WO2018021516A1 - 移動体 - Google Patents

移動体 Download PDF

Info

Publication number
WO2018021516A1
WO2018021516A1 PCT/JP2017/027386 JP2017027386W WO2018021516A1 WO 2018021516 A1 WO2018021516 A1 WO 2018021516A1 JP 2017027386 W JP2017027386 W JP 2017027386W WO 2018021516 A1 WO2018021516 A1 WO 2018021516A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
fan
light emitting
unit
Prior art date
Application number
PCT/JP2017/027386
Other languages
English (en)
French (fr)
Inventor
隆敏 森田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201780043790.3A priority Critical patent/CN109476376A/zh
Priority to US16/315,917 priority patent/US20190300171A1/en
Publication of WO2018021516A1 publication Critical patent/WO2018021516A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • B64D47/04Arrangements or adaptations of signal or lighting devices the lighting devices being primarily intended to illuminate the way ahead
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/67Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3173Constructional details thereof wherein the projection device is specially adapted for enhanced portability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • the present invention relates to a moving body having a fan as a propulsion device.
  • UAVs Unmanned Aerial Vehicles
  • Drones drones
  • unmanned aerial vehicles that have been commercialized are often multi-copter types consisting of multiple fans (propellers). Therefore, it is a great advantage that the unmanned aerial vehicle is capable of stable hovering flight in which the position is stationary in the air and easy to control the attitude from the stationary position in the air.
  • Unmanned aerial vehicles collect sensors and electronic devices for advanced control in the air in addition to aviation operations in the central part (terminal part).
  • sensors and electronic devices that generate heat during operation are concentrated in the center, the temperature at the center rises, causing malfunctions and failures of these devices. There was a problem that.
  • Patent Document 1 A technique for solving the above problem is disclosed in Patent Document 1.
  • the unmanned aerial vehicle disclosed in Patent Document 1 includes a duct that houses an electronic device (heat generating device) inside and a fan blade. Thereby, the electronic device (heat generating device) accommodated in the duct is cooled using the airflow generated by rotating the fan blade.
  • Patent Document 2 discloses an autonomous mobile lighting device including a lighting device.
  • the autonomous mobile lighting device disclosed in Patent Document 2 includes a photoelectric conversion unit, a light emitting unit, a light sensor, and a propeller, and is lighter than air inside the photoelectric conversion unit and the light emitting unit closed in a spindle shape. It is filled with gas (such as helium) and can float in the air. Then, move appropriately while floating in the air, solar power generation and charging with the photoelectric conversion part facing sunlight during the day, and light emission / irradiation with the light emitting part facing the desired irradiation surface at night It can be done.
  • gas such as helium
  • Patent No. 5378065 (Registered on October 4, 2013)”
  • Patent No. 5720456 (registered on April 3, 2015)
  • an organic EL (Electroluminescence) element or LED (Light Emitting Diode) is used for the light emitting unit, and the light emitting unit emits light with high luminous flux and high luminance.
  • an illumination device having an LED element or an HID (High Intensity Discharge) element for example, an illumination device disclosed in Patent Document 3
  • the illumination device is large. It will become. For this reason, there is a problem that the weight of the lighting device is increased and the consumption of the battery (battery) is increased when the lighting device is mounted on a moving body.
  • a small light projecting system In order to make the illuminating device mounted on the moving body a small illuminating device, a small light projecting system is required, and attention was paid to a high-intensity light source (light emitting element) capable of realizing a small light projecting system.
  • a light source for example, it is conceivable to use a laser element.
  • a laser element when a laser element is used as the light emitting element, a large amount of heat is generated when the laser element irradiates laser light. As a result, there is a problem that the temperature of the laser element rises and the light emission efficiency of the laser element decreases.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is a moving body including a light source, which suppresses a temperature rise of the light source and emits high-luminance light from the light source.
  • the object is to provide a movable body that can be used.
  • a moving body is a moving body that obtains a propulsive force by a fan, and includes at least one light source that emits laser light.
  • the heat radiation efficiency is enhanced by the air blown by the fan.
  • a moving body including a light source which can suppress a temperature rise of the light source and emit high-luminance light from the light source. There is an effect.
  • the unmanned aircraft shows a state where the light emitting unit is used in a state of being placed on a substrate
  • (a) is a diagram showing a state in which the light emitting unit is placed on a substrate having translucency
  • (B) is a figure which shows the state in which the light emission part is mounted in the board
  • Embodiment 1 an unmanned aerial vehicle 1A as a moving body that obtains propulsive force by a fan according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a schematic diagram showing the overall configuration of the unmanned aerial vehicle 1A.
  • FIG. 2 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1A.
  • the unmanned aircraft 1 ⁇ / b> A includes a housing (main body part) 2, an arm part 3, a fan 4, a coil 5, a laser unit (light source) 10 ⁇ / b> A, a mirror 6, and light emission. 7 A and the light projection part 8 are provided.
  • the housing 2 is for housing a control unit (not shown), a sensor (not shown), a battery (not shown) and the like for performing advanced aerial operations of the unmanned aerial vehicle 1A. Further, inside the housing 2, a mirror 6, a light emitting unit 7A, and a light projecting unit 8 are housed.
  • the arm portion 3 is a long member extending from the housing 2, and the inside is hollow. In the unmanned aircraft 1A, four arm portions 3 are provided.
  • the fan 4 is a propeller for generating buoyancy for the unmanned aircraft 1A to float in the air and other propulsive force for the unmanned aircraft 1A to move in the air by rotating.
  • the fan 4 is attached to the upper part of the arm part 3 by supporting the rotating shaft 4a at the end of each arm part 3 opposite to the housing 2.
  • the coil 5 is a drive unit for rotating the fan 4.
  • the coil 5 controls the rotation direction and the rotation speed of the fan 4 according to an instruction from the control unit. Thereby, the unmanned aerial vehicle 1A can be suspended in the air or moved in the air.
  • the laser unit 10A is a light source that emits laser light L1.
  • One laser unit 10 ⁇ / b> A is provided for each arm unit 3.
  • the laser unit 10A includes a laser element 11A, a fixing jig 12, a collimating lens 13, and a heat sink 14A.
  • the laser unit 10A is provided in each arm unit 3, but the unmanned aircraft (moving body) of the present invention is not limited to this. That is, it is only necessary that the laser unit 10 ⁇ / b> A is provided only in at least one arm portion 3. For example, a configuration in which laser units are provided only in two arm portions 3 of the four arm portions 3 may be employed.
  • the laser element 11A is a light emitting element that emits laser light L1.
  • the laser element 11 ⁇ / b> A is provided inside the arm unit 3.
  • the laser element 11A may have one light emitting point on one chip, or may have a plurality of light emitting points on one chip.
  • the wavelength of the laser light L1 emitted from the laser element 11A is, for example, 365 nm to 460 nm, preferably 390 nm to 410 nm, but is not limited thereto, and is appropriately selected according to the type of phosphor included in the light emitting portion 7A. do it.
  • a CAN package type laser element may be used as the laser element 11A, but is not limited thereto.
  • the laser element 11 ⁇ / b> A is fixed to the arm portion 3 by a fixing jig 12.
  • the fixing jig 12 is a member for fixing the laser element 11A to the fixing jig 12 and fixing the laser element 11A to the arm portion 3.
  • the fixing jig 12 is preferably made of a material with high heat dissipation. As shown in FIG. 2, the fixing jig 12 is provided so that the laser element 11 ⁇ / b> A is fixed to the outside of the fixing jig 12.
  • the unmanned aerial vehicle (moving body) of the present invention is not limited to this.
  • the laser element 11A may be fixed to the arm portion 3 as shown in FIG.
  • FIGS. 3A and 3B illustrate a method of fixing the laser element 11A to the arm portion 3 using the fixing jig 12A.
  • the fixing jig 12A includes a laser element housing portion 12a, two screw holes 12b, and two screws 12c.
  • the laser element 11A is accommodated in the laser element accommodating portion 12a.
  • the fixing jig 12 ⁇ / b> A is fixed to the arm portion 3 by screwing the screw 12 c into the screw hole 12 b and screwing the tip end portion of the screw 12 c into a screw hole (not shown) of the arm portion 3.
  • the laser element 11 ⁇ / b> A is fixed to the arm portion 3.
  • the fixing jig 12A has a devised connector, wiring, or the like in order to pass a current to the laser element 11A.
  • 3 is used as a fixing jig different from the fixing jig 12A, the laser element 11A is fixed by being sandwiched between two fixing jigs, and at least one of the two fixing jigs is fixed to the arm part 3. You may make it fix to.
  • the collimating lens 13 is a lens for making the laser light L1 emitted from the laser element 11A into parallel light.
  • the collimating lens 13 is provided inside the arm portion 3.
  • the collimating lens 13 is preferably a glass lens or a plastic lens, and more preferably an aspheric lens.
  • the collimating lens 13 is preferably fixed to the arm portion 3 so that the installation position can be finely adjusted.
  • a unit in which the laser element 11A and the collimating lens 13 are adjusted and fixed may be used.
  • the method of fixing the collimating lens 13 to the arm unit 3 may be a method of physically or mechanically fixing.
  • the installation position of the collimating lens 13 may be adjusted electrically.
  • the heat sink 14A is for radiating heat generated by the laser element 11A irradiating the laser beam L1. For this reason, it is preferable to use a metal material such as copper or aluminum having high thermal conductivity as the material of the heat sink 14A.
  • the heat sink 14A includes a base portion 14Aa and a fin 14Ab.
  • the base portion 14Aa is a flat plate member, the laser element 11A is connected to the lower surface, and a plurality of fins 14Ab are formed on the upper surface.
  • the fin 14Ab is a heat radiating plate protruding from the upper surface of the base portion 14Aa toward the fan 4, and increases the heat dissipation efficiency of the heat sink 14A by increasing the contact area of the heat sink 14A with the atmosphere.
  • the heat sink 14 ⁇ / b> A is provided in the upper part of the outer peripheral portion of the arm portion 3. More specifically, the base portion 14Aa connected to the laser element 11A is installed on the outer peripheral portion of the arm portion 3, and the fins 14Ab protrude upward from the base portion 14Aa. Although not shown, an opening is formed in the arm portion 3 where the laser element 11A and the base portion 14Aa are connected, so that the laser element 11A and the base portion 14Aa can come into contact with each other. It has become. The details of the position where the heat sink 14A is provided will be described later.
  • the mirror 6 is provided inside the housing 2 and is a mirror for reflecting the laser light L1 emitted from the laser unit 10A and reaching the inside of the housing 2 toward the light emitting unit 7A.
  • the mirror 6 is used to reflect the laser light L1 toward the light emitting unit 7A.
  • the unmanned aircraft (moving body) of the present invention is not limited to this.
  • the configuration may be such that the laser light L1 is refracted toward the light emitting portion 7A using a prism.
  • the light emitting unit 7A is provided inside the housing 2, receives the laser light L1 reflected by the mirror 6, converts the wavelength of the laser light L1, and emits fluorescence L2.
  • the light emitting unit 7A mainly emits fluorescence L2 from the opposite surface opposite to the laser light irradiation surface irradiated with the laser light L1.
  • Such a light emitting unit is referred to as a “transmissive” light emitting unit in the present specification.
  • the light emitting portion 7A in the present embodiment is composed of a single crystal phosphor.
  • the single crystal phosphor is excited when irradiated with the laser beam L1 and emits fluorescence L2.
  • a single crystal phosphor for example, a YAG (Yttrium Aluminum Garnet, Y 3 Al 5 O 12 ) single crystal phosphor can be used. This phosphor is preferable because it has high heat resistance against the high-power laser beam L1 emitted from the laser unit 10A.
  • the single crystal phosphor is not limited to those described above, and may be another phosphor such as a nitride phosphor.
  • the light emitting section 7A can irradiate light with high brightness, for example, 300 to 1000 Mcd / m 2 by using the laser light L1 emitted from the laser unit 10A provided in each arm section 3.
  • the light emitting unit 7A irradiates the fluorescence L2 with the laser light L1 emitted from the laser unit 10A provided in each of the plurality of arm units 3. Thereby, light with higher luminance can be irradiated.
  • the light emission part 7A of the unmanned aerial vehicle 1A in the present embodiment is configured by a single crystal phosphor made of a single crystal
  • the light emission part of the unmanned aircraft (moving body) of the present invention is not limited thereto.
  • the light-emitting portion may be a polycrystalline phosphor containing a plurality of phosphor crystallites, and by encapsulating phosphor particles inside a sealant such as a glass material or a resin material. It may be formed.
  • the inorganic compound used in the phosphor for example, YAG (Yttrium Aluminium Garnet, Y 3 Al 5 O 12) having a garnet structure and TAG (Terbium Aluminium Garnet, Tb 3 Al 5 O 12: Ce), or silicate-based Examples thereof include BOS (Barium orthosilicate, (Ba, Sr) 2 SiO 4 : Eu).
  • the phosphor may be a single type of inorganic compound particle or a mixture of a plurality of types of inorganic compound particles.
  • beta-sialon, alpha sialon, or CASN a combination of inorganic compounds (CaAlSiN 3 Eu) may be used as a phosphor, or fluoresce green LuAG (Lutetium Aluminium Garnet, Lu 3 Al 5 O 12 : A combination of Ce) and CASN may be used as the phosphor.
  • the phosphor may be an inorganic compound having a shape other than particles, an organic compound, or another fluorescent material.
  • a part of the laser light L1 irradiated to the light emitting unit 7A can be prevented from being converted into the fluorescence L2 by the light emitting unit 7A.
  • the light containing the laser beam L1 and the fluorescence L2 is irradiated, the light of a wider color gamut can be irradiated.
  • the laser light L1 and the fluorescence L2 can be mixed and irradiated with white light.
  • the light emitting unit 7A is configured to be used alone, the unmanned aircraft (moving body) of the present invention is not limited to this.
  • the light emitting unit 7A may be used in a state of being placed on a substrate. This will be described with reference to FIG. FIG. 4 shows a state in which the light emitting unit 7A is used in a state of being placed on a substrate, and FIG. 4A is a diagram showing a state in which the light emitting unit 7A is placed on a substrate having translucency.
  • FIG. 6B is a diagram illustrating a state where the light emitting unit 7A is placed on a substrate having light reflectivity.
  • the light emitting section 7A may be used in a state of being placed on a light-transmitting substrate.
  • it becomes a “transmission-type” light emitting portion in which the fluorescence L2 is mainly emitted from the opposite surface opposite to the laser light irradiation surface irradiated with the laser light L1.
  • Glass, sapphire, or the like can be used as a material for the light-transmitting substrate.
  • a material having a high thermal conductivity such as sapphire is preferable because it can efficiently dissipate heat generated in the phosphor by irradiation with the laser light L1.
  • the fluorescence L2 is emitted from the light emitting portion 7A at various angles with respect to the light-transmitting substrate.
  • the light emitting section 7A may be used in a state where it is placed on a substrate having light reflectivity.
  • the fluorescence L2 is mainly emitted from the laser light irradiation surface irradiated with the laser light L1.
  • a light emitting unit is referred to as a “reflective” light emitting unit.
  • Metal, ceramic, or the like can be used as a material for the substrate having light reflectivity. By using metal or ceramic, the heat generated in the phosphor can be efficiently radiated.
  • the metal it is preferable to use aluminum (Al), silver (Ag), or the like with high light reflectance.
  • the fluorescence L2 is emitted from the light emitting unit 7A at various angles with respect to the substrate having light reflectivity.
  • the light projecting unit 8 is for irradiating the target position with the fluorescence L2 emitted from the light emitting unit 7A. Details of the light projecting unit 8 will be described with reference to FIG. FIG. 5 is a schematic diagram illustrating the configuration of the light projecting unit 8.
  • the light projecting unit 8 includes a reflector 8a, a lens 8b, a first gear 8c, a second gear 8d, a motor 8e, a shaft 8f, a shaft 8g, and a shaft base 8h. It has.
  • the reflector 8a is a cylindrical member that is open at both ends, and a reflecting mirror that reflects light is provided inside the cylindrical member.
  • the fluorescence L2 irradiated from the light emitting unit 7A enters the reflector 8a from one end of the reflector 8a, and a part of the fluorescence L2 is reflected by the reflecting mirror inside the reflector 8a, while the other end of the reflector 8a. The light is emitted from the part.
  • the lens 8b is a lens for irradiating the fluorescence L2 emitted from the reflector 8a to the outside with a desired orientation angle.
  • the first gear 8c is connected to the motor 8e, and the second gear 8d is connected to the reflector 8a.
  • the first gear 8c and the second gear 8d are connected to each other.
  • the motor 8e is a drive unit for rotating the first gear 8c.
  • the shaft 8f is connected to the reflector 8a and the second gear 8d, and is a rotating shaft for transmitting the power generated by the rotation of the second gear 8d to the reflector 8a.
  • the shaft 8g is connected to the reflector 8a and the shaft cradle 8h.
  • the shaft cradle 8h is a member for receiving the end of the shaft 8g opposite to the side connected to the reflector 8a. The shaft 8g and the shaft cradle 8h stabilize the drive of the reflector 8a.
  • the light projecting unit 8 rotates the second gear 8d by rotating the first gear 8c by the motor 8e. Then, the rotational power of the second gear 8d is transmitted to the reflector 8a via the shaft 8f, so that the angle of the reflector 8a is changed to irradiate the target position with the fluorescence L2 emitted from the light emitting unit 7A.
  • the unmanned aerial vehicle 1A includes the light projecting unit 8 that is driven by the motor 8e.
  • the unmanned aircraft (moving body) of the present invention is not limited to this.
  • the unmanned aerial vehicle may have a configuration in which the light projecting unit is driven using another movable method, or may have a configuration in which the reflector and the lens are fixed and not driven.
  • FIG. 6 is an explanatory diagram showing the air volume on the discharge side in the fan 4.
  • FIG. 7 is a view of the periphery of the rotating fan 4 in the unmanned aerial vehicle 1A as viewed from above.
  • the air volume on the discharge side of the fan 4 will be described with reference to FIG.
  • the air volume of the air blown by the fan 4 is small, and the air volume of the air blown by the fan 4 increases toward the outside from the rotating shaft.
  • a region between a circle having a diameter of 20% of the radius of the fan 4 and a circle having a diameter of 100% of the radius of the fan 4 centering on the rotation axis 4a of the fan 4 (FIG. 6).
  • area A the air volume of the air blown by the fan 4 is larger than the area within 20% of the radius of the fan 4 with the rotation axis 4a of the fan 4 as the center.
  • the laser element 11A and the heat sink 14A of the laser unit 10A are provided in the region A.
  • the heat sink 14A can be efficiently cooled by utilizing the air flow generated from the fan 4 (air blown by the fan 4).
  • the heat dissipation efficiency of the laser element 11A can be increased, and the laser element 11A can be cooled.
  • the entire heat sink 14A is provided in the region A.
  • the configuration is not limited to this.
  • a configuration in which a part of the heat sink 14A is provided in an area of 20% of the radius of the fan 4 with the rotation axis 4a of the fan 4 as the center and the other part is provided in the area A may be employed.
  • it is preferably provided in the region A.
  • the unmanned aerial vehicle 1A is an unmanned aerial vehicle that obtains propulsive force by a fan 4 and includes a laser unit 10A that emits laser light L1.
  • the laser unit 10A is characterized in that the heat dissipation efficiency is enhanced by the blowing of the fan 4. It is said.
  • This feature makes it possible to irradiate the laser beam L1 using the laser element 11A that is smaller than an LED (Light Emitting Diode) element or an HID (High Intensity Discharge) element.
  • the unmanned aircraft 1A can be reduced in weight, and consumption of the battery (battery) can be suppressed.
  • the laser unit 10A is cooled by blowing the fan 4, thereby the laser unit 10A. It is possible to prevent the light emission efficiency of the laser unit 10A from decreasing.
  • the unmanned aerial vehicle 1A includes a light emitting unit 7A that emits fluorescence L2 when irradiated with the laser light L1 emitted from the laser unit 10A. Thereby, the high-intensity fluorescence L2 can be emitted from the light emitting portion 7A.
  • the laser element 11A is used as a light emitting element. For this reason, it is possible to emit high-luminance light at a narrow angle using a small light projecting system. Thereby, fluorescence L2 can be irradiated only to the target location. Further, since the unmanned aerial vehicle 1A can float and move in the air, it can irradiate the fluorescence L2 from a place where it is difficult to install a lighting fixture or a place where it cannot be easily moved.
  • the irradiation L1 is irradiated with the fluorescence L2 by moving the unmanned aircraft 1A. be able to.
  • the laser unit 10 ⁇ / b> A is provided in the arm unit 3. Accordingly, the laser unit 10A is not configured to be provided in the housing 2 in which the light emitting unit 7A, the control unit, the sensor, the camera, and the like are housed. It is possible to prevent the heat generated from the laser unit 10A from affecting electronic devices such as the light emitting unit 7A, the control unit, the sensor, and the camera.
  • the laser unit 10A includes a heat sink 14A and radiates heat through the heat sink 14A. Thereby, the laser unit 10A can be cooled more efficiently.
  • the rotating shaft 4a of the fan 4 is supported by the arm portion 3 and provided in the region A. Since the area A has a large amount of air blown from the fan 4, the laser unit 10A can be efficiently cooled by providing the laser unit 10A in this area.
  • the light emitting unit 7A is provided in the housing 2, and the light emitting unit 7A is irradiated with the laser light L1 emitted from the laser unit 10A provided in each of the arm units 3.
  • the laser light L1 emitted from the plurality of laser units 10A is emitted by the light emitting unit 7A provided in the housing 2, so that it is possible to emit light with higher luminance.
  • the laser beam L1 emitted from the laser unit 10A is irradiated to the light emitting unit 7A via the inside of the arm unit 3.
  • the laser beam L1 emitted from the laser unit 10A does not leak to the outside of the unmanned aircraft 1A, safety can be improved.
  • the laser unit 10A includes the heat sink 14A, but the unmanned aircraft (moving body) of the present invention is not limited to this.
  • the unmanned aerial vehicle may have a configuration in which an opening is provided in the upper portion of the arm portion 3 where the laser element 11A is provided, and the laser element 11A is directly cooled by blowing air from the fan 4. .
  • the laser unit 10A includes the heat sink 14A, the laser element 11A can effectively dissipate heat.
  • FIG. 8 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1A ′.
  • members having the same functions as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the unmanned aircraft 1A ′ the position where the laser element 11A ′ of the laser unit 10A ′ is provided is different from the position where the laser element 11A is provided in the unmanned aircraft 1A.
  • the unmanned aerial vehicle 1A ′ includes a laser unit 10A ′ as shown in FIG.
  • the laser unit 10A ′ includes a laser element 11A ′ and a heat sink 14A ′.
  • the laser element 11A ′ is provided immediately below the fan 4 inside the arm portion 3 (an area within 20% of the radius of the fan 4 centering on the rotating shaft 4a of the fan 4).
  • the heat sink 14A ′ includes a base 14A′a and fins 14A′b.
  • the base portion 14A′a is a flat plate-like member, to which a laser element 11A ′ is connected on one surface, and a plurality of fins 14A′b are formed on the other surface.
  • the fin 14A′b is a heat radiating plate protruding from the base portion 14A′a toward the fan 4.
  • the base portion 14 ⁇ / b> A′a is provided inside the arm portion 3. Further, in the arm portion 3, an opening (not shown) is provided in an upper portion of the region where the base portion 14A'a is provided, and the fin 14A'b is provided outside the arm portion 3 through the opening portion. And protruding.
  • the fins 14A′b are provided in the region A. As a result, the heat sink 14A ′ can be efficiently cooled through the fins 14A′b by using the air flow generated from the fan 4 (the air blown by the fan 4). As a result, the heat generated from the laser element 11A ′ can be effectively radiated.
  • the unmanned aircraft 1B in the present embodiment is different from the unmanned aircraft 1A in the first embodiment in the position where the heat sink 14B of the laser unit 10B is provided.
  • FIG. 9 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1B.
  • FIG. 10 is a view of the rotating fan 4 and its surroundings in the unmanned aircraft 1B as viewed from above.
  • the laser unit 10B of the unmanned aerial vehicle 1B includes a heat sink 14B.
  • the heat sink 14B includes a base portion 14Ba and fins 14Bb.
  • a part of the base 14Ba and the fin 14Bb of the heat sink 14B are provided in the region A, and the other part is 100% of the radius of the fan 4 with the rotation axis 4a of the fan 4 as the center. It is provided between a circle having a diameter and a circle having a diameter of 120% of the radius of the fan 4.
  • region B region B
  • the air volume of air blown by the fan is large.
  • the heat sink 14B can be efficiently cooled by the blowing of the fan 4. As a result, the heat generated from the laser element A of the laser unit 10B can be effectively radiated.
  • FIG. 11 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1B ′.
  • members having the same functions as those described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the position where the laser element 11B of the laser unit 10B ′ is provided is different from the position where the laser element 11A of the laser unit 10B is provided in the unmanned aircraft 1B.
  • the unmanned aerial vehicle 1B ′ includes a laser unit 10B ′ as shown in FIG.
  • the laser unit 10B ′ includes a laser element 11B.
  • the laser element 11B is provided in the region B.
  • the laser element 11B is connected to the base portion 14Ba of the heat sink 14B.
  • the heat generated from the laser element 11B through the heat sink 14B is effectively reduced. It can dissipate heat.
  • the unmanned aerial vehicle 1C in the present embodiment is different from the unmanned aircraft 1A in the first embodiment in that the laser light L1 emitted from the laser unit 10C is irradiated onto the light emitting unit 7A through the optical fiber 30.
  • FIG. 12 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1C.
  • the unmanned aerial vehicle 1C includes a laser unit 10C, an optical fiber 30, a condensing lens 31, and a collimating lens 32.
  • the laser unit 10C includes a laser element 11A, a fixing jig 12, and a heat sink 14A, and emits laser light L1.
  • the condensing lens 31 is a lens for causing the laser light L1 emitted from the laser unit 10C to enter the optical fiber 30.
  • the condensing lens 31 is provided adjacent to the emission surface of the laser element 11A of the laser unit 10C.
  • the optical fiber 30 is provided inside the arm portion 3 and is a light guide member for guiding the laser light L1 emitted from the laser unit 10C and incident by the condenser lens 31 to the mirror 6.
  • the optical fiber 30 has a two-layer structure in which an inner core is covered with a clad having a refractive index lower than that of the core.
  • the core is mainly composed of quartz glass (silicon oxide) with little absorption loss of the laser beam L1.
  • the clad is mainly composed of quartz glass or a synthetic resin material having a refractive index lower than that of the core.
  • the optical fiber 30 is a quartz optical fiber having a core diameter of 200 ⁇ m, a cladding diameter of 800 ⁇ m, and a numerical aperture NA of 0.1.
  • the structure, thickness, and material of the optical fiber 30 are not limited to those described above, and the cross section perpendicular to the major axis direction of the optical fiber 30 may be rectangular, or the cross section of the core may be circular. .
  • the collimating lens 32 is a lens for making the laser light L1 emitted from the optical fiber 30 into parallel light.
  • the laser light L ⁇ b> 1 emitted from the laser unit 10 ⁇ / b> C is applied to the light emitting unit 7 ⁇ / b> A through the optical fiber 30.
  • the laser beam L1 does not leak to the outside of the unmanned aerial vehicle 1C and is strong against vibration, so that safety can be improved.
  • the optical fiber 30 is provided inside the arm unit 3. Therefore, even when the arm part 3 is damaged due to an impact from the outside or the like, the laser beam L1 does not leak to the outside, so that safety can be further improved.
  • FIG. 13 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1C ′.
  • members having the same functions as those described in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the position where the laser unit 10C ′ is provided is different from the position where the laser unit 10C is provided in the unmanned aircraft 1C.
  • the unmanned aerial vehicle 1C ′ includes a laser unit 10C ′ as shown in FIG.
  • the laser unit 10C ′ includes a laser element 11C, a fixing jig 12, and a heat sink 14C.
  • the laser element 11 ⁇ / b> C and the optical fiber 30 are provided on the upper portion of the arm portion 3.
  • the laser beam L1 emitted from the laser unit 10C ′ is incident on the optical fiber 30 by the condenser lens 31.
  • the laser light L1 incident on the optical fiber 30 is guided through the optical fiber 30 and is irradiated onto the housing 2.
  • the laser beam L1 does not leak outside the unmanned aerial vehicle 1C ′, safety can be improved.
  • it is highly durable against vibration.
  • the entire optical fiber 30 is provided on the upper portion of the arm portion 3.
  • the unmanned aircraft (moving body) of the present invention is not limited to this.
  • the arm part 3 may be provided with an opening, and an optical fiber may be introduced into the arm part 3 from the opening.
  • the unmanned aircraft 1D in the present embodiment is different from the unmanned aircraft 1A in the first embodiment in the position where the light emitting unit is provided.
  • FIG. 14 is a schematic diagram showing the overall configuration of the unmanned aerial vehicle 1D.
  • FIG. 15 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1D.
  • FIG. 16 is a view of the periphery of the fan 4 in the unmanned aerial vehicle 1D as viewed from above.
  • the four arm portions are referred to as arm portions 3a to 3d in order to distinguish them.
  • the laser units and optical fibers corresponding to the arm portions 3a to 3d are referred to as laser units 10Ca to 10Cd and optical fibers 30a to 30d, respectively.
  • the unmanned aircraft 1D includes arm portions 3a to 3d, laser units 10Ca to 10Cd, optical fibers 30a to 30d, two light emitting portions 7B, and two light projecting portions 8. It has.
  • the two light emitting units 7B are provided in the upper part inside the arm unit 3a and the arm unit 3c.
  • the laser units 10Ca to 10Cd are provided in the arm portions 3a to 3d, respectively. Laser light emitted from the laser units 10Ca to 10Cd is guided by the optical fibers 30a to 30d, respectively.
  • the light projecting unit 8 is for irradiating the target position with the fluorescence emitted from the light emitting unit 7B.
  • the light projecting portion 8 is provided on the outer peripheral portion of the arm portion 3a or the arm portion 3c below the light emitting portion 7B.
  • an opening is provided in a region where the light projecting unit 8 is provided in the arm unit 3a, and light emitted from the light emitting unit 7B through the opening is provided by the light projecting unit 8. It can be incident on.
  • the light emitting portion 7B provided in the arm portion 3a is irradiated with laser light emitted from the laser unit 10Ca and guided by the optical fiber 30a and laser light emitted from the laser unit 10Cb and guided by the optical fiber 30b.
  • the laser light is received, the wavelength of the laser light is converted, and fluorescence is emitted.
  • a laser beam emitted from the laser unit 10Cc and guided by the optical fiber 30c and a laser beam emitted from the laser unit 10Cd and guided by the optical fiber 30d are provided in the light emitting unit 7B provided in the arm 3c. And receives these laser beams, converts the wavelength of the laser beams, and emits fluorescence.
  • the fluorescence emitted from the light emitting unit 7B provided on the arm unit 3a and the fluorescence emitted from the light emitting unit 7B provided on the arm unit 3c are transmitted by the light projecting unit 8 provided below the respective light emitting units 7B.
  • the target position is irradiated.
  • the light emitting part 7B generates heat when emitting fluorescence. For this reason, there is a problem that the temperature of the light emitting unit 7B increases and the wavelength conversion efficiency decreases. Therefore, in the unmanned aerial vehicle 1D, the light emitting unit 7B includes a heat sink 40 as illustrated in FIGS. 15 and 16.
  • the heat sink 40 is for radiating heat generated by the light emitting portion 7B emitting fluorescence. For this reason, it is preferable to use a metal material such as aluminum having a high thermal conductivity as the material of the heat sink 40.
  • the heat sink 40 includes a base 40a and fins 40b.
  • the base portion 40a is a flat plate-like member, the light projecting portion 8 is connected to the lower surface, and a plurality of fins 40b are formed on the upper surface.
  • the fin 40b is a heat radiating plate protruding in the direction of the fan 4 from the upper surface of the base 40a, and increases the heat dissipation efficiency of the heat sink 40 by increasing the contact area of the heat sink 40 with the atmosphere.
  • the heat sink 40 is provided at the upper part of the outer peripheral portion of the arm portion 3. More specifically, a base portion 40a connected to the light emitting portion 7B is installed on the outer peripheral portion of the arm portion 3, and the fins 40b protrude upward from the base portion 40a. Although not shown, an opening is formed in a portion of the arm portion 3 where the light emitting portion 7B and the base portion 40a are connected, so that the light emitting portion 7B and the base portion 40a can come into contact with each other. It has become.
  • the heat sink 14A As shown in FIG. 16, the heat sink 40 is provided in the region A described above. Thereby, the heat sink 40 can be efficiently cooled using the air flow (fan 4 blowing) generated from the fan 4. As a result, the heat generated from the light emitting unit 7B can be efficiently dissipated and the light emitting unit 7B can be effectively dissipated.
  • the light emitting portion 7B is provided in the arm portion 3a and the arm portion 3c. According to this configuration, since the light emitting unit 7B is not configured to be provided in the housing 2 in which the control unit, the sensor, the camera, and the like are housed, it is possible to prevent the heat generating members from being concentrated in the housing 2. It is possible to prevent the heat generated from the light emitting unit 7B from affecting electronic devices such as the control unit, the sensor, and the camera.
  • the light emitting unit 7B includes the heat sink 40, and the heat sink 40 is provided in the region A.
  • the heat sink 40 can be efficiently cooled by the ventilation of the fan 4.
  • the heat generated from the light emitting unit 7B can be efficiently dissipated and the light emitting unit 7B can be effectively dissipated. Therefore, it can prevent that the wavelength conversion efficiency of the light emission part 7B falls.
  • the unmanned aircraft (mobile body) of this invention is not restricted to this.
  • the light emitting part 7B is provided only in the arm part 3a, and the laser light emitted from the laser units 10Ca to 10Cd is guided by the optical fibers 30a to 30d, respectively, and the light emitting part provided in the arm part 3a. 7B may be irradiated.
  • the unmanned aerial vehicle 1E in the present embodiment is different from the unmanned aircraft 1A in the first embodiment in that the laser unit 10D can be attached and detached.
  • FIG. 17 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1E.
  • the unmanned aerial vehicle 1E includes a laser unit 10D as shown in FIG.
  • the laser unit 10D can be attached to and detached from the end of the arm 3 opposite to the casing 2.
  • the method for attaching / detaching the laser unit 10D to / from the arm unit 3 is not particularly limited.
  • the laser unit 10D is fixed to the arm unit 3 with screws, and the laser unit 10D is fitted into the arm unit 3 for fitting. It may be a method of providing a fitting member.
  • the laser unit 10D includes a laser element 11D, a fixing jig 12, and a heat sink 14D.
  • the laser element 11D is provided below the arm unit 3 in the vertical direction, and the laser light L1 emitted from the laser element 11D passes to the light emitting unit 7A via the optical fiber 30 provided below the arm unit 3. Is guided.
  • the heat sink 14D includes a base portion 14Da and fins 14Db.
  • a part of the base portion 14Da and the fins 14Db are provided in the region A, and the other portions are provided in the region B.
  • the heat sink 14D can be efficiently cooled by the ventilation of the fan 4.
  • the heat generated from the laser element 11D of the laser unit 10D can be effectively radiated.
  • the laser unit 10D can be attached and detached. Thereby, when the laser unit 10D breaks down, the laser unit 10D can be easily replaced.
  • the unmanned aerial vehicle 1F in the present embodiment has a projection function using the laser light L1.
  • FIG. 18 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1F.
  • FIG. 19 is an explanatory diagram showing a method for combining laser beams emitted from the laser unit 10E.
  • the unmanned aerial vehicle 1F includes a laser unit 10E, a mirror 51, a MEMS (Micro Electro Mechanical System) mirror (projection unit) 52, and a lens 53, as shown in FIG.
  • the laser unit 10E includes laser elements 11Ea to 11Ec, collimating lenses 13a to 13c as optical components, and dichroic mirrors 50a to 50c.
  • Laser elements 11Ea to 11Ec are laser light emitting elements (light sources) that emit laser beams of red light RL, green light GL, and blue light BL, each having a different wavelength.
  • the collimating lenses 13a to 13c are lenses for making the laser light L1 emitted from the laser elements 11Ea to 11Ec into parallel light, respectively.
  • Each of the dichroic mirrors 50a to 50c is a mirror that reflects or transmits only a specific wavelength. Specifically, as shown in FIG. 19, the dichroic mirror 50a reflects the red light beam RL. The dichroic mirror 50b reflects the green light beam GL and transmits the red light beam RL. The dichroic mirror 50c transmits the blue light beam BL and reflects the green light beam GL and the red light beam RL. As a result, the laser beams emitted from the laser elements 11Ea to 11Ec are combined into a bundle of laser beams L1 and emitted toward the housing 2.
  • the laser elements 11Ea to 11Ec, the collimating lenses 13a to 13c, and the dichroic mirrors 50a to 50c are fixed to a support base (not shown) with their installation positions adjusted.
  • the laser unit of the present invention is not limited to this.
  • the laser element 11Ea, the collimating lens 13a, and the dichroic mirror 50a may be integrally configured.
  • the number of laser elements included in the laser unit may be greater than three, and the luminance of the projection light L3 emitted from the unmanned aerial vehicle 1F can be increased by increasing the number of laser elements.
  • the mirror 51 is a mirror for reflecting the laser beam L1 to the MEMS mirror 52.
  • one mirror is used to reflect the laser light L1 to the MEMS mirror 52, but the unmanned aircraft (moving body) of the present invention is not limited to this.
  • a plurality of mirrors may be used to reflect the laser beam L1 to the MEMS mirror 52. Thereby, the incident angle of the laser beam L1 to the MEMS mirror 52 can be made gentle.
  • the MEMS mirror 52 is a mirror for reflecting the incident laser light L1 and emitting the projection light L3.
  • the operation of the MEMS mirror 52 is controlled by a MEMS driver (not shown) so that the tilt can be changed.
  • the MEMS driver controls the MEMS mirror 52 in synchronization with a signal from a laser driver (not shown).
  • the laser driver has a built-in antenna that receives a wireless signal (for example, WiFi (Wireless® Fidelity)).
  • the laser driver turns on / off the laser based on image or video information transmitted by a radio signal, and the MEMS driver controls the operation of the MEMS mirror 52 in synchronization with the signal from the laser driver.
  • a wireless signal for example, WiFi (Wireless® Fidelity
  • the lens 53 is a lens for emitting the projection light L3 emitted by the MEMS mirror 52 toward the outside.
  • the lens 53 preferably has a function of correcting distortion or the like in an image or moving image projected by the projection light L3 emitted from the MEMS mirror 52. Thereby, it is possible to project the projection light L3 of an image or moving image with less distortion.
  • the laser beams L1 incident on the dichroic mirrors 50a to 50c are reflected or transmitted by the dichroic mirrors 50a to 50c, respectively, so that the laser beams L1 are combined into one bundle and emitted toward the housing 2.
  • the laser light L 1 incident on the housing 2 is reflected by the mirror 51 to the MEMS mirror 52.
  • the MEMS mirror 52 emits the projection light L3 of the image or moving image transmitted by the wireless signal. Is done.
  • the projection light L3 emitted by the MEMS mirror 52 is emitted toward the outside by the lens 53, and is projected onto the screen so that an image such as an image or a moving image can be projected onto the screen.
  • the unmanned aerial vehicle 1F includes laser elements 11Ea to 11Ec. As a result, since focus-free can be realized, there is a feature that the projected image is not influenced by the floating height.
  • the unmanned aerial vehicle 1F includes the MEMS mirror 52 that displays an image by combining and irradiating the red ray RL, the green ray GL, and the blue ray BL emitted from the laser elements 11Ea to 11Ec, respectively. Yes.
  • the laser elements 11Ea to 11Ec that emit laser light which are smaller than LED elements and HID elements, are used.
  • a bright image can be projected, and the unmanned aircraft 1F can be reduced in weight, so that battery (battery) consumption can be suppressed.
  • the laser elements 11Ea to 11Ec are cooled by blowing the fan 4. As a result, it is possible to prevent the light emission efficiency of the laser elements 11Ea to 11Ec from decreasing.
  • the unmanned aerial vehicle 1F can project an image while floating in the air, and thus can project an image from a location that has been difficult to install conventionally.
  • images and moving images are projected onto the screen using the laser light L1 emitted from the laser unit 10E, a bright image can be projected onto the screen.
  • the unmanned aerial vehicle 1G according to the present embodiment is different from the unmanned aircraft 1A according to the first embodiment in that the unmanned aircraft 1G includes a MEMS mirror.
  • FIG. 20 is a cross-sectional view showing the configuration of the unmanned aerial vehicle 1G.
  • the unmanned aerial vehicle 1G includes a mirror 6A and a MEMS mirror 60.
  • the mirror 6A is provided inside the housing 2 and is a mirror for reflecting the laser light L1 emitted from the laser unit 10A and reaching the inside of the housing 2 toward the MEMS mirror 60.
  • the MEMS mirror 60 is a mirror for reflecting the laser light L1 incident from the mirror 6A to the light emitting unit 7A, and the inclination of the MEMS mirror 60 with respect to the laser light L1 is controlled by a MEMS driver (not shown). That is, a laser driver (not shown) turns the laser on and off based on information from an external signal, and the MEMS driver (not shown) tilts the MEMS mirror 60 with respect to the laser beam L1 in synchronization with the signal from the laser driver. Is controlled, the reflection angle of the laser beam L1 reflected by the MEMS mirror 60 is controlled.
  • the laser light L1 emitted from the laser unit 10A is incident on the MEMS mirror 60 via the mirror 6A.
  • the laser light L1 incident on the MEMS mirror 60 is reflected by the MEMS mirror 60, enters the light emitting unit 7A, and is converted into fluorescence L2 by the light emitting unit 7A.
  • the fluorescence L2 converted by the light emitting unit 7A is irradiated to the outside by the light projecting unit 8.
  • the tilt of the MEMS mirror 62 is controlled by the MEMS driver in synchronization with the signal from the laser driver.
  • an object identified by a camera (not shown) attached to the unmanned aerial vehicle 1G or an object identified by an infrared radar (not shown) attached to the unmanned aircraft 1G is transmitted as a signal to the laser driver, and the laser driver The laser is turned on / off based on the signal, and the MEMS driver controls the tilt of the MEMS mirror 60 with respect to the laser light L1 in synchronization with the signal from the laser driver.
  • the unmanned aerial vehicle 1G is an illuminating device that can irradiate only the region where the fluorescent light L2 is desired to be irradiated. That is, the unmanned aerial vehicle 1G is a lighting device with variable orientation that can illuminate only a specific object or not illuminate a specific object.
  • FIG. 21 is a cross-sectional view showing a configuration around the fan 4 of the unmanned aerial vehicle 1H.
  • the unmanned aerial vehicle 1H replaces the coil 5, the laser unit 10A, the mirror 6, and the light emitting unit 7A included in the unmanned aircraft 1A according to the first embodiment with a driving unit 70, a laser unit 10F, and a light emitting device.
  • a portion 7C, a reflector 80, and a lens 81 are provided.
  • the drive unit 70 includes a double-axis motor 71, a first shaft 72, and a second shaft 73.
  • the biaxial motor 71 is a motor for rotating the first shaft 72 connected to the upper part of the biaxial motor 71 and the second shaft 73 connected to the lower part of the biaxial motor 71 with the vertical direction as the rotation axis. It is.
  • the first shaft 72 is connected to the upper portion of the fan 4 through the rotation shaft 4 a of the fan 4, and is a shaft for rotating the fan 4 by being rotated by the double shaft motor 71.
  • the second shaft 73 has a lower portion penetrating through and connected to a rotation shaft of a light emitting unit 7C described later, and is a shaft for rotating the light emitting unit 7C by being rotated by a biaxial motor 71.
  • the laser unit 10F includes a laser element 11F, a fixing jig 12B, and a heat sink 14E.
  • the laser element 11F is fixed to a base portion 14Ea of a heat sink 14E described later by a fixing jig 12B.
  • the laser element 11F is disposed inside the arm unit 3 and irradiates the laser beam L1 downward toward the light emitting unit 7C described later.
  • the heat sink 14E is for radiating heat generated by the laser element 11F irradiating the laser beam L1.
  • the heat sink 14E includes a base portion 14Ea and fins 14Eb.
  • the base portion 14Ea is installed inside the arm portion 3.
  • the fin 14Eb protrudes from the upper surface of the base portion 14Ea toward the fan 4.
  • the arm 3 is formed with a hole (not shown) through which the fin 14Eb passes.
  • the light emitting unit 7C converts the wavelength of the laser light L1 irradiated from the laser unit 10F (laser element 11F) and emits fluorescence L2.
  • the light emitting portion 7C is provided below the laser element 11F inside the arm portion 3.
  • the light emitting portion 7C has a disk shape, and the second shaft 73 is passed through the center of the disk.
  • the light emitting unit 7 ⁇ / b> C rotates about the center of the disk as a rotation axis by the driving force from the biaxial motor 71 transmitted through the second shaft 73.
  • the light emitting portion 7C is formed by applying a phosphor to a light-transmitting substrate such as glass or sapphire.
  • a phosphor the phosphor described in Embodiment 1 can be used.
  • the light emitting unit 7C is a “transmission type” light emitting unit in which fluorescence L2 is mainly emitted from the opposite surface (lower surface) opposite to the laser light irradiation surface (upper surface) irradiated with the laser light L1.
  • the reflector 80 is for reflecting the laser beam L1 reflected by the light emitting unit 7C out of the laser beam L1 irradiated to the light emitting unit 7C toward the light emitting unit 7C again.
  • the utilization efficiency of the laser light L1 emitted from the laser element 11F can be improved.
  • the unmanned aerial vehicle 1H can emit light with higher brightness.
  • the lens 81 is a lens for collecting the fluorescent light L2 emitted from the light emitting unit 7C and irradiating it outside the unmanned aircraft 1H.
  • the lens 81 is disposed by being fitted into a hole (not shown) provided in the lower portion of the arm portion 3.
  • the laser unit 10F is disposed between the fan 4 and the light emitting unit 7C in the vertical direction.
  • the laser unit 10F is cooled by the air blown from the fan 4 via the heat sink 14E (fin 14Eb) in the upper part of the laser unit 10F, and the light emitting unit 7C can be irradiated with the laser light L1 from the lower surface of the laser unit 10F. It has become.
  • the double-axis motor 71 rotates the fan 4 and the light emitting unit 7C. Thereby, next, two effects can be produced.
  • the first effect is to prevent the emission efficiency of the laser unit 10F from being lowered by increasing the heat dissipation efficiency of the laser unit 10F by the air blown from the fan 4.
  • the second effect is to suppress a decrease in the light emission efficiency of the light emitting unit 7C.
  • the laser light L1 emitted from the laser unit 10F laser element 11F
  • the temperature at one point of the light emitting unit 7C increases, and the conversion efficiency from the laser light L1 to the fluorescence L2 in the light emitting unit 7C decreases.
  • the brightness of light emitted by the unmanned aerial vehicle decreases.
  • the unmanned aerial vehicle 1H can radiate high-luminance light.
  • the double-axis motor 71 rotates the fan 4 and the light-emitting unit 7C, so that the single-axis motor 71 causes the light emission efficiency of the laser unit 10F (laser element 11F). Can be prevented, and the conversion efficiency of the light emitting part 7C can be prevented from decreasing.
  • FIG. 22 is a cross-sectional view showing a configuration around the fan 4 of the unmanned aerial vehicle 1I.
  • the unmanned aircraft 1 ⁇ / b> I includes a light emitting unit 7 ⁇ / b> D and a reflector 91 instead of the light emitting unit 7 ⁇ / b> C and the reflector 80 in the unmanned aircraft 1 ⁇ / b> H in the eighth embodiment.
  • the unmanned aerial vehicle 1 ⁇ / b> I includes a mirror 90.
  • the light emitting part 7D is formed by applying a phosphor to a light reflective substrate such as a metal, a mirror, or a multilayer film.
  • the light emitting unit 7D is configured such that the surface on which the phosphor is applied becomes the lower surface.
  • the light emitting unit 7D is a “reflective” light emitting unit that emits fluorescence L2 from the laser light irradiation surface (lower surface) irradiated with the laser light L1.
  • the mirror 90 is a mirror that is provided below the laser unit 10F inside the arm unit 3 and reflects the laser light L1 emitted from the laser unit 10F toward the lower surface of the light emitting unit 7D.
  • the reflector 91 condenses the fluorescence L2 emitted by the light emitting unit 7D toward the lens 81.
  • the fluorescence L2 is emitted and emitted from the light emitting unit 7D. Therefore, when there is no reflector 91, a part of the fluorescence L2 leaks outside the lens 81.
  • the unmanned aircraft 1H includes the reflector 91, the fluorescent light L2 irradiated by the light emitting unit 7D can be condensed toward the lens 81, so that the fluorescent light L2 is prevented from leaking outside the lens 81. be able to.
  • the laser light L1 emitted from the laser unit 10F is reflected by the mirror 90 and applied to the lower surface of the light emitting unit 7D. Then, the laser beam L1 is converted into fluorescence L2 and reflected by the light emitting unit 7D, and the fluorescence L2 is irradiated to the outside through the lens.
  • the unmanned aerial vehicle 1I since the light emitting unit 7D is rotated by the dual-axis motor 71, the laser light L1 emitted from the laser unit 10F is concentrated on one point of the light emitting unit 7D. Thus, it is possible to prevent the irradiation from continuing. As a result, it is possible to suppress an increase in the temperature of the light emitting unit 7D, and thus it is possible to suppress a decrease in conversion efficiency from the laser light L1 to the fluorescence L2 in the light emitting unit 7D. As a result, the unmanned aerial vehicle 1H can radiate high-luminance light.
  • the unmanned aerial vehicle has been described as the moving body of the present invention, but the moving body of the present invention is not limited to the unmanned aerial vehicle.
  • it may be a moving body that moves on land or water to obtain a propulsive force by a fan.
  • these moving objects may be manned moving objects or unmanned moving objects.
  • a moving body (unmanned aerial vehicles 1A to 1G and 1A 'to 1C') is a moving body (unmanned aerial vehicle) that obtains a propulsive force by a fan 4, and includes laser light (laser light L1 and red light beam).
  • At least one light source (laser units 10A to 10D, 10A ′ to 10C ′, 10Ca to 10Cd, laser elements 11Ea to 11Ec) that emits RL, green light beam GL, and blue light beam BL).
  • 10A to 10D, 10A ′ to 10C ′, 10Ca to 10Cd, and laser elements 11Ea to 11Ec) are characterized in that the heat radiation efficiency is enhanced by the blowing of the fan 4.
  • high-luminance light can be emitted using a light source that emits laser light, which is smaller than LED elements and HID elements.
  • the moving body can be reduced in weight, and consumption of the battery (battery) can be suppressed.
  • the light emission efficiency of the light source is reduced by cooling the light source by blowing air from a fan. Can be prevented.
  • a moving body including a light source, which can suppress a temperature rise of the light source and can emit high-luminance light from the light source.
  • the moving body (unmanned aerial vehicles 1A to 1E, 1G, 1A 'to 1C') according to aspect 2 of the present invention is the light source (laser units 10A to 10D, 10A 'to 10C', 10Ca to 10Cd) according to aspect 1 described above.
  • emitted from may be sufficient.
  • high-intensity fluorescence can be emitted from the light emitting unit by using laser light.
  • the moving body (unmanned aerial vehicle 1F) according to aspect 3 of the present invention is the above-described aspect 1, and includes at least three light sources (laser elements) that emit laser beams having different wavelengths (red light beam RL, green light beam GL, and blue light beam BL). 11Ea to 11Ec) and a laser beam (red light beam RL, green light beam GL, blue light beam BL) emitted from the light sources (laser elements 11Ea to 11Ec) are combined and irradiated to project a projection unit (image).
  • the MEMS mirror 52 may be provided.
  • a bright image can be projected by using the laser beam.
  • a moving body (unmanned aerial vehicles 1A to 1G and 1A 'to 1C') according to aspect 4 of the present invention includes a main body (housing 2) and the main body (housing 2) in any of the above aspects 1 to 3. ) And arm portions 3, 3a to 3d for supporting the fan 4, and the light sources (laser units 10A to 10D, 10A 'to 10C', 10Ca to 10Cd, laser elements 11Ea to 11Ec) It is preferable that the arm portions 3, 3a to 3d are provided.
  • a light source is not the structure provided in the main-body part in which the light emission part, a control part, a sensor, a camera, etc. are accommodated, it prevents preventing the member which generate
  • a moving body (unmanned aerial vehicles 1A to 1G, 1A 'to 1C') according to aspect 5 of the present invention is the light source (laser units 10A to 10D, 10A 'to 10C', 10Ca) according to any one of aspects 1 to 3.
  • the laser elements 11Ea to 11Ec) are preferably provided with heat sinks 14A to 14D and 14A 'and radiate heat through the heat sinks 14A to 14D and 14A'.
  • the light source can be cooled more efficiently through the heat sink.
  • the moving body (unmanned aerial vehicles 1A to 1G and 1A ′ to 1C ′) according to aspect 6 of the present invention is the above aspect 4 in which the rotation shaft 4a of the fan 4 is supported by the arm parts 3 and 3a to 3d. And at least part of the light sources (laser units 10A to 10D, 10A ′ to 10C ′, 10Ca to 10Cd, laser elements 11Ea to 11Ec) have a radius of the fan 4 centered on the rotation axis 4a of the fan 4 It is also possible to adopt a configuration provided between a circle having a diameter of 20% and a circle having a diameter of 100% of the radius of the fan 4.
  • an area between a circle having a diameter of 20% of the fan radius and a circle having a diameter of 100% of the fan radius centered on the rotation axis of the fan is from the fan. Since the amount of blown air is large, the light source can be efficiently cooled by providing the light source in this region.
  • the moving body (unmanned aerial vehicle 1B, 1B ′, 1E) according to aspect 7 of the present invention is the above-described aspect 4, wherein the rotation shaft 4a of the fan 4 is supported by the arm portion 3, and the light source (laser unit) 10B, 10B ′, and 10D) are at least partly a circle having a diameter of 100% of the radius of the fan 4 and a diameter of 120% of the radius of the fan 4 around the rotation axis 4a of the fan 4.
  • yen which has may be sufficient.
  • an area between a circle having a diameter of 100% of the fan radius and a circle having a diameter of 120% of the fan radius centered on the rotation axis of the fan is from the fan. Since the amount of blown air is large, the light source can be efficiently cooled by providing the light source in this region.
  • the mobile body (unmanned aerial vehicle 1D) according to aspect 8 of the present invention includes a main body (housing 2) and an arm portion that extends from the main body (housing 2) and supports the fan 4 in the above-described aspect 2.
  • 3a to 3d, and the light source (laser units 10Ca to 10Cd) and the light emitting unit 7B may be provided in the arm units 3a to 3d.
  • the light emission part is not a structure provided in the main-body part in which a control part, a sensor, a camera, etc. are accommodated, it can prevent concentrating the member which generates heat on a main-body part. In addition, it is possible to prevent the heat generated from the light emitting unit from affecting electronic devices such as the control unit, sensor, and camera.
  • the light emitting unit 7B has a configuration in which the heat radiation efficiency is enhanced by the blowing of the fan 4.
  • the moving body (unmanned aerial vehicles 1A to 1C, 1E, 1G, 1A 'to 1C') according to aspect 10 of the present invention includes the main body (housing 2) and the main body (housing 2).
  • the light emitting unit 7A may be provided in the main body (housing 2).
  • fluorescence can be emitted from the main body.
  • the moving body (unmanned aerial vehicles 1A to 1C, 1E, 1G, 1A 'to 1C') according to aspect 11 of the present invention includes a plurality of the arm parts 3 in the above aspect 10, and each of the arm parts 3 has The light sources (laser units 10A to 10D, 10A ′ to 10C ′) are provided, and the laser light L1 emitted from the plurality of light sources (laser units 10A to 10D, 10A ′ to 10C ′) It is preferable that it is the structure irradiated to 7A.
  • the moving body (unmanned aerial vehicles 1A to 1D, 1G, 1A ', and 1B') according to aspect 12 of the present invention extends from the main body (housing 2) and the main body (housing 2) in aspect 2 above.
  • the laser beam emitted from the light sources (laser units 10A to 10D, 10A ′, 10B ′, and 10Ca to 10Cd) is provided with the arms 3 and 3a to 3d for supporting the fan 4. It is preferable that the light emitting units 7A and 7B are irradiated through the insides of the units 3 and 3a to 3d.
  • the moving body (unmanned aerial vehicles 1C to 1E and 1C ') according to aspect 13 of the present invention is the laser light L1 emitted from the light source (laser units 10C, 10Ca to 10Cd, 10D, and 10C') in the above aspect 2. It is preferable that the light emitting units 7A and 7B are irradiated through the optical fibers 30 and 30a to 30d.
  • the laser beam does not leak to the outside of the moving body, and safety can be improved.
  • it is highly durable against vibration.
  • the moving body (unmanned aerial vehicle 1H, 1I) according to aspect 14 of the present invention extends from the main body (housing 2) and the main body (housing 2) and supports the fan 4 in aspect 2.
  • the light source (laser unit 10F) and the light emitting units 7C and 7D are provided in the arm unit 3, and the driving unit that rotates the fan 4 and the light emitting units 7C and 7D. 70 may be provided.
  • the light emitting unit is rotated by the driving unit, it is possible to prevent the laser light emitted from the light source from being continuously emitted to one point of the light emitting unit.
  • high-intensity light can be irradiated. Therefore, it is possible to prevent the light emission efficiency of the light source from being lowered by one driving unit and to suppress the conversion efficiency of the light emission unit from being lowered.
  • the moving body (unmanned aerial vehicle 1H) according to aspect 15 of the present invention is the above-described aspect 14, wherein the light source (laser unit 10F) is disposed between the fan 4 and the light emitting unit 7C. Also good.
  • the light source can be cooled by blowing air from the fan on one side of the light source, and the light emitting unit can be irradiated with the laser light from the other side of the light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lasers (AREA)

Abstract

光源の温度上昇を抑制し、高輝度の光を照射することのできる移動体を提供する。無人航空機(1A)は、ファン(4)により推進力を得る無人航空機であって、レーザ光(L1)を出射するレーザユニット(10A)を備えており、レーザユニット(10A)は、ファン(4)の送風により放熱効率が高められる。

Description

移動体
 本発明は、推進装置としてファンを有する移動体に関する。
 古くからUAV(Unmanned Aerial Vehicle)、またはドローン(Drone)と呼ばれる無人航空機(移動体)の開発、製品化が進められてきた。そして、近年になり、センサの小型化、通信、制御機器の小型化、高性能化などにより、無人航空機は、民間での製品化が活発になっている。
 近年製品化されている無人航空機は、複数のファン(プロペラ)からなるマルチコプタータイプが多い。それゆえ、無人航空機は、空中にて位置を静止させる安定したホバリング飛行が可能であり、空中での静止位置からの姿勢制御が容易なことが大きな利点である。
 無人航空機は、航空動作以外にも空中での高度な制御を行うためのセンサや電子機器を中心部(ターミナル部)に集約している。センサや電子機器などは、作動中に熱を発生するためのセンサや電子機器などを中心部に集約すると、中心部の温度が上昇してしまい、これらの機器の作動不良や故障などを引き起こしてしまうという問題があった。
 上記の問題を解決するための技術が、特許文献1に開示されている。特許文献1に開示されている無人航空機では、内部に電子機器(熱発生機器)を収容したダクトと、ファンブレードとを備えている。これにより、ファンブレードを回転させることによって発生する空気流を用いて、ダクト内に収容されている電子機器(熱発生機器)を冷却している。
 また、照明装置を備えた無人航空機が知られている。例えば、特許文献2には、照明装置を備えた自律移動型照明装置が開示されている。特許文献2に開示されている自律移動型照明装置は、光電変換部、発光部、光センサ、プロペラを備えており、紡錘状に閉じた光電変換部と発光部との内部には空気より軽いガス(ヘリウムなど)が充填されており、空中を浮遊することができる。そして、空中を浮遊しながら適宜移動し、日中は光電変換部を太陽光に向けて太陽光発電と充電を行い、夜間は発光部を所望の照射面に向けて発光・照射を行うことができるようになっている。
日本国公開特許公報「特許第5378065号公報(2013年10月4日登録)」 日本国公開特許公報「特許第5720456号公報(2015年4月3日登録)」 日本国公開特許公報「特許第5271600号公報(2013年5月17日登録)」
 しかしながら、特許文献2に開示されている自律移動型照明装置では、発光部は有機EL(Electroluminescence)素子やLED(Light Emitting diode)が用いられており、高光束・高輝度の光を照射するものでは無い。
 ところで、LED素子やHID(High Intensity Discharge)素子を有する照明装置(例えば、特許文献3に開示されている照明装置など)によって高光束・高輝度の光を照射するためには、照明装置が大型化してしまう。そのため、照明装置の重量が大きくなってしまい、移動体に搭載した場合に電池(バッテリ)の消費が大きくなってしまうという問題がある。
 移動体に搭載する照明装置を小型の照明装置にするためには、小型の投光系が必要であり、小型の投光系を実現可能な高輝度の光源(発光素子)に注目した。このような光源として、例えば、レーザ素子を用いることが考えられる。しかしながら、発光素子としてレーザ素子を用いた場合、レーザ素子がレーザ光を照射する際に大量の熱を発生する。その結果、レーザ素子の温度が上昇し、レーザ素子の発光効率が低下してしまうという問題があった。
 本発明は、前記の問題を解決するためになされたものであり、その目的は、光源を備えた移動体であって、上記光源の温度上昇を抑制し、当該光源から高輝度の光を照射することのできる移動体を提供することにある。
 上記の課題を解決するために、本発明の一態様に係る移動体は、ファンにより推進力を得る移動体であって、レーザ光を出射する少なくとも1つの光源を備えており、前記光源は、前記ファンの送風により放熱効率が高められることを特徴とする。
 本発明の一態様によれば、光源を備えた移動体であって、上記光源の温度上昇を抑制し、当該光源から高輝度の光を出射することのできる移動体を提供することができるという効果を奏する。
本発明の実施形態1に係る無人航空機の全体の構成を示す概略図である。 上記無人航空機の構成を示す断面図である。 上記無人航空機における、固定治具を用いたレーザ素子のアーム部への固定方法を説明するものであり、(a)は、固定治具の正面図であり、(b)は、固定治具の断面図である。 上記無人航空機において発光部が基板に載置された状態で用いられる様子を示すものであり、(a)は発光部が透光性を有する基板に載置されている状態を示す図であり、(b)は発光部が光反射性を有する基板に載置されている状態を示す図である。 上記無人航空機における投光部の構成を示す概略図である。 上記無人航空機のファンにおける吐出側の風量を示す説明図である。 上記無人航空機における回転状態のファン周辺を上部から見た図である。 上記無人航空機の変形例としての無人航空機の構成を示す断面図である。 本発明の実施形態2に係る無人航空機の構成を示す断面図である。 上記無人航空機における回転状態のファン周辺を上部から見た図である。 上記無人航空機の変形例としての無人航空機の構成を示す断面図である。 本発明の実施形態3に係る無人航空機の構成を示す断面図である。 上記無人航空機の変形例としての無人航空機の構成を示す断面図である。 本発明の実施形態4に係る無人航空機の全体の構成を示す概略図である。 上記無人航空機の構成を示す断面図である。 上記無人航空機における回転状態のファン周辺を上部から見た図である。 本発明の実施形態5に係る無人航空機の構成を示す断面図である。 本発明の実施形態6に係る無人航空機の構成を示す断面図である。 上記無人航空機における、レーザユニットから出射されるレーザ光の合波方法を示す説明図である。 本発明の実施形態7に係る無人航空機の構成を示す断面図である。 本発明の実施形態8に係る無人航空機のファン周辺の構成を示す断面図である。 本発明の実施形態9に係る無人航空機のファン周辺の構成を示す断面図である。
 〔実施形態1〕
 以下、本発明の実施形態1におけるファンにより推進力を得る移動体としての無人航空機1Aについて、図1~図6を参照しながら説明する。
 (無人航空機1Aの構成)
 無人航空機1Aの構成について、図1および図2を参照しながら説明する。図1は、無人航空機1Aの全体の構成を示す概略図である。図2は、無人航空機1Aの構成を示す断面図である。
 無人航空機1Aは、図1および図2に示すように、筐体(本体部)2と、アーム部3と、ファン4と、コイル5と、レーザユニット(光源)10Aと、ミラー6と、発光部7Aと、投光部8とを備えている。
 筐体2は、無人航空機1Aの高度な航空動作を行うための制御部(不図示)、センサ(不図示)、バッテリ(不図示)などを収めるためのものである。また、筐体2の内部には、ミラー6、発光部7A、および投光部8が収められている。
 アーム部3は、筐体2から延伸する長尺の部材であり、内部が空洞になっている。無人航空機1Aでは、アーム部3は、4つ設けられている。
 ファン4は、回転することにより、無人航空機1Aが空中浮遊するための浮力、および無人航空機1Aが空中を移動する他の推進力を発生させるためのプロペラである。ファン4は、各アーム部3の筐体2とは反対側の端部において回転軸4aを支持されることにより、アーム部3の上部に取り付けられている。
 コイル5は、ファン4を回転させるための駆動部である。コイル5は、上記の制御部からの指示により、ファン4の回転方向および回転速度を制御する。これにより、無人航空機1Aは、空中浮遊または空中移動することができるようになっている。
 レーザユニット10Aは、レーザ光L1を出射する光源である。レーザユニット10Aは、各アーム部3に1つ設けられている。レーザユニット10Aは、レーザ素子11A、固定治具12、コリメートレンズ13、およびヒートシンク14Aを備えている。なお、無人航空機1Aでは、レーザユニット10Aは、各アーム部3にそれぞれ設けられる構成であるが、本発明の無人航空機(移動体)はこれに限られない。すなわち、少なくとも1つのアーム部3にのみレーザユニット10Aが設けられていればよく、例えば、4つのアーム部3のうち2つのアーム部3にのみレーザユニットが設けられる構成であってもよい。
 レーザ素子11Aは、レーザ光L1を出射する発光素子である。レーザ素子11Aは、アーム部3の内部に設けられている。レーザ素子11Aは、1チップに1つの発光点を有するものであってもよく、1チップに複数の発光点を有するものであってもよい。レーザ素子11Aから出射されるレーザ光L1の波長は、例えば、365nm~460nm、好ましくは、390nm~410nmであるが、これらに限定されず、発光部7Aが有する蛍光体の種類に応じて適宜選択すればよい。レーザ素子11Aは、例えば、CANパッケージ型のレーザ素子を用いてもよいが、これに限られるものでは無い。レーザ素子11Aは、固定治具12によりアーム部3に固定されている。
 固定治具12は、レーザ素子11Aを固定治具12に固定するとともに、レーザ素子11Aをアーム部3に固定するための部材である。固定治具12は、放熱性の高い材料で形成されていることが好ましい。固定治具12は、図2に示すように、レーザ素子11Aが固定治具12の外側に固定されるように設けられている。ただし、本発明の無人航空機(移動体)はこれに限られない。例えば、図3に示すようにレーザ素子11Aをアーム部3に固定してもよい。図3は、固定治具12Aを用いたレーザ素子11Aのアーム部3への固定方法を説明するものであり、(a)は、固定治具12Aの正面図であり、(b)は、固定治具12Aの断面図である。図3の(a)、(b)に示すように、固定治具12Aは、レーザ素子収納部12aと、2つのネジ孔12bと、2つのネジ12cを備えている。レーザ素子11Aは、レーザ素子収納部12aに収納されている。そして、ネジ孔12bにネジ12cをねじ込み、ネジ12cの先端部をアーム部3のネジ孔(不図示)にねじ込むことにより、固定治具12Aがアーム部3に固定される。その結果、レーザ素子11Aがアーム部3に固定される。また、固定治具12Aは、レーザ素子11Aに電流を流すために、コネクタや配線などが工夫されていることが好ましい。また、図3に示すアーム部3を固定治具12Aとは異なる固定治具とし、レーザ素子11Aを2つの固定治具で挟み込むことにより固定し、2つの固定治具の少なくとも一方をアーム部3に固定するようにしてもよい。
 コリメートレンズ13は、レーザ素子11Aから出射されたレーザ光L1を平行光にするためのレンズである。コリメートレンズ13は、アーム部3の内部に設けられている。コリメートレンズ13は、ガラスレンズやプラスチックレンズが好ましく、非球面レンズであることがより好ましい。コリメートレンズ13は、設置位置を微調節できるようにアーム部3に固定されていることが好ましい。または、レーザ素子11Aとコリメートレンズ13とを調節して固定したユニットであってもよい。コリメートレンズ13のアーム部3への固定方法は、物理的または機械的に固定する方法であってもよい。また、コリメートレンズ13の設置位置を電動で調整できるようになっていてもよい。
 ヒートシンク14Aは、レーザ素子11Aがレーザ光L1を照射することによって発生した熱を放熱するためのものである。このため、ヒートシンク14Aの材料として、熱伝導率の高い銅やアルミニウムなどの金属材料を用いることが好ましい。ヒートシンク14Aは、基部14Aaとフィン14Abとを備えている。
 基部14Aaは、平板状の部材であり、下面にレーザ素子11Aが接続されており、上面に複数のフィン14Abが形成されている。
 フィン14Abは、基部14Aaの上面からファン4の向きに突出してした放熱板であり、ヒートシンク14Aの大気との接触面積を増加させることにより、ヒートシンク14Aの放熱効率を高めている。
 ヒートシンク14Aは、アーム部3の外周部の上部に設けられている。より詳細には、レーザ素子11Aと接続された基部14Aaがアーム部3の外周部に設置されており、フィン14Abが基部14Aaから上方に突出している。なお、図示していないが、アーム部3においてレーザ素子11Aと基部14Aaとが接続している部分には、開口部が形成されており、これにより、レーザ素子11Aと基部14Aaとが接触できるようになっている。なお、ヒートシンク14Aが設けられる位置の詳細については後述する。
 ミラー6は、筐体2の内部に設けられており、レーザユニット10Aから出射され筐体2の内部に到達したレーザ光L1を発光部7Aへ向けて反射させるためのミラーである。なお、無人航空機1Aではミラー6を用いて、レーザ光L1を発光部7Aへ向けて反射させる構成であるが、本発明の無人航空機(移動体)はこれに限られない。例えば、プリズムを用いてレーザ光L1を発光部7Aへ向けて屈折させる構成であってもよい。
 発光部7Aは、筐体2の内部に設けられており、ミラー6によって反射されたレーザ光L1を受けて、レーザ光L1の波長を変換し、蛍光L2を発するものである。図2に示す例では、発光部7Aは、レーザ光L1が照射されるレーザ光照射面とは反対型の対向面から蛍光L2が主に出射される。このような発光部を本明細書では、「透過型」の発光部と称する。
 本実施形態における発光部7Aは、単結晶蛍光体により構成されている。単結晶蛍光体は、レーザ光L1が照射されることにより励起され蛍光L2を発するものである。単結晶蛍光体は、例えば、YAG(Yttrium Aluminium Garnet,YAl12)単結晶蛍光体を用いることができる。この蛍光体は、レーザユニット10Aから発せられた高い出力のレーザ光L1に対しての熱耐性が高く好ましい。ただし、単結晶蛍光体は、上述したものに限定されず、窒化物蛍光体など、その他の蛍光体であってもよい。
 発光部7Aは、各アーム部3に設けられたレーザユニット10Aから照射されたレーザ光L1を用いることにより、高輝度の光、例えば、300~1000Mcd/mの光を照射することができる。
 また、発光部7Aは、複数のアーム部3のそれぞれに設けられたレーザユニット10Aから照射されたレーザ光L1により蛍光L2を照射する。これにより、より高輝度の光を照射することができる。
 なお、本実施形態における無人航空機1Aの発光部7Aは、単結晶から成る単結晶蛍光体により構成されていたが、本発明の無人航空機(移動体)の発光部はこれに限られない。例えば、上記発光部は、複数の蛍光体の結晶子を含む多結晶蛍光体であってもよく、また、ガラス材や樹脂材料などの封止剤の内部に蛍光体粒子を封止することによって形成されてもよい。蛍光体に用いられる無機化合物としては、例えば、ガーネット構造を有するYAG(Yttrium Aluminium Garnet,YAl12)やTAG(Terbium Aluminium Garnet,TbAl12:Ce)、又はシリケート系のBOS(Barium ortho silicate,(Ba,Sr)SiO:Eu)が挙げられる。ここで、蛍光体は1種類の無機化合物の粒子であってもよいし、複数種類の無機化合物の粒子が混合したものであってもよい。例えば、βサイアロン、αサイアロン、若しくはCASN(CaAlSiN:Eu)の無機化合物を組み合わせたものを蛍光体として用いてもよく、又は緑色の蛍光を発するLuAG(Lutetium Aluminium Garnet,LuAl12:Ce)とCASNとを組み合わせたものを蛍光体として用いてもよい。複数種類の無機化合物の粒子を混合することにより、蛍光体素子が発する光の高演色化を図ることができる。
 なお、蛍光体は粒子以外の形状の無機化合物であってもよいし、有機化合物や、その他の蛍光物質であってもよい。
 本発明の一態様では、発光部7Aに照射されたレーザ光L1の一部が発光部7Aによって蛍光L2に変換されないようにすることができる。これにより、レーザ光L1と蛍光L2とを含む光が照射されるので、より広い色域の光を照射することができる。例えば、レーザ光L1の波長を365nm~460nmとし、発光部7Aの蛍光体としてYAGを使用することにより、レーザ光L1と蛍光L2とが混色され、白色光を照射することも可能である。
 また、発光部7Aは、単独で用いられる構成であったが、本発明の無人航空機(移動体)はこれに限られない。例えば、発光部7Aは、基板に載置された状態で用いられてもよい。これについて、図4を参照しながら説明する。図4は、発光部7Aが基板に載置された状態で用いられる様子を示すものであり、(a)は発光部7Aが透光性を有する基板に載置されている状態を示す図であり、(b)は発光部7Aが光反射性を有する基板に載置されている状態を示す図である。
 図4の(a)に示すように、発光部7Aは、透光性を有する基板に載置された状態で用いられてもよい。この場合には、レーザ光L1が照射されるレーザ光照射面とは反対型の対向面から蛍光L2が主に出射される「透過型」の発光部となる。透光性を有する基板の材料として、ガラスやサファイアなどを用いることができる。サファイアのように熱伝導率が高いものは、レーザ光L1の照射により蛍光体に発生する熱を効率的に放熱することができるため好ましい。なお、蛍光L2は、透光性を有する基板に対して様々な角度で発光部7Aから出射される。
 また、図4の(b)に示すように、発光部7Aは、光反射性を有する基板に載置された状態で用いられてもよい。この場合には、レーザ光L1が照射されるレーザ光照射面から蛍光L2が主に出射される。このような発光部を本明細書では、「反射型」の発光部と称する。光反射性を有する基板の材料として、金属、セラミックなどを用いることができる。金属やセラミックを用いることによって、蛍光体に発生する熱を効率的に放熱することができる。金属としては、光の反射率の高いアルミニウム(Al)や銀(Ag)などを用いることが好ましい。なお、蛍光L2は、光反射性を有する基板に対して様々な角度で発光部7Aから出射される。
 投光部8は、発光部7Aから照射された蛍光L2を目的の位置に照射するためのものである。投光部8の詳細について、図5を参照しながら説明する。図5は、投光部8の構成を示す概略図である。
 投光部8は、図5に示すように、リフレクタ8aと、レンズ8bと、第1ギア8cと、第2ギア8dと、モータ8eと、シャフト8fと、シャフト8gと、シャフト受け台8hとを備えている。
 リフレクタ8aは、両端部が開口している筒状の部材であり、筒状部材の内部には光を反射する反射鏡が備わっている。発光部7Aから照射された蛍光L2は、リフレクタ8aの一方の端部からリフレクタ8a内に入射し、蛍光L2の一部がリフレクタ8aの内部の反射鏡で反射されながら、リフレクタ8aの他方の端部から出射する。
 レンズ8bは、リフレクタ8aから出射した蛍光L2を所望の配向角で外部に照射するためのレンズである。
 第1ギア8cは、モータ8eと接続されており、第2ギア8dは、リフレクタ8aと接続されている。また、第1ギア8cと第2ギア8dとは、互いに接続されている。
 モータ8eは、第1ギア8cを回転させるための駆動部である。
 シャフト8fは、リフレクタ8aおよび第2ギア8dと接続されており、第2ギア8dの回転による動力をリフレクタ8aに伝達するための回転軸である。シャフト8gは、リフレクタ8aおよびシャフト受け台8hと接続されている。シャフト受け台8hは、シャフト8gにおけるリフレクタ8aと接続されている側とは反対側の端部を受けるための部材である。シャフト8gおよびシャフト受け台8hは、リフレクタ8aの駆動を安定させるものである。
 投光部8は、モータ8eにより、第1ギア8cを回転させることにより、第2ギア8dを回転させる。そして、第2ギア8dの回転の動力がシャフト8fを介してリフレクタ8aに伝達されることにより、リフレクタ8aの角度を変えて、発光部7Aから照射された蛍光L2を目的の位置に照射する。なお、本実施形態における無人航空機1Aでは、モータ8eにより駆動する投光部8を備える構成であったが、本発明の無人航空機(移動体)は、これに限られない。例えば、無人航空機は、他の可動方式を用いて投光部を駆動させる構成であってもよく、またリフレクタおよびレンズが固定されており駆動しない構成であってもよい。
 (レーザユニット10Aの設置位置)
 次に、無人航空機1Aにおけるレーザユニット10Aが設置される位置について、図2、図6および図7を参照しながら説明する。図6は、ファン4における吐出側の風量を示す説明図である。図7は、無人航空機1Aにおける回転状態のファン4周辺を上部から見た図である。
 まず、図6を参照しながら、ファン4における吐出側の風量について説明する。図6に示すように、ファン4のファン吐出側において、ファン4の回転軸4aの近傍においては、ファン4による送風の風量が小さく、回転軸から外側に向かうにつれてファン4による送風の風量が大きくなる。より詳細には、ファン4の回転軸4aを中心とする、ファン4の半径の20%の径を有する円と、ファン4の半径の100%の径を有する円との間の領域(図6においてAで示す領域(領域Aと称する))では、ファン4の回転軸4aを中心とするファン4の半径の20%以内の領域と比べて、ファン4による送風の風量が大きい。
 そこで、無人航空機1Aでは、図2および図7に示すように、レーザユニット10Aのレーザ素子11Aおよびヒートシンク14Aが、領域A内に設けられている。これにより、ファン4から発生する空気流(ファン4の送風)を利用し、ヒートシンク14Aを効率良く冷却することができる。その結果、レーザ素子11Aの放熱効率を高めることでき、レーザ素子11Aを冷却することができるようになっている。
 なお、無人航空機1Aでは、ヒートシンク14Aの全体が、領域A内に設けられている構成であったがこれに限られるものでは無い。例えば、ヒートシンク14Aの一部が、ファン4の回転軸4aを中心とするファン4の半径の20%の領域に設けられ、他の部分が領域A内に設けられる構成であってもよい。ただし、レーザ素子11Aの放熱効率を向上させるためには、領域A内に設けることが好ましい。
 (無人航空機1Aの特徴)
 無人航空機1Aは、ファン4により推進力を得る無人航空機であって、レーザ光L1を出射するレーザユニット10Aを備えており、レーザユニット10Aは、ファン4の送風により放熱効率が高められることを特徴としている。
 この特徴により、LED(Light Emitting diode)素子やHID(High Intensity Discharge)素子と比べて小型のレーザ素子11Aを用いて、レーザ光L1を照射することができる。その結果、無人航空機1Aを軽量化することができ、電池(バッテリ)の消費を抑えることができる。また、レーザ素子がレーザ光を照射する際に熱を発生し、その熱によって発光効率が低下してしまうという問題に対して、ファン4の送風によりレーザユニット10Aを冷却することにより、レーザユニット10Aの放熱効率を高めて、レーザユニット10Aの発光効率が低下することを防ぐことができる。
 したがって、レーザユニット10Aの温度上昇を抑制し、レーザユニット10Aから高輝度の光を照射することのできる無人航空機を提供することができるという効果を奏する。
 また、無人航空機1Aは、レーザユニット10Aから出射されたレーザ光L1が照射されることにより蛍光L2を発する発光部7Aを備えている。これにより、発光部7Aから高輝度の蛍光L2を照射することができる。
 また、無人航空機1Aでは、発光素子としてレーザ素子11Aを使用している。このため、小さな投光系を用いて挟角で高輝度の光を出射することができる。これにより、目標とする箇所にだけ蛍光L2を照射することができる。また、無人航空機1Aは、空中を浮遊、移動することができるため、照明器具を設置することが困難な場所や簡単に移動することができない場所から蛍光L2を照射することができる。さらに、蛍光L2を照射する照射対象が移動し、無人航空機1Aと照射対象との間に障害物が生じた際には、無人航空機1Aを移動させることにより照射対象に対して蛍光L2を照射することができる。
 無人航空機1Aでは、レーザユニット10Aは、アーム部3に設けられている。これにより、レーザユニット10Aは、発光部7A、制御部、センサ、カメラなどが収められている筐体2に設けられる構成ではないので、熱を発生させる部材を筐体2に集約することを防ぐことができ、レーザユニット10Aから発生する熱による、発光部7A、制御部、センサ、カメラなどの電子機器への影響を防ぐことができる。
 無人航空機1Aでは、レーザユニット10Aは、ヒートシンク14Aを備えており、ヒートシンク14Aを介して放熱する。これにより、レーザユニット10Aをより効率良く冷却することができる。
 無人航空機1Aでは、ファン4の回転軸4aがアーム部3に支持されており、領域A内に設けられている。領域Aは、ファン4からの送風量が大きいため、この領域にレーザユニット10Aを設けることにより、レーザユニット10Aを効率良く冷却することができる。
 無人航空機1Aでは、発光部7Aが筐体2に設けられており、アーム部3のそれぞれに設けられたレーザユニット10Aから照射されたレーザ光L1が、発光部7Aに照射される。これにより、複数のレーザユニット10Aから照射されたレーザ光L1を、筐体2に設けられた発光部7Aで発光させることにより、より高輝度の光を照射することができる。
 無人航空機1Aでは、レーザユニット10Aから出射されたレーザ光L1は、アーム部3の内部を介して発光部7Aに照射される。これにより、レーザユニット10Aから出射されたレーザ光L1が無人航空機1Aの外部に漏れることがないので、安全性を向上させることができる。
 なお、無人航空機1Aでは、レーザユニット10Aがヒートシンク14Aを備えている構成であるが、本発明の無人航空機(移動体)はこれに限られない。例えば、無人航空機は、アーム部3における、レーザ素子11Aが設けられている領域の上部に開口部が設けられており、ファン4からの送風によりレーザ素子11Aを直接冷却する構成であってもよい。ただし、レーザユニット10Aがヒートシンク14Aを備えることにより、レーザ素子11Aの放熱を効果的に行うことができる。
 <変形例>
 本発明の実施形態1における無人航空機1Aの変形例としての無人航空機1A´について、図8を参照しながら説明する。図8は、無人航空機1A´の構成を示す断面図である。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。無人航空機1A´では、レーザユニット10A´のレーザ素子11A´が設けられる位置が無人航空機1Aにおけるレーザ素子11Aが設けられる位置と異なっている。
 無人航空機1A´は、図8に示すように、レーザユニット10A´を備えている。レーザユニット10A´は、レーザ素子11A´と、ヒートシンク14A´とを備えている。
 レーザ素子11A´は、アーム部3の内部におけるファン4の直下(ファン4の回転軸4aを中心とするファン4の半径の20%以内の領域)に設けられている。
 ヒートシンク14A´は、基部14A´aと、フィン14A´bとを備えている。
 基部14A´aは、平板状の部材であり、一方の面にレーザ素子11A´が接続されており、他方の面に複数のフィン14A´bが形成されている。
 フィン14A´bは、基部14A´aからファン4の向きに突出してした放熱板である。
 無人航空機1A´では、基部14A´aは、アーム部3の内部に設けられている。また、アーム部3において、基部14A´aが設けられている領域における上部には開口部(不図示)が設けられており、該開口部を介してフィン14A´bがアーム部3の外部へと突出している。フィン14A´bは、領域A内に設けられている。その結果、ファン4から発生する空気流(ファン4の送風)を利用することにより、フィン14A´bを介してヒートシンク14A´を効率良く冷却することができる。その結果、レーザ素子11A´から発生した熱を効果的に放熱することができる。
 〔実施形態2〕
 本発明の他の実施形態について、図9および図10に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態における無人航空機1Bは、レーザユニット10Bのヒートシンク14Bが設けられる位置が実施形態1における無人航空機1Aとは異なっている。
 無人航空機1Bの構成について、図9および図10を参照しながら説明する。図9は、無人航空機1Bの構成を示す断面図である。図10は、無人航空機1Bにおける回転状態のファン4周辺を上部から見た図である。
 図9および図10に示すように、無人航空機1Bのレーザユニット10Bは、ヒートシンク14Bを備えている。ヒートシンク14Bは、基部14Baと、フィン14Bbとを備えている。
 無人航空機1Bでは、ヒートシンク14Bの基部14Baおよびフィン14Bbの一部が、領域A内に設けられており、他の部分がファン4の回転軸4aを中心とする、ファン4の半径の100%の径を有する円と、ファン4の半径の120%の径を有する円との間に設けられている。
 ここで、図6に示すように、ファン4の回転軸4aを中心とする、ファン4の半径の100%の径を有する円と、ファン4の半径の120%の径を有する円との間の領域(図6においてBで示す領域(領域Bと称する))では、ファンによる送風の風量が大きい。
 したがって、ヒートシンク14Bの基部14Baおよびフィン14Bbの一部を、領域B内に設けることによって、ファン4の送風によりヒートシンク14Bを効率良く冷却することができる。その結果、レーザユニット10Bのレーザ素子Aから発生した熱を効果的に放熱することができる。
 <変形例>
 本発明の実施形態2における無人航空機1Bの変形例としての無人航空機1B´について、図11を参照しながら説明する。図11は、無人航空機1B´の構成を示す断面図である。なお、説明の便宜上、実施形態1および2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。無人航空機1B´は、レーザユニット10B´のレーザ素子11Bが、設けられている位置が無人航空機1Bにおけるレーザユニット10Bのレーザ素子11Aが設けられている位置とは異なっている。
 無人航空機1B´は、図11に示すように、レーザユニット10B´を備えている。レーザユニット10B´は、レーザ素子11Bを備えている。
 レーザ素子11Bは、領域B内に設けられている。レーザ素子11Bは、ヒートシンク14Bの基部14Baに接続されている。
 このように、レーザ素子11Bが、領域B内に設けられている場合においても、レーザ素子11Bがヒートシンク14Bと接続されているので、ヒートシンク14Bを介してレーザ素子11Bから発生した熱を効果的に放熱することができる。
 〔実施形態3〕
 本発明の他の実施形態について、図12に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態における無人航空機1Cは、レーザユニット10Cから出射されたレーザ光L1が光ファイバ30を介して発光部7Aに照射される点が、実施形態1における無人航空機1Aとは異なっている。
 無人航空機1Cの構成について、図12を参照しながら説明する。図12は、無人航空機1Cの構成を示す断面図である。
 図12に示すように、無人航空機1Cは、レーザユニット10Cと、光ファイバ30と、集光レンズ31と、コリメートレンズ32とを備えている。
 レーザユニット10Cは、レーザ素子11Aと、固定治具12と、ヒートシンク14Aとを備えており、レーザ光L1を出射する。
 集光レンズ31は、レーザユニット10Cから出射されたレーザ光L1を光ファイバ30へ入射させるためのレンズである。集光レンズ31は、レーザユニット10Cのレーザ素子11Aの出射面に隣接して設けられている。
 光ファイバ30は、アーム部3の内部に設けられており、レーザユニット10Cから出射され集光レンズ31により入射されたレーザ光L1をミラー6へと導くための導光部材である。光ファイバ30は、中芯のコアを、当該コアよりも屈折率の低いクラッドで覆った2層構造をしている。コアは、レーザ光L1の吸収損失がほとんどない石英ガラス(酸化ケイ素)を主成分とするものである。クラッドは、コアよりも屈折率の低い石英ガラスまたは合成樹脂材料を主成分とするものである。例えば、光ファイバ30は、コアの径が200μm、クラッドの径が800μm、開口数NAが0.1の石英製の光ファイバである。光ファイバ30の構造、太さおよび材質は上述したものに限定されず、光ファイバ30の長軸方向に対して垂直な断面が矩形であっても、コアの当該断面が円形であってもよい。
 コリメートレンズ32は、光ファイバ30から出射したレーザ光L1を平行光にするためのレンズである。
 以上のように、無人航空機1Cでは、レーザユニット10Cから出射されたレーザ光L1は、光ファイバ30を介して発光部7Aに照射される。これにより、レーザ光L1が無人航空機1Cの外部に漏れることがなく、振動に強いため、安全性を向上させることができる。
 また、無人航空機1Cでは、光ファイバ30は、アーム部3の内部に設けられている。これにより、外部からの衝撃などによりアーム部3が破損した場合でも、レーザ光L1が外部に漏れることが無いため、より安全性を向上させることができる。
 <変形例>
 本発明の実施形態3における無人航空機1Cの変形例としての無人航空機1C´について、図13を参照しながら説明する。図13は、無人航空機1C´の構成を示す断面図である。なお、説明の便宜上、実施形態1~3にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。無人航空機1C´は、レーザユニット10C´が設けられる位置が、無人航空機1Cにおけるレーザユニット10Cが設けられている位置とは異なっている。
 無人航空機1C´は、図13に示すように、レーザユニット10C´を備えている。
 レーザユニット10C´は、レーザ素子11Cと、固定治具12と、ヒートシンク14Cとを備えている。
 無人航空機1C´では、レーザ素子11Cおよび光ファイバ30がアーム部3の上部に設けられている。
 レーザユニット10C´から出射されたレーザ光L1は、集光レンズ31によって光ファイバ30に入射される。光ファイバ30に入射したレーザ光L1は、光ファイバ30内を導光し、筐体2に照射される。その結果、レーザ光L1が無人航空機1C´の外部に漏れることがないので、安全性を向上させることができるようになっている。また、振動に対して耐久性が高い。
 なお、無人航空機1C´では、光ファイバ30の全体がアーム部3の上部に設けられる構成であったが、本発明の無人航空機(移動体)はこれに限られない。例えば、アーム部3に開口部が設けられており、該開口部から光ファイバがアーム部3の内部に導入される構成であってもよい。
 〔実施形態4〕
 本発明の他の実施形態について、図14~16に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態における無人航空機1Dは、発光部が設けられる位置が実施形態1における無人航空機1Aとは異なっている。
 無人航空機1Dの構成について、図14~図16を参照しながら説明する。図14は、無人航空機1Dの全体の構成を示す概略図である。図15は、無人航空機1Dの構成を示す断面図である。図16は、無人航空機1Dにおけるファン4周辺を上部から見た図である。なお、図14~16においては、4つのアーム部を区別するために、アーム部3a~3dと称する。また、各アーム部3a~3dにそれぞれ対応するレーザユニットおよび光ファイバを、レーザユニット10Ca~10Cd、および光ファイバ30a~30dと称する。
 無人航空機1Dは、図14および図15に示すように、アーム部3a~3dと、レーザユニット10Ca~10Cdと、光ファイバ30a~30dと、2つの発光部7Bと、2つの投光部8とを備えている。
 2つの発光部7Bは、アーム部3aおよびアーム部3cの内部における上部に設けられている。
 レーザユニット10Ca~10Cdは、それぞれ、アーム部3a~3dに設けられている。レーザユニット10Ca~10Cdから出射されたレーザ光は、それぞれ、光ファイバ30a~30dにより導光される。
 投光部8は、発光部7Bから照射された蛍光を目的の位置に照射するためのものである。投光部8は、発光部7Bの下方において、アーム部3aまたはアーム部3cの外周部に設けられている。なお、図示していないがアーム部3aにおける投光部8が設けられている領域には開口部が設けられており、該開口部を介して発光部7Bから照射された光が投光部8に入射できるようになっている。
 アーム部3aに設けられた発光部7Bには、レーザユニット10Caから出射され光ファイバ30aにより導光されたレーザ光と、レーザユニット10Cbから出射され光ファイバ30bにより導光されたレーザ光とが照射され、これらのレーザ光を受けて、レーザ光の波長を変換し、蛍光を発する。同様に、アーム部3cに設けられた発光部7Bには、レーザユニット10Ccから出射され光ファイバ30cにより導光されたレーザ光と、レーザユニット10Cdから出射され光ファイバ30dにより導光されたレーザ光とが照射され、これらのレーザ光を受けて、レーザ光の波長を変換し、蛍光を発する。アーム部3aに設けられた発光部7Bから出射された蛍光、およびアーム部3cに設けられた発光部7Bから出射された蛍光は、それぞれの発光部7Bの下方に設けられた投光部8によって、目的の位置に照射される。
 ところで、発光部7Bは、蛍光を出射する際に熱が発生する。そのため、発光部7Bの温度が上昇してしまい、波長変換効率が低下してしまうという問題がある。そこで、無人航空機1Dでは、図15および図16に示すように、発光部7Bがヒートシンク40を備えている。ヒートシンク40は、発光部7Bが蛍光を発することによって発生した熱を放熱するためのものである。このため、ヒートシンク40の材料として、熱伝導率の高いアルミニウムなどの金属材料を用いることが好ましい。ヒートシンク40は、基部40aと、フィン40bとを備えている。
 基部40aは、平板状の部材であり、下面に投光部8が接続されており、上面に複数のフィン40bが形成されている。
 フィン40bは、基部40aの上面からファン4の向きに突出してした放熱板であり、ヒートシンク40の大気との接触面積を増加させることにより、ヒートシンク40の放熱効率を高めている。
 ヒートシンク40は、アーム部3の外周部の上部に設けられている。より詳細には、発光部7Bと接続された基部40aがアーム部3の外周部に設置されており、フィン40bが基部40aから上方に突出している。なお、図示していないが、アーム部3において発光部7Bと基部40aとが接続している部分には、開口部が形成されており、これにより、発光部7Bと基部40aとが接触できるようになっている。なお、ヒートシンク14A
 ヒートシンク40は、図16に示すように、上述した領域A内に設けられている。これにより、ファン4から発生する空気流(ファン4の送風)を利用し、ヒートシンク40を効率良く冷却することができる。その結果、発光部7Bから発生した熱を効率良く放熱し、発光部7Bの放熱を効果的に行うことができるようになっている。
 以上のように、本実施形態における無人航空機1Dでは、発光部7Bがアーム部3aおよびアーム部3cに設けられている。この構成によれば、発光部7Bが制御部、センサ、カメラなどが収められている筐体2に設けられる構成ではないので、熱を発生させる部材を筐体2に集約することを防ぐことができ、発光部7Bから発生する熱による、制御部、センサ、カメラなどの電子機器への影響を防ぐことができる。
 また、無人航空機1Dでは、発光部7Bがヒートシンク40を備えており、ヒートシンク40は、領域A内に設けられている。これにより、ファン4の送風によりヒートシンク40を効率良く冷却することができる。その結果、発光部7Bから発生した熱を効率良く放熱し、発光部7Bの放熱を効果的に行うことができる。したがって、発光部7Bの波長変換効率が低下することを防ぐことができるようになっている。
 なお、無人航空機1Eでは、発光部7Bが2つ設けられる構成であったが、本発明の無人航空機(移動体)はこれに限られない。例えば、発光部7Bがアーム部3aにのみ設けられており、レーザユニット10Ca~10Cdから出射されたレーザ光が、それぞれ、光ファイバ30a~30dにより導光され、アーム部3aに設けられた発光部7Bに照射される構成であってもよい。
 〔実施形態5〕
 本発明の他の実施形態について、図17に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態における無人航空機1Eは、レーザユニット10Dが脱着可能となっている点が実施形態1における無人航空機1Aとは異なっている。
 無人航空機1Eの構成について、図17を参照しながら説明する。図17は、無人航空機1Eの構成を示す断面図である。
 無人航空機1Eは、図17に示すように、レーザユニット10Dを備えている。
 レーザユニット10Dは、アーム部3の筐体2とは反対側の端部に脱着できるようになっている。レーザユニット10Dをアーム部3に脱着する方法は、特に限定されるものでは無く、例えば、ネジによってレーザユニット10Dをアーム部3に固定する方法、アーム部3にレーザユニット10Dを嵌め込むための嵌込部材を設ける方法などであってよい。
 レーザユニット10Dは、レーザ素子11Dと、固定治具12と、ヒートシンク14Dとを備えている。レーザ素子11Dは、上下方向においてアーム部3の下方に設けられており、レーザ素子11Dから出射されたレーザ光L1は、アーム部3の下方に設けられた光ファイバ30を介して発光部7Aへと導光される。
 ヒートシンク14Dは、基部14Daと、フィン14Dbとを備えている。無人航空機1Dでは、基部14Daおよびフィン14Dbの一部は、領域A内に設けられており、他の部分が領域B内に設けられている。これにより、ファン4の送風によりヒートシンク14Dを効率良く冷却することができる。その結果、レーザユニット10Dのレーザ素子11Dから発生した熱を効果的に放熱することができるようになっている。
 このように、無人航空機1Eでは、レーザユニット10Dを脱着することができるようになっている。これにより、レーザユニット10Dが故障した場合において、レーザユニット10Dを簡単に取り換えることができるようになっている。
 〔実施形態6〕
 本発明の他の実施形態について、図18および図19に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態における無人航空機1Fは、レーザ光L1を用いた投影機能を有している。
 無人航空機1Fの構成について、図18および図19を参照しながら説明する。図18は、無人航空機1Fの構成を示す断面図である。図19は、レーザユニット10Eから出射されるレーザ光の合波方法を示す説明図である。
 無人航空機1Fは、図18に示すように、レーザユニット10Eと、ミラー51と、MEMS(Micro Electro Mechanical System)ミラー(投影部)52と、レンズ53とを備えている。
 レーザユニット10Eは、レーザ素子11Ea~11Ecと、光学部品としてのコリメートレンズ13a~13cと、ダイクロイックミラー50a~50cとを備えている。
 レーザ素子11Ea~11Ecは、それぞれ、互いに波長が異なる、赤色光線RL、緑色光線GL、青色光線BLのレーザ光を出射するレーザ発光素子(光源)である。
 コリメートレンズ13a~13cは、それぞれ、レーザ素子11Ea~11Ecから出射されたレーザ光L1を平行光にするためのレンズである。
 ダイクロイックミラー50a~50cは、それぞれ特定の波長のみ反射または透過するミラーである。具体的には、図19に示すように、ダイクロイックミラー50aは赤色光線RLを反射する。ダイクロイックミラー50bは緑色光線GLを反射し、赤色光線RLを透過する。ダイクロイックミラー50cは青色光線BLを透過し、緑色光線GLおよび赤色光線RLを反射する。これにより、レーザ素子11Ea~11Ecから出射されたレーザ光が1束のレーザ光L1に合成され、筐体2へ向けて出射される。
 レーザユニット10Eでは、レーザ素子11Ea~11Ec、コリメートレンズ13a~13c、およびダイクロイックミラー50a~50cは、それぞれ設置位置が調整されて支持台(不図示)に固定されている。しかしながら、本発明のレーザユニットはこれに限られない。例えば、レーザ素子11Eaと、コリメートレンズ13aと、ダイクロイックミラー50aとが一体に構成されてもよい。また、レーザユニットが備えるレーザ素子の数は3つよりも多くてもよく、レーザ素子の数を増やすことにより無人航空機1Fから出射される投影光L3の輝度を高くすることができる。
 ミラー51は、レーザ光L1をMEMSミラー52へ反射させるためのミラーである。無人航空機1Fでは、レーザ光L1をMEMSミラー52へ反射させるために1つのミラーを用いているが、本発明の無人航空機(移動体)は、これに限られない。例えば、レーザ光L1をMEMSミラー52へ反射させるために複数のミラーを用いてもよい。これにより、レーザ光L1のMEMSミラー52への入射角を緩やかにすることができる。
 MEMSミラー52は、入射したレーザ光L1を反射し、投影光L3を出射するためミラーである。MEMSミラー52は、MEMSドライバ(不図示)によって動作が制御されており、傾きを変化させることができるようになっている。MEMSドライバは、レーザドライバ(不図示)からの信号と同期して、MEMSミラー52を制御する。レーザドライバは、無線信号(例えば、WiFi(Wireless  Fidelity、登録商法))を受信するアンテナを内蔵している。レーザドライバが無線信号により送信された画像や動画の情報に基づいてレーザをON・OFFさせ、MEMSドライバがレーザドライバからの信号と同期してMEMSミラー52の動作を制御することにより、MEMSミラー52から投影光L3が照射される。
 レンズ53は、MEMSミラー52によって出射された投影光L3を外部に向けて出射するためのレンズである。レンズ53は、MEMSミラー52から出射された投影光L3によって投影された画像や動画における歪みなどを補正する機能を有していることが好ましい。これにより、歪みなどが少ない画像や動画の投影光L3を投影することが可能になる。
 無人航空機1Fでは、ダイクロイックミラー50a~50cに入射したレーザ光L1が、ダイクロイックミラー50a~50cによってそれぞれ反射または透過されることで、レーザ光L1を1束に合成され、筐体2へ向けて出射される。筐体2に入射したレーザ光L1は、ミラー51によってMEMSミラー52に反射される。そして、MEMSドライバが無線信号を受信できるレーザドライバからの信号と同期して、MEMSミラー52の駆動を制御することにより、無線信号により送信された画像や動画の投影光L3がMEMSミラー52から照射される。MEMSミラー52によって出射された投影光L3は、レンズ53により外部に向けて出射され、スクリーンに照射されることにより、スクリーンに画像や動画などの映像を投影することができるようになっている。
 また、無人航空機1Fは、レーザ素子11Ea~11Ecを備えている。その結果、フォーカスフリーが実現できるため、投影させる映像が浮遊する高さに影響されないという特徴を有している。
 以上のように、無人航空機1Fは、レーザ素子11Ea~11Ecからそれぞれ出射された赤色光線RL、緑色光線GL、青色光線BLが合波されて照射されることにより映像を映し出すMEMSミラー52を備えている。
 この構成によれば、LED素子やHID素子と比べて小型である、レーザ光を出射するレーザ素子11Ea~11Ecを用いている。その結果、明るい映像を投影することができるとともに、無人航空機1Fを軽量化することができるので、電池(バッテリ)の消費を抑えることができる。また、レーザ素子11Ea~11Ecがレーザ光を照射する際に熱を発生し、その熱によって発光効率が低下してしまうという問題に対して、ファン4の送風によりレーザ素子11Ea~11Ecを冷却することにより、レーザ素子11Ea~11Ecの発光効率が低下することを防ぐことができる。
 また、無人航空機1Fでは、空中に浮遊しながら映像を投影することができるため、従来では設置することが困難な場所から映像を投影することができる。また、レーザユニット10Eから出射されたレーザ光L1を用いて画像や動画をスクリーンに投影するため、明るい映像をスクリーンに投影することができるようになっている。
 〔実施形態7〕
 本発明の他の実施形態について、図20に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態における無人航空機1Gは、MEMSミラーを備えている点が実施形態1における無人航空機1Aとは異なっている。
 無人航空機1Gの構成について、図20を参照しながら説明する。図20は、無人航空機1Gの構成を示す断面図である。
 図20に示すように、無人航空機1Gは、ミラー6Aと、MEMSミラー60とを備えている。
 ミラー6Aは、筐体2の内部に設けられており、レーザユニット10Aから出射され筐体2の内部に到達したレーザ光L1をMEMSミラー60へ向けて反射させるためのミラーである。
 MEMSミラー60は、ミラー6Aから入射されたレーザ光L1を発光部7Aへ反射させるためのミラーであり、MEMSドライバ(不図示)によってレーザ光L1に対するMEMSミラー60の傾きが制御される。すなわち、外部からの信号の情報に基づいてレーザドライバ(不図示)がレーザをON・OFFさせ、MEMSドライバ(不図示)がレーザドライバからの信号と同期してレーザ光L1に対するMEMSミラー60の傾きを制御することにより、MEMSミラー60によって反射されるレーザ光L1の反射角度が制御される。
 無人航空機1Gでは、レーザユニット10Aから出射されたレーザ光L1を、ミラー6Aを介してMEMSミラー60に入射させる。MEMSミラー60に入射したレーザ光L1は、MEMSミラー60によって反射され発光部7Aに入射し、発光部7Aにて蛍光L2に変換される。発光部7Aにて変換された蛍光L2は、投光部8によって外部に照射される。
 そして、上述したように、MEMSミラー62は、MEMSドライバによって、レーザドライバからの信号と同期して傾きが制御されている。例えば、無人航空機1Gに取り付けたカメラ(不図示)が識別した対象物や、無人航空機1Gに取り付けた赤外線レーダー(不図示)が識別した対象物を信号としてレーザドライバに送信し、レーザドライバが該信号に基づいてレーザをON・OFFさせ、MEMSドライバがレーザドライバからの信号と同期してレーザ光L1に対するMEMSミラー60の傾きを制御する。これにより、無人航空機1Gは、蛍光L2を照射したい領域にのみ照射することができる照明装置となっている。すなわち、無人航空機1Gは、特定の対象物だけを照らす、または特定の対象物を照らさないことが可能な配向可変な照明装置となっている。
 〔実施形態8〕
 本発明の他の実施形態について、図21に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態における無人航空機1Hの構成について、図21を参照しながら説明する。図21は、無人航空機1Hのファン4周辺の構成を示す断面図である。
 無人航空機1Hは、図21に示すように、実施形態1における無人航空機1Aが備えていたコイル5、レーザユニット10A、ミラー6、および発光部7Aに代えて、駆動部70、レーザユニット10F、発光部7C、リフレクタ80、およびレンズ81を備えている。
 駆動部70は、両軸モータ71と、第1シャフト72と、第2シャフト73とを備えている。
 両軸モータ71は、両軸モータ71の上部に接続された第1シャフト72と、両軸モータ71の下部に接続された第2シャフト73とを、上下方向を回転軸として回転させるためのモータである。
 第1シャフト72は、上部がファン4の回転軸4aに貫通して接続されており、両軸モータ71により回転されることによりファン4を回転させるためのシャフトである。
 第2シャフト73は、下部が後述する発光部7Cの回転軸に貫通して接続されており、両軸モータ71により回転されることにより発光部7Cを回転させるためのシャフトである。
 レーザユニット10Fは、レーザ素子11Fと、固定治具12Bと、ヒートシンク14Eを備えている。
 レーザ素子11Fは、固定治具12Bにより後述するヒートシンク14Eの基部14Eaに固定されている。レーザ素子11Fは、アーム部3の内部に配置されており、後述する発光部7Cに向けて下方にレーザ光L1を照射する。
 ヒートシンク14Eは、レーザ素子11Fがレーザ光L1を照射することによって発生した熱を放熱するためのものである。ヒートシンク14Eは、基部14Eaとフィン14Ebとを備えている。基部14Eaは、アーム部3の内部に設置されている。フィン14Ebは、基部14Eaの上面からファン4に向かって突出している。アーム部3には、フィン14Ebが貫通される孔(不図示)が形成されている。
 発光部7Cは、レーザユニット10F(レーザ素子11F)から照射されたレーザ光L1の波長を変換し、蛍光L2を発するものである。発光部7Cは、アーム部3の内部においてレーザ素子11Fの下方に設けられている。発光部7Cは、円盤形状をしており、円盤の中心に第2シャフト73が貫通されている。発光部7Cは、第2シャフト73を介して伝達された両軸モータ71からの駆動力により、円盤の中心を回転軸として回転する。
 発光部7Cは、ガラスやサファイアなどの透光性を有する基板に、蛍光体を塗布されて形成されている。上記蛍光体は、実施形態1において説明した蛍光体を用いることができる。発光部7Cは、レーザ光L1が照射されるレーザ光照射面(上面)とは反対側の対向面(下面)から蛍光L2が主に出射される「透過型」の発光部である。
 リフレクタ80は、発光部7Cに照射されたレーザ光L1のうち発光部7Cによって反射されたレーザ光L1を、再度発光部7Cに向けて反射させるためのものである。リフレクタ80を設けることにより、レーザ素子11Fから照射されたレーザ光L1の利用効率を向上させることができる。その結果、無人航空機1Hは、より高輝度の光を出射することができるようになっている。
 レンズ81は、発光部7Cから出射された蛍光L2を集光し、無人航空機1Hの外部に照射させるためのレンズである。レンズ81は、アーム部3の下部に設けられた孔(不図示)に嵌められて配置されている。
 無人航空機1Hでは、レーザユニット10Fが、上下方向において、ファン4と発光部7Cとの間に配置されている。これにより、ファン4からの送風によりレーザユニット10Fの上部においてヒートシンク14E(フィン14Eb)を介してレーザユニット10Fを冷却するとともに、レーザユニット10Fの下面から発光部7Cにレーザ光L1を照射できる構成になっている。
 本実施形態のおける無人航空機1Hでは、両軸モータ71がファン4を回転させるとともに、発光部7Cを回転させる。これにより、次に2つの効果を奏することができる。
 1つ目の効果は、ファン4からの送風によりレーザユニット10Fの放熱効率を高めてレーザユニット10Fの発光効率が低下することを防ぐことである。
 2つの目の効果は、発光部7Cの発光効率が低下することを抑制することである。ここで、発光部7Cが回転しない場合には、レーザユニット10F(レーザ素子11F)から照射されたレーザ光L1は、連続して発光部7Cの1点に集中して照射され続ける。そのため、上記発光部7Cの1点の温度が上昇し、発光部7Cにおけるレーザ光L1から蛍光L2への変換効率が低下してしまう。その結果、無人航空機が照射する光の輝度が低下してしまうという問題があった。
 これに対して、無人航空機1Hでは、両軸モータ71により発光部7Cが回転されるため、レーザユニット10F(レーザ素子11F)から照射されたレーザ光L1は、発光部7Cの円周方向に沿って照射される。すなわち、レーザユニット10Fから照射されたレーザ光L1が発光部7Cの1点に集中して照射され続けることを防ぐことができる。その結果、発光部7Cの温度が上昇することを抑制することができるので、発光部7Cにおけるレーザ光L1から蛍光L2への変換効率が低下することを抑制することができる。その結果、無人航空機1Hは、高輝度の光を照射することができる。
 以上のように、無人航空機1Hでは、両軸モータ71がファン4を回転させるとともに、発光部7Cを回転させることにより、1つの両軸モータ71によって、レーザユニット10F(レーザ素子11F)の発光効率が低下することを防ぐとともに、発光部7Cの変換効率が低下することを抑制することができる。
 〔実施形態9〕
 本発明の他の実施形態について、図22に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態における無人航空機1Iの構成について、図22を参照しながら説明する。図22は、無人航空機1Iのファン4周辺の構成を示す断面図である。
 無人航空機1Iは、図22に示すように、実施形態8における無人航空機1Hにおける発光部7Cおよびリフレクタ80に代えて、発光部7Dおよびリフレクタ91を備えている。また、無人航空機1Iは、ミラー90を備えている。
 発光部7Dは、金属、鏡、多層膜などの光反射性を有する基板に、蛍光体を塗布されて形成されている。発光部7Dでは、蛍光体を塗布されている面が下面となるように構成されている。発光部7Dは、レーザ光L1が照射されるレーザ光照射面(下面)から蛍光L2を出射する「反射型」の発光部である。
 ミラー90は、アーム部3の内部においてレーザユニット10Fの下方に設けられ、レーザユニット10Fから出射されたレーザ光L1を発光部7Dの下面に向けて反射するためのミラーである。
 リフレクタ91は、発光部7Dによって出射された蛍光L2をレンズ81へ向けて集光する。ここで、蛍光L2は、発光部7Dから発散されて照射される。そのため、リフレクタ91が無い場合、蛍光L2の一部はレンズ81の外側に漏れてしまう。これに対して、無人航空機1Hは、リフレクタ91を備えることにより、発光部7Dによって照射された蛍光L2をレンズ81へ向けて集光できるので、レンズ81の外側に蛍光L2が漏れることを低減することができる。
 以上のように、本実施形態のおける無人航空機1Iでは、レーザユニット10Fから出射されたレーザ光L1は、ミラー90により反射され発光部7Dの下面に照射される。そして、発光部7Dによってレーザ光L1が蛍光L2に変換されて反射され、蛍光L2がレンズを介して外部に照射される。
 無人航空機1Iにおいても、実施形態8における無人航空機1Hと同様に、両軸モータ71により発光部7Dが回転されるため、レーザユニット10Fから照射されたレーザ光L1が発光部7Dの1点に集中して照射され続けることを防ぐことができる。その結果、発光部7Dの温度が上昇することを抑制することができるので、発光部7Dにおけるレーザ光L1から蛍光L2への変換効率が低下することを抑制することができる。その結果、無人航空機1Hは、高輝度の光を照射することができる。
 なお、上記の説明では、本発明の移動体として無人航空機について説明したが、本発明の移動体は、無人航空機に限られない。例えば、ファンにより推進力を得る陸上または水上を移動する移動体であってもよい。または、これらの移動体は、有人の移動体であってもよいし、無人の移動体であってもよい。
 〔まとめ〕
 本発明の態様1に係る移動体(無人航空機1A~1G・1A´~1C´)は、ファン4により推進力を得る移動体(無人航空機)であって、レーザ光(レーザ光L1・赤色光線RL、緑色光線GL、青色光線BL)を出射する少なくとも1つの光源(レーザユニット10A~10D・10A´~10C´・10Ca~10Cd、レーザ素子11Ea~11Ec)を備えており、前記光源(レーザユニット10A~10D・10A´~10C´・10Ca~10Cd、レーザ素子11Ea~11Ec)は、前記ファン4の送風により放熱効率が高められることを特徴としている。
 この特徴によれば、LED素子やHID素子と比べて小型である、レーザ光を出射する光源を用いて、高輝度の光を出射することができる。その結果、移動体を軽量化することができ、電池(バッテリ)の消費を抑えることができる。また、レーザ素子がレーザ光を照射する際に熱を発生し、その熱によって発光効率が低下してしまうという問題に対して、ファンの送風により光源を冷却することにより、光源の発光効率が低下することを防ぐことができる。
 したがって、光源を備えた移動体であって、上記光源の温度上昇を抑制し、当該光源から高輝度の光を出射することのできる移動体を提供することができるという効果を奏する。
 本発明の態様2に係る移動体(無人航空機1A~1E・1G・1A´~1C´)は、上記態様1において、前記光源(レーザユニット10A~10D・10A´~10C´・10Ca~10Cd)から出射されたレーザ光L1が照射されることにより蛍光L2を発する発光部7A・7Bを備えている構成であってもよい。
 上記の構成によれば、レーザ光を用いていることにより、発光部から高輝度の蛍光を照射することができる。
 本発明の態様3に係る移動体(無人航空機1F)は、上記態様1において、互いに波長が異なるレーザ光(赤色光線RL、緑色光線GL、青色光線BL)を出射する少なくとも3つの光源(レーザ素子11Ea~11Ec)と、前記光源(レーザ素子11Ea~11Ec)から出射されたレーザ光(赤色光線RL、緑色光線GL、青色光線BL)が合波されて照射されることにより映像を映し出す投影部(MEMSミラー52)とを備えている構成であってもよい。
 上記の構成によれば、レーザ光を用いていることにより、明るい映像を投影することができる。
 本発明の態様4に係る移動体(無人航空機1A~1G・1A´~1C´)は、上記態様1~3のいずれかにおいて、本体部(筐体2)と、前記本体部(筐体2)から延伸し、上記ファン4を支持するアーム部3・3a~3dとを備えており、前記光源(レーザユニット10A~10D・10A´~10C´・10Ca~10Cd、レーザ素子11Ea~11Ec)は、前記アーム部3・3a~3dに設けられている構成であることが好ましい。
 上記の構成によれば、光源は、発光部、制御部、センサ、カメラなどが収められている本体部に設けられる構成ではないので、熱を発生させる部材を本体部に集約することを防ぐことができ、光源から発生する熱による、発光部、制御部、センサ、カメラなどの電子機器への影響を防ぐことができる。
 本発明の態様5に係る移動体(無人航空機1A~1G・1A´~1C´)は、上記態様1~3のいずれかにおいて、前記光源(レーザユニット10A~10D・10A´~10C´・10Ca~10Cd、レーザ素子11Ea~11Ec)は、ヒートシンク14A~14D・14A´を備えており、該ヒートシンク14A~14D・14A´を介して放熱する構成であることが好ましい。
 上記の構成によれば、ヒートシンクを介して光源をより効率良く冷却することができる。
 本発明の態様6に係る移動体(無人航空機1A~1G・1A´~1C´)は、上記態様4において、前記ファン4の回転軸4aは、前記アーム部3・3a~3dに支持されており、前記光源(レーザユニット10A~10D・10A´~10C´・10Ca~10Cd、レーザ素子11Ea~11Ec)の少なくとも一部は、前記ファン4の回転軸4aを中心とする、前記ファン4の半径の20%の径を有する円と、前記ファン4の半径の100%の径を有する円との間に設けられている構成であってもよい。
 上記の構成によれば、ファンの回転軸を中心とする、ファンの半径の20%の径を有する円と、ファンの半径の100%の径を有する円との間の領域は、ファンからの送風量が大きいため、この領域に光源を設けることにより、光源を効率良く冷却することができる。
 本発明の態様7に係る移動体(無人航空機1B・1B´・1E)は、上記態様4において、前記ファン4の回転軸4aは、前記アーム部3に支持されており、前記光源(レーザユニット10B・10B´・10D)の少なくとも一部は、前記ファン4の回転軸4aを中心とする、前記ファン4の半径の100%の径を有する円と、前記ファン4の半径の120%の径を有する円との間に設けられている構成であってもよい。
 上記の構成によれば、ファンの回転軸を中心とする、ファンの半径の100%の径を有する円と、ファンの半径の120%の径を有する円との間の領域は、ファンからの送風量が大きいため、この領域に光源を設けることにより、光源を効率良く冷却することができる。
 本発明の態様8に係る移動体(無人航空機1D)は、上記態様2において、本体部(筐体2)と、前記本体部(筐体2)から延伸し、上記ファン4を支持するアーム部3a~3dとを備えており、前記光源(レーザユニット10Ca~10Cd)および前記発光部7Bは、前記アーム部3a~3dに設けられている構成であってもよい。
 上記の構成によれば、発光部が、制御部、センサ、カメラなどが収められている本体部に設けられる構成ではないので、熱を発生させる部材を本体部に集約することを防ぐことができ、発光部から発生する熱による、制御部、センサ、カメラなどの電子機器への影響を防ぐことができる。
 本発明の態様9に係る移動体(無人航空機1D)は、上記態様8において、前記発光部7Bは、前記ファン4の送風により放熱効率が高められる構成であることが好ましい。
 上記の構成によれば、発光部を冷却することにより、発光部の波長変換効率が低下することを防ぐことができる。
 本発明の態様10に係る移動体(無人航空機1A~1C・1E・1G・1A´~1C´)は、上記態様2において、本体部(筐体2)と、前記本体部(筐体2)から延伸し、上記ファン4を支持するアーム部3とを備えており、前記発光部7Aは、前記本体部(筐体2)に設けられている構成であってもよい。
 上記の構成によれば、本体部から蛍光を照射することができる。
 本発明の態様11に係る移動体(無人航空機1A~1C・1E・1G・1A´~1C´)は、上記態様10において、前記アーム部3を複数備えており、前記アーム部3のそれぞれに前記光源(レーザユニット10A~10D・10A´~10C´)が設けられており、複数の前記光源(レーザユニット10A~10D・10A´~10C´)から照射されたレーザ光L1は、前記発光部7Aに照射される構成であることが好ましい。
 上記の構成によれば、複数の光源から照射されたレーザ光を、本体部に設けられた発光部で発光させることにより、より高輝度の光を照射することができる。
 本発明の態様12に係る移動体(無人航空機1A~1D・1G・1A´・1B´)は、上記態様2において、本体部(筐体2)と、前記本体部(筐体2)から延伸し、上記ファン4を支持するアーム部3・3a~3dとを備えており、前記光源(レーザユニット10A~10D・10A´・10B´・10Ca~10Cd)から出射されたレーザ光は、前記アーム部3・3a~3dの内部を介して前記発光部7A・7Bに照射される構成であることが好ましい。
 上記の構成によれば、光源から出射されたレーザ光が移動体の外部に漏れることがないので、安全性を向上させることができる。
 本発明の態様13に係る移動体(無人航空機1C~1E・1C´)は、上記態様2において、前記光源(レーザユニット10C・10Ca~10Cd・10D・10C´)から出射されたレーザ光L1は、光ファイバ30・30a~30dを介して前記発光部7A・7Bに照射される構成であることが好ましい。
 上記の構成によれば、レーザ光が移動体の外部に漏れることがなく、安全性を向上させることができる。また、振動に対して耐久性が高い。
 本発明の態様14に係る移動体(無人航空機1H、1I)は、上記態様2において、本体部(筐体2)と、前記本体部(筐体2)から延伸し、上記ファン4を支持するアーム部3とを備えており、前記光源(レーザユニット10F)および前記発光部7C・7Dは、前記アーム部3に設けられており、前記ファン4および前記発光部7C・7Dを回転させる駆動部70を備える構成であってもよい。
 上記の構成によれば、駆動部により発光部が回転されるため、光源から照射されたレーザ光が発光部の1点に集中して照射され続けることを防ぐことができる。その結果、発光部の温度が上昇することを抑制することができるので、発光部におけるレーザ光L1から蛍光への変換効率が低下することを抑制することができる。その結果、高輝度の光を照射することができる。したがって、1つの駆動部により光源の発光効率が低下することを防ぐとともに、発光部の変換効率が低下することを抑制することができる。
 本発明の態様15に係る移動体(無人航空機1H)は、上記態様14において、前記光源(レーザユニット10F)は、前記ファン4と前記発光部7Cとの間に配置されている構成であってもよい。
 上記の構成によれば、光源の一方の側においてファンからの送風により光源を冷却するとともに、光源の他方の側から発光部にレーザ光を照射できる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1A~1G、1A´~1C´、1F、1H、1I      無人航空機
 2                           筐体(本体部)
 3、3a~3d                     アーム部
 4                           ファン
 4a                          回転軸
 7A、7B、7C、7D                 発光部
 10A~10F,10A´~10C´、10Ca~10Cd レーザユニット(光源)
 11Ea~11Ec                   レーザ素子(光源)
 14A~14E、14A´                ヒートシンク
 30、30a~30d                  光ファイバ
 52                          MEMSミラー(投影部)
 70                          駆動部
 L1                          レーザ光
 L2                          蛍光
 RL                          赤色光線(レーザ光)
 GL                          緑色光線(レーザ光)
 BL                          青色光線(レーザ光)

Claims (15)

  1.  ファンにより推進力を得る移動体であって、
     レーザ光を出射する少なくとも1つの光源を備えており、
     前記光源は、前記ファンの送風により放熱効率が高められることを特徴とする移動体。
  2.  前記光源から出射されたレーザ光が照射されることにより蛍光を発する発光部を備えていることを特徴とする請求項1に記載に移動体。
  3.  互いに波長が異なるレーザ光を出射する少なくとも3つの光源と、
     前記光源から出射されたレーザ光が合波されて照射されることにより映像を映し出す投影部とを備えていることを特徴とする請求項1に記載の移動体。
  4.  本体部と、
     前記本体部から延伸し、上記ファンを支持するアーム部とを備えており、
     前記光源は、前記アーム部に設けられていることを特徴とする請求項1~3のいずれか1項に記載の移動体。
  5.  前記光源は、ヒートシンクを備えており、該ヒートシンクを介して放熱することを特徴とする請求項1~4のいずれか1項に記載の移動体。
  6.  前記ファンの回転軸は、前記アーム部に支持されており、
     前記光源の少なくとも一部は、前記ファンの回転軸を中心とする、前記ファンの半径の20%の径を有する円と、前記ファンの半径の100%の径を有する円との間に設けられていることを特徴とする請求項4に記載の移動体。
  7.  前記ファンの回転軸は、前記アーム部に支持されており、
     前記光源の少なくとも一部は、前記ファンの回転軸を中心とする、前記ファンの半径の100%の径を有する円と、前記ファンの半径の120%の径を有する円との間に設けられていることを特徴とする請求項4に記載の移動体。
  8.  本体部と、
     前記本体部から延伸し、上記ファンを支持するアーム部とを備えており、
     前記光源および前記発光部は、前記アーム部に設けられていることを特徴とする請求項2に記載の移動体。
  9.  前記発光部は、前記ファンの送風により放熱効率が高められることを特徴とする請求項8に記載の移動体。
  10.  本体部と、
     前記本体部から延伸し、上記ファンを支持するアーム部とを備えており、
     前記発光部は、前記本体部に設けられていることを特徴とする請求項2に記載の移動体。
  11.  前記アーム部を複数備えており、
     前記アーム部のそれぞれに前記光源が設けられており、
     複数の前記光源から照射されたレーザ光は、前記発光部に照射されることを特徴とする請求項10に記載の移動体。
  12.  本体部と、
     前記本体部から延伸し、上記ファンを支持するアーム部とを備えており、
     前記光源から出射されたレーザ光は、前記アーム部の内部を介して前記発光部に照射されることを特徴とする請求項2に記載の移動体。
  13.  前記光源から出射されたレーザ光は、光ファイバを介して前記発光部に照射されることを特徴とする請求項2に記載の移動体。
  14.  本体部と、
     前記本体部から延伸し、上記ファンを支持するアーム部とを備えており、
     前記光源および前記発光部は、前記アーム部に設けられており、
     前記ファンおよび前記発光部を回転させる駆動部を備えることを特徴とする
    請求項2に記載の移動体。
  15.  前記光源は、前記ファンと前記発光部との間に配置されていることを特徴とする請求項14に記載の移動体。
PCT/JP2017/027386 2016-07-29 2017-07-28 移動体 WO2018021516A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780043790.3A CN109476376A (zh) 2016-07-29 2017-07-28 移动体
US16/315,917 US20190300171A1 (en) 2016-07-29 2017-07-28 Moving body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016150612 2016-07-29
JP2016-150612 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021516A1 true WO2018021516A1 (ja) 2018-02-01

Family

ID=61016087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027386 WO2018021516A1 (ja) 2016-07-29 2017-07-28 移動体

Country Status (3)

Country Link
US (1) US20190300171A1 (ja)
CN (1) CN109476376A (ja)
WO (1) WO2018021516A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225607A1 (ja) * 2018-05-23 2019-11-28 株式会社ナイルワークス 飛行体および飛行体のフレーム
JP2020037347A (ja) * 2018-09-05 2020-03-12 ウシオ電機株式会社 飛行体
JP2020152143A (ja) * 2019-03-18 2020-09-24 株式会社リコー 飛行体
JP2021054281A (ja) * 2019-09-30 2021-04-08 日本電気株式会社 マルチローターヘリコプタ及びマルチローターヘリコプタにおける冷却方法
JP2021097294A (ja) * 2019-12-16 2021-06-24 日亜化学工業株式会社 遠隔操作型移動体、及び、遠隔操作型移動体に搭載された投影装置の冷却方法
JP2021132379A (ja) * 2020-03-24 2021-09-09 株式会社ザクティ 電子機器を搭載した無人飛行体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906652B2 (en) * 2017-07-28 2021-02-02 Intel Corporation Thermal management systems for unmanned aerial vehicles
WO2019140658A1 (zh) * 2018-01-19 2019-07-25 深圳市大疆创新科技有限公司 散热结构、散热方法及装置、无人机、可读存储介质
CN111720780B (zh) * 2020-07-05 2021-12-07 山东九顶山光电科技有限公司 一种高散热密封型led路灯
CN215098210U (zh) * 2021-05-31 2021-12-10 上海峰飞航空科技有限公司 一种机臂及无人机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772429A1 (en) * 2013-02-28 2014-09-03 Shenzhen Hubsan Technology Co., Ltd. Four-rotor aircraft
US20150245516A1 (en) * 2013-08-15 2015-08-27 Traxxas Lp Rotorcraft with integrated light pipe support members
WO2016072503A1 (ja) * 2014-11-07 2016-05-12 大日本印刷株式会社 照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041096B4 (de) * 2010-09-21 2024-05-08 Osram Gmbh Leuchtvorrichtung
US9816677B2 (en) * 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
CN103350752A (zh) * 2012-10-29 2013-10-16 深圳市哈博森科技有限公司 四旋翼飞行器
CN104477399B (zh) * 2014-11-26 2016-09-07 马鞍山市靓马航空科技有限公司 一种夜间搜救多旋翼无人机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772429A1 (en) * 2013-02-28 2014-09-03 Shenzhen Hubsan Technology Co., Ltd. Four-rotor aircraft
US20150245516A1 (en) * 2013-08-15 2015-08-27 Traxxas Lp Rotorcraft with integrated light pipe support members
WO2016072503A1 (ja) * 2014-11-07 2016-05-12 大日本印刷株式会社 照明装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225607A1 (ja) * 2018-05-23 2019-11-28 株式会社ナイルワークス 飛行体および飛行体のフレーム
JPWO2019225607A1 (ja) * 2018-05-23 2020-09-24 株式会社ナイルワークス 飛行体および飛行体のフレーム
JP2020037347A (ja) * 2018-09-05 2020-03-12 ウシオ電機株式会社 飛行体
JP7119793B2 (ja) 2018-09-05 2022-08-17 ウシオ電機株式会社 飛行体
JP2020152143A (ja) * 2019-03-18 2020-09-24 株式会社リコー 飛行体
JP2021054281A (ja) * 2019-09-30 2021-04-08 日本電気株式会社 マルチローターヘリコプタ及びマルチローターヘリコプタにおける冷却方法
JP7331598B2 (ja) 2019-09-30 2023-08-23 日本電気株式会社 マルチローターヘリコプタ及びマルチローターヘリコプタにおける冷却方法
JP2021097294A (ja) * 2019-12-16 2021-06-24 日亜化学工業株式会社 遠隔操作型移動体、及び、遠隔操作型移動体に搭載された投影装置の冷却方法
JP7406082B2 (ja) 2019-12-16 2023-12-27 日亜化学工業株式会社 遠隔操作型移動体、及び、遠隔操作型移動体に搭載された投影装置の冷却方法
JP2021132379A (ja) * 2020-03-24 2021-09-09 株式会社ザクティ 電子機器を搭載した無人飛行体

Also Published As

Publication number Publication date
US20190300171A1 (en) 2019-10-03
CN109476376A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2018021516A1 (ja) 移動体
US9291759B2 (en) Illumination device and vehicle headlight
US9562661B2 (en) Illumination device and vehicle headlight
JP5487077B2 (ja) 発光装置、車両用前照灯および照明装置
US9534756B2 (en) Light-emitting device, floodlight, and vehicle headlight
US8733993B2 (en) Light emitting device, illumination device, vehicle headlamp, and vehicle
JP5323998B2 (ja) 蛍光体、励起光源、光学システム、およびヒートシンクを備えた照明器具
JP6072448B2 (ja) 発光装置、投光器、および車両用前照灯
JP7479382B2 (ja) レーザベースのファイバ結合白色光システム
KR20130138115A (ko) 광원 장치 및 조명 장치
WO2012128384A1 (ja) 発光装置、照明装置および前照灯
JP5373742B2 (ja) 発光装置、車両用前照灯、照明装置およびレーザ素子
US20130235601A1 (en) Illumination device and vehicle headlamp
JP2012109209A (ja) 発光装置、車両用前照灯、照明装置、及び車両
WO2016185851A1 (ja) 光変換装置および光源装置、ならびにプロジェクタ
JP3236102U (ja) 照明アプリケーション用のレーザベースの導波路結合白色光システム
KR20130138114A (ko) 조명 장치
JP6033586B2 (ja) 照明装置および車両用前照灯
JP5840179B2 (ja) 発光装置
US20120327679A1 (en) Light emitting device, headlight for a vehicle, and illumination device
JP5797045B2 (ja) 発光装置、車両用前照灯および照明装置
JP5883114B2 (ja) 発光装置、車両用前照灯および照明装置
JP6072447B2 (ja) 照明装置及び車両用前照灯
JP2022108288A (ja) 波長変換ホイール、光源装置、および投影装置
KR101782264B1 (ko) 레이저 다이오드 및 포물선 초점 위치의 형광체를 이용한 등명기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17834518

Country of ref document: EP

Kind code of ref document: A1