WO2018023326A1 - Procédé de préparation d'un matériau cathodique composite de graphène d'un supercondensateur au lithium-ion - Google Patents

Procédé de préparation d'un matériau cathodique composite de graphène d'un supercondensateur au lithium-ion Download PDF

Info

Publication number
WO2018023326A1
WO2018023326A1 PCT/CN2016/092660 CN2016092660W WO2018023326A1 WO 2018023326 A1 WO2018023326 A1 WO 2018023326A1 CN 2016092660 W CN2016092660 W CN 2016092660W WO 2018023326 A1 WO2018023326 A1 WO 2018023326A1
Authority
WO
WIPO (PCT)
Prior art keywords
moo
lithium ion
reaction
graphene composite
muffle furnace
Prior art date
Application number
PCT/CN2016/092660
Other languages
English (en)
Chinese (zh)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/092660 priority Critical patent/WO2018023326A1/fr
Publication of WO2018023326A1 publication Critical patent/WO2018023326A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention belongs to the technical field of lithium ion supercapacitors, and relates to a method for preparing a lithium ion supercapacitor cathode material.
  • the battery negative electrode generally uses a carbon material such as graphite
  • the positive electrode uses a lithium-containing metal oxide such as lithium cobaltate or lithium manganate.
  • the charged negative electrode supplies lithium ions to the positive electrode, and the lithium ion of the positive electrode of the discharge positive electrode returns to the negative electrode, so it is called a "rocking chair type battery".
  • This battery is characterized by high safety and high cycle life compared to lithium batteries using metallic lithium.
  • Lithium-ion capacitors generally use carbon materials such as graphite and hard carbon for the anode material, and activated carbon materials with double-layer characteristics for the cathode material, and the lithium anode is pre-diffused to the anode material, so that the potential of the anode is greatly reduced, thereby improving Energy Density.
  • a lithium ion capacitor is disclosed in the special ljCN200580001498.2.
  • the positive current collector and the negative current collector used in the lithium ion capacitor have holes penetrating the front and back surfaces, and the electrode layer is formed by the positive electrode active material and the negative electrode active material respectively. Electrochemical contact is made to the negative electrode, and lithium ions are carried in the negative electrode in advance.
  • a pretreatment method for a negative electrode for an electrochemical capacitor is disclosed in the Japanese Patent Publication No. Hei. No. 1,200, 406, 9.6, a lithium layer is formed on a substrate by a vapor phase method or a liquid phase method, and then the lithium layer is transferred to an electrode layer of a negative electrode.
  • These pre-excessive methods involve complex processes and require special handling of the raw materials, which makes the manufacturing process difficult.
  • the technical problem to be solved by the present invention is to provide a method for preparing a lithium ion supercapacitor positive electrode material, and the positive electrode material prepared by the method can provide a lithium source in a lithium ion capacitor, thereby eliminating the need for complicated pre-processing of the negative electrode.
  • Lithium-intercalation or lithium-ion capacitors in lithium-ion capacitors simplify lithium-ion capacitors The preparation process reduces the cost of the process.
  • the preparation method of the lithium ion supercapacitor cathode material provided by the invention is:
  • Step (1) Mixing Li 2 CO 3 and MoO 3 in a ratio of 1-2:1, mixing uniformly, and placing in a muffle furnace at 500-700 ° C for 3-8 small inches, the reaction After completion, a Li 2 MoO 4 material was obtained.
  • Step (2) The graphite oxide and the obtained Li 2 Mo0 4 material are mixed by mass 50-5:1, uniformly mixed uniformly, and then placed in a muffle furnace protected by a hydrogen-nitrogen mixed gas atmosphere containing 5% hydrogen 500- The reaction was carried out at 900 ° C for 5-10 hours, and after completion of the reaction, a graphene composite Li 2 MoO 3 material was obtained.
  • the present invention provides a lithium ion supercapacitor preparation process as follows:
  • the process for preparing a lithium ion supercapacitor using the positive electrode material of the present invention is a general lithium ion battery preparation process, which greatly simplifies the preparation process of the lithium ion supercapacitor.
  • the graphene composite Li 2 MoO 3 material prepared by the invention is used as a lithium ion supercapacitor cathode material, and the Li 2MoO 3 material provides a lithium source, and the lithium ion ion stripping Li 2 MoO 3 material is inserted into the graphite anode in the first charging.
  • Li 2 M 0 0 3 in the graphene composite Li 2 Mo0 material supports the graphene sheet structure, effectively preventing graphene material agglomerated and specific surface area decreases; Li 2 formed after removal of the lithium ion Li 2 MoO 3 inches with material - is electrochemically inert material x MoO 3 material, does not affect the normal use of the battery.
  • the present invention has the following beneficial effects: (1) The graphene composite Li 2 Mo0 3 material is used as the positive electrode of the lithium ion supercapacitor, so that the negative electrode does not need to be added with a lithium sheet or a complicated pre-intercalation lithium process, which simplifies the preparation process and reduces The cost; (2) Graphene composite Li 2 Mo0 3 material has high conductivity and high specific surface area, which can effectively replace the conventional activated carbon cathode material to achieve high energy density and high power density.
  • FIG. 1 is a cycle life diagram of a supercapacitor of the present invention.
  • the mixture was mixed at a molar ratio of 1:1, uniformly mixed, and placed in a muffle furnace at 500 ° C for 3 hours, and after completion of the reaction, a Li 2 MoO 4 material was obtained.
  • Material, conductive agent, Ketjen black, binder PVDF was added to NMP in a mass ratio of 90:5:5 to form a slurry, which was then coated on a positive electrode current collector aluminum foil, and dried to obtain a positive electrode sheet.
  • the mixture was mixed at a molar ratio of 2:1, uniformly mixed, and placed in a muffle furnace at 700 ° C for 8 hours, and after completion of the reaction, a Li 2 MoO 4 material was obtained.
  • Material, conductive agent, Ketjen black, binder PVDF was added to NMP in a mass ratio of 90:5:5 to form a slurry, which was then coated on a positive electrode current collector aluminum foil, and dried to obtain a positive electrode sheet.
  • the negative electrode sheet, the separator and the positive electrode sheet are assembled into a cell according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the mixture was mixed at a molar ratio of 1.3:1, uniformly mixed, and placed in a muffle furnace at 600 ° C for 7 hours, and after completion of the reaction, a Li 2 MoO 4 material was obtained.
  • the material, the conductive agent Ketchen Black, and the binder PVDF are added to the NMP in a ratio of 90:5:5 by mass.
  • the slurry was formed and then coated on a positive electrode current collector aluminum foil, and dried to obtain a positive electrode sheet.
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery cell by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • the mixture was mixed at a molar ratio of 1.5:1, uniformly mixed, and placed in a muffle furnace at 650 ° C for 5 hours, and after completion of the reaction, a Li 2 MoO 4 material was obtained.
  • Material, conductive agent, Ketjen black, binder PVDF was added to NMP in a mass ratio of 90:5:5 to form a slurry, which was then coated on a positive electrode current collector aluminum foil, and dried to obtain a positive electrode sheet.
  • [0045] (5) was prepared in accordance with processes generally lithium ion battery negative electrode sheet, separator and positive electrode sheet stack by way of the composition of batteries, the electrolyte solution is then injected in the battery case, electrolyte is injected lmol / L LiPF 6 DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • Embodiment 5 (1) Li 2 C0 3 and Mo0 3
  • the mixture was mixed at a molar ratio of 1.7:1, uniformly mixed, and placed in a muffle furnace at 600 ° C for 6 hours, and after completion of the reaction, a Li 2 MoO 4 material was obtained.
  • Material, conductive agent, Ketjen black, binder PVDF was added to NMP in a mass ratio of 90:5:5 to form a slurry, which was then coated on a positive electrode current collector aluminum foil, and dried to obtain a positive electrode sheet.
  • the negative electrode sheet, the separator and the positive electrode sheet are formed into a battery cell by lamination according to a preparation process of a usual lithium ion battery, and then an electrolyte is injected into the battery case, and the injected electrolyte is 1 mol/L LiPF 6 .
  • DOL-DME solution (DOL and DME volume ratio is 1:1), sealed, to get lithium ion supercapacitor
  • FIG. 1 It can be seen from FIG. 1 that the lithium ion supercapacitor prepared by the invention is charged and discharged 1000 times, and the energy is not significantly attenuated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé de préparation d'un matériau cathodique composite de graphène d'un supercondensateur au lithium-ion, comprenant les étapes suivantes consistant à : (1) mélanger uniformément Li 2 CO 3 et MoO 3 , placer le mélange dans un four à moufle à des fins de réaction, et obtenir un matériau Li 2 MoO 4 après achèvement de la réaction ; et (2) mélanger uniformément un oxyde de graphite avec le matériau Li 2 MoO 4 , placer le mélange dans le four à moufle, sous la protection d'une atmosphère de mélange hydrogène-azote, à des fins de réaction, et obtenir un matériau composite de graphène Li 2 MoO 3 après achèvement de la réaction. Le procédé présente les effets bénéfiques suivants : (1) le matériau composite de graphène Li 2 MoO3 est utilisé comme cathode d'un supercondensateur au lithium-ion, de sorte qu'une anode ne nécessite plus l'addition d'une feuille de lithium ou un processus complexe de pré-intercalation du lithium, et par conséquent le procédé de préparation est simplifié et les coûts sont réduits ; et (2) le matériau composite de graphène Li 2 MoO 3 possède une conductivité et une surface spécifique élevées, peut remplacer efficacement des matériaux cathodiques à charbon actif classiques, et permet d'obtenir une densité d'énergie et une densité de puissance élevées.
PCT/CN2016/092660 2016-07-31 2016-07-31 Procédé de préparation d'un matériau cathodique composite de graphène d'un supercondensateur au lithium-ion WO2018023326A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092660 WO2018023326A1 (fr) 2016-07-31 2016-07-31 Procédé de préparation d'un matériau cathodique composite de graphène d'un supercondensateur au lithium-ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092660 WO2018023326A1 (fr) 2016-07-31 2016-07-31 Procédé de préparation d'un matériau cathodique composite de graphène d'un supercondensateur au lithium-ion

Publications (1)

Publication Number Publication Date
WO2018023326A1 true WO2018023326A1 (fr) 2018-02-08

Family

ID=61072277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092660 WO2018023326A1 (fr) 2016-07-31 2016-07-31 Procédé de préparation d'un matériau cathodique composite de graphène d'un supercondensateur au lithium-ion

Country Status (1)

Country Link
WO (1) WO2018023326A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201275A (zh) * 2010-03-25 2011-09-28 海洋王照明科技股份有限公司 锂盐-石墨烯复合材料及其制备方法与应用
US8611070B2 (en) * 2010-05-14 2013-12-17 Basf Se Process for encapsulating metals and metal oxides with graphene and the use of these materials
CN103515110A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 Li2MoO3/石墨烯复合材料及其制备方法和锂离子电容器
US8795899B2 (en) * 2010-08-19 2014-08-05 Nanotek Instruments, Inc. Lithium super-battery with a functionalized nano graphene cathode
CN104319380A (zh) * 2014-11-13 2015-01-28 四川浩普瑞新能源材料有限公司 一种锂离子电池用LiFePO4/C复合正极材料及其制备方法
CN104701544A (zh) * 2015-03-24 2015-06-10 佛山市德方纳米科技有限公司 超容量纳米磷酸铁锂正极材料及其制备方法和锂离子电池
CN106098408A (zh) * 2016-07-31 2016-11-09 肖丽芳 一种锂离子超级电容器石墨烯复合正极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201275A (zh) * 2010-03-25 2011-09-28 海洋王照明科技股份有限公司 锂盐-石墨烯复合材料及其制备方法与应用
US8611070B2 (en) * 2010-05-14 2013-12-17 Basf Se Process for encapsulating metals and metal oxides with graphene and the use of these materials
US8795899B2 (en) * 2010-08-19 2014-08-05 Nanotek Instruments, Inc. Lithium super-battery with a functionalized nano graphene cathode
CN103515110A (zh) * 2012-06-26 2014-01-15 海洋王照明科技股份有限公司 Li2MoO3/石墨烯复合材料及其制备方法和锂离子电容器
CN104319380A (zh) * 2014-11-13 2015-01-28 四川浩普瑞新能源材料有限公司 一种锂离子电池用LiFePO4/C复合正极材料及其制备方法
CN104701544A (zh) * 2015-03-24 2015-06-10 佛山市德方纳米科技有限公司 超容量纳米磷酸铁锂正极材料及其制备方法和锂离子电池
CN106098408A (zh) * 2016-07-31 2016-11-09 肖丽芳 一种锂离子超级电容器石墨烯复合正极材料的制备方法

Similar Documents

Publication Publication Date Title
CN104157920B (zh) 一种用于高能量密度锂离子电池的化成方法
US9379387B2 (en) Cathode current collector coated with primer and magnesium secondary battery comprising the same
CN110707287B (zh) 一种金属锂负极及其制备方法和锂电池
Palanisamy et al. In situ replenishment of formation cycle lithium‐ion loss for enhancing battery life
CN207993958U (zh) 一种石墨负极结构组合、锂电池电芯
CN108365169A (zh) 一种锂金属负极结构组合及其制备方法、锂电池电芯
WO2020259436A1 (fr) Procédé pour améliorer la stabilité et l'aptitude au traitement d'un matériau d'électrode positive ternaire
WO2018059180A1 (fr) Alimentation électrique chimique haute puissance et à haute énergie, et son procédé de préparation
CN113540416A (zh) 一种固体电解质包覆石墨复合材料及其制备方法和应用、锂离子电池
CN115939308A (zh) 一种补锂正极极片及其制备方法与锂离子电池
CN112825349A (zh) 复合正极极片、锂二次电池
WO2018023321A1 (fr) Procédé de préparation d'une feuille d'électrode positive contenant un revêtement polymère conducteur lithium-ion
CN108365167A (zh) 一种石墨负极结构组合及其制备方法、锂电池电芯
CN110600285B (zh) 一种锂离子电化学储能器件负极的无析锂预嵌锂方法
JP2015115233A (ja) マグネシウムイオン二次電池用負極、マグネシウムイオン二次電池
CN116454283A (zh) 一种钾离子电池正极添加剂及其制备方法与应用
CN116470003A (zh) 一种预锂化负极极片及锂离子电池
CN116344742A (zh) 一种完全锂化的负极极片及其制备方法
CN115275166A (zh) 一种长寿命石墨复合材料及其制备方法
JP2012009284A (ja) リチウムイオン二次電池
WO2018023325A1 (fr) Procédé de préparation d'un matériau composite d'électrode positive de graphène comprenant du lithium à base d'alcool
WO2018023322A1 (fr) Procédé de préparation de feuille d'électrode positive comprenant un revêtement composite de graphène
CN106098408A (zh) 一种锂离子超级电容器石墨烯复合正极材料的制备方法
CN110048060B (zh) 氧化石墨烯负载柱五芳烃锂硫电池隔膜、制备方法及其应用
CN106206046A (zh) 一种石墨烯复合Li2MoO3正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910924

Country of ref document: EP

Kind code of ref document: A1