WO2018018651A1 - 一种分离叔丁醇与二异丁烯的方法和系统 - Google Patents

一种分离叔丁醇与二异丁烯的方法和系统 Download PDF

Info

Publication number
WO2018018651A1
WO2018018651A1 PCT/CN2016/093237 CN2016093237W WO2018018651A1 WO 2018018651 A1 WO2018018651 A1 WO 2018018651A1 CN 2016093237 W CN2016093237 W CN 2016093237W WO 2018018651 A1 WO2018018651 A1 WO 2018018651A1
Authority
WO
WIPO (PCT)
Prior art keywords
tba
outlet
separator
ejector
dib
Prior art date
Application number
PCT/CN2016/093237
Other languages
English (en)
French (fr)
Inventor
袁帅
黄少峰
何岩
黎源
王中华
吕艳红
宋伟锋
董龙跃
刘振峰
于学丽
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Priority to MYPI2018704013A priority Critical patent/MY186940A/en
Priority to SG11201810802RA priority patent/SG11201810802RA/en
Priority to KR1020187034301A priority patent/KR102173854B1/ko
Priority to JP2018563164A priority patent/JP6717984B2/ja
Publication of WO2018018651A1 publication Critical patent/WO2018018651A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/12Monohydroxylic acyclic alcohols containing four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers

Definitions

  • the invention belongs to the field of chemical organic synthesis and relates to the separation of t-butanol and diisobutylene.
  • Isobutylene can be used to prepare diisobutylene (DIB, 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-2-pentene).
  • the catalyst is generally acidic ion exchange resin and molecular sieve. Wait. DIB is a versatile chemical intermediate that can be hydrogenated to produce isooctane, an additive that increases the octane number of gasoline.
  • DIB can be reacted with phenol to synthesize octylphenol, which is further used to produce antioxidants, tackifying resins and Surfactants and other products; DIB can also be used to prepare isodecyl aldehyde by hydroformylation, isophthalic acid hydrogenation to prepare isodecyl alcohol, oxidation to prepare isophthalic acid, and further used in the production of plasticizers, lubricants and other products.
  • TBA t-butanol
  • TBA is also azeotroped with water, and it is difficult to recover pure TBA from the TBA contained in the extracted aqueous phase.
  • the preparation of anhydrous TBA from aqueous TBA typically employs means such as recrystallization or salting out, wherein recrystallization is a high energy consumption operation well known in the art.
  • recrystallization is a high energy consumption operation well known in the art.
  • literatures potassium carbonate-separation separation of tert-butanol-water system and industrialization test, Han Pingfang et al., Chemical Engineering Progress, Vol. 23, No. 8, 2004, P877-879).
  • Patent US6734333 uses liquefied isobutylene to extract TBA from water; due to the good compatibility of TBA with water, the amount of isobutylene extracted by liquefied isobutylene must be large, which inevitably makes the size of the extraction column large; and if isopropylation of isobutylene is required, extraction The tower must be pressurized (at least 0.3 MPa gauge at normal temperature to liquefy isobutylene).
  • Extraction towers especially those containing moving equipment, have a large investment and safety risk.
  • the patent US6863778 uses two columns of pressure swing distillation to separate DIB from TBA, the pressure of the high pressure column is 0.5-0.9 MPa, and the pressure of the low pressure column is 0-0.3 MPa; The energy consumption is higher, and at the same time, equipment investment has increased significantly.
  • the object of the present invention is to separate t-butanol from diisobutylene without introducing an extractant and effectively reducing the energy consumption for separation.
  • the present invention provides a method of separating tert-butanol from diisobutylene, comprising:
  • TBA-DIB azeotrope and the adsorbent are passed through a second ejector into a suspended bed for adsorption reaction, and the reaction product is separated from the outlet of the suspended bed into the first separator to obtain a DIB-rich material solution.
  • a separator is discharged at the outlet, and the adsorbent adsorbing the TBA is discharged from the lower outlet of the first separator;
  • the present invention provides a system for separating tert-butanol from diisobutylene, comprising:
  • a feed tube of the suspended bed is connected to the DIB-TBA azeotrope supply pipe through a second ejector, and the outlet is connected to the first separator inlet;
  • a first separator comprising an inlet, an upper outlet and a lower outlet, wherein the inlet is connected to the suspended bed, the upper outlet is for discharging the DIB-rich feed liquid, and the lower outlet is connected to the second separator by the first ejector;
  • a second separator comprising an inlet, an upper outlet and a lower outlet, wherein the inlet is connected to the first separator by a first ejector for discharging gas containing TBA-rich steam, and the lower outlet is for discharging A TBA adsorbent is attached.
  • the purity of the DIB directly obtained from the outlet of the first separator can be more than 95% by weight; and the gas containing the TBA-rich vapor at the outlet of the second separator can be directly condensed to obtain a TBA purity of 70% by weight or more.
  • the positive effect of the invention is that the TBA-DIB azeotrope is directly separated under the condition that no extractant is introduced, and DIB and TBA are respectively obtained, and the method can continuously perform adsorption and desorption operations, and the whole process has no large moving equipment, and no High-pressure equipment, no high-temperature operation unit in the main process, low investment, low energy consumption and low safety risk.
  • the second ejector is a horizontally mounted separation system and a schematic diagram of the process flow; wherein, 1 is a suspended bed, 2 is a first separator, 3 is a first separator, and 3-1 is the first
  • the storage tank on the separator 3-2 is the first separator lower tank, 4 is the first ejector, 5 is the second separator, 6 is the second separator tank, 6-1 is the second separation
  • On the upper storage tank 6-2 is the second separator lower storage tank
  • 7 is the second ejector
  • 8 is the first rectification tower
  • 9 is the condenser
  • 10 is the second rectification tower;
  • Figure 2 The second ejector is a vertical installation of the separation system and process flow diagram; the meaning of each reference mark is the same as Figure 1;
  • Figure 3 Schematic diagram of the ejector; where 31 is the driving gas/liquid inlet, 32 is the tapered tube, 33 is the throat, 34 is the negative pressure suction chamber casing, 35 is the negative pressure inlet, 36 is the mixing tube , 37 is a diffuser tube, and 38 is an ejector outlet;
  • D1 is the diameter of the suction chamber casing
  • D2 is the driving gas/liquid inlet diameter
  • D3 is the throat diameter
  • D4 is the mixing tube diameter
  • L1 is the throat length
  • L2 is the throat outlet to the mixing tube inlet spacing
  • L3 For the length of the mixing tube
  • L4 is the length of the diffusion tube
  • A1 is the tapered angle of 1/2 of the tapered tube
  • A2 is the 1/2 cone angle of the joint between the mixing tube and the negative pressure inlet
  • A3 is the 1/2 cone angle of the diffusion tube. .
  • TBA is selectively adsorbed by an adsorbent flowing together with TBA and DIB in a suspended bed, and is driven by a gas-liquid-solid centrifugal separator, a gas-solid separator, and a gas and liquid respectively.
  • the equipment such as the nozzle and nozzle completes the continuous separation of DIB and TBA, the adsorbent and the continuous regeneration of the adsorbent, thereby achieving the purpose of separating DIB and TBA.
  • the invention will be described in detail below with reference to specific embodiments.
  • the method of the present invention for separating tert-butanol from diisobutylene comprises:
  • the TBA-DIB azeotrope and the adsorbent are passed through a second ejector into a suspended bed for adsorption reaction, and the reaction product is separated from the outlet of the suspended bed into the first separator to obtain a DIB-rich material solution.
  • a separator is discharged at the outlet, and the adsorbent adsorbing the TBA is discharged from the lower outlet of the first separator; the DIB-rich feed liquid contains a very small amount of TBA;
  • the method further comprises: (3) desorbing the adsorbent of the TBA through the second lead The ejector is circulated back to the suspended bed.
  • a DIB-rich feed liquid is separated by distillation to obtain a small amount of TBA-DIB azeotrope to obtain a high-purity DIB.
  • the TBA-rich gas is condensed to directly obtain TBA; further preferably, the TBA obtained after the condensation is further separated by distillation to obtain a TBA-DIB azeotrope. Pure TBA.
  • steps (1) and (2) the TBA-DIB azeotrope separated by rectification is recycled back to the suspended bed.
  • the method of the present invention for separating tert-butanol from diisobutylene comprises:
  • TBA-DIB azeotrope and the adsorbent are passed through a second ejector into a suspended bed for adsorption reaction, and the reaction product is separated from the outlet of the suspended bed into the first separator to obtain a DIB-rich material solution.
  • a separator is discharged at the outlet, and the adsorbent adsorbing the TBA is discharged from the lower outlet of the first separator;
  • the TBA-DIB azeotrope is obtained by condensing and rectifying the TBA-DIB azeotrope obtained in the step (2) to obtain a high purity TBA; and the separated TBA-DIB azeotrope is recycled to the suspended bed.
  • the adsorbent used in the method is a polystyrene resin loaded with a strong polar group.
  • the polystyrene resin is a copolymer of styrene and divinylbenzene and/or a copolymer of styrene and divinylbenzene and a copolymer of short fibers, preferably a copolymer of styrene and divinylbenzene and a composite of short fibers. Copolymer to increase the mechanical strength of the particles.
  • the staple fibers include, but are not limited to, one or more of metal fiber particles, glass fiber particles, and cellulose particles.
  • the strongly polar group is one of a sulfonic acid group, a nitro group, an amino group and a carboxyl group.
  • the loading amount of the strong polar group is 0.5 to 10 mmol/g, preferably 3 to 5.5 mmol/g; the loading amount of the strong polar group refers to a substance having a strong polar group supported per unit mass of the adsorbent the amount.
  • the adsorbent is a porous spherical particle having a circularity of 0 to 0.1; an average particle diameter of 0.1 to 5 mm, preferably 0.8 to 1.5 mm; and a uniform particle diameter, and the particle diameter is smaller than an average based on the total weight of the adsorbent.
  • the adsorbent particles having a particle diameter of 0.7 times are not more than 5%, the adsorbent particles having a particle diameter larger than 1.3 times the average particle diameter are not more than 5%;
  • the pore diameter of the adsorbent is 10 to 500 nm, preferably 100 to 300 nm; and the specific surface is 5 to 100 m.
  • the true density of the adsorbent is 0.8 to 1.5 g/ml, preferably 1 to 1.2 g/ml.
  • the sorbent particles with high roundness and uniform particle size are advantageous for improving the fluidity of the particles and reducing the frictional breakage between the sorbent particles.
  • the average length of the short fibers is 1/100 to 1/2 of the average particle diameter of the adsorbent, preferably 1/20 to 1/5; and the average diameter of the short fibers is 1/10000 to 1 of the average length. /5, preferably 1/1000 to 1/10.
  • the polystyrene resin is exemplified by a copolymer of a copolymer of styrene and divinylbenzene and a copolymer of short fibers, and it is required to dissolve the surface-exposed fibers to obtain smooth particles after loading a strong polar group. Then, the surface-treated adsorbent particles are subjected to strong polar group loading to obtain a polypolar resin loaded with a strong polar group; the metal fiber is dissolved by using one or more of dilute nitric acid, dilute sulfuric acid and dilute hydrochloric acid, The glass fibers are dissolved using hydrofluoric acid, and the cellulose is dissolved using copper amine and/or copper ethylene diamine.
  • the mass ratio of the mass of the t-butanol to the adsorbent in the TBA-DIB azeotrope at the inlet of the suspended bed is 1:0.5 to 1:20, preferably 1:2 to 1: 10.
  • the adsorbent is added in one portion. Once the specified tert-butanol to adsorbent mass ratio is reached, it is no longer added and the adsorbent circulates within the system.
  • the TBA-DIB azeotrope and solid adsorbent are fed from the inlet at the bottom of the suspension bed.
  • the feed linear velocity of the TBA-DIB azeotrope is 1.05 to 20 times, preferably 2 to 10 times the critical suspension velocity of the adsorbent; the average linear velocity of the adsorbent in the suspended bed is TBA-DIB azeotrope
  • the linear velocity is from 1 to 99%, preferably from 50 to 90%.
  • the inlet speed of the separator should be controlled within a suitable range. If the speed is too small, the centrifugal effect is not good, and the too high speed will increase the risk of collision of the adsorbent.
  • the average linear velocity of the adsorbent adsorbing TBA and the DIB-rich liquid from the outlet of the suspended bed into the first separator is from 1 to 50 m/s, preferably from 3 to 30 m/s.
  • the gas velocity of the inlet of the second separator is 0.5 to 50 m/s, preferably 2 to 10 m/s is selected; the operating temperature is 25 to 60 ° C, preferably 30 to 50 ° C.
  • the first ejector is driven by a desorption gas.
  • the desorbing gas is a non-combustible, non-combustible gas such as one or more of nitrogen, carbon dioxide, argon and helium, preferably nitrogen and/or carbon dioxide.
  • the temperature of the desorbing gas of the first ejector is 25 to 60 ° C, preferably 30 to 50 ° C; too high a temperature causes a reaction of t-butanol on the surface of the adsorbent.
  • the second ejector is driven by a liquid
  • the driving liquid is a TBA-DIB azeotrope
  • the driving liquid has a maximum velocity at the second ejector throat of 0.5 to 50 m/s, preferably 2 to 10m/s.
  • the present invention also provides a system for separating t-butanol from diisobutylene, comprising:
  • the feed pipe of the suspended bed is connected to the DIB-TBA azeotrope supply pipe through the second ejector 7, and the outlet is connected to the inlet of the first separator 2;
  • the first separator 2 comprises an inlet, an upper outlet and a lower outlet, wherein the inlet is connected to the suspended bed 1 , the upper outlet is for discharging the DIB-rich feed, and the lower outlet is separated from the second by the first ejector 4 Connected to the device 5;
  • the second separator 5 comprises an inlet, an upper outlet and a lower outlet, wherein the inlet is connected to the first separator 2 via a first ejector 4, the upper outlet is for discharging gas containing TBA-rich steam, and the lower outlet is for discharging The adsorbent desorbed with TBA is discharged.
  • the lower outlet of the second separator 5 is connected to the feed pipe of the suspended bed 1 by a second ejector 7.
  • the upper outlet of the first separator 2 is connected to the first rectification column 8 via a conduit.
  • the upper outlet of the first rectification column 8 is for discharging the TBA-DIB azeotrope and the lower outlet for discharging the high purity DIB.
  • the upper outlet of the first fractionator 8 is connected to a TBA-DIB azeotrope supply conduit.
  • the upper outlet of the second separator 5 is connected to the condenser 9 through a pipe; or the upper outlet of the second separator 5 is connected to the condenser 9 through a pipe, the material outlet of the condenser and the second distillation
  • the entrance of tower 10 is connected.
  • the upper outlet of the second rectification column is used to discharge the TBA-DIB azeotrope and the lower outlet is used to discharge the high purity TBA.
  • the upper outlet of the second rectification column is connected to a TBA-DIB azeotrope supply conduit.
  • the lower part of the first separator is a first separator tank 3 (referred to as a first tank), and is divided into an upper tank 3-1 and a lower tank 3-2; the second separator The lower part is a second separator tank 6 (referred to as a second tank), and is divided into an upper tank 6-1 and a lower tank 6-2.
  • the suspended bed may be any conventional suspension Bed, suspended bed height to diameter ratio of 1000:1 ⁇ 1:1, preferably 100:1 ⁇ 10:1; operating pressure is normal pressure; operating temperature between 25 ° C and TBA-DIB azeotrope boiling point (25 ⁇ 77 ° C ).
  • the inlet of the bottom of the suspended bed is an equal diameter straight tube or a reduced tube or a combination thereof, preferably a tapered tube whose taper angle is gradually reduced from a large angle, and the taper angle is between 0 and 60 degrees, preferably between 0 and 30 degrees.
  • the minimum cross-sectional area of the reducer passage is 20 to 80%, preferably 30 to 50% of the maximum cross-sectional area.
  • the inlet of the bottom of the suspension bed is selected to form a jet at the bottom of the suspended bed to increase the turbulence at the bottom of the suspended bed, to prevent the adsorbent from depositing at the bottom, and to promote liquid-solid mass transfer.
  • the outlet of the suspended bed is rounded or taper angle, so as to avoid the adsorbent breaking when the adsorbent flows through here, because the passage suddenly shrinks, and the flow velocity becomes large, and the direct collision with the right angle causes the adsorbent to be broken.
  • the suspended bed outlet and the first separator inlet are connected by a straight pipe or a tapered pipe or a combination thereof, preferably a tapered pipe connection, more preferably a tapered pipe whose taper angle is gradually reduced from large to large.
  • the minimum taper angle is not less than 5°, preferably between 10 and 30°; the minimum cross-sectional area of the reducer is 20 to 80%, preferably 30 to 50% of the maximum cross-sectional area.
  • the first separator and the second separator are preferably centrifugal separators.
  • the first separator is composed of an upper straight section, a middle cone section and a lower first tank, and the straight section has an aspect ratio of 1:1 to 10:1, preferably 2:1 to 4:1;
  • the angle is 3 to 30°, preferably 5 to 15°; the bottom of the cone is connected to the first storage tank.
  • the first storage tank is two storage tanks connected in series, and the two storage tanks connected in series may be the same or different, and each of them is independently composed of an upper straight section and a lower conical section, and the cone angle of the lower conical section is 3 ⁇ . 30°, preferably 5-15°.
  • a shut-off valve between the upper and lower storage tanks is intermittently opened and closed, the diameter of the passage between the bottom of the conical section of the first separator and the upper storage tank, the inner diameter of the shut-off valve between the upper and lower storage tanks, and between the lower storage tank and the first ejector
  • the diameter of the interface is 1/8 to 1/4 of the diameter of the straight section of the first separator, preferably 1/5/ ⁇ 1/4.
  • the diameters of the above three channels may be the same or different.
  • the top of the lower storage tank of the first storage tank has a pressure equalization pipeline connected to the atmospheric gas, and the atmospheric gas type is the same as the desorption gas.
  • the pressure equalization line is in communication with the lower storage tank gas.
  • the second separator is composed of an upper straight section, a middle conical section and a lower second storage tank, straight
  • the height-to-diameter ratio of the barrel section is 1:1 to 10:1, preferably 2:1 to 4:1; the cone angle of the conical section is 3 to 30°, preferably 5 to 15°; the bottom of the cone is connected to the second storage tank.
  • the second storage tank is two storage tanks connected in series above and below, and the two storage tanks connected in series may be the same or different, each consisting of an upper straight section and a lower conical section, and the lower part of the upper and lower storage tanks are inverted cones and cones.
  • the cone angle of the body is from 3 to 30, preferably from 5 to 15.
  • the upper and lower storage tanks are intermittently opened and closed.
  • the diameter of the passage between the bottom of the cone and the upper storage tank, the diameter of the shut-off valve between the upper and lower storage tanks, and the diameter of the interface between the lower storage tank and the ejector are straight. 1/8 to 1/4 of the segment, preferably 1/4 to 1/5, and the above three channels have the same or different diameters.
  • the inner wall of the second separator has a spiral downward baffle, and the baffle starts to spiral downward from the junction of the first ejector outlet and the second separator, and is tangentially along the inner wall.
  • the baffle can extend the residence time of the solid adsorbent in the second centrifugal separator and increase the relative speed between the driving gas and the solid (adsorbent), thereby improving the efficiency of TBA desorption.
  • the top of the lower tank of the second storage tank is also provided with a pressure equalizing line, and the pressure equalizing line is connected to the atmospheric gas, and the gas type is the same as the desorbing gas.
  • the pressure equalization line is in communication with the lower storage tank gas.
  • the adsorbent Since the adsorbent carries a small amount of gas when entering the second ejector and enters the inlet of the suspended bed, a small amount of gas brought in by the inlet of the suspended bed also enters the first separator with the liquid-solid two-phase flow at the top of the suspended bed, and is introduced. A small amount of gas forms small bubbles in the liquid, and the difference in macroscopic density from the solid becomes large, and the separation effect of the first separator can be improved.
  • the first ejector includes a drive gas inlet 31, a reducer 32, a throat 33, a negative pressure suction chamber sleeve 34, a negative pressure inlet 35,
  • the mixing tube 36, the diffusion tube 37, and the ejector outlet 38 have a negative pressure inlet connected to the lower reservoir outlet of the first reservoir. Since the first ejector drive gas inlet diameter is larger than the diameter of the throat (i.e., the smallest diameter) in the middle of the ejector, the velocity of the drive gas at the throat is greater than the inlet velocity.
  • the first ejector is horizontally mounted;
  • the first ejector outlet to the second separator is a horizontal straight tube having the same diameter as the first ejector outlet diameter, inclined downward Straight tube or spiral tube spiraling downward, preferably spiraling down the spiral tube, adsorbent in the spiral tube Under the action of centrifugal force, it can be rubbed to the wall surface, because there is friction between it and the wall surface, so that the difference between the speed of movement and the velocity of the gas phase becomes larger, which is beneficial to the desorption of TBA in the adsorbent.
  • the second ejector includes a driving liquid inlet, a reducer, a throat, a vacuum suction chamber sleeve, a negative pressure inlet, a mixing tube, a diffusion tube, and an ejector outlet, and a negative pressure inlet and a second storage
  • the lower tank outlets of the tank are connected.
  • the second ejector is mounted horizontally or vertically downwards, preferably vertically downwards, such that the direction of movement of the driving liquid and the sorbent is consistent with the direction of gravity, enabling a greater degree of energy savings.
  • the first ejector and the second ejector have the same internal structure and may be the same or different in size, and the ejector includes, but is not limited to, various conventional gases or liquids.
  • the ejector that accelerates the manufacture of the negative pressure, thereby enabling the suction and transport of material.
  • the diameter D1 of the suction chamber of the first ejector and the second ejector used herein is 1 to 10 times, preferably 2 to 4 times the diameter D4 of the mixing tube; driving gas/liquid
  • the inlet diameter D2 is 0.5 to 4 times, preferably 1 to 2 times the diameter D4 of the mixing tube;
  • the throat diameter D3 is 1/8 to 1/2, preferably 1/4 to 1/3 of the driving gas/liquid inlet diameter D2;
  • the length L1 of the straight pipe section is 0.2 to 2 times, preferably 0.5 to 1 times the diameter D3;
  • the throat 1/2 taper angle A1 is 5 to 30 degrees, preferably 10 to 20 degrees;
  • the distance L2 of the tube inlet is 0.5 to 4 times, preferably 1 to 2 times the diameter D4 of the mixing tube;
  • the length L3 of the mixing tube is 0.5 to 10 times, preferably 2 to 6 times, of D4;
  • the diffusion tube has a small inlet diameter and an outlet diameter.
  • connection between the mixing tube and the negative pressure inlet of the suction chamber is also a cone angle structure, and the 1/2 cone angle A2 is 15 to 75°, preferably 30 to 60°.
  • the first ejector and the second ejector described herein are made of metal, carbon fiber, glass fiber, engineering plastic, or engineering plastic with one or more of metal, carbon fiber and glass fiber as strength structure.
  • Composite material In order to reduce the wear of the sorbent particles, an engineering plastic or a composite material of an engineering plastic having a strength structure of one or more of metal, carbon fiber and glass fiber is preferred.
  • the TBA-DIB azeotrope (from the top of the azeotrope separation column of the isobutylene oligomerization device) and the adsorbent are passed into the suspension bed through the second ejector for adsorption reaction, and the reaction product (the adsorbent and the electrode containing the TBA adsorbed)
  • a small amount of TBA rich DIB feed was separated from the first centrifugal separator by the suspension bed outlet.
  • the DIB-rich feed liquid containing a very small amount of TBA is discharged from the upper outlet of the first centrifugal separator, and the adsorbent selectively adsorbing TBA is discharged from the lower outlet of the first centrifugal separator.
  • DIB is directly obtained from the outlet of the first centrifugal separator, or a small amount of TBA-DIB azeotrope is separated by rectification to obtain high-purity DIB, and the separated TBA-DIB azeotrope is recycled to the suspended bed to continue separation.
  • the lower outlet of the first storage tank is connected to the first ejector, and the adsorbent and desorbed gas adsorbing the TBA enter the second centrifugal separator through the first ejector, and the gas containing TBA-rich steam is in the second centrifugal separator.
  • the upper outlet is discharged, and the adsorbent desorbed from the TBA is discharged from the lower outlet of the second separator; the TBA-rich gas obtained from the outlet of the second centrifugal separator is condensed to directly obtain the TBA, or further condensed TBA separates the TBA-DIB azeotrope by rectification to obtain high purity TBA, and the TBA-DIB azeotrope is recycled back to the suspension bed to continue separation.
  • the lower outlet of the second storage tank is connected to the inlet of the liquid-driven second ejector, and the desorbed adsorbent is recirculated back to the suspended bed through the second ejector along with the TBA-DIB azeotrope to continue separation.
  • the adsorbent used is a polystyrene resin loaded with a sulfonic acid group, the loading of the sulfonic acid group is 5.5 mmol/g, the roundness of the adsorbent is 0.001, the average particle diameter is 0.1 mm, and the particle diameter is less than the average particle diameter of 0.7.
  • the adsorbent particles are less than 5%, the adsorbent particles having a particle size larger than 1.3 times the average particle diameter are less than 5%, the adsorbent pore size is 10 nm, the specific surface is 100 m 2 /g, and the true density is 0.7 g/ml.
  • the mass ratio of TBA to adsorbent in the feed TBA-DIB azeotrope is 1:1, the linear velocity of the azeotrope in the suspended bed is 20 times the critical suspension velocity of the adsorbent, and the height-to-diameter ratio of the suspended bed is 1000: 1, normal pressure operation, operating temperature 25 ° C.
  • An equal diameter straight pipe is arranged between the outlet of the suspended bed and the first separator; the average linear velocity of the inlet of the first centrifugal separator is 50 m/s, and the junction between the outlet of the suspended bed and the straight pipe of equal diameter is a 60° taper pipe, first The height ratio of the straight section of the centrifugal separator is 1:1, the cone angle of the cone section is 30°, and the bottom of the cone is connected to the first storage tank.
  • the first storage tank is two storage tanks connected in series, which are respectively composed of an upper straight section and a lower conical section, and the cone angle of the lower conical section is 30°, and the upper and lower storage tanks are intermittently opened and closed shut-off valves,
  • the diameter of the passage between the bottom of the conical section of the centrifugal separator and the upper storage tank, the inner diameter of the shut-off valve between the upper and lower storage tanks, and the diameter of the interface between the lower storage tank and the first ejector are both the diameter of the first centrifugal separator straight section 1/8.
  • the second centrifugal separator had an inlet gas velocity of 50 m/s and an operating temperature of 25 °C.
  • the height ratio of the straight section of the second centrifugal separator is 1:1, the cone angle of the cone section is 30°, the bottom of the cone is connected to the second storage tank, and the second storage tank is two storage tanks connected in series, each independently
  • the ground consists of an upper straight section and a lower conical section.
  • the cone angle of the cone is 30°.
  • the upper and lower storage tanks are intermittently opened and closed, the diameter of the passage between the bottom of the cone and the upper storage tank, and the upper and lower storage tanks.
  • the diameter between the inner diameter of the shut-off valve and the lower reservoir and the ejector is 1/8 of the straight section.
  • the downwardly spiraling baffle of the inner wall of the second centrifugal separator begins to spiral downwardly from the first ejector outlet to the second centrifugal separator at the tangential direction of the inner wall to the second centrifugal separator at a height from the bottom of the conical section 2 /3 position (based on the height of the second centrifugal separator from the top to the bottom of the cone).
  • the first ejector is driven by the desorption gas and is horizontally mounted.
  • the first ejector outlet to the second centrifugal separator is a horizontal straight tube having the same diameter as the first ejector outlet diameter (as shown in FIG. 2).
  • the second ejector is driven by a liquid, the driving liquid is a TBA-DIB azeotrope, the negative pressure inlet is connected to the lower storage tank outlet of the second storage tank, the second ejector is horizontally mounted; the driving liquid is in the first
  • the speed at the two ejector throats is 50 m/s.
  • the desorbing gas is helium, and the top pressure equalizing pipelines of the lower tanks of the first and second storage tanks are connected to the atmospheric helium gas.
  • the DIB purity obtained at the outlet of the first centrifugal separator was 90% by weight.
  • the mixture was separated in an atmospheric distillation column having a theoretical number of plates of 20 and a reflux ratio of 1, and a TBA-DIB azeotrope was obtained from the top of the column, and a DIB having a purity of 99% by weight was obtained from the column.
  • the TBA content in the liquid after condensation of the outlet stream on the second centrifugal separator was 81% by weight.
  • the mixture was separated in an atmospheric distillation column having a theoretical number of plates of 20 and a reflux ratio of 1, and a TBA-DIB azeotrope was obtained from the top of the column, and a TBA having a purity of 99 wt% was obtained from the column.
  • the operation flow is the same as that in the first embodiment, and the process flow chart used is as shown in FIG. 2 .
  • the adsorbent used is a polystyrene resin loaded with a sulfonic acid group, and the polystyrene resin is a copolymer of a copolymer of styrene and divinylbenzene and metal fiber particles, and the loading of the sulfonic acid group is 3.0 mmol/ g, the roundness of the adsorbent is 0.1, the average particle diameter is 0.5 mm, the adsorbent particles having a particle diameter smaller than 0.7 times the average particle diameter are less than 4%, the adsorbent particles having a particle size larger than 1.3 times the average particle diameter are less than 4%, and the adsorbent pore diameter is It is 500 nm, the specific surface is 5 m 2 /g, and the true density is 1.5 g/ml.
  • the mass ratio of TBA to adsorbent in the feed TBA-DIB azeotrope is 1:10
  • the linear velocity of the azeotrope in the suspended bed is 1.05 times the critical suspension velocity of the adsorbent
  • the height-to-diameter ratio of the suspended bed is 1:1. , normal pressure operation, operating temperature 50 ° C.
  • a tapered tube whose taper angle is gradually reduced from 60° to 5° between the outlet of the suspended bed and the first separator, the minimum cross-sectional area being 20% of the maximum cross-sectional area; the inlet average linear velocity of the first separator is 1 m /s.
  • the joint between the outlet of the suspended bed and the reducer is rounded, and the radius of the fillet is twice the maximum diameter of the reducer.
  • the first separator straight section has a height to diameter ratio of 10:1, the cone section has a cone angle of 3°, the cone bottom is connected to the first storage tank, and the first storage tank is two storage tanks connected in series, each independently The upper straight section and the lower conical section are formed, and the cone angle of the lower conical section is 3°.
  • a shut-off valve between the upper and lower storage tanks is intermittently opened and closed, the diameter of the passage between the bottom of the conical section of the first separator and the upper storage tank, the inner diameter of the shut-off valve between the upper and lower storage tanks, and between the lower storage tank and the first ejector
  • the diameter of the interface is 1/4 of the diameter of the straight section of the first separator.
  • the second centrifugal separator has a gas velocity of 0.5 m/s and an operating temperature of 50 ° C.
  • the height ratio of the straight section of the second centrifugal separator is 10:1, the cone angle of the cone section is 3°, and the cone bottom and the second
  • the storage tanks are connected, and the second storage tanks are two storage tanks connected in series, each of which is independently composed of an upper straight section and a lower conical section, the cone angle of the cone is 3°, and the upper and lower storage tanks are intermittently opened.
  • the closed shut-off valve, the diameter of the passage between the bottom of the cone and the upper storage tank, the inner diameter of the shut-off valve between the upper and lower storage tanks, and the diameter of the interface between the lower storage tank and the ejector are 1/4 of the straight section, the second centrifugal separation
  • the downwardly spiraling baffle of the inner wall of the vessel begins to spiral downwardly from the first ejector outlet to the second centrifugal separator at a tangential direction of the inner wall to a position where the second centrifugal separator is 1/3 of the height of the bottom of the conical section (Based on the height of the second centrifugal separator from the top to the bottom of the conical section).
  • the first ejector is driven by the desorbing gas and is horizontally mounted, and the first ejector outlet to the second centrifugal separator is a straight downwardly inclined straight tube having the same diameter as the first ejector outlet;
  • the ejector is driven by a liquid, the driving liquid is a TBA-DIB azeotrope, the negative pressure inlet is connected to the lower storage tank outlet of the second storage tank, the second ejector is vertically installed downward; the driving liquid is in the second
  • the speed at the ejector throat is 0.5 m/s.
  • the desorbed gas is carbon dioxide.
  • the top pressure equalization lines of the lower tanks of the first and second storage tanks are all connected to atmospheric carbon dioxide.
  • the DIB obtained from the outlet of the first centrifugal separator has a purity of 99% by weight and does not require rectification and purification.
  • the TBA content in the liquid condensed by the outlet stream on the second centrifugal separator is 89 wt%; in the atmospheric distillation column with the theoretical number of plates of 20 and the feed position being the ninth theoretical plate and the reflux ratio of 1, A TBA-DIB azeotrope was obtained from the top of the column, and a TBA having a purity of 99 wt% was obtained from the column.
  • the operation procedure is the same as that in the first embodiment.
  • the adsorbent used is a polystyrene resin loaded with a sulfonic acid group, and the polystyrene resin is a copolymer of a copolymer of styrene and divinylbenzene and a glass fiber particle, and a sulfonic acid group.
  • the loading capacity of the pellet is 4.0 mmol/g
  • the roundness of the adsorbent is 0.08
  • the average particle diameter is 0.8 mm
  • the adsorbent particle having a particle diameter smaller than 0.7 times the average particle diameter is less than 3%
  • the particles were less than 3%, the adsorbent pore size was 300 nm, the specific surface was 20 m 2 /g, and the true density was 1.2 g/ml.
  • the mass ratio of TBA to adsorbent in the feed TBA-DIB azeotrope is 1:5, the linear velocity of the azeotrope in the suspended bed is twice the critical suspension velocity of the adsorbent, and the height-to-diameter ratio of the suspended bed is 10:1.
  • normal pressure operation operating temperature 30 ° C.
  • a tapered tube whose taper angle is gradually reduced from 50° to 5° between the outlet of the suspended bed and the first separator, the minimum cross-sectional area being 30% of the maximum cross-sectional area; the inlet average linear velocity of the first centrifugal separator is 3m / s, the connection between the outlet of the suspended bed and the reducer is rounded, the radius of the fillet is twice the maximum diameter of the reducer, and the height ratio of the straight section of the first centrifugal separator is 4:1, the cone section
  • the taper angle is 5°
  • the bottom of the cone is connected to the first storage tank
  • the first storage tank is two storage tanks connected in series, which are respectively composed of an upper straight section and a lower conical section, and the cone angle of the lower conical section is 5 °
  • the upper and lower storage tanks are intermittently opened and closed shut-off valves, the diameter of the passage between the bottom of the conical section of the first centrifugal separator and the upper storage tank, the inner diameter of the shut-off valve
  • the second centrifugal separator has a gas velocity of 2 m/s and an operating temperature of 30 ° C.
  • the height ratio of the straight section of the second centrifugal separator is 4:1, the cone angle of the conical section is 5°, the bottom of the cone and the second storage.
  • the troughs are connected, and the second storage trough is two storage tanks connected in series, each of which is independently composed of an upper straight section and a lower conical section, the cone angle of the cone is 5°, and the upper and lower storage tanks are intermittently opened and closed.
  • the shut-off valve, the diameter of the passage between the bottom of the cone and the upper storage tank, the inner diameter of the shut-off valve between the upper and lower storage tanks, and the diameter of the interface between the lower storage tank and the ejector are 1/5 of the straight section, the second centrifugal separator
  • the downwardly spiraling deflector of the inner wall begins to spiral downwardly from the first ejector outlet to the second centrifugal separator in a tangential direction of the inner wall to a position where the second centrifugal separator is 1/3 of the height of the bottom of the conical section ( Based on the height of the second centrifugal separator from the top to the bottom of the conical section).
  • the first ejector is driven by the desorption gas and is horizontally mounted, and the first ejector outlet to the second centrifugal separator is a spirally spiraling tube having the same diameter as the diameter of the first ejector outlet;
  • the ejector is driven by the TBA-DIB azeotrope, the negative pressure inlet is connected to the lower reservoir outlet of the second reservoir, the second ejector is mounted vertically downwards; the drive liquid is in the second ejector throat The speed is 2m/s.
  • the desorbing gas is argon gas, and the top pressure equalizing pipelines of the lower tanks of the first and second storage tanks are all connected to the atmospheric pressure argon gas.
  • the purity of the DIB obtained from the outlet of the first centrifugal separator was 97 wt%, and it was separated in an atmospheric distillation column having a theoretical number of plates of 20 and a reflux ratio of 0.5, and a TBA-DIB azeotrope was obtained from the top of the column, from the column reactor. A DIB having a purity of 99% by weight was obtained.
  • the TBA content of the liquid condensed in the outlet stream of the second centrifugal separator is 85 wt%, and is separated in an atmospheric distillation column having a theoretical number of plates of 20 and a reflux ratio of 1, and a TBA-DIB azeotrope is obtained from the top of the column. A purity of 99% by weight of TBA was obtained from the column.
  • the operation procedure is the same as that in the first embodiment.
  • the adsorbent used is a polystyrene resin loaded with a sulfonic acid group
  • the polystyrene resin is a copolymer of a copolymer of styrene and divinylbenzene and cellulose, and a sulfonic acid group.
  • the loading amount is 5.0 mmol/g, the roundness of the adsorbent is 0.05, the average particle diameter is 1 mm, the adsorbent particles having a particle diameter smaller than 0.7 times the average particle diameter are less than 1%, and the adsorbent particles having a particle size larger than 1.3 times the average particle diameter are smaller than 1%, the adsorbent has a pore diameter of 200 nm, a specific surface of 80 m 2 /g, and a true density of 0.8 g/ml.
  • the mass ratio of TBA to adsorbent in the feed TBA-DIB azeotrope is 1:2
  • the linear velocity of the azeotrope in the suspended bed is 5 times the critical suspension velocity of the adsorbent
  • the height-to-diameter ratio of the suspended bed is 40:1.
  • a tapered tube whose taper angle is gradually reduced from 30° to 10° between the outlet of the suspended bed and the first separator, the minimum cross-sectional area being 40% of the maximum cross-sectional area;
  • the inlet average linear velocity of the first centrifugal separator is 10m/s
  • the joint between the outlet of the suspended bed and the reducer is rounded
  • the radius of the fillet is twice the maximum diameter of the reducer
  • the height ratio of the straight section of the first centrifugal separator is 3:1
  • the cone section The cone angle is 10°
  • the bottom of the cone is connected to the first storage tank
  • the first storage tank is two storage tanks connected in series, which are respectively composed of an upper straight section and a lower conical section
  • the cone angle of the lower conical section is 10 °
  • the upper and lower storage tanks are intermittently opened and closed shut-off valves, the diameter of the passage between the bottom of the conical section of the first centrifugal separator and the upper storage tank, the inner diameter of the shut-off valve
  • the second centrifugal separator has a gas velocity of 6 m/s, an operating temperature of 40 ° C, and a second centrifugal separation.
  • the straight diameter section of the straight section is 3:1, the cone angle of the cone section is 10°, the bottom of the cone is connected to the second storage tank, and the second storage tank is two storage tanks connected in series, each independently independent from the upper straight cylinder
  • the segment and the lower conical section are composed, the cone angle of the cone is 10°, the shut-off valve is intermittently opened and closed between the upper and lower storage tanks, the passage diameter between the bottom of the cone and the upper storage tank, and the shut-off valve between the upper and lower storage tanks
  • the diameter of the interface between the inner diameter and the lower storage tank and the ejector is 1/5 of the straight section, and the inner deflector of the second centrifugal separator is spirally downward from the first ejector outlet and the second centrifugal separator Starting in the tangential direction of the inner wall, the spiral extends downward to a
  • the first ejector is driven by the desorption gas and is horizontally mounted, and the first ejector outlet to the second centrifugal separator is a spirally spiraling tube having the same diameter as the diameter of the first ejector outlet;
  • the ejector is driven by the TBA-DIB azeotrope, the negative pressure inlet is connected to the lower reservoir outlet of the second reservoir, the second ejector is mounted vertically downwards; the drive liquid is in the second ejector throat The speed at the place is 6m/s.
  • the desorbing gas is nitrogen, and the top pressure equalizing lines of the lower tanks of the first and second storage tanks are all connected to atmospheric nitrogen.
  • the DIB obtained from the outlet of the first centrifugal separator has a purity of 94 wt%, is separated in an atmospheric distillation column having a theoretical number of plates of 20 and a reflux ratio of 1, and a TBA-DIB azeotrope is obtained from the top of the column, from the column reactor.
  • a DIB with a purity of 99% was obtained.
  • the TBA content of the liquid condensed in the outlet stream of the second centrifugal separator is 83 wt%, and is separated in an atmospheric distillation column having a theoretical number of plates of 20 and a reflux ratio of 1, and a TBA-DIB azeotrope is obtained from the top of the column.
  • a TBA having a purity of 99% by weight was obtained from the column.
  • the operation procedure is the same as that in the first embodiment.
  • the adsorbent used is a polystyrene resin loaded with a nitric acid group
  • the polystyrene resin is a copolymer of a copolymer of styrene and divinylbenzene and cellulose
  • the loading of the nitric acid group is 1.0 mmol/g
  • the roundness of the adsorbent is 0.05
  • the average particle diameter is 1.5 mm
  • the adsorbent particles having a particle diameter smaller than 0.7 times the average particle diameter are less than 1%
  • the adsorbent particles having a particle size larger than 1.3 times the average particle diameter are less than 1.
  • the adsorbent has a pore diameter of 100 nm, a specific surface area of 50 m 2 /g, and a true density of 1 g/ml.
  • the mass ratio of TBA to adsorbent in the feed TBA-DIB azeotrope is 1:20
  • the linear velocity of the azeotrope in the suspended bed is 8 times the critical suspension velocity of the adsorbent
  • the height-to-diameter ratio of the suspended bed is 60:1.
  • normal pressure operation operating temperature 30 ° C.
  • the tapered tube whose taper angle is gradually reduced from 30° to 10°, the minimum sectional area is 50% of the maximum sectional area; the inlet of the first centrifugal separator
  • the average line speed of the mouth is 20m/s, the joint between the outlet of the suspended bed and the reducer is rounded, the radius of the fillet is twice the maximum diameter of the reducer, and the height-to-diameter ratio of the straight section of the first centrifugal separator is 3.
  • the cone angle of the conical section is 10°
  • the bottom of the cone is connected with the first storage tank
  • the first storage tank is two storage tanks connected in series, which are respectively composed of an upper straight section and a lower conical section, and the lower conical section
  • the taper angle is 10°
  • the shut-off valve is intermittently opened and closed between the upper and lower storage tanks.
  • the diameter of the interface with the first ejector is 1/5 of the diameter of the straight section of the first centrifugal separator.
  • the second centrifugal separator has a gas velocity of 8 m/s and an operating temperature of 30 ° C.
  • the height ratio of the straight section of the second centrifugal separator is 3:1, the cone angle of the cone section is 10°, and the bottom of the cone and the second reservoir
  • the troughs are connected, and the second storage trough is two storage tanks connected in series, each of which is independently composed of an upper straight section and a lower conical section, the cone angle of the cone is 10°, and the upper and lower storage tanks are intermittently opened and closed.
  • the shut-off valve, the diameter of the passage between the bottom of the cone and the upper storage tank, the inner diameter of the shut-off valve between the upper and lower storage tanks, and the diameter of the interface between the lower storage tank and the ejector are 1/5 of the straight section, the second centrifugal separator
  • the downwardly spiraling deflector of the inner wall begins to spiral downwardly from the first ejector outlet to the second centrifugal separator in a tangential direction of the inner wall to a position where the second centrifugal separator is 1/2 of the height of the bottom of the conical section ( Based on the height of the second centrifugal separator from the top to the bottom of the conical section).
  • the first ejector is driven by the desorption gas and is horizontally mounted, and the first ejector outlet to the second centrifugal separator is a spirally spiraling tube having the same diameter as the diameter of the first ejector outlet;
  • the ejector is driven by the TBA-DIB azeotrope, the negative pressure inlet is connected to the lower reservoir outlet of the second reservoir, the second ejector is mounted vertically downwards; the drive liquid is in the second ejector throat The speed at the place is 8m/s.
  • the desorbing gas is nitrogen, and the top pressure equalizing lines of the lower tanks of the first and second storage tanks are all connected to atmospheric nitrogen.
  • the purity of the DIB obtained from the outlet of the first centrifugal separator was 97 wt%, and it was separated in an atmospheric distillation column having a theoretical number of plates of 20 and a reflux ratio of 0.5, and a TBA-DIB azeotrope was obtained from the top of the column, from the column reactor.
  • a DIB having a purity of 99% by weight was obtained.
  • the TBA content of the liquid condensed in the outlet stream of the second centrifugal separator is 8 wt%, separated in an atmospheric distillation column having a theoretical number of plates of 20 and a reflux ratio of 1, and a TBA-DIB azeotrope is obtained from the top of the column.
  • a TBA with a purity of 99% was obtained from the tower.
  • the operation flow is the same as that of Embodiment 1, and the process flow chart used is as shown in FIG. 1.
  • the adsorbent used is an amino-supported polystyrene resin, and the polystyrene resin is a copolymer of a copolymer of styrene and divinylbenzene and cellulose, and the loading amount of the amino group is 10 mmol/g, and the roundness of the adsorbent 0.05, an average particle diameter of 5 mm, an adsorbent particle having a particle diameter of less than 0.7 times the average particle diameter of less than 1%, an adsorbent particle having a particle size larger than 1.3 times the average particle diameter of less than 1%, a pore diameter of the adsorbent of 200 nm, and a specific surface area of 50 m 2 /g, true density is 1.1g/ml.
  • the mass ratio of TBA to adsorbent in the feed TBA-DIB azeotrope is 1:0.5
  • the linear velocity of the azeotrope in the suspended bed is 10 times of the critical suspension velocity of the adsorbent
  • the height-to-diameter ratio of the suspended bed is 100:1.
  • normal pressure operation operating temperature 60 ° C.
  • the tapered tube whose taper angle is gradually reduced from 25° to 15°, the minimum cross-sectional area is 80% of the maximum sectional area; the inlet of the first centrifugal separator
  • the average linear velocity is 30m/s, the joint between the outlet of the suspended bed and the reducer is rounded, the radius of the fillet is twice the maximum diameter of the reducer, and the height-to-diameter ratio of the straight section of the first centrifugal separator is 2: 1.
  • the cone angle of the conical section is 15°, and the bottom of the cone is connected to the first storage tank.
  • the first storage tank is two storage tanks connected in series, which are respectively composed of an upper straight section and a lower conical section, and the lower conical section
  • the taper angle is 15°
  • the shut-off valve is intermittently opened and closed between the upper and lower storage tanks, the diameter of the passage between the bottom of the conical section of the first centrifugal separator and the upper storage tank, the inner diameter of the shut-off valve between the upper and lower storage tanks, and the lower storage tank and
  • the diameter of the interface between the first ejector is 1/5 of the diameter of the straight section of the first centrifugal separator.
  • the second centrifugal separator has a gas velocity of 10 m/s and an operating temperature of 60 ° C.
  • the height ratio of the straight section of the second centrifugal separator is 2:1, the cone angle of the conical section is 15°, and the bottom of the cone and the second reservoir
  • the troughs are connected, and the second storage trough is two storage tanks connected in series, each of which is independently composed of an upper straight section and a lower conical section, the cone angle of the cone is 15°, and the upper and lower storage tanks are intermittently opened and closed.
  • the shut-off valve, the diameter of the passage between the bottom of the cone and the upper storage tank, the inner diameter of the shut-off valve between the upper and lower storage tanks, and the diameter of the interface between the lower storage tank and the ejector are 1/5 of the straight section, the second centrifugal separator
  • the downwardly spiraling deflector of the inner wall begins to spiral downwardly from the first ejector outlet to the second centrifugal separator in a tangential direction of the inner wall to a position where the second centrifugal separator is 1/2 of the height of the bottom of the conical section ( Based on the height of the second centrifugal separator from the top to the bottom of the conical section).
  • the first ejector is driven by the desorption gas and is horizontally mounted, and the first ejector outlet to the second centrifugal separator is a spirally spiraling tube having the same diameter as the diameter of the first ejector outlet;
  • the ejector is driven by the TBA-DIB azeotrope, the negative pressure inlet is connected to the lower reservoir outlet of the second reservoir, the second ejector is horizontally mounted; the speed at which the liquid is driven at the second ejector throat It is 10m/s.
  • the desorbing gas is nitrogen, and the top pressure equalizing lines of the lower tanks of the first and second storage tanks are all connected to atmospheric nitrogen.
  • the DIB obtained from the outlet of the first centrifugal separator was 88 wt% pure. Separated in an atmospheric distillation column with a theoretical plate number of 20 and a reflux ratio of 1, and a TBA-DIB azeotrope is obtained from the top of the column. The tower was charged with DIB having a purity of 99% by weight.
  • the TBA content in the liquid after condensation of the outlet stream on the second centrifugal separator is 80 wt%; it is separated in an atmospheric distillation column having a theoretical number of plates of 20 and a reflux ratio of 1, and a TBA-DIB azeotrope is obtained from the top of the column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

提供一种分离叔丁醇与二异丁烯共沸物的方法和系统。通过悬浮床内随叔丁醇和二异丁烯一起流动的吸附剂对叔丁醇进行选择性吸附,通过分离器、引射器等设备完成二异丁烯与吸附剂的连续分离及吸附剂的连续再生,从而达到分离叔丁醇与二异丁烯的目的。该方法不引入萃取剂,无大型、高压设备,操作条件温和、能耗低、安全风险小。

Description

一种分离叔丁醇与二异丁烯的方法和系统 技术领域
本发明属于化工有机合成领域,涉及叔丁醇与二异丁烯的分离。
背景技术
异丁烯齐聚可以制备二异丁烯(DIB,2,4,4-三甲基-1-戊烯和2,4,4-三甲基-2-戊烯),催化剂一般为酸性离子交换树脂、分子筛等。DIB是一种用途广泛的化工中间体,可以加氢生产异辛烷,是提高汽油辛烷值的添加剂;DIB可以与苯酚反应合成辛基酚,进一步用于生产抗氧剂、增黏树脂和表面活性剂等产品;DIB也可以通过氢甲酰化制备异壬醛,异壬醛加氢制备异壬醇,氧化制备异壬酸,进一步用于生产增塑剂、润滑油等产品。
在酸性催化剂催化异丁烯齐聚生产DIB的过程中,叔丁醇(TBA)的加入可以显著抑制异丁烯的三聚及高聚,从而提高DIB的选择性。TBA在反应过程中不消耗,需要从产品中分离后循环回用。但TBA与DIB共沸,常规的精馏手段无法使其分离。水萃取TBA/DIB的混合物是最容易实现的分离方法,油相得到DIB,水相得到基本不含DIB的TBA水溶液。然而,TBA与水也存在共沸,萃取后的水相中所含有的TBA难以回收得到纯TBA。以含水TBA制备无水TBA一般使用重结晶或盐析等手段,其中重结晶是本技术领域公知的高能耗操作。也有文献(碳酸钾盐析分离叔丁醇-水体系及工业化试验,韩萍芳等,化工进展,2004年第23卷第8期,P877-879)采用盐析的办法分离TBA与水的共沸物,但盐析所得的TBA不可避免的会夹带金属离子,若直接循环回异丁烯齐聚反应器则会毒化催化剂。专利US6734333使用液化异丁烯从水中将TBA萃取出来;由于TBA与水的相容性良好,液化异丁烯萃取TBA的异丁烯用量必须很大,必然使得萃取塔的尺寸很大;且若要使异丁烯液化,萃取塔必须加压操作(常温下至少表压0.3MPa才能使异丁烯液化)。萃取塔,尤其是含有动设备的转盘萃取塔,其投资和安全风险均较大。为避免上述问题,专利US6863778采用2个塔变压精馏的方式从TBA中分离DIB,高压塔的压力为0.5-0.9MPa,低压塔的压力为0-0.3MPa;但加压精馏使得塔的能耗更高,同时,设备投资也大幅度增加。
因此,需要寻找一种不引入液体萃取剂、操作条件缓和、能耗低,并且能够实现分离TBA和DIB的方法,以解决现有技术存在的各种问题。
发明概述
本发明的目的是在不引入萃取剂、有效降低分离能耗的情况下,分离叔丁醇与二异丁烯。
为达到以上发明目的,本发明采用的技术方案如下:
在第一个方面,本发明提供一种分离叔丁醇与二异丁烯的方法,包括:
(1)将TBA-DIB共沸物与吸附剂通过第二引射器通入悬浮床进行吸附反应,反应产物由悬浮床出口进入第一分离器进行分离,得到的富DIB的料液由第一分离器上出口排出,吸附了TBA的吸附剂由第一分离器的下出口排出;
(2)将吸附了TBA的吸附剂与脱附气体通过第一引射器引入第二分离器进行分离,得到的含有富TBA蒸汽的气体从第二分离器上出口排出,脱附了TBA的吸附剂由第二分离器的下出口排出。
为实现上述方法,在第二个方面,本发明提供一种分离叔丁醇与二异丁烯的系统,包括:
悬浮床,悬浮床的入料管通过第二引射器与DIB-TBA共沸物供应管道相连,出口与第一分离器入口相连;
第一分离器,包括入口、上出口和下出口,其中,所述入口与悬浮床相连,上出口用于排出富DIB的料液,下出口通过第一引射器与第二分离器相连;
第二分离器,包括入口、上出口和下出口,其中,所述入口通过第一引射器与第一分离器相连,上出口用于排出含有富TBA蒸汽的气体,下出口用于排出脱附了TBA的吸附剂。
根据本发明的方法,从第一分离器上出口直接得到的DIB纯度可达到95wt%以上;第二分离器上出口的含有富TBA蒸汽的气体冷凝后直接得到TBA纯度可达到70wt%以上。
本发明的积极效果在于:在未引入萃取剂的条件下直接分离TBA-DIB共沸物,分别得到DIB和TBA,该方法能够连续地进行吸附和脱附操作,整个流程无大型动设备,无高压设备,主流程中无高温操作单元,投资低,能耗低,安全风险小。
附图说明
图1:第二引射器为水平安装的分离系统及工艺流程示意图;其中,,1为悬浮床,2为第一分离器,3为第一分离器的储槽,3-1为第一分离器上储槽,3-2为第一分离器下储槽,4为第一引射器,5为第二分离器,6为第二分离器的储槽,6-1为第二分离器上储槽,6-2为第二分离器下储槽,7为第二引射器,8为第一精馏塔,9为冷凝器,10为第二精馏塔;
图2:第二引射器为竖直安装的分离系统及工艺流程示意图;各附图标记的含义与图1一样;
图3:引射器结构示意图;其中,31为驱动气/液入口,32为渐缩管,33为喉管,34为负压吸气室套管,35为负压入口,36为混合管,37为扩散管,38为引射器出口;
D1为负压吸气室套管直径,D2为驱动气/液入口直径,D3为喉管直径,D4为混合管直径,L1为喉管长度,L2为喉管出口至混合管入口间距,L3为混合管长度,L4为扩散管长度,A1为渐缩管1/2锥角,A2为混合管与负压入口之间的连接处1/2锥角,A3为扩散管1/2锥角。
具体实施方式
本发明的方法中,通过悬浮床内随TBA和DIB一起流动的吸附剂对TBA进行选择性吸附,通过气-液-固离心分离器、气-固分离器和分别由气体和液体驱动的引射喷管等设备,完成DIB与TBA、吸附剂的连续分离以及吸附剂的连续再生,从而达到分离DIB与TBA的目的。下面将结合具体实施方式来详细描述本发明。
如上文所述,本发明的分离叔丁醇与二异丁烯的方法,包括:
(1)将TBA-DIB共沸物与吸附剂通过第二引射器通入悬浮床进行吸附反应,反应产物由悬浮床出口进入第一分离器进行分离,得到的富DIB的料液由第一分离器上出口排出,吸附了TBA的吸附剂由第一分离器的下出口排出;所述富DIB的料液含有极少量的TBA;
(2)将吸附了TBA的吸附剂与脱附气体通过第一引射器引入第二分离器进行分离,得到的含有富TBA蒸汽的气体从第二分离器上出口排出,脱附了TBA的吸附剂由第二分离器的下出口排出。
进一步地,所述方法还包括:(3)脱附了TBA的吸附剂通过第二引 射器循环回悬浮床。
优选地,步骤(1)中,将富DIB的料液通过精馏分离出少量TBA-DIB共沸物后得到高纯DIB。
优选地,步骤(1)中,常压下所述共沸物的组成为TBA:DIB=62:38(质量比)。
优选地,步骤(2)中,将所述含有富TBA蒸汽的气体经冷凝后直接得到TBA;进一步优选地,将冷凝后得到的TBA再通过精馏分离出TBA-DIB共沸物后得到高纯TBA。
更优选地,步骤(1)和(2)中,将通过精馏分离出的TBA-DIB共沸物循环回悬浮床。
在一种优选的实施方式中,本发明的分离叔丁醇与二异丁烯的方法包括:
(1)将TBA-DIB共沸物与吸附剂通过第二引射器通入悬浮床进行吸附反应,反应产物由悬浮床出口进入第一分离器进行分离,得到的富DIB的料液由第一分离器上出口排出,吸附了TBA的吸附剂由第一分离器的下出口排出;
(2)将吸附了TBA的吸附剂与脱附气体通过第一引射器引入第二分离器进行分离,得到的含有富TBA蒸汽的气体从第二分离器上出口排出,脱附了TBA的吸附剂由第二分离器的下出口排出;
(3)将步骤(2)中得到的脱附了TBA的吸附剂通过第二引射器循环回悬浮床;
(4)将步骤(1)中得到的富DIB的料液通过精馏分离出少量TBA-DIB共沸物后得到高纯DIB,分离出的TBA-DIB共沸物循环回悬浮床;
(5)将步骤(2)中得到的含有富TBA蒸汽的气体经冷凝、精馏分离出TBA-DIB共沸物后得到高纯TBA;分离出的TBA-DIB共沸物循环回悬浮床。
优选地,本方法中所使用的吸附剂为负载强极性基团的聚苯乙烯树脂。所述聚苯乙烯树脂为苯乙烯与二乙烯苯的共聚物和/或苯乙烯与二乙烯苯的共聚物与短纤维复合的共聚物,优选苯乙烯与二乙烯苯的共聚物与短纤维复合的共聚物,以提高颗粒机械强度。所述短纤维包括但不限于金属纤维颗粒、玻璃纤维颗粒和纤维素颗粒中的一种或多种。
进一步优选地,所述强极性基团为磺酸基、硝基、氨基和羧基中的一 种或多种,优选磺酸基。强极性基团的负载量为0.5~10mmol/g,优选3~5.5mmol/g;所述强极性基团的负载量是指单位质量吸附剂中负载的强极性基团的物质的量。
进一步优选地,所述吸附剂为多孔球形颗粒,圆度为0~0.1;平均粒径为0.1~5mm,优选0.8~1.5mm;且粒径均匀,基于吸附剂的总重量,粒径小于平均粒径0.7倍的吸附剂颗粒不超过5%,粒径大于平均粒径1.3倍的吸附剂颗粒不超过5%;吸附剂的孔径为10~500nm,优选100~300nm;比表面为5~100m2/g,优选20~80m2/g;所述吸附剂的真密度为0.8~1.5g/ml,优选1~1.2g/ml。圆度高和粒度均匀的吸附剂颗粒有利于提高颗粒的流动性,减少吸附剂颗粒间的摩擦破碎。
进一步优选地,所述短纤维的平均长度为吸附剂平均粒径的1/100~1/2,优选1/20~1/5;所述短纤维平均直径为平均长度的1/10000~1/5,优选1/1000~1/10。
所述聚苯乙烯树脂,以苯乙烯与二乙烯苯的共聚物与短纤维复合的共聚物为例,在负载强极性基团前需要对表面外露的纤维进行溶解以获取表面光滑的颗粒,然后对表面处理后的吸附剂颗粒进行强极性基团负载得到负载强极性基团的聚苯乙烯树脂;金属纤维使用稀硝酸、稀硫酸和稀盐酸中的一种或多种进行溶解,玻璃纤维使用氢氟酸进行溶解,纤维素使用铜胺和/或铜乙二胺进行溶解。
优选地,步骤(1)中,悬浮床入口处的所述TBA-DIB共沸物中叔丁醇的质量与吸附剂的质量比为1:0.5~1:20,优选1:2~1:10。
进一步优选地,所述吸附剂为一次性加入。达到指定的叔丁醇与吸附剂质量比后不再加入,吸附剂在系统内循环。
优选地TBA-DIB共沸物和固体吸附剂由悬浮床底部的入口进料。进一步优选地,TBA-DIB共沸物的进料线速度为吸附剂临界悬浮速度的1.05~20倍,优选2~10倍;吸附剂在悬浮床内的平均线速度为TBA-DIB共沸物线速度的1~99%,优选50~90%。
分离器的入口速度需控制在合适范围,速度太小离心效果不佳,速度太大会加大吸附剂碰撞破碎的风险。优选地,步骤(1)中,吸附了TBA的吸附剂与富DIB料液一起由悬浮床出口进入第一分离器的平均线速度为1~50m/s,优选3~30m/s。
优选地,步骤(2)中,所述第二分离器入口的气速为0.5~50m/s,优 选2~10m/s;操作温度为25~60℃,优选30~50℃。
优选地,所述第一引射器由脱附气体驱动。所述脱附气体为不燃烧、不助燃的气体,如氮气、二氧化碳、氩气和氦气等气体中的一种或多种,优选为氮气和/或二氧化碳。所述第一引射器的脱附气体的温度为25~60℃,优选30~50℃;温度过高会导致叔丁醇在吸附剂表面发生反应。
所述第二引射器是由液体驱动的,所述驱动液体为TBA-DIB共沸液;驱动液体在第二引射器喉管处的速度最大,为0.5~50m/s,优选2~10m/s。
如图1和2所示,本发明还提供一种分离叔丁醇与二异丁烯的系统,包括:
悬浮床1,悬浮床的入料管通过第二引射器7与DIB-TBA共沸物供应管道相连,出口与第一分离器2入口相连;
第一分离器2,包括入口、上出口和下出口,其中,所述入口与悬浮床1相连,上出口用于排出富DIB的料液,下出口通过第一引射器4与第二分离器5相连;
第二分离器5,包括入口、上出口和下出口,其中,所述入口通过第一引射器4与第一分离器2相连,上出口用于排出含有富TBA蒸汽的气体,下出口用于排出脱附了TBA的吸附剂。
优选地,所述第二分离器5的下出口通过第二引射器7与悬浮床1的入料管相连。
优选地,所述第一分离器2的上出口通过管道与第一精馏塔8相连。所述第一精馏塔8的上出口用于排出TBA-DIB共沸物,下出口用于排出高纯DIB。进一步优选地,所述第一精馏塔8的上出口与TBA-DIB共沸物供应管道相连。
优选地,所述第二分离器5的上出口通过管道与冷凝器9相连;或者所述第二分离器5的上出口通过管道与冷凝器9相连,冷凝器的物料出口与第二精馏塔10的入口相连。所述第二精馏塔的上出口用于排出TBA-DIB共沸物,下出口用于排出高纯TBA。进一步优选地,所述第二精馏塔的上出口与TBA-DIB共沸物供应管道相连。
优选地,所述第一分离器的下部为第一分离器储槽3(简称第一储槽),分为上储槽3-1和下储槽3-2;所述第二分离器的下部为第二分离器储槽6(简称第二储槽),分为上储槽6-1和下储槽6-2。
优选地,在本发明的方法和系统中,所述悬浮床可以是任何常规悬浮 床,悬浮床高径比1000:1~1:1,优选100:1~10:1;操作压力为常压;操作温度在25℃与TBA-DIB共沸物沸点之间(25~77℃)。
所述悬浮床底部的入口为等径直管或渐缩管或其组合,优选为锥角由大逐渐变小的渐缩管,锥角在0~60°之间,优选0~30°之间;渐缩管通道的最小截面积为最大截面积的20~80%,优选30~50%。悬浮床底部入口选择渐缩管可以在悬浮床的底部形成射流,增大悬浮床底部的湍动,避免吸附剂在底部沉积,同时促进液固传质。
所述悬浮床出口为圆角或锥角,避免吸附剂在流经此处时,因通道骤然缩小、流速变大后与直角直接碰撞导致吸附剂破碎。优选地,所述悬浮床出口与第一分离器入口之间采用等径直管或渐缩管或其组合连接,优选为渐缩管连接,更优选为锥角由大逐渐变小的渐缩管连接,其中,最大锥角不超过60°,最小锥角不小于5°,优选10~30°之间;渐缩管的最小截面积为最大截面积的20~80%,优选30~50%。悬浮床出口与第一分离器入口之间选择渐缩管可以提高物料在第一分离器入口的初速度,提高离心分离的效果。
在本发明的方法和系统中,所述第一分离器和第二分离器优选为离心分离器。
所述第一分离器由上部直筒段、中部圆锥段和下部第一储槽组成,直筒段的高径比为1:1~10:1,优选2:1~4:1;圆锥段的锥角为3~30°,优选5~15°;圆锥底部与第一储槽相连。第一储槽为上下串联的两个储槽,上下串联的两个储槽可以相同,也可以不同,各自分别独立地由上部直筒段和下部圆锥段组成,下部圆锥段的锥角为3~30°,优选5~15°。上下储槽之间为间歇开闭的切断阀,第一分离器圆锥段底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与第一引射器之间的接口直径均为第一分离器直筒段直径的1/8~1/4,优选1/5/~1/4,以上三个通道直径可以相同也可以不同。
第一储槽的下储槽顶部有均压管线,均压管线与常压气体相连,所述常压气体种类与脱附气体相同。均压管线与下储槽气体相通。当第一引射器的负压入口产生负压后,均压气体会被抽入第一储槽的下储槽,从而形成向下的气流,脱附气体携带吸附了TBA的吸附剂进入第一引射器内,进而被输送到第二分离器。
所述第二分离器由上部直筒段、中部圆锥段和下部第二储槽组成,直 筒段的高径比为1:1~10:1,优选2:1~4:1;圆锥段的锥角为3~30°,优选5~15°;圆锥底部与第二储槽相连。第二储槽为上下串联的两个储槽,上下串联的两个储槽可以相同,也可以不同,各自分别由上部直筒段和下部圆锥段组成,上下储槽下部均为倒圆锥体,锥体的锥角为3~30°,优选5~15°。上下两个储槽之间为间歇开闭的切断阀,圆锥底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与引射器之间的接口直径为直筒段的1/8~1/4,优选1/4~1/5,以上三个通道直径相同或不同。与第一分布器不同的是,第二分离器内壁有螺旋向下的导流板,导流板自第一引射器出口与第二分离器连接处开始螺旋向下,沿内壁切向方向延伸至第二分离器距离圆锥段底部高度为1/3~2/3的位置(基于第二离心分离器从顶部到圆锥段底部的高度)。导流板可以延长固体吸附剂在第二离心分离器中的停留时间,并增大驱动气体与固体(吸附剂)之间的相对速度,提高TBA脱吸附的效率。
第二储槽的下储槽顶部也设有均压管线,均压管线与常压气体相连,所述气体种类与脱附气体相同。均压管线与下储槽气体相通。当第二引射器的负压入口产生负压后,均压气体会被抽入第二储槽的下储槽,从而形成向下的气流,携带吸附剂进入第二引射器内,进而被输送到悬浮床的入口。由于吸附剂在进入第二引射器时携带少量气体,并进入悬浮床入口,而由悬浮床入口带入的少量气体也在悬浮床顶部随液固两相流进入第一分离器,引入的少量气体在与液体中形成小气泡,使其与固体的宏观密度差变大,能够提高第一分离器的分离效果。
如图3所示,本发明的方法和系统中,所述第一引射器包括驱动气入口31、渐缩管32、喉管33、负压吸气室套管34、负压入口35、混合管36、扩散管37以及引射器出口38,其负压入口与第一储槽的下储槽出口相连。由于第一引射器驱动气入口直径大于引射器中间的喉管(即直径最小处)直径,因此,驱动气在喉管处的速度大于入口速度。根据伯努利方程,同一流道中速度越高处压力越低,也就是说,当驱动气的速度足够大时此处可以产生负压,从而能够在顶部的入口(负压入口)形成抽吸作用。
优选地,所述第一引射器是水平安装的;所述第一引射器出口至第二分离器之间为直径与第一引射器出口直径相同的水平直管、倾斜向下的直管或盘旋向下的螺旋管,优选盘旋向下的螺旋管,在螺旋管内吸附剂 在离心力的作用下可以被甩到壁面,因其与壁面之间存在摩擦,从而使其运动速度与气相的速度差变大,从而有利于吸附剂中TBA的脱附。
所述第二引射器包括驱动液入口、渐缩管、喉管、负压吸气室套管、负压入口、混合管、扩散管以及引射器出口,其负压入口与第二储槽的下储槽出口相连。第二引射器为水平安装或竖直向下安装,优选竖直向下安装,这样驱动液体和吸附剂的运动方向与重力方向一致,能够更大程度的节省能量。
在本发明的方法和系统中,第一引射器与第二引射器的内部结构形式相同,尺寸可以相同也可以不同,所述引射器包括但不限于各种常规能够通过气体或液体的加速制造负压、从而能够起到抽吸和输送物料作用的引射器。
通常情况下,本文所采用的第一引射器与第二引射器的负压吸气室套管直径D1为混合管直径D4的1~10倍,优选2~4倍;驱动气/液入口直径D2为混合管直径D4的0.5~4倍,优选1~2倍;喉管直径D3为驱动气/液入口直径D2的1/8~1/2,优选1/4~1/3;喉管直管段的长度L1为其直径D3的0.2~2倍,优选0.5~1倍;喉管缩口1/2锥角A1为5~30°,优选10~20°;喉管出口与混合管入口的距离L2为混合管直径D4的0.5~4倍,优选1~2倍;混合管的长度L3为D4的0.5~10倍,优选2~6倍;扩散管为入口直径小,出口直径大的锥体,其1/2锥角A3为3~15°,优选6~8°,扩散管的长度L4为D4的5~30倍,优选10~15倍;为避免颗粒与避免正面碰撞导致破碎,混合管与吸气室负压入口之间的连接也为锥角结构,其1/2锥角角度A2为15~75°,优选30~60°。
本文所述的第一引射器、第二引射器的材质为金属、碳纤维、玻璃纤维、工程塑料,或以金属、碳纤维和玻璃纤维中的一种或多种为强度结构的工程塑料的复合材料。为减小吸附剂颗粒的磨损,优选工程塑料或以金属、碳纤维和玻璃纤维中的一种或多种为强度结构的工程塑料的复合材料。
本领域技术人员应当了理解,上述给出的优选技术特征可以与其它技术特征组合得到多种完整的、优选的分离方法或分离系统,如同该优选的分离方法或分离系统明确地公开在本文中一样,并不需要将所有的优选技术方案一一罗列出来。本领域技术人员根据上文描述完全可以知道如何实现包含优选技术特征的分离方法或分离系统,并获得相应的技术 效果。
下面的实施例将对本发明内容予以进一步的说明,但本发明不限于所列出的实施例,还应包括在本发明所要求的权利范围内其它任何公知的改变。
实施例1:
将TBA-DIB共沸物(来自异丁烯齐聚装置共沸物分离塔塔顶)与吸附剂通过第二引射器通入悬浮床进行吸附反应,反应产物(吸附了TBA的吸附剂与含有极少量TBA的富DIB料液)一起由悬浮床出口进入第一离心分离器分离。含有极少量TBA的富DIB的料液由第一离心分离器上出口排出,选择性吸附了TBA的吸附剂由第一离心分离器的下出口排出。从第一离心分离器上出口直接得到DIB,或通过精馏分离出少量TBA-DIB共沸物后得到高纯DIB,分离出的TBA-DIB共沸物循环回悬浮床继续分离。第一储槽的下出口与第一引射器相连,吸附了TBA的吸附剂与脱附气体通过第一引射器进入第二离心分离器,含有富TBA蒸汽的气体在第二离心分离器上出口排出,脱附了TBA的吸附剂由第二分离器的下出口排出;将从第二离心分离器上出口得到的含有富TBA蒸汽的气体冷凝后直接得到TBA,或进一步将冷凝后的TBA通过精馏分离出TBA-DIB共沸物后得到高纯TBA,TBA-DIB共沸物循环回悬浮床继续分离。第二储槽的下出口与液体驱动的第二引射器的入口相连,脱附后的吸附剂与TBA-DIB共沸物一起通过第二引射器重新循环回悬浮床继续分离。
采用的吸附剂为负载磺酸基团的聚苯乙烯树脂,磺酸基团的负载量为5.5mmol/g,吸附剂圆度为0.001,平均粒径为0.1mm,粒径小于平均粒径0.7倍的吸附剂颗粒小于5%,粒度大于平均粒径1.3倍的吸附剂颗粒小于5%,吸附剂孔径为10nm,比表面100m2/g,真密度为0.7g/ml。
进料TBA-DIB共沸物中的TBA与吸附剂的质量比为1:1,共沸物在悬浮床内的线速度为吸附剂临界悬浮速度的20倍,悬浮床高径比为1000:1,常压操作,操作温度25℃。
悬浮床出口与第一分离器之间为等径直管;第一离心分离器的入口平均线速度为50m/s,悬浮床出口与等径直管之间连接处为60°锥管,第一 离心分离器直筒段的高径比为1:1,圆锥段的锥角为30°,圆锥底部与第一储槽相连。第一储槽为上下串联的两个储槽,分别独立地由上部直筒段和下部圆锥段组成,下部圆锥段的锥角为30°,上下储槽之间为间歇开闭的切断阀,第一离心分离器圆锥段底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与第一引射器之间的接口直径均为第一离心分离器直筒段直径的1/8。
第二离心分离器入口气速为50m/s,操作温度为25℃。第二离心分离器直筒段的高径比为1:1,圆锥段的锥角为30°,圆锥底部与第二储槽相连,第二储槽为上下串联的两个储槽,各自分别独立地由上部直筒段和下部圆锥段组成,锥体的锥角为30°,上下两个储槽之间为间歇开闭的切断阀,圆锥底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与引射器之间的接口直径为直筒段的1/8。第二离心分离器内壁螺旋向下的导流板自第一引射器出口与第二离心分离器连接处沿内壁切向方向开始螺旋向下延伸至第二离心分离器距离圆锥段底部高度2/3的位置(基于第二离心分离器从顶部到圆锥段底部的高度)。
第一引射器由脱附气体驱动,为水平安装,第一引射器出口至第二离心分离器之间为直径与第一引射器出口直径相同的水平直管(如图2所示);第二引射器由液体驱动,驱动液体为TBA-DIB共沸液,其负压入口与第二储槽的下储槽出口相连,第二引射器为水平安装;驱动液体在第二引射器喉管处的速度为50m/s。
脱附气体为氦气,第一和第二储槽的下储槽顶部均压管线均与常压氦气相连。
第一离心分离器出口得到的DIB纯度为90wt%。在理论塔板数为20、回流比为1的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从塔釜得到纯度99wt%的DIB。第二离心分离器上出口流股冷凝后的液体中TBA含量81wt%。在理论塔板数为20、回流比为1的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从塔釜得到纯度99wt%的TBA。
实施例2:
操作流程与实施例1相同,采用的工艺流程图如图2所示。采用的吸附剂为负载磺酸基团的聚苯乙烯树脂,聚苯乙烯树脂为苯乙烯与二乙烯苯的共聚物与金属纤维颗粒复合的共聚物,磺酸基团的负载量为 3.0mmol/g,吸附剂圆度为0.1,平均粒径为0.5mm,粒径小于平均粒径0.7倍的吸附剂颗粒小于4%,粒度大于平均粒径1.3倍的吸附剂颗粒小于4%,吸附剂孔径为500nm,比表面5m2/g,真密度为1.5g/ml。
进料TBA-DIB共沸物中的TBA与吸附剂的质量比为1:10,共沸物在悬浮床内的线速度为吸附剂临界悬浮速度的1.05倍,悬浮床高径比1:1,常压操作,操作温度50℃。
悬浮床出口与第一分离器之间为锥角由60°逐渐减小至5°的渐缩管,其最小截面积为最大截面积的20%;第一分离器的入口平均线速度为1m/s。悬浮床出口与渐缩管之间连接处为圆角,圆角半径为渐缩管最大直径的2倍。第一分离器直筒段的高径比为10:1,圆锥段的锥角为3°,圆锥底部与第一储槽相连,第一储槽为上下串联的两个储槽,分别独立地由上部直筒段和下部圆锥段组成,下部圆锥段的锥角为3°。上下储槽之间为间歇开闭的切断阀,第一分离器圆锥段底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与第一引射器之间的接口直径均为第一分离器直筒段直径的1/4。
第二离心分离器入口气速为0.5m/s,操作温度为50℃,第二离心分离器直筒段的高径比为10:1,圆锥段的锥角为3°,圆锥底部与第二储槽相连,第二储槽为上下串联的两个储槽,各自分别独立地由上部直筒段和下部圆锥段组成,锥体的锥角为3°,上下两个储槽之间为间歇开闭的切断阀,圆锥底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与引射器之间的接口直径为直筒段的1/4,第二离心分离器内壁螺旋向下的导流板自第一引射器出口与第二离心分离器连接处沿内壁切向方向开始螺旋向下延伸至第二离心分离器距离圆锥段底部高度1/3的位置(基于第二离心分离器从顶部到圆锥段底部的高度)。
第一引射器由脱附气体驱动,为水平安装,第一引射器出口至第二离心分离器之间为直径与第一引射器出口直径相同的倾斜向下的直管;第二引射器由液体驱动,驱动液体为TBA-DIB共沸液,其负压入口与第二储槽的下储槽出口相连,第二引射器为竖直向下安装;驱动液体在第二引射器喉管处的速度为0.5m/s。
脱附气体为二氧化碳。第一和第二储槽的下储槽顶部均压管线均与常压二氧化碳相连。
从第一离心分离器出口得到的DIB纯度为99wt%,不需要精馏提纯。 第二离心分离器上出口流股冷凝后的液体中TBA含量89wt%;在理论塔板数为20,进料位置为第9块理论板、回流比为1的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从塔釜得到纯度99wt%的TBA。
实施例3:
操作流程与实施例1相同,采用的吸附剂为负载磺酸基团的聚苯乙烯树脂,聚苯乙烯树脂为苯乙烯与二乙烯苯的共聚物与玻璃纤维颗粒复合的共聚物,磺酸基团的负载量为4.0mmol/g,吸附剂圆度为0.08,平均粒径为0.8mm,粒径小于平均粒径0.7倍的吸附剂颗粒小于3%,粒度大于平均粒径1.3倍的吸附剂颗粒小于3%,吸附剂孔径为300nm,比表面20m2/g,真密度为1.2g/ml。
进料TBA-DIB共沸物中的TBA与吸附剂的质量比为1:5,共沸物在悬浮床内的线速度为吸附剂临界悬浮速度的2倍,悬浮床高径比10:1,常压操作,操作温度30℃。
悬浮床出口与第一分离器之间为锥角由50°逐渐减小至5°的渐缩管,其最小截面积为最大截面积的30%;第一离心分离器的入口平均线速度为3m/s,悬浮床出口与渐缩管之间连接处为圆角,圆角半径为渐缩管最大直径的2倍,第一离心分离器直筒段的高径比为4:1,圆锥段的锥角为5°,圆锥底部与第一储槽相连,第一储槽为上下串联的两个储槽,分别独立地由上部直筒段和下部圆锥段组成,下部圆锥段的锥角为5°,上下储槽之间为间歇开闭的切断阀,第一离心分离器圆锥段底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与第一引射器之间的接口直径均为第一离心分离器直筒段直径的1/5。
第二离心分离器入口气速为2m/s,操作温度为30℃,第二离心分离器直筒段的高径比为4:1,圆锥段的锥角为5°,圆锥底部与第二储槽相连,第二储槽为上下串联的两个储槽,各自分别独立地由上部直筒段和下部圆锥段组成,锥体的锥角为5°,上下两个储槽之间为间歇开闭的切断阀,圆锥底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与引射器之间的接口直径为直筒段的1/5,第二离心分离器内壁螺旋向下的导流板自第一引射器出口与第二离心分离器连接处沿内壁切向方向开始螺旋向下延伸至第二离心分离器距离圆锥段底部高度1/3的位置(基于第二离心分离器从顶部到圆锥段底部的高度)。
第一引射器由脱附气体驱动,为水平安装,第一引射器出口至第二离心分离器之间为直径与第一引射器出口直径相同的盘旋向下的螺旋管;第二引射器由TBA-DIB共沸液驱动,其负压入口与第二储槽的下储槽出口相连,第二引射器为竖直向下安装;驱动液体在第二引射器喉管处的速度为2m/s。脱附气体为氩气,第一和第二储槽的下储槽顶部均压管线均与常压氩气相连。
从第一离心分离器出口得到的DIB纯度为97wt%,在理论塔板数为20、回流比为0.5的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从塔釜得到纯度99wt%的DIB。第二离心分离器上出口流股冷凝后的液体中TBA含量85wt%,在理论塔板数为20、回流比为1的常压精馏塔中分离;从塔顶得到TBA-DIB共沸物,从塔釜得到纯度99wt%的TBA。
实施例4:
操作流程与实施例1相同,采用的吸附剂为负载磺酸基团的聚苯乙烯树脂,聚苯乙烯树脂为苯乙烯与二乙烯苯的共聚物与纤维素复合的共聚物,磺酸基团的负载量为5.0mmol/g,吸附剂圆度为0.05,平均粒径为1mm,粒径小于平均粒径0.7倍的吸附剂颗粒小于1%,粒度大于平均粒径1.3倍的吸附剂颗粒小于1%,吸附剂孔径为200nm,比表面80m2/g,真密度为0.8g/ml。
进料TBA-DIB共沸物中的TBA与吸附剂的质量比为1:2,共沸物在悬浮床内的线速度为吸附剂临界悬浮速度的5倍,悬浮床高径比40:1,常压操作,操作温度40℃。
悬浮床出口与第一分离器之间为锥角由30°逐渐减小至10°的渐缩管,其最小截面积为最大截面积的40%;第一离心分离器的入口平均线速度为10m/s,悬浮床出口与渐缩管之间连接处为圆角,圆角半径为渐缩管最大直径的2倍,第一离心分离器直筒段的高径比为3:1,圆锥段的锥角为10°,圆锥底部与第一储槽相连,第一储槽为上下串联的两个储槽,分别独立地由上部直筒段和下部圆锥段组成,下部圆锥段的锥角为10°,上下储槽之间为间歇开闭的切断阀,第一离心分离器圆锥段底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与第一引射器之间的接口直径均为第一离心分离器直筒段直径的1/5。
第二离心分离器入口气速为6m/s,操作温度为40℃,第二离心分离 器直筒段的高径比为3:1,圆锥段的锥角为10°,圆锥底部与第二储槽相连,第二储槽为上下串联的两个储槽,各自分别独立地由上部直筒段和下部圆锥段组成,锥体的锥角为10°,上下两个储槽之间为间歇开闭的切断阀,圆锥底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与引射器之间的接口直径为直筒段的1/5,第二离心分离器内壁螺旋向下的导流板自第一引射器出口与第二离心分离器连接处沿内壁切向方向开始螺旋向下延伸至第二离心分离器距离圆锥段底部高度1/2的位置(基于第二离心分离器从顶部到圆锥段底部的高度)。
第一引射器由脱附气体驱动,为水平安装,第一引射器出口至第二离心分离器之间为直径与第一引射器出口直径相同的盘旋向下的螺旋管;第二引射器由TBA-DIB共沸液驱动,其负压入口与第二储槽的下储槽出口相连,第二引射器为竖直向下安装;驱动液体在第二引射器喉管处的速度为6m/s。脱附气体为氮气,第一和第二储槽的下储槽顶部均压管线均与常压氮气相连。
从第一离心分离器出口得到的DIB纯度为94wt%,在理论塔板数为20、回流比为1的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从塔釜得到纯度99%的DIB。第二离心分离器上出口流股冷凝后的液体中TBA含量为83wt%,在理论塔板数为20、回流比为1的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从塔釜得到纯度为99wt%的TBA。
实施例5:
操作流程与实施例1相同,采用的吸附剂为负载硝酸基团的聚苯乙烯树脂,聚苯乙烯树脂为苯乙烯与二乙烯苯的共聚物与纤维素复合的共聚物,硝酸基团的负载量为1.0mmol/g,吸附剂圆度为0.05,平均粒径为1.5mm,粒径小于平均粒径0.7倍的吸附剂颗粒小于1%,粒度大于平均粒径1.3倍的吸附剂颗粒小于1%,吸附剂孔径为100nm,比表面50m2/g,真密度为1g/ml。
进料TBA-DIB共沸物中的TBA与吸附剂的质量比为1:20,共沸物在悬浮床内的线速度为吸附剂临界悬浮速度的8倍,悬浮床高径比60:1,常压操作,操作温度30℃。
悬浮床出口与悬浮床出口与第一分离器之间为锥角由30°逐渐减小至10°的渐缩管,其最小截面积为最大截面积的50%;第一离心分离器的入 口平均线速度为20m/s,悬浮床出口与渐缩管之间连接处为圆角,圆角半径为渐缩管最大直径的2倍,第一离心分离器直筒段的高径比为3:1,圆锥段的锥角为10°,圆锥底部与第一储槽相连,第一储槽为上下串联的两个储槽,分别独立地由上部直筒段和下部圆锥段组成,下部圆锥段的锥角为10°,上下储槽之间为间歇开闭的切断阀,第一离心分离器圆锥段底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与第一引射器之间的接口直径均为第一离心分离器直筒段直径的1/5。
第二离心分离器入口气速为8m/s,操作温度为30℃,第二离心分离器直筒段的高径比为3:1,圆锥段的锥角为10°,圆锥底部与第二储槽相连,第二储槽为上下串联的两个储槽,各自分别独立地由上部直筒段和下部圆锥段组成,锥体的锥角为10°,上下两个储槽之间为间歇开闭的切断阀,圆锥底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与引射器之间的接口直径为直筒段的1/5,第二离心分离器内壁螺旋向下的导流板自第一引射器出口与第二离心分离器连接处沿内壁切向方向开始螺旋向下延伸至第二离心分离器距离圆锥段底部高度1/2的位置(基于第二离心分离器从顶部到圆锥段底部的高度)。
第一引射器由脱附气体驱动,为水平安装,第一引射器出口至第二离心分离器之间为直径与第一引射器出口直径相同的盘旋向下的螺旋管;第二引射器由TBA-DIB共沸液驱动,其负压入口与第二储槽的下储槽出口相连,第二引射器为竖直向下安装;驱动液体在第二引射器喉管处的速度为8m/s。脱附气体为氮气,第一和第二储槽的下储槽顶部均压管线均与常压氮气相连。
从第一离心分离器出口得到的DIB纯度为97wt%,在理论塔板数为20、回流比为0.5的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从塔釜得到纯度为99wt%的DIB。第二离心分离器上出口流股冷凝后的液体中TBA含量8wt%,在理论塔板数为20,回流比为1的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从塔釜得到纯度99%的TBA。
实施例6:
操作流程与实施例1相同,采用的工艺流程图如图1所示。采用的吸附剂为负载氨基的聚苯乙烯树脂,聚苯乙烯树脂为苯乙烯与二乙烯苯的共聚物与纤维素复合的共聚物,氨基基团的负载量为10mmol/g,吸附剂 圆度为0.05,平均粒径为5mm,粒径小于平均粒径0.7倍的吸附剂颗粒小于1%,粒度大于平均粒径1.3倍的吸附剂颗粒小于1%,吸附剂孔径为200nm,比表面50m2/g,真密度为1.1g/ml。
进料TBA-DIB共沸物中的TBA与吸附剂的质量比为1:0.5,共沸物在悬浮床内的线速度为吸附剂临界悬浮速度的10倍,悬浮床高径比100:1,常压操作,操作温度60℃。
悬浮床出口与悬浮床出口与第一分离器之间为锥角由25°逐渐减小至15°的渐缩管,其最小截面积为最大截面积的80%;第一离心分离器的入口平均线速度为30m/s,悬浮床出口与渐缩管之间连接处为圆角,圆角半径为渐缩管最大直径的2倍,第一离心分离器直筒段的高径比为2:1,圆锥段的锥角为15°,圆锥底部与第一储槽相连,第一储槽为上下串联的两个储槽,分别独立地由上部直筒段和下部圆锥段组成,下部圆锥段的锥角为15°,上下储槽之间为间歇开闭的切断阀,第一离心分离器圆锥段底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与第一引射器之间的接口直径均为第一离心分离器直筒段直径的1/5。
第二离心分离器入口气速为10m/s,操作温度为60℃,第二离心分离器直筒段的高径比为2:1,圆锥段的锥角为15°,圆锥底部与第二储槽相连,第二储槽为上下串联的两个储槽,各自分别独立地由上部直筒段和下部圆锥段组成,锥体的锥角为15°,上下两个储槽之间为间歇开闭的切断阀,圆锥底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与引射器之间的接口直径为直筒段的1/5,第二离心分离器内壁螺旋向下的导流板自第一引射器出口与第二离心分离器连接处沿内壁切向方向开始螺旋向下延伸至第二离心分离器距离圆锥段底部高度1/2的位置(基于第二离心分离器从顶部到圆锥段底部的高度)。
第一引射器由脱附气体驱动,为水平安装,第一引射器出口至第二离心分离器之间为直径与第一引射器出口直径相同的盘旋向下的螺旋管;第二引射器由TBA-DIB共沸液驱动,其负压入口与第二储槽的下储槽出口相连,第二引射器为水平安装;驱动液体在第二引射器喉管处的速度为10m/s。脱附气体为氮气,第一和第二储槽的下储槽顶部均压管线均与常压氮气相连。
从第一离心分离器出口得到的DIB纯度为88wt%。在理论塔板数为20、回流比为1的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从 塔釜得到纯度为99wt%的DIB。第二离心分离器上出口流股冷凝后的液体中TBA含量为80wt%;在理论塔板数为20、回流比为1的常压精馏塔中分离,从塔顶得到TBA-DIB共沸物,从塔釜得到纯度99wt%的TBA。

Claims (22)

  1. 一种分离叔丁醇与二异丁烯的方法,包括:
    (1)将TBA-DIB共沸物与吸附剂通过第二引射器通入悬浮床进行吸附反应,反应产物由悬浮床出口进入第一分离器进行分离,得到的富DIB的料液由第一分离器上出口排出,吸附了TBA的吸附剂由第一分离器的下出口排出;优选地,将富DIB的料液通过精馏分离出少量TBA-DIB共沸物后得到高纯DIB;更优选地,将通过精馏分离出的TBA-DIB共沸物循环回悬浮床;优选地,常压下所述共沸物的组成为质量比TBA:DIB=62:38。
    (2)将吸附了TBA的吸附剂与脱附气体通过第一引射器引入第二分离器进行分离,得到的含有富TBA蒸汽的气体从第二分离器上出口排出,脱附了TBA的吸附剂由第二分离器的下出口排出;优选地,所述含有富TBA蒸汽的气体经冷凝后直接得到TBA;进一步优选地,将冷凝后得到的TBA再通过精馏分离出TBA-DIB共沸物后得到高纯TBA;更优选地,将通过精馏分离出的TBA-DIB共沸物循环回悬浮床。
  2. 根据权利要求1所述的方法,还包括:(3)脱附了TBA的吸附剂通过第二引射器循环回悬浮床。
  3. 根据权利要求1或2所述的方法,其中,所述吸附剂为负载强极性基团的聚苯乙烯树脂;优选地,所述聚苯乙烯树脂为苯乙烯与二乙烯苯的共聚物和/或苯乙烯与二乙烯苯的共聚物与短纤维复合的共聚物,所述短纤维包括但不限于金属纤维颗粒、玻璃纤维颗粒和纤维素颗粒中的一种或多种;优选地,所述强极性基团为磺酸基、硝基、氨基和羧基中的一种或多种,进一步优选地,所述强极性基团的负载量为0.5~10mmol/g,更优选为3~5.5mmol/g。
  4. 根据权利要求3所述的方法,其中,所述吸附剂为多孔球形颗粒,圆度为0~0.1;平均粒径为0.1~5mm,优选0.8~1.5mm;粒径均匀,基于吸附剂的总重量,粒径小于平均粒径0.7倍的吸附剂颗粒不超过5%,粒径大于平均粒径1.3倍的吸附剂颗粒不超过5%;吸附剂的孔径为10~500nm,优选100~300nm;比表面为5~100m2/g,优选20~80m2/g;吸附剂的真密度为0.8~1.5g/ml,优选1~1.2g/ml。
  5. 根据权利要求3或4所述的方法,其中,所述短纤维的平均长度 为吸附剂平均粒径的1/100~1/2,优选1/20~1/5;所述短纤维平均直径为平均长度的1/10000~1/5,优选1/1000~1/10。
  6. 根据前述权利要求任意一项所述的方法,其中,悬浮床入口处的所述TBA-DIB共沸物中叔丁醇的质量与吸附剂的质量比为1:0.5~1:20,优选1:2~1:10;优选地,所述吸附剂为一次性加入。
  7. 根据前述权利要求任意一项所述的方法,其中,TBA-DIB共沸物和固体吸附剂由悬浮床底部的入口进料;优选地,TBA-DIB共沸物的进料线速度为吸附剂临界悬浮速度的1.05~20倍,优选2~10倍;吸附剂在悬浮床内的平均线速度为TBA-DIB共沸物线速度的1~99%,优选50~90%。
  8. 根据前述权利要求任意一项所述的方法,其中,步骤(1)中,吸附了TBA的吸附剂与富DIB料液一起由悬浮床出口进入第一分离器的平均线速度为1~50m/s,优选3~30m/s;步骤(2)中,所述第二分离器入口的气速为0.5~50m/s,优选2~10m/s;操作温度为25~60℃,优选30~50℃。
  9. 根据前述权利要求任意一项所述的方法,其中,所述第一引射器是由脱附气体驱动,所述脱附气体为氮气、二氧化碳、氩气或氦气中的一种或多种,优选为氮气和/或二氧化碳;所述第一引射器的脱附气体的温度为25~60℃,优选30~50℃;
    所述第二引射器由液体驱动,所述驱动液体为TBA-DIB共沸液;驱动液体在第二引射器喉管处的速度为0.5~50m/s,优选2~10m/s。
  10. 根据前述权利要求任意一项所述的方法,其中,所述悬浮床操作压力为常压;操作温度在25℃与TBA-DIB共沸物沸点之间。
  11. 一种分离叔丁醇与二异丁烯的系统,包括:
    悬浮床,悬浮床的入料管通过第二引射器与DIB-TBA共沸物供应管道相连,出口与第一分离器入口相连;
    第一分离器,包括入口、上出口和下出口,其中,所述入口与悬浮床相连,上出口用于排出富DIB的料液,下出口通过第一引射器与第二分离器相连;
    第二分离器,包括入口、上出口和下出口,其中,所述入口通过第一引射器与第一分离器相连,上出口用于排出含有富TBA蒸汽的气体,下出口用于排出脱附了TBA的吸附剂;优选地,所述第二分离器的下出口通过第二引射器与悬浮床的入料管相连。
  12. 根据权利要求11所述的系统,其中,所述第一分离器的上出口通过管道与第一精馏塔相连;所述第一精馏塔的上出口用于排出TBA-DIB共沸物,下出口用于排出高纯DIB;优选地,所述第一精馏塔的上出口与TBA-DIB共沸物供应管道相连。
  13. 根据权利要求11或12所述的系统,其中,所述第二分离器的上出口通过管道与冷凝器相连;或者所述第二分离器的上出口通过管道与冷凝器相连,冷凝器的物料出口与第二精馏塔的入口相连;优选地,所述第二精馏塔的上出口用于排出TBA-DIB共沸物,下出口用于排出高纯TBA;优选地,所述第二精馏塔的上出口与TBA-DIB共沸物供应管道相连。
  14. 根据权利要求11-13任一项所述的系统,其中,所述悬浮床高径比1000:1~1:1,优选100:1~10:1;优选地,所述悬浮床底部的入口为等径直管或渐缩管或其组合,优选为锥角由大逐渐变小的渐缩管,锥角在0~60°之间,优选0~30°之间;渐缩管通道的最小截面积为最大截面积的20~80%,优选30~50%;优选地,所述悬浮床出口为圆角或锥角。
  15. 根据权利要求11-14任一项所述的系统,其中,所述悬浮床出口与第一分离器入口之间采用等径直管或渐缩管或其组合连接,优选为锥角由大逐渐变小的渐缩管连接,其中,最大锥角不超过60°,最小锥角不小于5°,优选10~30°之间;优选地,渐缩管的最小截面积为最大截面积的20~80%,优选30~50%。
  16. 根据权利要求11-15任一项所述的系统,其中,所述第一分离器和第二分离器为离心分离器。
  17. 根据权利要求16所述的系统,其中,所述第一分离器由上部直筒段、中部圆锥段和下部第一储槽组成,直筒段的高径比为1:1~10:1,优选2:1~4:1;圆锥段的锥角为3~30°,优选5~15°;圆锥底部与第一储槽相连;优选地,所述第一储槽为上下串联的两个储槽,各自分别独立地由上部直筒段和下部圆锥段组成,下部圆锥段的锥角为3~30°,优选5~15°;优选地,所述上下储槽之间为间歇开闭的切断阀,第一分离器圆锥段底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与第一引射器之间的接口直径均为第一分离器直筒段直径的1/8~1/4,优选1/5/~1/4;优选地,所述第一储槽的下储槽顶部有均压管线,均压管线与常压气体相连,均压管线与下储槽气体相通。
  18. 根据权利要求16所述的系统,其中,所述第二分离器由上部直筒段、中部圆锥段和下部第二储槽组成,直筒段的高径比为1:1~10:1,优选2:1~4:1;圆锥段的锥角为3~30°,优选5~15°;圆锥底部与第二储槽相连;优选地,所述第二储槽为上下串联的两个储槽,各自分别由上部直筒段和下部圆锥段组成,上下储槽下部均为倒圆锥体,锥体的锥角为3~30°,优选5~15°;优选地,上下两个储槽之间为间歇开闭的切断阀,圆锥底部与上储槽之间通道直径、上下储槽之间的切断阀内径及下储槽与引射器之间的接口直径为直筒段的1/8~1/4,优选1/4~1/5;优选地,第二分离器内壁有螺旋向下的导流板,导流板自第一引射器出口与第二分离器连接处开始螺旋向下,沿内壁切向方向延伸至第二分离器距离圆锥段底部高度为基于第二离心分离器从顶部到圆锥底部的高度的1/3~2/3的位置;优选地,所述第二储槽的下储槽顶部设有均压管线,均压管线与常压气体相连,均压管线与下储槽气体相通。
  19. 根据权利要求11-18任意一项所述的系统,其中,所述第一引射器包括驱动气入口、渐缩管、喉管、负压吸气室套管、负压入口、混合管、扩散管以及引射器出口,其中,负压入口与第一储槽的下储槽出口相连;优选地,所述第一引射器是水平安装的;所述第一引射器出口至第二分离器之间为直径与第一引射器出口直径相同的水平直管、倾斜向下的直管或盘旋向下的螺旋管。
  20. 根据权利要求11-19任意一项所述的系统,其中,所述第二引射器包括驱动液入口、渐缩管、喉管、负压吸气室套管、负压入口、混合管、扩散管以及引射器出口,其中,负压入口与第二储槽的下储槽出口相连;优选地,所述第二引射器为水平安装或竖直向下安装。
  21. 根据权利要求19-20任意一项所述的系统,其中,所述第一引射器与第二引射器的负压吸气室套管直径为混合管直径的1~10倍,优选2~4倍;驱动气入口或驱动液入口直径为混合管直径的0.5~4倍,优选1~2倍;喉管直径为驱动气/液入口直径的1/8~1/2,优选1/4~1/3;喉管直管段的长度为其直径的0.2~2倍,优选0.5~1倍;喉管缩口1/2锥角为5~30°,优选10~20°;喉管出口与混合管入口的距离为混合管直径D4的0.5~4倍,优选1~2倍;混合管的长度为的0.5~10倍,优选2~6倍;扩散管为入口直径小,出口直径大的锥体,其1/2锥角为3~15°,优选6~8°,扩散管的长度为的5~30倍,优选10~15倍;混合管与吸气室负压入口之间的连接 为锥角结构,其1/2锥角角度A2为15~75°,优选30~60°。
  22. 根据权利要求11-21任意一项所述的系统,其中,所述的第一引射器和/或第二引射器的材质为金属、碳纤维、玻璃纤维、工程塑料,或以金属、碳纤维和玻璃纤维中的一种或多种为强度结构的工程塑料的复合材料。
PCT/CN2016/093237 2016-07-29 2016-08-04 一种分离叔丁醇与二异丁烯的方法和系统 WO2018018651A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2018704013A MY186940A (en) 2016-07-29 2016-08-04 Method and system for separating t-butanol from diisobutylene
SG11201810802RA SG11201810802RA (en) 2016-07-29 2016-08-04 Method and system for separating t-butanol from diisobutylene
KR1020187034301A KR102173854B1 (ko) 2016-07-29 2016-08-04 디이소부틸렌에서 t-부탄올을 분리하는 방법 및 시스템
JP2018563164A JP6717984B2 (ja) 2016-07-29 2016-08-04 tert−ブタノールとジイソブチレンとを分離する方法およびシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610618717.1 2016-07-29
CN201610618717.1A CN107663147B (zh) 2016-07-29 2016-07-29 一种分离叔丁醇与二异丁烯的方法和系统

Publications (1)

Publication Number Publication Date
WO2018018651A1 true WO2018018651A1 (zh) 2018-02-01

Family

ID=61016286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093237 WO2018018651A1 (zh) 2016-07-29 2016-08-04 一种分离叔丁醇与二异丁烯的方法和系统

Country Status (6)

Country Link
JP (1) JP6717984B2 (zh)
KR (1) KR102173854B1 (zh)
CN (1) CN107663147B (zh)
MY (1) MY186940A (zh)
SG (1) SG11201810802RA (zh)
WO (1) WO2018018651A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110452083B (zh) * 2019-08-05 2021-11-30 中国石油天然气集团有限公司 二异丁烯的生产方法及装置
EP3964492A1 (en) 2020-09-05 2022-03-09 Indian Oil Corporation Limited A process and apparatus for production and separation of alcohols and oligomerization of hydrocarbon feedstock

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160510A (ja) * 1997-08-15 1999-03-02 Tonen Chem Corp ジイソブチレンの精製方法
US20040020758A1 (en) * 2002-07-25 2004-02-05 Catalytic Distillation Technologies Separation of tertiary butyl alcohol from diisobutylene
CN2714547Y (zh) * 2004-07-19 2005-08-03 昆明理工大学 一种悬浮床吸附器
CN103242119A (zh) * 2013-05-23 2013-08-14 南京工业大学 一种分离二异丁烯和叔丁醇混合物的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119801A (en) * 1977-03-28 1978-10-19 Kuraray Co Ltd Rcovery of ethylene
JPH01160510A (ja) * 1987-12-17 1989-06-23 Naoharu Kasai コーヒなどの抽出装置
US6596913B1 (en) * 2001-02-23 2003-07-22 Catalytic Distillation Technologies Recovery of tertiary butyl alcohol
EP1388528B1 (de) * 2002-08-06 2015-04-08 Evonik Degussa GmbH Verfahren zur Oligomerisierung von Isobuten in n-Buten-haltigen Kohlenwasserstoffströmen
US7012167B2 (en) * 2003-10-08 2006-03-14 Lyondell Chemical Technology, L.P. Diisobutylene process
US8067655B2 (en) * 2008-05-29 2011-11-29 Lyondell Chemical Technology, L.P. Diisobutylene process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160510A (ja) * 1997-08-15 1999-03-02 Tonen Chem Corp ジイソブチレンの精製方法
US20040020758A1 (en) * 2002-07-25 2004-02-05 Catalytic Distillation Technologies Separation of tertiary butyl alcohol from diisobutylene
CN2714547Y (zh) * 2004-07-19 2005-08-03 昆明理工大学 一种悬浮床吸附器
CN103242119A (zh) * 2013-05-23 2013-08-14 南京工业大学 一种分离二异丁烯和叔丁醇混合物的方法

Also Published As

Publication number Publication date
CN107663147A (zh) 2018-02-06
JP6717984B2 (ja) 2020-07-08
KR20190008867A (ko) 2019-01-25
CN107663147B (zh) 2019-07-23
JP2019518025A (ja) 2019-06-27
KR102173854B1 (ko) 2020-11-05
SG11201810802RA (en) 2019-01-30
MY186940A (en) 2021-08-26

Similar Documents

Publication Publication Date Title
CN102007109B (zh) 环氧乙烷设备的操作
WO2014117633A1 (zh) 提高加氢装置氢气利用率的方法及装置
US11919845B2 (en) Reaction system and method for preparing butyraldehyde by propylene carbonylation
WO2018018651A1 (zh) 一种分离叔丁醇与二异丁烯的方法和系统
CN101723338A (zh) 一种从液氧中提取氪氙的方法
CN110563538A (zh) 一种丙烯气体催化脱氧反应装置及脱氧方法
CN100429194C (zh) 生产甲烷氯化物反应工段反应热利用和混合物纯化方法
CN105565276B (zh) 一种双氧水生产的高效氧化方法
CN204294211U (zh) 己二胺反应器
CN102389689A (zh) 一种无动力低温等压氨回收方法及等压氨回收装置
CN202909706U (zh) 一种高效气液反应器
CN209412110U (zh) 一种提高流化床生产醋酸乙烯产量和质量的装置
CN205252611U (zh) 一种气液分离器
CN102345578A (zh) 一种防止煤基甲醇制丙烯工艺中激冷水泵汽蚀的方法及其装置
CN109467503A (zh) 一种提高流化床生产醋酸乙烯产量和质量的装置及方法
CN105646758A (zh) 一种制备聚合物的方法
CN107036393B (zh) 采用双塔连续精馏生产5n级高纯丙烷的装置及生产工艺
CN205252718U (zh) 一种立式气液分离器
CN220090572U (zh) 一种双氧水装置上强化气液分离的气液分离器结构
CN101898752B (zh) 一种从浓氪氙液中精制纯氪和纯氙的方法
CN202215452U (zh) 一种防止煤基甲醇制丙烯工艺中激冷水泵汽蚀的装置
CN202096786U (zh) 天然药材co2超临界萃取过滤器
CN219984172U (zh) 一种气液分离装置
CN114906812B (zh) 一种有机混酸分离纯化方法
CN109589721B (zh) 合成氨、尿素的节能煤化工生产系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187034301

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910231

Country of ref document: EP

Kind code of ref document: A1