WO2018020531A1 - Polishing method and polishing device for glass substrate - Google Patents

Polishing method and polishing device for glass substrate Download PDF

Info

Publication number
WO2018020531A1
WO2018020531A1 PCT/JP2016/003476 JP2016003476W WO2018020531A1 WO 2018020531 A1 WO2018020531 A1 WO 2018020531A1 JP 2016003476 W JP2016003476 W JP 2016003476W WO 2018020531 A1 WO2018020531 A1 WO 2018020531A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
polishing
chemical polishing
liquid
chemical
Prior art date
Application number
PCT/JP2016/003476
Other languages
French (fr)
Japanese (ja)
Inventor
岩夫 住母家
由夫 伊東
マウロ マサル 中村
ロニルド ぺレイラ 日高
光明 田中
Original Assignee
株式会社 電硝エンジニアリング
ジャパンクリエイト 株式会社
アイシーエム 株式会社
株式会社 常盤製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 電硝エンジニアリング, ジャパンクリエイト 株式会社, アイシーエム 株式会社, 株式会社 常盤製作所 filed Critical 株式会社 電硝エンジニアリング
Priority to PCT/JP2016/003476 priority Critical patent/WO2018020531A1/en
Priority to JP2018530199A priority patent/JP6766147B2/en
Priority to TW106123497A priority patent/TW201816478A/en
Publication of WO2018020531A1 publication Critical patent/WO2018020531A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Definitions

  • the present invention relates to a polishing apparatus for polishing and ultra-thinning a glass substrate.
  • the surface of the glass substrate used for a liquid crystal display or an organic EL display is chemically polished until the glass substrate becomes thin, and the polishing efficiency is improved.
  • the present invention relates to a polishing method and a polishing apparatus for a glass substrate for increasing the height.
  • polishing techniques include a method of physically polishing an object to be polished by a polishing machine, a method of electrochemically polishing an object to be polished using electricity, and a polishing using a chemical reaction by a chemical substance. There are methods.
  • chemical polishing is a method of polishing by using a chemical substance to dissolve the surface of the object to be polished.
  • the object to be processed is placed in a solution tank filled with a hydrofluoric acid solution and immersed in the solution. It is often done to dissolve the surface.
  • bubbling a method of circulating a solution by applying bubbles to the object to be polished
  • chemical polishing is widely used as a method for polishing glass substrates such as liquid crystal displays and organic EL displays, and thin and light liquid crystal displays and glass substrates for organic EL displays can be manufactured by chemical polishing. It has become.
  • liquid crystal displays are widely used as displays used in TVs and personal computers, and high-quality, high-speed, large-capacity, thin-film and light-weight are being achieved.
  • technologies such as tablet terminals and smartphones have also advanced, and it is required to produce and deliver thin and light liquid crystal display components as displays used for these.
  • the current situation is that liquid crystal displays are required to be made thinner.
  • the uniformity of the thickness of the display substrate after chemical polishing is required to be uniform in the region of the end of the substrate, and a narrow frame of the display product is also required.
  • the chemical polishing technique using bubbling employs a batch processing method in which a plurality of substrates are simultaneously polished, and a mark of a jig for holding the substrate is a region at the end of the substrate. Therefore, there is a problem that it cannot be said that it can sufficiently cope with the demand for a narrow frame.
  • JP2013-252984A As a technique for solving such problems, there is a technique disclosed in JP2013-252984A.
  • a plurality of transport rollers configured to transport the glass substrate in the horizontal direction
  • a processing chamber configured to perform a chemical polishing process on the glass substrate transported by the plurality of transport rollers
  • the processing chamber has at least a processing tank and a recovery tank, and the processing tank is configured such that the chemical polishing liquid overflows at a position higher than the plurality of transport rollers, and the recovery tank is a chemical that overflows from the processing tank.
  • Techniques relating to chemical polishing configured to recover a polishing liquid are disclosed.
  • the allowable range of uniformity of the plate thickness also decreases, but there may be variations in the plate thickness on the lower surface side where the polishing liquid is blocked by an apparatus such as a roller transport.
  • the transport speed is increased, the substrate may vibrate due to variations in the feed speed generated during transport and the slippage between the roller and the substrate.
  • the substrate becomes minute around the substrate. There is a possibility that defects such as cracks are likely to occur.
  • the effect of preventing cracks and the like can be expected by reducing the pitch of the roller conveyance, but since the area where the polishing liquid is blocked increases, the uniformity of the thickness after polishing on the lower surface side of the substrate decreases. There was a point.
  • Japanese Patent Application Laid-Open No. 2008-13389 exists as a method for arranging the substrates vertically.
  • an etching apparatus capable of etching by discharging a shower-like hydrofluoric acid solution onto a glass substrate and an etching process using the etching apparatus, the spray angle of the shower, the interval between the shower nozzle and the substrate, the substrate
  • the swing amplitude length of the substrate it is possible to uniformly supply the shower into the substrate surface, thereby suppressing the adhesion of fine particles (insoluble matter with respect to hydrofluoric acid) to the substrate surface.
  • a technique capable of realizing uniform etching is disclosed.
  • the above problem of blocking the polishing liquid by a conveying device such as a roller is solved, but the polishing liquid flows down while touching the substrate surface set in the vertical direction.
  • the flow rate of the falling surface is slow and the flow rate is constant, but since the polishing liquid dripped by shower spray is added one after another under the substrate, the amount of liquid increases and the flow rate increases.
  • the polishing rate in the lower region of the substrate is increased, and the plate thickness varies between the upper and lower sides.
  • a polishing component having an action of chemically polishing a glass substrate and a thickener having an action of increasing the solution viscosity are both contained at a constant concentration, and the viscosity is 5 ⁇ 10 ⁇ 1 to 5 ⁇ .
  • a technique of applying a predetermined amount of a polishing liquid in a range of 10 5 Pa ⁇ s on a glass substrate to advance a flattening reaction of the glass substrate, and cleaning the polishing liquid subjected to the flattening reaction after a predetermined time has elapsed. Is disclosed.
  • the polishing liquid having a viscosity range of 5 ⁇ 10 ⁇ 1 to 5 ⁇ 10 5 Pa ⁇ s prevents dripping, and it is possible to prevent changes in the plate thickness between the upper and lower sides of the substrate.
  • the technique is not necessarily sufficient.
  • the object of the present invention is to enable the surface to be chemically polished so that a glass substrate used in a liquid crystal display or an organic EL display becomes a uniform thin film, and to generate jig traces.
  • An object of the present invention is to provide a glass substrate polishing method and polishing apparatus with high polishing efficiency, which suppresses the risk of breakage at the same time.
  • a glass substrate polishing method includes a glass substrate polishing method for uniformly polishing a surface of a glass substrate used for a liquid crystal display or an organic EL display, wherein the glass substrate is suspended vertically.
  • a cleaning process for cleaning the glass substrate that has been melt-polished after a lapse of time, and the chemical polishing process is performed in order to prevent the occurrence of uneven spraying of the chemical polishing liquid due to dripping and the remaining of the glass substrate.
  • the spray nozzle on the side is arranged so that the vertical interval or the horizontal interval is narrower than the lower end of the glass substrate, a large amount of chemical polishing liquid is injected to the upper end side, and the lower end side is less It is configured to injection.
  • the glass substrate polishing method according to the present invention is a glass substrate polishing method for uniformly polishing the surface of a glass substrate used in a liquid crystal display or an organic EL display, and the glass substrate is suspended and fixed vertically.
  • An installation process a chemical polishing process for continuously spraying and applying a chemical polishing liquid for melting and polishing the glass substrate to both side surfaces of the glass substrate from a plurality of spray nozzles, and cleaning the melt-polished glass substrate
  • the chemical polishing step is performed by chemical polishing sprayed from a plurality of spray nozzles arranged at equal intervals in order to prevent the occurrence and non-uniformity of spray coating of chemical polishing liquid due to dripping.
  • the amount of liquid is less than the amount of chemical polishing liquid sprayed from the spray nozzle on the upper end side of the glass substrate, and less than the amount of chemical polishing liquid sprayed from the spray nozzle on the lower end side of the glass substrate. It is also the configuration to Cum.
  • the glass substrate is composed of a glass substrate for liquid crystal display in which liquid crystal is sealed in a gap between a CF substrate and a TFT substrate, or a glass substrate for organic EL display.
  • the chemical polishing liquid is configured to contain one or a plurality of melt polishing components selected from the group consisting of hydrofluoric acid, sulfuric acid, and hydrochloric acid.
  • the glass substrate polishing method is configured to block and remove latent scratches on the glass substrate by spraying and applying a chemical polishing solution containing sulfuric acid.
  • the glass substrate polishing apparatus is a glass substrate polishing apparatus for uniformly polishing the surface of a glass substrate used for a liquid crystal display or an organic EL display. And a plurality of spray nozzles for continuously spraying and applying a chemical polishing liquid for melt-polishing the glass substrate vertically from the glass substrate, and the melt-polished after the elapse of a predetermined melt-polishing time Cleaning means for cleaning the glass substrate, and the spray nozzle is configured to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to liquid dripping, in order to prevent vertical or horizontal spacing of the spray nozzle on the upper end side of the glass substrate. Is arranged so as to be narrower than the vertical interval or horizontal interval of the injection nozzle at the lower end of the glass substrate, and a large amount of chemical polishing liquid is injected to the upper end side, and the lower end side It is configured to amount injection.
  • the glass substrate polishing apparatus is a glass substrate polishing apparatus for uniformly polishing the surface of a glass substrate used for a liquid crystal display or an organic EL display. And a plurality of spray nozzles for continuously spraying and applying a chemical polishing liquid for melt-polishing the glass substrate vertically from the glass substrate, and the melt-polished after the elapse of a predetermined melt-polishing time
  • the spray nozzle is sprayed from a plurality of spray nozzles arranged at equal intervals in order to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to liquid dripping.
  • the amount of the chemical polishing liquid to be injected from the injection nozzle on the lower end side of the glass substrate is larger than the amount of the chemical polishing liquid injected from the injection nozzle on the upper end side of the glass substrate. It is also configured to reduce injection amount of the liquid.
  • the installation means includes side fixing means for supporting the left and right edges of the glass substrate, and bottom fixing means for supporting the lower edge of the glass substrate, and the side fixing means covers both surfaces of the glass substrate.
  • the bottom fixing means is formed of a mounting base for mounting the bottom of the glass substrate. It is the composition which becomes.
  • the spray nozzle has a configuration in which the tip ports of the plurality of spray nozzles installed at equal intervals have a large tip diameter of the top nozzle and a small tip diameter of the bottom nozzle.
  • the glass substrate polishing method and polishing apparatus according to the present invention are configured as described in detail above, they have the following effects. 1. Since the chemical polishing liquid is spray-applied from both sides to the glass substrate suspended in the installation process by a plurality of spray nozzles, the chemical polishing liquid can be uniformly applied to the glass substrate. Further, since the vertical interval or the horizontal interval of the spray nozzles on the upper end side of the glass substrate is arranged so as to be narrower than the lower end of the glass substrate, it is possible to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to dripping. . 2.
  • the amount of chemical polishing liquid sprayed from a plurality of spray nozzles is configured to spray the upper end side of the glass substrate more than the amount of the lower end side, thereby preventing the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to dripping. It becomes possible.
  • the glass substrate is a glass substrate for a liquid crystal display or a glass substrate for an organic EL display, the glass substrate used for various displays can be polished. 4). Since the chemical polishing liquid is configured to contain a melt polishing component such as hydrofluoric acid, sulfuric acid, and hydrochloric acid, it can be used from a hydrochloric acid-based polishing liquid having a small specific gravity to a sulfuric acid-based polishing liquid having a large specific gravity.
  • a melt polishing component such as hydrofluoric acid, sulfuric acid, and hydrochloric acid
  • the chemical polishing liquid containing sulfuric acid is applied by spraying, it is possible to enjoy the effect of suppressing polishing in the recesses during polishing against latent scratches and abnormalities (pits) generated on the glass substrate. . 6). Since the plurality of spray nozzles for spraying and applying the chemical polishing liquid from both sides are provided on the glass substrate suspended by the installation means, the chemical polishing liquid can be uniformly applied to the glass substrate. Further, since the vertical interval or the horizontal interval of the spray nozzles on the upper end side of the glass substrate is arranged so as to be narrower than the lower end of the glass substrate, it is possible to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to dripping. . In addition, space saving of the apparatus can be achieved, and the polishing apparatus can be configured by partial modification or correspondence of the conventional polishing apparatus (batch method).
  • the multiple spray nozzles that spray chemical polishing liquid spray the upper end side of the glass substrate more than the amount on the lower end side, so it is possible to prevent the occurrence of uneven spraying of chemical polishing liquid due to liquid dripping and remaining. It becomes. 8). Since the installation means is composed of side fixing means consisting of a shallow groove having a substantially triangular cross section and bottom fixing means consisting of a mounting base on which the bottom of the glass substrate is placed, jig traces caused by chemical polishing are removed. Occurrence can be suppressed.
  • top ends of the plurality of spray nozzles are made larger at the upper end side and smaller at the lower end side, it is possible to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to liquid dripping.
  • FIG. 1 is a flow diagram of a glass substrate polishing method according to the present invention
  • FIG. 2 is a conceptual diagram of a glass substrate polishing apparatus.
  • FIG. 3 is a cross-sectional view of the side surface of the glass substrate
  • FIG. 4 is a side view of the injection nozzle with the installation interval optimized.
  • FIG. 5 is a side view of an injection nozzle that optimizes the injection amount of the polishing liquid, and FIG.
  • a glass substrate polishing method 100 includes a polishing method 100, a chemical polishing step 120, and a cleaning step 130, and the surface of the glass substrate 10 used for a liquid crystal display or an organic EL display. Is a polishing method for polishing at a uniform and uniform thickness.
  • the glass substrate 10 to be polished is first placed in a state where it can be processed in the installation step 110.
  • the installation step 110 is a step of hanging and fixing the glass substrate 10 vertically.
  • the glass substrate 10 has a thickness of 1 to several mm before polishing. Through this process, the glass substrate 10 to be polished is fixed by a jig until polishing is completed.
  • the glass substrate 10 fixedly installed in the installation step 10 is then processed in a chemical polishing step 120 as shown in FIG.
  • the chemical polishing step 120 is a step of melting and polishing the glass substrate 10 with the chemical polishing liquid 200, and is directed to the glass substrate 10 installed vertically from the plurality of jet nozzles 220 over the entire surface from both sides.
  • the glass substrate 10 is melt-polished by spraying 20.
  • the chemical polishing liquid 20 is continuously spray-applied from a plurality of spray nozzles 220 to both side surfaces of the glass substrate 10 for a predetermined time.
  • the sprayed chemical polishing liquid 20 is applied to the glass substrate 10, then flows through the glass substrate 10 and is accumulated in a waste liquid accumulating means (not shown) installed below. As a result, the chemical polishing liquid 20 is always sprayed onto the glass substrate 10 to continue polishing, and efficient chemical polishing can be performed.
  • the chemical polishing process 120 is continuously performed for about 5 to 120 minutes.
  • the processing time is not limited to this, and the process is not continuous. Alternatively, it may be configured to perform processing intermittently (intermittently) at regular intervals.
  • the glass substrate 10 subjected to the chemical polishing process in the chemical polishing process 120 is then processed in the cleaning process 130 shown in FIG.
  • the cleaning step 130 is a step for cleaning and removing the chemical polishing liquid 20 and the reaction product attached to the surface of the glass substrate 10 that has been dissolved and polished. After the elapse of a predetermined melt polishing time in the chemical polishing step 120, the glass substrate 10 that has been melt polished is cleaned. Thereby, the progress of chemical polishing can be interrupted to complete the polishing process.
  • the chemical polishing step 120 and the cleaning step 130 of the glass substrate 10 can be repeatedly performed. Thereby, it is possible to improve the effect of polishing and cleaning the glass substrate 10.
  • both the chemical polishing liquid 20 used in the chemical polishing process 120 and the cleaning liquid (not shown) of the chemical polishing liquid 20 used in the cleaning process 130 flow to the waste liquid storage means, but both are mixed. In order to suppress this, it is possible to adopt a structure in which the waste liquid piping is switched in each step. With this structure, the waste liquid can be reused efficiently.
  • the substrate thickness is a glass substrate product having a thickness of, for example, about 0.3 mm, problems such as non-uniformity in plate thickness caused by the difference in polishing characteristics between the upper and lower surfaces, that is, the difference in polishing speed, and the like hardly occur. It was a level.
  • the chemical polishing step 120 is arranged such that the vertical interval or the horizontal interval of the injection nozzles 220 on the upper end side of the glass substrate 10 is narrower than the lower end of the glass substrate 10, and the chemical polishing liquid is applied to the glass substrate 10. 20 is spray-coated.
  • the chemical polishing liquid 20 can be sprayed in a large amount on the upper end side of the glass substrate 10 and can be sprayed in a small amount on the lower end side of the glass substrate 10.
  • the chemical polishing liquid 20 When the chemical polishing liquid 20 is sprayed and applied with the glass substrate 10 installed vertically, the chemical polishing liquid 20 flows down while touching the surface of the glass substrate 10 set in the vertical direction. In the area above 10, the falling velocity of the surface is slow and the flow rate is constant, but the chemical polishing liquid 20 dripped by spray coating is successively added below the glass substrate 10. For this reason, the flow rate increases as the amount of liquid increases. As a result, since the polishing rate in the lower region of the glass substrate 10 is increased, there has been a problem that the plate thickness becomes uneven between the upper and lower sides of the glass substrate 10.
  • a large amount of chemical polishing liquid 20 is sprayed and applied to the upper part of the glass substrate 10, and a small amount of chemical polishing liquid 20 is applied to the lower part of the glass substrate 10.
  • the amount of distribution was optimized, it was possible to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid 20 due to dripping, and to suppress variations in the polishing thickness.
  • a plurality of spray nozzles 220 are installed at equal intervals with respect to the glass substrate 10 and then sprayed from the plurality of spray nozzles 220.
  • the amount of the chemical polishing liquid 20 injected from the injection nozzle 222 a positioned on the upper end side of the glass substrate 10 is injected from the injection nozzle 222 b positioned on the lower end side of the glass substrate 10. It is possible to adopt a configuration in which a small amount of the chemical polishing liquid 20 is sprayed.
  • the polishing rate of the lower region of the glass substrate 10 is higher than that of the upper region of the glass substrate 10. Therefore, there has been a problem that the thickness of the glass substrate 10 is not uniform between the upper and lower sides.
  • a large amount of the chemical polishing liquid 20 is sprayed and applied to the upper part of the glass substrate 10 and a small amount of the chemical polishing liquid 20 is applied to the lower part of the glass substrate 10.
  • the amount of application and distribution of the liquid 20 can be optimized, the occurrence and non-uniformity of spray application of the chemical polishing liquid 20 due to liquid dripping can be prevented, and variations in the polishing thickness can be suppressed. .
  • the glass substrate 10 according to the present embodiment can be a glass substrate for a liquid crystal display in which liquid crystal 16 is sealed in the gap between the CF substrate 12 and the TFT substrate 14 as shown in FIG. It is of course possible to use a glass substrate for an organic EL display.
  • a liquid crystal display is formed by bonding two substrates, a CF (color filter) substrate and a TFT (thin transistor) substrate, and forming a gap between the substrates. A liquid crystal is sealed in the gap.
  • This is a manufacturing method in which the finally bonded substrates are chemically polished (etched) from both sides to reduce the thickness.
  • the finished thickness after polishing has been generally about 0.3 to 0.6 mm.
  • the number of products that finish thinner than 0.3 mm is increasing.
  • the chemical polishing liquid 20 can be a liquid material containing one or a plurality of molten polishing components selected from the group consisting of hydrofluoric acid, sulfuric acid, and hydrochloric acid.
  • hydrofluoric acid selected from the group consisting of hydrofluoric acid, sulfuric acid, and hydrochloric acid.
  • any chemical polishing liquid 20 can be used depending on the situation such as the thickness of the object to be polished and the polishing speed. It is possible to polish the glass substrate efficiently.
  • a chemical polishing liquid 20 containing sulfuric acid can be applied by spraying.
  • a chemical polishing liquid 20 containing sulfuric acid can be applied by spraying.
  • the glass substrate polishing apparatus 200 includes an installation unit 210, an injection nozzle 220, and a cleaning unit 230.
  • the surface of the glass substrate 10 used for a liquid crystal display or an organic EL display is made uniform and uniform. Grind.
  • the installation means 210 is a member for vertically suspending and fixing the glass substrate 10 to be polished. As shown in FIG. 2, in this embodiment, the installation means 210 provided on the frame 240 is provided. Thus, the upper side surfaces and the bottom of the glass substrate 10 are fixedly installed on the frame 240.
  • the glass substrate 10 has a thickness of 1 to several mm before polishing, and the glass substrate 10 is fixed by the jig of the installation means 210 until polishing is completed.
  • the installation means 210 does not necessarily have to be installed on the frame 240, and a configuration using a dedicated frame jig (not shown) that supports the glass substrate 10 having the same function may be used. Further, it is conceivable that the installation means 210 is provided on the frame jig, and the same effect can be expected by this configuration.
  • the spray nozzle 220 is a narrow opening for spray-coating the chemical polishing liquid 20 for melting and polishing (chemical polishing) the glass substrate 10 onto the glass substrate 10, and is shown in FIGS. 2, 4, and 5.
  • a plurality of chemical polishing liquids 20 are installed at positions where the chemical polishing liquids 20 are sprayed perpendicularly to the glass substrate 10, and the chemical polishing liquids 20 are sprayed and applied evenly and continuously on both side surfaces of the glass substrate 10.
  • the chemical polishing liquid 20 is spray-applied over the entire surface of both surfaces of the glass substrate 10, and melt polishing (chemical polishing) of the glass substrate 10 becomes possible.
  • the plurality of spray nozzles 220 are configured to continuously spray and apply the chemical polishing liquid 20 to both sides of the glass substrate 10 for a certain period of time.
  • the sprayed chemical polishing liquid 20 is applied to the glass substrate 10, then flows through the glass substrate 10 and is accumulated in a waste liquid accumulating means (not shown) installed below.
  • the chemical polishing liquid 20 is always sprayed onto the glass substrate 10 and the glass substrate 10 continues chemical polishing over the entire surface, thereby enabling efficient chemical polishing.
  • the chemical polishing liquid 20 is continuously sprayed and applied from the spray nozzle 220 to the glass substrate 10 for about 5 to 120 minutes, but this processing time is limited. It is also possible to adopt a configuration in which processing is performed intermittently (intermittently) at regular intervals instead of continuously.
  • the cleaning means 230 is for cleaning the glass substrate 10 melt-polished with the chemical polishing liquid 20 and washing away the chemical polishing liquid 20.
  • the chemical polishing liquid 20 and the reaction adhered to the surface of the glass substrate 10 that has been dissolved and polished. Means for washing away product. After performing chemical polishing for a predetermined time by spraying the chemical polishing liquid 20 from the spray nozzle 220, cleaning is performed by spraying the cleaning liquid toward the glass substrate 10 that has been melt polished. Thereby, the progress of chemical polishing can be interrupted to complete the polishing process.
  • the cleaning means 230 may be configured to perform a cleaning process by switching the method of supplying the chemical polishing liquid 20 and spraying the cleaning liquid (not shown) from the spray nozzle 220 to spray the glass substrate 10. is there. Further, it is possible to spray and supply the cleaning liquid (not shown) to the glass substrate 10 using a completely different cleaning liquid supply pipe (supply nozzle, not shown), and in particular, the method for spraying and supplying the cleaning liquid is limited. It is not a thing.
  • the injection nozzle 220 is configured so that the vertical interval or the horizontal interval of the injection nozzle 222 a located on the upper end side of the glass substrate 10 is the same as that of the injection nozzle 222 b located on the lower end side of the glass substrate 10. It is the structure arrange
  • the chemical polishing liquid 20 when the chemical polishing liquid 20 is sprayed and applied from the side to the glass substrate 10 with the glass substrate 10 installed vertically as in the polishing apparatus according to the present invention, the chemical polishing liquid 20 However, it flows down on the surface of the glass substrate 10 set in the vertical direction. At this time, in the upper region of the glass substrate 10, the falling velocity of the surface is slow and the flow rate is constant, but on the lower side of the glass substrate 10, the glass substrate is combined with the chemical polishing liquid 20 applied directly by spraying. Since the chemical polishing liquid 20 spray-applied on the upper part of the substrate 10 is in a state of being added one after another, the amount of liquid flowing on the surface of the lower part of the glass substrate 10 is increased and the flow velocity is also increased. As a result, since the polishing rate in the lower region of the glass substrate 10 is increased, there has been a problem that the thickness of the glass substrate 10 is not uniform between the upper and lower sides.
  • a large amount of chemical polishing liquid 20 is sprayed and applied to the upper part of the glass substrate 10, but a small amount of chemical polishing liquid 20 is applied to the lower part of the glass substrate 10.
  • the amount of the polishing liquid 20 applied and distributed is optimized, and the occurrence and non-uniformity of spray coating of the chemical polishing liquid 20 due to liquid dripping can be prevented and variation in the polishing thickness can be suppressed.
  • a plurality of injection nozzles 220 are installed at equal intervals with respect to the glass substrate 10.
  • the spray located on the lower end side of the glass substrate 10 from the amount of the chemical polishing liquid 20 sprayed by the spray nozzle 222a positioned on the upper end side of the glass substrate 10. It is possible to reduce the amount of the chemical polishing liquid 20 ejected by the nozzle 222b.
  • the glass is higher than the upper region of the glass substrate 10 due to the application amount and flow rate of the chemical polishing liquid 20. Since the polishing rate in the lower region of the substrate 10 is increased, there has been a problem that the plate thickness varies between the upper and lower sides of the glass substrate 10.
  • a large amount of the chemical polishing liquid 20 is sprayed and applied to the upper part of the glass substrate 10, and a small amount of the chemical polishing liquid 20 is applied to the lower part of the glass substrate 10. It is possible to optimize the amount of application and distribution of the liquid, and to prevent the occurrence and non-uniformity of spray application of the chemical polishing liquid 20 due to liquid dripping and to suppress the variation in the polishing thickness.
  • the installation means 210 can be configured by side fixing means 212 and bottom fixing means 214.
  • the side fixing means 212 is a member for fixing and supporting the glass substrate 10 with the left and right edges sandwiched therebetween.
  • both sides of the glass substrate 10 are covered to prevent spraying of the chemical polishing liquid 20.
  • the glass substrate 10 is sandwiched from both ends while being in contact with the left and right edge corners of the glass substrate 10 so that the shape is a notch shallow groove having a substantially triangular cross section.
  • the glass substrate 10 when the glass substrate 10 is fixed when the glass substrate 10 is chemically polished, the glass substrate 10 is fixedly held by a fixing means including a deep groove. According to this configuration, the fixing means partially covers both side surfaces of the glass substrate 10, and spray application of the chemical polishing liquid 20 is hindered, and a mark of a jig for holding the glass substrate 10 is left on the glass substrate 10. There is a problem in that it is formed in the region of the left and right end portions.
  • the side fixing means 212 is formed as a notch shallow groove having a substantially triangular cross section and the length of the side fixing means 212 is shortened, so that the spray coating of the chemical polishing liquid 20 is not hindered. It has become possible to configure a glass substrate polishing apparatus 200 in which jig traces are prevented from remaining.
  • the bottom fixing means 214 is a member for supporting the lower edge of the glass substrate 10, and is configured by a mounting base on which the bottom of the glass substrate 10 is placed. Conventionally, similarly to the side fixing means 212, the bottom of the glass substrate 10 is fixed by fixing means including deep grooves. By firmly fixing the glass substrate 10 with such a structure, it was possible to prevent the glass substrate 10 from falling off during chemical polishing by bubbling or the like. There was a problem of causing 10 damage.
  • the bottom fixing means 214 has a mounting base shape, so that the spray coating of the chemical polishing liquid 20 is not hindered, and the glass substrate 10 is prevented from being damaged due to clamping by the fixing means. It becomes possible to constitute the polishing apparatus 200 for a glass substrate.
  • the front end ports of the plurality of spray nozzles 220 installed at equal intervals increase the front end diameter of the upper end side spray nozzles 222a, and the lower end side sprays. It is possible to make the tip diameter of the nozzle 222b small. Even in this configuration, as described above, a large amount of the chemical polishing liquid 20 is spray-applied to the upper portion of the glass substrate 10 and a small amount of the chemical polishing liquid 20 is applied to the lower portion of the glass substrate 10.
  • the amount of application and distribution of the polishing liquid 20 can be optimized, the occurrence and non-uniformity of spray application of the chemical polishing liquid 20 due to dripping can be prevented, and the variation in the polishing thickness can be suppressed. It was.
  • the variation in the thickness of the glass substrate 10 after chemical polishing needs to be reduced as the finished thickness is reduced.
  • the plate thickness at the start of polishing is 1 mm
  • the plate thickness of the finish is 0.4 mm
  • the allowable variation of the plate thickness is 10% of the finish thickness
  • the variation allowable value is plus or minus 0.00. 04 mm or less.
  • the polishing amount is 0.6 mm
  • the tolerance rate for realizing the variation within 0.04 mm over the entire surface of the substrate material is 0.6 mm. 0.067 (allowable variation / polishing amount).
  • the allowable range of variation is 10% of the finishing thickness, it will be 0.03 mm or less.
  • the polishing amount is 0.7 mm
  • the allowable variation with respect to the polishing amount is 0.03 mm
  • the allowable rate is 0.043 (allowable variation / polishing processing amount). Strict values are required for each stage.
  • the allowable variation with respect to the polishing amount of 0.75 mm is 0.025
  • the allowable rate is 0.033 (allowable variation / polishing processing amount). Even slight variations are ignored. It will not be possible.
  • the required error is small even with respect to the difference in thickness between both the CF side substrate and the TFT side substrate.
  • a difference in the plate thickness is generated by about 1% of the polishing amount
  • a difference of 6 ⁇ of 1% of the polishing amount of 600 ⁇ is generated in the case of 0.4 mm finishing.
  • the allowable range is actually 74 ⁇ (80 ⁇ 6) in consideration of the difference of 6 ⁇ between the thicknesses of both substrates.
  • the CF side and TFT side substrates will be finished at 0.125 mm if there is no difference in thickness, but if there is a difference in thickness, there will be variations on the thin side. In some cases, there is a problem that the strength is weakened. When the plate thickness is about 0.1 mm (100 ⁇ m), the strength of the end portion of the substrate becomes considerably weak, and the risk of breakage increases.
  • the glass substrate polishing method and polishing apparatus By using the glass substrate polishing method and polishing apparatus according to the present invention, it is possible to suppress the above-described variation, more efficient than the conventional bubbling method and other prior art, It has become possible to provide a glass substrate polishing method and a polishing apparatus that can produce a product with no unevenness in polishing thickness variation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Liquid Crystal (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

[Problem] To provide a polishing method and a polishing device for a glass substrate, with which chemical polishing of a glass substrate surface can be performed so as to form the glass substrate into a uniform thin film, tool marks can be suppressed, risk of damage can be reduced, and high polishing efficiency can be achieved. [Solution] This polishing method for a glass substrate is for uniformly polishing the surface of a glass substrate to be used for a liquid crystal display or organic EL display and includes: an arranging step of arranging and securing a vertically-hung glass substrate; a chemical polishing step of continuously spraying and applying a chemical polishing solution on both sides of the glass substrate from a plurality of spray nozzles; and a washing step of washing the melt-polished glass substrate. In the chemical polishing step, to prevent unevenness from occurring and remaining in spray application of the chemical polishing solution due to dripping, the spray nozzles on the upper edge side of the glass substrate are disposed such that the vertical spacing or horizontal spacing therebetween is narrower than on the lower edge side of the glass substrate.

Description

ガラス基板の研磨方法および研磨装置Glass substrate polishing method and polishing apparatus
 本発明は、ガラス基板を研磨して超薄化するための研磨装置に関し、特に、液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板が薄膜状となるまで、その表面を化学研磨するとともに、研磨効率を高めるためのガラス基板の研磨方法および研磨装置に関する。 The present invention relates to a polishing apparatus for polishing and ultra-thinning a glass substrate. In particular, the surface of the glass substrate used for a liquid crystal display or an organic EL display is chemically polished until the glass substrate becomes thin, and the polishing efficiency is improved. The present invention relates to a polishing method and a polishing apparatus for a glass substrate for increasing the height.
 従来より、ガラス基板の表面を研磨してガラス基板を超薄化するための技術が数多く開発され、利用されている。一般的に、研磨技術には、研磨機等によって物理的に研磨対象を研磨する方法や、電気を利用して研磨対象を電気化学的に研磨する方法や、化学物質による化学反応を用いた研磨方法などが存在する。 Conventionally, many techniques for polishing the surface of a glass substrate to make the glass substrate ultra thin have been developed and used. Generally, polishing techniques include a method of physically polishing an object to be polished by a polishing machine, a method of electrochemically polishing an object to be polished using electricity, and a polishing using a chemical reaction by a chemical substance. There are methods.
 これらのうち、化学研磨は、化学物質を用いて、研磨したい対象の表面を溶解することで研磨する手法であり、フッ酸系の溶液を充填した液槽に加工対象を入れ、溶液に漬けて表面を溶解させることが多く行われている。溶解中は、研磨対象の表面が満遍なく研磨されるよう、バブリング(気泡を研磨対象に当てて溶液を循環させる方法)が取られている。現在では、液晶ディスプレイや有機ELディスプレイ等のガラス基板を研磨する方法として、化学研磨が広く用いられており、化学研磨により、薄くて軽い液晶ディスプレイや有機ELディスプレイ用ガラス基板を製造することが可能となっている。 Of these, chemical polishing is a method of polishing by using a chemical substance to dissolve the surface of the object to be polished. The object to be processed is placed in a solution tank filled with a hydrofluoric acid solution and immersed in the solution. It is often done to dissolve the surface. During dissolution, bubbling (a method of circulating a solution by applying bubbles to the object to be polished) is taken so that the surface of the object to be polished is uniformly polished. At present, chemical polishing is widely used as a method for polishing glass substrates such as liquid crystal displays and organic EL displays, and thin and light liquid crystal displays and glass substrates for organic EL displays can be manufactured by chemical polishing. It has become.
 ところで、現在では、TVやパソコンに用いられるディスプレイとして液晶を用いたものが広く普及しており、高画質化とともに高速化・大容量化・薄膜化や軽量化が図られている。また、タブレット端末やスマートフォン等の技術も進歩しており、これらに使用するディスプレイとして、薄くて軽い液晶ディスプレイ部品の作成納入が要求されている。このような市場の要求を受けて、液晶ディスプレイは更に薄く仕上げる事が要請されているのが現状である。 By the way, at present, liquid crystal displays are widely used as displays used in TVs and personal computers, and high-quality, high-speed, large-capacity, thin-film and light-weight are being achieved. In addition, technologies such as tablet terminals and smartphones have also advanced, and it is required to produce and deliver thin and light liquid crystal display components as displays used for these. In response to such market demands, the current situation is that liquid crystal displays are required to be made thinner.
 また、化学研磨が施された後のディスプレイ基板の板厚の均一性は、基板の端部の領域も均一である事が要求されており、ディスプレイ製品の狭額縁化もまた要求されている。 In addition, the uniformity of the thickness of the display substrate after chemical polishing is required to be uniform in the region of the end of the substrate, and a narrow frame of the display product is also required.
 このような要求に対して、上記バブリングを用いた化学研磨技術では、基板を複数枚同時に研磨処理するバッチ処理方式が採用されており、基板を抑えるための治具の痕が基板端部の領域に形成されてしまい、狭額縁の要求に対して充分に対応可能とは言えないという問題点があった。すなわち、バッチ処理方式の場合は、研磨液に同時に多数枚浸漬するために、速度を上げたり、浸漬する場所による研磨量のばらつきを抑えるために研磨液を攪拌させる(バブリング処理)必要があり、基板がずれたり割れたりしないように堅固に保持する必要があるが、治具によって治具痕が形成されることにより、端部における厚みが均一でなくなってしまう事態が派生していた。一方で、上記治具痕を減らすために基板を押さえる治具を少なくしたり、押さえる強度を弱くすると、研磨処理中に基板がずれたり(溝ズレ)やワレやカケを生じやすくなってしまうという問題点も同時に派生していた。 In response to such demands, the chemical polishing technique using bubbling employs a batch processing method in which a plurality of substrates are simultaneously polished, and a mark of a jig for holding the substrate is a region at the end of the substrate. Therefore, there is a problem that it cannot be said that it can sufficiently cope with the demand for a narrow frame. That is, in the case of the batch processing method, in order to immerse a large number of sheets simultaneously in the polishing liquid, it is necessary to increase the speed or to stir the polishing liquid (bubbling process) in order to suppress the variation in the polishing amount depending on the place to be immersed, Although it is necessary to hold the substrate firmly so as not to be displaced or cracked, a situation has arisen in which the thickness of the end portion is not uniform due to the formation of jig marks by the jig. On the other hand, if the number of jigs that hold down the substrate is reduced to reduce the above-mentioned jig traces, or if the holding strength is weakened, the substrate is liable to shift (groove misalignment), cracks, or chipping during the polishing process. The problem was derived at the same time.
 このような問題点を解決するための技術として、特開2013-252984号公報に開示した技術が存在する。ここでは、ガラス基板を水平方向に搬送するように構成された複数の搬送ローラ、および複数の搬送ローラによって搬送されるガラス基板に対して化学研磨処理を行うように構成された処理チャンバを備え、処理チャンバは、処理槽および回収槽を少なくとも有しており、処理槽は、複数の搬送ローラよりも高い位置で化学研磨液がオーバーフローするように構成され、回収槽は、処理槽からオーバーフローする化学研磨液を回収するように構成された化学研磨に関する技術が開示されている。 As a technique for solving such problems, there is a technique disclosed in JP2013-252984A. Here, a plurality of transport rollers configured to transport the glass substrate in the horizontal direction, and a processing chamber configured to perform a chemical polishing process on the glass substrate transported by the plurality of transport rollers, The processing chamber has at least a processing tank and a recovery tank, and the processing tank is configured such that the chemical polishing liquid overflows at a position higher than the plurality of transport rollers, and the recovery tank is a chemical that overflows from the processing tank. Techniques relating to chemical polishing configured to recover a polishing liquid are disclosed.
 この技術によれば、ガラス基板を水平方向に搬送しながら、ガラス基板の上面および下面より化学研磨液をシャワー状に噴霧して、化学研磨(エッチング)することが可能となるため、治具痕を減らすことが可能となると考えられるが、基板を水平に配置するため、基板の上面側では研磨液がパドル状に液盛りされるだけ供給が十分であるのに対して、下面側は基板に噴霧された研磨液は直ちに重力によって落下していくため、研磨の化学反応に十分に寄与できる研磨液の供給が上面側に対して少なくなってしまうという問題点があった。また、下面側にはガラス基板を水平方向に搬送するためのローラーやシャフト類などが設置されているため、基板表面への噴霧を遮ってしまうという問題点が内在していた。 According to this technique, it is possible to perform chemical polishing (etching) by spraying a chemical polishing liquid in a shower form from the upper and lower surfaces of the glass substrate while conveying the glass substrate in the horizontal direction. However, in order to arrange the substrate horizontally, it is sufficient to supply the polishing liquid in a paddle form on the upper surface side of the substrate, whereas the lower surface side is placed on the substrate. Since the sprayed polishing liquid is immediately dropped by gravity, there is a problem in that the supply of the polishing liquid that can sufficiently contribute to the chemical reaction of polishing is reduced with respect to the upper surface side. Moreover, since rollers, shafts, and the like for transporting the glass substrate in the horizontal direction are installed on the lower surface side, there is a problem of blocking spraying on the substrate surface.
 また、形成するガラス基板が薄くなると、板厚の均一性の許容範囲も小さくなるが、特にローラー搬送などの装置によって研磨液が遮られる下面側の板厚ばらつきが生じる可能性があり、これを極小化するために、搬送速度の適正化により対処することが考えられていた。ところが、搬送速度を速めると、搬送時に生じる送り速度のばらつきやローラーと基板との滑り具合のばらつきなどによって基板に振動が生じることがあり、基板の厚みが薄くなっていくと基板周辺で微小なクラックが発生してしまうなどの不具合を生じやすくなる可能性があった。また、ローラー搬送のピッチを小さくすることでクラックなどを防止する効果が期待できるが、研磨液が遮られる領域が増えるため、基板の下面側の研磨後の板厚の均一性が低下するという問題点があった。 In addition, when the glass substrate to be formed becomes thinner, the allowable range of uniformity of the plate thickness also decreases, but there may be variations in the plate thickness on the lower surface side where the polishing liquid is blocked by an apparatus such as a roller transport. In order to minimize it, it has been considered to cope with it by optimizing the conveyance speed. However, when the transport speed is increased, the substrate may vibrate due to variations in the feed speed generated during transport and the slippage between the roller and the substrate. As the substrate becomes thinner, the substrate becomes minute around the substrate. There is a possibility that defects such as cracks are likely to occur. In addition, the effect of preventing cracks and the like can be expected by reducing the pitch of the roller conveyance, but since the area where the polishing liquid is blocked increases, the uniformity of the thickness after polishing on the lower surface side of the substrate decreases. There was a point.
 また、基板を縦に配置する方式として、特開2008-13389号が存在する。ここでは、ガラス基板にシャワー状のフッ酸溶液を吐出することによりエッチングが可能なエッチング装置及びそれを用いたエッチングプロセスであって、シャワーの噴霧角度、シャワーノズルと基板との間の間隔、基板の揺動振幅長などを適切に設計することにより、シャワーを基板面内に均一に供給可能とすることにより、基板表面への微粒子(フッ酸に対する不溶物)の付着を抑制でき、高速且つ面内均一なエッチングを実現できる技術が開示されている。 Also, Japanese Patent Application Laid-Open No. 2008-13389 exists as a method for arranging the substrates vertically. Here, an etching apparatus capable of etching by discharging a shower-like hydrofluoric acid solution onto a glass substrate and an etching process using the etching apparatus, the spray angle of the shower, the interval between the shower nozzle and the substrate, the substrate By appropriately designing the swing amplitude length of the substrate, it is possible to uniformly supply the shower into the substrate surface, thereby suppressing the adhesion of fine particles (insoluble matter with respect to hydrofluoric acid) to the substrate surface. A technique capable of realizing uniform etching is disclosed.
 この方法によると、ローラー等の搬送装置による研磨液に遮断という上記問題点は解消されるが、研磨液が縦方向にセットされた基板表面に触れながら流れ落ちていくため、基板の上側の領域では表面の落下していく流速は遅くて流量も一定であるが、基板の下側ではシャワー噴霧によって垂れた研磨液が、次々と足されていく状態であるため、液量が増えるとともに流速も高くなり、その結果、基板の下側領域の研磨率が高くなり、上下間で板厚が変化するという問題点があった。 According to this method, the above problem of blocking the polishing liquid by a conveying device such as a roller is solved, but the polishing liquid flows down while touching the substrate surface set in the vertical direction. The flow rate of the falling surface is slow and the flow rate is constant, but since the polishing liquid dripped by shower spray is added one after another under the substrate, the amount of liquid increases and the flow rate increases. As a result, there has been a problem that the polishing rate in the lower region of the substrate is increased, and the plate thickness varies between the upper and lower sides.
 更に、特許第3995146号公報では、ガラス基板を化学研磨する作用を有する研磨成分と溶液粘度を増加させる作用を有する増粘剤を共に一定濃度含有し、かつ粘度が5×10-1~5×10Pa・sの範囲にある研磨液を、ガラス基板上に所定量だけ塗布してガラス基板の平坦化反応を進行させ、所定時間経過後に、平坦化反応に供した研磨液を洗浄する技術が開示されている。 Furthermore, in Japanese Patent No. 3995146, a polishing component having an action of chemically polishing a glass substrate and a thickener having an action of increasing the solution viscosity are both contained at a constant concentration, and the viscosity is 5 × 10 −1 to 5 ×. A technique of applying a predetermined amount of a polishing liquid in a range of 10 5 Pa · s on a glass substrate to advance a flattening reaction of the glass substrate, and cleaning the polishing liquid subjected to the flattening reaction after a predetermined time has elapsed. Is disclosed.
 この方法によると、5×10-1~5×10Pa・sの粘度範囲からなる研磨液が液だれを防止することとなり、基板の上下間における板厚の変化を防止することが可能になると考えられるが、研磨効率の観点、および、治具によって治具痕が形成されることによる端部における厚みの非均一化の観点から考えると、必ずしも充分な技術という事は出来なかった。 According to this method, the polishing liquid having a viscosity range of 5 × 10 −1 to 5 × 10 5 Pa · s prevents dripping, and it is possible to prevent changes in the plate thickness between the upper and lower sides of the substrate. However, from the viewpoint of polishing efficiency and the viewpoint of non-uniform thickness at the end due to the formation of jig marks by the jig, the technique is not necessarily sufficient.
 そこで、液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板が均一な薄膜となるように表面を化学研磨することを可能とするとともに、研磨効率を高め、治具痕の発生を抑制すると同時に破損のリスクを抑制したガラス基板の研磨方法および研磨装置の開発が望まれていた。
特開2013-252984号公報 特開2008-13389号 特許第3995146号公報
Therefore, it is possible to chemically polish the surface so that the glass substrate used in the liquid crystal display or organic EL display becomes a uniform thin film, increase the polishing efficiency, suppress the occurrence of jig marks, and at the same time reduce the risk of breakage. Development of a method and apparatus for polishing a glass substrate that has been suppressed has been desired.
JP 2013-252984 A JP 2008-13389 Japanese Patent No. 3995146
 本発明の目的は、上記の課題を解決するため、液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板が均一な薄膜となるように表面を化学研磨することを可能とするとともに、治具痕の発生を抑制すると同時に破損のリスクを抑制した、研磨効率の高いガラス基板の研磨方法および研磨装置を提供する事を目的とする。 In order to solve the above problems, the object of the present invention is to enable the surface to be chemically polished so that a glass substrate used in a liquid crystal display or an organic EL display becomes a uniform thin film, and to generate jig traces. An object of the present invention is to provide a glass substrate polishing method and polishing apparatus with high polishing efficiency, which suppresses the risk of breakage at the same time.
 上記目的を達成するため、本発明に係るガラス基板の研磨方法は、液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板の表面を均質に研磨するためのガラス基板の研磨方法が、ガラス基板を垂直に吊下して設置固定する設置工程と、前記ガラス基板を溶融研磨するための化学研磨液を複数の噴射ノズルから前記ガラス基板の両側面に継続的に噴射塗布する化学研磨工程と、所定の溶融研磨時間の経過後に溶融研磨された前記ガラス基板を洗浄する洗浄工程と、からなり、前記化学研磨工程は、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止するため、ガラス基板上端側の噴射ノズルの縦間隔または横間隔をガラス基板下端より狭くなるように配置して、化学研磨液を上端側に多量に噴射し、かつ下端側により少量噴射する構成である。 In order to achieve the above object, a glass substrate polishing method according to the present invention includes a glass substrate polishing method for uniformly polishing a surface of a glass substrate used for a liquid crystal display or an organic EL display, wherein the glass substrate is suspended vertically. An installation step of lowering and fixing, a chemical polishing step of continuously spraying and applying a chemical polishing liquid for melting and polishing the glass substrate to both side surfaces of the glass substrate from a plurality of spray nozzles, and predetermined melt polishing A cleaning process for cleaning the glass substrate that has been melt-polished after a lapse of time, and the chemical polishing process is performed in order to prevent the occurrence of uneven spraying of the chemical polishing liquid due to dripping and the remaining of the glass substrate. The spray nozzle on the side is arranged so that the vertical interval or the horizontal interval is narrower than the lower end of the glass substrate, a large amount of chemical polishing liquid is injected to the upper end side, and the lower end side is less It is configured to injection.
 また、本発明に係るガラス基板の研磨方法は、液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板の表面を均質に研磨するためのガラス基板の研磨方法が、ガラス基板を垂直に吊下して設置固定する設置工程と、前記ガラス基板を溶融研磨するための化学研磨液を複数の噴射ノズルから前記ガラス基板の両側面に継続的に噴射塗布する化学研磨工程と、溶融研磨された前記ガラス基板を洗浄する洗浄工程と、からなり、前記化学研磨工程は、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止するため、等間隔に設置された複数の噴射ノズルから噴射される化学研磨液の量を、ガラス基板上端側の噴射ノズルから噴射される化学研磨液の量よりガラス基板下端側の噴射ノズルから噴射される化学研磨液の量を少なく噴射する構成でもある。 The glass substrate polishing method according to the present invention is a glass substrate polishing method for uniformly polishing the surface of a glass substrate used in a liquid crystal display or an organic EL display, and the glass substrate is suspended and fixed vertically. An installation process, a chemical polishing process for continuously spraying and applying a chemical polishing liquid for melting and polishing the glass substrate to both side surfaces of the glass substrate from a plurality of spray nozzles, and cleaning the melt-polished glass substrate The chemical polishing step is performed by chemical polishing sprayed from a plurality of spray nozzles arranged at equal intervals in order to prevent the occurrence and non-uniformity of spray coating of chemical polishing liquid due to dripping. The amount of liquid is less than the amount of chemical polishing liquid sprayed from the spray nozzle on the upper end side of the glass substrate, and less than the amount of chemical polishing liquid sprayed from the spray nozzle on the lower end side of the glass substrate. It is also the configuration to Cum.
 また、前記ガラス基板は、CF基板とTFT基板との空隙に液晶を封入した液晶ディスプレイ用ガラス基板、または有機ELディスプレイ用ガラス基板からなる構成である。
 また、前記化学研磨液は、フッ酸、硫酸、塩酸からなる群から選択される一または複数の溶融研磨成分を含有する構成である。
 更に、前記ガラス基板の研磨方法は、硫酸含有する化学研磨液を噴射塗布することにより、前記ガラス基板の潜傷を塞閉除去する構成でもある。
Further, the glass substrate is composed of a glass substrate for liquid crystal display in which liquid crystal is sealed in a gap between a CF substrate and a TFT substrate, or a glass substrate for organic EL display.
The chemical polishing liquid is configured to contain one or a plurality of melt polishing components selected from the group consisting of hydrofluoric acid, sulfuric acid, and hydrochloric acid.
Furthermore, the glass substrate polishing method is configured to block and remove latent scratches on the glass substrate by spraying and applying a chemical polishing solution containing sulfuric acid.
 また、本発明に係るガラス基板の研磨装置は、液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板の表面を均質に研磨するためのガラス基板の研磨装置が、ガラス基板を垂直に吊下して設置固定する設置手段と、前記ガラス基板を溶融研磨するための化学研磨液を前記ガラス基板から垂直に継続的に噴射塗布する複数からなる噴射ノズルと、所定の溶融研磨時間の経過後に溶融研磨された前記ガラス基板を洗浄する洗浄手段と、からなり、前記噴射ノズルは、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止するため、ガラス基板上端側の噴射ノズルの縦間隔または横間隔をガラス基板下端の噴射ノズルの縦間隔または横間隔より狭くなるように配置して、化学研磨液を上端側に多量に噴射し、かつ下端側により少量噴射する構成である。 The glass substrate polishing apparatus according to the present invention is a glass substrate polishing apparatus for uniformly polishing the surface of a glass substrate used for a liquid crystal display or an organic EL display. And a plurality of spray nozzles for continuously spraying and applying a chemical polishing liquid for melt-polishing the glass substrate vertically from the glass substrate, and the melt-polished after the elapse of a predetermined melt-polishing time Cleaning means for cleaning the glass substrate, and the spray nozzle is configured to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to liquid dripping, in order to prevent vertical or horizontal spacing of the spray nozzle on the upper end side of the glass substrate. Is arranged so as to be narrower than the vertical interval or horizontal interval of the injection nozzle at the lower end of the glass substrate, and a large amount of chemical polishing liquid is injected to the upper end side, and the lower end side It is configured to amount injection.
 また、本発明に係るガラス基板の研磨装置は、液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板の表面を均質に研磨するためのガラス基板の研磨装置が、ガラス基板を垂直に吊下して設置固定する設置手段と、前記ガラス基板を溶融研磨するための化学研磨液を前記ガラス基板から垂直に継続的に噴射塗布する複数からなる噴射ノズルと、所定の溶融研磨時間の経過後に溶融研磨された前記ガラス基板を洗浄する洗浄手段と、からなり、前記噴射ノズルは、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止するため、等間隔に設置された複数の噴射ノズルから噴射される化学研磨液の量を、ガラス基板上端側の噴射ノズルから噴射される化学研磨液の量よりガラス基板下端側の噴射ノズルから噴射される化学研磨液の量を少なく噴射する構成でもある。 The glass substrate polishing apparatus according to the present invention is a glass substrate polishing apparatus for uniformly polishing the surface of a glass substrate used for a liquid crystal display or an organic EL display. And a plurality of spray nozzles for continuously spraying and applying a chemical polishing liquid for melt-polishing the glass substrate vertically from the glass substrate, and the melt-polished after the elapse of a predetermined melt-polishing time The spray nozzle is sprayed from a plurality of spray nozzles arranged at equal intervals in order to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to liquid dripping. The amount of the chemical polishing liquid to be injected from the injection nozzle on the lower end side of the glass substrate is larger than the amount of the chemical polishing liquid injected from the injection nozzle on the upper end side of the glass substrate. It is also configured to reduce injection amount of the liquid.
 また、前記設置手段は、ガラス基板左右縁端を支持する側辺固定手段と、ガラス基板下部縁端を支持する底辺固定手段とからなり、前記側辺固定手段は、ガラス基板の両平面を被服しない位置でガラス基板左右縁端角部に接触して両端から挟持する断面略三角形の切欠き浅溝からなるとともに、前記底辺固定手段は、ガラス基板の底辺を載置する載置用の土台からなる構成である。
 更に、前記噴射ノズルは、等間隔に設置された複数の噴射ノズルの先端口が、上端側の噴射ノズルの先端口径を大きく、下端側の噴射ノズルの先端口径を小さくした構成である。
The installation means includes side fixing means for supporting the left and right edges of the glass substrate, and bottom fixing means for supporting the lower edge of the glass substrate, and the side fixing means covers both surfaces of the glass substrate. The bottom fixing means is formed of a mounting base for mounting the bottom of the glass substrate. It is the composition which becomes.
Furthermore, the spray nozzle has a configuration in which the tip ports of the plurality of spray nozzles installed at equal intervals have a large tip diameter of the top nozzle and a small tip diameter of the bottom nozzle.
 本発明に係るガラス基板の研磨方法および研磨装置は、上記詳述した通りの構成であるので、以下のような効果がある。
1.設置工程によって吊下したガラス基板に化学研磨液を複数の噴射ノズルによって両面から噴射塗布するため、ガラス基板に満遍なく化学研磨液を塗布することが可能となる。また、ガラス基板上端側の噴射ノズルの縦間隔または横間隔をガラス基板下端より狭くなるように配置したため、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止することが可能となる。
2.複数の噴射ノズルから噴射される化学研磨液の量について、ガラス基板上端側を下端側の量より多く噴射する構成としたため、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止することが可能となる。
Since the glass substrate polishing method and polishing apparatus according to the present invention are configured as described in detail above, they have the following effects.
1. Since the chemical polishing liquid is spray-applied from both sides to the glass substrate suspended in the installation process by a plurality of spray nozzles, the chemical polishing liquid can be uniformly applied to the glass substrate. Further, since the vertical interval or the horizontal interval of the spray nozzles on the upper end side of the glass substrate is arranged so as to be narrower than the lower end of the glass substrate, it is possible to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to dripping. .
2. The amount of chemical polishing liquid sprayed from a plurality of spray nozzles is configured to spray the upper end side of the glass substrate more than the amount of the lower end side, thereby preventing the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to dripping. It becomes possible.
3.ガラス基板は、液晶ディスプレイ用ガラス基板または有機ELディスプレイ用ガラス基板としたため、様々なディスプレイに用いるガラス基板を研磨して構成することが可能となる。
4.化学研磨液は、フッ酸、硫酸、塩酸等の溶融研磨成分を含有する構成としたため、比重の小さな塩酸系の研磨液から比重の大きな硫酸系の研磨液まで使用することが可能となる。
3. Since the glass substrate is a glass substrate for a liquid crystal display or a glass substrate for an organic EL display, the glass substrate used for various displays can be polished.
4). Since the chemical polishing liquid is configured to contain a melt polishing component such as hydrofluoric acid, sulfuric acid, and hydrochloric acid, it can be used from a hydrochloric acid-based polishing liquid having a small specific gravity to a sulfuric acid-based polishing liquid having a large specific gravity.
5.硫酸を含有する化学研磨液を噴射塗布する構成としたため、ガラス基板に生じた潜キズや異常(ピット)に対して、研磨時の凹部内の研磨を抑制する効果を享受することが可能となる。
6.設置手段によって吊下したガラス基板に化学研磨液を両面から噴射塗布する複数の噴射ノズルを設けたため、ガラス基板に満遍なく化学研磨液を塗布することが可能となる。また、ガラス基板上端側の噴射ノズルの縦間隔または横間隔をガラス基板下端より狭くなるように配置したため、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止することが可能となる。また、装置の省スペース化が図れるとともに、従来の研磨装置(バッチ方式)の部分的な改造や対応により研磨装置を構成することが可能となる。
5. Since the chemical polishing liquid containing sulfuric acid is applied by spraying, it is possible to enjoy the effect of suppressing polishing in the recesses during polishing against latent scratches and abnormalities (pits) generated on the glass substrate. .
6). Since the plurality of spray nozzles for spraying and applying the chemical polishing liquid from both sides are provided on the glass substrate suspended by the installation means, the chemical polishing liquid can be uniformly applied to the glass substrate. Further, since the vertical interval or the horizontal interval of the spray nozzles on the upper end side of the glass substrate is arranged so as to be narrower than the lower end of the glass substrate, it is possible to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to dripping. . In addition, space saving of the apparatus can be achieved, and the polishing apparatus can be configured by partial modification or correspondence of the conventional polishing apparatus (batch method).
7.化学研磨液を噴射する複数の噴射ノズルが、ガラス基板上端側を下端側の量より多く噴射する構成としたため、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止することが可能となる。
8.設置手段を、断面略三角形の切欠き浅溝からなる側辺固定手段と、ガラス基板の底辺を載置する載置用の土台からなる底辺固定手段によって構成したため、化学研磨によって生ずる治具痕の発生を抑制することが可能となる。
7). The multiple spray nozzles that spray chemical polishing liquid spray the upper end side of the glass substrate more than the amount on the lower end side, so it is possible to prevent the occurrence of uneven spraying of chemical polishing liquid due to liquid dripping and remaining. It becomes.
8). Since the installation means is composed of side fixing means consisting of a shallow groove having a substantially triangular cross section and bottom fixing means consisting of a mounting base on which the bottom of the glass substrate is placed, jig traces caused by chemical polishing are removed. Occurrence can be suppressed.
9.複数の噴射ノズルの先端口が、上端側を大きく下端側を小さくしたため、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止することが可能となる。 9. Since the top ends of the plurality of spray nozzles are made larger at the upper end side and smaller at the lower end side, it is possible to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to liquid dripping.
 以下、本発明に係るガラス基板の研磨方法100および研磨装置200を図面に示す実施例に基づいて詳細に説明する。
 図1は、本発明に係るガラス基板の研磨方法のフロー図であり、図2は、ガラス基板の研磨装置の概念図である。図3は、ガラス基板の側面の断面図であり、図4は、設置間隔を最適化した噴射ノズルの側面図である。図5は、研磨液の噴射量を最適化した噴射ノズルの側面図であり、図6は、設置手段の構成を示す斜視図である。
Hereinafter, a glass substrate polishing method 100 and a polishing apparatus 200 according to the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is a flow diagram of a glass substrate polishing method according to the present invention, and FIG. 2 is a conceptual diagram of a glass substrate polishing apparatus. FIG. 3 is a cross-sectional view of the side surface of the glass substrate, and FIG. 4 is a side view of the injection nozzle with the installation interval optimized. FIG. 5 is a side view of an injection nozzle that optimizes the injection amount of the polishing liquid, and FIG.
 本発明に係るガラス基板の研磨方法100は、図1に示すように、研磨方法100と、化学研磨工程120と、洗浄工程130とからなり、液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板10の表面を、均質かつ均一の厚みで研磨するための研磨方法である。 As shown in FIG. 1, a glass substrate polishing method 100 according to the present invention includes a polishing method 100, a chemical polishing step 120, and a cleaning step 130, and the surface of the glass substrate 10 used for a liquid crystal display or an organic EL display. Is a polishing method for polishing at a uniform and uniform thickness.
 研磨対象であるガラス基板10は、まず設置工程110で処理可能な状態に配置される。設置工程110は、ガラス基板10を垂直に吊下して設置固定する工程である。ガラス基板10は、研磨前は1~数mmの厚さからなり、この工程により、研磨対象であるガラス基板10は、研磨が終了するまで、治具によって固定される。 The glass substrate 10 to be polished is first placed in a state where it can be processed in the installation step 110. The installation step 110 is a step of hanging and fixing the glass substrate 10 vertically. The glass substrate 10 has a thickness of 1 to several mm before polishing. Through this process, the glass substrate 10 to be polished is fixed by a jig until polishing is completed.
 設置工程10で固定設置されたガラス基板10は、次に、図1に示すように化学研磨工程120で処理される。化学研磨工程120は、ガラス基板10を化学研磨液200によって溶融研磨する工程であり、複数の噴射ノズル220から垂直に設置されたガラス基板10に向けて、両側面から全面に渡って化学研磨液20を噴射塗布することにより、ガラス基板10を溶融研磨する。本実施例では、化学研磨液20を複数の噴射ノズル220からガラス基板10の両側面に、一定時間の間、継続的に噴射塗布する構成となっている。噴射された化学研磨液20は、ガラス基板10に塗布された後、ガラス基板10を流れて下部に設置される廃液蓄積手段(図示せず)に蓄積されることになる。これにより、化学研磨液20が常にガラス基板10に噴射されて研磨を継続することとなり、効率的な化学研磨を行う事が可能となる。 The glass substrate 10 fixedly installed in the installation step 10 is then processed in a chemical polishing step 120 as shown in FIG. The chemical polishing step 120 is a step of melting and polishing the glass substrate 10 with the chemical polishing liquid 200, and is directed to the glass substrate 10 installed vertically from the plurality of jet nozzles 220 over the entire surface from both sides. The glass substrate 10 is melt-polished by spraying 20. In the present embodiment, the chemical polishing liquid 20 is continuously spray-applied from a plurality of spray nozzles 220 to both side surfaces of the glass substrate 10 for a predetermined time. The sprayed chemical polishing liquid 20 is applied to the glass substrate 10, then flows through the glass substrate 10 and is accumulated in a waste liquid accumulating means (not shown) installed below. As a result, the chemical polishing liquid 20 is always sprayed onto the glass substrate 10 to continue polishing, and efficient chemical polishing can be performed.
 なお、本実施例では、約5~120分間に渡って継続的に化学研磨工程120の処理が行われる構成となっているが、この処理時間に限定されることはなく、また、継続的ではなく一定間隔で断続的(間欠的)に処理を行う構成とすることも可能である。 In this embodiment, the chemical polishing process 120 is continuously performed for about 5 to 120 minutes. However, the processing time is not limited to this, and the process is not continuous. Alternatively, it may be configured to perform processing intermittently (intermittently) at regular intervals.
 化学研磨工程120で化学研磨処理が行われたガラス基板10は、次に、図1に示す洗浄工程130で処理される。洗浄工程130は、溶解研磨されたガラス基板10の表面に付着した化学研磨液20および反応生成物を洗浄除去するための工程である。化学研磨工程120による所定の溶融研磨時間の経過後に、溶融研磨されたガラス基板10を洗浄する。これにより、化学研磨の進行を中断して研磨処理を完了させることが可能となる。 The glass substrate 10 subjected to the chemical polishing process in the chemical polishing process 120 is then processed in the cleaning process 130 shown in FIG. The cleaning step 130 is a step for cleaning and removing the chemical polishing liquid 20 and the reaction product attached to the surface of the glass substrate 10 that has been dissolved and polished. After the elapse of a predetermined melt polishing time in the chemical polishing step 120, the glass substrate 10 that has been melt polished is cleaned. Thereby, the progress of chemical polishing can be interrupted to complete the polishing process.
 ガラス基板10の化学研磨工程120と、洗浄工程130は、繰り返して実施する構成とすることが可能である。これにより、ガラス基板10の研磨及び洗浄の効果を向上させることが可能となる。なお、化学研磨工程120で使用した化学研磨液20と、洗浄工程130で使用した化学研磨液20の洗浄液(図示せず)は、何れも廃液蓄積手段に流れることになるが、両者が混ざることを抑制するため、廃液配管を各工程によって切り替える構造とすることも可能である。この構造とすることにより、廃液を効率よく再利用することが可能となる。 The chemical polishing step 120 and the cleaning step 130 of the glass substrate 10 can be repeatedly performed. Thereby, it is possible to improve the effect of polishing and cleaning the glass substrate 10. Note that both the chemical polishing liquid 20 used in the chemical polishing process 120 and the cleaning liquid (not shown) of the chemical polishing liquid 20 used in the cleaning process 130 flow to the waste liquid storage means, but both are mixed. In order to suppress this, it is possible to adopt a structure in which the waste liquid piping is switched in each step. With this structure, the waste liquid can be reused efficiently.
 従来から使用されている技術として、前述のように、水平方向にガラス基板を設置して研磨液を上下からシャワー方式で塗布しつつ搬送する化学研磨方式が存在するが、これによると、仕上げの基板厚が、例えば0.3mm程度の厚さのガラス基板製品であれば、上下面の研磨特性の違い、すなわち、研磨速度の違い等から生じる板厚の不均一性などの問題が殆ど生じないレベルであった。 As previously described, there is a chemical polishing method that uses a glass substrate in the horizontal direction and conveys the polishing liquid from above and below by applying a shower method, as described above. If the substrate thickness is a glass substrate product having a thickness of, for example, about 0.3 mm, problems such as non-uniformity in plate thickness caused by the difference in polishing characteristics between the upper and lower surfaces, that is, the difference in polishing speed, and the like hardly occur. It was a level.
 しかしながら、0.3mmよりもさらに薄く研磨することが要求されるガラス基板製品などでは、例えば0.25mm程度の板厚になると、貼合せの単板の厚みが上下の基板で各0.125mm前後とかなり薄くなり、特に基板端部の強度も急激に低下してくる。そのため、貼合せ基板の上下の基板の研磨特性の違いの影響により、上下間の板厚に差が生じてしまうという問題があった。更に、そのような状況においても、要求される基板の総厚の規格値を維持するために、薄くなり易い基板をさらに薄く仕上げて、総厚を規格値内に入れざるを得ないという状況となり、基板の強度の問題、特に基板の端部の強度が低くなってしまうことが問題となっていた。 However, in glass substrate products and the like that are required to be polished thinner than 0.3 mm, for example, when the plate thickness is about 0.25 mm, the thickness of the laminated single plate is about 0.125 mm for each of the upper and lower substrates. However, the strength at the edge of the substrate suddenly decreases. For this reason, there is a problem that a difference occurs in the plate thickness between the upper and lower sides due to the difference in polishing characteristics between the upper and lower substrates of the bonded substrate. Furthermore, even in such a situation, in order to maintain the required standard value of the total thickness of the substrate, it is necessary to finish the substrate that is likely to be thinned further and bring the total thickness within the standard value. There has been a problem of the strength of the substrate, particularly that the strength of the end portion of the substrate is lowered.
 本発明のように、ガラス基板10を縦に設置する構成とすることにより、このような問題は解消し、何れの面も均一に化学研磨を行う事が可能となり、要求された規格に合わせるための研磨を行った結果、ガラス基板の強度が損なわれるという問題を解消することが可能となった。 By adopting a configuration in which the glass substrate 10 is installed vertically as in the present invention, such a problem is solved, and it is possible to perform chemical polishing uniformly on any surface, in order to meet the required standard. As a result of this polishing, it was possible to solve the problem that the strength of the glass substrate was impaired.
 化学研磨工程120は、本実施例では、ガラス基板10の上端側の噴射ノズル220の縦間隔または横間隔を、ガラス基板10の下端より狭くなるように配置して、ガラス基板10に化学研磨液20を噴射塗布する構成となっている。この構成とすることにより、化学研磨液20を、ガラス基板10の上端側に多量に噴射塗布し、かつガラス基板10の下端側により少量噴射することが可能となる。 In this embodiment, the chemical polishing step 120 is arranged such that the vertical interval or the horizontal interval of the injection nozzles 220 on the upper end side of the glass substrate 10 is narrower than the lower end of the glass substrate 10, and the chemical polishing liquid is applied to the glass substrate 10. 20 is spray-coated. With this configuration, the chemical polishing liquid 20 can be sprayed in a large amount on the upper end side of the glass substrate 10 and can be sprayed in a small amount on the lower end side of the glass substrate 10.
 ガラス基板10を垂直に設置した状態で化学研磨液20を噴射塗布する場合、化学研磨液20が、縦方向にセットされたガラス基板10の表面に触れながら流れ落ちていくことになるため、ガラス基板10の上側の領域では表面の落下していく流速は遅くて流量も一定であるが、ガラス基板10の下側では噴射塗布によって垂れた化学研磨液20が、次々と足されていく状態であることから、液量が増えるとともに流速も早くなる。その結果、ガラス基板10の下側領域の研磨率が高くなるため、ガラス基板10の上下間で板厚が不均等になるという問題が生じていた。 When the chemical polishing liquid 20 is sprayed and applied with the glass substrate 10 installed vertically, the chemical polishing liquid 20 flows down while touching the surface of the glass substrate 10 set in the vertical direction. In the area above 10, the falling velocity of the surface is slow and the flow rate is constant, but the chemical polishing liquid 20 dripped by spray coating is successively added below the glass substrate 10. For this reason, the flow rate increases as the amount of liquid increases. As a result, since the polishing rate in the lower region of the glass substrate 10 is increased, there has been a problem that the plate thickness becomes uneven between the upper and lower sides of the glass substrate 10.
 本実施例によると、ガラス基板10の上部には多量の化学研磨液20が噴射塗布され、下部では、少量の化学研磨液20が塗布される事となり、上下間で化学研磨液20の塗布および流通の量が最適化され、液垂による化学研磨液20の噴射塗布のムラの発生と残存を防止し、研磨厚のばらつきを抑制することが可能となった。 According to the present embodiment, a large amount of chemical polishing liquid 20 is sprayed and applied to the upper part of the glass substrate 10, and a small amount of chemical polishing liquid 20 is applied to the lower part of the glass substrate 10. The amount of distribution was optimized, it was possible to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid 20 due to dripping, and to suppress variations in the polishing thickness.
 本発明に係るガラス基板の研磨方法100の別の実施例として、複数の噴射ノズル220をガラス基板10に対して等間隔となるように設置した上で、該複数の噴射ノズル220から噴射される化学研磨液20の量をコントロールして、ガラス基板10の上端側に位置する噴射ノズル222aから噴射される化学研磨液20の量より、ガラス基板10の下端側に位置する噴射ノズル222bから噴射される化学研磨液20の量を少なく噴射する構成とすることが可能である。 As another example of the glass substrate polishing method 100 according to the present invention, a plurality of spray nozzles 220 are installed at equal intervals with respect to the glass substrate 10 and then sprayed from the plurality of spray nozzles 220. By controlling the amount of the chemical polishing liquid 20, the amount of the chemical polishing liquid 20 injected from the injection nozzle 222 a positioned on the upper end side of the glass substrate 10 is injected from the injection nozzle 222 b positioned on the lower end side of the glass substrate 10. It is possible to adopt a configuration in which a small amount of the chemical polishing liquid 20 is sprayed.
 前述のように、ガラス基板10に対して上下各領域において均等に化学研磨液20を噴射塗布した場合、ガラス基板10の上側領域と比べて、ガラス基板10の下側領域の研磨率が高くなるため、ガラス基板10の上下間で板厚が不均質になるという問題が生じていた。本発明の構成とすることにより、ガラス基板10の上部には多量の化学研磨液20が噴射塗布されるとともに、下部においては少量の化学研磨液20が塗布される事となり、上下間で化学研磨液20の塗布および流通の量が最適化することが可能となり、液垂による化学研磨液20の噴射塗布のムラの発生と残存を防止し、研磨厚のばらつきを抑制することが可能となった。 As described above, when the chemical polishing liquid 20 is sprayed and applied evenly to the upper and lower regions of the glass substrate 10, the polishing rate of the lower region of the glass substrate 10 is higher than that of the upper region of the glass substrate 10. Therefore, there has been a problem that the thickness of the glass substrate 10 is not uniform between the upper and lower sides. By adopting the configuration of the present invention, a large amount of the chemical polishing liquid 20 is sprayed and applied to the upper part of the glass substrate 10 and a small amount of the chemical polishing liquid 20 is applied to the lower part of the glass substrate 10. The amount of application and distribution of the liquid 20 can be optimized, the occurrence and non-uniformity of spray application of the chemical polishing liquid 20 due to liquid dripping can be prevented, and variations in the polishing thickness can be suppressed. .
 なお、本実施例に係るガラス基板10は、図3に示すように、CF基板12とTFT基板14との空隙に液晶16を封入した液晶ディスプレイ用ガラス基板とすることが可能である。また、有機ELディスプレイ用ガラス基板を用いることももちろん可能である。 The glass substrate 10 according to the present embodiment can be a glass substrate for a liquid crystal display in which liquid crystal 16 is sealed in the gap between the CF substrate 12 and the TFT substrate 14 as shown in FIG. It is of course possible to use a glass substrate for an organic EL display.
 これにより、様々なディスプレイに用いるガラス基板を研磨して製造することが可能となり、あらゆる要求に対応可能なガラス基板の研磨方法100を構成することが可能となる。 Thus, it becomes possible to polish and manufacture glass substrates used in various displays, and it is possible to configure a glass substrate polishing method 100 that can meet all requirements.
 なお、液晶ディスプレイは、液晶を均一な厚さに形成するため、CF(カラーフィルター)基板とTFT(薄型トランジスタ)基板の2枚の基板を貼り合わせ、その基板の間に空隙を形成し、その空隙に液晶を封入して形成する。最終的に貼り合わされた基板を、両面から化学研磨(エッチング)し、薄くしていく製造方法である。その研磨後の仕上げ厚(完成品の厚さ)が、従来は0.3~0.6mm程度のものが一般的であったが、近年の市場の要求、特に基板の薄型化の要求を受けて、0.3mmより薄く仕上げる製品が増加しているのが現状である。貼り合せた基板を薄く研磨する事で、例えば、タッチパネルを基板に内蔵することが可能となり、様々な機能を併せ持った製品を開発する事が可能となる。 In addition, in order to form a liquid crystal with a uniform thickness, a liquid crystal display is formed by bonding two substrates, a CF (color filter) substrate and a TFT (thin transistor) substrate, and forming a gap between the substrates. A liquid crystal is sealed in the gap. This is a manufacturing method in which the finally bonded substrates are chemically polished (etched) from both sides to reduce the thickness. The finished thickness after polishing (thickness of the finished product) has been generally about 0.3 to 0.6 mm. However, in response to recent market demands, especially the demand for thinner substrates. The number of products that finish thinner than 0.3 mm is increasing. By thinly polishing the bonded substrate, for example, a touch panel can be built in the substrate, and a product having various functions can be developed.
 化学研磨液20は、フッ酸、硫酸、塩酸からなる群から選択される一または複数の溶融研磨成分を含有する液材とすることが可能である。これにより、比重の小さな塩酸系の研磨液から比重の大きな硫酸系の研磨液まで使用することが可能となり、研磨対象の厚みや研磨速度など、状況に応じてあらゆる化学研磨液20を使用することができ、効率のよいガラス基板の研磨を行う事が可能となった。 The chemical polishing liquid 20 can be a liquid material containing one or a plurality of molten polishing components selected from the group consisting of hydrofluoric acid, sulfuric acid, and hydrochloric acid. As a result, it is possible to use a hydrochloric acid-based polishing liquid having a small specific gravity to a sulfuric acid-based polishing liquid having a large specific gravity, and any chemical polishing liquid 20 can be used depending on the situation such as the thickness of the object to be polished and the polishing speed. It is possible to polish the glass substrate efficiently.
 特に、本発明に係るガラス基板の研磨方法100の実施例として、硫酸を含有する化学研磨液20を噴射塗布する構成とすることが可能である。これにより、付加的にガラス基板10の潜傷を塞閉する効果を得る事が可能となり、既存の僅かな損傷から生じる損傷クラックなどを防止する効果を得ることが可能となる。また、研磨中にガラス基板10に生じた潜キズや異常(ピット)に対して、研磨時の凹部内の研磨を抑制する効果を享受することが可能となる。 In particular, as an embodiment of the glass substrate polishing method 100 according to the present invention, a chemical polishing liquid 20 containing sulfuric acid can be applied by spraying. As a result, it is possible to obtain an effect of additionally closing and closing latent scratches on the glass substrate 10 and to obtain an effect of preventing damage cracks and the like caused by existing slight damage. In addition, it is possible to enjoy the effect of suppressing polishing in the recesses during polishing against latent scratches and abnormalities (pits) generated in the glass substrate 10 during polishing.
 次に、本発明に係るガラス基板の研磨装置200について説明する。ガラス基板の研磨装置200は、図2に示すように、設置手段210と、噴射ノズル220と、洗浄手段230とからなり、液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板10の表面を均質かつ均一に研磨する。 Next, the glass substrate polishing apparatus 200 according to the present invention will be described. As shown in FIG. 2, the glass substrate polishing apparatus 200 includes an installation unit 210, an injection nozzle 220, and a cleaning unit 230. The surface of the glass substrate 10 used for a liquid crystal display or an organic EL display is made uniform and uniform. Grind.
 設置手段210は、研磨対象であるガラス基板10を垂直に吊下して設置固定するための部材であり、図2に示すように、本実施例では、枠体240に設けられた設置手段210によって、ガラス基板10の上側両側面と底部を枠体240に固定設置する構成である。ガラス基板10は、研磨前は1~数mmの厚さを有しており、ガラス基板10は、研磨が終了するまで、設置手段210の治具によって固定される事となる。なお、設置手段210は、必ずしも枠体240に設置される必要はなく、同様の機能を有するガラス基板10を支える専用のフレーム治具(図示せず)などを用いる構成としてもよい。また、そのフレーム治具に設置手段210を設ける構成とすることも考えられ、この構成によっても同様の効果が期待できる。 The installation means 210 is a member for vertically suspending and fixing the glass substrate 10 to be polished. As shown in FIG. 2, in this embodiment, the installation means 210 provided on the frame 240 is provided. Thus, the upper side surfaces and the bottom of the glass substrate 10 are fixedly installed on the frame 240. The glass substrate 10 has a thickness of 1 to several mm before polishing, and the glass substrate 10 is fixed by the jig of the installation means 210 until polishing is completed. The installation means 210 does not necessarily have to be installed on the frame 240, and a configuration using a dedicated frame jig (not shown) that supports the glass substrate 10 having the same function may be used. Further, it is conceivable that the installation means 210 is provided on the frame jig, and the same effect can be expected by this configuration.
 噴射ノズル220は、ガラス基板10を溶融研磨(化学研磨)するための化学研磨液20をガラス基板10に対して噴射塗布するための細開口部であり、図2、図4および図5に示すように、ガラス基板10に対して化学研磨液20が垂直に噴射される位置に複数設置され、ガラス基板10の両側面に均等かつ継続的に化学研磨液20を噴射塗布する。これにより、ガラス基板10の両面全面に渡って化学研磨液20が噴射塗布されることになり、ガラス基板10の溶融研磨(化学研磨)が可能となる。 The spray nozzle 220 is a narrow opening for spray-coating the chemical polishing liquid 20 for melting and polishing (chemical polishing) the glass substrate 10 onto the glass substrate 10, and is shown in FIGS. 2, 4, and 5. As described above, a plurality of chemical polishing liquids 20 are installed at positions where the chemical polishing liquids 20 are sprayed perpendicularly to the glass substrate 10, and the chemical polishing liquids 20 are sprayed and applied evenly and continuously on both side surfaces of the glass substrate 10. As a result, the chemical polishing liquid 20 is spray-applied over the entire surface of both surfaces of the glass substrate 10, and melt polishing (chemical polishing) of the glass substrate 10 becomes possible.
 本実施例では、複数の噴射ノズル220が、化学研磨液20をガラス基板10の両側面に、一定時間の間、継続的に噴射塗布する構成となっている。噴射された化学研磨液20は、ガラス基板10に塗布された後、ガラス基板10を流れて下部に設置される廃液蓄積手段(図示せず)に蓄積される。この構成とすることにより、化学研磨液20が常にガラス基板10に噴射され、ガラス基板10が全面に渡って化学研磨を継続することとなり、効率的な化学研磨を行う事が可能となる。 In the present embodiment, the plurality of spray nozzles 220 are configured to continuously spray and apply the chemical polishing liquid 20 to both sides of the glass substrate 10 for a certain period of time. The sprayed chemical polishing liquid 20 is applied to the glass substrate 10, then flows through the glass substrate 10 and is accumulated in a waste liquid accumulating means (not shown) installed below. With this configuration, the chemical polishing liquid 20 is always sprayed onto the glass substrate 10 and the glass substrate 10 continues chemical polishing over the entire surface, thereby enabling efficient chemical polishing.
 なお、本実施例では、約5~120分間に渡って継続的に噴射ノズル220から化学研磨液20がガラス基板10に噴射塗布される構成となっているが、この処理時間に限定されることはなく、また、継続的ではなく一定間隔で断続的(間欠的)に処理を行う構成とすることも可能である。 In the present embodiment, the chemical polishing liquid 20 is continuously sprayed and applied from the spray nozzle 220 to the glass substrate 10 for about 5 to 120 minutes, but this processing time is limited. It is also possible to adopt a configuration in which processing is performed intermittently (intermittently) at regular intervals instead of continuously.
 洗浄手段230は、化学研磨液20によって溶融研磨されたガラス基板10を洗浄して、化学研磨液20を洗い流すものであり、溶解研磨されたガラス基板10の表面に付着した化学研磨液20および反応生成物を洗浄除去するための手段である。化学研磨液20を噴射ノズル220から噴射することによって所定時間溶融研磨(化学研磨)を行った後に、溶融研磨されたガラス基板10に向けて洗浄液を噴射することによって洗浄する。これにより、化学研磨の進行を中断して研磨処理を完了させることが可能となる。 The cleaning means 230 is for cleaning the glass substrate 10 melt-polished with the chemical polishing liquid 20 and washing away the chemical polishing liquid 20. The chemical polishing liquid 20 and the reaction adhered to the surface of the glass substrate 10 that has been dissolved and polished. Means for washing away product. After performing chemical polishing for a predetermined time by spraying the chemical polishing liquid 20 from the spray nozzle 220, cleaning is performed by spraying the cleaning liquid toward the glass substrate 10 that has been melt polished. Thereby, the progress of chemical polishing can be interrupted to complete the polishing process.
 噴射ノズル220から化学研磨液20を噴射塗布することによるガラス基板10の溶解研磨処理と、洗浄手段230によるガラス基板10の洗浄処理は、繰り返して実施する構成とすることが可能である。これにより、ガラス基板10の研磨及び洗浄の効果を向上させることが可能となる。なお、噴射ノズル220から噴射塗布された化学研磨液20と、洗浄手段230で使用した化学研磨液20の洗浄液(図示せず)は、何れも廃液蓄積手段(図示せず)に流れることになるが、両者が混ざって廃棄されることを防ぐため、廃液配管を切り替える構造とすることも可能である。この構造とすることにより、廃液を効率よく廃棄または再利用することが可能となる。 It is possible to adopt a configuration in which the dissolution polishing processing of the glass substrate 10 by spraying and applying the chemical polishing liquid 20 from the spray nozzle 220 and the cleaning processing of the glass substrate 10 by the cleaning means 230 are repeatedly performed. Thereby, it is possible to improve the effect of polishing and cleaning the glass substrate 10. Both the chemical polishing liquid 20 spray-applied from the spray nozzle 220 and the cleaning liquid (not shown) of the chemical polishing liquid 20 used in the cleaning means 230 flow to the waste liquid storage means (not shown). However, in order to prevent both from being mixed and discarded, it is possible to adopt a structure in which the waste liquid piping is switched. With this structure, the waste liquid can be discarded or reused efficiently.
 なお、洗浄手段230は、化学研磨液20の供給方法を切り替え、洗浄液(図示せず)を噴射ノズル220から噴射することでガラス基板10に噴霧して洗浄処理をする構成とする事も可能である。また、全く別の洗浄液供給配管(供給ノズル、図示せず)を用いてガラス基板10に洗浄液(図示せず)を噴霧・供給する事も可能であり、特に洗浄液の噴霧・供給方法を限定するものではない。 The cleaning means 230 may be configured to perform a cleaning process by switching the method of supplying the chemical polishing liquid 20 and spraying the cleaning liquid (not shown) from the spray nozzle 220 to spray the glass substrate 10. is there. Further, it is possible to spray and supply the cleaning liquid (not shown) to the glass substrate 10 using a completely different cleaning liquid supply pipe (supply nozzle, not shown), and in particular, the method for spraying and supplying the cleaning liquid is limited. It is not a thing.
 噴射ノズル220は、本実施例では、図4に示すように、ガラス基板10の上端側に位置する噴射ノズル222aの縦間隔または横間隔を、ガラス基板10の下端側に位置する噴射ノズル222bの縦間隔または横間隔より狭くなるように配置する構成となっている。この構成とすることにより、化学研磨液20をガラス基板10の上端側に多量に噴射し、ガラス基板10の下端側により少量噴射する構成とすることが可能となる。これにより、液垂による化学研磨液20の噴射塗布のムラの発生と残存を防止し、研磨厚のばらつきを抑制することが可能となった。 In the present embodiment, as shown in FIG. 4, the injection nozzle 220 is configured so that the vertical interval or the horizontal interval of the injection nozzle 222 a located on the upper end side of the glass substrate 10 is the same as that of the injection nozzle 222 b located on the lower end side of the glass substrate 10. It is the structure arrange | positioned so that it may become narrower than a vertical space | interval or a horizontal space | interval. With this configuration, a large amount of the chemical polishing liquid 20 is sprayed to the upper end side of the glass substrate 10 and a small amount is sprayed to the lower end side of the glass substrate 10. As a result, it is possible to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid 20 due to liquid dripping and to suppress the variation in the polishing thickness.
 すなわち、本発明に係る研磨装置のように、ガラス基板10を垂直に設置した状態で、化学研磨液20をガラス基板10に対して横から垂直に噴射塗布する構成とする場合、化学研磨液20が、縦方向にセットされたガラス基板10の表面を流れ落ちていくことになる。このとき、ガラス基板10の上側の領域では表面の落下していく流速は遅くて流量も一定であるが、ガラス基板10の下側では直接噴射塗布された化学研磨液20と合わせて、ガラス基板10の上部に噴射塗布された化学研磨液20が垂れ流れることにより次々と足されていく状態であることから、ガラス基板10下部においては表面を流れる液量が増えるとともに流速も早くなる。その結果、ガラス基板10の下側領域の研磨率が高くなるため、ガラス基板10の上下間で板厚が不均質化するという問題が生じていた。 That is, when the chemical polishing liquid 20 is sprayed and applied from the side to the glass substrate 10 with the glass substrate 10 installed vertically as in the polishing apparatus according to the present invention, the chemical polishing liquid 20 However, it flows down on the surface of the glass substrate 10 set in the vertical direction. At this time, in the upper region of the glass substrate 10, the falling velocity of the surface is slow and the flow rate is constant, but on the lower side of the glass substrate 10, the glass substrate is combined with the chemical polishing liquid 20 applied directly by spraying. Since the chemical polishing liquid 20 spray-applied on the upper part of the substrate 10 is in a state of being added one after another, the amount of liquid flowing on the surface of the lower part of the glass substrate 10 is increased and the flow velocity is also increased. As a result, since the polishing rate in the lower region of the glass substrate 10 is increased, there has been a problem that the thickness of the glass substrate 10 is not uniform between the upper and lower sides.
 本実施例によると、ガラス基板10の上部には多量の化学研磨液20を噴射塗布するが、下部では、少量の化学研磨液20が塗布する事となるため、ガラス基板10の上下間で化学研磨液20の塗布および流通する量が最適化され、液垂による化学研磨液20の噴射塗布のムラの発生と残存を防止し、研磨厚のばらつきを抑制することが可能となった。 According to the present embodiment, a large amount of chemical polishing liquid 20 is sprayed and applied to the upper part of the glass substrate 10, but a small amount of chemical polishing liquid 20 is applied to the lower part of the glass substrate 10. The amount of the polishing liquid 20 applied and distributed is optimized, and the occurrence and non-uniformity of spray coating of the chemical polishing liquid 20 due to liquid dripping can be prevented and variation in the polishing thickness can be suppressed.
 本発明に係るガラス基板の研磨装置200の別の実施例として、図5に示すように、複数の噴射ノズル220をガラス基板10に対して等間隔となるように設置した上で、該複数の噴射ノズル220が噴射する化学研磨液20の量をコントロールして、ガラス基板10の上端側に位置する噴射ノズル222aが噴射する化学研磨液20の量より、ガラス基板10の下端側に位置する噴射ノズル222bが噴射する化学研磨液20の量を少なくする構成とすることが可能である。 As another example of the glass substrate polishing apparatus 200 according to the present invention, as shown in FIG. 5, a plurality of injection nozzles 220 are installed at equal intervals with respect to the glass substrate 10. By controlling the amount of the chemical polishing liquid 20 sprayed by the spray nozzle 220, the spray located on the lower end side of the glass substrate 10 from the amount of the chemical polishing liquid 20 sprayed by the spray nozzle 222a positioned on the upper end side of the glass substrate 10. It is possible to reduce the amount of the chemical polishing liquid 20 ejected by the nozzle 222b.
 前述の通り、ガラス基板10に対して上下各領域において均等に化学研磨液20を噴射塗布する場合、化学研磨液20の塗布量・流量の関係で、ガラス基板10の上側領域と比べて、ガラス基板10の下側領域の研磨率が高くなるため、ガラス基板10の上下間で板厚が変化するという問題が生じていた。上記構成とすることにより、ガラス基板10の上部には多量の化学研磨液20が噴射塗布されるとともに、下部においては少量の化学研磨液20が塗布される事となり、上下間で化学研磨液20の塗布および流通の量が最適化することが可能となり、液垂による化学研磨液20の噴射塗布のムラの発生と残存を防止し、研磨厚のばらつきを抑制することが可能となった。 As described above, when the chemical polishing liquid 20 is sprayed and applied evenly to the upper and lower regions on the glass substrate 10, the glass is higher than the upper region of the glass substrate 10 due to the application amount and flow rate of the chemical polishing liquid 20. Since the polishing rate in the lower region of the substrate 10 is increased, there has been a problem that the plate thickness varies between the upper and lower sides of the glass substrate 10. With the above configuration, a large amount of the chemical polishing liquid 20 is sprayed and applied to the upper part of the glass substrate 10, and a small amount of the chemical polishing liquid 20 is applied to the lower part of the glass substrate 10. It is possible to optimize the amount of application and distribution of the liquid, and to prevent the occurrence and non-uniformity of spray application of the chemical polishing liquid 20 due to liquid dripping and to suppress the variation in the polishing thickness.
 設置手段210は、図6に示すように、側辺固定手段212と、底辺固定手段214とからなる構成とする事が可能である。側辺固定手段212は、ガラス基板10の左右縁端を挟むようにして固定支持するための部材であり、本実施例では、ガラス基板10の両側面を被服して化学研磨液20の噴射塗布を妨げないように、ガラス基板10の左右縁端角部に接触しつつ、ガラス基板10を両端から挟持する構成であり、形状としては、断面略三角形の切欠き浅溝からなる構成である。 As shown in FIG. 6, the installation means 210 can be configured by side fixing means 212 and bottom fixing means 214. The side fixing means 212 is a member for fixing and supporting the glass substrate 10 with the left and right edges sandwiched therebetween. In this embodiment, both sides of the glass substrate 10 are covered to prevent spraying of the chemical polishing liquid 20. The glass substrate 10 is sandwiched from both ends while being in contact with the left and right edge corners of the glass substrate 10 so that the shape is a notch shallow groove having a substantially triangular cross section.
 従来は、ガラス基板10の化学研磨を行う際にガラス基板10を固定するにあたり、深い溝からなる固定手段によってガラス基板10を固定挟持する構成となっていた。この構成によると、該固定手段がガラス基板10の両側面を部分的に被覆することとなり、化学研磨液20の噴射塗布が妨げられ、ガラス基板10を抑えるための治具の痕がガラス基板10左右端部の領域に形成されてしまうという問題点があった。 Conventionally, when the glass substrate 10 is fixed when the glass substrate 10 is chemically polished, the glass substrate 10 is fixedly held by a fixing means including a deep groove. According to this configuration, the fixing means partially covers both side surfaces of the glass substrate 10, and spray application of the chemical polishing liquid 20 is hindered, and a mark of a jig for holding the glass substrate 10 is left on the glass substrate 10. There is a problem in that it is formed in the region of the left and right end portions.
 本発明のように、側辺固定手段212を断面略三角形の切欠き浅溝とし、かつ側辺固定手段212の長さを短くすることにより、化学研磨液20の噴射塗布を妨げないこととなり、治具痕の残存を抑制したガラス基板の研磨装置200を構成することが可能となった。 As in the present invention, the side fixing means 212 is formed as a notch shallow groove having a substantially triangular cross section and the length of the side fixing means 212 is shortened, so that the spray coating of the chemical polishing liquid 20 is not hindered. It has become possible to configure a glass substrate polishing apparatus 200 in which jig traces are prevented from remaining.
 また、底辺固定手段214は、ガラス基板10の下部縁端を支持するための部材であり、ガラス基板10の底辺を載置する載置用の土台からなる構成である。
 従来は、側辺固定手段212と同様に、深い溝からなる固定手段によってガラス基板10の底部を固定する構成であった。このような構造でしっかりとガラス基板10を固定することにより、バブリング等による化学研磨時のガラス基板10の脱落等を抑制することは可能であったが、治具痕の形成の原因、ガラス基板10の破損の原因となるという問題点があった。
Further, the bottom fixing means 214 is a member for supporting the lower edge of the glass substrate 10, and is configured by a mounting base on which the bottom of the glass substrate 10 is placed.
Conventionally, similarly to the side fixing means 212, the bottom of the glass substrate 10 is fixed by fixing means including deep grooves. By firmly fixing the glass substrate 10 with such a structure, it was possible to prevent the glass substrate 10 from falling off during chemical polishing by bubbling or the like. There was a problem of causing 10 damage.
 本発明では、底辺固定手段214を載置用の土台形状とすることにより、化学研磨液20の噴射塗布が妨げられない構成とするとともに、固定手段による挟持に起因するガラス基板10の破損を抑制したガラス基板の研磨装置200を構成することが可能となった。 In the present invention, the bottom fixing means 214 has a mounting base shape, so that the spray coating of the chemical polishing liquid 20 is not hindered, and the glass substrate 10 is prevented from being damaged due to clamping by the fixing means. It becomes possible to constitute the polishing apparatus 200 for a glass substrate.
 本発明に係るガラス基板の研磨装置200の更に別の実施例として、等間隔に設置された複数の噴射ノズル220の先端口が、上端側の噴射ノズル222aの先端口径を大きく、下端側の噴射ノズル222bの先端口径を小さくする構成とすることが可能である。この構成によっても、上記と同様に、ガラス基板10の上部には多量の化学研磨液20が噴射塗布されるとともに、下部においては少量の化学研磨液20が塗布される事となり、上下間で化学研磨液20の塗布および流通の量が最適化することが可能となり、液垂による化学研磨液20の噴射塗布のムラの発生と残存を防止し、研磨厚のばらつきを抑制することが可能となった。 As still another embodiment of the glass substrate polishing apparatus 200 according to the present invention, the front end ports of the plurality of spray nozzles 220 installed at equal intervals increase the front end diameter of the upper end side spray nozzles 222a, and the lower end side sprays. It is possible to make the tip diameter of the nozzle 222b small. Even in this configuration, as described above, a large amount of the chemical polishing liquid 20 is spray-applied to the upper portion of the glass substrate 10 and a small amount of the chemical polishing liquid 20 is applied to the lower portion of the glass substrate 10. The amount of application and distribution of the polishing liquid 20 can be optimized, the occurrence and non-uniformity of spray application of the chemical polishing liquid 20 due to dripping can be prevented, and the variation in the polishing thickness can be suppressed. It was.
 以上の構成とすることにより、従前の溶液中にガラス基板を漬けてバブリングを行う方法と比べ、より効率的なガラス基板10の研磨を行う事が可能となった。 With the above configuration, it is possible to polish the glass substrate 10 more efficiently than the conventional method of bubbling by immersing the glass substrate in a solution.
 ガラス基板10の化学研磨後の板厚のばらつきは、仕上げ厚が薄くなるにつれ小さくする必要がある。例えば、研磨を開始する時の板厚を1mmとし、仕上げの板厚を0.4mmとして、板厚のばらつきの許容値を仕上げ厚の10%とした場合、バラツキの許容値はプラスマイナス0.04mm以下となる。一方、研磨量は0.6mmとなり、研磨前の基板板厚のばらつきを仮にゼロとすると、0.6mm研磨処理するのに、基板材の全面で0.04mm以内のばらつきを実現する許容率は、0.067(許容ばらつき/研磨処理量)となる。 The variation in the thickness of the glass substrate 10 after chemical polishing needs to be reduced as the finished thickness is reduced. For example, when the plate thickness at the start of polishing is 1 mm, the plate thickness of the finish is 0.4 mm, and the allowable variation of the plate thickness is 10% of the finish thickness, the variation allowable value is plus or minus 0.00. 04 mm or less. On the other hand, the polishing amount is 0.6 mm, and assuming that the variation of the substrate plate thickness before polishing is zero, the tolerance rate for realizing the variation within 0.04 mm over the entire surface of the substrate material is 0.6 mm. 0.067 (allowable variation / polishing amount).
 0.3mm仕上げの場合、ばらつきの許容範囲を仕上げ厚の10%とすると0.03mm以下となる。研磨量は0.7mmになるが、その研磨量に対して許容できるばらつきは0.03mmとなり、許容率は、0.043(許容バラツキ/研磨処理量)となり、0.4mm仕上げに対して、各段と厳しい値が要求されることとなる。さらに仕上げ厚を0.25mmとした場合、研磨量が0.75mmに対して許容できるばらつきが0.025となり、許容率は0.033(許容バラツキ/研磨処理量)となり、僅かなばらつきでも無視できない事となる。 In the case of 0.3 mm finishing, if the allowable range of variation is 10% of the finishing thickness, it will be 0.03 mm or less. Although the polishing amount is 0.7 mm, the allowable variation with respect to the polishing amount is 0.03 mm, and the allowable rate is 0.043 (allowable variation / polishing processing amount). Strict values are required for each stage. Furthermore, when the finished thickness is 0.25 mm, the allowable variation with respect to the polishing amount of 0.75 mm is 0.025, and the allowable rate is 0.033 (allowable variation / polishing processing amount). Even slight variations are ignored. It will not be possible.
 また、液晶ディスプレイを研磨する場合、CF側の基板とTFT側の基板の双方の板厚の差異に関しても要求される誤差が僅かとなる。例えば、1mmの液晶ディスプレイを研磨する場合、研磨量の1%ほど各板厚に差異が生じたとすると、0.4mm仕上げの場合は600μの研磨量の1%の6μの差異が生ずることになる。全体の許容量がプラスマイナス40μで許容レンジが80μとした場合、双方の基板の板厚の差異の6μを考慮すると、許容レンジは、実際は74μ(80-6)となる。 Further, when the liquid crystal display is polished, the required error is small even with respect to the difference in thickness between both the CF side substrate and the TFT side substrate. For example, when a 1 mm liquid crystal display is polished, if a difference in the plate thickness is generated by about 1% of the polishing amount, a difference of 6 μ of 1% of the polishing amount of 600 μ is generated in the case of 0.4 mm finishing. . When the total allowable amount is plus or minus 40 μ and the allowable range is 80 μ, the allowable range is actually 74 μ (80−6) in consideration of the difference of 6 μ between the thicknesses of both substrates.
 同じように、0.3mm仕上げの場合は、許容レンジ60μに対して研磨量の1%の7μが引かれて53μ(60-7)となり、仕上げ厚が0.25mmとした場合は、許容レンジが50μに対して研磨量の1%の7.5μが引かれて42.5μ(50-7.5)となり、薄く構成するにつれて、厳しくばらつきを抑えていかなければならないこととなる。 Similarly, in the case of 0.3mm finishing, 7% of 1% of the polishing amount is drawn to 53μ (60-7) with respect to the allowable range 60μ, and when the finishing thickness is 0.25mm, the allowable range However, 7.5%, which is 1% of the polishing amount, is drawn to 50μ to 42.5μ (50-7.5), and as the thickness is reduced, variation must be strictly suppressed.
 さらに、0.25μ仕上げの場合では、CF側、TFT側の基板は、各板厚の差異が無ければ、0.125mmで仕上がる事になるが、各板厚差があると薄い側にばらつきがある場合には、強度が弱くなるという問題がある。板厚が0.1mm(100μ)程度になると、基板の端部の強度がかなり弱くなり、破損の発生リスクが高まることとなる。 Furthermore, in the case of 0.25 μ finish, the CF side and TFT side substrates will be finished at 0.125 mm if there is no difference in thickness, but if there is a difference in thickness, there will be variations on the thin side. In some cases, there is a problem that the strength is weakened. When the plate thickness is about 0.1 mm (100 μm), the strength of the end portion of the substrate becomes considerably weak, and the risk of breakage increases.
 例えば、仕上げ厚が0.3~0.6mmくらいの製造過程においては、ほとんど問題にならない程度のバラツキであったものが、薄い基板の需要が増加する現在、特に0.3mm以下の製品を生産していく場合においては、研磨量のばらつきを抑制することが厳しく要求されるという状態となる。 For example, in the manufacturing process with a finishing thickness of about 0.3 to 0.6 mm, although there was little variation that would not be a problem, products with a thickness of 0.3 mm or less are now produced, especially as demand for thin substrates increases. In this case, it is strictly required to suppress the variation in the polishing amount.
 本発明に係る、ガラス基板の研磨方法および研磨装置を用いる事により、上記のようなばらつきの抑制が実現可能となり、旧来のバブリング方式や、その他の先行技術と比較して、より効率的で、ムラのない、研磨厚のばらつきが抑制された製品を製造することを可能とするガラス基板の研磨方法および研磨装置を提供することが可能となった。 By using the glass substrate polishing method and polishing apparatus according to the present invention, it is possible to suppress the above-described variation, more efficient than the conventional bubbling method and other prior art, It has become possible to provide a glass substrate polishing method and a polishing apparatus that can produce a product with no unevenness in polishing thickness variation.
本発明に係るガラス基板の研磨方法のフロー図Flow chart of glass substrate polishing method according to the present invention ガラス基板の研磨装置の概念図Conceptual diagram of glass substrate polishing equipment ガラス基板の側面の断面図Cross section of side of glass substrate 設置間隔を最適化した噴射ノズルの側面図Side view of injection nozzle with optimized installation interval 研磨液の噴射量を最適化した噴射ノズルの側面図Side view of the injection nozzle with optimized polishing liquid injection amount 設置手段の構成を示す斜視図The perspective view which shows the structure of an installation means
 10  ガラス基板
 12  CF基板
 14  TFT基板
 16  液晶
 20  化学研磨液
 100  ガラス基板の研磨方法
 110  設置工程
 120  化学研磨工程
 130  洗浄工程
 200  ガラス基板の研磨装置
 210  設置手段
 212  側辺固定手段
 214  底辺固定手段
 220  噴射ノズル
 222a  噴射ノズル
 222b  噴射ノズル
 230  洗浄手段
 240  枠体

 
DESCRIPTION OF SYMBOLS 10 Glass substrate 12 CF substrate 14 TFT substrate 16 Liquid crystal 20 Chemical polishing liquid 100 Glass substrate polishing method 110 Installation process 120 Chemical polishing process 130 Cleaning process 200 Glass substrate polishing apparatus 210 Installation means 212 Side fixing means 214 Bottom fixing means 220 Spray nozzle 222a Spray nozzle 222b Spray nozzle 230 Cleaning means 240 Frame

Claims (9)

  1.  液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板の表面を均質に研磨するためのガラス基板の研磨方法(100)が、
     ガラス基板(10)を垂直に吊下して設置固定する設置工程(110)と、前記ガラス基板を溶融研磨するための化学研磨液(20)を複数の噴射ノズル(220)から前記ガラス基板の両側面に継続的に噴射塗布する化学研磨工程(120)と、所定の溶融研磨時間の経過後に溶融研磨された前記ガラス基板を洗浄する洗浄工程(130)と、からなり、
     前記化学研磨工程(120)は、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止するため、ガラス基板(10)上端側の噴射ノズル(220)の縦間隔または横間隔をガラス基板下端より狭くなるように配置して、化学研磨液を上端側に多量に噴射し、かつ下端側により少量噴射することを特徴とするガラス基板の研磨方法。
    A glass substrate polishing method (100) for uniformly polishing the surface of a glass substrate used for a liquid crystal display or an organic EL display,
    An installation step (110) for vertically suspending and fixing the glass substrate (10), and a chemical polishing liquid (20) for melting and polishing the glass substrate from a plurality of spray nozzles (220). A chemical polishing step (120) for continuously spray-coating on both side surfaces, and a cleaning step (130) for cleaning the glass substrate that has been melt-polished after elapse of a predetermined melt-polishing time,
    In the chemical polishing step (120), in order to prevent unevenness and remaining of the spray coating of the chemical polishing liquid due to liquid dripping, the vertical interval or the horizontal interval of the spray nozzle (220) on the upper end side of the glass substrate (10) is set to glass A method for polishing a glass substrate, wherein the glass substrate is disposed so as to be narrower than a lower end of the substrate, and a large amount of chemical polishing liquid is sprayed to the upper end side and a small amount is sprayed to the lower end side.
  2.  液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板の表面を均質に研磨するためのガラス基板の研磨方法(100)が、
     ガラス基板を垂直に吊下して設置固定する設置工程(110)と、前記ガラス基板を溶融研磨するための化学研磨液を複数の噴射ノズル(220)から前記ガラス基板の両側面に継続的に噴射塗布する化学研磨工程(120)と、溶融研磨された前記ガラス基板を洗浄する洗浄工程(130)と、からなり、
     前記化学研磨工程(120)は、液垂による化学研磨液の噴射塗布のムラの発生と残存を防止するため、等間隔に設置された複数の噴射ノズル(220)から噴射される化学研磨液の量を、ガラス基板上端側の噴射ノズルから噴射される化学研磨液の量よりガラス基板下端側の噴射ノズルから噴射される化学研磨液の量を少なく噴射することを特徴とするガラス基板の研磨方法。
    A glass substrate polishing method (100) for uniformly polishing the surface of a glass substrate used for a liquid crystal display or an organic EL display,
    An installation step (110) in which the glass substrate is suspended and fixed vertically, and a chemical polishing liquid for melting and polishing the glass substrate is continuously applied to both sides of the glass substrate from a plurality of spray nozzles (220). A chemical polishing step (120) for spray coating, and a cleaning step (130) for cleaning the melt-polished glass substrate,
    In the chemical polishing step (120), in order to prevent the occurrence and non-uniformity of spray coating of the chemical polishing liquid due to liquid dripping, the chemical polishing liquid sprayed from a plurality of spray nozzles (220) installed at equal intervals is used. A method for polishing a glass substrate, wherein the amount of chemical polishing liquid sprayed from the spray nozzle on the lower end side of the glass substrate is sprayed less than the amount of chemical polishing liquid sprayed from the spray nozzle on the upper end side of the glass substrate .
  3.  前記ガラス基板(10)は、CF基板(12)とTFT基板(14)との空隙に液晶を封入した液晶ディスプレイ用ガラス基板、または有機ELディスプレイ用ガラス基板からなることを特徴とする請求項1または請求項2記載のガラス基板の研磨方法。 The glass substrate (10) comprises a glass substrate for liquid crystal display in which liquid crystal is sealed in a gap between a CF substrate (12) and a TFT substrate (14), or a glass substrate for organic EL display. Or the polishing method of the glass substrate of Claim 2.
  4.  前記化学研磨液(20)は、フッ酸、硫酸、塩酸からなる群から選択される一または複数の溶融研磨成分を含有することを特徴とする請求項1または請求項2記載のガラス基板の研磨方法。 3. The glass substrate polishing according to claim 1, wherein the chemical polishing liquid (20) contains one or a plurality of molten polishing components selected from the group consisting of hydrofluoric acid, sulfuric acid, and hydrochloric acid. Method.
  5.  前記ガラス基板の研磨方法(100)は、硫酸を含有する化学研磨液(20)を噴射塗布することにより、前記ガラス基板の潜傷を塞閉除去する事を特徴とする請求項1または請求項2記載のガラス基板の研磨方法。 2. The glass substrate polishing method (100) according to claim 1 or claim 2, wherein the glass substrate is subjected to a chemical polishing solution (20) containing sulfuric acid by spray coating so as to block and remove latent scratches on the glass substrate. 2. The method for polishing a glass substrate according to 2.
  6.  液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板の表面を均質に研磨するためのガラス基板の研磨装置(200)が、
     ガラス基板(10)を垂直に吊下して設置固定する設置手段(210)と、前記ガラス基板(10)を溶融研磨するための化学研磨液(20)を前記ガラス基板(10)の両側面から垂直に継続的に噴射塗布する複数からなる噴射ノズル(220)と、所定の溶融研磨時間の経過後に溶融研磨された前記ガラス基板を洗浄する洗浄手段(230)と、からなり、
     前記噴射ノズル(220)は、液垂による化学研磨液(20)の噴射塗布のムラの発生と残存を防止するため、ガラス基板上端側の噴射ノズル(222a)の縦間隔または横間隔をガラス基板下端の噴射ノズル(222b)の縦間隔または横間隔より狭くなるように配置して、化学研磨液を上端側に多量に噴射し、かつ下端側により少量噴射することを特徴とするガラス基板の研磨装置。
    A glass substrate polishing apparatus (200) for uniformly polishing the surface of a glass substrate used for a liquid crystal display or an organic EL display,
    Installation means (210) for vertically suspending and fixing the glass substrate (10), and chemical polishing liquid (20) for melting and polishing the glass substrate (10) on both side surfaces of the glass substrate (10) A plurality of spray nozzles (220) for continuously spraying and applying vertically, and a cleaning means (230) for cleaning the glass substrate that has been melt-polished after elapse of a predetermined melt-polishing time,
    The spray nozzle (220) has a vertical interval or a horizontal interval between the spray nozzles (222a) on the upper end side of the glass substrate in order to prevent the occurrence and non-uniformity of spray application of the chemical polishing liquid (20) due to dripping. Glass substrate polishing characterized by being arranged so as to be narrower than the vertical interval or horizontal interval of the injection nozzle (222b) at the lower end, and spraying a large amount of chemical polishing liquid on the upper end side and a small amount on the lower end side apparatus.
  7.  液晶ディスプレイまたは有機ELディスプレイに用いるガラス基板の表面を均質に研磨するためのガラス基板の研磨装置(200)が、
     ガラス基板(10)を垂直に吊下して設置固定する設置手段(210)と、前記ガラス基板(10)を溶融研磨するための化学研磨液を前記ガラス基板の両側面から垂直に継続的に噴射塗布する複数からなる噴射ノズル(220)と、所定の溶融研磨時間の経過後に溶融研磨された前記ガラス基板を洗浄する洗浄手段(230)と、からなり、
     前記噴射ノズル(220)は、液垂による化学研磨液(20)の噴射塗布のムラの発生と残存を防止するため、等間隔に設置された複数の噴射ノズル(220)から噴射される化学研磨液の量を、ガラス基板上端側の噴射ノズル(222a)から噴射される化学研磨液の量よりガラス基板下端側の噴射ノズル(222b)から噴射される化学研磨液の量を少なく噴射することを特徴とするガラス基板の研磨装置。
    A glass substrate polishing apparatus (200) for uniformly polishing the surface of a glass substrate used for a liquid crystal display or an organic EL display,
    An installation means (210) for vertically suspending and fixing the glass substrate (10), and a chemical polishing liquid for melting and polishing the glass substrate (10) continuously from both side surfaces of the glass substrate. A plurality of spray nozzles (220) for spray coating, and a cleaning means (230) for cleaning the glass substrate that has been melt polished after a predetermined melt polishing time,
    The spray nozzle (220) is a chemical polishing sprayed from a plurality of spray nozzles (220) installed at equal intervals in order to prevent generation and remaining of spray coating unevenness of the chemical polishing liquid (20) due to dripping. The amount of the liquid is sprayed so that the amount of the chemical polishing liquid sprayed from the spray nozzle (222b) on the lower end side of the glass substrate is smaller than the amount of the chemical polishing liquid sprayed from the spray nozzle (222a) on the upper end side of the glass substrate. An apparatus for polishing a glass substrate.
  8.  前記設置手段(210)は、ガラス基板左右縁端を支持する側辺固定手段(212)と、ガラス基板下部縁端を支持する底辺固定手段(214)とからなり、前記側辺固定手段(212)は、ガラス基板(10)の両側面を被服しない位置でガラス基板左右縁端角部に接触して両端から挟持する断面略三角形の切欠き浅溝からなるとともに、前記底辺固定手段(214)は、ガラス基板(10)の底辺を載置する載置用の土台からなることを特徴とする請求項6または請求項7記載のガラス基板の研磨装置。 The installation means (210) comprises side fixing means (212) for supporting the left and right edges of the glass substrate and bottom fixing means (214) for supporting the lower edge of the glass substrate. ) Is formed of a notch shallow groove having a substantially triangular cross section that is in contact with the left and right edge corners of the glass substrate at positions where both side surfaces of the glass substrate (10) are not covered and is sandwiched from both ends, and the bottom fixing means (214) The glass substrate polishing apparatus according to claim 6 or 7, comprising a mounting base for mounting the bottom of the glass substrate (10).
  9.  前記噴射ノズル(220)は、等間隔に設置された複数の噴射ノズルの先端口が、上端側の噴射ノズル(222a)の先端口径を大きく、下端側の噴射ノズル(222b)の先端口径を小さくしたことを特徴とする請求項6または請求項7記載のガラス基板の研磨装置。
     

     
    The spray nozzle (220) has a plurality of spray nozzles arranged at equal intervals, the tip opening of the spray nozzle (222a) on the upper end side is increased, and the tip opening diameter of the spray nozzle (222b) on the lower end side is decreased. The glass substrate polishing apparatus according to claim 6 or 7, wherein the glass substrate polishing apparatus is a glass substrate polishing apparatus.


PCT/JP2016/003476 2016-07-27 2016-07-27 Polishing method and polishing device for glass substrate WO2018020531A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/003476 WO2018020531A1 (en) 2016-07-27 2016-07-27 Polishing method and polishing device for glass substrate
JP2018530199A JP6766147B2 (en) 2016-07-27 2016-07-27 Glass substrate polishing method and polishing equipment
TW106123497A TW201816478A (en) 2016-07-27 2017-07-13 Method and machine for polishing glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/003476 WO2018020531A1 (en) 2016-07-27 2016-07-27 Polishing method and polishing device for glass substrate

Publications (1)

Publication Number Publication Date
WO2018020531A1 true WO2018020531A1 (en) 2018-02-01

Family

ID=61015743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003476 WO2018020531A1 (en) 2016-07-27 2016-07-27 Polishing method and polishing device for glass substrate

Country Status (3)

Country Link
JP (1) JP6766147B2 (en)
TW (1) TW201816478A (en)
WO (1) WO2018020531A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162877A (en) * 2006-12-29 2008-07-17 Chee Chan-Gyu Downward type method for thinning glass
JP2008266135A (en) * 2007-04-10 2008-11-06 Samsung Electronics Co Ltd Flat panel display glass substrate etching device
JP2011197194A (en) * 2010-03-18 2011-10-06 Tekurabo:Kk Method of manufacturing flat panel display
JP2013237579A (en) * 2012-05-14 2013-11-28 Asahi Glass Co Ltd Apparatus for etching glass plate, glass plate holding jig and method for manufacturing glass plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995147B2 (en) * 2002-02-01 2007-10-24 西山ステンレスケミカル株式会社 Method for manufacturing glass substrate for plasma display panel
JP4185710B2 (en) * 2002-06-07 2008-11-26 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP2008145621A (en) * 2006-12-08 2008-06-26 Hitachi Displays Ltd Liquid crystal display device and its manufacturing method
KR20090008945A (en) * 2007-07-19 2009-01-22 삼성전자주식회사 Etching apparatus for substrate
JP2010073875A (en) * 2008-09-18 2010-04-02 Hitachi Ltd Electrode forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162877A (en) * 2006-12-29 2008-07-17 Chee Chan-Gyu Downward type method for thinning glass
JP2008266135A (en) * 2007-04-10 2008-11-06 Samsung Electronics Co Ltd Flat panel display glass substrate etching device
JP2011197194A (en) * 2010-03-18 2011-10-06 Tekurabo:Kk Method of manufacturing flat panel display
JP2013237579A (en) * 2012-05-14 2013-11-28 Asahi Glass Co Ltd Apparatus for etching glass plate, glass plate holding jig and method for manufacturing glass plate

Also Published As

Publication number Publication date
JP6766147B2 (en) 2020-10-07
JPWO2018020531A1 (en) 2019-03-22
TW201816478A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP5798505B2 (en) Substrate processing apparatus and substrate processing method
TW200531945A (en) Glass plate surface etching method, glass plate etching apparatus, glass plate for flat panel display, and flat panel display
WO2011126028A1 (en) Method and apparatus for manufacturing glass plates
CN106914366B (en) Coater cleaning device and coater
JP2012140292A (en) Method for manufacturing glass substrate
WO2018020531A1 (en) Polishing method and polishing device for glass substrate
WO2015012307A1 (en) Method for producing glass substrate, glass substrate, and display panel
JP4799390B2 (en) Application method
JP5902050B2 (en) Display glass substrate manufacturing method and display glass substrate manufacturing apparatus
JP2014009124A (en) Method for manufacturing glass substrate for display, and device for manufacturing glass substrate for display
CN212504594U (en) Glass processing equipment
KR20140032842A (en) Apparatus for dispensing photoresist
JP2016179913A (en) Etching method of glass substrate and device therefor
TWI613041B (en) Method for manufacturing glass substrate
KR101252601B1 (en) Apparatus for etching glass wafer
KR102166837B1 (en) Method for producing glass substrate for display and apparatus for producing glass substrate for display
JP2020102570A (en) Washing tank of semiconductor wafer and cleaning method
JP2013202547A (en) Substrate processing apparatus
KR20100123196A (en) Apparatus for treating surface of substrate and method for treating the same
JP6557779B2 (en) Display electronic substrate manufacturing method, display electronic substrate polishing method, and polishing apparatus
KR101391078B1 (en) Apparatus for etching a glass substrate
TWI457998B (en) Surface-treating apparatus for substrate and method thereof
KR102156740B1 (en) Nozzle and apparatus for treating substrates having the same
KR100795969B1 (en) Apparatus for thining pannel and method of the same
KR101388563B1 (en) Apparatus for etching glass wafer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530199

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910436

Country of ref document: EP

Kind code of ref document: A1