WO2018021104A1 - モータロータ、過給機、及びモータロータの製造方法 - Google Patents

モータロータ、過給機、及びモータロータの製造方法 Download PDF

Info

Publication number
WO2018021104A1
WO2018021104A1 PCT/JP2017/026062 JP2017026062W WO2018021104A1 WO 2018021104 A1 WO2018021104 A1 WO 2018021104A1 JP 2017026062 W JP2017026062 W JP 2017026062W WO 2018021104 A1 WO2018021104 A1 WO 2018021104A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner sleeve
magnet
motor rotor
ring member
rotating shaft
Prior art date
Application number
PCT/JP2017/026062
Other languages
English (en)
French (fr)
Inventor
拓也 小篠
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2018529800A priority Critical patent/JP6566139B2/ja
Priority to CN201780020981.8A priority patent/CN108886280B/zh
Priority to DE112017003790.5T priority patent/DE112017003790T5/de
Priority to US16/099,515 priority patent/US10727711B2/en
Publication of WO2018021104A1 publication Critical patent/WO2018021104A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present disclosure relates to a motor rotor, a supercharger, and a method for manufacturing a motor rotor.
  • This application is based on Japanese Patent Application No. 2016-147247 filed on July 27, 2016. This application claims the benefit of priority to that application. The entire contents of which are hereby incorporated by reference.
  • an electric supercharger including an electric motor that adds a rotational driving force to a rotating shaft connected to a compressor impeller in a supercharger is known (see, for example, Patent Document 1).
  • An electric motor mounted on a supercharger described in Patent Document 1 includes a motor rotor (rotor) fixed to a rotating shaft.
  • the motor rotor includes an inner sleeve mounted on the rotating shaft, a permanent magnet surrounding the inner sleeve, and an end that is disposed outside the permanent magnet in the axial direction of the inner sleeve and is shrink-fitted to the outer periphery of the inner sleeve.
  • a ring (ring member).
  • an inner sleeve is inserted through the opening of the end ring.
  • the end ring is shrink-fitted to the inner sleeve.
  • the end ring contracts in the radial direction and is fastened to the inner sleeve.
  • the shrink fitting a part of the heat of the high-temperature end ring is transmitted to the inner sleeve, so that the inner sleeve is heated. Accordingly, the inner sleeve expands.
  • the end ring fastened to the inner sleeve moves in the axial direction of the inner sleeve as the inner sleeve contracts. Therefore, the magnet adjacent to the end ring is pressed by the end ring.
  • a compressive force acts on the magnet in the axial direction of the inner sleeve. If the compressive force acting on the magnet is increased, the magnet may be cracked.
  • This disclosure describes a motor rotor, a supercharger, and a method of manufacturing a motor rotor that can prevent a compression force from being generated in a magnet when an end ring is shrink-fitted.
  • a motor rotor includes a cylindrical inner sleeve, an annular magnet mounted on the outer side of the inner sleeve in the radial direction of the inner sleeve, and an outer side of the magnet in the axial direction of the inner sleeve.
  • the gap is provided between the magnet and the ring member, so that no compression force acts on the magnet.
  • FIG. 1 is a cross-sectional view illustrating an electric supercharger including an electric motor including a motor rotor according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged cross-sectional view of the motor rotor in FIG.
  • FIG. 3 is a diagram showing an assembly procedure of the motor rotor.
  • a motor rotor includes a cylindrical inner sleeve, an annular magnet mounted on the outer side of the inner sleeve in the radial direction of the inner sleeve, and an outer side of the magnet in the axial direction of the inner sleeve.
  • the motor rotor includes a pair of ring members disposed on both sides of the magnet in the axial direction of the inner sleeve, and a cylindrical shape that covers the magnet and the pair of ring members from the radially outer side of the inner sleeve.
  • An exterior member, and the gap may be provided on at least one side in the axial direction of the inner sleeve. According to this configuration, the gap is provided on at least one side in the axial direction of the inner sleeve. Therefore, the magnet is not pushed from both sides. Further, according to this configuration, the magnet is covered from the radially outer side by the exterior member. Further, the magnet is covered from both sides in the axial direction of the inner sleeve by a pair of ring members. Therefore, the magnet can be protected.
  • a supercharger is a supercharger including an electric motor including the motor rotor described above, and includes a rotating shaft, a turbine impeller coupled to one end side of the rotating shaft, and a rotation A compressor impeller coupled to the other end of the shaft; and an electric motor including a motor rotor attached to the rotating shaft.
  • This supercharger is equipped with the motor rotor described above.
  • a gap is interposed between the ring member and the magnet.
  • a method of manufacturing a motor rotor includes a step of inserting an inner sleeve into an opening of a magnet, attaching the magnet to the inner sleeve, and inserting an inner sleeve into the opening of the ring member.
  • the ring member is disposed adjacent to the magnet in the axial direction of the inner sleeve, and the step of shrink-fitting the ring member to the inner sleeve includes the step of shrink-fitting the ring member. In the axial direction, a gap is provided between the ring member and the magnet to shrink-fit the ring member.
  • a gap is provided between the ring member and the magnet, and the ring member is shrink-fitted to the inner sleeve. Therefore, even if the ring member moves to the magnet side as the inner sleeve contracts, contact between the ring member and the magnet is prevented. Therefore, since the magnet is not pressed by the ring member, no compressive force is generated on the magnet.
  • An electric supercharger 1 shown in FIG. 1 is a supercharger for a vehicle.
  • the electric supercharger 1 compresses air supplied to the engine using exhaust gas discharged from an engine (not shown).
  • the electric supercharger 1 includes a turbine 2, a compressor (centrifugal compressor) 3, and an electric motor 4.
  • the electric motor 4 applies a rotational driving force to the rotary shaft 5.
  • the rotating shaft 5 is connected to the compressor impeller 9 of the compressor 3.
  • the turbine 2 includes a turbine housing 6 and a turbine impeller 8.
  • the turbine impeller 8 is accommodated in the turbine housing 6.
  • the compressor 3 includes a compressor housing 7 and a compressor impeller 9.
  • the compressor wheel 9 is accommodated in the compressor housing 7.
  • the turbine impeller 8 is provided at one end of the rotating shaft 5.
  • the compressor impeller 9 is provided at the other end of the rotating shaft 5.
  • the bearing 10 and the electric motor 4 are provided between the turbine impeller 8 and the compressor impeller 9 in the direction of the axis L 5 of the rotating shaft 5.
  • the bearing housing 11 is provided between the turbine housing 6 and the compressor housing 7.
  • the rotating shaft 5 is rotatably supported by the bearing housing 11 via the bearing 10.
  • the turbine housing 6 is provided with an exhaust gas inlet (not shown) and an exhaust gas outlet 13. Exhaust gas discharged from the engine flows into the turbine housing 6 through the exhaust gas inlet. The exhaust gas rotates the turbine impeller 8. Thereafter, the exhaust gas flows out of the turbine housing 6 through the exhaust gas outlet 13.
  • the compressor housing 7 is provided with a suction port 14 and a discharge port (not shown).
  • a suction port 14 When the turbine impeller 8 rotates as described above, the rotating shaft 5 and the compressor impeller 9 rotate.
  • the rotating compressor wheel 9 sucks outside air through the suction port 14.
  • the compressor wheel 9 compresses the sucked air and discharges it from the discharge port.
  • the compressed air discharged from the discharge port is supplied to the engine.
  • the electric motor 4 is, for example, a brushless AC electric motor.
  • the electric motor 4 includes a motor rotor 16 that is a rotor and a motor stator 17 that is a stator.
  • the motor rotor 16 is fixed to the rotating shaft 5.
  • the motor rotor 16 can rotate around the axis together with the rotating shaft 5.
  • the motor rotor 16 is in the axial L 5 direction of the rotary shaft 5 is disposed between the bearing 10 and the compressor wheel 9.
  • the motor stator 17 includes a plurality of coils and an iron core.
  • the motor stator 17 is disposed so as to surround the motor rotor 16 in the circumferential direction of the rotary shaft 5.
  • the motor stator 17 is accommodated in the bearing housing 11.
  • the motor stator 17 generates a magnetic field around the rotation shaft 5 to rotate the motor rotor 16.
  • the electric motor 4 supports high-speed rotation of the rotating shaft 5 (for example, 100,000 rpm to 200,000 rpm).
  • the electric motor 4 may be capable of rotational driving during acceleration and regenerative operation during deceleration.
  • the drive voltage of the electric motor 4 may be the same as or higher than the DC voltage of the battery mounted on the vehicle.
  • FIG. 2 is an enlarged cross-sectional view of the motor rotor 16 in FIG. FIG. 2 shows a cut surface cut in the axial direction of the motor rotor 16.
  • the motor rotor 16 includes an inner sleeve 21, a magnet (annular magnet) 22, a pair of end rings (ring members) 23 and 24, and an armoring (exterior member) 25.
  • the magnet 22 has a cylindrical shape, for example.
  • Examples of the material of the inner sleeve 21 include stainless steel. Examples of the material of the end rings 23 and 24 include stainless steel. Examples of the material of the armoring 25 include high alloy steel. Moreover, as a material of the magnet 22, a neodymium magnet etc. are mentioned, for example. Further, the linear expansion coefficient of the inner sleeve 21 is higher than the linear expansion coefficient of the magnet 22.
  • the inner sleeve 21 includes a cylindrical portion 26 and a collar portion 27.
  • the rotating shaft 5 is inserted into the opening of the cylindrical portion 26.
  • Cylindrical portion 26 extends in the axial L 5 direction of the rotary shaft 5. In the axial L 21 direction of the inner sleeve 21, the cylindrical portion 26 is longer than the magnet 22. The cylindrical portion 26 extends to a position outside the magnet 22.
  • Flange portion 27 is provided in the axial L 21 direction on one end side of the cylindrical portion 26.
  • the collar portion 27 projects outward in the radial direction from the outer peripheral surface 26 a of the cylindrical portion 26.
  • Flange portion 27 in the axial L 21 direction is disposed outside the magnet 22.
  • the outer peripheral surface 27 a of the collar portion 27 is inclined with respect to the axis L 21 of the inner sleeve 21.
  • the outer peripheral surface 27a of the flange portion 27, in the axial L 21 direction, toward the other end side (right side in the figure) from one end side (left side in the drawing) is arranged radially outward.
  • one end side of the inner sleeve 21 is disposed on the turbine impeller 8 side.
  • the other end side of the inner sleeve 21 is disposed on the compressor impeller 9 side.
  • the pair of end rings 23 and 24 are disposed on both sides of the magnet 22 with the magnet 22 in between in the direction of the axis L 21 of the inner sleeve 21.
  • a pair of end rings 23 and 24 are located outside the magnet 22 in the axial L 21 direction.
  • a pair of end rings 23 and 24, the end face 22a of the magnet 22 in the axial L 21 direction, is disposed so as to cover the 22b.
  • the end surface 22a is an end of the one end side in the axial L 21 direction.
  • the end face 22b is an end of the other end side in the axial L 21 direction.
  • the end ring 23 is disposed so as to face the end surface 22a.
  • the end ring 24 is disposed so as to face the end surface 22b.
  • the cylindrical portion 26 of the inner sleeve 21 is inserted into the openings of the magnet 22 and the pair of end rings 23 and 24.
  • the magnet 22 is attached to the outside of the inner sleeve 21 in the radial direction of the inner sleeve 21.
  • the pair of end rings 23 and 24 are shrink-fitted to the inner sleeve 21.
  • the pair of end rings 23 and 24 are attached to the outside of the inner sleeve 21 in the radial direction of the inner sleeve 21.
  • the inner peripheral surfaces 23 b and 24 b of the end rings 23 and 24 are in close contact with the outer peripheral surface 26 a of the cylindrical portion 26 of the inner sleeve 21.
  • the end ring 23 covers the end surface 22a of the magnet 22 on the flange portion 27 side.
  • the end ring 24 covers the end surface 22 b of the magnet 22 on the side opposite to the collar portion 27.
  • the outer peripheral surface 22 c of the magnet 22 and the outer peripheral surfaces 23 a and 24 a of the pair of end rings 23 and 24 are formed at substantially the same position in the radial direction of the rotating shaft 5.
  • the armoring 25 has a cylindrical shape.
  • the magnet 22 and the pair of end rings 23 and 24 are disposed inside the opening of the armoring 25.
  • the armoring 25 covers the outer peripheral surface 22 c of the magnet 22 and the outer peripheral surfaces 23 a and 24 a of the pair of end rings 23 and 24.
  • the armoring 25 extends to a position outside the pair of end rings 23 and 24 in the direction of the axis L 21 of the inner sleeve 21.
  • the armoring 25 covers the magnet 22 and the pair of end rings 23 and 24 on the entire circumference.
  • the armoring 25 is shrink-fitted to the pair of end rings 23 and 24 and the magnet 22.
  • the inner peripheral surface 25 a of the armoring 25 is in close contact with the outer peripheral surfaces 23 a and 24 a of the pair of end rings 23 and 24 and the outer peripheral surface 22 c of the magnet 22.
  • Magnet 22 is covered from both sides of the axis L 21 direction by end rings 23 and 24.
  • the magnet 22 is covered with an armoring 25 from the outside in the radial direction. With this configuration, the magnet 22 is protected.
  • a gap 28 is formed between the magnet 22 and the end ring 24 between the magnet 22 and the end ring 24, a gap 28 is formed.
  • the gap 28 is formed over the entire circumference of the inner sleeve 21. That is, the end face 22b of the inner sleeve 21, in the axial L 21 direction, opposite to the end face of the end ring 24.
  • the end surface 22 b of the inner sleeve 21 does not contact the end surface of the end ring 24 on the entire circumference of the inner sleeve 21.
  • the other end ring 23, in the axial L 21 direction may be in contact with the magnet 22.
  • the other end ring 23, in the axial L 21 direction may not be in contact with the magnet 22.
  • the inner sleeve 21 is prepared.
  • the flange portion 27 is disposed below the axis L 21 direction of the inner sleeve 21 to place 21 of the inner sleeve along the vertical direction.
  • positioning of the inner sleeve 21 is not limited to when the collar part 27 is arrange
  • the inner sleeve 21 may have the collar portion 27 disposed above. Further, the axis L 21 direction of the inner sleeve 21 may be arranged along the other direction.
  • the end ring 23 is shrink-fitted into the cylindrical portion 26 of the inner sleeve 21. Specifically, the cylindrical portion 26 is inserted through the opening of the end ring 23, and the end ring 23 is shrink-fitted to the cylindrical portion 26 of the inner sleeve 21. Then, the end ring 23 in the heated state is cooled and contracted, whereby the end ring 23 is fastened to the inner sleeve 21.
  • the magnet 22 is attached to the cylindrical portion 26 of the inner sleeve 21 (step of attaching the magnet to the inner sleeve). Specifically, the cylindrical portion 26 of the inner sleeve 21 is inserted through the opening of the magnet 22. At this time, the end ring 23 and the magnet 22 are disposed adjacent to each other in the direction of the axis L 21 of the inner sleeve 21.
  • the end ring 24 is shrink-fitted onto the cylindrical portion 26 of the inner sleeve 21 (step of shrink-fitting the ring member to the inner sleeve). Specifically, the cylindrical portion 26 is inserted through the opening of the end ring 24, and the end ring 24 is shrink-fitted to the cylindrical portion 26 of the inner sleeve 21. At this time, in the axial L 21 direction, providing a gap 28 between the magnet 22 and the end ring 24.
  • Length d in the axial L 21 direction of the gap 28 is, for example, shrink fitting temperature, linear expansion coefficient of the inner sleeve 21, the axis L 21 direction of the length of the inner sleeve 21, the linear expansion coefficient of the magnet 22, the magnet 22 it can be calculated based on the axial L 21 direction length.
  • a dedicated jig may be used. According to this method, the gap 28 is reliably formed.
  • the armoring 25 is shrink-fitted to the end rings 23 and 24 and the magnet 22.
  • the inner sleeve 21, the magnet 22, and the end rings 23 and 24 are inserted through the opening of the armoring 25, and the armoring 25 is shrink-fitted.
  • the armoring 25 in a heated state is cooled and contracts, the armoring 25 is fastened to the pair of end rings 23 and 24 and the magnet 22.
  • Exhaust gas flowing in from an exhaust gas inlet passes through the turbine scroll passage 12a and is supplied to the inlet side of the turbine impeller 8.
  • the turbine impeller 8 generates a rotational force using the pressure of the supplied exhaust gas.
  • This rotational force causes the rotating shaft 5 and the compressor impeller 9 to rotate integrally with the turbine impeller 8.
  • the air compressed by the compressor wheel 9 passes through the diffuser flow path 7a and the compressor scroll flow path 7b and is discharged from a discharge port (not shown).
  • the air discharged from the discharge port is supplied to the engine.
  • the electric motor 4 of the electric supercharger 1 corresponds to high-speed rotation of the rotary shaft 5 (for example, 100,000 rpm to 200,000 rpm).
  • the motor 4 transmits the rotational torque to the rotating shaft 5 when the rotating torque of the rotating shaft 5 is insufficient during acceleration of the vehicle.
  • a vehicle battery can be applied as a drive source of the electric motor 4.
  • the electric motor 4 may generate regenerative power using the rotational energy of the rotating shaft 5.
  • the electric motor 4 generates a magnetic field by the motor stator 17.
  • the electric motor 4 generates a rotational force on the magnet 22 of the motor rotor 16 by this magnetic field.
  • the rotational force of the magnet 22 is transmitted to the rotary shaft 5 via the armoring 25 and the pair of end rings 23 and 24.
  • the compressor wheel 9 rotates.
  • the rotating compressor wheel 9 compresses the air supplied to the engine.
  • a gap 28 is interposed between the magnet 22 and the end ring 24 when the end ring 24 is shrink fitted to the inner sleeve 21. Therefore, the magnet 22 does not contact the end ring 24.
  • the magnet 22 and the pair of end rings 23 and 24 are covered with the armoring 25. Therefore, it cannot be visually confirmed whether or not the gap 28 is provided between the magnet 22 and the end ring 24.
  • a nondestructive inspection can be applied.
  • a radiation transmission test, an ultrasonic flaw detection test, or the like can be used. Thereby, the presence or absence of the gap 28 between the magnet 22 and the end ring 24 can be determined from the outside of the armoring 25.
  • the inner sleeve 21 may have a configuration in which the flange portion 27 protruding outward in the radial direction is not provided.
  • the inner sleeve 21 may have other configurations.
  • the inner sleeve 21 may be formed integrally with the inner sleeve 21 and another member.
  • the inner sleeve 21 may have a configuration in which the inner sleeve 21, one end ring 23, and the armor ring 25 are integrally formed.
  • gap 28 is provided between the magnet 22 and the end ring 24 .
  • a configuration in which a gap 28 is provided between the magnet 22 and the end ring 23 may be employed.
  • it In the axial L 21 direction of the inner sleeve 21, it may be configured to gaps 28 are provided on both sides of the magnet 22.
  • the gap 28 may be provided only on one side.
  • the electric supercharger 1 was illustrated as an object for vehicles.
  • the electric supercharger 1 is not limited to vehicles.
  • the electric supercharger 1 may be used for a marine engine.
  • the electric supercharger 1 may be used for other engines.
  • the electric supercharger 1 is configured to include the turbine 2.
  • the electric supercharger 1 may be driven by the electric motor 4 without including the turbine 2.
  • the motor rotor 16 is applied to the electric motor 4 of the electric supercharger 1 .
  • the motor rotor 16 can be used for other electric motors instead of the electric supercharger, and may be used for a rotor of a generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Supercharger (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

筒状のインナースリーブと、インナースリーブの径方向においてインナースリーブの外側に装着される環状の磁石と、インナースリーブの軸線方向において磁石の外側に配置され、インナースリーブの径方向においてインナースリーブの外側に装着されるリング部材とを備える構成とする。インナースリーブの線膨張係数は、磁石の線膨張係数より高い。リング部材は、焼嵌めによってインナースリーブに装着されたものであり、インナースリーブの軸線方向において、リング部材と磁石との間に隙間を設ける。

Description

モータロータ、過給機、及びモータロータの製造方法
 本開示は、モータロータ、過給機、及びモータロータの製造方法に関する。本出願は、2016年7月27日に提出された日本特許出願第2016-147247号に基づいている。本出願は、当該出願に対して優先権の利益を主張するものである。その内容全体は、参照されることによって本出願に援用される。
 従来から、過給機においてコンプレッサ翼車に連結された回転軸に、回転駆動力を付加する電動機を備えた電動過給機が知られている(例えば、特許文献1参照)。特許文献1に記載の過給機に搭載された電動機は、回転軸に固定されたモータロータ(回転子)を備える。このモータロータは、回転軸に装着されたインナースリーブと、このインナースリーブを軸周りに囲む永久磁石と、インナースリーブの軸線方向において永久磁石の外側に配置され、インナースリーブの外周に焼嵌めされるエンドリング(リング部材)とを備える。
特開2007-336737号公報
 従来の技術では、エンドリングの開口部にインナースリーブが挿通される。また、エンドリングはインナースリーブに焼嵌めされる。この焼嵌めの際に、加熱された状態のエンドリングが冷却されると、エンドリングが径方向に収縮してインナースリーブに締結される。この焼嵌めの際に、高温状態のエンドリングの熱の一部は、インナースリーブに伝達されるので、インナースリーブが加熱される。従ってインナースリーブは膨張する。
 そして、インナースリーブが冷却されると、インナースリーブに締結されたエンドリングは、インナースリーブの収縮に伴って、インナースリーブの軸線方向に移動する。そのため、エンドリングに隣接する磁石は、エンドリングによって押圧される。磁石がエンドリングによって押されることにより、インナースリーブの軸線方向において磁石に圧縮力が作用する。磁石に作用する圧縮力が増大すると、磁石に割れが生じるおそれがある。
 本開示は、エンドリングの焼嵌めの際に、磁石に圧縮力が生じないようにすることが可能なモータロータ、過給機、及びモータロータの製造方法を説明する。
 本開示の一態様に係るモータロータは、筒状のインナースリーブと、インナースリーブの径方向においてインナースリーブの外側に装着される環状の磁石と、インナースリーブの軸線方向において磁石の外側に配置され、インナースリーブの径方向においてインナースリーブの外側に装着されるリング部材とを備え、インナースリーブの線膨張係数は、磁石の線膨張係数より高く、リング部材は、焼嵌めによってインナースリーブに装着されたものであり、インナースリーブの軸線方向において、リング部材と磁石との間に隙間が設けられている。
 本開示によれば、焼嵌めに伴ってインナースリーブが収縮しても、磁石とリング部材との間に隙間が設けられているので、磁石に圧縮力が作用しない。
図1は、本開示の実施形態に係るモータロータを含む電動機を備えた電動過給機を示す断面図である。 図2は、図1中のモータロータを拡大して示す断面図である。 図3は、モータロータの組立て手順を示す図である。
 本開示の一態様に係るモータロータは、筒状のインナースリーブと、インナースリーブの径方向においてインナースリーブの外側に装着される環状の磁石と、インナースリーブの軸線方向において磁石の外側に配置され、インナースリーブの径方向においてインナースリーブの外側に装着されるリング部材とを備え、インナースリーブの線膨張係数は、磁石の線膨張係数より高く、リング部材は、焼嵌めによってインナースリーブに装着されたものであり、インナースリーブの軸線方向において、リング部材と磁石との間に隙間が設けられている。
 このモータロータでは、リング部材と磁石との間に隙間が介在する。この構成によれば、リング部材をインナースリーブに焼嵌めする際に、インナースリーブの収縮に伴ってリング部材が磁石側に移動しても、磁石がリング部材によって押圧されない。従って、磁石に圧縮力が生じない。
 いくつかの態様において、モータロータは、インナースリーブの軸線方向において、磁石を挟んで両側に配置された一対のリング部材と、インナースリーブの径方向外側から、磁石及び一対のリング部材を覆う筒状の外装部材と、を備え、隙間は、インナースリーブの軸線方向において、少なくとも片方に設けられている構成でもよい。この構成によれば、インナースリーブの軸線方向において、少なくとも片側に、隙間が設けられる。従って、磁石は両側から押されない。また、この構成によれば、磁石は、外装部材によって径方向外側から覆われる。さらに、磁石は、一対のリング部材によってインナースリーブの軸線方向の両側から覆われる。従って、磁石を保護することができる。
 また、本開示の別の態様に係る過給機は、上記のモータロータを含む電動機を備えた過給機であって、回転軸と、回転軸の一端側に連結されたタービン翼車と、回転軸の他端側に連結されたコンプレッサ翼車と、回転軸に装着されたモータロータを含む電動機と、を備える。
 この過給機は、上記のモータロータを備える。上記のモータロータでは、リング部材と磁石との間に隙間が介在する。この構成によれば、リング部材をインナースリーブに焼嵌めする際に、インナースリーブの収縮に伴ってリング部材が磁石側に移動しても、磁石がリング部材によって押圧されない。従って、磁石に圧縮力が生じない。
 また、本開示のさらに別の態様に係るモータロータの製造方法は、磁石の開口部にインナースリーブを挿通させて、インナースリーブに磁石を装着する工程と、リング部材の開口部にインナースリーブを挿通させて、インナースリーブの軸線方向において、磁石に隣り合うように、リング部材を配置して、インナースリーブにリング部材を焼嵌めする工程と、を含み、リング部材を焼嵌めする工程では、インナースリーブの軸線方向において、リング部材と磁石との間に隙間を設けてリング部材を焼嵌めする。
 このモータロータの製造方法では、リング部材と磁石との間に隙間を設けて、リング部材をインナースリーブに対して焼嵌めする。従って、インナースリーブの収縮に伴ってリング部材が磁石側に移動しても、リング部材と磁石と接触が防止される。そのため、磁石がリング部材によって押圧されないので、磁石に圧縮力が生じない。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、各図において同一部分又は相当部分には同一の符号を付し、重複する説明は省略する。
 (電動過給機)
 図1に示される電動過給機1は、車両用の過給機である。電動過給機1は、図示しないエンジンから排出された排気ガスを利用して、エンジンに供給される空気を圧縮する。電動過給機1は、タービン2とコンプレッサ(遠心圧縮機)3と電動機4とを備える。電動機4は、回転軸5に回転駆動力を付加する。回転軸5は、コンプレッサ3のコンプレッサ翼車9に連結される。
 タービン2は、タービンハウジング6と、タービン翼車8と、を備える。タービン翼車8は、タービンハウジング6に収納される。コンプレッサ3は、コンプレッサハウジング7と、コンプレッサ翼車9と、を備える。コンプレッサ翼車9は、コンプレッサハウジング7に収納される。
 タービン翼車8は回転軸5の一端に設けられる。コンプレッサ翼車9は、回転軸5の他端に設けられる。また、軸受10及び電動機4は、回転軸5の軸線L方向において、タービン翼車8とコンプレッサ翼車9との間に設けられる。
 軸受ハウジング11は、タービンハウジング6とコンプレッサハウジング7との間に設けられる。回転軸5は、軸受10を介して軸受ハウジング11に回転可能に支持される。
 タービンハウジング6には、排気ガス流入口(不図示)及び排気ガス流出口13が設けられる。エンジンから排出された排気ガスは、排気ガス流入口を通じてタービンハウジング6内に流入する。そして、排気ガスは、タービン翼車8を回転させる。その後、排気ガスは、排気ガス流出口13を通じてタービンハウジング6外に流出する。
 コンプレッサハウジング7には、吸入口14及び吐出口(不図示)が設けられる。上記のようにタービン翼車8が回転すると、回転軸5及びコンプレッサ翼車9が回転する。回転するコンプレッサ翼車9は、吸入口14を通じて外部の空気を吸入する。コンプレッサ翼車9は、吸入した空気を圧縮して吐出口から吐出する。吐出口から吐出された圧縮空気は、エンジンに供給される。
 (電動機)
 電動機4は、例えばブラシレスの交流電動機である。電動機4は、回転子であるモータロータ16と、固定子であるモータステータ17とを備える。モータロータ16は、回転軸5に固定される。モータロータ16は、回転軸5と共に軸周りに回転可能である。モータロータ16は、回転軸5の軸線L方向において、軸受10とコンプレッサ翼車9との間に配置される。
 モータステータ17は、複数のコイルと鉄心とを備える。モータステータ17は、モータロータ16を回転軸5の周方向に囲むように配置される。モータステータ17は、軸受ハウジング11に収容される。モータステータ17は、回転軸5の周りに磁場を生じさせて、モータロータ16を回転させる。
 電動機4は、回転軸5の高速回転(例えば10万rpm~20万rpm)に対応する。電動機4は、加速時の回転駆動と減速時の回生運転とができてもよい。また、電動機4の駆動電圧は、車両に搭載されたバッテリの直流電圧と同一あるいはそれより高くてもよい。
 (モータロータ)
 次に、図2を参照して、モータロータ16について説明する。図2は、図1中のモータロータ16を拡大して示す断面図である。なお、図2は、モータロータ16の軸線方向に切った切断面を示す。モータロータ16は、インナースリーブ21と、磁石(環状の磁石)22と、一対のエンドリング(リング部材)23,24と、アーマリング(外装部材)25とを備える。磁石22は、たとえば円筒状を成す。
 インナースリーブ21の材質として、例えばステンレス鋼などが挙げられる。エンドリング23,24の材質として、例えばステンレス鋼などが挙げられる。アーマリング25の材質として、例えば高合金鋼などが挙げられる。また、磁石22の材質として、例えばネオジム磁石などが挙げられる。また、インナースリーブ21の線膨張係数は、磁石22の線膨張係数より高い。
 インナースリーブ21は、円筒部26とつば部27とを備える。円筒部26の開口部の内部には、回転軸5が挿通される。円筒部26は、回転軸5の軸線L方向に延在する。インナースリーブ21の軸線L21方向において、円筒部26は、磁石22より長い。円筒部26は、磁石22の外側の位置まで延びる。
 つば部27は、軸線L21方向において円筒部26の一端側に設けられる。つば部27は、円筒部26の外周面26aよりも径方向外側に張り出す。つば部27は、軸線L21方向において、磁石22より外側に配置される。例えば、つば部27の外周面27aは、インナースリーブ21の軸線L21に対して傾斜する。つば部27の外周面27aは、軸線L21方向において、一端側(図示左側)から他端側(図示右側)に向かうにつれて、径方向外側に配置される。インナースリーブ21が回転軸5に装着された状態において、インナースリーブ21の一端側は、タービン翼車8側に配置される。インナースリーブ21の他端側は、コンプレッサ翼車9側に配置される。
 一対のエンドリング23,24は、インナースリーブ21の軸線L21方向において、磁石22を挟んで磁石22両側に配置される。一対のエンドリング23,24は、軸線L21方向において磁石22の外側に配置される。一対のエンドリング23,24は、軸線L21方向における磁石22の端面22a,22bを覆うように配置される。端面22aは、軸線L21方向における一端側の端面である。端面22bは、軸線L21方向における他端側の端面である。エンドリング23は、端面22aと対向するように配置される。エンドリング24は、端面22bと対向するように配置される。
 インナースリーブ21の円筒部26は、磁石22及び一対のエンドリング23,24の開口部の内部に挿通される。磁石22は、インナースリーブ21の径方向においてインナースリーブ21の外側に装着される。一対のエンドリング23,24は、インナースリーブ21に対して焼嵌めされる。一対のエンドリング23,24は、インナースリーブ21の径方向においてインナースリーブ21の外側に装着される。エンドリング23,24の内周面23b,24bは、インナースリーブ21の円筒部26の外周面26aに密着している。
 エンドリング23は、磁石22のつば部27側の端面22aを覆う。エンドリング24は、磁石22のつば部27とは反対側の端面22bを覆う。
 磁石22の外周面22c及び一対のエンドリング23,24の外周面23a,24aは、回転軸5の径方向において、略同じ位置に形成されている。
 アーマリング25は、円筒状を成す。磁石22及び一対のエンドリング23,24は、アーマリング25の開口部の内部に配置される。アーマリング25は、磁石22の外周面22c及び一対のエンドリング23,24の外周面23a,24aを覆う。アーマリング25は、インナースリーブ21の軸線L21方向において、一対のエンドリング23,24の外側の位置まで延びる。アーマリング25は、全周において磁石22及び一対のエンドリング23,24を覆う。
 アーマリング25は、一対のエンドリング23,24及び磁石22に対して焼嵌めされる。アーマリング25の内周面25aは、一対のエンドリング23,24の外周面23a,24a及び磁石22の外周面22cに密着する。
 磁石22は、軸線L21方向の両側からエンドリング23,24によって覆われる。磁石22は、径方向の外側からアーマリング25によって覆われる。この構成により磁石22は、保護される。
 ここで、軸線L21方向において、磁石22とエンドリング24との間に、隙間28が形成される。隙間28は、インナースリーブ21の全周に亘って形成される。すなわち、インナースリーブ21の端面22bは、軸線L21方向において、エンドリング24の端面に対向する。インナースリーブ21の端面22bは、インナースリーブ21の全周においてエンドリング24の端面に接触しない。なお、もう一方のエンドリング23は、軸線L21方向において、磁石22と接触してもよい。もう一方のエンドリング23は、軸線L21方向において、磁石22と接触しなくてもよい。
 (モータロータの製造方法)
 次に、図3を参照して、モータロータ16の製造方法について説明する。まず、図3(a)に示されるように、インナースリーブ21を準備する。例えば、つば部27が下方に配置されるように、インナースリーブ21の軸線L21方向が上下方向に沿うようにインナースリーブの21を配置する。なお、インナースリーブ21の配置は、つば部27を下方に配置する場合に限定されない。インナースリーブ21は、つば部27を上方に配置してもよい。また、インナースリーブ21の軸線L21方向は、その他の方向に沿うように配置されていてもよい。
 次に、図3(b)に示されるように、インナースリーブ21の円筒部26に対して、エンドリング23を焼嵌めする。具体的には、エンドリング23の開口部に円筒部26を挿通させて、エンドリング23をインナースリーブ21の円筒部26に対して焼嵌めする。そして、加熱された状態のエンドリング23が冷却されて収縮することで、エンドリング23がインナースリーブ21に締結される。
 次に、図3(c)に示されるように、インナースリーブ21の円筒部26に対して、磁石22を装着する(インナースリーブに対して磁石を装着する工程)。具体的には、磁石22の開口部に、インナースリーブ21の円筒部26を挿通する。このとき、エンドリング23と磁石22とは、インナースリーブ21の軸線L21方向に隣接して配置される。
 次に、図3(d)に示されるように、インナースリーブ21の円筒部26に対して、エンドリング24を焼嵌めする(インナースリーブに対してリング部材を焼嵌めする工程)。具体的には、エンドリング24の開口部に円筒部26を挿通させて、エンドリング24をインナースリーブ21の円筒部26に対して焼嵌めする。このとき、軸線L21方向において、磁石22とエンドリング24との間に隙間28を設ける。隙間28の軸線L21方向における長さdは、例えば、焼嵌めの温度、インナースリーブ21の線膨張係数、インナースリーブ21の軸線L21方向の長さ、磁石22の線膨張係数、磁石22の軸線L21方向の長さに基づいて算出することができる。
 インナースリーブ21に対して、エンドリング24を配置する場合には、例えば、専用の治具を用いてもよい。この方法によれば、隙間28が確実に形成される。
 そして、加熱された状態のエンドリング24が冷却されて収縮することにより、エンドリング24はインナースリーブ21に締結される。
 次に、図3(e)に示されるように、エンドリング23,24及び磁石22に対して、アーマリング25を焼嵌めする。アーマリング25の開口部に、インナースリーブ21、磁石22及びエンドリング23,24を挿通させて、アーマリング25を焼嵌めする。加熱された状態のアーマリング25が冷却されて収縮することにより、アーマリング25は一対のエンドリング23,24及び磁石22に締結される。
 次に、電動過給機1の動作について説明する。
 排気ガス流入口(不図示)から流入した排気ガスは、タービンスクロール流路12aを通過して、タービン翼車8の入口側に供給される。タービン翼車8は供給された排気ガスの圧力を利用して、回転力を発生させる。この回転力は、回転軸5及びコンプレッサ翼車9をタービン翼車8と一体的に回転させる。これにより、コンプレッサ3の吸入口14から吸入した空気は、コンプレッサ翼車9により圧縮される。コンプレッサ翼車9によって圧縮された空気は、ディフューザー流路7a及びコンプレッサスクロール流路7bを通過して吐出口(不図示)から排出される。吐出口から排出された空気は、エンジンに供給される。
 この電動過給機1の電動機4は、回転軸5の高速回転(例えば10万rpm~20万rpm)に対応する。例えば、車両の加速時において、回転軸5の回転トルクが不足している場合に、電動機4は、回転軸5に回転トルクを伝達する。電動機4の駆動源として、車両のバッテリを適用できる。また、車両の減速時において、電動機4は、回転軸5の回転エネルギによって回生発電してもよい。
 電動機4は、モータステータ17によって磁場を生じさせる。電動機4は、この磁場によりモータロータ16の磁石22に回転力を発生させる。そして、磁石22の回転力は、アーマリング25、一対のエンドリング23,24を介して、回転軸5に伝達される。回転軸5の回転に伴って、コンプレッサ翼車9が回転する。回転するコンプレッサ翼車9は、エンジンに供給される空気を圧縮する。
 本実施形態のモータロータ16では、エンドリング24をインナースリーブ21に焼嵌めをする際に、磁石22とエンドリング24との間に隙間28が介在する。従って、磁石22は、エンドリング24に接触しない。
 すなわち、焼嵌めをする際に、エンドリング24の熱がインナースリーブ21に伝達されて、インナースリーブ21が冷却後に収縮しても、磁石22とエンドリング24との間に隙間28が介在しているので、磁石22がエンドリング24によって押圧されない。その結果、磁石22に圧縮力が生じず、磁石22における割れの発生を抑制することができる。
 なお、モータロータ16が製造された状態において、磁石22及び一対のエンドリング23,24は、アーマリング25によって覆われている。従って、磁石22とエンドリング24と間に隙間28が設けられているか否かを目視によって確認することはできない。
 磁石22とエンドリング24との間に隙間28が設けられていることを確認する場合には、例えば、非破壊検査を適用することができる。非破壊検査として、例えば、放射線透過試験、超音波探傷試験などを用いることができる。これにより、アーマリング25の外側から、磁石22とエンドリング24との間の隙間28の有無を判別することができる。
 本開示は、前述した実施形態に限定されず、本開示の要旨を逸脱しない範囲で下記のような種々の変形が可能である。
 上記実施形態では、インナースリーブ21につば部27が設けられている構成について説明した。インナースリーブ21は、径方向外側に張り出すつば部27が設けられていない構成でもよい。インナースリーブ21は、その他の構成でもよい。例えば、インナースリーブ21は、インナースリーブ21と他の部材とが一体的に形成されていてもよい。例えば、インナースリーブ21は、インナースリーブ21と、一方のエンドリング23と、アーマリング25とが一体的に形成されている構成でもよい。
 上記実施形態では、磁石22とエンドリング24との間に隙間28が設けられている場合について説明した。磁石22とエンドリング23との間に隙間28が設けられている構成でもよい。インナースリーブ21の軸線L21方向において、磁石22の両側に隙間28が設けられている構成でもよい。片側のみに隙間28が設けられている構成でもよい。
 また、上記実施形態では、電動過給機1を車両用として例示した。電動過給機1は車両用に限定されない。電動過給機1は、船舶用のエンジンに用いられてもよい。電動過給機1は、その他のエンジンに用いられてもよい。
 また、上記実施形態では、電動過給機1はタービン2を備える構成とした。電動過給機1は、タービン2を備えず、電動機4によって駆動されるものでもよい。
 また、上記実施形態では、モータロータ16を電動過給機1の電動機4に適用する場合について説明した。モータロータ16は、電動過給機ではなく、その他の電動機に使用することができ、発電機の回転子に使用してもよい。
 1 電動過給機
 2 タービン
 3 コンプレッサ
 4 電動機
 5 回転軸
 8 タービン翼車
 9 コンプレッサ翼車
 16 モータロータ
 21 インナースリーブ
 22 磁石(環状の磁石)
 23、24 エンドリング(リング部材)
 25 アーマリング(外装部材)
 28 隙間
 L21 インナースリーブの軸線
 

Claims (5)

  1.  筒状のインナースリーブと、
     前記インナースリーブの径方向において前記インナースリーブの外側に装着される環状の磁石と、
     前記インナースリーブの軸線方向において前記磁石の外側に配置され、前記インナースリーブの径方向において前記インナースリーブの外側に装着されるリング部材と、を備え、
     前記インナースリーブの線膨張係数は、前記磁石の線膨張係数より高く、
     前記リング部材は、焼嵌めによって前記インナースリーブに装着されたものであり、
     前記インナースリーブの軸線方向において、前記リング部材と前記磁石との間に隙間が設けられているモータロータ。
  2.  前記インナースリーブの軸線方向において、前記磁石を挟んで両側に配置された一対の前記リング部材と、
     前記インナースリーブの径方向外側から、前記磁石及び前記一対のリング部材を覆う筒状の外装部材と、を備え、
     前記隙間は、前記インナースリーブの軸線方向において、少なくとも片方に設けられている請求項1に記載のモータロータ。
  3.  請求項1に記載のモータロータを含む電動機を備えた過給機であって、
     回転軸と、
     前記回転軸の一端側に連結されたタービン翼車と、
     前記回転軸の他端側に連結されたコンプレッサ翼車と、
     前記回転軸に装着された前記モータロータを含む前記電動機と、を備える過給機。
  4.  請求項2に記載のモータロータを含む電動機を備えた過給機であって、
     回転軸と、
     前記回転軸の一端側に連結されたタービン翼車と、
     前記回転軸の他端側に連結されたコンプレッサ翼車と、
     前記回転軸に装着された前記モータロータを含む前記電動機と、を備える過給機。
  5.  モータロータを製造する方法であって、
     前記モータロータは、
     筒状のインナースリーブと、
     前記インナースリーブの径方向において前記インナースリーブの外側に装着される環状の磁石と、
     前記インナースリーブの軸線方向において前記磁石の外側に配置され、前記インナースリーブの径方向において前記インナースリーブの外側に装着されるリング部材と、を備え、
     前記インナースリーブの線膨張係数は、前記磁石の線膨張係数より高く、
     前記モータロータを製造する方法は、
     前記磁石の開口部に前記インナースリーブを挿通させて、前記インナースリーブに対して前記磁石を装着する工程と、
     前記リング部材の開口部に前記インナースリーブを挿通させて、前記インナースリーブの軸線方向において、前記磁石に隣り合うように、前記リング部材を配置して、前記インナースリーブに対して前記リング部材を焼嵌めする工程と、を含み、
     前記リング部材を焼嵌めする工程では、前記インナースリーブの軸線方向において、前記リング部材と前記磁石との間に隙間を設けて前記リング部材を焼嵌めするモータロータの製造方法。
     
PCT/JP2017/026062 2016-07-27 2017-07-19 モータロータ、過給機、及びモータロータの製造方法 WO2018021104A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018529800A JP6566139B2 (ja) 2016-07-27 2017-07-19 モータロータ、過給機、及びモータロータの製造方法
CN201780020981.8A CN108886280B (zh) 2016-07-27 2017-07-19 马达转子、增压器以及马达转子的制造方法
DE112017003790.5T DE112017003790T5 (de) 2016-07-27 2017-07-19 Motorrotor, Lader und Verfahren des Herstellens des Motorrotors
US16/099,515 US10727711B2 (en) 2016-07-27 2017-07-19 Motor rotor, supercharger, and method of manufacturing motor rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-147247 2016-07-27
JP2016147247 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018021104A1 true WO2018021104A1 (ja) 2018-02-01

Family

ID=61016861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026062 WO2018021104A1 (ja) 2016-07-27 2017-07-19 モータロータ、過給機、及びモータロータの製造方法

Country Status (5)

Country Link
US (1) US10727711B2 (ja)
JP (1) JP6566139B2 (ja)
CN (1) CN108886280B (ja)
DE (1) DE112017003790T5 (ja)
WO (1) WO2018021104A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633159A1 (de) * 2018-10-02 2020-04-08 Robert Bosch GmbH Elektrische antriebsmaschine für einen verdichter und/oder eine turbine, turbolader und/oder turbine
US20220029487A1 (en) * 2019-04-10 2022-01-27 Ihi Corporation Motor rotor with surface treatment
WO2023132108A1 (ja) * 2022-01-06 2023-07-13 株式会社Ihi モータロータ、モータロータの製造方法、モータ及び電動過給機
WO2024057605A1 (ja) * 2022-09-12 2024-03-21 株式会社Ihi モータロータ、モータ及び過給機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336738A (ja) * 2006-06-16 2007-12-27 Ihi Corp モータロータ
JP2014064428A (ja) * 2012-09-24 2014-04-10 Daikin Ind Ltd ロータおよび回転電気機械
JP2015211612A (ja) * 2014-04-30 2015-11-24 株式会社Ihi モータロータおよび電動過給機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930201A (en) * 1985-08-14 1990-06-05 Kollmorgen Corporation Method for manufacturing a composite sleeve for an electric motor
JP2791337B2 (ja) 1992-03-18 1998-08-27 住友特殊金属株式会社 ラジアル異方性円筒状フェライト磁石とその製造方法
KR970001257B1 (ko) 1992-03-18 1997-02-04 스미토모 도쿠슈 긴조쿠 가부시키기가이샤 방사상 비등방성 원통형 페라이트 자석, 그 제조 방법 및 모터
US5898990A (en) * 1997-04-14 1999-05-04 General Motors Corporation Method of assembling a magnet ring on a rotor
JP2000201444A (ja) * 1998-12-28 2000-07-18 Toshiba Corp 永久磁石形回転電機
US7365464B2 (en) 2003-09-05 2008-04-29 Gsi Group Corporation Composite rotor and output shaft for galvanometer motor and method of manufacture thereof
JP4595758B2 (ja) * 2005-09-09 2010-12-08 トヨタ自動車株式会社 ターボチャージャ
JP2007336737A (ja) 2006-06-16 2007-12-27 Ihi Corp モータロータ及びその回転バランス修正方法
JP5193873B2 (ja) * 2006-10-17 2013-05-08 山洋電気株式会社 モータ用回転子及びその製造方法
DE102007062010A1 (de) * 2007-10-19 2009-04-23 Kaltenbach & Voigt Gmbh Rotor für Elektromotor, Elektromotor und zahnärztliches Handstück
FR2935205B1 (fr) 2008-08-20 2010-10-08 Michelin Soc Tech Rotor interieur pour machine electrique tournante et son procede d'assemblage
JP5322028B2 (ja) * 2009-02-24 2013-10-23 株式会社Ihi モータロータ
JP5535992B2 (ja) 2011-07-15 2014-07-02 三菱重工業株式会社 電動過給圧縮機、その組立方法及び内燃機関
CN202798208U (zh) * 2012-09-19 2013-03-13 西安盾安电气有限公司 一种电机转子伸缩缝结构
JP6429604B2 (ja) * 2014-11-26 2018-11-28 ミネベアミツミ株式会社 熱衝撃に強いボンド磁石を搭載したインナーロータ型モータ
JP6488513B2 (ja) 2015-02-13 2019-03-27 学校法人日本大学 集束音場形成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336738A (ja) * 2006-06-16 2007-12-27 Ihi Corp モータロータ
JP2014064428A (ja) * 2012-09-24 2014-04-10 Daikin Ind Ltd ロータおよび回転電気機械
JP2015211612A (ja) * 2014-04-30 2015-11-24 株式会社Ihi モータロータおよび電動過給機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633159A1 (de) * 2018-10-02 2020-04-08 Robert Bosch GmbH Elektrische antriebsmaschine für einen verdichter und/oder eine turbine, turbolader und/oder turbine
US20220029487A1 (en) * 2019-04-10 2022-01-27 Ihi Corporation Motor rotor with surface treatment
US11979064B2 (en) * 2019-04-10 2024-05-07 Ihi Corporation Motor rotor with surface treatment
WO2023132108A1 (ja) * 2022-01-06 2023-07-13 株式会社Ihi モータロータ、モータロータの製造方法、モータ及び電動過給機
WO2024057605A1 (ja) * 2022-09-12 2024-03-21 株式会社Ihi モータロータ、モータ及び過給機

Also Published As

Publication number Publication date
DE112017003790T5 (de) 2019-04-25
JPWO2018021104A1 (ja) 2018-11-08
JP6566139B2 (ja) 2019-08-28
US20190165629A1 (en) 2019-05-30
CN108886280A (zh) 2018-11-23
US10727711B2 (en) 2020-07-28
CN108886280B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
JP6566139B2 (ja) モータロータ、過給機、及びモータロータの製造方法
JP4671177B2 (ja) 電動過給機
US9470231B2 (en) Electrically assisted turbocharger
JP5062464B2 (ja) モータロータ
KR101044183B1 (ko) 모터 로터 및 그 회전 밸런스 수정 방법
JP2009013966A (ja) 電動機付き過給機
JP6579270B2 (ja) モータロータ、過給機、及びモータロータの製造方法
JP4780052B2 (ja) 電動機付き過給機
JP5322028B2 (ja) モータロータ
EP3109978B1 (en) Electric machine
US20200248616A1 (en) Electric media gap machine for a compressor and/or turbine, compressor and/or turbine
US20200248704A1 (en) Electric media gap machine, and compressor and/or turbine
TWI601361B (zh) Axial gap type rotary motor
JP2014050133A (ja) ロータ、電動機及び過給機
AU2014322794A1 (en) An electric or hybrid vehicle using motor-generator having shaft with centrifugal fan blades for cooling
JPWO2009122506A1 (ja) ターボ分子ポンプ
US9219396B2 (en) Rotary electric machine
JP2005256676A (ja) 電動ポンプユニット
US11502576B2 (en) Electrical machine
JP3553862B2 (ja) 送風機用電動機
JP2008035584A (ja) 車両用自己通風冷却形回転電機
JP2017108585A (ja) 電動過給圧縮機
JP6658309B2 (ja) 真空ポンプ
CN113366733A (zh) 由电机驱动的、压缩轴穿过转子的流体压缩设备
WO2023166291A1 (en) Motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018529800

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834112

Country of ref document: EP

Kind code of ref document: A1