WO2018025440A1 - 点火プラグ、制御システム、内燃機関、内燃機関システム - Google Patents

点火プラグ、制御システム、内燃機関、内燃機関システム Download PDF

Info

Publication number
WO2018025440A1
WO2018025440A1 PCT/JP2017/010226 JP2017010226W WO2018025440A1 WO 2018025440 A1 WO2018025440 A1 WO 2018025440A1 JP 2017010226 W JP2017010226 W JP 2017010226W WO 2018025440 A1 WO2018025440 A1 WO 2018025440A1
Authority
WO
WIPO (PCT)
Prior art keywords
spark plug
insulator
internal combustion
combustion engine
metal shell
Prior art date
Application number
PCT/JP2017/010226
Other languages
English (en)
French (fr)
Inventor
加藤 友聡
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to CN201780048044.3A priority Critical patent/CN109565156B/zh
Priority to KR1020197002735A priority patent/KR20190022810A/ko
Priority to EP17836547.4A priority patent/EP3496217B1/en
Priority to US16/321,218 priority patent/US10931087B2/en
Priority to JP2017533047A priority patent/JP6505230B2/ja
Publication of WO2018025440A1 publication Critical patent/WO2018025440A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/16Arrangements for cooling other engine or machine parts for cooling fuel injectors or sparking-plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/16Means for dissipating heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/36Sparking plugs characterised by features of the electrodes or insulation characterised by the joint between insulation and body, e.g. using cement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs

Definitions

  • This specification relates to a spark plug.
  • Spark plugs are used to ignite air-fuel mixtures in combustion chambers such as internal combustion engines.
  • a spark plug for example, a spark plug having a cylindrical insulator and a metal shell disposed on the outer periphery of the insulator is used.
  • a spark plug for example, a plug in which an external thread is formed on the outer peripheral surface of the metal shell is used. The male thread of the metal shell engages with the female thread formed in the mounting hole of the internal combustion engine.
  • the diameter of the spark plug In order to improve the degree of freedom in designing the internal combustion engine, it is preferable to reduce the diameter of the spark plug. However, when the diameter of the spark plug is reduced, a problem may occur. For example, heat resistance may be reduced.
  • This specification discloses a technique capable of suppressing problems related to a spark plug.
  • a cylindrical insulator having an axial hole extending in the direction of the axis; A metal shell disposed on the outer periphery of the insulator; A central electrode disposed in the axial hole of the insulator; A ground electrode connected to the tip of the metal shell and facing the center electrode; A spark plug comprising: The metal shell has a threaded portion that is fitted to a thread of a mounting hole of an internal combustion engine, Of the outer peripheral surface of the metal shell, the surface area of the portion from the rear end of the screw portion to the tip of the screw portion is defined as a surface area Ss.
  • the surface area of the portion of the metal shell that is exposed to the combustion gas of the internal combustion engine is the surface area Sa
  • the surface area of the portion of the insulator exposed to the combustion gas is the surface area Sb
  • This structure can improve heat resistance.
  • the spark plug according to Application Example 1 The metal shell has a reduced inner diameter portion whose inner diameter decreases toward the tip side,
  • the insulator has a reduced outer diameter portion whose outer diameter decreases toward the distal end side,
  • the spark plug includes a packing that contacts the reduced outer diameter portion and the reduced inner diameter portion, or the reduced outer diameter portion directly contacts the reduced inner diameter portion,
  • F the distance in the direction of the axis line from the tip of the contact portion between the outer peripheral surface of the insulator and the reduced inner diameter portion or the packing to the tip of the metal shell.
  • the spark plug according to Application Example 1 or 2 The metal shell has a reduced inner diameter portion whose inner diameter decreases toward the tip side,
  • the insulator has a reduced outer diameter portion whose outer diameter decreases toward the distal end side,
  • the spark plug includes a packing that contacts the reduced outer diameter portion and the reduced inner diameter portion, or the reduced outer diameter portion directly contacts the reduced inner diameter portion,
  • the volume of the tip side portion when the tip side portion that is a portion from the rear end of the threaded portion to the tip of the metal shell is assumed to be solid is the volume Vv
  • the front end side of the contact portion between the outer peripheral surface of the insulator and the reduced inner diameter portion or the packing When the volume of the part is the volume Vc, A spark plug satisfying (Vv ⁇ Vc) ⁇ 2000 mm 3 .
  • the stain resistance can be improved.
  • the spark plug according to any one of Application Examples 1 to 3 The metal shell has a reduced inner diameter portion whose inner diameter decreases toward the tip side,
  • the insulator has a reduced outer diameter portion whose outer diameter decreases toward the distal end side,
  • the spark plug includes a packing that contacts the reduced outer diameter portion and the reduced inner diameter portion, or the reduced outer diameter portion directly contacts the reduced inner diameter portion,
  • a portion of the insulator on the front end side is disposed on the front end side with respect to the front end of the metal shell,
  • a projected area when projecting a portion of the insulator disposed closer to the tip side than the tip of the metal shell in a direction perpendicular to the direction of the axis is defined as a projected area Sd.
  • This configuration can improve durability.
  • a control system for controlling an internal combustion engine comprising the spark plug according to any one of application examples 1 to 4 and a coolant path for cooling the spark plug, A flow rate control unit for controlling the flow rate of the coolant flowing through the coolant path per unit time; A temperature sensor for measuring the temperature of the internal combustion engine; With The flow rate control unit reduces the flow rate when the temperature measured by the temperature sensor is equal to or lower than a threshold value, compared to when the temperature is higher than the threshold value. Control system.
  • This configuration can improve heat resistance and stain resistance.
  • An internal combustion engine A coolant path for the coolant to flow; A hole forming portion for forming a mounting hole for mounting a spark plug; The spark plug according to any one of application examples 1 to 4 attached to the attachment hole; With The hole forming portion forms the attachment hole penetrating the cooling liquid path, A part of the metallic shell of the spark plug is exposed in the cooling liquid path, Internal combustion engine.
  • This structure can improve heat resistance.
  • This configuration can improve heat resistance and stain resistance.
  • an ignition plug an internal combustion engine having an ignition plug, an internal combustion engine control system, and an internal combustion engine having an internal combustion engine and a control system. It can be realized in the form of an engine system, a vehicle having an internal combustion engine system, or the like.
  • FIG. It is the schematic which shows the cross-sectional structure of the internal combustion engine 600 as one Embodiment. It is explanatory drawing of an internal combustion engine system. It is the schematic which shows the cross-sectional structure of another embodiment of an internal combustion engine.
  • FIG. 1 is a cross-sectional view of a spark plug 100 as one embodiment.
  • a center axis CL also referred to as “axis line CL”
  • axis line CL the direction parallel to the central axis CL
  • a direction perpendicular to the axis CL is also referred to as a “radial direction”.
  • the lower direction in FIG. 1 the direction parallel to the central axis CL, the lower direction in FIG.
  • the tip direction Df is a direction from the terminal fitting 40 described later toward the center electrode 20. 1 is referred to as the front end side of the spark plug 100, and the rear end direction Dfr side in FIG. 1 is referred to as the rear end side of the spark plug 100.
  • the spark plug 100 includes a cylindrical insulator 10 having a through-hole 12 (also referred to as a shaft hole 12) extending along the axis CL, a center electrode 20 held on the tip side of the through-hole 12, and the through-hole 12.
  • the terminal fitting 40 held on the rear end side, the resistor 74 disposed between the center electrode 20 and the terminal fitting 40 in the through hole 12, and the resistor 74 and the center electrode 20 are electrically connected.
  • the large-diameter portion 14 having the largest outer diameter is formed at the approximate center in the axial direction of the insulator 10.
  • a rear end side body portion 13 is formed on the rear end side from the large diameter portion 14.
  • a front end side body portion 15 having an outer diameter smaller than that of the rear end side body portion 13 is formed on the front end side of the large diameter portion 14.
  • a further reduced diameter portion 16 and a leg portion 19 are formed in this order toward the distal end side further on the distal end side than the distal end side body portion 15.
  • the outer diameter of the reduced outer diameter portion 16 gradually decreases toward the front direction Df. In the vicinity of the reduced outer diameter portion 16 (in the example of FIG.
  • the front end side body portion 15), a reduced inner diameter portion 11 is formed in which the inner diameter gradually decreases in the front direction Df.
  • the insulator 10 is preferably formed in consideration of mechanical strength, thermal strength, and electrical strength.
  • the insulator 10 is formed by firing alumina (other insulating materials can also be used). is there).
  • the center electrode 20 is a rod-shaped member extending from the rear end side toward the front end side.
  • the center electrode 20 is disposed at the end portion on the front direction Df side in the through hole 12 of the insulator 10.
  • the center electrode 20 is joined (for example, laser welded) to the head portion 24 having the largest outer diameter, the shaft portion 27 formed on the front direction Df side of the head portion 24, and the tip of the shaft portion 27. And a first chip 29.
  • the outer diameter of the head 24 is larger than the inner diameter of the portion on the front direction Df side than the reduced inner diameter portion 11 of the insulator 10.
  • the surface on the front direction Df side of the head 24 is supported by the reduced inner diameter portion 11 of the insulator 10.
  • the shaft portion 27 extends in the forward direction Df parallel to the axis line CL.
  • the shaft portion 27 includes an outer layer 21 and a core portion 22 disposed on the inner peripheral side of the outer layer 21.
  • the outer layer 21 is made of, for example, an alloy containing nickel as a main component.
  • the main component means a component having the highest content (% by weight).
  • the core portion 22 is formed of a material having a higher thermal conductivity than the outer layer 21 (for example, an alloy containing copper as a main component).
  • the first chip 29 is made of a material having higher durability against discharge than the shaft portion 27 (for example, at least one selected from noble metals such as iridium (Ir) and platinum (Pt), tungsten (W), and those metals. Alloy).
  • a part of the center electrode 20 on the tip side including the first tip 29 is exposed from the shaft hole 12 of the insulator 10 to the front direction Df side. Note that at least one of the core portion 22 and the first chip 29 may be omitted. Further, the entire center electrode 20 may be disposed in the shaft hole 12.
  • the terminal fitting 40 is a rod-shaped member extending in parallel with the axis CL.
  • the terminal fitting 40 is formed using a conductive material (for example, a metal containing iron as a main component).
  • the terminal fitting 40 includes a cap mounting portion 49, a flange portion 48, and a shaft portion 41, which are arranged in order in the front direction Df.
  • the cap mounting portion 49 is exposed outside the shaft hole 12 on the rear end side of the insulator 10.
  • a plug cap connected to a high voltage cable (not shown) is mounted on the cap mounting portion 49, and a high voltage for generating a spark discharge is applied.
  • the cap mounting part 49 is an example of a terminal part to which a high voltage cable is connected.
  • the shaft portion 41 is inserted into a portion on the rear direction Dfr side of the shaft hole 12 of the insulator 10.
  • the surface on the front direction Df side of the flange portion 48 is in contact with the rear end 10 e that is the end on the rear direction Dfr side of the insulator 10.
  • a resistor 74 for suppressing electrical noise is disposed between the terminal fitting 40 and the center electrode 20.
  • the resistor 74 is formed using a conductive material (for example, a mixture of glass, carbon particles, and ceramic particles).
  • a first seal portion 72 is disposed between the resistor 74 and the center electrode 20, and a second seal portion 76 is disposed between the resistor 74 and the metal shell 50.
  • These seal portions 72 and 76 are formed using a conductive material (for example, a mixture of metal particles and the same glass as that included in the material of the resistor 74).
  • the center electrode 20 is electrically connected to the terminal fitting 40 by the first seal portion 72, the resistor 74, and the second seal portion 76.
  • the entirety of the first seal portion 72, the resistor 74, and the second seal portion 76 that electrically connect the terminal fitting 40 and the center electrode 20 within the shaft hole 12 of the insulator 10 is also referred to as a connection portion 200.
  • the center electrode 20 When manufacturing the spark plug 100, the center electrode 20 is inserted from the opening 10q on the rear side Dfr side of the insulator 10. The center electrode 20 is disposed at a predetermined position in the through hole 12 by being supported by the reduced inner diameter portion 11 of the insulator 10. Next, the material powder of each of the first seal portion 72, the resistor 74, and the second seal portion 76 and the molding of the charged powder material are performed in the order of the members 72, 74, and 76. The powder material is put into the through hole 12 through the opening 10q.
  • the insulator 10 is heated to a predetermined temperature higher than the softening point of the glass component contained in the material powder of the members 72, 74, and 76, and is heated to the predetermined temperature from the opening 10 q of the terminal fitting 40.
  • the shaft portion 41 is inserted into the through hole 12.
  • the material powders of the members 72, 74, and 76 are compressed and sintered to form the members 72, 74, and 76.
  • the terminal fitting 40 is fixed to the insulator 10.
  • the metal shell 50 is a cylindrical member having a through hole 59 extending along the axis CL.
  • the insulator 10 is inserted into the through hole 59 of the metal shell 50, and the metal shell 50 is fixed to the outer periphery of the insulator 10.
  • the metal shell 50 is formed using a conductive material (for example, a metal such as low carbon steel). A part of the insulator 10 on the front direction Df side is exposed outside the through hole 59. Further, a part of the insulator 10 on the rear direction Dfr side is exposed outside the through hole 59.
  • the metal shell 50 has a tool engaging part 51 and a body part 52.
  • the tool engaging portion 51 is a portion into which a spark plug wrench (not shown) is fitted.
  • the trunk portion 52 is a portion including the front end surface 55 of the metal shell 50.
  • a screw portion 57 for screwing into a mounting hole of an internal combustion engine for example, a gasoline engine
  • the screw portion 57 is a male screw and has a helical thread (not shown).
  • a flange-shaped flange portion 54 protruding outward in the radial direction is formed between the threaded portion 57 and the flange portion 54 of the body portion 52.
  • the gasket 90 is formed by, for example, bending a metal plate member, and is crushed and deformed when the spark plug 100 is attached to the engine. Due to the deformation of the gasket 90, the gap between the spark plug 100 (specifically, the surface on the front direction Df side of the flange portion 54) and the engine is sealed, and leakage of combustion gas is suppressed.
  • the body portion 52 of the metal shell 50 is formed with a reduced inner diameter portion 56 whose inner diameter gradually decreases toward the tip side.
  • the front end side packing 8 is sandwiched between the reduced inner diameter portion 56 of the metal shell 50 and the reduced outer diameter portion 16 of the insulator 10.
  • the front end side packing 8 is, for example, a plate ring made of iron (other materials (for example, metal materials such as copper) can also be used).
  • a thin caulking portion 53 is formed on the rear end side of the tool engagement portion 51 of the metal shell 50. Further, a thin buckled portion 58 is formed between the flange portion 54 and the tool engaging portion 51. Annular ring members 61 and 62 are inserted between the inner peripheral surface of the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the outer peripheral surface of the rear end side body portion 13 of the insulator 10. ing. Further, the talc 70 powder is filled between the ring members 61 and 62.
  • the buckling portion 58 is deformed outward (buckling) with the addition of compressive force, and as a result, the metal shell 50 And the insulator 10 are fixed.
  • the talc 70 is compressed during the caulking process, and the airtightness between the metal shell 50 and the insulator 10 is improved.
  • the packing 8 is pressed between the reduced outer diameter portion 16 of the insulator 10 and the reduced inner diameter portion 56 of the metal shell 50, and seals between the metal shell 50 and the insulator 10.
  • the ground electrode 30 has a rod-shaped main body portion 37 and a second tip 39 attached to the tip end portion 34 of the main body portion 37.
  • One end portion 33 (also referred to as a base end portion 33) of the main body portion 37 is joined to the distal end surface 55 of the metal shell 50 (for example, resistance welding).
  • the main body portion 37 extends from the base end portion 33 joined to the metal shell 50 in the distal direction Df, bends toward the central axis CL, and reaches the distal end portion 34.
  • the second tip 39 is fixed to a portion on the rear direction Dfr side of the tip portion 34 (for example, laser welding).
  • the second tip 39 of the ground electrode 30 and the first tip 29 of the electrode 20 form a gap g.
  • the second chip 39 is made of a material having higher durability against discharge than the main body 37 (for example, a noble metal such as iridium (Ir) or platinum (Pt), tungsten (W), or at least one selected from these metals). Alloy).
  • the main body portion 37 includes an outer layer 31 and an inner layer 32 disposed on the inner peripheral side of the outer layer 31.
  • the outer layer 31 is formed of a material (for example, an alloy containing nickel) that has better oxidation resistance than the inner layer 32.
  • the inner layer 32 is made of a material (for example, pure copper, copper alloy, etc.) having a higher thermal conductivity than the outer layer 31. Note that at least one of the inner layer 32 and the second chip 39 may be omitted.
  • FIG. 2B is a graph showing the pre-ignition generation advance angle AG (hereinafter also simply referred to as the generation advance angle AG) of each of the first to seventh samples.
  • the vertical axis represents the sample number, and the horizontal axis represents the generated advance angle AG.
  • the generated advance angle AG is represented by a crank angle, and its unit is degrees.
  • FIG. 5A is an explanatory diagram of the nominal diameter Dn, the screw length Ls, and the metal fitting contact area Ss.
  • the nominal diameter Dn is a nominal diameter of the screw portion 57 of the metal shell 50.
  • the screw length Ls is a length in a direction parallel to the axis CL from the rear end 57r of the screw portion 57 to the tip of the metal shell 50 (here, the tip surface 55).
  • the rear end 57r of the screw portion 57 is a portion of the crest and valley of the screw portion 57 closest to the rear direction Dfr.
  • a tip 57f of the screw portion 57 is also shown.
  • the front end 57 f of the screw portion 57 is the most forward portion Df side of the crest and trough of the screw portion 57.
  • the metal fitting contact area Ss is the surface area of the outer peripheral surface of the metal shell 50 from the rear end 57r of the screw portion 57 to the tip 57f of the screw portion 57 (in FIG. 5A, this portion is a bold line). It is shown).
  • the metal fitting contact area Ss represents an area of a portion of the metal shell 50 that comes into contact with another member (for example, a hole forming portion that forms a mounting hole of the internal combustion engine).
  • another member for example, a hole forming portion that forms a mounting hole of the internal combustion engine.
  • the surface area of the screw part 57 having spiral peaks and valleys was calculated using the surface area calculation formula described in Annex B of IEC62321.
  • FIG. 5B is an explanatory diagram of the bracket exposed area Sa.
  • a cross section including a part of the axis line CL on the front direction Df side of the spark plug 100 in a state of being mounted in the mounting hole 680 of the internal combustion engine 600 is shown.
  • a portion of the spark plug 100 on the front direction Df side is exposed to the combustion gas in the combustion chamber 630.
  • the metal fitting exposed area Sa is the surface area of the portion 50x of the surface of the metal shell 50 that is exposed to the combustion gas. In the drawing, this portion 50x is indicated by a thick line (also referred to as an exposed portion 50x).
  • the combustion gas contacts the exposed portion 50x. Then, heat is transferred from the combustion gas to the metal shell 50.
  • the metal fitting exposed area Sa is larger, heat is more easily transferred from the combustion gas to the metal shell 50, so that the temperature of the metal shell 50 (and thus the spark plug 100) is likely to increase.
  • the exposed portion 50x is a portion from the first position P1 on the inner peripheral surface of the metal shell 50 to the second position P2 on the outer peripheral surface of the metal shell 50 through the front end surface 55 of the metal shell 50.
  • An enlarged cross section of a portion including the packing 8 is shown in the upper part of FIG.
  • the first position P ⁇ b> 1 is the position of the most forward direction Df side (that is, the tip) of the contact portions between the inner peripheral surface 50 i of the metal shell 50 and the packing 8.
  • the second position P ⁇ b> 2 is the position of the most forward direction Df side (that is, the tip) of the contact portions between the outer peripheral surface of the metal shell 50 and the hole forming portion 688 of the internal combustion engine 600.
  • the hole forming part 688 is a part for forming a mounting hole 680 for mounting the spark plug 100.
  • FIG. 5C is an explanatory diagram of the insulator exposed area Sb.
  • the insulator exposed area Sb is the surface area of the portion 10x of the surface of the insulator 10 that is exposed to the combustion gas.
  • this portion 10x is indicated by a thick line (also referred to as an exposed portion 10x).
  • the combustion gas contacts the exposed portion 10x. Then, heat is transferred from the combustion gas to the insulator 10.
  • the insulator exposed area Sb is larger, heat is more easily transferred from the combustion gas to the insulator 10, so that the temperature of the insulator 10 (and thus the spark plug 100) is likely to increase.
  • the exposed portion 10x is a portion from the third position P3 on the outer peripheral surface of the insulator 10 to the fourth position P4 on the inner peripheral surface of the insulator 10 through the tip 17 of the insulator 10.
  • An enlarged cross section of a portion including the packing 8 is shown in the upper part of FIG.
  • the third position P3 is the position of the most forward direction Df side (that is, the tip) of the contact portions between the outer peripheral surface 10o of the insulator 10 and the packing 8.
  • a distance d in the drawing is a distance in a direction perpendicular to the axis CL between the inner peripheral surface 10 i of the insulator 10 and the outer peripheral surface 20 o of the center electrode 20.
  • Combustion gas can enter the gap between the inner peripheral surface 10 i of the insulator 10 and the outer peripheral surface 20 o of the center electrode 20.
  • a predetermined threshold value dt here, 0.1 mm
  • the fourth position P4 is the position of the portion on the most front direction Df side in the portion where the distance d of the inner peripheral surface 10i of the insulator 10 is equal to or less than the threshold value dt.
  • the shaft portion 27 of the center electrode 20 has a reduced outer diameter portion 26 whose outer diameter decreases from the inside of the shaft hole 12 of the insulator 10 toward the outside on the front direction Df side. ing. Accordingly, the fourth position P4 is a position facing the end portion on the rearward direction Dfr side of the reduced outer diameter portion 26. When such a reduced outer diameter portion 26 is omitted, the fourth position P4, which is the position of the inner peripheral end of the exposed portion 10x, is not on the inner peripheral surface 10i of the insulator 10, but the tip of the insulator 10. 17 may be the position of the inner peripheral edge.
  • FIG. 2 (B) shows the result of the preignition test based on JIS D1606.
  • the outline of the pre-ignition test is as follows. Each sample is mounted on a 1.3-liter, 4-cylinder DOHC (Double Overhead Camshaft) engine, and the engine is operated under the conditions that the rotational speed is 6000 rpm and the throttle is fully open. In this state, the ignition timing is advanced by a predetermined angle from the normal ignition timing. At each ignition timing, a current (also called ion current) flowing through the electrodes 20 and 30 is measured at a timing before the ignition timing. Usually, the ion current at the timing before the ignition timing is approximately zero.
  • DOHC Double Overhead Camshaft
  • the ignition timing (generation angle AG) at which preignition occurred was specified based on the waveform of the current flowing through the electrodes 20 and 30. As the advance angle AG is larger, preignition is less likely to occur, that is, heat resistance is better.
  • each of the generated advance angles AG of No. 1 to No. 5 is 56 degrees or more, and each of the generated advance angles AG of No. 6 and No. 7 is 48 degrees or less. .
  • the heat resistance of the samples No. 1 to No. 5 was significantly better than the heat resistance of Nos. 6 and 7.
  • the first to fifth area ratios R1 from No. 1 to No. 5 are 4.1, 3.3, 2.7, 2.6, and 2.6 in the order of the numbers. , Both were 2.6 or more.
  • the 1st area ratio R1 of No. 6 and No. 7 was 2.1 and 1.8, and was smaller than 2.6.
  • the heat resistance is significantly improved as compared with the case where the first area ratio R1 is less than 2.6.
  • the reason why the heat resistance is good when the first area ratio R1 is large is that, as described above, when the first area ratio R1 is large, the spark plug 100 is easily cooled, and the temperature rise of the spark plug 100 is suppressed. It is estimated that it is because it is.
  • 1st area ratio R1 which implement
  • a preferable range (a range from the lower limit to the upper limit) of the first area ratio R1 may be determined using these four values. Specifically, any value among the above four values may be adopted as the lower limit of the preferable range of the first area ratio R1.
  • the first area ratio R1 may be 2.6 or more.
  • the first area ratio R1 may be 4.1 or less.
  • the first area ratio R1 may be larger than 4.1 which is the maximum value among the above four values.
  • the first area ratio R1 is preferably small.
  • the first area ratio R1 is preferably 5.2 or less.
  • the heat resistance evaluated in this evaluation test is related to the ease of cooling of the spark plug, and thus is greatly influenced by the first area ratio R1, and other parameters (for example, Dn, Ls, Ss, Sa, Sb Etc.) is estimated to be relatively small. Therefore, it is estimated that the above preferable range of the first area ratio R1 can be applied to a spark plug having various values of parameters (for example, Dn, Ls, Ss, Sa, Sb, etc.).
  • FIG. 3 is a table showing the configuration and test results of samples Nos. 8 to 13.
  • This table shows the nominal diameter Dn [mm], screw length Ls [mm], bracket contact area Ss [mm 2 ], solid volume Vv [mm 3 ], and bracket exposed area Sa [mm] for each sample. 2 ], insulator exposed area Sb [mm 2 ], space volume Vc [mm 3 ], first area ratio R 1, volume difference Dv [mm 3 ], test results (specifically, the number of cycles Nc and its evaluation result) (in brackets are units). Between samples 8 to 13, at least one of Vv and Vc is different from each other. Using samples Nos. 8 to 13, a stain resistance evaluation test described later was performed.
  • FIG. 5D is an explanatory diagram of the solid volume Vv.
  • the solid volume Vv is obtained by assuming that the front end side portion 50f of the metal shell 50 from the rear end 57r of the threaded portion 57 to the tip of the metal shell 50 (here, the front end surface 55) is solid. This is the volume of the tip side portion 50f. That is, the solid volume Vv is the volume of the tip side portion 50f when it is assumed that the entire portion included in the tip side portion 50f of the through hole 59 of the metal shell 50 is buried.
  • a portion corresponding to the solid volume Vv is also referred to as a tip side virtual portion 300.
  • FIG. 6A is an explanatory diagram of the space volume Vc.
  • the space volume Vc is a tip side space portion that is a portion on the front direction Df side of the above-described third position P3 in the space sandwiched between the inner peripheral surface 50i of the metal shell 50 and the outer peripheral surface 10o of the insulator 10.
  • the volume is 300f.
  • the tip side space portion 300f is hatched, and hatching is omitted from other members.
  • the front end side space portion 300f is a portion where combustion gas can enter in a space sandwiched between the inner peripheral surface 50i of the metal shell 50 and the outer peripheral surface 10o of the insulator 10.
  • Such a tip-side space portion 300f is approximately the same as the space portion of the tip-side virtual portion 300 described with reference to FIG. 5D where the spark plug 100 member is not disposed.
  • the third position P3 is also the end on the rearward direction Dfr side of the distal end side space portion 300f.
  • the volume of the remaining portion 300 m (FIG. 6A) excluding FIG. This portion 300m is approximately the same as the portion of the tip-side virtual portion 300 where the spark plug 100 member is disposed (hereinafter also referred to as the tip-side member portion 300m).
  • the volume difference Dv indicates the approximate volume of the tip side member portion 300m (hereinafter, the volume difference Dv is also simply referred to as volume Dv).
  • the tip side member portion 300m (FIG. 6A) of the spark plug 100 is a portion that receives heat from the combustion gas and transfers heat to the hole forming portion 688 (FIG. 5B) of the internal combustion engine.
  • the small volume Dv of the tip side member portion 300m that conducts such heat indicates that the heat capacity of the tip side member portion 300m is small. Accordingly, the smaller the volume Dv is, the higher the temperature of the tip side member portion 300m of the spark plug 100 is, so that it is possible to suppress problems caused by the low temperature of the spark plug 100 (for example, carbon contamination).
  • FIG. 3 shows the results of the fouling resistance evaluation test based on JIS D1606.
  • the outline of this evaluation test is as follows. On a chassis dynamometer in a low temperature test room at -10 degrees Celsius, a test car having an engine with a displacement of 1.6 L, four cylinders, natural intake, and MPI (Multipoint fuel injection) was placed. A spark plug sample was assembled into each cylinder of the test vehicle engine. And the driving
  • the first operation consists of “three idlings”, “running for 40 seconds at 3 speed, 35 km / h”, “idling for 90 seconds”, and “40 seconds at 3 speed, 35 km / h” This is an operation in which “travel”, “engine stop”, and “cooling of the automobile until the temperature of the cooling water reaches ⁇ 10 degrees Celsius” are performed in this order.
  • the second operation consists of “three times of empty skies”, “three times of running for 20 seconds at the first speed of 15 km / h, with the engine stopped for 30 seconds”, “stop of engine” And “cooling the automobile until the temperature of the cooling water reaches ⁇ 10 degrees Celsius” in this order.
  • the test operation composed of the first operation and the second operation was repeated. Each time one cycle of the test operation was completed, the insulation resistance between the center electrode 20 of the spark plug sample and the metal shell 50 was measured. Since the electrical resistance between the terminal fitting 40 and the center electrode 20 is sufficiently smaller than the insulation resistance, the measurement result of the insulation resistance between the terminal fitting 40 and the metallic shell 50 is used as the measurement result. The insulation resistance between the metal fitting 50 was adopted. Then, the number of cycles Nc at the stage where the average value of the four insulation resistances of the four samples mounted on the engine became 10 M ⁇ or less was specified for each of the 8th to 13th samples. By driving the internal combustion engine, carbon can adhere to the surface of the insulator 10 (also called fouling).
  • the insulation resistance is likely to decrease, and the cycle number Nc is small.
  • a large number of cycles Nc indicates that fouling of the spark plug 100 is suppressed.
  • the A evaluation in FIG. 3 indicates that the cycle number Nc is 6 or more, and the B evaluation indicates that the cycle number Nc is 5 or less.
  • each cycle number Nc from No. 8 to No. 10 is 6 or more (A evaluation), and each cycle number Nc from No. 11 to No. 13 is 5 or less (B evaluation). ).
  • the fouling resistance from No. 8 to No. 10 was better than the fouling resistance from No. 11 to No. 13.
  • the volume differences Dv from No. 8 to No. 10 were 1882, 1938, 1960 (mm 3 ) in order of the numbers, and all were 2000 mm 3 or less.
  • the volume difference Dv from No. 11 to No. 13 was 2083, 2296, and 2824 (mm 3 ) in the order of the numbers, and all were larger than 2000 mm 3 .
  • the volume difference Dv is 2000 mm 3 or less, the fouling resistance is greatly improved as compared with the case where the volume difference Dv is larger than 2000 mm 3 .
  • the reason why the stain resistance is good when the volume difference Dv is small is estimated as follows. As described above, when the volume difference Dv is small, the tip side member portion 300m (FIG. 6A) of the spark plug 100 is small, so even in a low temperature environment, the temperature of the tip side member portion 300m (as a result, The temperature of the portion in contact with the combustion gas of the insulator 10 is likely to rise. When the temperature of the insulator 10 is high, the carbon adhering to the surface of the insulator 10 can be easily burned off. This improves the stain resistance when the volume difference Dv is small.
  • achieved the cycle number Nc of A evaluation was 1882, 1938, 1960 (mm ⁇ 3 >).
  • a preferable range (range between the lower limit and the upper limit) of the volume difference Dv may be determined using these three values. Specifically, any value of the above three values may be adopted as the upper limit of the preferable range of the volume difference Dv.
  • the volume difference Dv may be 1960 mm 3 or less.
  • the volume difference Dv may be 1882 mm 3 or more.
  • the volume difference Dv may be smaller than 1882 mm 3 which is the minimum value among the above three values.
  • the volume difference Dv of the tip side member portion 300m is large.
  • the volume difference Dv is preferably 1000 mm 3 or more.
  • the first area ratio R1 of the samples Nos. 8 to 13 is 2.6 or more. Therefore, all the samples from No. 8 to No. 13 have a problem (for example, due to the temperature rise of the spark plug 100 under the condition that the temperature of the spark plug 100 tends to be high as in the evaluation test of FIG. 2A). , Pre-ignition) can be suppressed. Further, the samples No. 8 to No. 10 have a problem (for example, carbon contamination) caused by the low temperature of the spark plug 100 under the condition that the temperature of the spark plug 100 is difficult to increase as in the evaluation test of FIG. ) Can be suppressed.
  • the fouling resistance evaluated in this evaluation test is related to the ease of raising the temperature of the spark plug (particularly, the tip side member portion 300m), and thus is greatly influenced by the volume difference Dv, and other parameters (for example, The influence from Dn, Ls, Ss, Vv, Sa, Sb, Vc, R1) is estimated to be relatively small. Therefore, it is estimated that the above preferable range of the volume difference Dv is applicable to spark plugs having various values of parameters (for example, Dn, Ls, Ss, Vv, Sa, Sb, Vc, R1). However, the volume difference Dv may be outside the above preferable range, and may be larger than 2000 mm 3 , for example.
  • FIG. 4 is a table showing the configuration of samples 14 to 18 and the results of evaluation tests.
  • This table shows the bracket contact area Ss [mm 2 ], the solid volume Vv [mm 3 ], the bracket exposed area Sa [mm 2 ], the insulator exposed area Sb [mm 2 ], and the space of each sample.
  • the volume Vc [mm 3 ], the projected area Sd [mm 2 ], the cross-sectional area Se [mm 2 ], the second area ratio R2 ( Sd / Se), and the test results are shown (key brackets). Inside is the unit). Between samples 14 to 18, at least one of Sd and Se is different from each other. Durability evaluation tests to be described later were performed using samples 14 to 18.
  • FIG. 6B is an explanatory diagram of the projected area Sd.
  • an appearance of a part of the spark plug 100 on the front direction Df side is shown. This appearance is an appearance viewed in a direction perpendicular to the axis CL.
  • a part of the insulator 10 on the front direction Df side is located on the front direction Df side with respect to the front end (here, the front end surface 55) of the metal shell 50.
  • the hatched portion 10f is a portion of the insulator 10 that is disposed on the front direction Df side of the front end (front end surface 55) of the metal shell 50 (also referred to as a front end portion 10f).
  • the projection area Sd is an area (also referred to as a projection area) of a projection diagram obtained by projecting the tip portion 10f onto a projection plane parallel to the axis line CL in a direction perpendicular to the axis line CL.
  • gas for example, combustion gas
  • a pressure wave propagates through the gas.
  • the flowing gas or pressure wave may apply a force to the insulator 10 by contacting the insulator 10.
  • a gas or a pressure wave may move toward the direction intersecting the axis CL in the vicinity of the distal end portion 10f of the insulator 10.
  • Such a gas or pressure wave can apply a force in a direction intersecting the axis CL to the insulator 10 by contacting the tip portion 10f of the insulator 10.
  • the larger the projected area Sd the larger the portion of the insulator 10 that receives force from the gas or pressure wave.
  • the force received by the insulator 10 is stronger as the projected area Sd is larger.
  • the shape of the tip portion 10f shown in the figure is the same as the shape of the projection of the tip portion 10f. Therefore, the projected area Sd can be calculated using such an external view.
  • FIG. 6C is an explanatory diagram of the cross-sectional area Se.
  • a cross section including a part of the axis CL on the front direction Df side of the spark plug 100 is shown.
  • a cross section 10z perpendicular to the axis CL of the insulator 10 is shown.
  • the cross section 10z is a cross section including the above-described third position P3 (FIG. 5C).
  • the cross-sectional area Se is the area of this cross-section 10z of the insulator 10.
  • a force in a direction intersecting the axis CL may be applied to the tip portion 10f of the insulator 10.
  • the insulator 10 is supported by the metal shell 50 through the packing 8. Accordingly, when a force is applied to the tip portion 10f of the insulator 10, a large force acts on the portion of the insulator 10 at the third position P3. Accordingly, the greater the cross-sectional area Se of the cross-section 10z passing through the third position P3 of the insulator 10, the more the insulator 10 can withstand a greater force.
  • the second area ratio R2 in the table of FIG. 4 is the ratio of the projected area Sd of the tip 10f of the insulator 10 to the cross-sectional area Se of the cross section 10z of the insulator 10.
  • the small second area ratio R2 means that the ratio of the projected area Sd of the tip 10f that receives the force in the insulator 10 to the cross-sectional area Se of the section 10z of the portion that can withstand the force in the insulator 10 is small. It is shown that. That is, the smaller the second area ratio R2, the smaller the force per unit area of the cross section 10z of the portion that can withstand the force. Therefore, it is estimated that durability is improved, so that 2nd area ratio R2 is small.
  • the outline of the durability evaluation test is as follows. Each sample is mounted on a direct-injection turbo engine with a displacement of 1.6 L, and the engine is operated under the conditions of a rotational speed of 2000 rpm, a throttle fully open, and a supercharging pressure of 100 kPa.
  • a rotational speed of 2000 rpm a rotational speed of 2000 rpm
  • a throttle fully open a supercharging pressure of 100 kPa.
  • abnormal combustion specifically, super knock
  • the engine was stopped when the number of abnormal combustion occurrences reached 100, the sample was removed from the engine, and the sample insulator 10 was observed.
  • the A evaluation of the test results in FIG. 4 indicates that no abnormality of the insulator 10 was found, and the B evaluation indicates that the vicinity of the third position P3 of the sample insulator 10 was cracked.
  • the evaluations from No. 14 to No. 16 were A evaluations, and the evaluations of Nos. 17 and 18 were B evaluations.
  • the durability of Nos. 14 to 16 was better than those of Nos. 17 and 18.
  • the second area ratio R2 from No. 14 to No. 16 is 0.29, 0.35, 0.46 in the order of the numbers, and all are 0.46 or less.
  • the second area ratio R2 of No. 17 and No. 18 was 0.51 and 0.58 in the order of the numbers, and both were larger than 0.46.
  • the durability is significantly improved as compared with the case where the second area ratio R2 is larger than 0.46.
  • the reason why the durability is good when the second area ratio R2 is small is that, as described above, when the second area ratio R2 is small, the force per unit area of the cross section 10z of the portion that can withstand the force is small. Presumed to be from the body.
  • 2nd area ratio R2 which implement
  • a preferable range (a range from the lower limit to the upper limit) of the second area ratio R2 may be determined using these three values. Specifically, any value of the above three values may be adopted as the upper limit of the preferable range of the second area ratio R2. For example, the second area ratio R2 may be 0.46 or less. Moreover, you may employ
  • the second area ratio R2 may be smaller than 0.29 which is the minimum value among the above three values.
  • the entire tip portion of the insulator 10 may be arranged on the rear direction Dfr side with respect to the tip of the metal shell 50 (here, the tip surface 55). That is, the entire tip of the insulator 10 may be disposed in the through hole 59 of the metal shell 50.
  • the projected area Sd is zero
  • the second area ratio R2 is zero.
  • the projected area Sd may be various values of zero or more.
  • the second area ratio R2 may be various values of zero or more.
  • the durability of the insulator 10 evaluated in this evaluation test is mechanical durability, so it is greatly influenced by the second area ratio R2, and other parameters (for example, Ss, Vv, Sa, Sb). , Vc, Sd, Se) is estimated to be relatively small. Therefore, it is estimated that the above preferable range of the second area ratio R2 can be applied to a spark plug having various values of parameters (for example, Ss, Vv, Sa, Sb, Vc, Sd, Se).
  • FIG. 7 is an explanatory diagram showing the results of an evaluation test using a spark plug sample.
  • a table showing the configurations and test results of the samples 19 to 23 is shown.
  • the distances F are different between the 19th to 23rd samples.
  • FIG. 8 is an explanatory diagram of the distance F. In the drawing, the same cross section as that of FIG.
  • the distance F is a distance in a direction parallel to the axis CL between the third position P3 described above and the distal end (here, the distal end surface 55) of the metal shell 50.
  • the bracket exposed area Sa and the insulator exposed area Sb are different from each other as the distance F is changed.
  • the nominal diameter Dn is a common 12 mm.
  • the No. 21 screw length Ls and the metal fitting contact area Ss are different from Ls and Ss of other samples, respectively.
  • the first area ratio R1 is within a range of 2.6 or more, which is an example of a preferable range described with reference to FIGS. 2 (A) and 2 (B). Using such 19th to 23rd samples, the durability of the insulator 10 was evaluated.
  • the temperature of the insulator 10 rises due to heat from the combustion gas.
  • the packing 8 can transfer heat from the high-temperature insulator 10 to the metal shell 50.
  • the heat of the portion of the insulator 10 on the front direction Df side with respect to the contact portion with the packing 8 is transmitted to the metal shell 50 through the packing 8.
  • the insulator 10 is cooled.
  • a portion of the insulator 10 that contacts the packing 8, that is, a portion in the vicinity of the third position P3 is easily cooled, and thus the temperature is likely to decrease when the temperature is lowered. Moreover, since the part of the insulator 10 on the front direction Df side close to the combustion chamber is close to the high-temperature combustion gas, the temperature is likely to increase when the temperature rises. Therefore, when the third position P3 is close to the combustion chamber, that is, when the distance F is short, the temperature change in the portion near the third position P3 of the insulator 10 is larger than when the distance F is long. growing. If large temperature changes are repeated, the insulator 10 can be damaged. Therefore, it is preferable that the distance F is long.
  • the thermal shock test was performed as follows.
  • a sample of the spark plug 100 is mounted in the mounting hole of the water cooling jacket.
  • the water cooling jacket is a plate-like member that forms a mounting hole similar to the mounting hole of the internal combustion engine.
  • the water cooling jacket is provided with a flow path for cooling water, and the water cooling jacket is cooled by the cooling water flowing through the flow path.
  • the tip of the spark plug 100 exposed from the mounting hole of the water cooling jacket is heated.
  • the temperature of the tip of the center electrode is measured using a radiation thermometer. During heating, the heating power of the burner is adjusted so that the temperature at the tip of the center electrode is 850 degrees Celsius.
  • heating for 1 minute by the burner and air cooling for 1 minute by stopping the burner are repeated.
  • the temperature of the cooling water in the water cooling jacket is adjusted so that the temperature of the metal shell 50 of the spark plug 100 is maintained at 100 degrees Celsius or less during heating by the burner and during air cooling.
  • One cycle consisting of 1 minute heating and 1 minute air cooling is repeated 50 times.
  • the insulator 10 is observed after 50 cycles of heating and air cooling.
  • the evaluation A in the table of FIG. 7 indicates that no cracks occurred in the insulator 10, and the B evaluation indicates that cracks occurred in the insulator 10.
  • the insulator 10 was cracked in the vicinity of the contact portion with the packing 8.
  • the evaluations of Nos. 19, 20, and 21 were A evaluations, and the evaluations of Nos. 22 and 23 were B evaluations.
  • the durability from No. 19 to No. 21 was better than the durability from No. 22 and No. 23.
  • the distance F from No. 19 to No. 21 is 10.0, 7.3, 5.0 (mm) in the order of the numbers, and all are 5.0 mm or more. It was.
  • the distance F between No. 22 and No. 23 was 4.8 and 4.0 (mm) in the order of the numbers, and both were less than 5.0 mm.
  • the durability was significantly improved as compared with the case where the distance F was less than 5.0 mm.
  • the reason why the durability can be improved when the distance F is large is that, as described above, when the distance F is long, the portion of the insulator 10 close to the third position P3 (for example, the contact portion with the packing 8). It is estimated that the temperature change can be suppressed.
  • the distance F which realized A evaluation was 5.0, 7.3, 10.0 (mm).
  • a preferable range of the distance F (a range between the lower limit and the upper limit) may be determined using these three values. Specifically, any value of the above three values may be adopted as the lower limit of the preferable range of the distance F.
  • the distance F may be 5.0 mm or more.
  • the distance F may be 10.0 mm or less.
  • the distance F may be larger than 10.0 mm which is the maximum value among the above three values.
  • the temperature of the metal shell 50 is maintained at 100 degrees Celsius or less by cooling with a water cooling jacket.
  • the temperature of the metal shell 50 can be maintained at a temperature higher than 100 degrees Celsius. It can be said that this thermal shock test is a test under severe conditions in which a temperature change is likely to be large as compared with general operating conditions of an internal combustion engine. Therefore, when the spark plug 100 is attached to a general internal combustion engine, the distance F may be less than 5.0 mm.
  • the first area ratio R1 of any of the 19th to 23rd samples is 2.6 or more. Accordingly, any of the samples Nos. 19 to 23 has a problem (for example, due to the temperature rise of the spark plug 100 under the condition that the temperature of the spark plug 100 tends to be high as in the evaluation test of FIG. 2A). , Pre-ignition) can be suppressed.
  • the durability of the insulator 10 evaluated in this evaluation test is greatly influenced by the distance F because it is related to the temperature change in the vicinity of the third position P3 of the insulator 10, and other parameters (for example, Dn , Ls, Ss, Vv, Sa, Sb, Vc, R1, Dv, Sd, Se, R2, etc.) are estimated to be relatively small.
  • other parameters for example, Dn , Ls, Ss, Vv, Sa, Sb, Vc, R1, Dv, Sd, Se, R2, etc.
  • the above preferred range of distance F applies to spark plugs having various values of parameters (eg, Dn, Ls, Ss, Vv, Sa, Sb, Vc, R1, Dv, Sd, Se, R2, etc.). Presumed to be possible.
  • FIG. 9 is a schematic diagram showing a cross-sectional configuration of an internal combustion engine 600 as one embodiment. In the drawing, a part including a mounting hole 680 for the spark plug 100 of one combustion chamber 630 is shown.
  • the internal combustion engine 600 has a cylinder head 610 and a cylinder block 620.
  • a cylinder 639 is formed in the cylinder block 620.
  • a piston 691 is disposed in the cylinder 639.
  • the end of a connecting rod 692 is connected to the piston 691.
  • the opposite end of the connecting rod 692 is connected to the crankshaft.
  • the cylinder head 610 is disposed on the cylinder block 620.
  • the cylinder head 610 is provided with an intake passage 651 and an exhaust passage 652.
  • a portion of the cylinder head 610 facing the cylinder 639 includes an intake port 631 that communicates with the intake passage 651, an exhaust port 632 that communicates with the exhaust passage 652, and an intake port 631 and an exhaust port 632.
  • An arranged mounting hole 680 is provided.
  • a spark plug 100 is mounted in the mounting hole 680. In the drawing, an outline of the appearance of the spark plug 100 is shown.
  • a screw portion 682 is formed in a portion of the hole forming portion 688 that forms the attachment hole 680 on the cylinder 639 side.
  • the screw portion 682 is a female screw and has a helical thread (not shown). The screw portion 57 of the spark plug 100 is screwed into the screw portion 682 of the hole forming portion 688.
  • the cylinder head 610 further includes an intake valve 641 for opening and closing the intake port 631, a first drive unit 643 for driving the intake valve 641, an exhaust valve 642 for opening and closing the exhaust port 632, and a first drive for driving the exhaust valve 642.
  • 2 driving unit 644 is provided.
  • the first drive unit 643 includes, for example, a coil spring that biases the intake valve 641 in the closing direction, and a cam that moves the intake valve 641 in the opening direction.
  • the second drive unit 644 also includes, for example, a coil spring that biases the exhaust valve 642 in the closing direction, and a cam that moves the exhaust valve 642 in the opening direction.
  • Combustion chamber 630 is surrounded by the wall of cylinder 639 of cylinder block 620, piston 691, part of cylinder head 610 facing cylinder 639, intake valve 641, exhaust valve 642, and spark plug 100. Space.
  • the internal combustion engine 600 is formed with flow paths 661 to 664, 671, and 672 for the flow of cooling water (such flow paths are also called water jackets).
  • flow paths 661 to 664 formed in the cylinder head 610 are also referred to as head flow paths 661 to 664
  • the flow paths 671 and 672 formed in the cylinder block 620 are also referred to as block flow paths 671 and 672.
  • the first head channel 661 is provided between the screw portion 682 of the mounting hole 680 and the intake valve 641 in the cylinder head 610.
  • the second head channel 662 is provided between the screw portion 682 of the mounting hole 680 and the exhaust valve 642 in the cylinder head 610.
  • These head flow paths 661 and 662 are provided between the screw portion 682 of the mounting hole 680 and the valves 641 and 642. Therefore, the cooling water flowing through these head flow paths 661 and 662 can appropriately cool the spark plug 100 mounted in the mounting hole 680.
  • the third head channel 663 and the fourth head channel 664 are provided at different positions of the cylinder head 610.
  • the first block channel 671 and the second block channel 672 are arranged so as to sandwich the combustion chamber 630 therebetween.
  • a part of these block flow paths 671 and 672 are formed in the cylinder head 610.
  • the entire block flow paths 671 and 672 may be formed in the cylinder block 620.
  • FIG. 10A is a block diagram illustrating an example of an internal combustion engine system.
  • This internal combustion engine system 1000A includes an internal combustion engine 600 (FIG. 9), a control system 900A, a radiator 700, a pump 730, and flow paths 781 to 786.
  • the control system 900A includes a flow rate control unit 910A and a temperature sensor 750.
  • the flow rate control unit 910 ⁇ / b> A includes a control device 500 and a valve 740.
  • the temperature sensor 750 is, for example, a thermocouple.
  • a first flow path 781 is connected to the downstream side of the radiator 700.
  • the first channel 781 is branched into a second channel 782 and a third channel 783.
  • the second flow path 782 is connected to the upstream side of the head flow path 660 of the internal combustion engine 600
  • the third flow path 783 is connected to the upstream side of the block flow path 670 of the internal combustion engine 600.
  • the head flow path 660 represents a plurality of flow paths provided in the cylinder head 610 (FIG. 9) as a single flow path as a whole, and includes, for example, the head flow paths 661 to 664 of FIG.
  • the block flow path 670 represents a plurality of flow paths provided in the cylinder block 620 (FIG.
  • a fourth flow path 784 is connected to the downstream side of the head flow path 660, and a fifth flow path 785 is connected to the downstream side of the block flow path 670. These flow paths 784 and 785 merge and are connected to the sixth flow path 786.
  • the sixth flow path 786 is connected to the upstream side of the radiator 700.
  • a pump 730 is provided in the middle of the first flow path 781.
  • the pump 730 supplies the cooling water cooled by the radiator 700 to the flow paths 660 and 670 of the internal combustion engine 600 through the flow paths 781, 782 and 783, and is output from the flow paths 660 and 670 of the internal combustion engine 600.
  • the cooled water is circulated to the radiator 700 through the flow paths 784, 785 and 786.
  • the pump 730 is driven by the driving force of the internal combustion engine 600.
  • the pump 730 may include an electric motor as a drive source.
  • a temperature sensor 750 for measuring the temperature of the internal combustion engine 600 is fixed to the internal combustion engine 600.
  • the fixed position of the temperature sensor 750 may be an arbitrary position where the temperature of the internal combustion engine 600 can be measured.
  • the temperature sensor 750 is fixed to the cylinder head 610.
  • the temperature sensor 750 may be fixed to the cylinder block 620.
  • the temperature sensor 750 may measure the temperature of the cooling water flowing through the head channel 660 or the block channel 670. Since the temperature of the cooling water has a correlation with the temperature of the internal combustion engine 600, it can be said that the temperature sensor 750 that measures the temperature of the cooling water indirectly measures the temperature of the internal combustion engine 600.
  • a valve 740 is provided in the middle of the second flow path 782.
  • the valve 740 can control the flow rate of the cooling water flowing through the head flow path 660 of the internal combustion engine 600 per unit time.
  • the smaller the opening degree of the valve 740 the smaller the flow rate per unit time of the cooling water flowing through the head passage 660 (for example, the passages 661 and 662 for cooling the spark plug 100 (FIG. 9)).
  • the opening degree of the valve 740 is controlled by the control device 500.
  • the flow rate control unit 910A (the whole of the control device 500 and the valve 740) controls the flow rate per unit time of the cooling water flowing through the head flow paths 661 and 662 (FIG. 9) for cooling the spark plug 100.
  • the control device 500 is a device that controls the valve 740 in accordance with a signal from the temperature sensor 750.
  • the control device 500 includes a processor 510 such as a CPU, a volatile storage device 520 such as a RAM, a nonvolatile storage device 530 such as a ROM, and an interface 540 for connecting an external device. Contains.
  • the nonvolatile storage device 530 stores a program 535 in advance.
  • a valve 740 and a temperature sensor 750 are connected to the interface 540.
  • the processor 510 controls the valve 740 by operating according to the program 535.
  • FIG. 10B is a flowchart illustrating an example of control processing by the control device 500.
  • the processor 510 acquires a signal from the temperature sensor 750.
  • the processor 510 adjusts the opening degree of the valve 740 in accordance with a signal from the temperature sensor 750.
  • the correspondence between the measured value represented by the signal from the temperature sensor 750 (for example, the electrical resistance value of the sensor element of the temperature sensor 750) and the opening of the valve 740 is determined in advance (control correspondence relationship and Call).
  • Data representing the control correspondence relationship (for example, a lookup table) is incorporated in the program 535.
  • the processor 510 adjusts the opening degree of the valve 740 to the opening degree associated with the measured value represented by the signal from the temperature sensor 750 in accordance with the control correspondence relationship.
  • the processor 510 repeatedly executes such S10 and S20.
  • FIG. 10C is a graph showing the relationship between the temperature T and the opening degree Vo expressed by the control correspondence relationship.
  • the horizontal axis represents the temperature T represented by the signal from the temperature sensor 750, and the vertical axis represents the opening degree Vo of the valve 740.
  • the lower the temperature T the smaller the opening degree Vo.
  • the opening degree Vo is the first opening degree Vo1 (here, Vo1 ⁇ zero).
  • the opening degree Vo is the second opening degree Vo2 (here, T2> T1, Vo2> Vo1).
  • the opening degree Vo continuously increases from the first opening degree Vo1 to the second opening degree Vo2 as the temperature T increases.
  • the processor 510 repeatedly executes S20 and S30 of FIG. As a result, when the temperature of the internal combustion engine 600 changes, the opening degree Vo of the valve 740 is adjusted to the opening degree Vo associated with the temperature T.
  • the opening degree Vo is smaller than when the temperature T is higher than the threshold value Tt. That is, the flow rate per unit time of the cooling water flowing through the head flow paths 661 and 662 (FIG. 9) for cooling the spark plug 100 is small. Therefore, when the temperature T is equal to or lower than the threshold value Tt, it is possible to suppress overcooling of the spark plug 100, and thus it is possible to suppress problems caused by the low temperature of the spark plug 100 (for example, contamination due to carbon). Further, when the temperature T is higher than the threshold value Tt, the opening degree Vo is large.
  • the flow rate per unit time of the cooling water flowing through the head flow paths 661 and 662 (FIG. 9) for cooling the spark plug 100 is large. Therefore, since the temperature rise of the spark plug 100 can be suppressed, problems (for example, preignition) due to the temperature rise of the spark plug 100 can be suppressed.
  • FIG. 10D shows a block diagram of another internal combustion engine system 1000B.
  • the internal combustion engine system 1000B includes an internal combustion engine 600, a control system 900B, a first radiator 710, a second radiator 720, a first pump 731, a second pump 732, and flow paths 791, 792. , 793, 794.
  • the control system 900B includes a flow rate control unit 910A and a temperature sensor 750.
  • the flow rate control unit 910 ⁇ / b> A includes a control device 500 and a valve 740.
  • the temperature sensor 750 is fixed to the internal combustion engine 600 and measures the temperature of the internal combustion engine 600.
  • the downstream side of the first radiator 710 and the upstream side of the head channel 660 are connected by the first channel 791, and the downstream side of the head channel 660 and the upstream side of the first radiator 710 are the second channel 792. Connected by. In the middle of the first flow path 791, a first pump 731 and a valve 740 are provided.
  • the first pump 731 circulates cooling water between the first radiator 710 and the head flow path 660.
  • the valve 740 can control the flow rate per unit time of the cooling water flowing through the head flow path 660.
  • the downstream side of the second radiator 720 and the upstream side of the block channel 670 are connected by the third channel 793, and the downstream side of the block channel 670 and the upstream side of the second radiator 720 are connected to the fourth channel 794.
  • a second pump 732 is provided in the middle of the third flow path 793. The second pump 732 circulates cooling water between the second radiator 720 and the block flow path 670.
  • the pumps 731 and 732 are driven by the driving force of the internal combustion engine 600.
  • the pumps 731 and 732 may be driven by an electric motor.
  • the processor 510 of the control device 500 controls the opening degree Vo of the valve 740 in accordance with a signal from the temperature sensor 750, as in the embodiment of FIG. Accordingly, when the temperature T is equal to or lower than the threshold value Tt, the flow rate is small, so that overcooling of the spark plug 100 can be suppressed. Therefore, the malfunction (for example, contamination by carbon) resulting from the low temperature of the spark plug 100 can be suppressed. Further, when the temperature T is higher than the threshold value Tt, the flow rate is large, so that the temperature rise of the spark plug 100 can be suppressed. Therefore, the malfunction (for example, preignition) resulting from the temperature rise of the spark plug 100 can be suppressed.
  • FIG. 11 is a schematic view showing a cross-sectional configuration of another embodiment of the internal combustion engine.
  • the difference from the embodiment of FIG. 9 is that the mounting hole 680a of the spark plug 100a passes through the head channel 661a.
  • the configuration of the portion other than the mounting hole 680a, the head channel 661a, and the spark plug 100a is the same as the configuration of the corresponding portion of the internal combustion engine 600 of FIG.
  • the elements of the internal combustion engine 600a the same elements as those of the internal combustion engine 600 of FIG.
  • the head channel 661a is provided in substantially the same part as the head channels 661 and 662 in FIG.
  • the shape of the mounting hole 680a and the head flow path 661a is such that the central portion of the screw portion 682 of the mounting hole 680 is deleted from the mounting hole 680 and the head flow paths 661 and 662 of FIG. , 662 and the shape obtained by communicating with each other.
  • a first screw portion 682d and a second screw portion 682u are formed in a portion on the cylinder 639 side of the hole forming portion 688a that forms the attachment hole 680a.
  • Each of these screw portions 682d and 682u is a female screw and has a helical thread.
  • the first screw portion 682d is provided at the same position as the end portion on the cylinder 639 side of the screw portion 682 in FIG.
  • the second screw portion 682u is provided at the same position as the end of the screw portion 682 in FIG. 9 opposite to the cylinder 639 side.
  • a portion of the mounting hole 680a between the first screw portion 682d and the second screw portion 682u communicates with the head channel 661a.
  • the metal shell 50a is provided with a first screw portion 57d and a second screw portion 57u.
  • the first screw portion 57d is screwed into the first screw portion 682d of the attachment hole 680a
  • the second screw portion 57u is screwed into the second screw portion 682u of the attachment hole 680a.
  • the shape of the outer peripheral surface of the portion between the first screw portion 57d and the second screw portion 57u of the metal shell 50a is a cylindrical shape in which the screw portion is omitted.
  • the hole forming portion 688a that forms the mounting hole 680a for mounting the spark plug 100a forms the mounting hole 680a that penetrates the head channel 661a.
  • a part of the metal shell 50a of the spark plug 100a (here, a part between the first screw part 57d and the second screw part 57u) is exposed in the head channel 661a. Therefore, the cooling water flowing through the head channel 661a can directly cool the metal shell 50a (and thus the spark plug 100a).
  • the temperature of the spark plug 100a can be suppressed from becoming excessively high.
  • the malfunction for example, preignition
  • the screw portion of the metal shell that is fitted into the thread of the mounting hole of the internal combustion engine may be composed of two screw portions 57d and 57u as in the metal shell 50a of FIG. It may be composed of parts.
  • the volume difference Dv is preferably within the preferred range described with reference to FIG.
  • 2nd area ratio R2 exists in the preferable range demonstrated with reference to FIG.
  • the distance F is preferably within the preferred range described with reference to FIG.
  • the tip of the screw portion used for calculating the metal fitting contact area Ss the tip of the screw portion on the most front direction Df side among the plurality of screw portions may be adopted (for example, in the example of FIG. 11, The front end 57fd of the first screw portion 57d).
  • the rear end of the screw portion used for calculating the parameters Ss and Vv the rear end of the screw portion on the most rearward direction Dfr side among the plurality of screw portions may be adopted (for example, in the example of FIG. 11).
  • the side surface of the center electrode (the surface in the direction perpendicular to the axis CL) and the ground electrode may form a discharge gap.
  • the total number of discharge gaps may be two or more.
  • a magnetic body may be disposed between the center electrode 20 and the terminal fitting 40. Further, the resistor 74 may be omitted.
  • the nominal diameter Dn of the threaded portion of the metal shell is 12 mm or less, as in the samples No. 1 to No. 13 in FIG. 2 (A) and FIG. 3 and No. 19 to No. 23 in FIG. Even when a certain thin spark plug is used, it is possible to appropriately suppress defects (for example, preignition).
  • the packing 8 (FIG. 1) may be omitted from the spark plug.
  • the reduced outer diameter portion 16 of the insulator 10 may be in direct contact with the reduced inner diameter portion 56 of the metal shell 50.
  • the first position P1 used for calculating the bracket exposed area Sa the position of the end on the most front direction Df side of the portion of the inner peripheral surface of the metal shell 50 that contacts the outer peripheral surface of the insulator 10 is used. Adopt it.
  • the first position P1 is the position of the end on the most front direction Df side of the contact portion between the reduced inner diameter portion 56 of the metal shell 50 and the reduced outer diameter portion 16 of the insulator 10.
  • the third position P3 used for calculation of the parameters Sb, Vc, Se, and F the end of the outermost surface of the insulator 10 that is in contact with the inner peripheral surface of the metal shell 50 on the most front direction Df side is used.
  • the position may be adopted.
  • the third position P3 is the position of the end on the most front direction Df side of the contact portion between the reduced inner diameter portion 56 of the metal shell 50 and the reduced outer diameter portion 16 of the insulator 10.
  • spark plugs having other configurations such as the spark plug 100a of FIG.
  • the correspondence relationship between the temperature T and the opening degree Vo represented by the control correspondence relationship is replaced with the correspondence relationship shown in FIG.
  • Various other correspondence relationships can be adopted.
  • the opening degree Vo may increase monotonously.
  • the opening degree Vo may change stepwise as the temperature T changes.
  • the opening degree Vo may be set to zero. That is, the flow rate per unit time of the cooling water flowing through the flow path for cooling the spark plug 100 (for example, the head flow paths 661 and 662 in FIG. 9) may be adjusted to zero.
  • the first opening degree Vo1 in FIG. 10C may be zero.
  • the configuration of the flow rate control unit that controls the flow rate of the flow path for cooling the spark plug 100 an arbitrary configuration capable of controlling the flow rate can be adopted instead of the configuration including the control device 500 and the valve 740.
  • the valve 740 may be omitted, and instead, the first pump 731 may be provided with an electric motor as a drive source.
  • the processor 510 of the control device 500 may control the electric motor of the first pump 731 such that the higher the temperature T, the higher the rotation speed of the electric motor. In this case, the whole of the control device 500 and the first pump 731 including an electric motor corresponds to the flow rate control unit.
  • the flow path for cooling the spark plug (for example, FIG. 9). It is possible to adopt any configuration capable of reducing the flow rate per unit time of the cooling water flowing through the head flow paths 661 and 662 and the head flow path 661a in FIG.
  • a cooling fluid which flows through a flow path it can replace with water and can employ
  • any configuration capable of cooling the spark plug can be used instead of the configuration of the flow paths 661 and 662 in FIG. 9 and the configuration of the flow path 661a in FIG. It can be adopted.
  • a flow path is adopted that passes through a position where the position in the direction parallel to the axis CL of the spark plug overlaps with the metal shell of the spark plug and the position in the direction perpendicular to the axis CL overlaps with the cylinder 639.
  • the coolant flowing through the flow path can appropriately cool the spark plug.
  • the coolant path for cooling the spark plug may be configured to pass only the cylinder head 610 or may be configured to pass both the cylinder head 610 and the cylinder block 620. .
  • the spark plug 100 of FIGS. 1 and 9 may be attached to the mounting hole 680a of the internal combustion engine 600a of FIG.
  • a part of the screw part 57 of the metal shell 50 is the head channel 661a. Exposed inside and directly in contact with the coolant.
  • a part of the configuration realized by hardware may be replaced with software, and conversely, part or all of the configuration realized by software is replaced with hardware. You may do it.
  • the function of controlling the opening degree Vo of the valve 740 by the control device 500 shown in FIGS. 10A and 10D may be realized by a dedicated hardware circuit.
  • the program is provided in a form stored in a computer-readable recording medium (for example, a non-temporary recording medium). be able to.
  • the program can be used in a state where it is stored in the same or different recording medium (computer-readable recording medium) as provided.
  • the “computer-readable recording medium” is not limited to a portable recording medium such as a memory card or a CD-ROM, but is connected to an internal storage device in a computer such as various ROMs or a computer such as a hard disk drive. An external storage device may also be included.
  • the present invention can be suitably used for a spark plug.
  • buckling part 59 ... through hole, 61 ... ring member, 70 ... Talc, 72 ... first seal part, 74 ... resistor, 76 ... second seal part, 90 ... gasket, 100, 100a ... spark plug, 200 ... connecting part, 300 ... virtual side part on the tip side, 300f ... space part on the tip side, 300m ... tip side member part, 500 ... control device, 510 ... processor, 520 ... volatile memory device, 530. ..Non-volatile storage device, 535 ... program, 540 ... interface, 600, 600a ... internal combustion engine, 610 ... cylinder head, 620 ... cylinder block, 630 ... combustion chamber, 631 ... intake port, 632 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

点火プラグは、軸線の方向に延びる軸孔を有する筒状の絶縁体と、絶縁体の外周に配置される主体金具と、絶縁体の軸孔に配置される中心電極と、主体金具の先端に接続され、中心電極と対向する接地電極と、を備える。主体金具は、内燃機関の取付孔のネジ山に嵌められるネジ部を有する。主体金具の外周面のうちネジ部の後端からネジ部の先端までの部分の表面積を表面積Ssとし、主体金具のうちの内燃機関の燃焼ガスに曝される部分の表面積を表面積Saとし、絶縁体のうち燃焼ガスに曝される部分の表面積を表面積Sbとする場合に、Ss/(Sa+Sb)≧2.6、が満たされる。

Description

点火プラグ、制御システム、内燃機関、内燃機関システム
 本明細書は、点火プラグに関する。
 内燃機関などの燃焼室における混合気に点火するために点火プラグが用いられている。点火プラグとしては、例えば、筒状の絶縁体と、絶縁体の外周に配置される主体金具と、を備えるものが、用いられている。このような点火プラグとしては、例えば、主体金具の外周面に雄ねじが形成されたものが、用いられている。主体金具の雄ねじは、内燃機関の取付孔に形成された雌ねじに、係合する。
特開2009-245716号公報
 内燃機関の設計自由度を向上するためには、点火プラグの小径化が好ましい。ところが、点火プラグが小径化されると、不具合が生じる場合があった。例えば、耐熱性が低下する場合があった。
 本明細書は、点火プラグに関する不具合を抑制できる技術を開示する。
 本明細書は、例えば、以下の適用例を開示する。
[適用例1]
 軸線の方向に延びる軸孔を有する筒状の絶縁体と、
 前記絶縁体の外周に配置される主体金具と、
 前記絶縁体の軸孔に配置される中心電極と、
 前記主体金具の先端に接続され、前記中心電極と対向する接地電極と、
 を備える点火プラグであって、
 前記主体金具は、内燃機関の取付孔のネジ山に嵌められるネジ部を有し、
 前記主体金具の外周面のうち前記ネジ部の後端から前記ネジ部の先端までの部分の表面積を表面積Ssとし、
 前記主体金具のうちの前記内燃機関の燃焼ガスに曝される部分の表面積を表面積Saとし、
 前記絶縁体のうち前記燃焼ガスに曝される部分の表面積を表面積Sbとする場合に、
 Ss/(Sa+Sb)≧2.6、が満たされる、点火プラグ。
 この構成によれば、耐熱性を向上できる。
[適用例2]
 適用例1に記載の点火プラグであって、
 前記主体金具は、先端側に向かって内径が小さくなる縮内径部を有し、
 前記絶縁体は、先端側に向かって外径が小さくなる縮外径部を有し、
 前記点火プラグは前記縮外径部と前記縮内径部とに接触するパッキンを備える、または、前記縮外径部は前記縮内径部に直接的に接触し、
 前記絶縁体の前記外周面と、前記縮内径部または前記パッキンと、の接触部分の先端から、前記主体金具の先端までの、前記軸線の方向の距離をFとする場合に、
 F≧5.0mm、が満たされる、点火プラグ。
 この構成によれば、絶縁体の外周面のうちの縮内径部またはパッキンとの接触部分における温度変化が抑制されるので、耐久性を向上できる。
[適用例3]
 適用例1または2に記載の点火プラグであって、
 前記主体金具は、先端側に向かって内径が小さくなる縮内径部を有し、
 前記絶縁体は、先端側に向かって外径が小さくなる縮外径部を有し、
 前記点火プラグは前記縮外径部と前記縮内径部とに接触するパッキンを備える、または、前記縮外径部は前記縮内径部に直接的に接触し、
 前記主体金具のうち前記ネジ部の後端から前記主体金具の先端までの部分である先端側部分を中実と仮定した場合の前記先端側部分の体積を体積Vvとし、
 前記主体金具の内周面と前記絶縁体の外周面とに挟まれた空間のうち、前記絶縁体の前記外周面と、前記縮内径部または前記パッキンと、の接触部分の先端よりも先端側の部分の体積を体積Vcとする場合に、
 (Vv-Vc)≦2000mm、が満たされる、点火プラグ。
 この構成によれば、耐汚損性を向上できる。
[適用例4]
 適用例1から3のいずれかに記載の点火プラグであって、
 前記主体金具は、先端側に向かって内径が小さくなる縮内径部を有し、
 前記絶縁体は、先端側に向かって外径が小さくなる縮外径部を有し、
 前記点火プラグは前記縮外径部と前記縮内径部とに接触するパッキンを備える、または、前記縮外径部は前記縮内径部に直接的に接触し、
 前記絶縁体の先端側の一部分は、前記主体金具の先端よりも先端側に配置されており、
 前記軸線の方向と垂直な方向に、前記絶縁体のうちの前記主体金具の先端よりも先端側に配置されている部分を投影したときの投影面積を、投影面積Sdとし、
 前記絶縁体の前記外周面と、前記縮内径部または前記パッキンと、の接触部分の先端を通り前記軸線の方向に垂直な前記絶縁体の断面積を、断面積Seとする場合に、
 Sd/Se≦0.46、が満たされる、点火プラグ。
 この構成によれば、耐久性を向上できる。
[適用例5]
 適用例1から4のいずれかに記載の点火プラグと、前記点火プラグを冷却する冷却液路とを備える内燃機関を制御するための制御システムであって、
 前記冷却液路を流れる冷却液の単位時間当たりの流量を制御する流量制御部と、
 前記内燃機関の温度を測定する温度センサと、
 を備え、
 前記流量制御部は、前記温度センサによって測定された温度が閾値以下である場合には、前記温度が前記閾値よりも高い場合と比べて、前記流量を小さくする、
 制御システム。
 この構成によれば、耐熱性と耐汚損性とを向上できる。
[適用例6]
 内燃機関であって、
 冷却液が流れるための冷却液路と、
 点火プラグを取り付けるための取付孔を形成する孔形成部と、
 前記取付孔に取り付けられた適用例1から4のいずれかに記載の点火プラグと、
 を備え、
 前記孔形成部は、前記冷却液路を貫通する前記取付孔を形成し、
 前記点火プラグの前記主体金具の一部分は、前記冷却液路内に露出している、
 内燃機関。
 この構成によれば、耐熱性を向上できる。
[適用例7]
 内燃機関システムであって、
 適用例6に記載の内燃機関と、
 前記内燃機関を制御するための適用例5に記載の制御システムと、
 を備える、
 内燃機関システム。
 この構成によれば、耐熱性と耐汚損性とを向上できる。
 なお、本明細書に開示の技術は、種々の態様で実現することが可能であり、例えば、点火プラグ、点火プラグを有する内燃機関、内燃機関の制御システム、内燃機関と制御システムとを有する内燃機関システム、内燃機関システムを有する車両、等の態様で実現することができる。
一実施形態としての点火プラグ100の断面図である。 評価試験の結果を示す説明図である。 評価試験の結果を示す説明図である。 評価試験の結果を示す説明図である。 パラメータDn、Ss、Ls、Sa、Sb、Vvの説明図である。 パラメータVc、Sd、Seの説明図である。 評価試験の結果を示す説明図である。 パラメータFの説明図である。 一実施形態としての内燃機関600の断面構成を示す概略図である。 内燃機関システムの説明図である。 内燃機関の別の実施形態の断面構成を示す概略図である。
A.第1実施形態:
A-1.点火プラグ100の構成:
 図1は、一実施形態としての点火プラグ100の断面図である。図中には、点火プラグ100の中心軸CL(「軸線CL」とも呼ぶ)と、点火プラグ100の中心軸CLを含む平らな断面と、が示されている。以下、中心軸CLに平行な方向を「軸線CLの方向」、または、単に「軸線方向」または「前後方向」とも呼ぶ。軸線CLに垂直な方向を、「径方向」とも呼ぶ。中心軸CLに平行な方向のうち、図1における下方向を先端方向Df、または、前方向Dfと呼び、上方向を後端方向Dfr、または、後方向Dfrとも呼ぶ。先端方向Dfは、後述する端子金具40から中心電極20に向かう方向である。また、図1における先端方向Df側を点火プラグ100の先端側と呼び、図1における後端方向Dfr側を点火プラグ100の後端側と呼ぶ。
 点火プラグ100は、軸線CLに沿って延びる貫通孔12(軸孔12とも呼ぶ)を有する筒状の絶縁体10と、貫通孔12の先端側で保持される中心電極20と、貫通孔12の後端側で保持される端子金具40と、貫通孔12内で中心電極20と端子金具40との間に配置された抵抗体74と、抵抗体74と中心電極20とを電気的に接続する第1シール部72と、抵抗体74と端子金具40とを電気的に接続する第2シール部76と、絶縁体10の外周側に固定された筒状の主体金具50と、一端が主体金具50の先端面55に接合されるとともに他端が中心電極20とギャップgを介して対向するように配置された接地電極30と、を有している。
 絶縁体10の軸線方向の略中央には、外径が最も大きな大径部14が形成されている。大径部14より後端側には、後端側胴部13が形成されている。大径部14よりも先端側には、後端側胴部13よりも外径の小さな先端側胴部15が形成されている。先端側胴部15よりもさらに先端側には、縮外径部16と、脚部19とが、先端側に向かってこの順に形成されている。縮外径部16の外径は、前方向Dfに向かって、徐々に小さくなっている。縮外径部16の近傍(図1の例では、先端側胴部15)には、前方向Dfに向かって内径が徐々に小さくなる縮内径部11が形成されている。絶縁体10は、機械的強度と、熱的強度と、電気的強度とを考慮して形成されることが好ましく、例えば、アルミナを焼成して形成されている(他の絶縁材料も採用可能である)。
 中心電極20は、後端側から先端側に向かって延びた棒状の部材である。中心電極20は、絶縁体10の貫通孔12内の前方向Df側の端部に配置されている。中心電極20は、外径が最も大きい部分である頭部24と、頭部24の前方向Df側に形成された軸部27と、軸部27の先端に接合(例えば、レーザ溶接)された第1チップ29と、を有している。頭部24の外径は、絶縁体10の縮内径部11よりも前方向Df側の部分の内径よりも大きい。頭部24の前方向Df側の面は、絶縁体10の縮内径部11によって、支持されている。軸部27は、軸線CLに平行に前方向Dfに向かって延びている。軸部27は、外層21と、外層21の内周側に配置された芯部22と、を有している。外層21は、例えば、ニッケルを主成分として含む合金で形成されている。ここで、主成分は、含有率(重量%)が最も高い成分を意味している。芯部22は、外層21よりも熱伝導率が高い材料(例えば、銅を主成分として含む合金)で形成されている。第1チップ29は、軸部27よりも放電に対する耐久性に優れる材料(例えば、イリジウム(Ir)、白金(Pt)等の貴金属、タングステン(W)、それらの金属から選択された少なくとも1種を含む合金)を用いて形成されている。中心電極20のうち第1チップ29を含む先端側の一部分は、絶縁体10の軸孔12から前方向Df側に露出している。なお、芯部22と第1チップ29との少なくとも一方は、省略されてもよい。また、中心電極20の全体が軸孔12内に配置されてもよい。
 絶縁体10の貫通孔12の後端側には、端子金具40の前方向Df側の一部が挿入されている。端子金具40は、軸線CLに平行に延びる棒状の部材である。端子金具40は、導電性材料を用いて形成されている(例えば、鉄を主成分として含む金属)。端子金具40は、前方向Dfに向かって順番で並ぶ、キャップ装着部49と、鍔部48と、軸部41と、を有している。キャップ装着部49は、絶縁体10の後端側で、軸孔12の外に露出している。キャップ装着部49には、高圧ケーブル(図示せず)に接続されたプラグキャップが装着され、火花放電を発生するための高電圧が印加される。キャップ装着部49は、高圧ケーブルが接続される部分である端子部の例である。軸部41は、絶縁体10の軸孔12の後方向Dfr側の部分に挿入されている。鍔部48の前方向Df側の面は、絶縁体10の後方向Dfr側の端である後端10eに接している。
 絶縁体10の軸孔12内において、端子金具40と中心電極20との間には、電気的なノイズを抑制するための抵抗体74が配置されている。抵抗体74は、導電性材料(例えば、ガラスと炭素粒子とセラミック粒子との混合物)を用いて形成されている。抵抗体74と中心電極20との間には、第1シール部72が配置され、抵抗体74と主体金具50との間には、第2シール部76が配置されている。これらのシール部72、76は、導電性材料(例えば、金属粒子と抵抗体74の材料に含まれるものと同じガラスとの混合物)を用いて形成されている。中心電極20は、第1シール部72、抵抗体74、第2シール部76によって、端子金具40に電気的に接続されている。以下、絶縁体10の軸孔12内で端子金具40と中心電極20とを電気的に接続する第1シール部72と抵抗体74と第2シール部76の全体を、接続部200とも呼ぶ。
 点火プラグ100の製造の際には、絶縁体10の後方向Dfr側の開口10qから中心電極20が挿入される。中心電極20は、絶縁体10の縮内径部11に支持されることにより、貫通孔12内の所定位置に配置される。次に、第1シール部72、抵抗体74、第2シール部76のそれぞれの材料粉末の投入と投入された粉末材料の成形とが、部材72、74、76の順番に、行われる。粉末材料は、開口10qから貫通孔12内に投入される。次に、絶縁体10を、部材72、74、76の材料粉末に含まれるガラス成分の軟化点よりも高い所定温度まで加熱し、所定温度に加熱した状態で、開口10qから、端子金具40の軸部41を貫通孔12に挿入する。この結果、部材72、74、76の材料粉末が圧縮および焼結されて、部材72、74、76が形成される。そして、端子金具40が、絶縁体10に固定される。
 主体金具50は、軸線CLに沿って延びる貫通孔59を有する筒状の部材である。主体金具50の貫通孔59には、絶縁体10が挿入され、主体金具50は、絶縁体10の外周に固定されている。主体金具50は、導電材料(例えば、低炭素鋼等の金属)を用いて形成されている。絶縁体10の前方向Df側の一部は、貫通孔59の外に露出している。また、絶縁体10の後方向Dfr側の一部は、貫通孔59の外に露出している。
 主体金具50は、工具係合部51と、胴部52と、を有している。工具係合部51は、点火プラグ用のレンチ(図示せず)が嵌合する部分である。胴部52は、主体金具50の先端面55を含む部分である。胴部52の外周面には、内燃機関(例えば、ガソリンエンジン)の取付孔に螺合するためのネジ部57が形成されている。ネジ部57は、雄ねじであり、螺旋状のネジ山を有している(図示省略)。
 主体金具50の工具係合部51と胴部52との間には、径方向外側に突き出たフランジ状の鍔部54が形成されている。胴部52のネジ部57と鍔部54との間には、環状のガスケット90が配置されている。ガスケット90は、例えば金属の板状部材を折り曲げることによって形成されており、点火プラグ100がエンジンに取り付けられた際に押し潰されて変形する。このガスケット90の変形によって、点火プラグ100と(具体的には、鍔部54の前方向Df側の面)、エンジンと、の隙間が封止され、燃焼ガスの漏出が抑制される。
 主体金具50の胴部52には、先端側に向かって内径が徐々に小さくなる縮内径部56が形成されている。主体金具50の縮内径部56と、絶縁体10の縮外径部16と、の間には、先端側パッキン8が挟まれている。本実施形態では、先端側パッキン8は、例えば、鉄製の板状リングである(他の材料(例えば、銅等の金属材料)も採用可能である)。
 主体金具50の工具係合部51より後端側には、薄肉のカシメ部53が形成されている。また、鍔部54と工具係合部51との間には、薄肉の座屈部58が形成されている。主体金具50の工具係合部51からカシメ部53にかけての内周面と、絶縁体10の後端側胴部13の外周面との間には、円環状のリング部材61,62が挿入されている。さらにこれらのリング部材61,62の間には、タルク70の粉末が充填されている。点火プラグ100の製造工程において、カシメ部53が内側に折り曲げられて加締められると、座屈部58が圧縮力の付加に伴って外向きに変形(座屈)し、この結果、主体金具50と絶縁体10とが固定される。タルク70は、この加締め工程の際に圧縮され、主体金具50と絶縁体10との間の気密性が高められる。また、パッキン8は、絶縁体10の縮外径部16と主体金具50の縮内径部56との間で押圧され、そして、主体金具50と絶縁体10との間をシールする。
 接地電極30は、棒状の本体部37と、本体部37の先端部34に取り付けられた第2チップ39と、を有している。本体部37の一端部33(基端部33とも呼ぶ)は、主体金具50の先端面55に接合されている(例えば、抵抗溶接)。本体部37は、主体金具50に接合された基端部33から先端方向Dfに向かって延び、中心軸CLに向かって曲がって、先端部34に至る。第2チップ39は、先端部34の後方向Dfr側の部分に固定されている(例えば、レーザ溶接)。接地電極30の第2チップ39と、電極20の第1チップ29とは、ギャップgを形成している。第2チップ39は、本体部37よりも放電に対する耐久性に優れる材料(例えば、イリジウム(Ir)、白金(Pt)等の貴金属、タングステン(W)、それらの金属から選択された少なくとも1種を含む合金)を用いて形成されている。本体部37は、外層31と、外層31の内周側に配置された内層32と、を有している。外層31は、内層32よりも耐酸化性に優れる材料(例えば、ニッケルを含む合金)で形成されている。内層32は、外層31よりも熱伝導率が高い材料(例えば、純銅、銅合金、等)で形成されている。なお、内層32と第2チップ39との少なくとも一方は、省略されてもよい。
B.評価試験:
 図2~図4は、点火プラグのサンプルを用いた評価試験の結果を示す説明図である。図2(A)は、1番から7番のサンプルのそれぞれの構成を示す表である。この表は、各サンプルの、呼び径Dn[mm]と、ネジ長Ls[mm]と、金具接触面積Ss[mm]と、金具露出面積Sa[mm]と、絶縁体露出面積Sb[mm]と、第1面積割合R1(=Ss/(Sa+Sb))と、を示している(カギ括弧内は、単位)。1番から7番のサンプルの間では、Ss、Sa、Sbの少なくとも1つが互いに異なっている。図2(B)は、1番から7番のサンプルのそれぞれのプレイグニションの発生進角AG(以下、単に、発生進角AGとも呼ぶ)を示すグラフである。縦軸は、サンプルの番号を示し、横軸は、発生進角AGを示している。図2(B)では、発生進角AGは、クランク角度で表されており、その単位は、度である。1番から7番のサンプルを用いて、プレイグニションの発生のし難さ(すなわち、耐熱性)が、評価された。
 図5(A)は、呼び径Dnと、ネジ長Lsと、金具接触面積Ssと、の説明図である。図中には、点火プラグ100の前方向Df側の一部分の軸線CLを含む断面が示されている。呼び径Dnは、主体金具50のネジ部57の呼び径である。ネジ長Lsは、ネジ部57の後端57rから、主体金具50の先端(ここでは、先端面55)までの、軸線CLに平行な方向の長さである。ネジ部57の後端57rは、ネジ部57の山と谷とのうちの最も後方向Dfr側の部分である。図中には、ネジ部57の先端57fも示されている。ネジ部57の先端57fは、ネジ部57の山と谷とのうちの最も前方向Df側の部分である。
 金具接触面積Ssは、主体金具50の外周面のうち、ネジ部57の後端57rからネジ部57の先端57fまでの部分の表面積である(図5(A)では、この部分が、太線で示されている)。金具接触面積Ssは、主体金具50のうち、他の部材(例えば、内燃機関の取付孔を形成する孔形成部)に接触する部分の面積を表している。内燃機関の駆動時には、燃焼ガスが点火プラグ100の前方向Df側の部分に接触する。そして、燃焼ガスから点火プラグ100に熱が伝わり、点火プラグ100からネジ部57を通じて内燃機関の孔形成部に熱が伝わる。金具接触面積Ssが大きいほど、点火プラグ100から内燃機関へ熱が伝わり易いので、点火プラグ100は冷却され易い。なお、螺旋状の山と谷とを有するネジ部57の表面積は、IEC62321のAnnexBに記載された表面積算定式を用いて算出された。
 図5(B)は、金具露出面積Saの説明図である。図中には、内燃機関600の取付孔680に装着された状態の点火プラグ100の前方向Df側の一部分の軸線CLを含む断面が示されている。点火プラグ100の前方向Df側の一部分は、燃焼室630内の燃焼ガスに曝される。金具露出面積Saは、主体金具50の表面のうちの燃焼ガスに曝される部分50xの表面積である。図中では、この部分50xが、太線で示されている(露出部分50xとも呼ぶ)。内燃機関の駆動時には、露出部分50xに燃焼ガスが接触する。そして、燃焼ガスから主体金具50へ熱が伝わる。金具露出面積Saが大きいほど、燃焼ガスから主体金具50へ熱が伝わり易いので、主体金具50(ひいては、点火プラグ100)の温度が高くなり易い。
 露出部分50xは、主体金具50の内周面上の第1位置P1から、主体金具50の先端面55を通って、主体金具50の外周面上の第2位置P2までの部分である。図5(B)の上部には、パッキン8を含む部分の拡大断面が示されている。第1位置P1は、主体金具50の内周面50iとパッキン8との接触部分のうちの最も前方向Df側の部分(すなわち、先端)の位置である。第2位置P2は、主体金具50の外周面と内燃機関600の孔形成部688との接触部分のうち最も前方向Df側の部分(すなわち、先端)の位置である。孔形成部688は、点火プラグ100を取り付けるための取付孔680を形成する部分である。
 図5(C)は、絶縁体露出面積Sbの説明図である。図中には、点火プラグ100の前方向Df側の一部分の軸線CLを含む断面が示されている。絶縁体露出面積Sbは、絶縁体10の表面のうちの燃焼ガスに曝される部分10xの表面積である。図中では、この部分10xが、太線で示されている(露出部分10xとも呼ぶ)。内燃機関の駆動時には、露出部分10xに燃焼ガスが接触する。そして、燃焼ガスから絶縁体10へ熱が伝わる。絶縁体露出面積Sbが大きいほど、燃焼ガスから絶縁体10へ熱が伝わり易いので、絶縁体10(ひいては、点火プラグ100)の温度が高くなり易い。
 露出部分10xは、絶縁体10の外周面上の第3位置P3から、絶縁体10の先端17を通って、絶縁体10の内周面上の第4位置P4までの部分である。図2(C)の上部には、パッキン8を含む部分の拡大断面が示されている。第3位置P3は、絶縁体10の外周面10oとパッキン8との接触部分のうちの最も前方向Df側の部分(すなわち、先端)の位置である。
 図5(C)の下部には、絶縁体10と中心電極20との間の隙間の先端部の拡大断面が示されている。図中の距離dは、絶縁体10の内周面10iと中心電極20の外周面20oとの間の軸線CLに垂直な方向の距離である。絶縁体10の内周面10iと中心電極20の外周面20oとの間の隙間には、燃焼ガスが侵入し得る。ここで、距離dが、所定の閾値dt(ここでは、0.1mm)よりも大きい場合には、燃焼ガスが侵入し易く、距離dが閾値dt以下である場合には、燃焼ガスは侵入し難い。第4位置P4は、絶縁体10の内周面10iの距離dが閾値dt以下である部分のうちの最も前方向Df側の部分の位置である。
 図5(C)の例では、中心電極20の軸部27は、絶縁体10の軸孔12の内から前方向Df側の外に向かって外径が小さくなる縮外径部26を有している。従って、第4位置P4は、縮外径部26の後方向Dfr側の端部に対向する位置である。このような縮外径部26が省略される場合、露出部分10xの内周側の端の位置である第4位置P4は、絶縁体10の内周面10i上ではなく、絶縁体10の先端17の内周側の縁の位置であり得る。
 図2(A)の表の第1面積割合R1(=Ss/(Sa+Sb))は、点火プラグ100の表面のうち、燃焼ガスから熱を受ける部分50x、10xの総面積(Sa+Sb)に対する、他の部材(ここでは、内燃機関600の孔形成部688)へ熱を伝える部分(主に、ネジ部57)の面積Ssの割合である。この第1面積割合R1が大きいほど、点火プラグ100は冷却され易いので、点火プラグ100の昇温に起因する不具合(例えば、プレイグニション)を抑制できる。
 図2(B)の試験結果は、JIS D1606に基づくプレイグニション試験の結果を示している。プレイグニション試験の概要は以下の通りである。各サンプルを排気量1.3L、4気筒のDOHC(Double OverHead Camshaft)エンジンに取付け、そして、回転速度が6000rpm、スロットル全開、という条件下でエンジンを動作させる。この状態で、点火時期を正規の点火時期から所定角度ずつ進角させる。各点火時期ごとに、点火時期よりも前のタイミングで電極20、30を流れる電流(イオン電流とも呼ばれる)を測定する。通常は、点火時期よりも前のタイミングでのイオン電流は、おおよそゼロである。点火時期よりも前のタイミングでのイオン電流が大きい場合には、電極20、30の近傍にイオンが生じている、すなわち、電極20、30の近傍に炎(すなわち、プレイグニション)が生じている。各サンプルについて、電極20、30を流れる電流の波形に基づいて、プレイグニションが発生した点火時期(発生進角AG)を特定した。尚、発生進角AGが大きいほど、プレイグニションが発生しにくい、すなわち耐熱性が良好である。
 図2(B)に示すように、1番から5番のそれぞれの発生進角AGは、56度以上であり、6番と7番のそれぞれの発生進角AGは、48度以下であった。このように、1番から5番のサンプルの耐熱性は、6番と7番の耐熱性と比べて、大幅に良好であった。また、図2(A)に示すように、1番から5番の第1面積割合R1は、番号の順に、4.1、3.3、2.7、2.6、2.6であり、いずれも2.6以上であった。6番と7番の第1面積割合R1は、2.1、1.8であり、2.6よりも小さかった。このように、第1面積割合R1が2.6以上である場合には、第1面積割合R1が2.6未満である場合と比べて、耐熱性が大幅に改善された。第1面積割合R1が大きい場合に耐熱性が良好である理由は、上述したように、第1面積割合R1が大きい場合には、点火プラグ100が冷却され易く、点火プラグ100の昇温が抑制されるからだと推定される。
 なお、56度以上の発生進角AGを実現した第1面積割合R1は、2.6、2.7、3.3、4.1であった。第1面積割合R1の好ましい範囲(下限以上、上限以下の範囲)を、これらの4個の値を用いて定めてもよい。具体的には、上記の4個の値のうちの任意の値を、第1面積割合R1の好ましい範囲の下限として採用してよい。例えば、第1面積割合R1は、2.6以上であってよい。また、これらの値のうちの下限以上の任意の値を、第1面積割合R1の好ましい範囲の上限として採用してよい。例えば、第1面積割合R1は、4.1以下であってよい。なお、第1面積割合R1が大きいほど、点火プラグ100の昇温を抑制できるので、第1面積割合R1が大きいほど、点火プラグ100の昇温に起因する不具合(例えば、プレイグニション)を抑制できる。従って、第1面積割合R1は、上記の4個の値のうちの最大値である4.1よりも、大きくてもよい。なお、低温環境下において点火プラグ100の昇温を促進するためには、第1面積割合R1が小さいことが好ましい。例えば、第1面積割合R1は、5.2以下であることが好ましい。
 なお、本評価試験で評価された耐熱性は、点火プラグの冷却のし易さに関するので、第1面積割合R1から大きな影響を受け、他のパラメータ(例えば、Dn、Ls、Ss、Sa、Sbなど)からの影響は、比較的小さいと推定される。従って、第1面積割合R1の上記の好ましい範囲は、種々の値のパラメータ(例えば、Dn、Ls、Ss、Sa、Sbなど)を有する点火プラグに適用できると推定される。
 図3は、8番から13番のサンプルの構成と試験結果を示す表である。この表は、各サンプルの、呼び径Dn[mm]と、ネジ長Ls[mm]と、金具接触面積Ss[mm]と、中実体積Vv[mm]と、金具露出面積Sa[mm]と、絶縁体露出面積Sb[mm]と、空間体積Vc[mm]と、第1面積割合R1と、体積差Dv[mm]と、試験結果(具体的には、サイクル数Ncとその評価結果)と、を示している(カギ括弧内は、単位)。8番から13番のサンプルの間では、Vv、Vcの少なくとも1つが互いに異なっている。8番から13番のサンプルを用いて、後述する耐汚損性の評価試験を行った。
 図5(D)は、中実体積Vvの説明図である。図中には、点火プラグ100の前方向Df側の一部分の軸線CLを含む断面が示されている。中実体積Vvは、主体金具50のうちネジ部57の後端57rから主体金具50の先端(ここでは、先端面55)までの部分である先端側部分50fを中実と仮定した場合の、先端側部分50fの体積である。すなわち、中実体積Vvは、主体金具50の貫通孔59のうち先端側部分50fに含まれる部分の全体が埋まっていると仮定した場合の、先端側部分50fの体積である。以下、中実体積Vvに対応する部分を、先端側仮想部分300とも呼ぶ。
 図6(A)は、空間体積Vcの説明図である。図中には、点火プラグ100の前方向Df側の一部分の軸線CLを含む断面が示されている。空間体積Vcは、主体金具50の内周面50iと絶縁体10の外周面10oとに挟まれた空間のうちの上述した第3位置P3よりも前方向Df側の部分である先端側空間部分300fの体積である。図中では、先端側空間部分300fにハッチングが付され、他の部材からはハッチングが省略されている。先端側空間部分300fは、主体金具50の内周面50iと絶縁体10の外周面10oとに挟まれた空間のうち、燃焼ガスが入り得る部分である。このような先端側空間部分300fは、図5(D)で説明した先端側仮想部分300のうちの点火プラグ100の部材が配置されていない空間部分と、おおよそ同じである。なお、第3位置P3は、先端側空間部分300fの後方向Dfr側の端でもある。
 図3の表の体積差Dv(=Vv-Vc)は、点火プラグ100の先端側仮想部分300(図5(D))から、点火プラグ100の部材が配置されていない先端側空間部分300f(図6(A))を除いた残りの部分300m(図6(A))の体積を表している。この部分300mは、先端側仮想部分300のうちの点火プラグ100の部材が配置されている部分と、おおよそ同じである(以下、先端側部材部分300mとも呼ぶ)。体積差Dvは、この先端側部材部分300mのおおよその体積を示している(以下、体積差Dvを、単に、体積Dvとも呼ぶ)。
 点火プラグ100の先端側部材部分300m(図6(A))は、燃焼ガスから熱を受け、そして、内燃機関の孔形成部688(図5(B))へ熱を伝える部分である。このような熱の伝達を行う先端側部材部分300mの体積Dvが小さいことは、先端側部材部分300mの熱容量が小さいことを示している。従って、体積Dvが小さいほど、点火プラグ100の先端側部材部分300mの温度が高くなり易いので、点火プラグ100の温度が低いことに起因する不具合(例えば、カーボンによる汚損)を抑制できる。
 図3の試験結果(サイクル数Ncと評価結果)は、JIS D1606に基づく耐汚損性評価試験の結果を示している。この評価試験の概要は以下の通りである。摂氏-10度の低温試験室内のシャシダイナモメータ上に、排気量が1.6L、4気筒、自然吸気、MPI(Multipoint fuel injection)のエンジンを有する試験用自動車を置いた。この試験用自動車のエンジンに、スパークプラグのサンプルを、各気筒に組み付けた。そして、第1運転と、第1運転に続く第2運転と、で構成される運転を、1サイクルの試験運転として行った。第1運転は、「3回の空吹かし」と、「3速、35km/hでの40秒間の走行」と、「90秒間のアイドリング」と、「3速、35km/hでの40秒間の走行」と、「エンジンの停止」と、「冷却水の温度が摂氏-10度になるまでの自動車の冷却」とを、この順番に行う運転である。第2運転は、「3回の空ふかし」と、「30秒間のエンジン停止を挟みつつ、1速、15km/hでの20秒間の走行を3回行うこと」と、「エンジンの停止」と、「冷却水の温度が摂氏-10度になるまでの自動車の冷却」とを、この順番に行う運転である。
 このような第1運転と第2運転とで構成される試験運転を、繰り返した。そして、1サイクルの試験運転が終了するたびに、点火プラグのサンプルの中心電極20と主体金具50との間の絶縁抵抗を測定した。なお、端子金具40と中心電極20との間の電気抵抗は、絶縁抵抗と比べて十分に小さいので、端子金具40と主体金具50との間の絶縁抵抗の測定結果を、中心電極20と主体金具50との間の絶縁抵抗として採用した。そして、エンジンに装着された4個のサンプルの4個の絶縁抵抗の平均値が10MΩ以下となった段階でのサイクル数Ncを、8番から13番の各サンプルについて、特定した。内燃機関の駆動によって、絶縁体10の表面にカーボンが付着し得る(汚損とも呼ばれる)。このような汚損が進行し易い場合には、絶縁抵抗は低下し易く、サイクル数Ncは少ない。サイクル数Ncが多いことは、点火プラグ100の汚損が抑制されていることを示している。図3のA評価は、サイクル数Ncが6以上であることを示し、B評価は、サイクル数Ncが5以下であることを示している。
 図3に示すように、8番から10番のそれぞれのサイクル数Ncは、6以上であり(A評価)、11番から13番のそれぞれのサイクル数Ncは、5以下であった(B評価)。このように、8番から10番の耐汚損性は、11番から13番の耐汚損性と比べて、良好であった。また、図3に示すように、8番から10番の体積差Dvは、番号の順に、1882、1938、1960(mm)であり、いずれも、2000mm以下であった。11番から13番の体積差Dvは、番号の順に、2083、2296、2824(mm)であり、いずれも、2000mmより大きかった。このように、体積差Dvが2000mm以下である場合には、体積差Dvが2000mmより大きい場合と比べて、耐汚損性が大幅に改善された。
 体積差Dvが小さい場合に耐汚損性が良好である理由は、以下のように推定される。上述したように、体積差Dvが小さい場合には、点火プラグ100の先端側部材部分300m(図6(A))が小さいので、低温環境下においても、先端側部材部分300mの温度(ひいては、絶縁体10の燃焼ガスに接触する部分)の温度が上昇し易い。絶縁体10の温度が高い場合には、絶縁体10の表面に付着したカーボンは、容易に焼失できる。これにより、体積差Dvが小さい場合に耐汚損性が向上する。
 なお、A評価のサイクル数Ncを実現した体積差Dvは、1882、1938、1960(mm)であった。体積差Dvの好ましい範囲(下限以上、上限以下の範囲)を、これらの3個の値を用いて定めてもよい。具体的には、上記の3個の値のうちの任意の値を、体積差Dvの好ましい範囲の上限として採用してよい。例えば、体積差Dvは、1960mm以下であってよい。また、これらの値のうちの上限以下の任意の値を、体積差Dvの好ましい範囲の下限として採用してよい。例えば、体積差Dvは、1882mm以上であってよい。なお、体積差Dvが小さいほど、絶縁体10の昇温が促進されるので、体積差Dvが小さいほど、点火プラグ100の温度が低いことに起因する不具合(例えば、カーボンによる汚損)を抑制できる。従って、体積差Dvは、上記の3個の値のうちの最小値である1882mmよりも、小さくてもよい。なお、点火プラグ100の先端側部材部分300mに対応する部分の耐久性を向上するためには、先端側部材部分300mの体積Dvが大きいことが好ましい。例えば、体積差Dvは、1000mm以上であることが好ましい。
 また、図3に示すように、8番から13番のサンプルのいずれの第1面積割合R1も、2.6以上である。従って、8番から13番のサンプルは、いずれも、図2(A)の評価試験のように点火プラグ100の温度が高くなりやすい条件下において、点火プラグ100の昇温に起因する不具合(例えば、プレイグニション)を抑制できると推定される。さらに、8番から10番のサンプルは、図3の評価試験のように点火プラグ100の温度が高くなり難い条件下において、点火プラグ100の温度が低いことに起因する不具合(例えば、カーボンによる汚損)を抑制できる。
 なお、本評価試験で評価された耐汚損性は、点火プラグ(特に、先端側部材部分300m)の昇温のし易さに関するので、体積差Dvから大きな影響を受け、他のパラメータ(例えば、Dn、Ls、Ss、Vv、Sa、Sb、Vc、R1)からの影響は、比較的小さいと推定される。従って、体積差Dvの上記の好ましい範囲は、種々の値のパラメータ(例えば、Dn、Ls、Ss、Vv、Sa、Sb、Vc、R1)を有する点火プラグに適用できると推定される。ただし、体積差Dvは、上記の好ましい範囲外であってよく、例えば、2000mmより大きくてもよい。
 図4は、14番から18番のサンプルの構成と評価試験の結果を示す表である。この表は、各サンプルの、金具接触面積Ss[mm]と、中実体積Vv[mm]と、金具露出面積Sa[mm]と、絶縁体露出面積Sb[mm]と、空間体積Vc[mm]と、投影面積Sd[mm]と、断面積Se[mm]と、第2面積割合R2(=Sd/Se)と、試験結果と、を示している(カギ括弧内は、単位)。14番から18番のサンプルの間では、Sd、Seの少なくとも1つが互いに異なっている。14番から18番のサンプルを用いて、後述する耐久性の評価試験を行った。
 図6(B)は、投影面積Sdの説明図である。図中には、点火プラグ100の前方向Df側の一部分の外観が示されている。この外観は、軸線CLに垂直な方向を向いて見た外観である。図示するように、絶縁体10の前方向Df側の一部分は、主体金具50の先端(ここでは、先端面55)よりも前方向Df側に位置している。ハッチングが付された部分10fは、絶縁体10のうちの主体金具50の先端(先端面55)よりも前方向Df側に配置されている部分である(先端部10fとも呼ぶ)。投影面積Sdは、この先端部10fを、軸線CLに垂直な方向に向かって、軸線CLに平行な投影面上に投影して得られる投影図の面積(投影面積とも呼ぶ)である。
 内燃機関の駆動時には、燃焼室内で、ガス(例えば、燃焼ガス)が流動し、また、圧力波がガスを介して伝播する。流動するガスや圧力波は、絶縁体10に接触することによって、絶縁体10に力を印加する場合がある。例えば、ガスや圧力波が、絶縁体10の先端部10fの近傍で、軸線CLに交差する方向に向かって移動する場合がある。このようなガスや圧力波は、絶縁体10の先端部10fに接触することによって、絶縁体10に、軸線CLに交差する方向の力を印加し得る。ここで、投影面積Sdが大きいほど、絶縁体10のうちのガスや圧力波から力を受ける部分が大きい。従って、絶縁体10が受ける力は、投影面積Sdが大きいほど、強い。なお、図示された先端部10fの形状は、先端部10fの投影図の形状と同じである。従って、投影面積Sdは、このような外観図を用いて算出可能である。
 図6(C)は、断面積Seの説明図である。図中に左部には、点火プラグ100の前方向Df側の一部分の軸線CLを含む断面が示されている。図中の右部には、絶縁体10の軸線CLに垂直な断面10zが示されている。この断面10zは、上述した第3位置P3(図5(C))を含む断面である。断面積Seは、絶縁体10のこの断面10zの面積である。図6(B)で説明したように、絶縁体10の先端部10fに、軸線CLに交差する方向の力が印加される場合がある。また、絶縁体10は、パッキン8を介して、主体金具50に支持されている。従って、絶縁体10の先端部10fに力が印加される場合、絶縁体10の第3位置P3の部分に、大きな力が作用する。従って、絶縁体10の第3位置P3を通る断面10zの断面積Seが大きいほど、絶縁体10は、大きな力に耐えることができる。
 図4の表の第2面積割合R2は、絶縁体10の断面10zの断面積Seに対する、絶縁体10の先端部10fの投影面積Sdの割合である。この第2面積割合R2が小さいことは、絶縁体10のうちの力に耐える部分の断面10zの断面積Seに対する、絶縁体10のうちの力を受ける先端部10fの投影面積Sdの割合が小さいことを示している。すなわち、第2面積割合R2が小さいほど、力に耐える部分の断面10zの単位面積当たりの力が、小さくなる。従って、第2面積割合R2が小さいほど、耐久性が向上すると推定される。
 耐久性の評価試験の概要は、以下の通りである。各サンプルを、排気量1.6L、直噴ターボエンジンに取り付け、そして、回転速度が2000rpm、スロットル全開、過給圧が100kPaという条件下で、エンジンを動作させる。諸説あるが、このような低負荷、高吸気圧の条件下では、ピストンクレビス部に溜まったエンジン潤滑油の油滴や添加剤が燃焼することで、生成される化合物が自己着火する異常燃焼が生じる場合がある。そして、このような異常燃焼に起因して、燃焼室内で、大きな圧力波が伝播する場合があった。このような圧力波を引き起こすような異常燃焼は、スーパーノックとも呼ばれる。本評価試験では、燃焼室内の圧力を測定する圧力センサを用いて、圧力が、通常の燃焼時の圧力よりも大きな閾値を超える場合に、異常燃焼(具体的には、スーパーノック)が発生したと判定した。そして、各サンプルについて、異常燃焼の発生回数が100回となった段階でエンジンを停止させ、サンプルをエンジンから取り外し、サンプルの絶縁体10を観察した。図4の試験結果のA評価は、絶縁体10の異常が見つからなかったことを示し、B評価は、サンプルの絶縁体10の第3位置P3の近傍が割れたことを示している。
 図4に示すように、14番から16番の評価は、A評価であり、17番、18番の評価は、B評価であった。このように、14番から16番の耐久性は、17番、18番の耐久性と比べて、良好であった。また、図4に示すように、14番から16番の第2面積割合R2は、番号の順に、0.29、0.35、0.46であり、いずれも、0.46以下であった。17番、18番の第2面積割合R2は、番号の順に、0.51、0.58であり、いずれも、0.46よりも大きかった。このように、第2面積割合R2が0.46以下である場合には、第2面積割合R2が0.46よりも大きい場合と比べて、耐久性が大幅に改善された。第2面積割合R2が小さい場合に耐久性が良好である理由は、上述したように、第2面積割合R2が小さい場合には、力に耐える部分の断面10zの単位面積当たりの力が小さくなるからだと推定される。
 なお、A評価を実現した第2面積割合R2は、0.29、0.35、0.46であった。第2面積割合R2の好ましい範囲(下限以上、上限以下の範囲)を、これらの3個の値を用いて定めてもよい。具体的には、上記の3個の値のうちの任意の値を、第2面積割合R2の好ましい範囲の上限として採用してよい。例えば、第2面積割合R2は、0.46以下であってよい。また、これらの値のうちの上限以上の任意の値を、第2面積割合R2の好ましい範囲の下限として採用してよい。例えば、第2面積割合R2は、0.29以上であってよい。なお、第2面積割合R2が小さいほど、絶縁体10の耐久性が向上すると推定される。従って、第2面積割合R2は、上記の3個の値のうちの最小値である0.29よりも、小さくてもよい。また、絶縁体10の先端部の全体が、主体金具50の先端(ここでは、先端面55)よりも後方向Dfr側に配置されていてもよい。すなわち、絶縁体10の先端部の全体が、主体金具50の貫通孔59内に配置されていてもよい。この場合、投影面積Sdはゼロであり、第2面積割合R2はゼロである。このように、投影面積Sdは、ゼロ以上の種々の値であってよい。そして、第2面積割合R2は、ゼロ以上の種々の値であってよい。
 なお、本評価試験で評価された絶縁体10の耐久性は、機械的な耐久性であるので、第2面積割合R2から大きな影響を受け、他のパラメータ(例えば、Ss、Vv、Sa、Sb、Vc、Sd、Se)からの影響は、比較的小さいと推定される。従って、第2面積割合R2の上記の好ましい範囲は、種々の値のパラメータ(例えば、Ss、Vv、Sa、Sb、Vc、Sd、Se)を有する点火プラグに適用できると推定される。
 図7は、点火プラグのサンプルを用いた評価試験の結果を示す説明図である。図中には、19番から23番のサンプルの構成と試験結果を示す表が、示されている。この表は、各サンプルの、呼び径Dn[mm]と、ネジ長Ls[mm]と、金具接触面積Ss[mm]と、金具露出面積Sa[mm]と、絶縁体露出面積Sb[mm]と、第1面積割合R1(=Ss/(Sa+Sb))と、距離F[mm]と、試験結果と、を示している(カギ括弧内は、単位)。19番から23番のサンプルの間では、距離Fが互いに異なっている。図8は、距離Fの説明図である。図中には、図6(C)と同じ、点火プラグ100の前方向Df側の一部分の軸線CLを含む断面が示されている。距離Fは、上述した第3位置P3と、主体金具50の先端(ここでは、先端面55)と、の間の、軸線CLに平行な方向の距離である。図7の19番から23番のサンプルの間では、この距離Fを異ならせることに伴って、金具露出面積Saと絶縁体露出面積Sbとが、互いに異なっている。呼び径Dnは、共通の12mmである。また、21番のネジ長Lsと金具接触面積Ssとは、他のサンプルのLs、Ssと、それぞれ異なっている。いずれのサンプルについても、第1面積割合R1は、図2(A)、図2(B)で説明した好ましい範囲の例である2.6以上の範囲内である。このような19番から23番のサンプルを用いて、絶縁体10の耐久性が、評価された。
 内燃機関の駆動時には、絶縁体10(図8)の温度は、燃焼ガスからの熱によって、上昇する。パッキン8は、高温の絶縁体10から、主体金具50へ、熱を伝達できる。絶縁体10のうちパッキン8との接触部分よりも前方向Df側の部分の熱は、パッキン8を介して、主体金具50へ伝達される。これにより、絶縁体10は冷却される。ところで、内燃機関の駆動時には、ガスの燃焼と他の行程(例えば、新気の吸入)が繰り返される。これにより、ガスの燃焼による絶縁体10の昇温と、他の行程における絶縁体10の降温と、が繰り返される。絶縁体10のうちパッキン8との接触部分、すなわち、第3位置P3の近傍の部分は、冷却されやすいので、降温時に、温度が低くなりやすい。また、絶縁体10のうち、燃焼室に近い前方向Df側の部分は、高温の燃焼ガスに近いので、昇温時に、温度が高くなりやすい。従って、第3位置P3が燃焼室に近い場合、すなわち、距離Fが短い場合には、距離Fが長い場合と比べて、絶縁体10の第3位置P3の近傍の部分の温度の変化が、大きくなる。大きな温度変化が繰り返される場合、絶縁体10が破損し得る。従って、距離Fが長いことが好ましい。
 図7の表の試験結果は、点火プラグ100の熱衝撃試験の結果を示している。熱衝撃試験は、以下のように行われた。点火プラグ100のサンプルを、水冷ジャケットの取付孔に装着する。水冷ジャケットは、内燃機関の取付孔と同様の取付孔を形成する板状の部材である。水冷ジャケットには、冷却水のための流路が設けられており、水冷ジャケットは、流路を流れる冷却水によって、冷却される。この状態で、ブラストバーナを用いて、点火プラグ100のうち、水冷ジャケットの取付孔から露出する先端部を、加熱する。ここで、放射温度計を用いて、中心電極の先端の温度を測定する。加熱時には、中心電極の先端の温度が摂氏850度になるように、バーナの火力が調整される。そして、バーナによる1分間の加熱と、バーナを止めることによる1分間の空冷とを、繰り返す。水冷ジャケットの冷却水の温度は、バーナによる加熱時と空冷時とのそれぞれにおいて、点火プラグ100の主体金具50の温度が摂氏100度以下に維持されるように、調整される。1分間の加熱と1分間の空冷とで構成される1サイクルを、50回繰り返す。そして、50サイクルの加熱と空冷との実施後、絶縁体10を観察する。図7の表のA評価は、絶縁体10に割れが発生しなかったことを示し、B評価は、絶縁体10に割れが発生したことを示している。絶縁体10の割れは、パッキン8との接触部分の近傍で、発生した。
 図7に示すように、19番、20番、21番の評価は、A評価であり、22番、23番の評価は、B評価であった。このように、19番から21番の耐久性は、22番、23番の耐久性と比べて、良好であった。また、図7に示すように、19番から21番の距離Fは、番号の順番に、10.0、7.3、5.0(mm)であり、いずれも、5.0mm以上であった。22番と23番の距離Fは、番号の順に、4.8、4.0(mm)であり、いずれも、5.0mm未満であった。このように、距離Fが5.0mm以上である場合には、距離Fが5.0mm未満である場合と比べて、耐久性が大幅に改善された。距離Fが大きい場合に耐久性を向上できる理由は、上述したように、距離Fが長い場合には、絶縁体10のうち第3位置P3に近い部分(例えば、パッキン8との接触部分)の温度変化を抑制できるからだと推定される。
 なお、A評価を実現した距離Fは、5.0、7.3、10.0(mm)であった。距離Fの好ましい範囲(下限以上、上限以下の範囲)を、これらの3個の値を用いて定めてもよい。具体的には、上記の3個の値のうちの任意の値を、距離Fの好ましい範囲の下限として採用してよい。例えば、距離Fは、5.0mm以上であってよい。また、これらの値のうちの下限以上の任意の値を、距離Fの好ましい範囲の上限として採用してよい。例えば、距離Fは、10.0mm以下であってよい。なお、距離Fが大きいほど、絶縁体10の第3位置P3の近傍の部分における温度変化が抑制されるので、距離Fが大きいほど、絶縁体10の破損を抑制できる。従って、距離Fは、上記の3個の値のうちの最大値である10.0mmよりも、大きくてもよい。
 また、本熱衝撃試験では、主体金具50の温度は、水冷ジャケットによる冷却によって、摂氏100度以下に維持される。一方、一般的な内燃機関の運転時には、主体金具50の温度は、摂氏100度よりも高い温度に維持され得る。本熱衝撃試験は、一般的な内燃機関の運転条件と比べて、温度変化が大きくなり易い厳しい条件下での試験である、といえる。従って、点火プラグ100を一般的な内燃機関に装着する場合には、距離Fが5.0mm未満であってもよい。
 また、図7に示すように、19番から23番のサンプルのいずれの第1面積割合R1も、2.6以上である。従って、19番から23番のサンプルは、いずれも、図2(A)の評価試験のように点火プラグ100の温度が高くなりやすい条件下において、点火プラグ100の昇温に起因する不具合(例えば、プレイグニション)を抑制できると推定される。
 なお、本評価試験で評価された絶縁体10の耐久性は、絶縁体10の第3位置P3の近傍の部分の温度変化に関するので、距離Fから大きな影響を受け、他のパラメータ(例えば、Dn、Ls、Ss、Vv、Sa、Sb、Vc、R1、Dv、Sd、Se、R2など)からの影響は、比較的小さいと推定される。従って、距離Fの上記の好ましい範囲は、種々の値のパラメータ(例えば、Dn、Ls、Ss、Vv、Sa、Sb、Vc、R1、Dv、Sd、Se、R2など)を有する点火プラグに適用できると推定される。
C.内燃機関システム:
C1.内燃機関:
 図9は、一実施形態としての内燃機関600の断面構成を示す概略図である。図中には、1つの燃焼室630の点火プラグ100用の取付孔680を含む一部分が示されている。内燃機関600は、シリンダヘッド610と、シリンダブロック620と、を有している。シリンダブロック620には、シリンダ639が形成されている。シリンダ639内には、ピストン691が配置されている。ピストン691には、コネクティングロッド692の端部が接続されている。図示を省略するが、コネクティングロッド692の反対側の端部は、クランクシャフトに接続されている。
 シリンダヘッド610は、シリンダブロック620上に配置されている。シリンダヘッド610には、吸気路651と、排気路652と、が設けられている。また、シリンダヘッド610のうちのシリンダ639に対向する部分には、吸気路651に連通する吸気ポート631と、排気路652に連通する排気ポート632と、吸気ポート631と排気ポート632との間に配置された取付孔680と、が設けられている。取付孔680には、点火プラグ100が装着されている。図中では、点火プラグ100の外観の概略が示されている。取付孔680を形成する孔形成部688のうちのシリンダ639側の部分には、ネジ部682が形成されている。ネジ部682は、雌ねじであり、螺旋状のネジ山を有している(図示省略)。点火プラグ100のネジ部57は、孔形成部688のネジ部682にねじ込まれている。
 シリンダヘッド610には、さらに、吸気ポート631を開閉する吸気バルブ641と、吸気バルブ641を駆動する第1駆動部643と、排気ポート632を開閉する排気バルブ642と、排気バルブ642を駆動する第2駆動部644と、が設けられている。第1駆動部643は、例えば、吸気バルブ641を閉じる方向に付勢するコイルスプリングと、吸気バルブ641を開ける方向に移動させるカムと、を含んでいる。第2駆動部644も、例えば、排気バルブ642を閉じる方向に付勢するコイルスプリングと、排気バルブ642を開ける方向に移動させるカムと、を含んでいる。
 燃焼室630は、シリンダブロック620のシリンダ639の壁と、ピストン691と、シリンダヘッド610のうちのシリンダ639に対向する部分と、吸気バルブ641と、排気バルブ642と、点火プラグ100と、に囲まれた空間である。
 また、内燃機関600には、冷却水が流れるための流路661~664、671、672が形成されている(このような流路は、ウォータジャケットとも呼ばれる)。以下、シリンダヘッド610に形成されている流路661~664を、ヘッド流路661~664とも呼び、シリンダブロック620に形成されている流路671、672を、ブロック流路671、672とも呼ぶ。
 第1ヘッド流路661は、シリンダヘッド610のうちの、取付孔680のネジ部682と吸気バルブ641との間に設けられている。第2ヘッド流路662は、シリンダヘッド610のうちの、取付孔680のネジ部682と排気バルブ642との間に設けられている。これらのヘッド流路661、662は、取付孔680のネジ部682とバルブ641、642との間に設けられている。従って、これらのヘッド流路661、662を流れる冷却水は、取付孔680に装着された点火プラグ100を、適切に、冷却できる。なお、第3ヘッド流路663と第4ヘッド流路664とは、シリンダヘッド610の別の位置に設けられている。
 第1ブロック流路671と第2ブロック流路672とは、燃焼室630を挟むように配置されている。なお、図9の例では、これらのブロック流路671、672の一部は、シリンダヘッド610に形成されている。ただし、ブロック流路671、672の全体が、シリンダブロック620に形成されていてもよい。
C2.内燃機関システム:
 図10(A)は、内燃機関システムの例を示すブロック図である。この内燃機関システム1000Aは、内燃機関600(図9)と、制御システム900Aと、ラジエータ700と、ポンプ730と、流路781~786と、を含んでいる。制御システム900Aは、流量制御部910Aと、温度センサ750と、を含んでいる。流量制御部910Aは、制御装置500と、バルブ740と、を含んでいる。温度センサ750は、例えば、熱電対である。
 ラジエータ700の下流側には、第1流路781が接続されている。第1流路781は、第2流路782と第3流路783とに分岐している。第2流路782は、内燃機関600のヘッド流路660の上流側に接続されており、第3流路783は、内燃機関600のブロック流路670の上流側に接続されている。ヘッド流路660は、シリンダヘッド610(図9)に設けられた複数の流路を全体として1つの流路として表したものであり、例えば、図9のヘッド流路661~664を含んでいる。ブロック流路670は、シリンダブロック620(図9)に設けられた複数の流路を全体として1つの流路として表したものであり、例えば、図9のブロック流路671、672を含んでいる。ヘッド流路660の下流側には、第4流路784が接続され、ブロック流路670の下流側には、第5流路785が接続されている。これらの流路784、785は、合流して、第6流路786に接続されている。第6流路786は、ラジエータ700の上流側に接続されている。
 第1流路781の途中には、ポンプ730が設けられている。ポンプ730は、ラジエータ700によって冷却された冷却水を、流路781、782、783を通じて、内燃機関600の流路660、670へ供給し、そして、内燃機関600の流路660、670から出力された冷却水を、流路784、785、786を通じて、ラジエータ700へ循環させる。ポンプ730は、内燃機関600の駆動力によって、駆動される。代わりに、ポンプ730は、駆動源としての電気モータを含んでもよい。
 内燃機関600には、内燃機関600の温度を測定する温度センサ750が固定されている。温度センサ750の固定位置は、内燃機関600の温度を測定可能な任意の位置であってよい。例えば、温度センサ750は、シリンダヘッド610に固定されている。これに代えて、温度センサ750は、シリンダブロック620に固定されてもよい。また、温度センサ750は、ヘッド流路660またはブロック流路670を流れる冷却水の温度を測定してもよい。冷却水の温度は、内燃機関600の温度と相関があるので、冷却水の温度を測定する温度センサ750は、間接的に、内燃機関600の温度を測定していると言える。
 第2流路782の途中には、バルブ740が設けられている。このバルブ740は、内燃機関600のヘッド流路660を流れる冷却水の単位時間当たりの流量を制御することができる。バルブ740の開度が小さいほど、ヘッド流路660(例えば、点火プラグ100(図9)を冷却する流路661、662)を流れる冷却水の単位時間当たりの流量が小さい。バルブ740の開度は、制御装置500によって制御される。流量制御部910A(制御装置500とバルブ740との全体)は、点火プラグ100を冷却するヘッド流路661、662(図9)を流れる冷却水の単位時間当たりの流量を制御する。
 制御装置500は、温度センサ750からの信号に応じて、バルブ740を制御する装置である。本実施形態では、制御装置500は、CPUなどのプロセッサ510と、RAMなどの揮発性記憶装置520と、ROMなどの不揮発性記憶装置530と、外部の装置を接続するためのインタフェース540と、を含んでいる。不揮発性記憶装置530には、プログラム535が、予め格納されている。インタフェース540には、バルブ740と温度センサ750とが接続されている。プロセッサ510は、プログラム535に従って動作することによって、バルブ740を制御する。
 図10(B)は、制御装置500による制御処理の例を示すフローチャートである。S10では、プロセッサ510は、温度センサ750からの信号を取得する。S20では、プロセッサ510は、温度センサ750からの信号に応じて、バルブ740の開度を調整する。温度センサ750からの信号によって表される測定値(例えば、温度センサ750のセンサ素子の電気抵抗値)と、バルブ740の開度と、の対応関係は、予め決められている(制御対応関係と呼ぶ)。制御対応関係を表すデータ(例えば、ルックアップテーブル)は、プログラム535に、組み込まれている。S20では、プロセッサ510は、制御対応関係に従って、温度センサ750からの信号によって表される測定値に対応付けられた開度に、バルブ740の開度を調整する。プロセッサ510は、このようなS10、S20を繰り返し実行する。
 図10(C)は、制御対応関係によって表される温度Tと開度Voとの関係を示すグラフである。横軸は、温度センサ750からの信号によって表される温度Tを示し、縦軸は、バルブ740の開度Voを示している。図示するように、温度Tが低いほど、開度Voは小さい。具体的には、温度Tが、第1温度T1以下である場合には、開度Voは、第1開度Vo1である(ここで、Vo1≧ゼロ)。温度Tが、第2温度T2以上である場合には、開度Voは、第2開度Vo2である(ここで、T2>T1、Vo2>Vo1)。そして、第1温度T1以上、第2温度T2以下の範囲内では、開度Voは、温度Tの上昇に応じて、第1開度Vo1から第2開度Vo2まで、連続的に増大する。プロセッサ510は、図10(B)のS20、S30を繰り返し実行する。これにより、内燃機関600の温度が変化した場合には、バルブ740の開度Voは、温度Tに対応付けられた開度Voに、調整される。
 温度Tが、第1温度T1と第2温度T2との間の予め決められた閾値Tt以下である場合には、温度Tが閾値Ttよりも高い場合と比べて、開度Voが小さい。すなわち、点火プラグ100を冷却するヘッド流路661、662(図9)を流れる冷却水の単位時間当たりの流量が小さい。従って、温度Tが閾値Tt以下である場合には、点火プラグ100の過冷却を抑制できるので、点火プラグ100の温度が低いことに起因する不具合(例えば、カーボンによる汚損)を抑制できる。また、温度Tが閾値Ttよりも高い場合には、開度Voが大きい。すなわち、点火プラグ100を冷却するヘッド流路661、662(図9)を流れる冷却水の単位時間当たりの流量が大きい。従って、点火プラグ100の昇温を抑制できるので、点火プラグ100の昇温に起因する不具合(例えば、プレイグニション)を抑制できる。
 図10(D)は、別の内燃機関システム1000Bのブロック図を示している。図10(A)のシステム1000Aとは異なり、ヘッド流路660用の冷却水の流路と、ブロック流路670用の冷却水の流路とが、分離している。具体的には、内燃機関システム1000Bは、内燃機関600と、制御システム900Bと、第1ラジエータ710と、第2ラジエータ720と、第1ポンプ731と、第2ポンプ732と、流路791、792、793、794と、を含んでいる。制御システム900Bは、流量制御部910Aと、温度センサ750と、を含んでいる。流量制御部910Aは、制御装置500と、バルブ740と、を含んでいる。内燃機関システム1000Bの要素のうち、図10(A)の内燃機関システム1000Aの要素と同じ要素には、同じ符号を付して、説明を省略する。例えば、温度センサ750は、内燃機関600に固定されており、内燃機関600の温度を測定する。
 第1ラジエータ710の下流側とヘッド流路660の上流側とは、第1流路791によって接続され、ヘッド流路660の下流側と第1ラジエータ710の上流側とは、第2流路792によって接続されている。第1流路791の途中には、第1ポンプ731と、バルブ740とが、設けられている。第1ポンプ731は、第1ラジエータ710とヘッド流路660との間で、冷却水を循環させる。バルブ740は、ヘッド流路660を流れる冷却水の単位時間当たりの流量を制御することができる。
 第2ラジエータ720の下流側とブロック流路670の上流側とは、第3流路793によって接続され、ブロック流路670の下流側と第2ラジエータ720の上流側とは、第4流路794によって接続されている。第3流路793の途中には、第2ポンプ732が設けられている。第2ポンプ732は、第2ラジエータ720とブロック流路670との間で、冷却水を循環させる。
 ポンプ731、732は、内燃機関600の駆動力によって、駆動される。代わりに、ポンプ731、732は、電気モータによって、駆動されてもよい。
 制御装置500のプロセッサ510は、図10(A)の実施形態と同様に、温度センサ750からの信号に応じて、バルブ740の開度Voを制御する。従って、温度Tが閾値Tt以下である場合には、流量が小さいので、点火プラグ100の過冷却を抑制できる。従って、点火プラグ100の温度が低いことに起因する不具合(例えば、カーボンによる汚損)を抑制できる。また、温度Tが閾値Ttよりも高い場合には、流量が大きいので、点火プラグ100の昇温を抑制できる。従って、点火プラグ100の昇温に起因する不具合(例えば、プレイグニション)を抑制できる。
D.内燃機関の別の実施形態:
 図11は、内燃機関の別の実施形態の断面構成を示す概略図である。図9の実施形態との差異は、点火プラグ100aの取付孔680aが、ヘッド流路661aを貫通している点である。取付孔680aとヘッド流路661aと点火プラグ100aと以外の部分の構成は、図9の内燃機関600の対応する部分の構成と同じである。内燃機関600aの要素のうち、図9の内燃機関600の要素と同じ要素には、同じ符号を付して、説明を省略する。
 ヘッド流路661aは、図9のヘッド流路661、662とおおよそ同じ部分に設けられている。取付孔680aとヘッド流路661aとの形状は、図9の取付孔680とヘッド流路661、662から取付孔680のネジ部682の中央部分を削除して、取付孔680とヘッド流路661、662とを連通させて得られる形状と、おおよそ同じである。
 図11の実施形態では、取付孔680aを形成する孔形成部688aのうちのシリンダ639側の部分には、第1ネジ部682dと第2ネジ部682uとが形成されている。これらのネジ部682d、682uは、それぞれ、雌ねじであり、螺旋状のネジ山を有している。第1ネジ部682dは、図9のネジ部682のうちシリンダ639側の端部と同じ位置に設けられている。第2ネジ部682uは、図9のネジ部682のうちシリンダ639側とは反対側の端部と同じ位置に設けられている。取付孔680aのうち第1ネジ部682dと第2ネジ部682uとの間の部分が、ヘッド流路661aに連通している。
 図中には、取付孔680aに装着された点火プラグ100aの外観の概略が示されている。主体金具50aには、第1ネジ部57dと第2ネジ部57uとが設けられている。第1ネジ部57dは、取付孔680aの第1ネジ部682dにねじ込まれ、第2ネジ部57uは、取付孔680aの第2ネジ部682uにねじ込まれている。主体金具50aの第1ネジ部57dと第2ネジ部57uとの間の部分の外周面の形状は、ネジ部が省略された円筒形状である。
 このように、図11の実施形態では、点火プラグ100aを取り付けるための取付孔680aを形成する孔形成部688aは、ヘッド流路661aを貫通する取付孔680aを形成する。そして、点火プラグ100aの主体金具50aの一部分(ここでは、第1ネジ部57dと第2ネジ部57uとの間の部分)は、ヘッド流路661a内に露出する。従って、ヘッド流路661aを流れる冷却水は、直接的に、主体金具50a(ひいては、点火プラグ100a)を冷却できる。この結果、点火プラグ100aの温度が過剰に高くなることを抑制できる。そして、点火プラグ100aの温度が過剰に高いことに起因する不具合(例えば、プレイグニション)を抑制できる。
E.変形例:
(1)点火プラグの構成としては、上記の構成に代えて、他の種々の構成を採用可能である。例えば、主体金具のうちの内燃機関の取付孔のネジ山に嵌められるネジ部は、図11の主体金具50aのように2つのネジ部57d、57uで構成されていてもよく、3以上のネジ部で構成されていてもよい。いずれの場合も、第1面積割合R1(=Ss/(Sa+Sb))は、図2を参照して説明した好ましい範囲内であることが好ましい。さらに、体積差Dvは、図3を参照して説明した好ましい範囲内であることが好ましい。また、第2面積割合R2は、図4を参照して説明した好ましい範囲内であることが好ましい。また、距離Fは、図7を参照して説明した好ましい範囲内であることが好ましい。ここで、金具接触面積Ssの算出に用いられるネジ部の先端としては、複数のネジ部のうちの最も前方向Df側のねじ部の先端を採用すればよい(例えば、図11の例では、第1ネジ部57dの先端57fd)。また、パラメータSs、Vvの算出に用いられるネジ部の後端としては、複数のネジ部のうちの最も後方向Dfr側のねじ部の後端を採用すればよい(例えば、図11の例では、第2ネジ部57uの後端57ru)。
 また、中心電極の側面(軸線CLに垂直な方向側の面)と、接地電極とが、放電用のギャップを形成してもよい。また、放電用のギャップの総数が2以上であってもよい。また、中心電極20と端子金具40との間には、磁性体が配置されてもよい。また、抵抗体74が省略されてもよい。
 いずれの場合も、図2(A)、図3の1番から13番のサンプルや、図7の19番から23番のサンプルのように、主体金具のネジ部の呼び径Dnが12mm以下である細い点火プラグを用いる場合であっても、適切に、不具合(例えば、プレイグニション)を抑制できる。
(2)点火プラグからパッキン8(図1)が省略されてもよい。この場合、絶縁体10の縮外径部16は、主体金具50の縮内径部56に、直接的に接触すればよい。ここで、金具露出面積Saの算出に用いられる第1位置P1としては、主体金具50の内周面のうちの絶縁体10の外周面と接触する部分の最も前方向Df側の端の位置を採用すればよい。この場合、通常は、第1位置P1は、主体金具50の縮内径部56と絶縁体10の縮外径部16との接触部分の最も前方向Df側の端の位置である。また、パラメータSb、Vc、Se、Fの算出に用いられる第3位置P3としては、絶縁体10の外周面のうち主体金具50の内周面と接触する部分の最も前方向Df側の端の位置を採用すればよい。この場合、通常は、第3位置P3は、主体金具50の縮内径部56と絶縁体10の縮外径部16との接触部分の最も前方向Df側の端の位置である。図11の点火プラグ100aのように他の構成を有する点火プラグに関しても、同様である。
(3)図10(A)、図10(D)の実施形態において、制御対応関係によって表される温度Tと開度Voとの対応関係としては、図10(C)に示す対応関係に代えて、他の種々の対応関係を採用可能である。例えば、温度Tの上昇に応じて、開度Voが単調増加してもよい。また、温度Tの変化に対して、開度Voが階段状に変化してもよい。いずれの場合も、温度Tが高いほど、開度Voが大きくなることが好ましい。ここで、温度Tが低い場合には、開度Voがゼロに設定されてもよい。すなわち、点火プラグ100を冷却する流路(例えば、図9のヘッド流路661、662)を流れる冷却水の単位時間当たりの流量が、ゼロに調整されてもよい。例えば、図10(C)の第1開度Vo1がゼロであってもよい。
 また、点火プラグ100を冷却する流路の流量を制御する流量制御部の構成としては、制御装置500とバルブ740を含む構成に代えて、流量を制御可能な任意の構成を採用可能である。例えば、図10(D)の実施形態において、バルブ740を省略し、代わりに、第1ポンプ731に、駆動源としての電気モータを設けてもよい。制御装置500のプロセッサ510は、温度Tが高いほど電気モータの回転速度が速くなるように、第1ポンプ731の電気モータを制御してよい。この場合、制御装置500と、電気モータを備える第1ポンプ731と、の全体が、流量制御部に相当する。
 一般的には、流量制御部の構成としては、温度Tが閾値Tt以下である場合には、温度Tが閾値Ttよりも高い場合と比べて、点火プラグを冷却する流路(例えば、図9のヘッド流路661、662や、図11のヘッド流路661a)を流れる冷却水の単位時間当たりの流量を小さくすることが可能な任意の構成を採用可能である。なお、流路を流れる冷却液としては、水に代えて、任意の液体(例えば、油)を採用可能である。
(4)点火プラグを冷却する冷却液路の構成としては、図9の流路661、662の構成や、図11の流路661aの構成に代えて、点火プラグを冷却可能な任意の構成を採用可能である。例えば、点火プラグの軸線CLに平行な方向の位置が、点火プラグの主体金具と重なり、かつ、軸線CLに垂直な方向の位置が、シリンダ639と重なるような位置を通る流路を採用すれば、その流路を流れる冷却液は、点火プラグを適切に冷却できる。いずれの場合も、点火プラグを冷却する冷却液路は、シリンダヘッド610のみを通るように構成されていてもよく、シリンダヘッド610とシリンダブロック620との両方を通るように構成されていてもよい。
(5)点火プラグの構成と内燃機関の構成としては、図9、図11に示す構成に代えて、他の種々の構成を採用可能である。例えば、図11の内燃機関600aの取付孔680aに、図1、図9の点火プラグ100を装着してもよい。この場合も、主体金具50のネジ部57の一部(具体的には、孔形成部688aの第1ネジ部682dと第2ネジ部682uとの間に位置する部分)は、ヘッド流路661a内に露出して、直接的に、冷却液に接触する。
 また、内燃機関システムの構成としては、図10(A)、図10(D)に示すシステム1000A、1000Bの構成に代えて、他の種々の構成を採用可能である。例えば、図10(A)、図10(D)に示すシステム1000A、1000Bにおいて、内燃機関600の代わりに、図11の内燃機関600aを用いてもよい。
(6)上記各実施形態において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部あるいは全部をハードウェアに置き換えるようにしてもよい。例えば、図10(A)、図10(D)の制御装置500によるバルブ740の開度Voを制御する機能を、専用のハードウェア回路によって実現してもよい。
 また、本発明の機能の一部または全部がコンピュータプログラムで実現される場合には、そのプログラムは、コンピュータ読み取り可能な記録媒体(例えば、一時的ではない記録媒体)に格納された形で提供することができる。プログラムは、提供時と同一または異なる記録媒体(コンピュータ読み取り可能な記録媒体)に格納された状態で、使用され得る。「コンピュータ読み取り可能な記録媒体」は、メモリーカードやCD-ROMのような携帯型の記録媒体に限らず、各種ROM等のコンピュータ内の内部記憶装置や、ハードディスクドライブ等のコンピュータに接続されている外部記憶装置も含み得る。
 以上、実施形態、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。
 本発明は、点火プラグに、好適に利用できる。
8...先端側パッキン、10...絶縁体、10e...後端、10f...先端部、10i...内周面、10o...外周面、10q...開口、10x...露出部分、10z...断面、11...縮内径部、12...貫通孔(軸孔)、13...後端側胴部、14...大径部、15...先端側胴部、16...縮外径部、17...先端、19...脚部、20...中心電極、20o...外周面、21...外層、22...芯部、24...頭部、26...縮外径部、27...軸部、29...第1チップ、30...接地電極、31...外層、32...内層、33...基端部、34...先端部、37...本体部、39...第2チップ、40...端子金具、41...軸部、48...鍔部、49...キャップ装着部、50、50a...主体金具、50f...先端側部分、50i...内周面、50x...露出部分、51...工具係合部、52...胴部、53...カシメ部、54...鍔部、55...先端面、56...縮内径部、57...ネジ部、57d...第1ネジ部、57f...先端、57r...後端、57u...第2ネジ部、57fd...先端、57ru...後端、58...座屈部、59...貫通孔、61...リング部材、70...タルク、72...第1シール部、74...抵抗体、76...第2シール部、90...ガスケット、100、100a...点火プラグ、200...接続部、300...先端側仮想部分、300f...先端側空間部分、300m...先端側部材部分、500...制御装置、510...プロセッサ、520...揮発性記憶装置、530...不揮発性記憶装置、535...プログラム、540...インタフェース、600、600a...内燃機関、610...シリンダヘッド、620...シリンダブロック、630...燃焼室、631...吸気ポート、632...排気ポート、639...シリンダ、641...吸気バルブ、642...排気バルブ、643...第1駆動部、644...第2駆動部、651...吸気路、652...排気路、660...ヘッド流路、661a...ヘッド流路、661...第1ヘッド流路、662...第2ヘッド流路、663...第3ヘッド流路、664...第4ヘッド流路、670...ブロック流路、671...第1ブロック流路、672...第2ブロック流路、680、680a...取付孔、682...ネジ部、682d...第1ネジ部、682u...第2ネジ部、688、688a...孔形成部、691...ピストン、692...コネクティングロッド、700...ラジエータ、710...第1ラジエータ、720...第2ラジエータ、730...ポンプ、731...第1ポンプ、732...第2ポンプ、740...バルブ、750...温度センサ、781...第1流路、782
...第2流路、783...第3流路、784...第4流路、785...第5流路、786...第6流路、791...第1流路、792...第2流路、793...第3流路、794...第4流路、900A、900B...制御システム、910A...流量制御部、1000A、1000B...内燃機関システム、g...ギャップ、CL...中心軸(CL)、Df...先端方向(前方向)、Dfr...後端方向(後方向)

Claims (7)

  1.  軸線の方向に延びる軸孔を有する筒状の絶縁体と、
     前記絶縁体の外周に配置される主体金具と、
     前記絶縁体の軸孔に配置される中心電極と、
     前記主体金具の先端に接続され、前記中心電極と対向する接地電極と、
     を備える点火プラグであって、
     前記主体金具は、内燃機関の取付孔のネジ山に嵌められるネジ部を有し、
     前記主体金具の外周面のうち前記ネジ部の後端から前記ネジ部の先端までの部分の表面積を表面積Ssとし、
     前記主体金具のうちの前記内燃機関の燃焼ガスに曝される部分の表面積を表面積Saとし、
     前記絶縁体のうち前記燃焼ガスに曝される部分の表面積を表面積Sbとする場合に、
     Ss/(Sa+Sb)≧2.6、が満たされる、点火プラグ。
  2.  請求項1に記載の点火プラグであって、
     前記主体金具は、先端側に向かって内径が小さくなる縮内径部を有し、
     前記絶縁体は、先端側に向かって外径が小さくなる縮外径部を有し、
     前記点火プラグは前記縮外径部と前記縮内径部とに接触するパッキンを備える、または、前記縮外径部は前記縮内径部に直接的に接触し、
     前記絶縁体の前記外周面と、前記縮内径部または前記パッキンと、の接触部分の先端から、前記主体金具の先端までの、前記軸線の方向の距離をFとする場合に、
     F≧5.0mm、が満たされる、点火プラグ。
  3.  請求項1または2に記載の点火プラグであって、
     前記主体金具は、先端側に向かって内径が小さくなる縮内径部を有し、
     前記絶縁体は、先端側に向かって外径が小さくなる縮外径部を有し、
     前記点火プラグは前記縮外径部と前記縮内径部とに接触するパッキンを備える、または、前記縮外径部は前記縮内径部に直接的に接触し、
     前記主体金具のうち前記ネジ部の後端から前記主体金具の先端までの部分である先端側部分を中実と仮定した場合の前記先端側部分の体積を体積Vvとし、
     前記主体金具の内周面と前記絶縁体の外周面とに挟まれた空間のうち、前記絶縁体の前記外周面と、前記縮内径部または前記パッキンと、の接触部分の先端よりも先端側の部分の体積を体積Vcとする場合に、
     (Vv-Vc)≦2000mm、が満たされる、点火プラグ。
  4.  請求項1から3のいずれかに記載の点火プラグであって、
     前記主体金具は、先端側に向かって内径が小さくなる縮内径部を有し、
     前記絶縁体は、先端側に向かって外径が小さくなる縮外径部を有し、
     前記点火プラグは前記縮外径部と前記縮内径部とに接触するパッキンを備える、または、前記縮外径部は前記縮内径部に直接的に接触し、
     前記絶縁体の先端側の一部分は、前記主体金具の先端よりも先端側に配置されており、
     前記軸線の方向と垂直な方向に、前記絶縁体のうちの前記主体金具の先端よりも先端側に配置されている部分を投影したときの投影面積を、投影面積Sdとし、
     前記絶縁体の前記外周面と、前記縮内径部または前記パッキンと、の接触部分の先端を通り前記軸線の方向に垂直な前記絶縁体の断面積を、断面積Seとする場合に、
     Sd/Se≦0.46、が満たされる、点火プラグ。
  5.  請求項1から4のいずれかに記載の点火プラグと、前記点火プラグを冷却する冷却液路とを備える内燃機関を制御するための制御システムであって、
     前記冷却液路を流れる冷却液の単位時間当たりの流量を制御する流量制御部と、
     前記内燃機関の温度を測定する温度センサと、
     を備え、
     前記流量制御部は、前記温度センサによって測定された温度が閾値以下である場合には、前記温度が前記閾値よりも高い場合と比べて、前記流量を小さくする、
     制御システム。
  6.  内燃機関であって、
     冷却液が流れるための冷却液路と、
     点火プラグを取り付けるための取付孔を形成する孔形成部と、
     前記取付孔に取り付けられた請求項1から4のいずれかに記載の点火プラグと、
     を備え、
     前記孔形成部は、前記冷却液路を貫通する前記取付孔を形成し、
     前記点火プラグの前記主体金具の一部分は、前記冷却液路内に露出している、
     内燃機関。
  7.  内燃機関システムであって、
     請求項6に記載の内燃機関と、
     前記内燃機関を制御するための請求項5に記載の制御システムと、
     を備える、
     内燃機関システム。
PCT/JP2017/010226 2016-08-04 2017-03-14 点火プラグ、制御システム、内燃機関、内燃機関システム WO2018025440A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780048044.3A CN109565156B (zh) 2016-08-04 2017-03-14 火花塞、控制系统、内燃机及内燃机系统
KR1020197002735A KR20190022810A (ko) 2016-08-04 2017-03-14 점화 플러그, 제어 시스템, 내연 기관 및 내연 기관 시스템
EP17836547.4A EP3496217B1 (en) 2016-08-04 2017-03-14 Spark plug, control system, internal combustion engine, and internal combustion engine system
US16/321,218 US10931087B2 (en) 2016-08-04 2017-03-14 Ignition plug, control system, internal combustion engine, and internal combustion engine system
JP2017533047A JP6505230B2 (ja) 2016-08-04 2017-03-14 点火プラグ、制御システム、内燃機関、内燃機関システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-153660 2016-08-04
JP2016153660 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018025440A1 true WO2018025440A1 (ja) 2018-02-08

Family

ID=61073421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010226 WO2018025440A1 (ja) 2016-08-04 2017-03-14 点火プラグ、制御システム、内燃機関、内燃機関システム

Country Status (6)

Country Link
US (1) US10931087B2 (ja)
EP (1) EP3496217B1 (ja)
JP (2) JP6505230B2 (ja)
KR (1) KR20190022810A (ja)
CN (1) CN109565156B (ja)
WO (1) WO2018025440A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10770868B1 (en) 2019-05-07 2020-09-08 Ngk Spark Plug Co., Ltd. Spark plug that suppresses pre-ignition and misfires

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7275891B2 (ja) * 2019-06-19 2023-05-18 株式会社デンソー スパークプラグ
WO2021109131A1 (zh) * 2019-12-06 2021-06-10 株洲湘火炬火花塞有限责任公司 基于放电电流主动加热法火花塞热值检测方法及检测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151015A (en) * 1981-03-16 1982-09-18 Ngk Spark Plug Co Ltd Temperature controller of spark plug
JPS59165392A (ja) * 1983-03-09 1984-09-18 株式会社日本自動車部品総合研究所 内燃機関用点火装置
JPH0949483A (ja) * 1995-08-04 1997-02-18 Ngk Spark Plug Co Ltd 圧力センサ付プラグ
JP2009087923A (ja) * 2007-09-13 2009-04-23 Ngk Spark Plug Co Ltd スパークプラグおよびそのスパークプラグが取り付けられる内燃機関
JP2014175094A (ja) * 2013-03-06 2014-09-22 Nippon Soken Inc 点火プラグ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154868U (ja) 1982-04-13 1983-10-17 日産自動車株式会社 点火装置
GB2248879A (en) 1990-10-11 1992-04-22 Champion Spark Plug Europ Spark plug assembly
JPH0935849A (ja) 1995-07-24 1997-02-07 Ngk Spark Plug Co Ltd 内燃機関用温測プラグ
JP3711221B2 (ja) * 1999-11-30 2005-11-02 日本特殊陶業株式会社 スパークプラグ
US6653768B2 (en) * 2000-12-27 2003-11-25 Ngk Spark Plug Co., Ltd. Spark plug
US7703428B2 (en) 2007-09-13 2010-04-27 Ngk Spark Plug Co., Ltd Spark plug and internal combustion engine in which the spark plug is disposed
WO2009116541A1 (ja) * 2008-03-18 2009-09-24 日本特殊陶業株式会社 スパークプラグ
JP4922980B2 (ja) 2008-03-31 2012-04-25 日本特殊陶業株式会社 スパークプラグ
EP2876753B1 (en) * 2012-07-17 2020-08-05 NGK Spark Plug Co., Ltd. Spark plug
JP5346404B1 (ja) * 2012-11-01 2013-11-20 日本特殊陶業株式会社 点火プラグ
JP2015133243A (ja) * 2014-01-14 2015-07-23 日本特殊陶業株式会社 スパークプラグ
JP6322467B2 (ja) * 2014-04-18 2018-05-09 株式会社Soken 内燃機関用点火プラグ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151015A (en) * 1981-03-16 1982-09-18 Ngk Spark Plug Co Ltd Temperature controller of spark plug
JPS59165392A (ja) * 1983-03-09 1984-09-18 株式会社日本自動車部品総合研究所 内燃機関用点火装置
JPH0949483A (ja) * 1995-08-04 1997-02-18 Ngk Spark Plug Co Ltd 圧力センサ付プラグ
JP2009087923A (ja) * 2007-09-13 2009-04-23 Ngk Spark Plug Co Ltd スパークプラグおよびそのスパークプラグが取り付けられる内燃機関
JP2014175094A (ja) * 2013-03-06 2014-09-22 Nippon Soken Inc 点火プラグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3496217A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10770868B1 (en) 2019-05-07 2020-09-08 Ngk Spark Plug Co., Ltd. Spark plug that suppresses pre-ignition and misfires

Also Published As

Publication number Publication date
KR20190022810A (ko) 2019-03-06
EP3496217A4 (en) 2020-03-04
CN109565156B (zh) 2020-11-10
EP3496217B1 (en) 2022-11-16
JP2019091706A (ja) 2019-06-13
JP6559371B2 (ja) 2019-08-14
JP6505230B2 (ja) 2019-04-24
JPWO2018025440A1 (ja) 2018-08-02
CN109565156A (zh) 2019-04-02
EP3496217A1 (en) 2019-06-12
US20190165548A1 (en) 2019-05-30
US10931087B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
JP6559371B2 (ja) 点火プラグ、制御システム、内燃機関、内燃機関システム
US8188642B2 (en) Spark plug for internal combustion engine
EP1837967B1 (en) Plasma-jet spark plug and ignition system
US7528534B2 (en) Spark plug
JP5167257B2 (ja) スパークプラグ
US8203258B2 (en) Spark plug for low temperature environment
US9608411B2 (en) Spark plug
EP2264844B1 (en) Spark plug for internal combustion engine
US7703428B2 (en) Spark plug and internal combustion engine in which the spark plug is disposed
KR101314761B1 (ko) 자동차 내연기관용 스파크 플러그
US7944134B2 (en) Spark plug with center electrode having high heat dissipation property
US8531094B2 (en) Spark plug having self-cleaning of carbon deposits
JP6552586B2 (ja) スパークプラグ
JP6425698B2 (ja) スパークプラグ
JP6781141B2 (ja) スパークプラグ
JP6632576B2 (ja) 点火プラグ
JP6291110B1 (ja) スパークプラグ
Qabaha et al. The Efect of Spark Plug Types on Engine Performance and Emissions
JP2019036390A (ja) 点火プラグ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017533047

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002735

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017836547

Country of ref document: EP

Effective date: 20190304