WO2018020636A1 - モータ制御システム - Google Patents

モータ制御システム Download PDF

Info

Publication number
WO2018020636A1
WO2018020636A1 PCT/JP2016/072138 JP2016072138W WO2018020636A1 WO 2018020636 A1 WO2018020636 A1 WO 2018020636A1 JP 2016072138 W JP2016072138 W JP 2016072138W WO 2018020636 A1 WO2018020636 A1 WO 2018020636A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
inertia
torque command
command
motor control
Prior art date
Application number
PCT/JP2016/072138
Other languages
English (en)
French (fr)
Inventor
章 田辺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680032344.8A priority Critical patent/CN107873122B/zh
Priority to PCT/JP2016/072138 priority patent/WO2018020636A1/ja
Priority to US15/564,109 priority patent/US20180262153A1/en
Priority to JP2017507885A priority patent/JP6161854B1/ja
Publication of WO2018020636A1 publication Critical patent/WO2018020636A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/143Inertia or moment of inertia estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a motor control system including a motor control device that drives an industrial machine such as a machine tool.
  • an apparatus for driving an industrial machine is configured to operate with a motor connected via a mechanical transmission mechanism to transmit power to a moving object to be driven, and the motor operates in a target operation pattern.
  • a motor control device that drives the motor based on a command signal input from the controller and a detection signal of a detector that detects the position or speed of the motor.
  • J T / a from the generated torque T when the motor is operating and the acceleration a that can be calculated from the speed feedback observed by the detector.
  • Inertia J is estimated based on the relational expression.
  • the torque T is the product of the current I applied to the motor and the torque constant Kt, and can be calculated from the speed feedback of the motor and the current detection result.
  • Patent Document 1 applies a sinusoidal signal to the torque command in the motor control device, observes the speed feedback and the current applied to the motor, and performs inertia.
  • a motor control device that performs estimation is proposed.
  • Patent Document 1 discloses together the solution method which performs the process which averages after converting into the signal made into absolute value about this point, there existed a problem that a process became more complicated.
  • the present invention has been made in view of the above, and an object thereof is to obtain a motor control system capable of realizing a simple inertia estimation with high accuracy and stability.
  • the present invention provides a command signal for controlling a motor that drives a mechanical load, a detection signal output from a detector installed in the motor, and a control gain.
  • a control processing unit that generates a torque command based on the torque command, controls the motor based on the torque command, a parameter setting unit that executes parameter setting for setting a limit value and a control gain of the torque command, a detection signal, and torque
  • An inertia estimation unit that estimates the inertia of the motor based on the command.
  • the inertia estimation unit estimates the inertia in a state where self-excited vibration is generated in the motor by parameter setting.
  • the motor control system according to the present invention has an effect that it is possible to realize simple inertia estimation with high accuracy and stability.
  • FIG. 1 is a block diagram showing a configuration of a motor control system according to a first embodiment of the present invention.
  • 1 is a diagram illustrating a hardware configuration when the functions of a controller or a motor control device according to a first embodiment are realized by a computer.
  • a flowchart showing processing at the time of inertia estimation in the first embodiment Waveform diagram showing motor speed and torque command when self-excited vibration occurs in the first embodiment
  • FIG. 1 is a block diagram showing a configuration of a motor control system 100 according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram modeling a motor control process executed by the motor control device 2 according to the first embodiment.
  • FIG. 3 is a diagram illustrating a hardware configuration when the functions of the controller 1 or the motor control device 2 according to the first embodiment are realized by a computer.
  • FIG. 4 is a flowchart showing processing at the time of inertia estimation in the first embodiment.
  • FIG. 5 is a waveform diagram showing motor speed and torque command when self-excited vibration is generated in the first embodiment.
  • a motor control system 100 includes a controller 1 that generates a position command, a motor control device 2 that is a servo amplifier that supplies appropriate power to a motor 3 that drives a mechanical load (not shown), and the supplied power to the motor.
  • a motor 3 for converting the rotational power of the shaft and a detector 4 installed on the motor 3 are provided.
  • the position command is a command signal for controlling the motor 3, and the controller 1 transmits the generated position command to the motor control device 2.
  • a specific example of the detector 4 is an encoder, and a detection signal output from the detector 4 is transmitted to the motor control device 2.
  • the controller 1 receives an operation of the operator, and generates a position command to be transmitted to the motor control device 2 based on the received content, specifically, a program command described in a program input by the operator. .
  • the detector 4 detects the rotation angle of the motor 3 and outputs the detected value as a detection signal.
  • the motor control device 2 supplies appropriate power to the motor 3 based on the position command generated by the controller 1 and the detection signal of the detector 4.
  • the controller 1 is set for parameters used in an operation unit 5 that receives an operation of an operator, a command generation unit 6 that generates a position command to be transmitted to the motor control device 2, and a control processing unit 8 of the motor control device 2 described later.
  • Parameters used in the control processing unit 8 include a torque command limit value and a control gain, which will be described later. Setting the parameter value is called parameter setting. Therefore, the parameter setting unit 11 performs parameter setting.
  • the motor control device 2 performs an inverter circuit 7 that supplies power to the motor 3, a control processing unit 8 that sends a power command to the inverter circuit 7 based on the position command received from the controller 1, and an inertia estimation process of the motor 3. And an inertia estimation unit 9 to perform.
  • the control processing unit 8 executes a position control calculation based on the position command and outputs a speed command
  • a speed control unit 82 executes a speed control calculation based on the speed command and outputs a torque command.
  • a current control unit 83 that executes a current control calculation that outputs a power command based on the torque command.
  • the command generation unit 6 generates a position command for causing the motor 3 to perform a desired operation based on the driving condition input to the operation unit 5 by the operator, and the generated position command is It transmits to the control processing unit 8.
  • the control processing unit 8 executes a feedback control calculation to generate a power command.
  • the feedback control calculation includes a position control calculation by the position control unit 81, a speed control calculation by the speed control unit 82, and a current control calculation by the current control unit 83.
  • the inverter circuit 7 frequency-converts the input voltage and the input current based on the power command given from the control processing unit 8 and supplies appropriate power to the motor 3. As a result, the operation requested by the operator is realized.
  • parameters such as a set value of each control gain for calculation in the control processing unit 8 required during normal operation, and a torque limit value for preventing the current from being applied beyond the maximum allowable current of the motor 3 are set.
  • the set value is transmitted from the parameter setting unit 11 to the control processing unit 8 in the initial communication sequence when the controller 1 and the motor control device 2 are powered on. Further, the parameter setting state by the parameter setting unit 11 and the contents of the operation state of the motor 3 are notified to the operator via the display unit 10.
  • FIG. 2 models the motor control processing in the motor control device 2 as a block diagram of feedback control by proportional control, and models the processing by the control processing unit 8, the motor 3 and the detector 4 of FIG. .
  • s represents a Laplace operator.
  • the position gain Kp and the speed gain Kv are control gains used in the control processing unit 8.
  • the position gain block 21 corresponds to the process in the position control unit 81
  • the speed gain block 22 corresponds to the process in the speed control unit 82.
  • the functions of the position gain block 21, the speed gain block 22 and the differentiator 23 are included in the function of the control processing unit 8.
  • the load 24 and the integrator 25 model the processing in the motor 3 and the detector 4.
  • the position of the motor 3 output from the integrator 25 corresponds to the detection signal output from the detector 4, that is, the rotation angle of the motor 3.
  • the position gain block 21 multiplies the difference between the position command and the position of the motor 3 output by the integrator 25 by the position gain Kp to obtain a speed command, and outputs the speed command.
  • the differentiator 23 differentiates the position of the motor 3 output from the integrator 25 to obtain the speed of the motor 3 and outputs the speed of the motor 3.
  • the speed gain block 22 multiplies the difference between the speed command given from the position gain block 21 and the speed of the motor 3 given from the differentiator 23 by the speed gain Kv to obtain a torque command, and outputs the torque command.
  • blocks corresponding to the current control unit 83 and the inverter circuit 7 of FIG. 1 are omitted.
  • the torque command output from the speed gain block 22 is converted into a torque current corresponding to the torque command and output to the load 24.
  • the load 24 converts the torque current into the speed of the motor 3 using the inertia J.
  • the integrator 25 integrates the speed output from the load 24 to determine and output the position of the motor 3.
  • the transfer characteristic of the control system shown in FIG. 2 is expressed by the following formula (1).
  • the functions of the controller 1 or the motor control device 2 are a CPU (Central Processing Unit) 51, a memory 52, an interface 53, and a dedicated circuit 54 as shown in FIG. It is realized by.
  • a part of the functions of the controller 1 or the motor control device 2 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in the memory 52.
  • the CPU 51 implements the functions of each unit by reading and executing the program stored in the memory 52. That is, the controller 1 or the motor control device 2 stores a program that results in the step of executing the operation of the controller 1 or the motor control device 2 when the function of each unit is executed by the computer.
  • the memory 52 is provided.
  • the memory 52 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Nonvolatile Memory, or an EEPROM (Electrically Erasable Memory)
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Nonvolatile Memory
  • EEPROM Electrically Erasable Memory
  • a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital Versatile Disk) are applicable.
  • the CPU 51 of the controller 1 realizes the functions of the command generation unit 6 and the parameter setting unit 11 by reading and executing the program stored in the memory 52.
  • the interface 53 of the controller 1 has a function for transmitting and receiving signals to and from the motor control device 2.
  • a specific example of the dedicated circuit 54 of the controller 1 is a processing circuit of the operation unit 5 and the display unit 10.
  • the CPU 51 of the motor control device 2 implements the functions of the control processing unit 8 and the inertia estimation unit 9 by reading and executing a program stored in the memory 52.
  • the interface 53 of the motor control device 2 has a function for transmitting and receiving signals to and from the controller 1.
  • a specific example of the dedicated circuit 54 of the motor control device 2 is the inverter circuit 7.
  • controller 1 or the motor control device 2 can realize the functions described above by hardware, software, firmware, or a combination thereof.
  • Embodiment 1 a specific processing method of inertia estimation in Embodiment 1 will be described with reference to FIG.
  • the command generation unit 6 stops outputting a normal position command to the motor control device 2 (step S101).
  • the parameter setting unit 11 sets a torque command limit value for limiting the torque command generated by the motor 3 during the estimation of the inertia in the self-excited vibration generation state in the speed control unit 82 (step S102).
  • the parameter setting unit 11 further changes the set value of the control gain in the control processing unit 8 (step S103). Specifically, in step S103, the parameter setting unit 11 decreases the value of the speed gain Kv used by the speed control unit 82 or increases the value of the position gain Kp used by the position control unit 81. Change the set value.
  • the inertia estimation unit 9 determines whether self-excited vibration has occurred in the motor 3 by the parameter setting by the parameter setting unit 11 (step S104). Specifically, the inertia estimation unit 9 determines whether self-excited vibration has occurred based on data obtained from the control processing unit 8. When the self-excited vibration has not occurred (step S104: No), the parameter setting unit 11 repeatedly performs the process of step S103. Therefore, the parameter setting unit 11 changes the set value of the control gain stepwise until self-excited vibration occurs. As a result, the set value of the control gain is decreased or increased stepwise until self-excited vibration occurs.
  • step S104 When self-excited vibration has occurred (step S104: Yes), the inertia estimation unit 9 executes an inertia estimation process (step S105). That is, the inertia estimation unit 9 estimates the inertia of the motor 3 in a state where the self-excited vibration is generated in the motor 3.
  • the limit value is set for the torque command in a state where the self-excited vibration of the frequency f shown in the mathematical formula (2) is generated
  • the vibration of the torque command having a rectangular wave shape as shown in FIG. 5 is generated.
  • the torque current input to the motor 3 also vibrates in the same waveform as the torque command.
  • the inertia estimation unit 9 performs inertia estimation in a state where the speed and torque command of the motor 3 have a steady waveform.
  • the inertia estimation unit 9 calculates the acceleration of the motor 3 based on the speed of the motor 3 output from the differentiator 23. Specifically, the acceleration when the speed of the motor 3 is accelerating or decelerating at a constant inclination as described above is obtained. And the inertia estimation part 9 estimates the inertia J of the motor 3 by the calculation which divides the value of the torque command which the speed control part 82 outputs with the acceleration of the motor 3 obtained as mentioned above. That is, the inertia estimation unit 9 can easily estimate the inertia J by calculation using the speed and torque command of the motor 3 obtained from the control processing unit 8.
  • the calculation for inertia estimation by the inertia estimation unit 9 is a value in which the absolute value of the rectangular wave torque command shown in FIG. 5 is the torque command limit value and the acceleration of the motor 3 is constant. It is preferable to execute in a state where
  • step S105 if inertia estimation is executed in a state where a mechanical load is connected to the motor 3, the inertia of the motor 3 including the mechanical system is obtained.
  • inertia estimation is executed in a state where no mechanical load is connected to the motor 3, the inertia of the motor 3 alone is obtained.
  • the parameter setting unit 11 After the inertia estimation process (step S105), the parameter setting unit 11 returns the parameter values used in the control processing unit 8 set in steps S102 and S103 to the original state where normal operation is possible (step S106). Thus, the inertia estimation operation can be completed.
  • the inertia estimation can be realized only by a simple process such as changing the setting of parameters used in the control processing unit 8 of the motor control device 2. it can. That is, the motor control system 100 realizes the inertia estimation by a simple process only by performing a control gain changing process and a torque command restricting process using a mechanism generally provided in the motor control system. Can do. Thus, the motor control system 100 can realize inertia estimation without mounting a special process or signal pattern for inertia estimation inside the motor control device 2.
  • the calculation process in which the torque command and the acceleration of the motor 3 have a constant value is stably executed in a state where the self-excited vibration of the motor 3 is generated. Perform inertia estimation where possible. That is, since it is possible to estimate inertia using a stationary signal, high-accuracy and stable inertia estimation can be realized.
  • the vibration frequency is adjusted in advance based on the formula (2) by adjusting the control gain setting value.
  • the range of values can be adjusted. Therefore, the motor control system 100 can also adjust the vibration width, which is a value obtained by integrating the speed of the motor 3 being estimated by the vibration period, by controlling both the limit value and the frequency of the torque command. is there.
  • the motor control system 100 can flexibly adjust the vibration for estimating the inertia in accordance with conditions such as the installation location of the moving body of the mechanical device or the stroke length of the moving body.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

モータ制御システム(100)は、機械負荷を駆動するモータ(3)を制御するための指令信号と、モータ(3)に設置された検出器(4)から出力される検出信号と、制御ゲインと、に基づいてトルク指令を生成し、トルク指令に基づいてモータ(3)を制御する制御処理部(8)と、トルク指令の制限値および制御ゲインを設定するパラメータ設定を実行するパラメータ設定部(11)と、検出信号およびトルク指令に基づいて、モータ(3)のイナーシャを推定するイナーシャ推定部(9)と、を備え、イナーシャ推定部(9)は、パラメータ設定によりモータ(3)に自励振動が発生した状態でイナーシャを推定する。

Description

モータ制御システム
 本発明は、工作機械といった産業用機械装置を駆動するモータ制御装置を備えたモータ制御システムに関する。
 産業用機械装置を駆動する装置は、一般に、駆動対象となる移動体に動力を伝えるために機械的な伝達機構を介して接続されるモータと、モータが目標とする運転パターンで動作するようにコントローラから入力される指令信号とモータの位置または速度を検出する検出器の検出信号とに基づいてモータを駆動させるモータ制御装置と、を備える。
 ここで、モータ制御装置においては、駆動対象となる移動体のイナーシャを正確に求めることが望まれる。イナーシャが得られることによる利点は以下の通りである。
 まず、イナーシャを求めることで、機械装置を安定かつ高精度に制御するための、モータ制御装置における位置制御または速度制御の演算を行うためのパラメータである位置ゲインまたは速度ゲインの設定目安を知ることができる。
 また、イナーシャを求めることで、コントローラからモータ制御装置に入力される指令信号の時定数が接続されるモータに対してどの程度の余裕を持っているかを判断することができるため、最適な時定数で動作させることができる。
 これに対し、従来のモータ制御装置においては、モータが運転している際の発生トルクTと、検出器で観測される速度フィードバックから演算できる加速度aと、から
 J=T/a
の関係式に基づいてイナーシャJを推定する。ここでトルクTは、モータに印加される電流Iとトルク定数Ktとの積であり、モータの速度フィードバックと電流検出結果から演算することができる。
 しかしながら、イナーシャを簡易な処理でかつ高精度に推定することは容易ではないといった問題があった。
 上記の問題を解決するために、特許文献1は、モータ制御装置におけるトルク指令に対して正弦波状の信号を印加した上で、上述した速度フィードバックとモータに印加される電流とを観測し、イナーシャ推定を行うモータ制御装置を提案している。
特開2010-148178号公報
 しかしながら上記の特許文献1に開示された従来技術においては、機械装置を通常運転させる上では使用しない推定用の運転パターンを制御装置に記憶させておく必要があり、手間がかかるといった問題があった。
 また、特許文献1に開示された従来技術においては、周期的な信号の最大値および最小値を取得する必要があり、適正な値を取得できないと推定精度が悪化するといった問題があった。また、この点について、特許文献1は、絶対値化した信号に変換した上で平均化する処理を行うといった解決方法を併せて開示するが、処理がより複雑化するといった問題があった。
 本発明は、上記に鑑みてなされたものであって、簡易かつ高精度で安定したイナーシャ推定を実現することが可能なモータ制御システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、機械負荷を駆動するモータを制御するための指令信号と、モータに設置された検出器から出力される検出信号と、制御ゲインと、に基づいてトルク指令を生成し、トルク指令に基づいてモータを制御する制御処理部と、トルク指令の制限値および制御ゲインを設定するパラメータ設定を実行するパラメータ設定部と、検出信号およびトルク指令に基づいて、モータのイナーシャを推定するイナーシャ推定部と、を備える。イナーシャ推定部は、パラメータ設定によりモータに自励振動が発生した状態でイナーシャを推定することを特徴とする。
 本発明にかかるモータ制御システムは、簡易かつ高精度で安定したイナーシャ推定を実現することが可能になるという効果を奏する。
本発明の実施の形態1にかかるモータ制御システムの構成を示すブロック図 実施の形態1にかかるモータ制御装置が実行するモータ制御処理をモデル化したブロック線図 実施の形態1にかかるコントローラまたはモータ制御装置の機能をコンピュータで実現する場合のハードウェア構成を示す図 実施の形態1におけるイナーシャ推定時における処理を示すフローチャート 実施の形態1における自励振動発生時のモータの速度およびトルク指令を示す波形図
 以下に、本発明の実施の形態にかかるモータ制御システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 以下、本発明の実施の形態1にかかるモータ制御システム100について図1から図5を用いて説明する。図1は、本発明の実施の形態1にかかるモータ制御システム100の構成を示すブロック図である。図2は、実施の形態1にかかるモータ制御装置2が実行するモータ制御処理をモデル化したブロック線図である。図3は、実施の形態1にかかるコントローラ1またはモータ制御装置2の機能をコンピュータで実現する場合のハードウェア構成を示す図である。図4は、実施の形態1におけるイナーシャ推定時における処理を示すフローチャートである。図5は、実施の形態1における自励振動発生時のモータの速度およびトルク指令を示す波形図である。
 図1において、モータ制御システム100は、位置指令を生成するコントローラ1と、図示しない機械負荷を駆動するモータ3に適切な電力を与えるサーボアンプであるモータ制御装置2と、与えられた電力をモータ軸の回転動力に変換するモータ3と、モータ3に設置されている検出器4と、を備えている。位置指令はモータ3を制御するための指令信号であり、コントローラ1は、生成した位置指令をモータ制御装置2に送信する。検出器4の具体例はエンコーダであり、検出器4が出力する検出信号は、モータ制御装置2に送信される。
 コントローラ1は、操作者の操作を受け付け、受け付けた内容、具体的には、操作者が入力したプログラムに記載されるプログラム指令に基づいて、モータ制御装置2に送信するための位置指令を生成する。検出器4は、モータ3の回転角度を検出し、検出値を検出信号として出力する。モータ制御装置2は、コントローラ1で生成された位置指令および検出器4の検出信号に基づいてモータ3に適切な電力を与える。
 コントローラ1は、操作者の操作を受け付ける操作部5と、モータ制御装置2に送信する位置指令を生成する指令生成部6と、後述するモータ制御装置2の制御処理部8で使用するパラメータに対する設定を行うパラメータ設定部11と、操作者に情報を通知する表示部10と、を備えている。制御処理部8で使用するパラメータには後述するトルク指令の制限値および制御ゲインが含まれる。パラメータの値を設定することをパラメータ設定と呼ぶ。したがって、パラメータ設定部11は、パラメータ設定を実行する。
 モータ制御装置2は、モータ3に電力を供給するインバータ回路7と、コントローラ1から受信した位置指令に基づいてインバータ回路7に電力指令を送る制御処理部8と、モータ3のイナーシャの推定処理を行うイナーシャ推定部9と、を備えている。制御処理部8は、位置指令に基づいて位置制御演算を実行して速度指令を出力する位置制御部81と、速度指令に基づいて速度制御演算を実行してトルク指令を出力する速度制御部82と、トルク指令に基づいて電力指令を出力する電流制御演算を実行する電流制御部83と、を備える。
 通常の運転時は、操作者が操作部5に入力した運転条件に基づいて、指令生成部6がモータ3に所望の動作を行わせるための位置指令を生成して、生成された位置指令を制御処理部8に送信する。制御処理部8は、受信した位置指令と検出器4から受信したモータ3の回転角度情報とに基づいて、フィードバック制御演算を実行して電力指令を生成する。フィードバック制御演算は、位置制御部81による位置制御演算と、速度制御部82による速度制御演算と、電流制御部83による電流制御演算と、を含んでいる。インバータ回路7は、制御処理部8から与えられた電力指令に基づいて、入力電圧および入力電流を周波数変換してモータ3に適切な電力を供給する。これにより、操作者が要求する運転を実現する。
 ここで、通常の運転時に必要な制御処理部8における演算用の各制御ゲインの設定値、モータ3の最大許容電流以上に電流が印加されることを防止するためのトルク制限値、といったパラメータの設定値は、コントローラ1およびモータ制御装置2の電源投入時における初期通信シーケンスにおいてパラメータ設定部11から制御処理部8に送信される。また、パラメータ設定部11によるパラメータの設定状態およびモータ3の動作状態の内容は、表示部10を介して操作者に通知される。
 図2は、モータ制御装置2におけるモータ制御処理を比例制御によるフィードバック制御のブロック図としてモデル化したものであり、図1の制御処理部8、モータ3および検出器4による処理をモデル化している。sはラプラス演算子を示している。位置ゲインKpおよび速度ゲインKvは制御処理部8で使用される制御ゲインである。
 位置ゲインブロック21は位置制御部81における処理に対応し、速度ゲインブロック22は速度制御部82における処理に対応する。位置ゲインブロック21、速度ゲインブロック22および微分器23の機能は、制御処理部8の機能に含まれる。負荷24および積分器25はモータ3および検出器4における処理をモデル化している。積分器25が出力するモータ3の位置は、検出器4が出力する検出信号すなわちモータ3の回転角度に相当する。
 位置ゲインブロック21は、位置指令と積分器25が出力するモータ3の位置との差分に位置ゲインKpを乗じて速度指令を求めて、速度指令を出力する。微分器23は、積分器25が出力するモータ3の位置を微分してモータ3の速度を求めて、モータ3の速度を出力する。速度ゲインブロック22は、位置ゲインブロック21から与えられた速度指令と微分器23から与えられたモータ3の速度との差分に速度ゲインKvを乗じてトルク指令を求めて、トルク指令を出力する。図2では、図1の電流制御部83およびインバータ回路7に対応するブロックは省略されている。したがって、速度ゲインブロック22が出力するトルク指令はトルク指令に対応するトルク電流に変換されて負荷24に出力される。負荷24は、イナーシャJを用いてトルク電流をモータ3の速度に変換する。積分器25は、負荷24が出力した速度を積分して、モータ3の位置を求めて出力する。
 図2に示す制御系の伝達特性は、以下の数式(1)で表わされる。
Figure JPOXMLDOC01-appb-M000001
 ゲイン設定の変更による振動励起について説明する。図2に示す制御系において、速度ゲインKvの値を減少させていくまたは位置ゲインKpの値を増大させていくと、位相遅れによる不安定化が生じ、フィードバックによるモータ3の自励振動が発生することになる。自励振動は、位置指令が存在しなくても制御ゲインを上記のように変化させることにより発生する。自励振動により、トルク指令も同じ周波数fで振動する。また、自励振動の周波数fは、以下の数式(2)で表わされる。
Figure JPOXMLDOC01-appb-M000002
 コントローラ1またはモータ制御装置2の機能をコンピュータで実現する場合、コントローラ1またはモータ制御装置2の機能は、図3に示すようにCPU(Central Processing Unit)51、メモリ52、インタフェース53および専用回路54により実現される。コントローラ1またはモータ制御装置2の機能の一部は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ52に格納される。CPU51は、メモリ52に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、コントローラ1またはモータ制御装置2は、各部の機能がコンピュータにより実行されるときに、コントローラ1またはモータ制御装置2の動作を実施するステップが結果的に実行されることになるプログラムを格納するためのメモリ52を備える。また、これらのプログラムは、コントローラ1またはモータ制御装置2の手順または方法をコンピュータに実行させるものであるともいえる。ここで、メモリ52とは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)といった不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)が該当する。
 コントローラ1のCPU51は、メモリ52に格納されたプログラムを読み出して実行することによって、指令生成部6およびパラメータ設定部11の機能を実現する。コントローラ1のインタフェース53は、モータ制御装置2と信号を送受信するための機能を有している。コントローラ1の専用回路54の具体例は、操作部5および表示部10の処理回路である。
 モータ制御装置2のCPU51は、メモリ52に格納されたプログラムを読み出して実行することによって、制御処理部8およびイナーシャ推定部9の機能を実現する。モータ制御装置2のインタフェース53は、コントローラ1と信号を送受信するための機能を有している。モータ制御装置2の専用回路54の具体例は、インバータ回路7である。
 このようにコントローラ1またはモータ制御装置2は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
 以下に、実施の形態1におけるイナーシャ推定の具体的な処理方法について図4を用いて説明する。
 まず、指令生成部6は、モータ制御装置2への通常の位置指令の出力を停止する(ステップS101)。次に、パラメータ設定部11は、自励振動の発生状態におけるイナーシャの推定中にモータ3が発生するトルク指令を制限するためのトルク指令の制限値を速度制御部82に設定する(ステップS102)。パラメータ設定部11は、さらに制御処理部8における制御ゲインの設定値を変更する(ステップS103)。ステップS103において、具体的には、パラメータ設定部11は、速度制御部82が使用する速度ゲインKvの値を減少させるまたは位置制御部81が使用する位置ゲインKpの値を増大させることにより制御ゲインの設定値を変更する。
 ステップS103において制御ゲインが変更された後、イナーシャ推定部9は、パラメータ設定部11によるパラメータ設定によりモータ3に自励振動が発生したか否かを判定する(ステップS104)。具体的には、イナーシャ推定部9は、制御処理部8から得たデータに基づいて自励振動が発生したか否かを判定する。自励振動が発生していない場合(ステップS104:No)、パラメータ設定部11は、ステップS103の処理を繰り返し行う。従って、自励振動が発生するまで、パラメータ設定部11は、制御ゲインの設定値を段階的に変更する。その結果、自励振動が発生するまで、制御ゲインの設定値は、段階的に減少または増大させられる。
 自励振動が発生した場合(ステップS104:Yes)、イナーシャ推定部9は、イナーシャ推定処理を実行する(ステップS105)。すなわち、イナーシャ推定部9は、モータ3に自励振動が発生した状態でモータ3のイナーシャの推定を行う。数式(2)に示した周波数fの自励振動が発生している状態においてトルク指令に対して制限値が設定されていた場合、図5に示すような矩形波状のトルク指令の振動が発生する。トルク指令の振動が発生した場合、モータ3に入力されるトルク電流もトルク指令と同じ波形になって振動する。トルク指令の絶対値が一定の値であるトルク指令の制限値になっているとき、モータ3の速度は一定の傾きで加速または減速するので、トルク指令の振動が発生したとき、モータ3の速度は一定の傾きでの加減速を繰り返すこととなる。図5においてモータ3の速度およびトルク指令が定常的な波形になった状態でイナーシャ推定部9はイナーシャ推定を実行する。
 具体的には、イナーシャ推定部9は、微分器23が出力するモータ3の速度に基づいてモータ3の加速度を求める。具体的には、モータ3の速度が上述したように一定の傾きで加速または減速しているときの加速度を求める。そして、イナーシャ推定部9は、速度制御部82が出力するトルク指令の値を、上記のようにして得られたモータ3の加速度で除算する演算によりモータ3のイナーシャJを推定する。すなわち、イナーシャ推定部9は、制御処理部8から得たモータ3の速度およびトルク指令を用いた演算により簡易にイナーシャJを推定することができる。このように、イナーシャ推定部9によるイナーシャ推定のための演算は、図5に示されている矩形波状のトルク指令の絶対値がトルク指令の制限値になっていてモータ3の加速度が一定の値をとっている状態で実行するのが好適である。
 なお、ステップS105で、モータ3に機械負荷が接続された状態で、イナーシャ推定が実行された場合は、機械系を含めたモータ3のイナーシャが求められる。モータ3に機械負荷が接続されていない状態で、イナーシャ推定が実行された場合は、モータ3単体のイナーシャが求められることになる。
 イナーシャ推定処理(ステップS105)の後、パラメータ設定部11は、ステップS102およびS103で設定した制御処理部8で使用するパラメータの値を通常の運転が可能な元の状態に戻す(ステップS106)。以上により、イナーシャ推定の動作を完了させることができる。
 以上、説明したように、実施の形態1におけるモータ制御システム100においては、モータ制御装置2の制御処理部8で使用するパラメータの設定を変更するといった簡易な処理のみでイナーシャ推定を実現することができる。すなわち、モータ制御システム100は、モータ制御システムが一般的に備える機構を利用して、制御ゲインの変更処理およびトルク指令への制限処理を行うのみで、簡易な処理でイナーシャの推定を実現することができる。これにより、モータ制御システム100は、イナーシャ推定用の特殊な処理または信号パターンをモータ制御装置2の内部に実装することなく、イナーシャの推定を実現することができる。
 また、実施の形態1におけるモータ制御システム100においては、モータ3の自励振動が発生している状態において、トルク指令およびモータ3の加速度が一定の値をとっている演算処理が安定して実行可能な状況においてイナーシャ推定を実行する。すなわち、定常的な信号を用いてイナーシャを推定することが可能となるので、高精度で安定したイナーシャ推定を実現することができる。
 また、モータ3を含む機械装置のイナーシャの変動は機械の仕様に応じてある程度の幅以内に収まるため、制御ゲインの設定値を調整することにより、数式(2)に基づいて予め振動の周波数の値の範囲を調整することができる。したがって、モータ制御システム100は、トルク指令の制限値と周波数とを共に制御することで、イナーシャ推定中のモータ3の速度を振動周期で積分した値である振動幅についても調整することが可能である。その結果、モータ制御システム100は、機械装置の移動体における設置場所または移動体のストローク長といった条件に合わせてイナーシャ推定のための振動を柔軟に調整することも可能である。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 コントローラ、2 モータ制御装置、3 モータ、4 検出器、5 操作部、6 指令生成部、7 インバータ回路、8 制御処理部、9 イナーシャ推定部、10 表示部、11 パラメータ設定部、21 位置ゲインブロック、22 速度ゲインブロック、23 微分器、24 負荷、25 積分器、51 CPU、52 メモリ、53 インタフェース、54 専用回路、81 位置制御部、82 速度制御部、83 電流制御部、100 モータ制御システム。

Claims (6)

  1.  機械負荷を駆動するモータを制御するための指令信号と、前記モータに設置された検出器から出力される検出信号と、制御ゲインと、に基づいてトルク指令を生成し、前記トルク指令に基づいて前記モータを制御する制御処理部と、
     前記トルク指令の制限値および前記制御ゲインを設定するパラメータ設定を実行するパラメータ設定部と、
     前記検出信号および前記トルク指令に基づいて、前記モータのイナーシャを推定するイナーシャ推定部と、
     を備え、
     前記イナーシャ推定部は、前記パラメータ設定により前記モータに自励振動が発生した状態で前記イナーシャを推定する
     ことを特徴とするモータ制御システム。
  2.  前記イナーシャ推定部は、前記トルク指令が矩形波状になっている状態で前記イナーシャを推定する
     ことを特徴とする請求項1に記載のモータ制御システム。
  3.  前記イナーシャ推定部は、前記トルク指令の絶対値が前記制限値になっている状態で前記イナーシャを推定する
     ことを特徴とする請求項1または2に記載のモータ制御システム。
  4.  前記イナーシャ推定部は、前記検出信号から求めた前記モータの加速度および前記トルク指令に基づいて、前記イナーシャを推定する
     ことを特徴とする請求項1から3のいずれか1つに記載のモータ制御システム。
  5.  前記制御ゲインは、位置ゲインまたは速度ゲインである
     ことを特徴とする請求項1から4のいずれか1つに記載のモータ制御システム。
  6.  前記パラメータ設定部は、前記自励振動が発生するまで、前記制御ゲインを段階的に変更する
     ことを特徴とする請求項1から5のいずれか1つに記載のモータ制御システム。
PCT/JP2016/072138 2016-07-28 2016-07-28 モータ制御システム WO2018020636A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680032344.8A CN107873122B (zh) 2016-07-28 2016-07-28 电动机控制系统
PCT/JP2016/072138 WO2018020636A1 (ja) 2016-07-28 2016-07-28 モータ制御システム
US15/564,109 US20180262153A1 (en) 2016-07-28 2016-07-28 Motor control system
JP2017507885A JP6161854B1 (ja) 2016-07-28 2016-07-28 モータ制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072138 WO2018020636A1 (ja) 2016-07-28 2016-07-28 モータ制御システム

Publications (1)

Publication Number Publication Date
WO2018020636A1 true WO2018020636A1 (ja) 2018-02-01

Family

ID=59308932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072138 WO2018020636A1 (ja) 2016-07-28 2016-07-28 モータ制御システム

Country Status (4)

Country Link
US (1) US20180262153A1 (ja)
JP (1) JP6161854B1 (ja)
CN (1) CN107873122B (ja)
WO (1) WO2018020636A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220170809A1 (en) * 2019-04-15 2022-06-02 Covidien Lp Method of calibrating torque sensors of instrument drive units of a surgical robot
CN113748597A (zh) * 2019-04-16 2021-12-03 三菱电机株式会社 电动机控制装置
CN111745646B (zh) * 2020-06-10 2021-12-24 杭州凯尔达机器人科技股份有限公司 机器人伺服电机增益参数控制方法及系统
CN113500454B (zh) * 2021-07-21 2022-09-20 新代科技(苏州)有限公司 一种智慧主轴加减速的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328778A (ja) * 1992-05-19 1993-12-10 Fuji Electric Co Ltd ブラシレスモータのイナーシャ推定装置
JP2002078369A (ja) * 2000-08-22 2002-03-15 Yokogawa Electric Corp サーボモータ制御装置の調整方法およびその装置
JP2005080333A (ja) * 2003-08-28 2005-03-24 Yaskawa Electric Corp 負荷イナーシャ算出方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208165A (ja) * 1989-02-06 1990-08-17 Fuji Heavy Ind Ltd 電動式パワステアリング装置の制御装置
US6060854A (en) * 1998-11-12 2000-05-09 Vickers, Inc. Method and apparatus for compensating for windup in a machine
US6470225B1 (en) * 1999-04-16 2002-10-22 Siemens Energy & Automation, Inc. Method and apparatus for automatically tuning feedforward parameters
DE69934251T2 (de) * 1999-10-20 2007-07-05 Makino Milling Machine Co. Ltd. Nc-werkzeugmaschine und verfahren zur steuerung der nc-werkzeugmaschine
JP2005214711A (ja) * 2004-01-28 2005-08-11 Matsushita Electric Ind Co Ltd 制御対象の機械特性の測定装置及び測定方法
US7531973B2 (en) * 2005-05-31 2009-05-12 Rockwell Automation Technologies, Inc. Wizard for configuring a motor drive system
WO2008087893A1 (ja) * 2007-01-17 2008-07-24 Panasonic Corporation サーボモータの制御装置および制御方法
CN102893514B (zh) * 2010-05-18 2015-10-14 三菱电机株式会社 马达控制装置
JP5209810B1 (ja) * 2011-07-27 2013-06-12 ファナック株式会社 イナーシャと摩擦係数とばね定数を同時に推定する機能を備える電動機の制御装置
CN103115101A (zh) * 2013-02-05 2013-05-22 湖北三环离合器有限公司 新能源汽车串联减振器总成
CN105429540B (zh) * 2015-12-08 2017-09-26 南京埃斯顿自动控制技术有限公司 一种基于模型跟踪控制的交流伺服电机振动抑制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328778A (ja) * 1992-05-19 1993-12-10 Fuji Electric Co Ltd ブラシレスモータのイナーシャ推定装置
JP2002078369A (ja) * 2000-08-22 2002-03-15 Yokogawa Electric Corp サーボモータ制御装置の調整方法およびその装置
JP2005080333A (ja) * 2003-08-28 2005-03-24 Yaskawa Electric Corp 負荷イナーシャ算出方法

Also Published As

Publication number Publication date
JPWO2018020636A1 (ja) 2018-07-26
CN107873122A (zh) 2018-04-03
US20180262153A1 (en) 2018-09-13
CN107873122B (zh) 2019-05-07
JP6161854B1 (ja) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6161854B1 (ja) モータ制御システム
JP6493260B2 (ja) モータ制御装置、モータ制御方法、制御システム、情報処理プログラム、および記録媒体
CN109085802B (zh) 电动机的控制装置
JP4367058B2 (ja) モータ制御装置
JP2016194761A (ja) サーボモータ制御装置及び衝突検出方法
JP2009303432A (ja) モータによる位置制御装置
EP3355140B1 (en) Performing position control of a controlled object
JPWO2007096993A1 (ja) モータ制御装置
JP2010079845A (ja) 数値制御装置
JP6453576B2 (ja) モータシステム
JP5623757B2 (ja) モータの制御方法及び装置
JPWO2015129207A1 (ja) 電動機の制御装置に用いられる制御パラメータの調整方法、および、この制御パラメータの調整方法が用いられる電動機の制御装置
JP2018139044A (ja) サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム
JP2004147368A (ja) モータの位置制御装置
JP2011176907A5 (ja)
JP3552988B2 (ja) サーボ制御方法
US6949905B2 (en) Servo control system and method of setting
JP4367411B2 (ja) モータの制御装置
JP2018092319A (ja) サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム
JP6930868B2 (ja) サーボ制御装置、サーボ制御方法及びシステム
JP5151994B2 (ja) 慣性モーメント同定装置とその同定方法、ならびにその同定装置を備えたモータ制御装置
JP2018060333A (ja) サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム
WO2015079499A1 (ja) 機械装置の設計改善作業を支援する方法及び装置
JP2009038942A (ja) 負荷イナーシャ同定方法及びサーボモータ制御装置
JP5660482B2 (ja) 工作機械の送り駆動系の制御方法及び制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017507885

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15564109

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910539

Country of ref document: EP

Kind code of ref document: A1