情况适当地调整资源分配粒度。
实施例9
本发明实施例提供一种解调参考信号的映射和复用装置,配置于低密度扩频多址接入系统中。例如可以配置在用户设备中,也可以配置在基站中。此外,每个用户设备可以使用该装置进行解调参考信号的映射和复用,每个数据流也可以使用该装置进行解调参考信号的映射和复用。本发明实施例与实施例1至6相同的内容不再赘述。
图20是本发明实施例的解调参考信号的映射和复用装置的示意图,如图20所示,解调参考信号的映射和复用装置2000包括:
映射单元2001,其将数据和解调参考信号映射到多个时频资源块上,其中每一用户设备或者数据流的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及
传输单元2002,其使用所述多个时频资源块传输所述数据和所述解调参考信号,其中在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
在本实施例中,对于某一用户设备或者数据流,所述多个时频资源块被映射为具有稀疏图样;其中所述多个时频资源块包括:映射了所述某一用户设备或者数据流的数据和DM-RS的第一时频资源块,没有映射所述某一用户设备或者数据流的数据和 DM-RS的第二时频资源块。
在本实施例中,被叠加(或重叠)在相同的时频资源块上的DM-RS可以通过正交序列和/或正交叠加码来保持正交性;并且所述正交序列和/或正交叠加码在所述时频资源块之间被独立地配置。
在本实施例中,对于某一映射了所述数据和DM-RS的时频资源块,使用所述时频资源块传输数据的每一用户设备或者数据流的DM-RS可以占用所述时频资源块的部分频域资源。
在一个实施方式中,使用所述时频资源块传输数据的多个用户设备或者数据流的DM-RS可以采用FDM方式被映射在相同的时域资源上。
在另一个实施方式中,使用所述时频资源块传输数据的多个用户设备或者数据流中,部分用户设备或者数据流的DM-RS可以采用FDM方式被映射在相同的时域资源上,并且部分用户设备或者数据流的DM-RS可以采用CDM方式被映射在相同的时频资源上。
在另一个实施方式中,对于采用CDM方式的DM-RS,正交叠加码的使用可以满足如下条件的一项或多项:同一时频资源块中在时域方向上排列的DM-RS使用一组正交叠加码;同一时频资源块中在频域方向上排列的DM-RS使用一组正交叠加码;在频域方向上跨资源块地相邻排列的DM-RS使用一组正交叠加码。
在本实施例中,在所述多个时频资源块中,部分或全部所述第一时频资源块可以被连续排列,或者部分或全部所述第二时频资源块可以被连续排列,或者所述第一时频资源块和所述第二时频资源块可以被交错排列。
由上述实施例可知,每一用户设备或者数据流的数据和解调参考信号被映射到多个时频资源块中的部分时频资源块上;以及部分用户设备或者数据流的解调参考信号被叠加在相同的时频资源块上。由此,在LDS多址接入系统中能将DM-RS复用在既定时频资源内,并且仍然能够保证传输的性能。
实施例10
本发明实施例还提供一种通信系统,使用低密度扩频多址接入。本发明实施例与实施例1至7相同的内容不再赘述。所述通信系统包括:
多个用户设备,其将数据和解调参考信号映射到多个时频资源块上,并使用所述 多个时频资源块传输所述数据和所述解调参考信号;
基站,其接收所述多个用户设备发送的所述解调参考信号,根据所述解调参考信号进行信道估计以及数据解调和译码;
其中,每一用户设备或者数据流的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
在本实施例中,所述用户设备还可以用于从预先配置的解调参考信号配置信息中选择循环位移和/或正交叠加码,并采用对应的稀疏图样映射所述数据和所述解调参考信号;以及所述基站还可以用于通过盲检解调参考信号来确定用户设备是否发送数据或者数据流是否存在,并基于所述解调参考信号来进行信道估计和数据解调。
图21是本发明实施例的通信系统的示意图,示意性说明了发送端为用户设备以及接收端为基站的情况,如图21所示,通信系统2100可以包括基站2101和用户设备2102。其中,基站2101和/或用户设备2102可以配置有如实施例7所述的解调参考信号的映射和复用装置2000。
本发明实施例还提供一种发送端,例如可以是用户设备,但本发明不限于此,还可以是其他的网络设备。以下以用户设备为例进行说明。
图22是本发明实施例的用户设备的示意图。如图22所示,该用户设备2200可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。其中,中央处理器100可以被配置为实现实施例1至7所述的解调参考信号的映射和复用方法。
例如,中央处理器100可以被配置为进行如下的控制:将数据和解调参考信号映射到多个时频资源块上,以及使用所述多个时频资源块传输所述数据和所述解调参考信号;其中,每一用户设备或者数据流的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上,以及在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
如图22所示,该用户设备2200还可以包括:通信模块110、输入单元120、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备2200也并不是必须要包括图22中所示的所有部件,上述部件并 不是必需的;此外,用户设备2200还可以包括图22中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种接收端,例如可以是基站,但本发明不限于此,还可以是其他的网络设备。以下以基站为例进行说明。
图23是本发明实施例的基站的构成示意图。如图23所示,基站2300可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。其中,中央处理器200可以被配置为实现实施例1至7所述的解调参考信号的映射和复用方法。
例如,中央处理器200可以被配置为进行如下的控制:将数据和解调参考信号映射到多个时频资源块上,以及使用所述多个时频资源块传输所述数据和所述解调参考信号;其中,每一用户设备或者数据流的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上,以及在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
此外,如图23所示,基站2300还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站2300也并不是必须要包括图23中所示的所有部件;此外,基站2300还可以包括图23中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种计算机可读程序,其中当在解调参考信号的映射和复用装置或者用户设备中执行所述程序时,所述程序使得所述解调参考信号的映射和复用装置或者用户设备执行实施例1至7所述的解调参考信号的映射和复用方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得解调参考信号的映射和复用装置或者用户设备执行实施例1至7所述的解调参考信号的映射和复用方法。
本发明实施例还提供一种计算机可读程序,其中当在解调参考信号的映射和复用装置或者基站中执行所述程序时,所述程序使得所述解调参考信号的映射和复用装置或者基站执行实施例1至7所述的解调参考信号的映射和复用方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得解调参考信号的映射和复用装置或者基站执行实施例1至7所述的解调参 考信号的映射和复用方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的信息传输方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图20中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,映射单元和传输单元等),既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图4所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (20)

  1. 一种解调参考信号的映射和复用方法,应用于低密度扩频多址接入系统中,所述解调参考信号的映射和复用方法包括:
    将数据和解调参考信号映射到多个时频资源块上,其中每一用户设备或者数据流的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及
    使用所述多个时频资源块传输所述数据和所述解调参考信号,其中在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
  2. 根据权利要求1所述的映射和复用方法,其中,对于某一用户设备或者数据流,所述多个时频资源块被映射为具有稀疏图样;
    其中所述多个时频资源块包括:映射了所述某一用户设备或者数据流的数据和解调参考信号的第一时频资源块,没有映射所述某一用户设备或者数据流的数据和解调参考信号的第二时频资源块。
  3. 根据权利要求1所述的映射和复用方法,其中,重叠在相同的时频资源块上的所述解调参考信号通过正交序列和/或正交叠加码来保持正交性;并且所述正交序列和/或正交叠加码在所述多个时频资源块之间被独立地配置。
  4. 根据权利要求1所述的映射和复用方法,其中,所述映射和复用方法还包括:
    发送端从预先配置的解调参考信号配置信息中选择正交序列和/或正交叠加码,并采用对应的稀疏图样映射所述数据和所述解调参考信号;以及
    接收端通过盲检所述解调参考信号来确定用户设备是否发送数据或者数据流是否存在,并基于所述解调参考信号来进行信道估计和数据解调。
  5. 根据权利要求1所述的映射和复用方法,其中,对于某一映射了所述数据和所述解调参考信号的时频资源块,使用所述时频资源块传输数据的每一用户设备或者数据流的所述解调参考信号占用所述时频资源块的部分频域资源。
  6. 根据权利要求5所述的映射和复用方法,其中,使用所述时频资源块传输数据的多个用户设备或者数据流的所述解调参考信号采用频分复用方式被映射在相同的时域资源上。
  7. 根据权利要求5所述的映射和复用方法,其中,使用所述时频资源块传输数据的多个用户设备或者数据流中,部分用户设备或者数据流的所述解调参考信号采用 频分复用方式被映射在相同的时域资源上,并且部分用户设备或者数据流的所述解调参考信号采用码分复用方式被映射在相同的时频资源上。
  8. 根据权利要求7所述的映射和复用方法,其中,使用所述时频资源块传输数据的多个用户设备或者数据流中,部分用户设备或者数据流的所述解调参考信号还采用时分复用方式被映射在不同的时域资源上。
  9. 根据权利要求5所述的映射和复用方法,其中,对于采用码分复用方式的所述解调参考信号,正交叠加码的使用满足如下条件的一项或多项:
    同一时频资源块中在时域方向上排列的所述解调参考信号使用一组正交叠加码;
    同一时频资源块中在频域方向上排列的所述解调参考信号使用一组正交叠加码;
    在频域方向上跨资源块地相邻排列的所述解调参考信号使用一组正交叠加码。
  10. 根据权利要求2所述的映射和复用方法,其中,在所述多个时频资源块中,部分或全部所述第一时频资源块被连续排列,或者部分或全部所述第二时频资源块被连续排列,或者所述第一时频资源块和所述第二时频资源块被交错排列。
  11. 一种解调参考信号的映射和复用装置,配置于低密度扩频多址接入系统中,所述解调参考信号的映射和复用装置包括:
    映射单元,其将数据和解调参考信号映射到多个时频资源块上,其中每一用户设备或者数据流的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及
    传输单元,其使用所述多个时频资源块传输所述数据和所述解调参考信号,其中在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
  12. 根据权利要求11所述的映射和复用装置,其中,对于某一用户设备或者数据流,所述多个时频资源块被映射为具有稀疏图样;
    其中所述多个时频资源块包括:映射了所述某一用户设备或者数据流的数据和解调参考信号的第一时频资源块,没有映射所述某一用户设备或者数据流的数据和解调参考信号的第二时频资源块。
  13. 根据权利要求11所述的映射和复用装置,其中,重叠在相同的时频资源块上的所述解调参考信号通过正交序列和/或正交叠加码来保持正交性;并且所述正交序列和/或正交叠加码在所述时频资源块之间被独立地配置。
  14. 根据权利要求11所述的映射和复用装置,其中,对于某一映射了所述数据和所述解调参考信号的时频资源块,使用所述时频资源块传输数据的每一用户设备或 者数据流的所述解调参考信号占用所述时频资源块的部分频域资源。
  15. 根据权利要求14所述的映射和复用装置,其中,使用所述时频资源块传输数据的多个用户设备或者数据流的所述解调参考信号采用频分复用方式被映射在相同的时域资源上。
  16. 根据权利要求14所述的映射和复用装置,其中,使用所述时频资源块传输数据的多个用户设备或者数据流中,部分用户设备或者数据流的所述解调参考信号采用频分复用方式被映射在相同的时域资源上,并且部分用户设备或者数据流的所述解调参考信号采用码分复用方式被映射在相同的时频资源上。
  17. 根据权利要求14所述的映射和复用装置,其中,对于采用码分复用方式的所述解调参考信号,正交叠加码的使用满足如下条件的一项或多项:
    同一时频资源块中在时域方向上排列的所述解调参考信号使用一组正交叠加码;
    同一时频资源块中在频域方向上排列的所述解调参考信号使用一组正交叠加码;
    在频域方向上跨资源块地相邻排列的所述解调参考信号使用一组正交叠加码。
  18. 根据权利要求12所述的映射和复用装置,其中,在所述多个时频资源块中,部分或全部所述第一时频资源块被连续排列,或者部分或全部所述第二时频资源块被连续排列,或者所述第一时频资源块和所述第二时频资源块被交错排列。
  19. 一种通信系统,使用低密度扩频多址接入,所述通信系统包括:
    多个用户设备,其将数据和解调参考信号映射到多个时频资源块上,并使用所述多个时频资源块传输所述数据和所述解调参考信号;
    基站,其接收所述多个用户设备发送的所述解调参考信号,根据所述解调参考信号进行信道估计以及数据解调和译码;
    其中,每一用户设备或者数据流的所述数据和所述解调参考信号被映射到所述多个时频资源块中的部分时频资源块上;以及在每一时频资源块上,部分用户设备或者数据流的所述解调参考信号被重叠。
  20. 根据权利要求19所述的通信系统,其中,所述用户设备还用于从预先配置的解调参考信号配置信息中选择正交序列和/或正交叠加码,并采用对应的稀疏图样映射所述数据和所述解调参考信号;以及
    所述基站还用于通过盲检所述解调参考信号来确定用户设备是否发送数据或者数据流是否存在,并基于所述解调参考信号来进行信道估计和数据解调。
PCT/CN2016/094889 2016-08-12 2016-08-12 解调参考信号的映射和复用方法、装置以及通信系统 WO2018027909A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094889 WO2018027909A1 (zh) 2016-08-12 2016-08-12 解调参考信号的映射和复用方法、装置以及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094889 WO2018027909A1 (zh) 2016-08-12 2016-08-12 解调参考信号的映射和复用方法、装置以及通信系统

Publications (1)

Publication Number Publication Date
WO2018027909A1 true WO2018027909A1 (zh) 2018-02-15

Family

ID=61161599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094889 WO2018027909A1 (zh) 2016-08-12 2016-08-12 解调参考信号的映射和复用方法、装置以及通信系统

Country Status (1)

Country Link
WO (1) WO2018027909A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448804A (zh) * 2020-11-18 2021-03-05 上海擎昆信息科技有限公司 一种dmrs频域映射方法及装置、电子设备、存储介质
WO2021093184A1 (en) 2020-01-23 2021-05-20 Zte Corporation Methods, apparatus and systems for reference signal configuration in wireless communications
CN113348717A (zh) * 2019-02-02 2021-09-03 索尼集团公司 接收设备、发送设备、通信方法以及介质
CN115152165A (zh) * 2020-01-14 2022-10-04 奥拉智能系统有限公司 用于高分辨率数字雷达的时频扩展波形
CN115152165B (zh) * 2020-01-14 2024-05-28 奥拉智能系统有限公司 用于高分辨率数字雷达的时频扩展波形

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882566A (zh) * 2011-07-12 2013-01-16 华为技术有限公司 降低多用户mimo系统中传输层间干扰的方法及设备
WO2014090197A1 (en) * 2012-12-14 2014-06-19 Huawei Technologies Co., Ltd. Systems and methods for open-loop spatial multiplexing schemes for radio access virtualization
WO2015085574A1 (zh) * 2013-12-13 2015-06-18 华为技术有限公司 上行解调参考信号传输方法和装置
CN105227273A (zh) * 2014-07-02 2016-01-06 电信科学技术研究院 一种数据传输的方法、系统和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882566A (zh) * 2011-07-12 2013-01-16 华为技术有限公司 降低多用户mimo系统中传输层间干扰的方法及设备
WO2014090197A1 (en) * 2012-12-14 2014-06-19 Huawei Technologies Co., Ltd. Systems and methods for open-loop spatial multiplexing schemes for radio access virtualization
WO2015085574A1 (zh) * 2013-12-13 2015-06-18 华为技术有限公司 上行解调参考信号传输方法和装置
CN105227273A (zh) * 2014-07-02 2016-01-06 电信科学技术研究院 一种数据传输的方法、系统和设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348717A (zh) * 2019-02-02 2021-09-03 索尼集团公司 接收设备、发送设备、通信方法以及介质
CN115152165A (zh) * 2020-01-14 2022-10-04 奥拉智能系统有限公司 用于高分辨率数字雷达的时频扩展波形
CN115152165B (zh) * 2020-01-14 2024-05-28 奥拉智能系统有限公司 用于高分辨率数字雷达的时频扩展波形
WO2021093184A1 (en) 2020-01-23 2021-05-20 Zte Corporation Methods, apparatus and systems for reference signal configuration in wireless communications
EP4094529A4 (en) * 2020-01-23 2023-10-04 ZTE Corporation METHODS, APPARATUS AND SYSTEMS FOR REFERENCE SIGNAL CONFIGURATION IN WIRELESS COMMUNICATIONS
CN112448804A (zh) * 2020-11-18 2021-03-05 上海擎昆信息科技有限公司 一种dmrs频域映射方法及装置、电子设备、存储介质
CN112448804B (zh) * 2020-11-18 2024-05-10 上海擎昆信息科技有限公司 一种dmrs频域映射方法及装置、电子设备、存储介质

Similar Documents

Publication Publication Date Title
US11924790B2 (en) Method and apparatus for communicating reference signal for broadcast channel
US11882072B2 (en) Phase tracking reference signal transmission
US10477409B2 (en) Power metric optimization and uplink DM-RS design for LTE/LTE-A uplink transmissions in unlicensed spectrum
KR102587890B1 (ko) feNB-IoT 동작을 지원하는 TDD에서의 업링크 송신
AU2018215316B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US20200367242A1 (en) Method for transmitting and receiving downlink channel and reference signal in communication system
US10411842B2 (en) Data transmission method and device
JP7280414B2 (ja) 受信機及び受信方法
WO2018228335A1 (zh) 导频信号发送、接收方法及装置、设备、存储介质
WO2017045607A1 (zh) 一种物理下行控制信道的传输方法及装置
WO2018129987A1 (zh) 免授权传输的方法、终端设备和网络设备
US9692569B2 (en) Method and apparatus for control channel resource allocations in constrained and unconstrained subframes in a wireless communication network
KR102452224B1 (ko) 무선 통신 시스템에서 단말간 직접 통신을 위한 동기신호 전송 방법 및 장치
WO2018100428A1 (en) Method and device for signal processing in communication system
CN107710853B (zh) 传输信息的方法和设备
US20240064790A1 (en) Device and method for associating resource information with channel metric information in wireless networks
WO2018027909A1 (zh) 解调参考信号的映射和复用方法、装置以及通信系统
US20210359887A1 (en) Demodulation Reference Signal Sequence Generation Method and Apparatus
WO2018027910A1 (zh) 解调参考信号的复用方法、装置以及通信系统
JPWO2018127955A1 (ja) 基地局装置、端末装置及び送信方法
KR20200102826A (ko) 통신 시스템에서 비-직교 상향링크 통신을 위한 방법 및 장치
US20240179648A1 (en) Method and apparatus for communicating reference signal for broadcast channel
KR20200105435A (ko) 사운딩 참조 신호 전송 방법 및 장치
KR20190075336A (ko) 통신 시스템에서 비직교 상향링크 전송을 위한 방법 및 장치
JP2011066528A (ja) 無線基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912364

Country of ref document: EP

Kind code of ref document: A1