WO2018026035A1 - 금속 판을 포함하는 반도체 패키징 구조 및 이의 제조방법 - Google Patents

금속 판을 포함하는 반도체 패키징 구조 및 이의 제조방법 Download PDF

Info

Publication number
WO2018026035A1
WO2018026035A1 PCT/KR2016/008631 KR2016008631W WO2018026035A1 WO 2018026035 A1 WO2018026035 A1 WO 2018026035A1 KR 2016008631 W KR2016008631 W KR 2016008631W WO 2018026035 A1 WO2018026035 A1 WO 2018026035A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
electronic device
adhesive
packaging structure
semiconductor packaging
Prior art date
Application number
PCT/KR2016/008631
Other languages
English (en)
French (fr)
Inventor
오근영
유주혜
Original Assignee
(주)피코팩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160099409A external-priority patent/KR101766425B1/ko
Priority claimed from KR1020160099414A external-priority patent/KR101766646B1/ko
Application filed by (주)피코팩 filed Critical (주)피코팩
Publication of WO2018026035A1 publication Critical patent/WO2018026035A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body

Definitions

  • the present invention relates to a semiconductor packaging structure including a metal plate and a method for manufacturing the same. Specifically, a die attach method is used among semiconductor packaging methods, and an electronic device is attached to a metal plate having a large area, and has specific physical properties.
  • the present invention relates to a semiconductor packaging structure capable of easily aligning and replacing electronic devices even during curing using a silicone-based adhesive having a silicone adhesive.
  • a packaging process is an operation of improving the reliability of a semiconductor device by protecting the electronic device from an external environment, shaping the electronic device for ease of use, and protecting the operation function configured in the electronic device.
  • the three-dimensional package in which a plurality of semiconductor chips are stacked may be configured as a multichip package in which a plurality of semiconductor chips are mounted on a substrate.
  • the semiconductor package is required to be implemented in a thinner thickness, and when the semiconductor chip and the chip is stacked or when mounting the semiconductor chip on a substrate such as a printed circuit board (PCB), between the semiconductor chip and the chip or between the chip and the substrate Attempts have been made to introduce adhesives such as Die Attatch Film.
  • the thickness of the individual semiconductor chips being stacked is also introduced thinly, so that metal materials constituting the wiring of the substrate, for example, copper ions of the copper wiring, are transferred to the metal ions due to thermal stress or mechanical stress applied during package fabrication. (metal ion migration) is a concern.
  • Base substrates used in chip carriers or printed circuit boards associated with such semiconductor packages must be thermally, electrically and mechanically stable.
  • a chip carrier or a substrate substrate for a PCB an expensive ceramic substrate or a resin substrate made of polyimide resin, fluorine resin, silicone resin or the like has conventionally been used. Since the ceramic substrate and the resin substrate are insulative, there is no need to apply an insulating material after the through hole process.
  • resin substrates not only the material itself is expensive, but also moisture resistance and heat resistance are poor, which makes it difficult to use the substrate for chip carriers.
  • the ceramic substrate is somewhat superior in heat resistance as compared with the resin substrate, but it is expensive like the resin substrate, and has a disadvantage in that processing costs are required as well as processing difficulties.
  • Metal substrates have the advantages of low cost, easy processing and good thermal reliability.
  • a metal substrate must be separately subjected to unnecessary insulation treatment in the above-described resin or ceramic substrate, and an electronic device (for example, an optical device, a semiconductor chip, a passive device or a pad, a power amplifier (PA), an LNA (mounting device) mounted on the substrate is required.
  • Low noise amplifier, phase shifter, mixer, oscillator, VCO (Voltage Controlled Oscillator, etc.) and external circuits (for example, drive circuits) must be connected by wire bonding. .
  • a short circuit, breakage or damage may occur during the wire bonding process.
  • the epoxy-based adhesives used in the above patents are usually used in the form of a die-bonding film, but it is difficult to effectively reduce the stress imposed on the ultra-thin substrate, and to increase the elasticity of the die-bonding film to reduce the occurrence of burrs. Rather, it has a disadvantage in that the adhesive strength falls.
  • a ceramic substrate is used as the base substrate, and there is no die attach packaging method using a metal plate.
  • the present invention has been made to solve the above problems, by using a silicone adhesive that satisfies certain physical properties to attach the electronic device on the surface of the metal plate to ensure excellent heat resistance, adhesive strength and breakage of the sensor in the event of overheating of the substrate It relates to a semiconductor packaging structure comprising a metal plate that can prevent the and a manufacturing method thereof.
  • Another object of the present invention is to use a die attach method of the semiconductor packaging method, the electronic device is attached to a large-area metal plate, a semiconductor that can easily align and replace the electronic device during curing using the silicone-based adhesive It is to provide a method for manufacturing a packaging structure.
  • Another object of the present invention is to provide a semiconductor device comprising the semiconductor packaging structure.
  • the present invention relates to a semiconductor packaging comprising a metal plate.
  • a metal plate provided with a groove for removing the electronic device; Electronic devices; And a silicon-based adhesive for bonding the electronic device to the metal plate, wherein the silicon-based adhesive relates to a semiconductor package including a metal plate satisfying the following Equations 1-3.
  • Equation 1 is a value measured before curing, wherein Formulas 2 and 3 are values measured after curing, wherein Formula 1 is measured by ASTM D1084, Formulas 2 and 3 are tested by ASTM E595.
  • the silicone adhesive is any one or two or more catalysts selected from any one or two or more hardeners and tin compounds, titanium compounds, amine compounds and platinum compounds selected from alkoxy, acetoxy, oxime, and amino clocks. It may include, and may further include a curing retarder is an organic compound having a triple bond or a double bond at the end.
  • the silicone adhesive may have a thickness of 80 to 100 ⁇ m when applied to the metal plate to form an adhesive layer.
  • the metal plate may include any one or two or more metals selected from iron, aluminum, zinc, titanium, and stainless steel.
  • a second aspect of the invention is a semiconductor device comprising a semiconductor packaging structure, wherein the semiconductor device has an operating temperature of -270 to 250 ° C.
  • It relates to a method for manufacturing a semiconductor packaging structure comprising a metal plate comprising a.
  • step b) applying the silicone adhesive of step b) to a surface on which the groove for removing the electronic device of the metal plate is formed to form an adhesive layer, and bonding the electronic device on the adhesive layer;
  • It relates to a method for manufacturing a semiconductor packaging structure comprising a metal plate comprising a.
  • the step b) may be performed at a temperature of 10 to 60 ° C. and a vacuum degree of 10 ⁇ 1 to 10 ⁇ 5 torr, and the d) may be performed at 10 to 60 ° C. for 12 to 24 hours. do.
  • the semiconductor packaging method according to the present invention further comprises the step of e) replacing the defective electronic device through the groove for removing the electronic device, if a defect is found in the electronic device in step d); do.
  • step c-1 is characterized in that for 1 to 5 hours at 10 to 60 °C.
  • step a) in more detail,
  • the silicon may buffer the difference in thermal expansion coefficient between the substrate and the electronic device to maintain the adhesive strength, and at the same time, the packaging device may be protected from overheating to secure packaging reliability. .
  • the semiconductor package structure manufactured according to the present invention is a temperature condition of -270 to 250 °C It has excellent weather resistance, such as not losing the adhesive strength.
  • the silicone adhesive even after bonding the electronic device to the adhesive by adjusting the curing time of the silicone adhesive, it is possible to precisely align the semiconductor wafer in the middle of the curing of the adhesive, and to adjust the viscosity of the silicone adhesive to a specific range to adjust the thickness of the adhesive layer 80 to 100 ⁇ m It can be formed as thin, and can be stably supported without any form change in the pressure applied to the electronic device when applying the wire bonding process can reduce the bonding failure that can occur in the process.
  • the semiconductor package structure manufactured according to the present invention has the above characteristics and has a lower production cost than the conventional silicon metal plate, and the process is simple and the operating temperature is -270 to 250 ° C., which has excellent weather resistance and is widely used in LED packages. Can be used.
  • FIG. 1 is a cross-sectional view of a substrate to which an electronic device commonly manufactured in the art is bonded.
  • FIG. 2 is a cross-sectional view of a metal plate provided with a groove for removing an electronic device, to which an electronic device is bonded.
  • FIG 3 is a perspective view of a metal plate provided with a groove for removing an electronic device to which the electronic device is bonded.
  • FIG. 4 illustrates a method of removing an electronic device from the metal plate of FIG. 2.
  • FIG. 5 illustrates a surface of an adhesive layer from which an electronic device is removed from a semiconductor package structure prepared through Comparative Example 1 below.
  • substrate is a base to which an electronic device, a circuit, an adhesive layer, an electrode, a passivation layer, and the like can be bonded.
  • the term 'electronic device' refers to an integrated circuit composed of semiconductors, and is bonded to the substrate through an adhesive, and includes a semiconductor die, an interlayer, various integrated circuits, etc. having a thickness of about 100 ⁇ m. do.
  • the term 'packaging' refers to a process of electrically packaging to connect a semiconductor and a device.
  • both a series of processes for bonding an electronic device of a metal plate and a metal plate itself to which the electronic device is bonded are used. It has a meaning to include.
  • a general circuit board uses epoxy as an adhesive and a ceramic material as an adhesive to minimize a difference in thermal expansion coefficient with an electronic device.
  • the ceramic substrate has a small thermal expansion coefficient difference from the electronic device, so even if excessive heat is concentrated on the substrate, the bonding state of the ceramic substrate and the electronic device can be easily maintained, but the cost of manufacturing the ceramic substrate reduces the cost of the entire semiconductor packaging process. It has a hard disadvantage.
  • the production cost is lower than that of the ceramic substrate, so the process cost can be easily reduced, but heat shock is repeatedly applied due to the opening and closing or environmental change during use. Therefore, a thermal stress is generated between the metal plate and the electronic device, so that peeling of the electronic device occurs frequently from the metal plate.
  • This thermal stress is determined by the inherent mechanical properties including the tensile strength, the correction stress, as well as the coefficient of thermal expansion of the metal plate and the electronic device. Therefore, metals having lower tensile strength and correction stress are used to reduce thermal stress, but so far no metals with the above-mentioned properties have been found.
  • the present inventors have selected silicon having specific properties as an adhesive for bonding a metal plate and an electronic device, and thus can buffer the difference in coefficient of thermal expansion between the metal plate and the electronic device, and at the same time, it is excellent in repeated thermal shock. It has been found that semiconductor devices function properly without developing a loss of adhesive strength, especially at low temperatures of -270 ° C or high temperatures of 250 ° C.
  • the electronic plate is provided with a groove for removing the electronic device, and after bonding the electronic device to the metal plate, if there is a defect in the electronic device in the process of curing the adhesive layer, the electronic device can be easily replaced.
  • the present invention was completed by confirming an advantage of easily removing the bonded electronic device and the adhesive layer in the process of recycling.
  • the semiconductor packaging according to the present invention includes a metal plate provided with a groove for removing an electronic device; Electronic devices; And a silicone adhesive for bonding the electronic device to the metal plate.
  • the metal plate is conventionally used in semiconductor packaging and the like in the art and is not limited to a kind of metal material that can be formed to a thickness capable of sufficient strength and light and small thickness.
  • the metal plate has high thermal conductivity, has excellent heat dissipation performance, and may be formed into an arbitrary shape such as a plate shape and a wafer shape as needed, and may be applied to a printed circuit technology and a semiconductor process.
  • the material of the metal plate is not limited to the type as long as it can achieve the above object, and preferably may be any one selected from aluminum, magnesium, titanium, copper, or an alloy thereof.
  • the metal plate may have a variety of sizes and thicknesses depending on the manufacturing purpose and the size and shape of the final finished product, for example, may have a thickness of 0.01 to 50mm, if necessary thinner or thicker than the above range You may have it.
  • the size is not limited in the present invention, but a large area substrate of 10 cm ⁇ 10 cm or more may be used.
  • the metal plate may form an oxide layer on the surface as necessary.
  • the oxide layer is formed along the edge of the metal plate except for the region in which the electronic device is to be mounted, and the metal plate may be formed at a predetermined width from the edge of the edge of the edge.
  • the electronic device is mounted on a metal plate, and is used in an optical device, a passive device, a pad, a power amplifier (PA), a low noise amplifier (LNA), a phase shifter, a mixer, an oscillator, a voltage controlled oscillator (VCO), and the like. It may be any one or more than one selected.
  • PA power amplifier
  • LNA low noise amplifier
  • VCO voltage controlled oscillator
  • the method of mounting the electronic device may be performed by applying various methods commonly used in the art, but the present invention is not limited thereto.
  • an electrode made of a conductive metal such as copper, gold, or silver may be formed on one surface of the electronic device.
  • the silicone adhesive in the present invention is for bonding the electronic device to the metal plate, it may be located in the form of an adhesive layer between the metal plate and the electronic device. 2 and 3, the silicon-based adhesive 300 is positioned in the form of an adhesive layer between the metal plate 100 and the electronic device 200, but the metal plate is disposed on a surface adjacent to the electronic device. Since the above-described electronic device removal grooves 110 are provided, it is preferable to work with care so that the silicone-based adhesive does not enter the electronic device removal grooves during the application or bonding of the electronic device.
  • the silicone adhesive used in the present invention may satisfy the following formulas 1 to 3.
  • Equation 1 is a value measured before curing, wherein Formulas 2 and 3 are values measured after curing, wherein Formula 1 is measured by ASTM D1084, Formulas 2 and 3 are tested by ASTM E595.
  • Equation 1 is a viscosity range of the silicone adhesive, the viscosity of the silicone is related to the workability of the adhesive, elasticity, elasticity, adhesiveness and the like.
  • Polysiloxane which is a main component of silicone adhesive, has a good liquidity of molecular chain and has a liquid shape at room temperature.
  • the viscosity of the silicone adhesive is increased because the molecular length of the polysiloxane becomes long or the crosslinking point has a large net structure.
  • the polysiloxane has a network structure, the fluidity is inferior, but the degree of freedom of molecules is greatly increased to have a rubber property.
  • the crosslinking point is excessively large, the degree of freedom of molecules is rather reduced, and the elasticity decreases and becomes hard.
  • the molecular weight of polysiloxane is mentioned.
  • adjusting the viscosity range of the silicone adhesive can predict the desired physical properties in the present invention.
  • the range of Formula 1 is more preferably 1,400 to 1,600 cP, most preferably 1,450 to 1,550 cP. If the viscosity of the silicone adhesive is less than 1,200 cP, the flowability is increased, so that the thickness of the adhesive layer is too thin. If the adhesive strength decreases and the high temperature is applied to the substrate, the metal plate and the electronic device may be separated from each other. In the case of more than 1,600 cP, the elasticity of the silicone adhesive itself increases excessively and becomes hard, and the adhesive strength between the silicone adhesive and the metal plate, the silicone adhesive and the electronic device is greatly reduced. In addition, the shape stability under pressure greatly reduces the defects during wire bonding, making the wire bonding process impossible.
  • Equation 2 and 3 in the present invention are all the physical properties of the silicone curing agent after curing, wherein the curing conditions means that the progress for 1 hour at 65 °C.
  • Equations 2 and 3 are related to the collected volatile condensable material (CVCM) and total mass lose after curing, respectively, and the amount of volatile curing products (gas) Relationship.
  • the silicone adhesive varies depending on the curing agent, catalyst, and the like used, but most of the products generated during curing are volatilized in a gaseous state. Increasing the amount of gas, which is a volatile product in the cured silicone adhesive, forms a void at the interface between the silicone adhesive and the metal plate or the silicone adhesive and the electronic device, or remains as a pore inside the silicone adhesive layer. Since this acts as a factor that greatly reduces the adhesive strength of the metal plate and the electronic device, satisfying the above range is very important in terms of maintaining the adhesive strength.
  • the volatile condensation mass is preferably 0.01 wt% or less, and the total mass loss is preferably less than 0.05 wt%.
  • the volatile condensation mass or the total mass loss of the silicone adhesive exceeds the above range, the volatile product remains in the adhesive layer even after curing and may act as a void, and thus, the adhesive layer may be peeled off when a high temperature is applied.
  • Silicone adhesives satisfying the above conditions in the present invention for example, polysiloxane-based trade name CV4-2500 A, B, CV-2946 A (above Nusil), CHO-BOND 1024 (Parker Chomerics), DC 93-500 (Dow corning).
  • CV4-2500 as the silicone adhesive
  • the mixing ratio of CV4-2500 A and CV4-2500 B is preferably 1: 1 in terms of workability, curing conditions, and adhesive strength.
  • the silicone-based adhesive is in the form of a composition, and may further include a curing agent, a catalyst, a curing retardant, and other additives for easy packaging process.
  • the curing agent is to induce a curing reaction when the silicone adhesive proceeds to moisture contact at room temperature, and depends on the product produced during the curing reaction, but is largely alkoxy-based, acetoxy-based, oxime-based, and aminooxy clock. Any one or more than one may be used.
  • alkoxy curing agent examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, Vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 1,2-bis (trimethoxysilyl) ethane, 1,2-bis (triethoxysilyl) ethane and partial hydrolysates of the compounds Can be mentioned.
  • acetoxy-based curing agent examples include 2- (triethoxysilylethyl) -5- (acetoxy) bicycloheptane.
  • Examples of the oxime curing agent include butan-2-one oxime.
  • Dialkyl aminooxy siloxane is mentioned as an example of the said amino clock hardening
  • the curing agent may adjust the amount of addition freely according to curing conditions, adhesive layer forming conditions and applications.
  • the time required for finishing the alignment process after bonding the electronic device is about 2 to 3 hours, and preferably about 24 hours for the silicone-based adhesive layer to fully cure, and thus the curing agent within the range satisfying the above conditions. It is good to inject, preferably including 0.001 to 5% by weight of the total silicone adhesive composition.
  • the silicone adhesive according to the present invention may include a catalyst.
  • the catalyst is any one selected from all reaction catalysts known in the art for use in silicone curing, for example, tin compounds such as dialkyl tin compounds, titanium compounds such as organic titanates or titanium, amine compounds and platinum compounds. Or two or more, of which platinum compounds are particularly preferred.
  • platinum compound is shown as a preferred example of the catalyst used in the present invention
  • other catalysts known in addition to the above components such as cerium, zirconium, molybdenum, manganese, copper chelate complexes or zinc compounds or salts thereof, It may further comprise an alkoxylate or chelate complex, also a catalytically active compound of main group or a salt of bismuth, lithium, strontium or boron, and the like, but the present invention is not limited thereto.
  • the catalyst is preferably added in the range of 1 to 5,000 ppm in the total silicone adhesive composition in terms of smooth curing progress and workability improvement.
  • the silicone adhesive according to the present invention may further include one or more curing retardants as necessary to improve workability and storage stability.
  • the curing retardant may include an organic compound having a double bond at the terminal or an organic compound having a triple bond at the terminal.
  • Examples of the organic compound (a) having a double bond at the terminal include vinylcyclohexanol, styrene, polyvinyl alcohol, vinyl acetate, ethyl vinyl ether, ethyl vinyl ketone, vinyl bromide, butyl vinyl ether, vinyl propionate, vinyl Dioxolane, vinyl octanol, vinyl methacrylate, vinyl benzoate, vinyl isocyanate, vinyl cyclohexene, dodecyl vinyl ether, triphenyl vinyl silane, acrylonitrile, vinyl trimethoxysilane, etc. are mentioned.
  • Examples of the organic compound (b) having a triple bond at the terminal include butynol, methyl butynol, bismethoxyphenylbutinol, pentinol, ethylpentinol, hexynol, methylpentinol, dimethylhexinol, heptinol, Methyl heptinol, octinol, ethyl octinol, ethynyltrimethylbenzene, ethynyl dimethoxybenzene, ethynylmethoxymethylbenzene, ethynylpentylbenzene, ethynylpentoxybenzene, ethynylmethoxynaphthalene, methylpentinol, ethynylani Sol, ethynyl toluene, ethynyl benzyl alcohol, ethynyl
  • the silicone adhesive may also contain further additives known to those skilled in the art for a long time.
  • additives that may be used in the compositions of the present invention include fillers such as reinforcing and unreinforcing fillers, plasticizers, soluble dyes, inorganic and organic pigments, solvents, fungicides, flavorings, dispersants, thickeners, corrosion inhibitors, oxidation inhibitors, light stabilizers , Heat stabilizers, flame retardants and agents that affect electrical properties, and the like.
  • the silicone adhesive in the method for manufacturing a semiconductor packaging according to the present invention, after applying the silicone adhesive to the substrate at room temperature, the gas product generated during the curing process is removed, and the weight of the electronic device is placed on the silicone adhesive before the curing is completed.
  • the silicone adhesive can then be unfolded naturally and cured to completion.
  • step b) applying the silicone adhesive of step b) to a surface on which the groove for removing the electronic device of the metal plate is formed to form an adhesive layer, and bonding the electronic device on the adhesive layer;
  • the step a) is a step of preparing the metal plate 100, when aligning the electronic device 200 through a post-process, in the portion where the electronic device is located as shown in FIGS.
  • the electronic device removing groove 110 may be provided.
  • one or more grooves for removing an electronic device are formed at a position to which the electronic device is bonded. 2 and 3, the electronic device may be formed on one surface of the metal plate, and a region of the electronic device may not be directly bonded to the metal plate through the silicon-based adhesive layer 300. It is good to be formed.
  • the size, shape, position, number, and depth of the electronic device removing groove 11 are not limited in the present invention, and are freely selected from a line that does not affect the joining of the metal plate 100 of the electronic device 200. This is possible.
  • the upper, lower, left, and right vertices of the electronic device may be formed at positions of the grooves for removing the electronic device.
  • the vertex of the electronic device may be formed anywhere in the bottom portion of the electronic device, in terms of ease of removal of the electronic device is preferably located on the top, bottom, left and right vertex.
  • at least one vertex portion is preferably formed, but the number of formation is not limited.
  • the silicon-based adhesive may be applied to the portion of the substrate surface or another container as shown in step b).
  • the silicone adhesive generates bubbles (volatile products) during the curing process. If the silicone adhesive is not properly removed, the silicone adhesive remains as pores in the bonding process between the metal plate and the electronic device, which greatly affects the adhesive strength. Therefore, it is most important to secure the adhesive strength by removing the volatile product before the bonding process between the metal plate and the electronic device.
  • the silicone adhesive used in the present invention requires a curing time of 12 to 24 hours, the curing is not completed even after the volatile product is completely removed, thereby maintaining the processability of joining the metal plate and the electronic device.
  • the silicone adhesive in the present invention is for bonding the electronic device to the metal plate, it may be located in the form of an adhesive layer between the metal plate and the electronic device. 2 and 3, the silicon-based adhesive 300 is positioned in the form of an adhesive layer between the metal plate 100 and the electronic device 200, but the metal plate is disposed on a surface adjacent to the electronic device. Since the above-described electronic device removal grooves 110 are provided, it is preferable to work with care so that the silicone-based adhesive does not enter the electronic device removal grooves during the application or bonding of the electronic device.
  • the silicone adhesive When the silicone adhesive is applied to the metal plate or the general container as described above, the silicone adhesive meets the moisture in the air and gradually progresses in curing. At this time, depending on the type of curing agent, but various volatile adhesive products are produced, it is preferable to remove the metal plate by storing in a vacuum state to remove it.
  • step b) after applying the silicone-based adhesive, it is preferable to store in a vacuum chamber.
  • the temperature is preferably at room temperature (15 to 25 °C)
  • the degree of vacuum is preferably 10 -2 to 10 -3 torr.
  • the vacuum degree is preferably adjusted to the above range using a rotary pump or the like, and stored in the above conditions for about 30 minutes.
  • the electronic component is placed on the silicone adhesive as in step c), or the silicone adhesive is removed from the container and applied to the metal plate, and then the electronic component is placed thereon.
  • the silicone adhesive used in the present invention has a curing time of 12 to 24 hours, it is not yet cured even after removing the adhesive product, so that the shape easily changes in external force. Therefore, when the electronic device is placed on the silicone adhesive as described above, the electronic device naturally pushes down the silicone adhesive by gravity, and the silicone adhesive can be easily bonded to the substrate and the electronic device.
  • the thickness of the silicon adhesive layer formed in step c) is affected by the weight of the electronic device, but is more affected by the viscosity of the silicone adhesive forming the adhesive layer. Viscosity affects the moldability of the silicone-based adhesive, the higher the viscosity, the lower the fluidity and formability of the adhesive, and the smaller the viscosity, the higher the fluidity and formability of the adhesive. However, when the viscosity of the silicone adhesive is below a certain value, the fluidity is too large and flows like water. In this case, it is important to maintain the viscosity of the silicone adhesive in the range of Equation 1 because the adhesive strength is greatly reduced.
  • the thickness of the silicon adhesive layer formed in step c) is preferably 80 to 100 ⁇ m. If the thickness of the silicon adhesive layer is less than 80 ⁇ m the adhesive strength is lowered when the high temperature is applied to the substrate can be separated from the metal plate and the electronic device, and if the thickness of the silicone adhesive layer is more than 100 ⁇ m the shape stability at high pressure is greatly reduced Defects increase during wire bonding, making the wire bonding process impossible.
  • the silicone adhesive is cured as in step d).
  • an adhesive layer is formed between the electronic device and the substrate and heated or pressed to proceed.
  • Step d) is preferably performed for 12 to 24 hours at 10 to 60 °C.
  • the temperature is out of the above range, it takes a long time to cure, or as the rapid curing reaction proceeds, pores are formed in the applied silicone-based adhesive, so that the adhesive strength may greatly decrease, it is preferable to observe the above conditions.
  • the method for manufacturing a semiconductor packaging structure according to the present invention may further include c-1) aligning the bonded electronic device between the steps c) and d) according to the alignment state of the electronic device.
  • the silicone adhesive according to the present invention has a curing time of 12 to 24 hours, and can maintain processability and formability even during the curing process, so that the metal plate and the electronic device can be easily placed on the adhesive without any additional process or by slight pressure. Can be bonded.
  • the problem is that if a force is applied to each part of the electronic device under pressure and more or less force is applied in either direction, the electronic device slides in the adhesive layer, causing misalignment. For this reason, there exists a possibility that an electrode may not be fixed satisfactorily in the process of forming an electrode later.
  • the electronic device when the electronic device is simply placed on the surface of the silicon adhesive and the silicon adhesive is pressed by the force of gravity applied to the electronic device as in the present invention, there is a concern that the electronic device may not be uniformly bonded to the electronic device according to the repulsive force of the silicone adhesive. Therefore, in the present invention, after placing the electronic device on the surface of the silicone adhesive, it is necessary to press the electronic device by pressing it to fully bond the electronic device and form an adhesive layer having a predetermined thickness, in the process of applying pressure to the electronic device. Since misalignment may occur due to the same slip, when pressure is applied to the electronic devices, a process of aligning the electronic devices in a predetermined direction is necessary.
  • Alignment of the electronic device is performed by rotating an electronic device that is arranged such that the electronic device positioned on the horizontal axis line and the vertical axis line of the corresponding device is located on the same axis, and adjusts the curing condition of the silicone adhesive. Therefore, there is an advantage that the alignment of the electronic device is possible even when the curing is not completely progressed.
  • Alignment of the electronic device may proceed with equipment and methods commonly used in the art.
  • the alignment method as shown in the Republic of Korea Patent Publication No. 10-2014-0109184, based on the pattern image of an arbitrary point in the electronic device to determine the angle of the other electronic device is distorted from the reference coordinates, the four vertices and center points of the upper, lower, left, right edges of the electronic device After the calculation, the flat zone can be formed based on this, and the electronic device can be rotated by the twisted angle by aligning with the reference coordinate.
  • Step c-1) is preferably performed for 1 to 5 hours at 10 to 60 °C.
  • the temperature is out of the above range, it takes a long time to cure, or as the rapid curing reaction proceeds, pores are formed in the applied silicone-based adhesive, so that the adhesive strength may greatly decrease, it is preferable to observe the above conditions.
  • Step e) according to the present invention can be removed using an electronic device removal groove provided in a portion where the electronic device is located in the metal plate.
  • the electronic device removal tool 120 having a shape such as a metal bar in the groove for removing the electronic device may be inserted into the groove for removing the electronic device. After insertion, it can be removed by applying a force in the direction of the arrow using the lever principle.
  • the metal plate manufactured according to the present invention may be recycled by removing the metal element and the silicone-based adhesive even after being used in an electronic product.
  • the metal plate after being used as an electronic product as a metal plate as described above, it is possible to easily remove the electronic device and the silicon-based adhesive bonded through the groove for removing the electronic device can be a great help in reducing production costs.
  • the metal substrate may be provided by removing the residual silicone adhesive as in step a-2).
  • the method of removing the residual silicone adhesive is not limited in the present invention, and the silicone adhesive may be burned by using a remover or continuously heating to a temperature lower than the melting point of the metal plate.
  • the electronic device is electrically connected to another electronic device or a substrate (wire bonding).
  • the wire is not limited to a kind as long as the conductor is excellent in workability, and preferably, a gold material.
  • the wire-bonded semiconductor package is molded to protect it from external environments such as moisture, heat, and physical shock. It is preferable to use thermosetting resins, such as an epoxy, as a material used at the said molding process.
  • solder ball mount process for attaching solder balls to the substrate may be performed to electrically connect the printed circuit board and the semiconductor package.
  • the semiconductor package structure manufactured as described above and the semiconductor device including the semiconductor package structure have a lower production cost than a conventional silicon substrate, and the process is simple and can be manufactured in a large area. In particular, there is no loss of adhesive strength even at a temperature of -270 to 250 ° C, which is a harsh temperature condition for the electronic device, and excellent weather resistance can be widely used in LED packages and the like.
  • Viscosity of silicone adhesives was measured in accordance with ASTM D1084, collected volatile condensable material (CVCM) and total mass loss (TML) according to ASTM E595, surface hardness, volatile condensation mass and total Mass loss was measured after curing at 65 ° C. for 60 minutes.
  • the degree of vacuum was 7.0 5 Torr or less
  • the heating rod temperature was 125 ° C
  • the cold plate temperature was 25 ° C
  • the test time was 24 hours.
  • the semiconductor package structures prepared through the examples and the comparative examples were put in an oven controlled at room temperature (23 ° C.) and allowed to stand for 1 hour. Then, the temperature of the oven was lowered at a rate of 1 ° C./min to ⁇ 25 ° C. and left for 30 minutes. The temperature of the oven was further raised at a rate of 1 ° C./min, set at 70 ° C., and allowed to stand for 30 minutes. After heating up from -25 degreeC to 70 degreeC, it returned to normal temperature again and repeated 100 times as one cycle. In the last 100 repetitions, the degree of contraction and expansion of the adhesive layer was confirmed by measuring the movement of the electronic device by the distance between adjacent chips.
  • a metal plate made of aluminum and provided with a groove for removing an electronic device was prepared. Apart from this, the Silsil CV4-2500 A and CV4-2500 B 1: 1 were mixed with a silicone-based adhesive and applied to the surface of the prepared metal plate. After application, the metal plate was put into a vacuum oven and kept at 20 ° C. in a vacuum of 10 ⁇ 2 torr for 30 minutes to remove the cured product.
  • CMOS Complementary Metal Oxide Silicon
  • a semiconductor packaging was manufactured in the same manner as in Example 1, except that in Example 1, a general epoxy-based adhesive (EPO-TEK 301, Epoxy Technology Inc.) was used instead of the silicone-based adhesive.
  • EPO-TEK 301 Epoxy Technology Inc.
  • the physical properties of the prepared specimens were measured and listed in Table 1 below.
  • the semiconductor packaging prepared according to the present invention was confirmed that less product generated during curing.
  • the semiconductor package structure of Example 1 shows little change in the moving distance between electronic devices, even with repeated temperature changes.
  • the surface of the adhesive layer was visually observed, and as a result, bubbles were severely generated on the surface as shown in FIG. 5, whereby the adhesive strength of the adhesive layer decreased due to the bubbles, resulting in the electronic device falling. Accordingly, it was confirmed that the semiconductor package structure of the comparative example was inferior to the example in terms of adhesive strength and heat resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

본 발명은 전자 소자 제거용 홈이 구비된 금속 판; 전자 소자; 및 상기 전자 소자를 상기 금속 판에 접착시키는 실리콘계 접착제;를 포함하며, 상기 실리콘계 접착제는 하기 식 1 내지 3을 모두 만족하는 것인 금속 판을 포함하는 반도체 패키징에 관한 것이다. [식 1] 1,200 ≤ 점도(cP) ≤ 1,800 [식 2] 휘발성 응축 질량 ≤ 0.01 중량% [식 3] 총 질량 손실 ≤ 0.05 중량% (상기 식 1은 경화 전 측정된 값이고, 상기 식 2 및 3은 경화 후 측정된 값이며, 상기 식 1은 ASTM D1084, 상기 식 2와 3은 ASTM E595의 시험 방법으로 측정된 것이다.)

Description

금속 판을 포함하는 반도체 패키징 구조 및 이의 제조방법
본 발명은 금속 판을 포함하는 반도체 패키징 구조 및 이의 제조방법에 관한 발명으로, 상세하게는 반도체 패키징 방법 중 다이 어태치 방법을 이용하며, 대면적의 금속 판에 전자 소자를 부착하되, 특정 물성을 갖는 실리콘계 접착제를 사용하여 경화 중에도 용이하게 전자 소자를 정렬 및 교체할 수 있는 반도체 패키징 구조 및 이의 제조방법에 관한 것이다.
반도체 소자의 제조공정에서 패키징(packaging) 공정은 전자 소자를 외부 환경으로부터 보호하고, 사용이 용이하도록 전자 소자를 형상화시키고, 전자 소자에 구성된 동작기능을 보호함으로써 반도체 소자의 신뢰성을 향상시키는 작업이다.
최근 반도체 소자의 집적도가 향상되고, 반도체 소자의 기능이 다양해짐에 따라 패키징 공정의 추세는 다수의 반도체 칩들을 적층하여 하나의 반도체 패키지로 반도체 장치를 구성하는 에어리어 실장형 반도체 패키지(area semiconductor package)가 시도되고 있다. 다수의 반도체 칩들이 적층되는 3차원 패키지는 다수의 반도체 칩들이 기판에 실장되는 적층형 패키지(multichip package)로 구성될 수 있다.
반도체 패키지는 보다 얇은 두께로 구현되는 것이 요구되고 있어, 반도체 칩과 칩을 적층할 때 또는 인쇄회로기판(PCB)과 같은 기판에 반도체 칩을 실장할 때, 반도체 칩과 칩 사이 또는 칩과 기판 사이에 다이 어태치 필름(Die Attatch Film)과 같은 접착제를 도입하려는 시도가 이루어지고 있다. 적층되는 개별 반도체 칩의 두께 또한 얇게 도입되고 있어, 기판의 배선을 이루는 금속 물질, 예컨대 구리 배선의 구리 이온(Cu ion)이 패키지 제작 중에 인가되는 열적 스트레스(stress)나 기계적 스트레스에 의해 금속 이온 마이그레이션(metal ion migration) 발생이 우려되고 있다.
이러한 반도체 패키지들과 관련된 칩 캐리어 또는 인쇄회로기판에 사용되는 기재(base) 기판은 열적, 전기적 및 기계적으로 안정하여야 한다. 칩 캐리어 또는 PCB용 기재 기판으로서, 종래에는 고가의 세라믹 기판을 사용하거나 폴리이미드계 수지, 플루오르계 수지 또는 실리콘계 수지 등을 소재로 하는 수지 기판이 사용되어 왔다. 세라믹 기판이나 수지 기판은 그 소재가 절연성이기 때문에, 쓰루홀(through hole) 공정 후 절연물질을 도포할 필요가 없다. 그러나 수지 기판들의 경우, 재료 자체가 고가일 뿐만 아니라, 내습성 및 내열성 등이 불량하여 칩 캐리어용 기판으로는 사용이 곤란하다는 문제점이 있다. 또한, 세라믹 기판은 수지 기판에 비하여 내열성이 다소 우수한 것은 사실이지만, 수지 기판과 마찬가지로 고가이며, 가공 상의 어려움과 함께 가공비가 많이 소요되는 단점이 있다.
이러한 세라믹 또는 수지 기판의 단점을 극복하기 위하여 금속 소재 기판의 사용이 제안되어왔다. 금속 소재 기판은 가격이 저렴할 뿐만 아니라 가공이 용이하고 열적 신뢰성이 양호하다는 장점을 가진다. 그러나 이러한 금속 소재 기판은 전술한 수지 또는 세라믹 기판에서는 불필요한 절연 처리를 별도로 하여야 하며, 기판에 실장된 전자 소자(예를 들면 광소자, 반도체 칩, 수동소자 또는 패드, PA(Power Amplifier), LNA(Low noise Amplifier), 페이스 시프터(phase shifter), 믹서, 오실레이터, VCO(Voltage Controlled Oscillator) 등)와 외부 회로(예를 들면 구동회로)와의 연결을 와이어 본딩 등을 이용하여 행하여야 한다는 불편함이 있다. 특히 와이어 본딩을 행하는 과정에서 단락이 발생하거나 파손 또는 손상이 발생할 우려가 높다.
최근 소개되고 개발되는 다이 어태치(die attach) 패키지 모듈 기술로는 대한민국 공개특허 제10-2010-0002160, 대한민국 공개특허 제10-2013-0045187, 대한민국 공개특허 제10-2013-0099702 등이 있는 바, 상기 특허들은 모두 에폭시 수지에 무기 충전제 또는 첨가제를 포함하는 접착제 조성물을 이용하고 있다.
그러나 상기 특허들에서 사용하는 에폭시계 접착제의 경우 보통 다이본딩 필름 형태로 사용되나 초박형 기판에 부과되는 응력을 효율적으로 저감하기 어려우며, 버(burr)의 발생을 줄이기 위해 다이본딩 필름의 탄성을 높일 경우, 오히려 접착강도가 떨어지는 단점을 가진다. 또한 베이스 기판으로 세라믹 기판을 사용하고 있으며, 금속 판을 사용한 다이 어태치 패키징 방법은 전무하다.
상기와 같은 문제점으로 인해 접착강도, 내열성, 작업성 등을 모두 만족할 수 있는 접착제를 사용한 금속 판의 패키지 모듈 기술의 개발이 절실한 실정이다.
<선행기술문헌>
대한민국 공개특허 제10-2010-0002160호 (2010년 01월 06일)
대한민국 공개특허 제10-2013-0045187호 (2013년 05월 03일)
대한민국 공개특허 제10-2013-0099702호 (2013년 09월 06일)
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 금속 판 표면에 전자 소자를 부착하기 위해 특정 물성을 만족하는 실리콘 접착제를 사용하여 우수한 내열성, 접착강도를 확보하고 기판의 과열에도 센서의 파손을 방지할 수 있는 금속 판을 포함하는 반도체 패키징 구조 및 이의 제조방법에 관한 것이다.
본 발명의 다른 목적은 반도체 패키징 방법 중 다이 어태치 방법을 이용하며, 대면적의 금속 판에 전자 소자를 부착하되, 상기 실리콘계 접착제를 사용하여 경화 중에도 용이하게 전자 소자를 정렬 및 교체할 수 있는 반도체 패키징 구조 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 반도체 패키징 구조를 포함하는 반도체 디바이스를 제공하는 것이다.
본 발명은 금속 판을 포함하는 반도체 패키징에 관한 것이다.
본 발명의 일 양태는, 전자 소자 제거용 홈이 구비된 금속 판; 전자 소자; 및 상기 전자 소자를 상기 금속 판에 접착시키는 실리콘계 접착제;를 포함하며, 상기 실리콘계 접착제는 하기 식 1 내지 3을 모두 만족하는 것인 금속 판을 포함하는 반도체 패키징에 관한 것이다.
[식 1]
1,200 ≤ 점도(cP) ≤ 1,800
[식 2]
휘발성 응축 질량 ≤ 0.01 중량%
[식 3]
총 질량 손실 ≤ 0.05 중량%
(상기 식 1은 경화 전 측정된 값이고, 상기 식 2 및 3은 경화 후 측정된 값이며, 상기 식 1은 ASTM D1084, 상기 식 2와 3은 ASTM E595의 시험 방법으로 측정된 것이다.)
본 발명에서 상기 실리콘계 접착제는 알콕시계, 아세톡시계, 옥심계 및 아미녹시계에서 선택되는 어느 하나 또는 둘 이상의 경화제 및 주석화합물, 티탄화합물, 아민화합물 및 백금화합물에서 선택되는 어느 하나 또는 둘 이상의 촉매를 포함할 수 있으며, 말단에 삼중결합 또는 이중결합을 갖는 유기화합물인 경화 지연제를 더 포함할 수도 있다.
또한 상기 실리콘계 접착제는 금속 판에 도포되어 접착층을 형성할 때 80 내지 100㎛ 두께를 가질 수 있다.
본 발명에서 상기 금속 판은 철, 알루미늄, 아연, 티타늄 및 스테인레스에서 선택되는 어느 하나 또는 둘 이상의 금속을 포함하여 이루어질 수 있다.
본 발명의 제 2 양태는 반도체 패키징 구조를 포함하는 반도체 디바이스로, 상기 반도체 디바이스는 동작 온도가 -270 내지 250℃인 것을 특징으로 한다.
본 발명의 제 3 양태는,
a) 전자 소자의 접착 위치에 하나 또는 둘 이상의 전자 소자 제거용 홈이 형성된 금속 판을 준비하는 단계;
b) 상기 금속 판에 실리콘계 접착제를 도포한 후, 진공 상태에 보관하여 생성되는 기포를 제거하는 단계;
c) 상기 실리콘계 접착제가 도포된 면에 전자 소자를 접합하여 접착층을 형성하는 단계; 및
d) 상기 실리콘계 접착제를 경화하는 단계;
를 포함하는 금속 판을 포함하는 반도체 패키징 구조 제조방법에 관한 것이다.
본 발명의 제 4 양태는,
a) 전자 소자의 접착 위치에 하나 또는 둘 이상의 전자 소자 제거용 홈이 형성된 금속 판을 준비하는 단계;
b) 실리콘계 접착제를 용기에 도포한 후, 진공 상태에 보관하여 생성되는 기포를 제거하는 단계;
c) 상기 b) 단계의 실리콘계 접착제를 상기 금속 판의 전자 소자 제거용 홈이 형성된 면에 도포하여 접착층을 형성하고, 상기 접착층 위에 전자 소자를 접합하는 단계; 및
d) 실리콘계 접착제를 경화하는 단계;
를 포함하는 금속 판을 포함하는 반도체 패키징 구조 제조방법에 관한 것이다.
본 발명에서 상기 b) 단계는 온도 10 내지 60℃, 진공도 10-1 내지 10-5 torr의 조건에서 진행할 수 있으며, 상기 d) 단계는 10 내지 60℃에서 12 내지 24시간 동안 진행하는 것을 특징으로 한다.
또한 본 발명에 따른 반도체 패키징 방법은 상기 d) 단계에서 전자 소자에 불량이 발견될 경우, e) 상기 전자 소자 제거용 홈을 통해 불량이 발생한 전자 소자를 교체하는 단계;를 더 포함하는 것을 특징으로 한다.
또한 본 발명은 상기 c) 단계와 d) 단계 사이에,
c-1) 상기 접합된 전자 소자를 정렬하는 단계;
를 더 포함할 수도 있다. 이때 상기 c-1) 단계는 10 내지 60℃에서 1 내지 5시간 동안 진행하는 것을 특징으로 한다.
또한 본 발명에서 상기 a) 단계로 더 상세하게는,
a-1) 전자 소자가 접합되었으며 하나 또는 둘 이상의 전자 소자 제거용 홈이 구비된 사용 후 금속 판에서 상기 전자 소자 제거용 홈을 이용하여 전자 소자 및 실리콘계 접착제를 제거하는 단계; 및
a-2) 상기 금속 판을 세척하여 잔류 실리콘계 접착제를 제거하여 금속 판을 구비하는 단계;
를 포함할 수 있다.
본 발명에 따른 금속 판을 포함하는 반도체 패키징은 기판과 전자 소자 간의 열팽창계수 차이를 실리콘이 완충하여 접착강도를 유지할 수 있으며, 동시에 접착제 상부의 전자 소자를 과열로부터 보호하여 패키징 신뢰성을 확보할 수 있다.
또한 내습성, 내열성, 내약품성 등이 우수한 실리콘을 접착제로 사용하여 각종 주변 환경 변화에 따른 스트레스를 최소화할 수 있으며, 본 발명에 따라 제조되는 반도체 패키기 구조는 -270 내지 250℃의 온도 조건에도 접착 강도를 손실하지 않는 등 우수한 내후성을 가진다.
또한 실리콘 접착제의 경화시간을 조절하여 전자 소자를 접착제에 접합한 후에도 접착제의 경화 중간에 반도체 웨이퍼를 정밀하게 정렬할 수 있으며, 실리콘 접착제의 점도를 특정 범위로 조절하여 접착층의 두께를 80 내지 100㎛로 얇게 형성할 수 있으며, 와이어 본딩 공정을 적용할 때 전자 소자에 가해지는 압력에도 어떠한 형태 변화 없이 안정적으로 받쳐줄 수 있어 공정 상 발생할 수 있는 접합 불량을 줄일 수 있다.
또한 전자 소자 제거용 홈이 구비된 금속 판을 사용함으로써, 전자 소자 정렬 과정 또는 실리콘계 접착제의 경화 과정에서 발생할 수 있는 불량 전자 소자를 신속하게 제거할 수 있으며, 사용 후 기판에서 전자 소자 및 실리콘계 접착제를 제거하고 금속 판을 재활용할 수도 있다.
여기에 경화 생성물이 최소화되어 접착 강도를 최대로 유지할 수 있으며, 대면적의 기판에도 안정적인 공정이 가능해진다.
본 발명에 따라 제조된 반도체 패키지 구조는 상기와 같은 특성을 가져 기존의 실리콘 금속 판 대비 더 저렴한 생산비용을 가지며, 공정이 간단하고 동작 온도가 -270 내지 250℃으로 내후성이 우수하여 LED 패키지 등에 널리 사용될 수 있다.
도 1은 당업계에서 통상적으로 제조된 전자 소자가 접합된 기판의 단면을 도시한 것이다.
도 2는 전자 소자가 접합된 전자 소자 제거용 홈이 구비된 금속 판의 단면을 도시한 것이다.
도 3은 전자 소자가 접합된 전자 소자 제거용 홈이 구비된 금속 판의 사시도이다.
도 4는 상기 도 2의 금속 판에서 전자 소자를 제거하는 방법이 도시된 것이다.
도 5는 하기 비교예 1을 통해 제조된 반도체 패키지 구조에서 전자 소자가 제거된 접착층의 표면을 도시한 것이다.
<부호의 설명>
100 : 금속 판
110 : 전자 소자 제거용 홈
120 : 전자 소자 제거 도구
200 : 전자 소자
300 : 실리콘계 접착층
이하 구체예들을 참조하여 본 발명에 따른 금속 판을 포함하는 반도체 패키징을 상세히 설명한다. 다음에 소개되는 구체예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다.
따라서 본 발명은 이하 제시되는 구체예들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 구체예들은 본 발명의 사상을 명확히 하기 위해 기재된 것일 뿐, 본 발명이 이에 제한되는 것은 아니다.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
또한 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 발명에서 용어 ‘기판’은 전자 소자, 회로, 접착층, 전극, 부동태화층(passivation layer) 등을 접합할 수 있는 기반(base)로서, 본 발명에서는 금속 재질의 판상 기판을 의미한다.
본 발명에서 용어 ‘전자 소자’은 반도체로 구성된 집적회로를 통칭하는 것으로, 접착제를 통해 상기 기판에 접합되며, 100㎛ 내외의 두께를 가지는 반도체 다이, 층간막(interlayer), 각종 집적회로 등을 포함한다.
본 발명에서 용어 ‘패키징’은 반도체와 기기를 연결하기 위해 전기적으로 포장하는 공정을 말하는 것으로, 본 발명에서는 금속 판의 전자 소자를 접합하기 위한 일련의 공정 및 전자 소자가 접합된 금속 판 자체를 모두 포함하는 의미를 가진다.
도 1과 같이 일반적인 회로 기판은 전자 소자와의 열팽창계수 차이를 최대한 줄이기 위해 접착제로는 에폭시를, 기판은 세라믹 재질을 사용한다. 이러한 세라믹 기판은 전자 소자와의 열팽창계수 차이가 적어 기판에 과도한 열이 집중되어도 세라믹 기판과 전자 소자의 접합 상태를 용이하게 유지할 수 있으나, 세라믹 기판의 생산 단가가 높아 전체 반도체 패키징 공정의 비용을 줄이기 어려운 단점이 있다.
이러한 문제점을 해소하기 위해 전자 소자의 접합 기판으로 금속 판을 사용하는 경우, 세라믹 기판보다 생산 단가가 낮아 공정비용은 쉽게 줄일 수 있으나, 사용하는 동안 개폐 또는 환경 변화에 의해 열 쇼크가 반복적으로 적용되기 때문에 금속 판과 전자 소자 사이에 열응력이 발생하여 금속 판에서 전자 소자의 박리가 자주 발생되는 문제가 있다.
이러한 열응력은 금속 판과 전자 소자의 열팽창계수 뿐 아니라 인장 강도, 보정응력 등을 포함하는 고유 기계 특성에 따라 결정된다. 따라서 열응력을 감소시키기 위해 보다 낮은 인장 강도 및 보정응력을 갖는 금속을 사용하지만, 지금까지 상기 언급된 특성을 가진 금속은 발견되지 않고 있다.
또한 금속 판과 전자 소자를 접착하기 위해 에폭시나 이미드계 접착제를 사용하는 경우에도, 경화 시 과도한 생성물이 발생하여 접착층과 금속 판 또는 전자 소자 사이에 공극이 형성되며, 열팽창계수가 금속 판과 달라 반복되는 열 쇼크에 버티지 못하고 금속 판과 전자 소자가 쉽게 떨어지는 현상이 발생하게 된다.
본 발명자는 이러한 문제점을 해소하기 위해 금속 판과 전자 소자를 접착하는 접착제로 특정 물성을 갖는 실리콘을 선택한 결과, 금속 판과 전자 소자 간의 열팽창계수 차이를 완충할 수 있으며, 동시에 반복되는 열 쇼크에서도 우수한 접착 강도를 발현하며, 특히 -270℃의 저온 또는 250℃의 고온에서도 접착 강도의 손실 없이 반도체 디바이스가 제대로 작동하는 것을 발견하였다.
또한 대면적의 금속 판에서도 우수한 열팽창률 및 수축률을 가져 전자 소자의 이탈을 방지하며, 경화 생성물의 발생이 극히 적고, 경화 후에도 형태안정성이 우수하여 다이 어태치(die attach) 공정 시 와이어 본딩(wire bonding)이 가능한 것을 확인하였다.
여기에 상기 금속 판에 전자 소자 제거용 홈을 구비함으로써 금속 판에 전자 소자를 접합한 후, 접착층을 경화하는 과정에서 전자 소자에 불량이 있는 경우, 이를 쉽게 교체할 수 있으며, 추후 사용 후 기판을 재활용하는 과정에서 접합되어 있는 전자 소자와 접착층을 쉽게 제거할 수 있는 이점을 확인하여 본 발명을 완성하게 되었다.
본 발명에 따른 반도체 패키징은 전자 소자 제거용 홈이 구비된 금속 판; 전자 소자; 및 상기 전자 소자를 상기 금속 판에 접착시키는 실리콘계 접착제;를 포함할 수 있다.
본 발명에서 상기 금속 판은 당업계에서 반도체 패키징 등에 통상적으로 사용되며 충분한 강도와 경박단소가 가능한 두께로 형성 가능한 금속 재질의 것이라면 종류에 한정하지 않는다.
상기 금속 판은 열전도도가 높아 우수한 열방출 성능을 가지며, 필요에 따라 판 형상 및 웨이퍼 형상 등 임의의 형상으로 성형이 가능하며, 인쇄회로 기술 및 반도체 공정 등의 적용이 가능하다.
상기 금속 판의 재질은 상기 목적을 달성할 수 있는 것이라면 종류에 한정치 않으며, 바람직하게는 알루미늄, 마그네슘, 티타늄, 구리 등에서 선택되는 어느 하나 또는 이들의 합금일 수 있다.
상기 금속 판은 제조 목적 및 최종 완성 제품의 크기 및 형태에 따라 다양한 크기 및 두께를 가질 수 있으며, 일예로 0.01 내지 50㎜의 두께를 가질 수 있고, 필요에 따라 상기 범위보다 더 얇거나 두꺼운 두께를 가져도 무방하다. 크기 역시 본 발명에서 한정하지 않으나, 10㎝ ×10㎝ 이상의 대면적 기판을 사용할 수 있다.
상기 금속 판은 필요에 따라 표면에 산화물층을 형성할 수도 있다. 상기 산화물층은 전자 소자가 실장될 구역을 제외하고 상기 금속 판의 테두리를 따라 형성되되, 상기 금속 판은 테두리 끝면 모서리로부터 일정 폭의 간격을 두고 형성될 수 있다.
상기 전자 소자는 금속 판에 실장되는 것으로, 광소자, 수동소자, 패드, PA(Power Amplifier), LNA(Low noise Amplifier), 페이스 시프터(phase shifter), 믹서, 오실레이터, VCO(Voltage Controlled Oscillator) 등에서 선택되는 어느 하나 또는 둘 이상일 수 있다.
상기 전자 소자를 실장하는 방법은 당업계에서 통상적으로 사용하는 다양한 방법을 적용하여 실시할 수 있으며, 본 발명이 이에 제한되는 것은 아니다. 또한 상기 전자 소자에는 구리, 금 또는 은 등의 도전성 금속으로 이루어진 전극이 일면에 형성될 수 있다.
본 발명에서 상기 실리콘계 접착제는 상기 전자 소자를 금속 판에 접합하기 위한 것으로, 상기 금속 판과 상기 전자 소자의 사이에 접착층의 형태로 위치할 수 있다. 도 2 및 3을 통해 이를 더욱 상세히 설명하면, 금속 판(100)과 전자 소자(200) 사이에 실리콘계 접착제(300)가 접착층의 형태로 위치하되, 상기 금속 판에는 전자 소자와 인접하는 면에 하나 이상의 전자 소자 제거용 홈(110)이 구비되므로, 상기 실리콘계 접착제의 도포 또는 전자 소자의 접합 단계에서 실리콘계 접착제가 전자 소자 제거용 홈에 들어가지 않도록 주의하면서 작업하는 것이 좋다.
본 발명에서 사용하는 상기 실리콘 접착제는 하기 식 1 내지 3을 만족하는 것이 좋다.
[식 1]
1,200 ≤ 점도(cP) ≤ 1,800
[식 2]
휘발성 응축 질량 ≤ 0.01 중량%
[식 3]
총 질량 손실 ≤ 0.05 중량%
(상기 식 1은 경화 전 측정된 값이고, 상기 식 2 및 3은 경화 후 측정된 값이며, 상기 식 1은 ASTM D1084, 상기 식 2와 3은 ASTM E595의 시험 방법으로 측정된 것이다.)
상기 식 1은 상기 실리콘 접착제의 점도 범위로, 실리콘의 점도는 접착제의 작업성과 신축성, 탄성, 접착성 등에 관련을 가진다.
실리콘 접착제의 주성분인 폴리실록산은 분자사슬의 유동성이 좋아 상온에서 액체의 형상을 가진다. 실리콘 접착제의 점도가 상승하는 것은 폴리실록산의 분자 길이가 길어지거나, 가교점이 많아 망상(net) 구조를 가지기 때문이다. 폴리실록산이 망상 구조를 가지는 경우 유동성은 떨어지나, 분자의 자유도는 크게 증가하여 고무의 성상을 가지게 된다. 다만 이 가교점이 지나치게 많아지는 경우 분자의 자유도가 오히려 감소하며 신축성이 감소하여 딱딱해지게 된다.
상기 폴리실록산의 유동성을 나타내는 또 다른 물성으로는 폴리실록산의 분자량을 들 수 있다. 그러나 폴리실록산의 분자량으로는 상기 폴리실록산의 가교 정도를 정확하게 예측하기 어려우므로, 상기 실리콘 접착제의 점도 범위를 조절하는 것이 본 발명에서 원하는 물성을 예측할 수 있다.
본 발명에서 상기 식 1의 범위로 더 바람직하게는 1,400 내지 1,600 cP, 가장 바람직하게는 1,450 내지 1,550 cP인 것이 좋다. 실리콘 접착제의 점도가 1,200 cP 미만인 경우 흐름성이 높아져 접착층의 두께가 너무 얇아지게 되며, 접착 강도가 하락하여 기판에 고온이 가해질 경우 금속 판과 전자 소자가 서로 분리될 수 있으며, 실리콘 접착제의 점도가 1,600 cP 초과인 경우, 실리콘 접착제 자체의 탄성이 지나치게 증가하여 딱딱해지며, 실리콘 접착제와 금속 판, 실리콘 접착제와 전자 소자 간의 접착 강도가 크게 떨어지게 된다. 또한 압력 하에서 형태안정성이 크게 떨어져 와이어 본딩 시 불량이 증가하여 와이어 본딩 공정이 불가능하게 된다.
본 발명에서 상기 식 2 및 3은 모두 경화 후의 실리콘 경화제의 물성 값으로, 이때 경화 조건은 65℃에서 1시간 동안 진행한 것을 뜻한다.
상기 식 2 및 3은 각각 경화 후 실리콘의 휘발성 응축 질량(collected volatile condensable material, CVCM) 및 총 질량 손실(total mass lose)에 관한 것으로, 경화 후 실리콘에서 발생하는 휘발성 경화 생성물(가스)의 발생량과 관계있다.
상기 실리콘 접착제는 사용하는 경화제, 촉매 등에 따라 종류가 달라지나, 대부분 경화하면서 발생된 생성물이 기체 상태로 휘발된다. 경화된 실리콘 접착제에서 이러한 휘발성 생성물인 가스의 발생량이 증가하면 실리콘 접착제와 금속 판 또는 실리콘 접착제와 전자 소자 간의 계면에 빈 공간을 형성하거나 실리콘 접착층 내부에서 기공으로 남게 된다. 이는 금속 판과 전자 소자의 접착 강도를 크게 떨어뜨리는 요소로 작용하게 되므로, 상기 범위를 만족하는 것이 접착 강도를 유지하는 측면에서 매우 중요한 요소로 작용한다.
본 발명에 따른 실리콘 접착제는 상기 휘발성 응축 질량이 0.01 중량% 이하인 것이 좋으며, 총 질량 손실은 0.05 중량% 미만인 것이 바람직하다. 실리콘 접착제의 휘발성 응축 질량 또는 총 질량 손실이 상기 범위를 넘는 경우, 경화 후에도 휘발성 생성물이 접착층 내에 잔존하여 공극으로 작용하게 되어 고온이 가해질 경우 접착층이 박리되는 문제점이 발생할 수 있다.
본 발명에서 상기 조건들을 만족하는 실리콘 접착제로 예를 들면 폴리실록산계로 상품명 CV4-2500 A, B, CV-2946 A(이상 Nusil 사), CHO-BOND 1024(Parker Chomerics 사), DC 93-500(Dow corning) 등을 들 수 있다. 특히 상기 실리콘 접착제로 상기 CV4-2500를 사용하는 경우, CV4-2500 A와 CV4-2500 B 모두를 사용하는 것이 좋다. 이때 상기 CV4-2500 A와 CV4-2500 B의 혼합비는 1 : 1인 것이 작업성 및 경화 조건 만족, 접착 강도 측면에서 바람직하다.
본 발명에서 상기 실리콘계 접착제는 조성물의 형태이며, 용이한 패키징 공정을 위해 경화제, 촉매, 경화지연제 및 기타 첨가제를 더 포함할 수 있다.
본 발명에서 상기 경화제는 상기 실리콘 접착제를 상온에서 수분 접촉 시 경화반응이 진행되도록 유도하기 위한 것으로, 경화 반응 과정에서 생성되는 생성물에 따라 다르나 크게 알콕시계, 아세톡시계, 옥심계 및 아미녹시계에서 선택되는 어느 하나 또는 둘 이상을 사용할 수 있다.
본 발명에서 사용 가능한 알콕시계 경화제의 예를 들면 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라부톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 1,2-비스(트리메톡시실릴)에탄, 1,2-비스(트리에톡시실릴)에탄 및 상기 화합물의 부분 가수분해물을 들 수 있다.
상기 아세톡시계 경화제의 예를 들면 2-(트리에톡시실릴에틸)-5-(아세톡시)바이사이클로헵탄을 들 수 있다.
상기 옥심계 경화제의 예를 들면 부탄-2-온 옥심을 들 수 있다.
상기 아미녹시계 경화제의 예를 들면 디알킬 아미녹시 실록산을 들 수 있다.
상기 경화제는 경화 조건, 접착층 형성 조건 및 용도 등에 따라 자유롭게 첨가량을 조절할 수 있다. 일반적으로, 전자 소자를 접합한 후 정렬 과정을 마무리하기까지 소요되는 시간이 2 내지 3시간 정도이며, 실리콘계 접착층이 완전히 경화하는데 대략 24시간가량인 것이 바람직하므로, 상기 조건들을 만족하는 범위 내에서 경화제를 투입하는 것이 좋으며, 바람직하게는 전체 실리콘 접착제 조성물 중 0.001 내지 5 중량% 포함하는 것이 좋다.
또한 본 발명에 따른 상기 실리콘 접착제는 촉매를 포함할 수도 있다.
상기 촉매는 당업계에 실리콘 경화 시 사용되는 것으로 공지된 모든 반응촉매, 예를 들어 디알킬주석화합물 등의 주석화합물, 유기티탄산염 또는 티타늄 등의 티탄화합물, 아민화합물 및 백금화합물에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있으며, 이 중 백금화합물이 특히 바람직하다. 다만, 본 발명에서 사용되는 촉매로 백금화합물을 바람직한 일예로 제시하고 있으나, 상기 성분들 이외에 공지된 다른 촉매, 예컨대, 세륨, 지르코늄, 몰리브덴, 망간, 구리의 킬레이트 착물 또는 아연 화합물 또는 이들의 염, 알콕실레이트 또는 킬레이트 착물, 또한 주족의 촉매 활성 화합물 또는 비스무트, 리튬, 스트론튬 또는 붕소의 염 등을 더 포함할 수도 있으며, 본 발명이 이에 제한되는 것은 아니다.
상기 촉매는 전체 실리콘 접착제 조성물 중 1 내지 5,000 ppm의 범위로 첨가하는 것이 원활한 경화 진행 및 작업성 개선 측면에서 바람직하다.
또한 본 발명에 따른 실리콘 접착제는 작업성 개선 및 저장안정성 개선을 위해 필요에 따라 하나 이상의 경화 지연제를 더 포함할 수도 있다. 상기 경화 지연제는 말단에 이중결합을 갖는 유기화합물 또는 말단에 삼중결합을 갖는 유기화합물을 포함할 수 있다.
상기 말단에 이중결합을 갖는 유기화합물(a)의 예로는 비닐사이클로헥산올, 스티렌, 폴리비닐알콜, 비닐아세테이트, 에틸비닐에테르, 에틸비닐케톤, 비닐브로마이드, 부틸비닐에테르, 비닐프로피오네이트, 비닐디옥솔란, 비닐옥탄올, 비닐메타크릴레이트, 비닐벤조에이트, 비닐이소시아네이트, 비닐사이클로헥센, 도데실비닐에테르, 트리페닐비닐실란, 아크릴로니트릴, 비닐트리메톡시실란 등을 들 수 있다.
상기 말단에 삼중결합을 갖는 유기화합물(b)의 예로는 부틴올, 메틸 부틴올, 비스메톡시페닐부틴올, 펜틴올, 에틸펜틴올, 헥신올, 메틸펜틴올, 디메틸헥신올, 헵틴올, 메틸 헵틴올, 옥틴올, 에틸옥틴올, 에티닐트리메틸벤젠, 에티닐 디메톡시벤젠, 에티닐메톡시메틸벤젠, 에티닐펜틸벤젠, 에티닐펜톡시벤젠, 에티닐메톡시나프탈렌, 메틸펜틴올, 에티닐아니솔, 에티닐톨루엔, 에티닐벤질알코올, 에티닐사이클로헥산올, 페닐부틴올 등을 들 수 있다.
상기 경화지연제는 상기 a와 b를 혼합하여 사용하는 것이 바람직하다. 이때 이들의 혼합비는 a : b = 0.5 내지 5 : 1인 것이 접착강도 유지 및 경화속도 조절 측면에서 바람직하다.
또한 상기 실리콘 접착제는 오랫동안 당업자에게 공지된 추가의 첨가제들을 함유할 수 있다. 본 발명의 조성물에 사용될 수 있는 첨가제의 예는 보강 및 비보강 충전제와 같은 충전제, 가소제, 가용성 염료, 무기 및 유기안료, 용매, 살균제, 향료, 분산제, 증점제, 부식 억제제, 산화 억제제, 광 안정화제, 열 안정화제, 난연제 및 전기 특성에 영향을 주는 제제 등에서 선택되는 어느 하나 또는 둘 이상이다.
본 발명에 따른 반도체 패키징 제조방법은 상온에서 기판에 실리콘 접착제를 도포한 후, 경화 과정에서 발생하는 가스 생성물을 제거하고, 경화가 완료되기 전에 전자 소자를 실리콘 접착제 위에 올려놓아 전자 소자의 무게를 이용하여 실리콘 접착제를 자연스럽게 펼치고 이를 경화하여 완료할 수 있다. 이를 더욱 상세히 설명하면 실리콘계 접착제의 도포 공정에 따라,
a) 전자 소자의 접착 위치에 하나 또는 둘 이상의 전자 소자 제거용 홈이 형성된 금속 판을 준비하는 단계;
b) 상기 금속 판에 실리콘계 접착제를 도포한 후, 진공 상태에 보관하여 생성되는 기포를 제거하는 단계;
c) 상기 실리콘계 접착제가 도포된 면에 전자 소자를 접합하여 접착층을 형성하는 단계; 및
d) 상기 실리콘계 접착제를 경화하는 단계;
를 포함하거나,
a) 전자 소자의 접착 위치에 하나 또는 둘 이상의 전자 소자 제거용 홈이 형성된 금속 판을 준비하는 단계;
b) 실리콘계 접착제를 용기에 도포한 후, 진공 상태에 보관하여 생성되는 기포를 제거하는 단계;
c) 상기 b) 단계의 실리콘계 접착제를 상기 금속 판의 전자 소자 제거용 홈이 형성된 면에 도포하여 접착층을 형성하고, 상기 접착층 위에 전자 소자를 접합하는 단계; 및
d) 실리콘계 접착제를 경화하는 단계;
를 포함할 수 있다.
본 발명에서 상기 a) 단계는 금속 판(100)을 준비하는 단계로, 후공정을 통해 전자 소자(200)를 정렬할 때, 정렬이 용이하도록 도 2 및 3과 같이 전자 소자가 위치하는 부분에 전자 소자 제거용 홈(110)을 구비할 수 있다.
본 발명에 따른 금속 판은 전자 소자가 접착되는 위치에 하나 또는 둘 이상의 전자 소자 제거용 홈이 형성된다. 도 2 및 3을 통해 이를 더욱 상세히 설명하면, 금속 판 중 전자 소자가 위치할 일면에 형성될 수 있으며, 전자 소자의 일정 영역이 실리콘계 접착층(300)을 통해 금속 판과 직접적으로 접합되지 않는 위치에 형성되는 것이 좋다.
상기 전자 소자 제거용 홈(11)의 크기, 형태, 위치, 개수 및 깊이 등은 본 발명에서 한정하지 않으며, 상기 전자 소자(200)의 금속 판(100) 접합에 영향을 주지 않는 선에서 자유롭게 선택이 가능하다.
상기 전자 소자 제거용 홈의 위치로 더욱 상세하게는 도 3과 같이 상기 전자 소자의 상하좌우 꼭짓점이 위치하는 부분에 형성되는 것이 바람직하다. 물론 전자 소자의 꼭짓점뿐만 아니라, 전자 소자의 밑변이 위치하는 부분 어디에도 형성될 수 있으나, 전자 소자의 제거 용이성 측면에서 상하좌우 꼭짓점 부분에 위치하는 것이 좋다. 이때 꼭짓점 부분에 하나 이상 형성되는 것이 좋으나, 형성 개수를 한정하지 않는다.
상기와 같이 금속 판을 구비한 후, b) 단계와 같이 기판 표면 중 전자 소자가 위치할 부분이나, 다른 용기에 실리콘계 접착제를 도포할 수 있다.
상기 실리콘계 접착제는 경화 과정에서 기포(휘발성 생성물)가 발생하는데, 이를 제대로 제거하지 않으면, 금속 판과 전자 소자의 접합 과정에서 기공으로 남게 되어 접착 강도에 큰 악영향을 주게 된다. 따라서 금속 판과 전자 소자의 접합 공정 전에 상기 휘발성 생성물을 제거하여 접착 강도를 확보하는 것이 무엇보다 중요하다.
또한 본 발명에서 사용하는 실리콘계 접착제는 경화시간이 12 내지 24시간 소요되므로, 휘발성 생성물을 완전히 제거한 후에도 경화가 완료되지 않아 금속 판과 전자 소자를 접합할 수 있는 가공성을 유지할 수 있다.
본 발명에서 상기 실리콘계 접착제는 상기 전자 소자를 금속 판에 접합하기 위한 것으로, 상기 금속 판과 상기 전자 소자의 사이에 접착층의 형태로 위치할 수 있다. 도 2 및 3을 통해 이를 더욱 상세히 설명하면, 금속 판(100)과 전자 소자(200) 사이에 실리콘계 접착제(300)가 접착층의 형태로 위치하되, 상기 금속 판에는 전자 소자와 인접하는 면에 하나 이상의 전자 소자 제거용 홈(110)이 구비되므로, 상기 실리콘계 접착제의 도포 또는 전자 소자의 접합 단계에서 실리콘계 접착제가 전자 소자 제거용 홈에 들어가지 않도록 주의하면서 작업하는 것이 좋다.
상기와 같이 금속 판 또는 일반 용기에 실리콘계 접착제를 도포하면, 실리콘계 접착제와 공기 중의 수분과 만나서 서서히 경화가 진행되게 된다. 이때 경화제의 종류에 따라 다르지만 각종 휘발성 접착 생성물이 생성되므로, 이를 제거하기 위해 금속 판을 진공 상태에서 보관하여 이를 제거하는 것이 좋다.
상기 b) 단계는 실리콘계 접착제를 도포한 후, 진공 챔버에서 보관하는 것이 좋다. 이때 온도는 상온(15 내지 25℃)인 것이 좋으며, 진공도는 10-2 내지 10-3 torr인 것이 좋다. 상기 진공도는 로터리 펌프 등을 이용하여 상기 범위로 맞춰주는 것이 좋으며, 상기 조건에서 30분 내외로 보관하는 것이 좋다.
상기와 같이 실리콘계 접착제의 생성물을 제거하면, 상기 c) 단계와 같이 실리콘계 접착제 위에 전자 소자를 올려놓거나, 상기 용기에서 실리콘계 접착제를 떼어내어 상기 금속 판에 도포한 후, 그 위에 전자 소자를 올려놓아 접착층을 형성할 수 있다(다이 어태치).
본 발명에서 사용하는 실리콘계 접착제는 경화 시간이 12 내지 24시간이므로, 접착제 생성물을 제거한 후에도 아직 경화되지 않아 외력에 쉽게 형상이 변화한다. 따라서 상기와 같이 전자 소자를 실리콘계 접착제 위에 올려놓으면, 중력에 의해 전자 소자가 자연스럽게 실리콘계 접착제를 아래로 눌러 펴주게 되며, 상기 실리콘계 접착제가 기판 및 전자 소자와 용이하게 접합할 수 있다.
상기 c) 단계에서 형성되는 실리콘 접착층의 두께는 상기 전자 소자의 무게에도 영향을 받지만, 접착층을 형성하는 실리콘계 접착제의 점도에 더 큰 영향을 받게 된다. 점도는 상기 실리콘계 접착제의 성형성에 영향을 주는데, 점도가 커질수록 접착제의 유동성 및 성형성이 떨어지며, 점도가 작아질수록 접착제의 유동성 및 성형성이 높아진다. 다만, 상기 실리콘계 접착제의 점도가 일정 수치 이하일 경우 유동성이 너무 커져 마치 물처럼 흐르게 되며, 이 경우 접착 강도가 크게 떨어지므로 상기 실리콘계 접착제의 점도를 상기 식 1의 범위로 유지하는 것이 중요하다.
상기 c) 단계에서 형성되는 실리콘 접착층의 두께는 80 내지 100㎛인 것이 좋다. 실리콘 접착층의 두께가 80㎛ 미만인 경우 접착 강도가 하락하여 기판에 고온이 가해질 경우 금속 판과 전자 소자가 서로 분리될 수 있으며, 실리콘 접착층의 두께가 100㎛ 초과인 경우 고압에서의 형태안정성이 크게 떨어져 와이어 본딩 시 불량이 증가하여 와이어 본딩 공정이 불가능하게 된다.
전자 소자를 기판과 접합한 후, 상기 d) 단계와 같이 상기 실리콘계 접착제를 경화한다. 상기와 같이 전자 소자를 기판에 접합할 때 전자 소자와 기판 사이에 접착층을 형성하고 가열 또는 가압하여 진행한다.
상기 d) 단계는 10 내지 60℃에서 12 내지 24시간 동안 진행하는 것이 좋다. 특히 온도가 상기 범위를 벗어나는 경우, 경화에 장시간 소요되거나, 급격한 경화반응이 진행됨에 따라 도포된 실리콘계 접착제에 기공이 형성되어 접착강도가 크게 떨어질 수 있으므로, 상기 조건을 준수하는 것이 좋다.
또한 본 발명에 따른 반도체 패키징 구조 제조 방법은 상기 전자 소자의 정렬 상태에 따라 상기 c) 단계와 d) 단계 사이에 c-1) 상기 접합된 전자 소자를 정렬하는 단계;를 더 포함할 수 있다.
본 발명에 따른 실리콘계 접착제는 경화 시간이 12 내지 24시간으로, 경화 중간에도 가공성과 성형성을 유지할 수 있어, 별다른 추가 공정 없이 접착제 위에 전자 소자를 올려놓거나 약간의 가압으로 쉽게 금속 판과 전자 소자를 접합할 수 있다. 문제는 가압 시 전자 소자의 각 부분에 일정한 힘을 가하지 않고 어느 한 방향이라도 힘이 더 가해지거나 덜 가해지는 경우, 전자 소자가 접착층에서 미끄러져 오정렬이 야기된다. 이 때문에 추후 전극을 형성하는 과정에서 양호하게 전극을 고정하지 못할 우려가 있다.
또한 본 발명과 같이 전자 소자를 단순히 실리콘계 접착제의 표면에 올려놓아 전자 소자에 가해지는 중력의 힘으로 실리콘계 접착제를 누르는 경우, 실리콘계 접착제의 반발력에 따라 전자 소자와 고루 접합되지 않을 우려가 있다. 따라서 본 발명에서도 전자 소자를 실리콘계 접착제의 표면에 올려놓은 후, 전자 소자에 압력을 가해 이를 눌러주어 전자 소자를 완전히 접합하고 일정한 두께의 접착층을 형성하여야 하나, 전자 소자에 압력을 가하는 과정에서 상기와 같은 미끄러짐으로 인해 오정렬이 발생할 수 있으므로, 전자 소자에 압력을 가한 경우, 각 전자 소자를 일정한 방향으로 정렬해주는 과정이 필요하다.
상기 전자 소자의 정렬은 어느 하나의 전자 소자를 기준으로 해당 소자의 가로축 라인 및 세로축 라인에 위치하는 전자 소자를 동일 축에 위치하도록 틀어진 전자 소자를 회전시켜 진행하는 것으로, 실리콘계 접착제의 경화 조건을 조절하여 경화가 완전히 진행되지 않은 상태에서도 전자 소자의 정렬이 가능하다는 장점이 있다.
상기 전자 소자의 정렬은 당업계에서 통상적으로 사용하는 장비 및 방법으로 진행할 수 있다. 정렬 방법의 일예로 대한민국 공개특허 10-2014-0109184와 같이 전자 소자에서 임의 지점의 패턴 이미지를 바탕으로 다른 전자 소자가 기준 좌표로부터 틀어진 각도를 확인하고, 상기 전자 소자의 상하좌우 가장자리 네 꼭짓점 및 중심점을 산출한 후, 이를 바탕으로 플랫존을 형성하고, 기준 좌표와 정렬시켜 틀어진 각도만큼 전자 소자를 회전시켜 진행할 수 있다.
상기 c-1) 단계는 10 내지 60℃에서 1 내지 5시간 동안 진행하는 것이 좋다. 특히 온도가 상기 범위를 벗어나는 경우, 경화에 장시간 소요되거나, 급격한 경화반응이 진행됨에 따라 도포된 실리콘계 접착제에 기공이 형성되어 접착강도가 크게 떨어질 수 있으므로, 상기 조건을 준수하는 것이 좋다.
또한 상기 전자 소자의 정렬 이외에도 금속 판과 전자 소자를 접합한 후에 전자 소자 자체에 불량이 발생하는 경우 e) 상기 전자 소자 제거용 홈을 통해 불량이 발생한 전자 소자를 교체하는 단계;를 더 포함할 수도 있다. 이를 패키징 테스트(packaging test)라 하는데, 패키징 테스트 중에 발견되는 불량 전자 소자를 교체해주는 작업이 필요하다.
본 발명에 따른 e) 단계는 상기 금속 판에서 전자 소자가 위치하는 부분에 구비된 전자 소자 제거용 홈을 이용하여 제거할 수 있다. 도 4를 통해 이를 더욱 상세히 설명하면, 상기 실리콘계 접착제의 경화 중간 또는 경화 후에도 상기 전자 소자 제거용 홈에 금속 바(bar) 등의 형태를 가지는 전자 소자 제거 도구(120)를 전자 소자 제거용 홈에 삽입한 후, 지렛대 원리를 이용하여 화살표 방향으로 힘을 가함으로써 이를 제거할 수 있다.
또한 본 발명에 따라 제조된 금속 판은 전자 제품에 사용된 후에도 상기 금속 소자 및 실리콘계 접착제를 제거하여 재활용할 수도 있다. 더욱 상세하게 상기 a) 단계는
a-1) 전자 소자가 접합되었으며 하나 또는 둘 이상의 전자 소자 제거용 홈이 구비된 사용 후 금속 판에서 상기 전자 소자 제거용 홈을 이용하여 전자 소자 및 실리콘계 접착제를 제거하는 단계; 및
a-2) 상기 금속 판을 세척하여 잔류 실리콘계 접착제를 제거하여 금속 판을 구비하는 단계;
를 포함하여 진행할 수 있다.
상기와 같이 금속 판으로 전자 제품 등에 사용된 후의 금속 판인 경우, 전자 소자 제거용 홈을 통해 접합된 전자 소자 및 실리콘계 접착제를 쉽게 제거할 수 있어 생산 비용 절감에 큰 도움이 될 수 있다.
또한 상기 사용 후 금속 판에서 전자 소자 및 실리콘계 접착제를 제거한 후에도 잔류 실리콘계 접착제가 있을 수 있으므로, 상기 a-2) 단계와 같이 잔류 실리콘계 접착제를 제거하여 금속 판을 구비할 수 있다. 상기 잔류 실리콘계 접착제를 제거하는 방법은 본 발명에서 한정하지 않으며, 리무버(remover)를 이용하거나, 금속 판의 융점보다 낮은 온도로 지속적으로 가열하여 실리콘계 접착제를 연소시킬 수도 있다.
상기와 같이 패키징 테스트가 끝나면, 상기 전자 소자를 다른 전자 소자나 기판 등과 전기적으로 연결하는 작업을 수행한다(wire bonding). 이때 와이어는 가공성이 우수한 전도체라면 종류에 한정치 않으며, 바람직하게는 금 재질인 것이 좋다.
와이어본딩이 완료된 반도체 패키지는 습기, 열, 물리적 충격 등의 외부 환경으로부터 보호하기 위해 몰딩한다. 상기 몰딩 공정에서 사용되는 재료로는 에폭시 등의 열경화성 수지를 사용하는 것이 바람직하다.
몰딩 공정이 끝나면 인쇄 회로 기판(printed circuit board)과 상기 반도체 패키지를 전기적으로 연결하기 위해 솔더볼을 기판에 부착하는 솔더볼 마운트(solder ball mount) 공정을 수행할 수 있다.
상기와 같이 제조된 반도체 패키지 구조와 상기 반도체 패키지 구조를 포함하는 반도체 디바이스는 기존의 실리콘 기판 대비 더 저렴한 생산비용을 가지며, 공정이 간단하고 대면적으로 제조 가능하다. 특히 전자 디바이스에게 가혹한 온도 조건인 -270 내지 250℃의 온도에서도 접착 강도의 손실이 없으며, 내후성이 우수하여 LED 패키지 등에 널리 사용될 수 있다.
이하, 실시예 및 비교예를 들어 본 발명을 더욱 상세히 설명한다. 다만 하기 실시예 및 비교예는 본 발명을 통해 도출될 수 있는 여러 방법들 중 하나로, 본 발명이 하기 실시예 또는 비교예에 의해 제한되는 것은 아니다.
하기 실시예 및 비교예를 통해 제조된 시편의 물성을 다음과 같이 측정하였다.
(실리콘계 접착제)
실리콘계 접착제의 점도(viscosity)는 ASTM D1084, 휘발성 응축 질량(collected volatile condensable material, CVCM) 및 총 질량 손실(total mass loss, TML)은 ASTM E595에 의거하여 측정하였으며, 표면 경도, 휘발성 응축 질량 및 총 질량 손실은 65℃에서 60분간 경화한 후 측정하였다.
(아웃가스)
ASTM E595에 의거하였으며, 진공도는 7.05 Torr 이하, 가열봉 온도는 125℃, 냉각판 온도는 25℃, 시험 시간은 24시간이었다.
(내열성)
실시예 및 비교예를 통해 제조된 반도체 패키지 구조를 상온(23℃)으로 조절된 오븐에 투입하고 1시간 정치하였다. 그리고 1℃/분의 속도로 오븐의 온도를 내려 -25℃까지 내리고 30분간 정치하였다. 그리고 다시 1℃/분의 속도로 오븐의 온도를 올려 70℃에 맞추고 30분간 정치하였다. -25℃에서 70℃로 승온한 후, 다시 상온으로 돌아오는 것을 1 사이클(cycle)로 하여 100회 반복하였다. 마지막 100회 반복 시에 전자 소자의 이동 정도를 인접 칩 간 거리로 측정하여 접착층의 수축 및 팽창 정도를 확인하였다.
(실시예 1)
알루미늄 재질이며, 전자 소자 제거용 홈이 구비된 금속 판을 준비하였다. 이와는 별개로 실리콘계 접착제로 Nusil사의 CV4-2500 A 및 CV4-2500 B를 1 : 1로 혼합하고, 준비된 금속 판의 표면에 도포하였다. 도포 후, 금속 판을 진공 오븐에 투입하고, 20℃, 10-2 torr의 진공도로 30분간 유지하여 경화 생성물을 제거하였다.
경화 생성물을 제거한 후, 진공 오븐에서 금속 판을 꺼내고 실리콘계 접착제가 도포된 면에 CMOS(Complementary Metal Oxide Silicon) 소자를 도 2의 형태가 되도록 올려놓고, 실리콘계 접착제가 90㎛의 두께를 가지도록 압력을 가하여 접합하였다. 그리고 20℃에서 1시간가량 정렬작업을 실시하였다. 정렬이 끝난 금속 판은 상온에서 24시간 동안 방치하여 공정을 완료하였다. 제조된 시편의 물성을 측정하여 표 1에 기재하였다.
(비교예 1)
상기 실시예 1에서 실리콘계 접착제 대신 일반 에폭시계 접착제(EPO-TEK 301, Epoxy Technology Inc.)을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 반도체 패키징을 제조하였다. 제조된 시편의 물성을 측정하여 하기 표 1에 기재하였다.
[표 1]
Figure PCTKR2016008631-appb-I000001
상기와 같이 본 발명에 따라 제조된 반도체 패키징은 경화 중 발생하는 생성물이 적은 것을 확인할 수 있었다. 특히 내열성 측면에서 실시예 1의 반도체 패키지 구조는 반복되는 온도 변화에도 전자 소자 간 이동거리의 변화가 거의 없는데 반해, 비교예 1의 반도체 패키지 구조는 낮은 온도에서 급격한 수축이 발생하여 전자 소자가 금속 판으로부터 쉽게 떨어졌으며, 전자 소자가 떨어진 후 접착층의 표면을 육안으로 관찰한 결과 도 5와 같이 표면에 기포가 심하게 발생하여 상기 기포로 인해 접착층의 접착 강도가 하락하여 전자 소자가 떨어진 것을 확인할 수 있었다. 이에 따라 접착 강도 및 내열성 측면에서 비교예의 반도체 패키지 구조가 실시예에 비해 열세인 것을 확인할 수 있었다.
상술한 바와 같이, 본 발명의 바람직한 실시예 및 시험예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (20)

  1. 전자 소자 제거용 홈이 구비된 금속 판;
    전자 소자; 및
    상기 전자 소자를 상기 금속 판에 접착시키며, 실리콘계 접착제를 포함하는 접착층;
    를 포함하며, 상기 실리콘계 접착제는 하기 식 1 내지 3을 모두 만족하는 것인 금속 판을 포함하는 반도체 패키징 구조.
    [식 1]
    1,200 ≤ 점도(cP) ≤ 1,800
    [식 2]
    휘발성 응축 질량 ≤ 0.01 중량%
    [식 3]
    총 질량 손실 ≤ 0.05 중량%
    (상기 식 1은 경화 전 측정된 값이고, 상기 식 2 내지 3은 경화 후 측정된 값이며, 상기 식 1은 ASTM D1084, 상기 식 2 및 3은 ASTM E595의 시험 방법으로 측정된 것이다.)
  2. 제 1항에 있어서,
    상기 접착층은 두께 80 내지 100㎛로 형성되는 것인 금속 판을 포함하는 반도체 패키징 구조.
  3. 제 1항에 있어서,
    상기 실리콘계 접착제는 알콕시계, 아세톡시계, 옥심계 및 아미녹시계에서 선택되는 어느 하나 또는 둘 이상의 경화제를 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조.
  4. 제 1항에 있어서,
    상기 실리콘계 접착제는 주석화합물, 티탄화합물, 아민화합물 및 백금화합물에서 선택되는 어느 하나 또는 둘 이상의 촉매를 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조.
  5. 제 1항에 있어서,
    상기 실리콘계 접착제는 말단에 삼중결합 또는 이중결합을 갖는 유기화합물인 경화 지연제를 더 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조.
  6. 제 1항 내지 제 5항에서 선택되는 어느 한 항의 반도체 패키징 구조를 포함하는 반도체 디바이스로, 상기 반도체 디바이스는 동작 온도가 -270 내지 250℃인 것을 특징으로 하는 반도체 패키징 구조.
  7. a) 전자 소자의 접착 위치에 하나 또는 둘 이상의 전자 소자 제거용 홈이 형성된 금속 판을 준비하는 단계;
    b) 상기 금속 판에 실리콘계 접착제를 도포한 후, 진공 상태에 보관하여 생성되는 기포를 제거하는 단계;
    c) 상기 실리콘계 접착제가 도포된 면에 전자 소자를 접합하여 접착층을 형성하는 단계; 및
    d) 상기 실리콘계 접착제를 경화하는 단계;
    를 포함하는 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  8. a) 전자 소자의 접착 위치에 하나 또는 둘 이상의 전자 소자 제거용 홈이 형성된 금속 판을 준비하는 단계;
    b) 실리콘계 접착제를 용기에 도포한 후, 진공 상태에 보관하여 생성되는 기포를 제거하는 단계;
    c) 상기 b) 단계의 실리콘계 접착제를 상기 금속 판의 전자 소자 제거용 홈이 형성된 면에 도포하여 접착층을 형성하고, 상기 접착층 위에 전자 소자를 접합하는 단계; 및
    d) 실리콘계 접착제를 경화하는 단계;
    를 포함하는 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  9. 제 7항 또는 제 8항에 있어서,
    상기 접착층은 두께 80 내지 100㎛로 형성되는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  10. 제 7항 또는 제 8항에 있어서,
    상기 실리콘계 접착제는 하기 식 1 내지 3을 모두 만족하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
    [식 1]
    1,200 ≤ 점도(cP) ≤ 1,800
    [식 2]
    휘발성 응축 질량 ≤ 0.01 중량%
    [식 3]
    총 질량 손실 ≤ 0.05 중량%
    (상기 식 1은 경화 전 측정된 값이고, 상기 식 2 및 3은 경화 후 측정된 값이며, 상기 식 1은 ASTM D1084, 상기 식 2와 3은 ASTM E595의 시험 방법으로 측정된 것이다.)
  11. 제 7항 또는 제 8항에 있어서,
    상기 실리콘계 접착제는 알콕시계, 아세톡시계, 옥심계 및 아미녹시계에서 선택되는 어느 하나 또는 둘 이상의 경화제를 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  12. 제 7항 또는 제 8항에 있어서,
    상기 실리콘계 접착제는 주석화합물, 티탄화합물, 아민화합물 및 백금화합물에서 선택되는 어느 하나 또는 둘 이상의 촉매를 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  13. 제 7항 또는 제 8항에 있어서,
    상기 실리콘계 접착제는 말단에 삼중결합 또는 이중결합을 갖는 유기화합물인 경화 지연제를 더 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  14. 제 7항 또는 제 8항에 있어서,
    상기 금속 판은 철, 알루미늄, 아연, 티타늄 및 스테인레스에서 선택되는 어느 하나 또는 둘 이상의 금속을 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  15. 제 7항 또는 제 8항에 있어서,
    상기 b) 단계는 온도 10 내지 60℃, 진공도 10-1 내지 10-5 torr의 조건에서 진행하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  16. 제 7항 또는 제 8항에 있어서,
    상기 d) 단계는 10 내지 60℃에서 12 내지 24시간 동안 진행하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  17. 제 7항 또는 제 8항에 있어서,
    상기 d) 단계에서 전자 소자에 불량이 발견될 경우,
    e) 상기 전자 소자 제거용 홈을 통해 불량이 발생한 전자 소자를 교체하는 단계;
    를 더 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  18. 제 7항 또는 제 8항에 있어서,
    상기 c) 단계와 d) 단계 사이에,
    c-1) 상기 접합된 전자 소자를 정렬하는 단계;
    를 더 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  19. 제 18항에 있어서,
    상기 c-1) 단계는 10 내지 60℃에서 1 내지 5시간 동안 진행하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
  20. 제 7항 또는 제 8항에 있어서,
    상기 a) 단계는,
    a-1) 전자 소자가 접합되었으며 하나 또는 둘 이상의 전자 소자 제거용 홈이 구비된 사용 후 금속 판에서 상기 전자 소자 제거용 홈을 이용하여 전자 소자 및 실리콘계 접착제를 제거하는 단계; 및
    a-2) 상기 금속 판을 세척하여 잔류 실리콘계 접착제를 제거하여 금속 판을 구비하는 단계;
    를 포함하는 것인 금속 판을 포함하는 반도체 패키징 구조 제조방법.
PCT/KR2016/008631 2016-08-04 2016-08-05 금속 판을 포함하는 반도체 패키징 구조 및 이의 제조방법 WO2018026035A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160099409A KR101766425B1 (ko) 2016-08-04 2016-08-04 금속 판을 포함하는 반도체 패키징 구조
KR10-2016-0099409 2016-08-04
KR1020160099414A KR101766646B1 (ko) 2016-08-04 2016-08-04 금속 판을 포함하는 반도체 패키징 구조 제조방법
KR10-2016-0099414 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018026035A1 true WO2018026035A1 (ko) 2018-02-08

Family

ID=61072939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008631 WO2018026035A1 (ko) 2016-08-04 2016-08-05 금속 판을 포함하는 반도체 패키징 구조 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2018026035A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277593A (ja) * 1996-04-19 1997-10-28 Oki Electric Ind Co Ltd 受発光素子モジュールおよびその形成方法
KR20040078908A (ko) * 2003-03-07 2004-09-13 신에쓰 가가꾸 고교 가부시끼가이샤 열압착용 실리콘 고무 시트
KR20100137375A (ko) * 2009-06-22 2010-12-30 스탄레 덴끼 가부시키가이샤 발광장치의 제조방법, 발광장치 및 발광장치 탑재용 기판
JP2013033808A (ja) * 2011-08-01 2013-02-14 Stanley Electric Co Ltd 半導体発光装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277593A (ja) * 1996-04-19 1997-10-28 Oki Electric Ind Co Ltd 受発光素子モジュールおよびその形成方法
KR20040078908A (ko) * 2003-03-07 2004-09-13 신에쓰 가가꾸 고교 가부시끼가이샤 열압착용 실리콘 고무 시트
KR20100137375A (ko) * 2009-06-22 2010-12-30 스탄레 덴끼 가부시키가이샤 발광장치의 제조방법, 발광장치 및 발광장치 탑재용 기판
JP2013033808A (ja) * 2011-08-01 2013-02-14 Stanley Electric Co Ltd 半導体発光装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ADVANCED ENGINEERING CV4-2500", NUSIL, 21 May 2014 (2014-05-21), Retrieved from the Internet <URL:https://nusil.com/services/downloadfile.ashx?productcode=CV4-2500&originalname=CV4-2500P.pdf> *

Similar Documents

Publication Publication Date Title
WO2011136417A1 (ko) 단자 일체형 금속베이스 패키지 모듈 및 금속베이스 패키지 모듈을 위한 단자 일체형 패키지방법
WO2009131405A2 (ko) 에폭시계 조성물, 접착 필름, 다이싱 다이본딩 필름 및 반도체 장치
WO2013176426A1 (ko) 반도체 패키지, 그 제조 방법 및 패키지 온 패키지
WO2011090364A2 (ko) 경화성 조성물
KR20020002446A (ko) 중합체 재료에 대한 점착성이 강화된 반도체 장치의보호용 오버코트 및 그 제조 방법
WO2011090362A2 (ko) 실리콘 수지
WO2011090361A2 (ko) 경화성 조성물
WO2013015591A2 (ko) 경화성 조성물
WO2014017885A1 (ko) 경화성 조성물
WO2017222151A1 (ko) 고체상 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 포함하는 봉지재 및 반도체 패키지
WO2016175385A1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
WO2013176519A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2012091306A2 (ko) 반도체용 접착 조성물 및 이를 이용하는 접착 필름
WO2016167449A1 (ko) 포스포늄계 화합물, 이를 포함하는 에폭시 수지 조성물, 및 이를 사용하여 제조된 반도체 소자
WO2017142251A1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자
WO2015147509A1 (ko) 열경화성 반도체 웨이퍼용 임시접착필름, 이를 포함하는 적층체 및 적층체 분리방법
WO2018026035A1 (ko) 금속 판을 포함하는 반도체 패키징 구조 및 이의 제조방법
WO2019045336A1 (ko) 무기재형 실리콘 점착필름
KR101766425B1 (ko) 금속 판을 포함하는 반도체 패키징 구조
WO2018117373A1 (ko) 필름형 반도체 밀봉 부재, 이를 이용하여 제조된 반도체 패키지 및 그 제조 방법
WO2017061778A1 (ko) 광경화형 계면의 접착증진 조성물 및 이를 이용한 기판의 표면개질방법
WO2013094930A1 (ko) 비자외선형 다이싱 다이본딩 필름
WO2013094998A1 (ko) 반도체용 접착 조성물 및 이를 포함하는 접착 필름
WO2021112627A1 (ko) 반도체 패키지용 언더필 필름 및 이를 이용하는 반도체 패키지의 제조방법
WO2017057844A1 (ko) 반도체 패키지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16911697

Country of ref document: EP

Kind code of ref document: A1