WO2018026207A1 - 드론용 모터 및 이를 포함하는 드론 - Google Patents

드론용 모터 및 이를 포함하는 드론 Download PDF

Info

Publication number
WO2018026207A1
WO2018026207A1 PCT/KR2017/008391 KR2017008391W WO2018026207A1 WO 2018026207 A1 WO2018026207 A1 WO 2018026207A1 KR 2017008391 W KR2017008391 W KR 2017008391W WO 2018026207 A1 WO2018026207 A1 WO 2018026207A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
motor
magnet
drone
body portion
Prior art date
Application number
PCT/KR2017/008391
Other languages
English (en)
French (fr)
Inventor
유현수
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US16/322,392 priority Critical patent/US11117652B2/en
Priority to CN201780048926.XA priority patent/CN109565196A/zh
Publication of WO2018026207A1 publication Critical patent/WO2018026207A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/02Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Embodiments relate to a drone motor and a drone including the same.
  • Drones are unmanned aerial vehicles flying with a plurality of propellers mounted on the drone body.
  • the main body of the drone is provided with a motor for driving the propeller.
  • the motor rotates the rotor by the electrical interaction between the stator and the rotor to drive the propeller.
  • the rotor may be disposed outside the stator.
  • Such a rotor may include a body portion and a magnet. The magnet may be attached to the inner peripheral surface of the body portion.
  • weight reduction is important for drones.
  • drones are battery powered, they must be light and motor efficiency is important.
  • an embodiment is to solve the above problems and to provide a drone motor and a drone including the same that can reduce the weight of the drone, while also improving the performance of the motor.
  • Embodiments to be solved by the embodiments are not limited to the above-mentioned problems, and other problems not mentioned herein will be clearly understood by those skilled in the art from the following description.
  • An embodiment for achieving the above object includes a stator including a rotating shaft, a hole in which the rotating shaft is disposed, and a rotor disposed outside the stator, wherein the rotor is coupled to the rotating shaft to provide an upper portion of the stator. And a cover portion, a body portion covering the side of the stator, and a plurality of magnets spaced apart from each other on the inner circumferential surface of the body portion, wherein the body portion is spaced apart from each other and includes a plurality of grooves. can do.
  • the groove portion may extend in the axial direction of the rotation axis.
  • the shortest distance between the grooves may be greater than or equal to the shortest distance between the magnets.
  • the inner circumferential surface of the body portion has a first surface and a second surface in the circumferential direction, the inner diameter of the first surface is larger than the inner diameter of the second surface, the groove portion may include the first surface. .
  • the first surface and the second surface may be alternately arranged in the circumferential direction of the inner circumferential surface.
  • the magnet may contact the first surface.
  • the thickness of the magnet may be equal to or smaller than the difference between the inner diameter of the first surface and the inner diameter of the second surface.
  • the thickness of the magnet may be greater than the difference between the inner diameter of the first surface and the inner diameter of the second surface.
  • the difference between the inner diameter of the first surface and the inner diameter of the second surface may be between 9% and 11% of the thickness of the magnet.
  • the magnet may contact a portion of the second surface.
  • the length in the circumferential direction of the first surface may be 93% to 97% of the length in the circumferential direction of the magnet.
  • the inner circumferential surface of the body portion includes a third surface, the third surface connects the first surface and the second surface, and the magnet may contact the third surface.
  • a cover portion covering the side, a body portion covering the side of the stator, and a magnet coupled to the body portion, wherein the body portion includes a plurality of protrusions spaced apart from each other on an inner circumferential surface, and the magnet is disposed between the protrusion portions.
  • the body portion includes a plurality of protrusions spaced apart from each other on an inner circumferential surface, and the magnet is disposed between the protrusion portions.
  • the protrusion may extend in the axial direction of the rotation shaft.
  • the circumferential width of the protrusion is greater than or equal to the shortest distance between the magnets.
  • the inner circumferential surface of the body portion includes a first surface, a second surface and a third surface, the inner diameter of the first surface is larger than the inner diameter of the second surface, the third surface and the first surface
  • the second surface may be connected to each other, and the protrusion may include the second surface and the third surface.
  • the magnet may contact the first surface and the third surface.
  • the magnet may contact a portion of the second surface.
  • a stator including a rotating shaft, a hole in which the rotating shaft is disposed, and a rotor disposed outside the stator, wherein the rotor is coupled to the rotating shaft to form an upper portion of the stator.
  • the cover unit may include a cover portion, a body portion covering the side of the stator, and a plurality of magnets spaced apart from each other on an inner circumferential surface of the body portion, and the magnet may include a groove portion in contact with the body portion.
  • the inner circumferential surface of the body portion includes a first surface, a second surface and a third surface, the inner diameter of the first surface is larger than the inner diameter of the second surface, the third surface and the first surface
  • the second surface may be connected to each other, and the groove may be in contact with the second surface and the third surface.
  • Another embodiment for achieving the above object includes a drone body, a motor coupled to the drone body, and a propeller rotating in combination with the motor, the motor, the rotation shaft, and the hole in which the rotation shaft is disposed And a rotor disposed outside the stator, wherein the rotor is coupled to the rotating shaft to cover a top portion of the stator, a body portion covering the side of the stator, and an inner circumferential surface of the body portion. It may include a plurality of magnets are spaced apart, the body portion may be spaced apart from each other to provide a drone including a plurality of grooves.
  • Another embodiment for achieving the above object includes a drone body, a motor coupled to the drone body, and a propeller rotating in combination with the motor, the motor, the rotation shaft, and the hole in which the rotation shaft is disposed And a rotor disposed outside the stator, wherein the rotor is coupled to the rotating shaft to cover a top portion of the stator, a body portion covering the side of the stator, and a body portion coupled to the body portion.
  • the magnet may include a plurality of protrusions disposed on the inner circumferential surface and spaced apart from each other, and the magnet may provide a drone disposed between the protrusions.
  • Another embodiment for achieving the above object includes a drone body, a motor coupled to the drone body, and a propeller rotating in combination with the motor, the motor, the rotation shaft, and the hole in which the rotation shaft is disposed And a rotor disposed outside the stator, wherein the rotor is coupled to the rotating shaft to cover a top portion of the stator, a body portion covering the side of the stator, and a body portion covering the side of the stator. It may include a plurality of magnets spaced apart from each other, the magnet may provide a drone including a groove portion in contact with the body portion.
  • the thickness of the area of the body portion corresponding to the magnet and the magnet is formed larger than the thickness of the groove portion, thereby widening the area where the magnetic flux is saturated, thereby reducing the size of the magnet while improving the motor performance to provide.
  • the magnet by attaching the magnet to the groove portion disposed on the inner circumferential surface of the body portion, it provides an advantageous effect that can remove the separate jig for aligning the magnet.
  • FIG. 1 is a view showing a drone according to an embodiment
  • FIG. 5 is a view showing a first surface and a second surface of the body portion
  • FIG. 6 is a view showing a magnet attached to the body portion
  • FIG. 7 is a view showing a body portion with a magnet attached
  • FIG. 10 is a view showing a saturation region of a magnetic flux
  • FIG. 12 is a diagram showing the saturation of the magnetic flux in the state where the projection is present.
  • Figure 1 is a view showing a drone according to an embodiment
  • Figure 2 is a view showing a motor and a propeller.
  • the drone according to the embodiment may include a motor 10, a drone body 20, a propeller 30, and a controller 40.
  • the drone body 20 may include a main body 21, a landing means 22, and a propeller support 23.
  • the drone body 20 forms the appearance of the drone.
  • the drone body 20 includes a plurality of propeller supports 23.
  • the plurality of propeller supports 23 are formed radially in the body 21.
  • Each propeller support 23 may be equipped with a motor 10.
  • Each motor 10 is equipped with a propeller 30.
  • a wireless control unit 40 for controlling the driving of the motor 10 may be included.
  • the motor 10 may include a rotation shaft 100, a stator 200, a rotor 300, and a housing 400.
  • the rotating shaft 100 is disposed to penetrate the center of the stator 200.
  • the rotating shaft 100 may be rotatably coupled to the hole 210 of the stator core 220.
  • the rotary shaft 100 is connected to the propeller 30 and the cover portion 310 to transfer the driving force of the motor 10 to the propeller 30.
  • the stator 200 induces electrical interaction with the rotor 300 to induce rotation of the rotor 300.
  • the stator 200 includes a stator core 220, and a coil may be wound around the stator core 220.
  • the stator core 220 may be provided with an annular yoke, and a plurality of teeth facing outward from the yoke may be provided. A coil may be wound around each tooth. Teeth may be provided at regular intervals along the circumference of the yoke.
  • the stator core 220 may be formed by stacking a plurality of plates in the form of a thin steel sheet. Alternatively, the stator core 220 may be composed of one single piece formed of a cylinder. In addition, the stator core 220 may be formed by coupling or connecting a plurality of split cores. Each split core may also consist of a single piece in which a plurality of plates in the form of thin steel sheets are stacked on each other or formed into a barrel.
  • the hole 210 may be formed at the center of the stator core 220.
  • the rotating shaft 100 penetrates the hole 210.
  • the rotor 300 is disposed outside the stator 200.
  • the rotor 300 may include a cover 310, a body 320, and a magnet 330.
  • the cover part 310 covers the upper part of the stator 200.
  • the body 320 covers the side of the stator 200.
  • the cover part 310 and the body part 320 may be formed to surround the stator 200 as a whole. This is a configuration for preventing the inflow of water or foreign matter into the motor (10).
  • a hole 311 through which the rotation shaft 100 penetrates may be formed at the center of the cover 310.
  • Body 320 surrounds the side of the stator 100.
  • Body portion 320 is formed in a tubular hollow inside.
  • the body 320 has an inner circumferential surface facing the teeth of the stator core 220.
  • the magnet 330 may be attached to the inner circumferential surface of the body 320.
  • the body 320 corresponds to a yoke that forms a path of the magnet 330.
  • An upper end of the body part 320 may be coupled to the upper surface part 312 of the cover part 310.
  • the body part 320 and the cover part 310 may be manufactured as a single piece by double injection molding as a separate product.
  • the lower end of the body 320 may be combined with the housing 400.
  • the magnet 330 is coupled to the inner circumferential surface of the body portion 320.
  • the magnet 330 causes electrical interaction with the coil wound around the stator core 220.
  • stator 100 is located in the inner space formed by the cover 310, the body 320 and the housing 400 described above.
  • FIG. 4 is a view illustrating a body and a magnet of the rotor.
  • the body part 320 of the rotor 300 may include a groove part 320A and a protrusion part 320B.
  • the magnet 330 is mounted to the groove 320A.
  • a plurality of grooves 320A are disposed along the inner circumferential surface of the body 320.
  • Each of the grooves 320A may be spaced apart from each other along the circumferential direction with respect to the center C of the body 320.
  • FIG. 5 is a view showing a first surface and a second surface of the body portion.
  • the inner circumferential surface of the body part 320 may include a first surface 321 and a second surface 322 in the circumferential direction.
  • the inner diameter D1 of the first surface 321 is larger than the inner diameter D2 of the second surface 322. Accordingly, the first surface 321 is relatively concave than the second surface 322.
  • the first surface 321 and the second surface 322 are alternately arranged in the circumferential direction.
  • the groove 320A is formed to include the first surface 321.
  • the magnet 330 is attached to the groove 320A.
  • a plurality of protrusions 320B are disposed along the inner circumferential surface of the body 320. Each of the protrusions 320B may be spaced apart from each other along the circumferential direction with respect to the center C of the body 320.
  • the groove 320A is disposed between the protrusion 320B and the protrusion 320B, and the magnet 330 is attached. At this time, the protrusion 320B may serve as a guide of the magnet 330 to be attached. Therefore, there is no need for a separate jig for guiding the magnet 330 to the attachment position. As a result, there is an advantage that the manufacturing process and cost can be reduced.
  • FIG. 6 is a view illustrating a magnet attached to a body part.
  • the magnet 330 may be attached to the groove 320A.
  • the magnet 330 is in contact with the first surface 321.
  • the thickness t of the magnet 330 may be greater than a difference value (S in FIG. 5) between the inner diameter D1 of the first surface 321 and the inner diameter D2 of the second surface 322.
  • the difference value (S in FIG. 5) between the inner diameter D1 of the first surface 321 and the inner diameter D2 of the second surface 322 is between 9% and 11% of the thickness t of the magnet 330. Can be.
  • An inner circumferential surface of the body 320 may include a third surface 323.
  • the third surface 323 is a portion connecting the first surface 321 and the second surface 322 forming a step.
  • the magnet 330 may include a groove portion (330A).
  • the groove 330A may be attached to the second surface 322 and the third surface 323 of the body 320.
  • the circumferential length L1 of the first surface 321 may be 93% to 97% of the circumferential length L2 of the magnet 330. Both end portions of the magnet 330 deviating from the first surface 321 with respect to the circumferential direction contact the second surface 322.
  • FIG. 7 is a view illustrating a body portion to which a magnet is attached.
  • the magnet 330 is attached to the groove 320A.
  • the magnet 330 protrudes from the second surface 322. Since the circumferential length L2 of the magnet 330 is larger than the circumferential length L1 of the first surface 321, a part of the magnet 330 may be seated on the second surface 322. In other words, the shortest distance d1 between the neighboring grooves 330A may be larger than the shortest distance d2 between the magnets 330 mounted on the neighboring grooves 330A.
  • FIG. 8 is a view showing a modification of the groove portion of the body portion.
  • the magnet 330 may be attached only to the first surface 321 and the third surface 323.
  • the shortest distance d1 between the neighboring grooves 330A and the shortest distance d2 between the magnets 330 mounted on the neighboring grooves 330A may be the same.
  • FIG. 9 is a view showing another modification of the groove portion of the body portion.
  • the magnet 330 may be attached only to the first surface 321 and the third surface 323. In addition, the magnet 330 may be completely inserted into the groove 320A so as not to protrude into the inner side of the second surface 322.
  • FIG. 10 is a diagram showing a saturation region of the magnetic flux.
  • the groove 320A is concave on the inner circumferential surface of the body 320. Therefore, the thickness of the body portion 320 may be reduced in the region where the groove portion 320A is located. Reducing the thickness of the body 320 can reduce the weight of the drone.
  • the protrusion 320B may be disposed between the neighboring magnet 330 and the magnet 330.
  • a region of FIG. 10 is a region that is saturated when the magnetic flux of the magnet 330 flows through the body 320.
  • a projection 320B is formed in region A of FIG. 10 to extend the saturation region of the magnetic flux. Therefore, since the flow of the magnetic flux is improved due to the protrusion 320B, the performance of the target motor can be secured while reducing the size of the magnet 330.
  • the weight of the drone can be further reduced.
  • groove 320A and protrusion 320B in the body 320 corresponds to a motor including a rotor to which a magnet of a normal size is attached.
  • Case 2 includes a groove portion 320A and a protrusion portion 320B in the body portion 320, and a groove portion 330A is formed in the magnet 330, so that the inner portion of the body portion 320 is formed on the case 320.
  • the protruding magnet 330 includes a rotor to which the magnet 330 is attached, and the magnet 330 corresponds to a motor having a smaller size than the magnet of Case1.
  • Case 3 as shown in Figure 9, the body portion 320 includes a groove portion 320A and the projection portion 320B, the magnet 330 includes a rotor is attached to the groove portion 320A completely inserted state In this case, the magnet 330 corresponds to a motor having a smaller size than the magnet of Case1.
  • Ke in Table 1 is a counter electromotive force constant, which is proportional to the torque generated per unit current.
  • the saturation region may be secured through the protrusion 320B, and the size of the magnet 330 may be reduced without degrading the motor performance.
  • FIG. 11 is a diagram illustrating a saturation state of magnetic flux in a state where there is no protrusion
  • FIG. 12 is a diagram illustrating a saturation state of magnetic flux in a state where a protrusion is present.
  • region B of FIG. 11 is the saturation region of the magnetic flux in Case1. As shown in FIG. 11, region B of FIG. 11 is dark red, indicating that the magnetic flux is highly saturated.
  • the C region of FIG. 12 is a saturation region of the magnetic flux in Case2, and as shown in FIG. 12, the C region of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

본 발명은 회전축; 상기 회전축이 배치되는 홀을 포함하는 스테이터; 상기 스테이터의 외측에 배치되는 로터를 포함하고, 상기 로터는 상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부, 상기 스테이터의 측부를 덮는 몸체부 및 상기 몸체부의 내주면에 서로 이격되어 배치되는 복수 개의 마그넷을 포함하고, 상기 몸체부는 서로 이격되어 배치되어 복수 개의 홈부를 포함하는 드론용 모터를 제공하여, 로터의 무게를 줄임으로써, 드론의 무게를 줄이는 유리한 효과를 제공한다.

Description

드론용 모터 및 이를 포함하는 드론
실시 예는 드론용 모터 및 이를 포함하는 드론에 관한 것이다.
드론은 드론 본체에 복수 개의 프로펠러가 장착되어 비행하는 무인 비행체이다. 드론의 본체에는 프로펠러를 구동시키는 모터가 구비된다. 모터는 스테이터와 로터의 전기적 상호 작용으로 로터가 회전하여 프로펠러를 구동시킨다. 이때, 로터는 스테이터 외측에 배치될 수 있다. 이러한 로터는 몸체부와 마그넷을 포함할 수 있다. 마그넷은 몸체부의 내주면에 부착될 수 있다.
한편, 드론은 경량화가 중요하다. 특히, 드론은 배터리로 구동하기 때문에, 가벼워야 하며 모터의 효율이 중요하다.
이에, 실시 예는 상기와 문제점을 해결하기 위한 것으로, 드론의 무게를 줄이면서도, 모터의 성능을 높일 수 있는 드론용 모터 및 이를 포함하는 드론을 제공하는 것을 그 목적으로 한다.
실시 예가 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위한 실시 예는, 회전축과, 상기 회전축이 배치되는 홀을 포함하는 스테이터와, 상기 스테이터의 외측에 배치되는 로터를 포함하고, 상기 로터는 상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부와, 상기 스테이터의 측부를 덮는 몸체부 및 상기 몸체부의 내주면에 서로 이격되어 배치되는 복수 개의 마그넷을 포함하고, 상기 몸체부는 서로 이격되어 배치되어 복수 개의 홈부를 포함하는 드론용 모터를 제공할 수 있다.
바람직하게는, 상기 홈부는 상기 회전축의 축방향으로 연장될 수 있다.
바람직하게는, 상기 홈부 사이의 최단거리는 상기 마그넷 사이의 최단거리보다 크거나 같을 수 있다.
바람직하게는, 상기 몸체부의 내주면은 원주 방향으로 제1 면과 제2 면을 가지고, 상기 제1 면의 내경은 상기 제2 면의 내경보다 크며, 상기 홈부는 상기 제1 면을 포함할 수 있다.
바람직하게는, 상기 제1 면과 상기 제2 면은 상기 내주면의 원주 방향으로 교대로 배치될 수 있다.
바람직하게는, 상기 마그넷은 상기 제1 면에 접촉할 수 있다.
바람직하게는, 상기 마그넷의 두께는 상기 제1 면의 내경과 상기 제2 면의 내경의 차이값보다 같거나 작을 수 있다.
바람직하게는, 상기 마그넷의 두께는 상기 제1 면의 내경과 상기 제2 면의 내경의 차이값보다 클 수 있다.
바람직하게는, 상기 제1 면의 내경과 상기 제2 면의 내경의 차이값은 상기 마그넷의 두께의 9% 내지 11% 사이일 수 있다.
바람직하게는, 상기 마그넷은 상기 제2 면의 일부에 접촉할 수 있다.
바람직하게는, 상기 제1 면의 원주 방향의 길이는 상기 마그넷의 원주 방향의 길이의 93% 내지 97%일 수 있다.
바람직하게는, 상기 몸체부의 내주면은 제3 면을 포함하고, 상기 제3 면은 상기 제1 면과 상기 제2 면을 연결하고, 상기 마그넷은 상기 제3 면에 접촉할 수 있다.
상기 목적을 달성하기 위한 다른 실시 예는, 회전축과, 상기 회전축이 배치되는 홀을 포함하는 스테이터와, 상기 스테이터의 외측에 배치되는 로터를 포함하고, 상기 로터는 상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부와, 상기 스테이터의 측부를 덮는 몸체부 및 상기 몸체부와 결합하는 마그넷을 포함하고, 상기 몸체부는 내주면에 서로 이격되어 배치되는 복수 개의 돌기부를 포함하고, 상기 마그넷은 상기 돌기부 사이에 배치될 수 있다.
바람직하게는, 상기 돌기부는 상기 회전축의 축방향으로 연장될 수 있다.
바람직하게는, 상기 돌기부의 원주방향 폭은 상기 마그넷 사이의 최단거리 보다 크거나 같은 드론용 모터.
바람직하게는, 상기 몸체부의 내주면은 제1 면, 제2 면 및 제3 면을 포함하고, 상기 제1 면의 내경은 상기 제2 면의 내경보다 크며, 상기 제3 면은 상기 제1 면과 상기 제2 면을 연결하고, 상기 돌기부는 상기 제2 면 및 상기 제3 면을 포함할 수 있다.
바람직하게는, 상기 마그넷은 상기 제1 면 및 상기 제3 면에 접촉할 수 있다.
바람직하게는, 상기 마그넷은 상기 제2 면의 일부에 접촉할 수 있다.
상기 목적을 달성하기 위한 다른 실시 예는, 회전축과, 상기 회전축이 배치되는 홀을 포함하는 스테이터와, 상기 스테이터의 외측에 배치되는 로터를 포함하고, 상기 로터는 상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부와, 상기 스테이터의 측부를 덮는 몸체부 및 상기 몸체부 내주면에 서로 이격되어 배치되는 복수 개의 마그넷을 포함하고, 상기 마그넷은 상기 몸체부와 접촉하는 홈부를 포함할 수 있다.
바람직하게는, 상기 몸체부의 내주면은 제1 면, 제2 면 및 제3 면을 포함하고, 상기 제1 면의 내경은 상기 제2 면의 내경보다 크며, 상기 제3 면은 상기 제1 면과 상기 제2 면을 연결하고, 상기 홈부는 상기 제2 면 및 상기 제3 면과 접촉할 수 있다.
상기 목적을 달성하기 위한 다른 실시 예는, 드론 몸체와, 상기 드론 몸체에 결합되는 모터와, 상기 모터와 결합하여 회전하는 프로펠러를 포함하며, 상기 모터는, 회전축과, 상기 회전축이 배치되는 홀을 포함하는 스테이터와, 상기 스테이터의 외측에 배치되는 로터를 포함하고, 상기 로터는 상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부와, 상기 스테이터의 측부를 덮는 몸체부 및 상기 몸체부의 내주면에 서로 이격되어 배치되는 복수 개의 마그넷을 포함하고, 상기 몸체부는 서로 이격되어 배치되어 복수 개의 홈부를 포함하는 드론을 제공할 수 있다.
상기 목적을 달성하기 위한 다른 실시 예는, 드론 몸체와, 상기 드론 몸체에 결합되는 모터와, 상기 모터와 결합하여 회전하는 프로펠러를 포함하며, 상기 모터는, 회전축과, 상기 회전축이 배치되는 홀을 포함하는 스테이터와, 상기 스테이터의 외측에 배치되는 로터를 포함하고, 상기 로터는 상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부와, 상기 스테이터의 측부를 덮는 몸체부 및 상기 몸체부와 결합하는 마그넷을 포함하고, 상기 몸체부는 내주면에 서로 이격되어 배치되는 복수 개의 돌기부를 포함하고, 상기 마그넷은 상기 돌기부 사이에 배치되는 드론을 제공할 수 있다.
상기 목적을 달성하기 위한 다른 실시 예는, 드론 몸체와, 상기 드론 몸체에 결합되는 모터와, 상기 모터와 결합하여 회전하는 프로펠러를 포함하며, 상기 모터는, 회전축과, 상기 회전축이 배치되는 홀을 포함하는 스테이터와, 상기 스테이터의 외측에 배치되는 로터를 포함하고, 상기 로터는 상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부와, 상기 스테이터의 측부를 덮는 몸체부 및 상기 몸체부 내주면에 서로 이격되어 배치되는 복수 개의 마그넷을 포함하고, 상기 마그넷은 상기 몸체부와 접촉하는 홈부를 포함하는 드론을 제공할 수 있다.
실시 예에 따르면, 로터의 몸체부에 홈부를 형성하여, 로터의 무게를 줄임으로써, 드론의 무게를 줄이는 유리한 효과를 제공한다.
실시 예에 따르면, 마그넷과 마그넷 사이에 해당하는 몸체부의 영역의 두께를 홈부의 두께에 비해 크게 형성하여, 자속이 포화되는 영역을 넓힘으로써, 마그넷의 크기를 줄이면서도 모터의 성능을 높이는 유리한 효과를 제공한다.
실시 예에 따르면, 몸체부의 내주면에 배치된 홈부에 마그넷을 부착하여, 마그넷을 정렬하기 위한 별도의 지그를 제거할 수 있는 유리한 효과를 제공한다.
도 1은 실시 예에 따른 드론을 도시한 도면,
도 2는 모터와 프로펠러를 도시한 도면,
도 3은 모터의 분해도,
도 4는 로터의 몸체부와 마그넷을 도시한 도면,
도 5는 몸체부의 제1 면과 제2 면을 도시한 도면,
도 6은 몸체부에 부착되는 마그넷을 도시한 도면,
도 7은 마그넷이 부착된 몸체부를 도시한 도면,
도 8은 몸체부의 홈부의 변형례를 도시한 도면,
도 9는 몸체부의 홈부의 다른 변형례를 도시한 도면,
도 10은 자속의 포화 영역을 도시한 도면,
도 11은 돌기부가 없는 상태에서 자속의 포화상태를 도시한 도면,
도 12는 돌기부가 있는 상태에서 자속의 포화상태를 도시한 도면이다.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시 예들로부터 더욱 명백해질 것이다. 그리고 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해서 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다. 그리고 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지기술에 대한 상세한 설명은 생략한다.
도 1은 실시 예에 따른 드론을 도시한 도면이고, 도 2는 모터와 프로펠러를 도시한 도면이다.
도 1 및 도 2를 참조하면, 실시 예에 따른 드론은 모터(10)와 드론 몸체(20)와, 프로펠러(30)와, 제어부(40)를 포함할 수 있다. 여기서 드론 몸체(20)는 본체(21)와, 랜딩수단(22)과, 프로펠러 지지부(23)를 포함할 수 있다.
드론 몸체(20)는 드론의 외형을 형성한다. 드론 몸체(20)는 복수 개의 프로펠러 지지부(23)를 포함한다. 복수 개의 프로펠러 지지부(23)는 본체(21)에서 방사상으로 형성된다. 각각의 프로펠러 지지부(23)에는 모터(10)가 장착될 수 있다. 각각의 모터(10)에는 프로펠러(30)가 장착된다. 그리고 모터(10)의 구동을 제어하는 무선형 제어부(40)가 포함될 수 있다.
도 3은 모터의 분해도이다.
도 3을 참조하면, 모터(10)는 회전축(100)과, 스테이터(200)와, 로터(300)와, 하우징(400)을 포함할 수 있다.
회전축(100)은 스테이터(200)의 중심을 관통하도록 배치된다. 회전축(100)은 스테이터 코어(220)의 홀(210)에 회전 가능하게 결합될 수 있다. 회전축(100)은 프로펠러(30) 및 커버부(310)에 연결되어 모터(10)의 구동력을 프로펠러(30)에 전달한다.
스테이터(200)는 로터(300)와의 전기적 상호 작용을 유발하여 로터(300)의 회전을 유도한다. 스테이터(200)는 스테이터 코어(220)를 포함하며, 스테이터 코어(220)에는 코일이 감길 수 있다.
스테이터 코어(220)는 환형의 요크가 마련되고, 요크에서 외측을 향하는 복수 개의 티스가 마련될 수 있다, 각각의 티스에는 코일이 감길 수 있다. 티스는 요크의 둘레를 따라 일정한 간격으로 마련될 수 있다.
스테이터 코어(220)는 얇은 강판 형태의 복수 개의 플레이트가 상호 적층되어 이루어질 수 있다. 또는 스테이터 코어(220)는 통으로 형성된 하나의 단일품으로 구성될 수 있다. 또한, 스테이터 코어(220)는 복수 개의 분할 코어가 상호 결합되거나 연결되어 이루어질 수 있다. 각각의 분할 코어 또한, 얇은 강판 형태의 복수 개의 플레이트가 상호 적층되어 이루어지거나 통으로 형성된 하나의 단일품으로 구성될 수 있다.
스테이터 코어(220)의 중심에는 홀(210)이 형성될 수 있다. 회전축(100)은 홀(210)을 관통한다.
로터(300)는 스테이터(200)의 외측에 배치된다. 로터(300)는 커버부(310)와, 몸체부(320)와, 마그넷(330)을 포함할 수 있다.
커버부(310)는 스테이터(200)의 상부를 덮는다. 몸체부(320)는 스테이터(200)의 측부를 덮는다. 이러한 커버부(310)와 몸체부(320)는 전체적으로 스테이터(200)를 둘러싸도록 형성될 수 있다. 이는 모터(10) 내부로 물이나 이물질이 유입되는 것을 방지하기 위한 구성이다. 커버부(310)의 중심에는 회전축(100)이 관통하는 홀(311)이 형성될 수 있다.
몸체부(320)는 스테이터(100)의 측부를 둘러싼다. 몸체부(320)는 내부가 비어있는 관형으로 형성된다. 몸체부(320)는 내주면이 스테이터 코어(220)의 티스를 마주보게 배치된다. 몸체부(320)의 내주면에는 마그넷(330)이 부착될 수 있다. 몸체부(320)는 마그넷(330)의 자로를 형성하는 요크(yoke)에 해당한다.
몸체부(320)의 상단은 커버부(310)의 상면부(312)에 결합될 수 있다. 몸체부(320)와 커버부(310)는 별 물로서 이중 사출 성형되어 일체형으로 제작되거나 단일품으로 제조될 수 있다. 몸체부(320)의 하단은 하우징(400)과 결합될 수 있다.
마그넷(330)은 몸체부(320)의 내주면에 결합된다. 마그넷(330)은 스테이터 코어(220)에 감긴 코일과 전기적 상호 작용을 유발한다.
한편, 스테이터(100)는 상술한 커버부(310)와 몸체부(320)와 하우징(400)에 의해 형성된 내부 공간에 위치한다.
도 4는 로터의 몸체부와 마그넷을 도시한 도면이다.
도 4를 참조하면, 로터(300)의 몸체부(320)는 홈부(320A)와 돌기부(320B)를 포함할 수 있다.
홈부(320A)에는 마그넷(330)이 장착된다. 홈부(320A)는 몸체부(320)의 내주면을 따라 복수 개가 배치된다. 각각의 홈부(320A)는 몸체부(320)의 중심(C)을 기준하여 원주 방향을 따라 서로 이격되어 배치될 수 있다.
도 5는 몸체부의 제1 면과 제2 면을 도시한 도면이다.
도 4 및 도 5를 참조하면, 몸체부(320)의 내주면은 원주 방향으로 제1 면(321)과 제2 면(322)을 포함할 수 있다. 제1 면(321)의 내경(D1)은 제2 면(322)의 내경(D2) 보다 크게 형성된다. 따라서 제1 면(321)은 상대적으로 제2 면(322)에 비하여 오목하게 형성된다.
제1 면(321)과 제2 면(322)은 원주 방향으로 교대로 배치된다.
이때, 홈부(320A)는 제1 면(321)을 포함하여 형성된다. 홈부(320A)에는 마그넷(330)이 부착된다.
돌기부(320B)는 몸체부(320)의 내주면을 따라 복수 개가 배치된다. 각각의 돌기부(320B)는 몸체부(320)의 중심(C)을 기준하여 원주 방향을 따라 서로 이격되어 배치될 수 있다. 돌기부(320B)와 돌기부(320B) 사이에는 홈부(320A)가 배치되며, 마그넷(330)이 부착된다. 이때, 돌기부(320B)는 부착되는 마그넷(330)의 가이드 역할을 할 수 있다. 때문에 마그넷(330)을 부착 위치에 가이드 하기 위한 별도의 지그가 필요 없다. 그 결과, 제조 공정 및 비용을 감소시킬 수 있는 이점이 있다.
도 6은 몸체부에 부착되는 마그넷을 도시한 도면이다.
도 5 및 도 6을 참조하면, 홈부(320A)에 마그넷(330)이 부착될 수 있다. 마그넷(330)은 제1 면(321)에 접촉한다.
이때, 마그넷(330)의 두께(t)는 제1 면(321)의 내경(D1)과 제2 면(322)의 내경(D2)의 차이값(도 5의 S)보다 클 수 있다. 따라서, 마그넷(330)은 제2 면(322)의 안 측으로 돌출된다. 제1 면(321)의 내경(D1)과 제2 면(322)의 내경(D2)의 차이값(도 5의 S)은 마그넷(330)의 두께(t)의 9% 내지 11% 사이일 수 있다.
몸체부(320)의 내주면은 제3 면(323)을 포함할 수 있다. 제3 면(323)은 단차를 형성하는 제1 면(321)과 제2 면(322)을 연결하는 부분이다.
한편, 마그넷(330)은 홈부(330A)를 포함할 수 있다. 홈부(330A)는 몸체부(320)의 제2 면(322) 및 제3 면(323)에 부착될 수 있다. 제1 면(321)의 원주 방향 길이(L1)는 마그넷(330)의 원주 방향 길이(L2)의 93% 내지 97%일 수 있다. 원주 방향을 기준으로 제1 면(321)에서 벗어나는 마그넷(330)의 양 측 단부는 제2 면(322)에 접촉한다.
도 7은 마그넷이 부착된 몸체부를 도시한 도면이다.
도 6 및 도 7을 참조하면, 마그넷(330)은 홈부(320A)에 부착된다. 이때, 마그넷(330)은 제2 면(322)에 돌출된다. 그리고, 마그넷(330)의 원주 방향 길이(L2)가 제1 면(321)의 원주 방향 길이(L1)보다 크기 때문에 마그넷(330)의 일부가 제2 면(322)에 안착될 수 있다. 다시 말해서, 이웃하는 홈부(330A) 사이의 최단거리(d1)가 이웃하는 홈부(330A)에 장착된 마그넷(330) 사이의 최단거리(d2)보다 클 수 있다.
도 8은 몸체부의 홈부의 변형례를 도시한 도면이다.
도 8을 참조하면, 마그넷(330)이 제1 면(321)과 제3 면(323)에만 부착될 수 있다. 다시 말해서, 이웃하는 홈부(330A) 사이의 최단거리(d1)와 이웃하는 홈부(330A)에 장착된 마그넷(330) 사이의 최단거리(d2)가 동일 할 수 있다.
도 9는 몸체부의 홈부의 다른 변형례를 도시한 도면이다.
도 9를 참조하면, 마그넷(330)이 제1 면(321)과 제3 면(323)에만 부착될 수 있다. 그리고, 마그넷(330)이 제2 면(322)의 안 측으로 돌출되지 않도록 홈부(320A)에 완전히 삽입될 수 있다.
도 10은 자속의 포화 영역을 도시한 도면이다.
도 4 및 도 10을 참조하면, 홈부(320A)는 몸체부(320)의 내주면에서 오목하게 형성된다. 따라서, 홈부(320A)가 위치하는 영역에서는 몸체부(320)의 두께를 줄일 수 있다. 몸체부(320)의 두께를 줄이면 드론의 무게를 줄일 수 있다.
한편, 이웃하는 마그넷(330)과 마그넷(330) 사이에는 돌기부(320B)가 배치될 수 있다. 도 10의 A영역은 마그넷(330)의 자속이 몸체부(320)를 흐를 때 포화되는 영역이다. 도 10의 A영역에 돌기부(320B)가 형성되어 자속의 포화 영역이 확장된다. 따라서, 돌기부(320B)로 인하여 자속의 흐름이 좋아지기 때문에 마그넷(330)의 크기를 줄이면서도 목표하는 모터의 성능을 확보할 수 있다.
마그넷(330)의 크기를 줄이면, 드론의 무게를 더욱 줄일 수 있다.
구분 Case1 Case2 Case3
Ke 0.0688 0.0699 0.067
몸체부(320)에 홈부(320A)와 돌기부(320B)가 없고, 정상적인 크기의 마그넷을 부착한 로터를 포함하는 모터에 해당한다.
Case2는, 도 7에서 도시한 바와 같이, 몸체부(320)에 홈부(320A)와 돌기부(320B)를 포함하며, 마그넷(330)에 홈부(330A)가 형성되어 몸체부(320)의 내주면에서 돌출된 형태 마그넷(330)이 부착되는 로터를 포함하고, 여기서 마그넷(330)은 Case1의 마그넷 보다 크기가 작은 모터에 해당한다.
Case3은, 도 9에서 도시한 바와 같이, 몸체부(320)에 홈부(320A)와 돌기부(320B)를 포함하며, 마그넷(330)이 홈부(320A)에 완전히 삽입된 상태로 부착되는 로터를 포함하고, 여기서 마그넷(330)은 Case1의 마그넷 보다 크기가 작은 모터에 해당한다.
<표 1>의 ke는 역기전력 상수로, 단위 전류당 발생하는 토크와 비례하는 값이다.
<표 1>에서 도시한 바와 같이, Case1, Case2, Case3로 구분하여 토크를 측정한 결과, Case2 와 Case3의 마그넷의 크기가 Case1의 마그넷의 크기 보다 작음에도 불구하고, Case1, Case2, Case3에서 각각 측정되는 토크의 크기가 큰 차이가 없는 것 확인된다.
이로써, 돌기부(320B)를 통해 포화 영역을 확보하여, 모터 성능의 저하 없이 마그넷(330)의 크기를 줄일 수 있음을 확인할 수 있다.
도 11은 돌기부가 없는 상태에서 자속의 포화상태를 도시한 도면이고, 도 12는 돌기부가 있는 상태에서 자속의 포화상태를 도시한 도면이다.
도 11 및 도 12를 참조하면, 도 11의 B영역은 Case1에서 자속의 포화 역이다. 도 11에서 도시한 바와 같이, 도 11의 B영역은 짙은 빨간색으로 나타나 자속의 포화도가 높음을 알 수 있다.
반면에, 도 12의 C영역은 Case2에서 자속의 포화 영역인데, 도 12에서 도시한 바와 같이, 도 12의 C영역은 옅은 빨간색으로 나타나 자속 포화가 해소되었음 알 수 있다.
이상으로 본 발명의 바람직한 하나의 실시예에 따른 드론용 모터 및 이를포함하는 드론에 관하여 첨부된 도면을 참조하여 구체적으로 살펴보았다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
<부호의 설명>
10: 모터, 20: 드론 몸체, 30: 프로펠러, 40: 제어부, 100: 회전축, 200: 스테이터, 300: 로터, 310: 커버부, 320: 몸체부, 320A: 홈부, 320B: 돌기부, 321: 제1 면, 322: 제2 면, 323: 제3 면, 330: 마그넷, 330A: 홈부

Claims (10)

  1. 회전축;
    상기 회전축이 배치되는 홀을 포함하는 스테이터;
    상기 스테이터의 외측에 배치되는 로터를 포함하고,
    상기 로터는
    상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부,
    상기 스테이터의 측부를 덮는 몸체부 및
    상기 몸체부의 내주면에 서로 이격되어 배치되는 복수 개의 마그넷을 포함하고,
    상기 몸체부는 서로 이격되어 배치되어 복수 개의 홈부를 포함하는 드론용 모터.
  2. 제1 항에 있어서,
    상기 홈부는 상기 회전축의 축방향으로 연장되는 드론용 모터.
  3. 제1 항에 있어서,
    상기 홈부 사이의 최단거리는 상기 마그넷 사이의 최단거리보다 크거나 같은 드론용 모터.
  4. 제1 항에 있어서,
    상기 몸체부의 내주면은 원주 방향으로 제1 면과 제2 면을 가지고,
    상기 제1 면의 내경은 상기 제2 면의 내경보다 크며,
    상기 홈부는 상기 제1 면을 포함하는 드론용 모터.
  5. 제4 항에 있어서,
    상기 제1 면과 상기 제2 면은 상기 내주면의 원주 방향으로 교대로 배치되는 드론용 모터.
  6. 제5 항에 있어서,
    상기 마그넷은 상기 제1 면에 접촉하는 드론용 모터.
  7. 제4 항에 있어서,
    상기 몸체부의 내주면은 제3 면을 포함하고,
    상기 제3 면은 상기 제1 면과 상기 제2 면을 연결하고,
    상기 마그넷은 상기 제3 면에 접촉하는 드론용 모터.
  8. 회전축;
    상기 회전축이 배치되는 홀을 포함하는 스테이터;
    상기 스테이터의 외측에 배치되는 로터를 포함하고,
    상기 로터는
    상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부,
    상기 스테이터의 측부를 덮는 몸체부 및
    상기 몸체부와 결합하는 마그넷을 포함하고,
    상기 몸체부는 내주면에 서로 이격되어 배치되는 복수 개의 돌기부를 포함하고,
    상기 마그넷은 상기 돌기부 사이에 배치되는 드론용 모터.
  9. 회전축;
    상기 회전축이 배치되는 홀을 포함하는 스테이터;
    상기 스테이터의 외측에 배치되는 로터를 포함하고,
    상기 로터는
    상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부,
    상기 스테이터의 측부를 덮는 몸체부 및
    상기 몸체부 내주면에 서로 이격되어 배치되는 복수 개의 마그넷을 포함하고,
    상기 마그넷은 상기 몸체부와 접촉하는 홈부를 포함하는 드론용 모터.
  10. 드론 몸체;
    상기 드론 몸체에 결합되는 모터;
    상기 모터와 결합하여 회전하는 프로펠러를 포함하며,
    상기 모터는,
    회전축;
    상기 회전축이 배치되는 홀을 포함하는 스테이터;
    상기 스테이터의 외측에 배치되는 로터를 포함하고,
    상기 로터는
    상기 회전축과 결합하여 상기 스테이터의 상부를 덮는 커버부,
    상기 스테이터의 측부를 덮는 몸체부 및
    상기 몸체부의 내주면에 서로 이격되어 배치되는 복수 개의 마그넷을 포함하고,
    상기 몸체부는 서로 이격되어 배치되어 복수 개의 홈부를 포함하는 드론.
PCT/KR2017/008391 2016-08-03 2017-08-03 드론용 모터 및 이를 포함하는 드론 WO2018026207A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/322,392 US11117652B2 (en) 2016-08-03 2017-08-03 Motor for drone and drone including same
CN201780048926.XA CN109565196A (zh) 2016-08-03 2017-08-03 用于无人机的电机及包括该电机的无人机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160098918A KR102628348B1 (ko) 2016-08-03 2016-08-03 드론용 모터 및 이를 포함하는 드론
KR10-2016-0098918 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018026207A1 true WO2018026207A1 (ko) 2018-02-08

Family

ID=61073869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008391 WO2018026207A1 (ko) 2016-08-03 2017-08-03 드론용 모터 및 이를 포함하는 드론

Country Status (4)

Country Link
US (1) US11117652B2 (ko)
KR (1) KR102628348B1 (ko)
CN (1) CN109565196A (ko)
WO (1) WO2018026207A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739786A (zh) * 2018-07-20 2020-01-31 中车株洲电力机车研究所有限公司 一种轮毂电机转子结构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021087227A (ja) * 2019-11-25 2021-06-03 マーレエレクトリックドライブズジャパン株式会社 アウターロータ形電動機、及びアウターロータ形電動機のロータヨークの製造方法
US20220181931A1 (en) * 2020-12-04 2022-06-09 Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company Rotor for electric motor
JP2022131847A (ja) * 2021-02-26 2022-09-07 ミネベアミツミ株式会社 モータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346345A (ja) * 2000-05-31 2001-12-14 Sodick Co Ltd 同期機ロータ
JP2010022107A (ja) * 2008-07-09 2010-01-28 Toshiba Corp 永久磁石モータおよび洗濯機
US20130127284A1 (en) * 2010-07-30 2013-05-23 Siemens Aktiengeselschaft Aircraft
JP2013236542A (ja) * 2013-08-19 2013-11-21 Hitachi Industrial Equipment Systems Co Ltd 外転型永久磁石回転電機およびそれを用いたエレベータ装置
JP2015195725A (ja) * 2011-03-30 2015-11-05 株式会社日立産機システム 永久磁石モータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823664A (ja) * 1994-05-02 1996-01-23 Aisin Aw Co Ltd モータ
CN201319529Y (zh) * 2008-12-11 2009-09-30 山东新大洋机电科技有限公司 磁钢式转子
CN201797386U (zh) * 2010-01-22 2011-04-13 浙江玛拓驱动设备有限公司 一种永磁电机转子
KR101471367B1 (ko) * 2010-11-30 2014-12-11 대동모벨시스템 주식회사 비엘디씨 모터의 회전자 구조
CN202094715U (zh) * 2011-05-12 2011-12-28 尤春林 电动自行车、摩托车用电机的轮毂磁钢固定拉槽的结构
JP2012244704A (ja) * 2011-05-17 2012-12-10 Honda Motor Co Ltd 外転型の電動機
KR101514822B1 (ko) 2013-06-21 2015-04-23 한국파워트레인 주식회사 비엘디씨 모터
TWI554011B (zh) * 2015-09-11 2016-10-11 Sunonwealth Electr Mach Ind Co 無人飛行載具之馬達結構
US9878784B2 (en) * 2015-12-11 2018-01-30 Amazon Technologies, Inc. Propeller alignment devices
CN105515243A (zh) * 2016-01-20 2016-04-20 珠海格力节能环保制冷技术研究中心有限公司 一种电机转子结构及具有其的电机
CN105490491A (zh) * 2016-01-25 2016-04-13 深圳市大疆创新科技有限公司 电机、动力装置及无人飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346345A (ja) * 2000-05-31 2001-12-14 Sodick Co Ltd 同期機ロータ
JP2010022107A (ja) * 2008-07-09 2010-01-28 Toshiba Corp 永久磁石モータおよび洗濯機
US20130127284A1 (en) * 2010-07-30 2013-05-23 Siemens Aktiengeselschaft Aircraft
JP2015195725A (ja) * 2011-03-30 2015-11-05 株式会社日立産機システム 永久磁石モータ
JP2013236542A (ja) * 2013-08-19 2013-11-21 Hitachi Industrial Equipment Systems Co Ltd 外転型永久磁石回転電機およびそれを用いたエレベータ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739786A (zh) * 2018-07-20 2020-01-31 中车株洲电力机车研究所有限公司 一种轮毂电机转子结构

Also Published As

Publication number Publication date
KR20180015422A (ko) 2018-02-13
US20190193849A1 (en) 2019-06-27
CN109565196A (zh) 2019-04-02
US11117652B2 (en) 2021-09-14
KR102628348B1 (ko) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2018038493A1 (ko) 드론용 모터 및 이를 포함하는 드론
WO2018026207A1 (ko) 드론용 모터 및 이를 포함하는 드론
WO2018012867A1 (ko) 드론용 모터 및 이를 포함하는 드론
WO2011162501A2 (ko) 더블 스테이터/더블 로터형 모터 및 이를 이용한 세탁기의 직결형 구동 장치
WO2018044027A1 (ko) 스테이터 및 이를 포함하는 모터
WO2010082705A1 (ko) 액시얼 타입 모터
WO2017217729A1 (ko) 로터 및 이를 포함하는 모터
WO2016003014A1 (ko) 복합 자속을 이용한 모터
WO2018128398A1 (ko) 모터 및 변속기
WO2017213451A1 (ko) 드론용 모터 및 이를 포함하는 드론
WO2018044038A1 (ko) 라인기동식 동기형 릴럭턴스 전동기 및 그 회전자
WO2017069488A1 (ko) 로터 코어, 로터 및 이를 포함하는 모터
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
WO2015190719A1 (en) Brushless motor
WO2018012885A1 (ko) 로터 및 이를 포함하는 모터
WO2011008016A2 (ko) 스테이터 및 이를 구비한 모터
WO2018139791A1 (ko) 모터
WO2020145645A1 (ko) 모터
WO2020085877A1 (ko) 다중의 회전자 및 고정자로 구성되는 발전기
WO2018056561A1 (ko) 무정지 모터
WO2020197138A1 (ko) 모터
WO2016171500A1 (ko) 발전기
WO2020060190A1 (ko) 스테이터 및 이를 포함하는 모터 어셈블리
CN116097546A (zh) 旋转驱动装置
WO2019156441A1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837258

Country of ref document: EP

Kind code of ref document: A1