WO2018016621A1 - 液状の培地組成物の製造方法およびそれに用いられる製造装置 - Google Patents

液状の培地組成物の製造方法およびそれに用いられる製造装置 Download PDF

Info

Publication number
WO2018016621A1
WO2018016621A1 PCT/JP2017/026453 JP2017026453W WO2018016621A1 WO 2018016621 A1 WO2018016621 A1 WO 2018016621A1 JP 2017026453 W JP2017026453 W JP 2017026453W WO 2018016621 A1 WO2018016621 A1 WO 2018016621A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
container
tube
peristaltic pump
medium composition
Prior art date
Application number
PCT/JP2017/026453
Other languages
English (en)
French (fr)
Inventor
好男 竹内
達朗 金木
康一郎 猿橋
Original Assignee
日産化学工業株式会社
コージンバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社, コージンバイオ株式会社 filed Critical 日産化学工業株式会社
Priority to JP2018528892A priority Critical patent/JP7028776B2/ja
Priority to CN201780044015.XA priority patent/CN109477054A/zh
Priority to US16/319,809 priority patent/US20190264158A1/en
Priority to KR1020197005226A priority patent/KR102447714B1/ko
Priority to EP17831137.9A priority patent/EP3489341A4/en
Publication of WO2018016621A1 publication Critical patent/WO2018016621A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/54Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle provided with a pump inside the receptacle to recirculate the material within the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • B01F35/717611Peristaltic pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/26Constructional details, e.g. recesses, hinges flexible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0025Culture media for plant cell or plant tissue culture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2202Mixing compositions or mixers in the medical or veterinary field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/44Mixing of ingredients for microbiology, enzymology, in vitro culture or genetic manipulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides

Definitions

  • the present invention relates to a method for producing a liquid medium composition and a production apparatus used for carrying out the production method. More specifically, the present invention relates to at least two kinds of liquids to be mixed to form the medium composition (a first liquid containing a specific compound and a structure obtained by binding the specific compounds to each other). A second liquid containing a substance that forms a substance), and a production method for producing a medium composition in which the structure is dispersed, and a production apparatus used for preferably carrying out the production method. is there.
  • organ culture and tissue culture are used to proliferating, differentiating or maintaining cells isolated from organs and tissues in vitro.
  • cell culture is a technique for proliferating, differentiating or maintaining isolated cells in a culture medium in vitro, and is indispensable for detailed analysis of the functions and structures of various organs, tissues, and cells in vivo. ing.
  • cells and / or tissues cultured by this technique are organs lost due to evaluation of efficacy and toxicity of chemical substances, pharmaceuticals, etc., mass production of useful substances such as enzymes, cell growth factors, antibodies, and diseases and defects. It is used in various fields, such as regenerative medicine that supplements tissues and cells, plant breed improvement, and creation of genetically modified crops.
  • One of the media for culturing cells and the like is a liquid medium
  • the present inventors have developed a liquid medium composition capable of culturing cells and the like in a suspended state. Development was successful (Patent Documents 1 and 2).
  • a specific compound particularly, a polymer compound having an anionic functional group
  • the body is dispersed and suspended in a liquid medium.
  • the specific compound such as a polymer compound having an anionic functional group is also referred to as a “specific compound”, and a substance such as a divalent metal cation that binds the specific compounds to each other is also referred to as a “linking substance”.
  • the medium composition is a preferable liquid medium capable of culturing cells and the like in a floating state without operations such as shaking and rotation that may cause damage to cells or loss of function.
  • the originally intended preferable state of the liquid medium composition described in Patent Document 1 is that a structure formed by connecting specific compounds with each other via a connecting substance such as a divalent metal cation is in the liquid medium. In a state of being uniformly dispersed. However, when the present inventors examined the actual production process of the liquid medium composition in detail, in order to obtain such a preferable state, the structure is unevenly distributed locally in the medium composition. It has been found that the mixing method and mixing conditions must be noted so that they do not form.
  • the deacylated gellan gum forms an amorphous structure via a linking substance (for example, calcium ions) in the liquid medium when mixed with the liquid medium.
  • a linking substance for example, calcium ions
  • both liquids come into contact with the outside air, so that the bacteria in the outside air are brought into the medium. There is a possibility that problems such as contamination will occur.
  • the double helix formed by the molecular chain forms a strong three-dimensional network via a linking substance (eg, calcium ion).
  • a linking substance eg, calcium ion
  • a special stirring device capable of bringing both liquids into contact with each other at high speed is required. In general, it is often limited to be effective for a small amount of liquid of about 3 L (L represents liter) or less, and a large amount (for example, 20 L) of a mixed liquid in which the above structure is preferably dispersed is often used. It was also found that it is not suitable for manufacturing.
  • the object of the present invention is to solve the above-mentioned problems and to mix aseptically an arbitrary liquid containing a linking substance such as a divalent metal cation and a liquid containing a specific compound.
  • An object of the present invention is to provide a production method capable of obtaining a large amount of a dispersed liquid medium composition and a production apparatus preferably used for carrying out the production method.
  • a method for producing a liquid medium composition by mixing a first liquid containing a specific compound (i) below and a second liquid containing a linking substance (ii) below. And Using a container having at least two openings in the wall, wherein the at least two openings are connected to each other by a tube outside the container, and the tube can be mounted on a peristaltic pump as a pumping tube And has a part with flexibility, The tube is attached to the peristaltic pump, the peristaltic pump is operated, and the first liquid and the second liquid are circulated and mixed between the tube and the container.
  • the volume ratio of the first liquid and the second liquid is 50 to 200 of the second liquid with respect to the volume 100 of the first liquid, [1] to [3] A method for producing a liquid medium composition according to any one of the above.
  • the one opening is provided as an outlet at a wall portion constituting the bottom surface of the container or at a bottom portion of the wall portion constituting the side surface
  • the other opening is provided as an inlet in a wall portion constituting the upper surface of the container or in an upper portion of the wall portion constituting the side surface
  • the peristaltic pump is operated to move the first liquid and the second liquid in the tube in a direction from the outlet toward the inlet, whereby the first liquid and the second liquid in the container are moved. Moving the liquid in the direction from above to below, The production method according to any one of [1] to [4].
  • the two openings are paired as an outlet and an inlet, the container is provided with a plurality of pairs of the two openings, and the two openings in each pair are connected to each other by a tube. And In the second step, each tube is attached to a separate peristaltic pump, and the peristaltic pump is operated to circulate the first liquid and the second liquid through each tube.
  • the production method according to any one of to [5].
  • the container is made of a flexible material so that the volume of the container can be changed according to the volume of the liquid accommodated in the container, thereby improving the sealing performance in the container.
  • the production method according to any one of [1] to [6], wherein it is possible to inject a liquid into the container and discharge the liquid to the outside of the container while ensuring.
  • the container is provided with an inlet / outlet opening used for taking in and out of the liquid into the container, Either one of the first liquid and the second liquid is put in the container in advance, and the other liquid is circulated from the entrance / exit opening while the liquid is circulated by the peristaltic pump.
  • inject in The method for producing a liquid medium composition according to any one of [1] to [7].
  • a production apparatus used for carrying out the production method of the liquid medium composition according to [1] has a container for containing the first liquid and the second liquid mixed in the manufacturing method,
  • the wall of the container is provided with at least two openings, and these openings are connected to each other by a tube outside the container,
  • the tube has a portion having a shape and flexibility that can be attached as a pumping tube to a peristaltic pump configured to send liquid in the tube and can operate as a pumping tube in the peristaltic pump. ,
  • the manufacturing apparatus has a container for containing the first liquid and the second liquid mixed in the manufacturing method,
  • the wall of the container is provided with at least two openings, and these openings are connected to each other by a tube outside the container,
  • the tube has a portion having a shape and flexibility that can be attached as a pumping tube to a peristaltic pump configured to send liquid in the tube and can operate as a pumping tube in the peristaltic pump.
  • the one opening is provided in a wall portion constituting the bottom surface of the container or in a bottom portion of the wall portion constituting the side surface
  • the other opening is provided in a wall portion constituting the upper surface of the container or in an upper portion of the wall portion constituting the side surface.
  • the peristaltic pump is provided as a component of the manufacturing apparatus, and the peristaltic pump is provided with the tube and operates as a pumping tube.
  • the manufacturing apparatus in any one.
  • the one opening is provided in a wall portion constituting the bottom surface of the container or in a bottom portion of the wall portion constituting the side surface,
  • the other opening is provided in a wall constituting the upper surface of the container or in an upper part of the wall constituting the side surface;
  • the peristaltic pump is configured to operate so that the liquid in the tube moves from the lower opening to the upper opening, so that the liquid contained in the container moves from above to below. And are supposed to move, The manufacturing apparatus according to [12] above.
  • the container is made of a flexible material so that the volume of the container can be changed according to the volume of the liquid accommodated in the container, thereby improving the sealing property in the container.
  • the first liquid and the second liquid are removed from the container into the tube by the action of the peristaltic pump 5 on the tube 4 of FIG. , Passing through the tube and returning to the original container] can be circulated.
  • This closed path circulation allows both liquids to come into contact with no other source of contamination, such as outside air, and without contact with other parts other than the container and tube (including connector parts for connecting them). It becomes possible to mix.
  • the operation of the peristaltic pump causes the liquid in the container to go out from one opening into the tube, pass through the tube, and return to the container from the other opening to circulate again.
  • the manufacturing apparatus of the present invention enables the manufacturing method to be implemented by the configuration including the container and the tube, and enables the aseptic and large-scale mixing.
  • the container is made of a bag made of an organic polymer material such as a flexible synthetic resin
  • the entire apparatus can be composed of an inexpensive bag and a tube, so that it can be disposable for every mixing. .
  • the tube is only attached to the drive part of the peristaltic pump, and is not connected integrally. Therefore, the main part concerning the circulation path which has a container and a tube can be disposable for every mixing, and washing
  • FIG. 1 is a diagram schematically showing a manufacturing method and a manufacturing apparatus according to the present invention.
  • FIG. 2 is a diagram showing a configuration example of the manufacturing apparatus of the present invention.
  • FIG. 3 is a diagram showing another configuration example of the manufacturing apparatus of the present invention.
  • FIG. 4 is a diagram showing another configuration example of the manufacturing apparatus of the present invention.
  • FIG. 4A shows one end face of the container.
  • FIG. 4B shows the other end face of the container.
  • FIG.4 (c) is a block diagram which shows the connection structure of the whole manufacturing apparatus, Comprising: The container is shown with the perspective view. In FIG.4 (c), the hidden part is represented with the broken line, and the broken line is used also for the leader line for assign
  • FIG. 5 is a diagram showing an example of the structure of a peristaltic pump used in the manufacturing method and manufacturing apparatus of the present invention.
  • FIG. 6 is a schematic diagram showing criteria for evaluating the mixed state
  • the production method of the present invention produces a liquid medium composition by mixing a first liquid containing the specific compound (i) below and a second liquid containing the linking substance (ii) below. It is a method to do. Details of the specific compound, the linking substance, and the first liquid and the second liquid containing the specific compound and the linking substance will be described later.
  • a specific compound which is a polymer compound having an anionic functional group capable of forming a structure capable of suspending cells or tissues by binding via a divalent metal cation.
  • a linking substance that is a divalent metal cation A linking substance that is a divalent metal cation.
  • the manufacturing method uses a container 1 in which at least two openings 2 and 3 are provided on a wall, as illustrated in FIG.
  • the at least two openings 2 and 3 are connected to each other by a tube 4 outside the container, and the tube 4 has a portion having a shape and flexibility that can be attached to the peristaltic pump 5 as a pumping tube. It has as a part or all of the tube.
  • FIG. 1 although the liquid in the container 1 is not drawn so as to be clearly separated into the first liquid A1 and the second liquid B1, reference numerals A1 and B1 are given to the liquid in the container. This suggests that the first liquid A1 and the second liquid B1 are being mixed.
  • the wall portion of the container 1 is provided with at least two openings 2 and 3, and the at least two openings 2 and 3 are connected to each other by a tube 4 outside the container 1.
  • the tube 4 is attached to the peristaltic pump 5 and has a shape and flexibility that can function as a pumping tube.
  • FIG. 1 the detailed structure of the peristaltic pump 5 is not illustrated, and the presence of the peristaltic pump is suggested by a broken line.
  • the peristaltic pump 5 may be included as a part of the manufacturing apparatus of the present invention, or may be an external device. In the manufacturing method, the tube 4 is mounted on the peristaltic pump 5 as shown in FIG.
  • the tube 4 is engaged with the peristaltic pump 5 so that the tube 4 becomes a pumping tube of the peristaltic pump 5. Then, the peristaltic pump 4 is operated to circulate the first liquid A1 and the second liquid B1 between the container 1 and the tube 4, and both liquids are stirred and mixed by the circulation, A medium composition is formed.
  • a liquid medium composition in which both liquids are sufficiently agitated and mixed a structure in which a specific compound is linked via a linking substance is uniformly dispersed, so that cells and the like can be cultured in a floating state. It is suitable.
  • the manufacturing method as described above, it is possible to handle an arbitrarily large amount of the first liquid A1 and the second liquid B1 in which the total of both liquids reaches 1000 L or more, and the outside air.
  • the two liquids can be sufficiently mixed by a simple operation without being brought into contact with a contamination source.
  • the manufacturing apparatus is an apparatus used for carrying out the above-described manufacturing method according to the present invention.
  • the manufacturing apparatus includes a container 1 for containing a first liquid A1 and a second liquid B1 that are mixed in the manufacturing method.
  • At least two openings 2 and 3 are provided in the wall portion of the container 1, and these at least two openings are connected to each other by a tube 4 outside the container, thereby being accommodated in the container 1.
  • a circulation channel is formed through which liquid can exit from one opening 2, pass through the tube 4, and return from the other opening 3 into the container 1.
  • the tube 4 has a characteristic as a pumping tube that can be attached to a peristaltic pump 5 configured to send the liquid in the tube.
  • the liquid in the container circulates between the container 1 and the tube 4 without being in contact with a contamination source such as outside air, and is sufficiently mixed.
  • a contamination source such as outside air
  • the container 1 usable in the production method of the present invention and the production apparatus of the present invention is preferably made of a material that can be accommodated without affecting the first liquid and the second liquid.
  • the volume of the container is not particularly limited. However, when the volume is large, the advantage of the present invention that both liquids can be mixed in a large amount becomes remarkable.
  • the preferred volume of the container is not particularly limited and may be appropriately determined according to the demand. For example, about 100 L to 1000 L is a preferred volume for mass production of a general liquid culture medium for cell culture. As an example.
  • the material of the said container 1 is not specifically limited, For example, a hard or soft organic polymer material (especially synthetic resin material etc.), glass, a metal, etc. are mentioned.
  • the hard or soft organic polymer material may be a plate or a film.
  • the plate or film may be a single material (single layer product) or a multilayer structure (two or more layers) including layers made of different materials as described later. There may be.
  • the shape of the container 1 is also not particularly limited.
  • a bag-like object having a wall surface made of a film made of a cube, a rectangular parallelepiped, a cylinder, or a soft organic polymer material (for example, the outer peripheral edge of two films) Or a bag having a bottom surface and a side surface, a bag having a top surface, a bottom surface, and a side surface).
  • the container 1 is a flexible bag made of a film made of a soft organic polymer material, the following preferable effects (a) to (c) can be obtained.
  • the container Before the first liquid or the second liquid is injected into the container 1 for the first time, the container can be contracted to evacuate the air inside.
  • the container 1 can expand as the liquid is injected, the injected liquid does not come into contact with air.
  • the mixture (liquid medium composition) sufficiently mixed by circulating the first liquid and the second liquid is removed from the container 1 so as not to come into contact with air while the container is contracted. Can be taken out into an external container.
  • the container 1 is a flexible bag-like material made of a soft organic polymer material film or the like, the container can be obtained at a low cost. This eliminates the need for cleaning in the manufacturing apparatus and increases the sterility of the container and the tube.
  • Examples of the flexible bag-like material made of a film made of a soft organic polymer material as described above include those similar to conventionally known cell culture bags.
  • Examples of the material of the film constituting the wall portion of the flexible bag for cell culture include, for example, ethylene / vinyl acetate copolymer resin (EVA resin), polyethylene resin, polypropylene resin, polyurethane resin, and polyester resin. Resins, polyamide resins, vinyl chloride resins and the like can be mentioned.
  • EVA resin ethylene / vinyl acetate copolymer resin
  • the material of each layer may be appropriately selected depending on the function.
  • a combination of (polyethylene terephthalate layer (inner layer) / polyethylene layer (intermediate layer) / nylon layer (outer layer)) is exemplified.
  • the thickness of the film on the wall is not particularly limited, but is usually about 50 ⁇ m to 150 ⁇ m, preferably about 100 ⁇ m.
  • a bag-like material in which outer peripheral edges of two films are joined together a bag-like material having a bottom surface and a side surface, and a top surface, a bottom surface, and a side surface are provided. Examples are bag-like objects and bag-like objects having various shapes (cuboids, hexagonal columns (shown in FIG.
  • the manufacturing apparatus according to the present invention can be obtained by forming at least two openings on the wall surface of the container, connecting the openings together with a tube, and forming a closed circulation path.
  • At least two openings 2 and 3 are provided in the wall portion of the container 1.
  • One of the at least two openings causes the liquids A1 and B1 to flow from the container 1 into the tube (circulation tube) 4.
  • the other opening (upper opening 3 in the example in the figure) is an inlet for liquid to enter from the circulation tube 4 into the container 1.
  • Either one or both of these at least two openings can be used as an opening for injecting the first liquid and the second liquid into the container by removing the circulation tube, or both from the container. You may use as an opening part for taking out the mixture of liquids.
  • the two openings 2 and 3 used for the circulation of the liquid are preferably connected aseptically by a circulation tube 4 so as not to be opened to the outside.
  • a tube (injection tube) for injecting liquid into the container is in contact with the liquid before filter sterilization. Therefore, if it is cut off at the tube part after filtration sterilization and connected and used for circulation, the content liquid may be contaminated. From the above points, it is preferable to provide the necessary number of openings for injecting the first liquid and / or the second liquid into the container as openings different from the two openings for circulation. . For example, as shown in FIG.
  • opening 6 only one opening 6 as a dedicated entrance / exit may be provided, and the first liquid and the second liquid may be sequentially injected into the container from the opening 6.
  • two or more openings may be provided, and the first liquid and the second liquid may be injected into the container at the same time.
  • the “opening as an inlet / outlet” here refers to an inlet for injecting liquid into the container from the outside, and for discharging the mixed liquid (liquid medium composition) out of the container. It also means an opening for the outlet.
  • an inlet opening is provided, the first liquid and the second liquid are injected into the container from the inlet opening, and the mixed liquid is taken out from the opening for circulation. Also good.
  • an opening for the outlet is provided, the first liquid and the second liquid are injected into the container from the opening for circulation, and the mixed liquid is taken out from the opening dedicated for the outlet. Also good. Moreover, you may provide the opening part for an entrance, and the opening part for an exit separately in a container, respectively. In order to maintain the sterility in these manufacturing apparatuses, it is preferable to insert a filtration filter in the middle of the injection tube and inject the filtered liquid into the container. For example, a configuration in which a cartridge type filter is incorporated in the middle of the tube 4c shown in FIG. 3 and inserted into the path is possible. In addition, when connecting containers, tubes, sterilization filters, and connectors, there is a risk of contamination by outside air. After connecting all containers, tubes, sterilization filters, and connectors to form a closed manufacturing device, ⁇ It is preferable to carry out radiation irradiation sterilization.
  • FIG. 2 is a diagram illustrating another example of the position of the opening provided in the container.
  • the tube 4 is connected to the openings 2 and 3 provided in the wall portion of the container, and the first liquid and the second liquid are circulated by the action of the peristaltic pump to mix both liquids. Therefore, the two liquids are efficiently mixed when the opening 2 serving as the outlet and the opening 3 serving as the inlet are separated as much as possible.
  • the outlet and the inlet are close to each other, only the liquid in the vicinity of the opening circulates locally, and there is a high possibility that the liquid remaining in the container is left without being added to the circulation flow.
  • an opening 2 serving as an outlet is provided in a wall portion constituting the lower surface of the container, and an opening 3 serving as an inlet is provided in a wall portion constituting the upper surface, and these are tubes 4 Connected with.
  • a flow from the upper side to the lower side as indicated by an arrow is generated in the container, and the first liquid and the second liquid are efficiently mixed.
  • the opening 2 serving as the outlet is provided in one wall portion of the container, and the other opening 3 is provided in the wall portion facing the wall portion, and these are the tubes 4. Connected with.
  • a horizontal flow is generated in the container, and the first liquid and the second liquid are mixed without remaining.
  • a plurality of openings (two in the example, 2a and 2b) serving as outlets constitute one wall portion of the container (in the example in the figure, the wall constituting the bottom surface of the container).
  • a plurality of openings (two in the example shown, 3a and 3b) provided at the inlet, and a wall part (in the example shown in the figure, constituting the upper surface of the container) facing the wall part ), Which are a plurality of pairs of inlets and outlets, and each pair of openings (2a, 3a), (2b, 3b) is connected to each other by tubes 4a, 4b.
  • Each is mounted on a peristaltic pump 5a, 5b.
  • FIG. 1 and FIGS. 2 (a) to (c). A horizontal direction, an oblique direction, or the like, or a direction in which a vortex is generated or a direction in which a turbulent flow is generated.
  • the first liquid is an aqueous solution containing deacylated gellan gum
  • the deacylated gellan gum tends to float in the culture solution, so that FIG. 1, FIG. 2 (a), FIG. 2 (c)
  • the flow in which the liquid descends from the upper side to the lower side of the container as shown in FIG. 4 is a preferable flow in which mixing proceeds more effectively against such floating.
  • FIG. 1 and FIGS. 2A to 2C are merely examples, and these may be combined as appropriate by changing the direction.
  • two openings 2 and 3 are provided in the vertical wall portion of the container, but these two openings are provided in the wall portion on the top surface (or bottom surface) of the container.
  • the container of FIG. 1 may be used in a different posture.
  • the two openings 2 and 3 are provided only on the right wall of the container, but a pair of openings is also provided on the left wall facing the wall.
  • each pair of openings may be connected to each other by a tube.
  • the opening part provided in the upper surface of the container and the opening part provided in the side surface of the container may be paired and connected by a tube.
  • the modes of FIGS. 2A to 2C are the same, and the posture of the container may be changed as appropriate.
  • the opening provided in the container does not necessarily have to be a pair of two openings as an outlet and an inlet.
  • one opening for example, an outlet
  • a plurality of openings for example, the entrance may correspond (not shown).
  • the diameter of the opening is not particularly limited, but is preferably equal to the diameter of the tube to be connected.
  • the aperture diameter here is the inner diameter of the flow path of the connector or coupling when a connector or coupling for connecting a tube is attached to the opening.
  • Connectors and couplings have a structure in which the flow paths are closed until the mating connectors and couplings are connected, and the mating connectors and couplings are connected to aseptically communicate the flow paths. What has the structure which does is preferable.
  • a short tube may be coupled to the opening instead of the connector or the coupling, and the outside outlet of the tube may be closed by the connector or the coupling.
  • the tube has a portion having a shape and flexibility that can be mounted as a pumping tube on a peristaltic pump, which will be described later, and that can function and operate as a pumping tube.
  • a shape and flexibility that can be mounted on a peristaltic pump as a pumping tube, and that can function and operate as a pumping tube has a tube inner diameter, outer shape, and length that matches the peristaltic pump used. And softness that is crushed when pressed by an actuator (such as a roller) of a peristaltic pump, and that it has elasticity that can return to its original shape when released from being pressed by the actuator.
  • the tube may be a whole that can be a pumping tube, or only a portion that is attached to the peristaltic pump can be a pumping tube. A portion that becomes a pumping tube is attached to a peristaltic pump, and the peristaltic pump is operated, whereby the first liquid and the second liquid move in the tube. Thereby, both liquids are circulated and mixed, and a liquid medium composition in which a structure in which a specific compound is bonded through a connecting substance is uniformly dispersed is formed in the container.
  • the mode of the tube is not particularly limited except for the portion that becomes the pumping tube, and may be a metal tube or the like, but it does not affect the first liquid and the second liquid and can be used for cell culture. It is preferably a flexible and inexpensive resin tube. An embodiment in which the entire tube can be used as a pumping tube is a preferred example.
  • the material of the portion that becomes the pumping tube can be used for cell culture without affecting the first liquid and the second liquid, and is a resin material having elasticity and flexibility, especially a synthetic resin material.
  • Preferred examples include styrene thermoplastic elastomers, silicon resins, fluorine resins, and polyvinyl chloride resins.
  • the inner diameter, thickness, and length of the portion that becomes the pumping tube may be any one according to the peristaltic pump to be used.
  • the inner diameter is about 5 mm to 50 mm, and the thickness of the tube is about 2 mm to 6 mm.
  • the tube used in the examples has an inner diameter of 13 mm and a wall thickness of 3 mm (outer diameter of 19 mm).
  • the length of the entire tube may be appropriately determined according to the distance between the openings to be connected and the size of the container, and may be about 1500 mm to 3000 mm, for example.
  • the circulation tube may be a single continuous tube from a portion connected to one opening of the container to a portion connected to the other opening, or may be appropriately determined by a connector or coupling. , It may be connected to form a single tube.
  • connectors and couplings may be provided at both ends of the portion that becomes the pumping tube, and the configuration may be detachable from the entire tube.
  • aseptic connectors it is preferable to use aseptically connectable connectors called aseptic connectors.
  • FIG. 3 is a diagram showing another configuration example of the manufacturing apparatus.
  • two openings (2 a, 2 b) serving as outlets are provided in the bottom wall of the container 1
  • two openings (3 a serving as inlets) 3b) are provided on the wall of the upper surface of the container, these are two pairs of inlets and outlets, and each pair of openings (2a, 3a), (2b, 3b) has a tube 4a, 4b, and the tubes 4a and 4b are attached to the peristaltic pumps 5a and 5b, respectively.
  • the wall surface (upper surface in the example in the figure) of the container 1 is further provided with an opening 6 for entrance / exit so that liquid can be injected into the container 1 from the external container 7 through the tube 4c. .
  • the configuration illustrated in FIG. 3 enables a procedure of injecting the other liquid into the liquid while circulating the one liquid with a peristaltic pump.
  • the second liquid B1 is stored first, and the first liquid A1 is injected into the container 1 from the external container 7 at a predetermined flow rate while circulating the second liquid B1.
  • the mixing procedure is possible.
  • the tube 4 c When moving the liquid from the external container 7 to the container 1, the tube 4 c may be attached to the peristaltic pump, and the feeding capacity of the peristaltic pump may be used, or the external container 7 is disposed above the container 1. Then, the liquid in the external container 7 may be moved into the tube by gravity and dropped into the container 1.
  • FIG. 4 is a diagram showing a preferred configuration example of the manufacturing apparatus.
  • the overall shape of the container 1 is a flexible bag having a hexagonal column as shown in FIG.
  • the flexible bag presenting the hexagonal column itself uses a commercially available cell culture bag.
  • 4A shows one end face 1a of the container 1
  • FIG. 4B shows the other end face 1b of the container 1.
  • FIG. 4 (a) an opening 6a for allowing the first liquid to flow into the container 1 and an opening for allowing the second liquid to flow into the container 1 are provided above the end surface 1a.
  • FIG. 4C is a block diagram showing a connection configuration of the entire manufacturing apparatus.
  • an external container 7a containing a first liquid is connected to the opening 6a via a pipe (tube) 41, and a second pipe is connected to the opening 6b.
  • An external container 7 b that contains liquid is connected via a tube 42.
  • External containers 7a and 7b may be included as elements of the manufacturing apparatus or may be regarded as external liquid supply sources.
  • a tube connected to the opening 6a and a tube connected to the external container 7a are connected to one tube 41 by a sterile connector C1.
  • a tube connected to the opening 6b and a tube connected to the external container 7b are connected to one tube 42 by a sterile connector C2.
  • the tube 45 is connected to the tube 45 by a sterile connector C 4, and the tube 45 is connected to the opening 3.
  • the second liquid stored in the outer container 7 b is injected into the container 1 with respect to the container 1 in a state where the air is removed and contracted.
  • the container 1 expands by the amount of the injected second liquid.
  • the roller pump 5 operates to circulate the second liquid, while the first liquid accommodated in the external container 7a is injected into the container 1, and the mixing proceeds by the subsequent circulation.
  • the roller pump 5 moves the compression point to the pumping tube 44 so that the liquid moves from the opening 2 to the opening 3. Thereby, the liquid in the container 1 moves from the upper side to the lower side.
  • FIG. 5 is a diagram schematically showing an example of the configuration of the peristaltic pump.
  • the housing 11 is provided with an arcuate or semicircular outer peripheral wall surface 11a, and the pumping tube 4 is curvedly mounted along the outer peripheral wall surface 11a.
  • the outer peripheral wall surface 11a supports the pumping tube 4 on the outer peripheral side.
  • the roller 13 supported by the arm 12 rotates around the rotation shaft 14 in the liquid feeding direction (in the direction of the arrow f), thereby causing the pumping tube to move like a peristaltic motion. 4 is sequentially compressed in the liquid feeding direction, and the liquid in the pumping tube is fed. As shown in FIG. 5, when the tube is attached to the peristaltic pump, the tube 4 is inserted into the feed drive portion of the peristaltic pump (the portion that sequentially compresses the tube) so that the tube 4 functions as a pumping tube of the peristaltic pump. Means to set. In the example of FIG.
  • the peristaltic pump may have a structure with a curved path as shown in FIG. 5, or a plurality of linearly arranged actuators compress the pumping tube locally and sequentially, and perform peristaltic motion on the pumping tube. It may be of a structure to be added. For details of the peristaltic pump feed structure, reference can be made to the prior art.
  • the peristaltic pump feed capacity (flow rate per minute of liquid moving in the tube) is widely available from minute flow rate to large flow rate, about 0.01 (mL / min) to 10 (L / min). Illustrated.
  • the feed capacity of the peristaltic pump used in the present invention may be determined according to the volume of the container and is not particularly limited. However, when the volume of the container is about 20 L to 100 L, the feed capacity of the peristaltic pump is A preferable range is 3 to 18 (L / min).
  • a pumping tube having a larger inner diameter and a peristaltic pump having a larger feeding capacity may be used, or small.
  • a pair of tubes and peristaltic pumps having a feeding capability may be used in parallel for the required number of pairs, and the liquid may be circulated in parallel. If the flow rate of the liquid by the peristaltic pump is excessively small with respect to the volume of the container, mixing may take a long time, and a state where mixing is not sufficiently performed may occur locally.
  • the operation time of the peristaltic pump (that is, the time for mixing while continuing the circulation) may be appropriately determined according to the feed amount of the peristaltic pump and based on the mixing state. As an example, when the volume of the container is about 50 L to 150 L and the feed capacity of the peristaltic pump is about 10 (L / min), about 2 to 4 hours is exemplified as a preferable operation time.
  • the peristaltic pump may constitute a part of the manufacturing apparatus of the present invention, or may be an external apparatus to be used for the apparatus of the present invention.
  • a first liquid is an aqueous solution containing the deacylated gellan gum
  • a second liquid is a liquid containing a linking substance that is a divalent metal cation (for example, a liquid medium containing calcium ions and / or magnesium ions).
  • the procedure of injecting the other liquid into the container while circulating one liquid with a peristaltic pump is preferable, and circulating after injecting both liquids into the container in a predetermined ratio in advance.
  • the effect that the deacylated gellan gum is less likely to be concentrated locally in the culture solution is obtained.
  • the second liquid the liquid medium
  • the first liquid an aqueous solution containing the deacylated gellan gum
  • the volume of the container is about 50 L to 150 L
  • the volume ratio of the first liquid to the second liquid is 1: 1
  • the peristaltic pump feed capacity is 10 (L / min).
  • the opening 6 may be used for an entrance / exit.
  • the peristaltic pump may be manually controlled to operate and stop, or a control device is provided in the manufacturing apparatus, and the control device controls the peristaltic pump to automatically operate for a predetermined time. May be.
  • the first liquid contains, as a specific compound, a polymer compound having an anionic functional group that can form a structure capable of suspending cells or tissues by binding via a divalent metal cation.
  • a polymer compound having an anionic functional group that can form a structure capable of suspending cells or tissues by binding via a divalent metal cation.
  • the anionic functional group include a carboxy group, a sulfo group, a phosphate group, and salts thereof, and a carboxy group or a salt thereof is preferable.
  • the polymer compound used in the present invention may contain one or more selected from the group of anionic functional groups.
  • the polymer compound used in the present invention include, but are not particularly limited to, a polysaccharide obtained by polymerizing 10 or more monosaccharides (for example, triose, tetrose, pentose, hexose, heptose, etc.). More preferred is an acidic polysaccharide having an anionic functional group.
  • the acidic polysaccharide here is not particularly limited as long as it has an anionic functional group in its structure.
  • a polysaccharide having uronic acid for example, glucuronic acid, iduronic acid, galacturonic acid, mannuronic acid is used.
  • hyaluronic acid gellan gum, deacylated gellan gum (hereinafter sometimes referred to as DAG), rhamzan gum, diyutan gum, xanthan gum, carrageenan, xanthan gum, hexuronic acid, fucoidan, pectin, pectinic acid, pectinic acid, Examples include polysaccharides composed of one or more kinds from the group consisting of heparan sulfate, heparin, heparitin sulfate, kerato sulfate, chondroitin sulfate, dermatan sulfate, rhamnan sulfate and salts thereof.
  • the polysaccharide is preferably hyaluronic acid, DAG, Valtan gum, xanthan gum, carrageenan or a salt thereof, more preferably DAG or a salt thereof.
  • DAG that has been phosphorylated can also be used.
  • the phosphorylation can be performed by a known method.
  • the salt herein include salts of alkali metals such as lithium, sodium and potassium, salts of alkaline earth metals such as calcium, barium and magnesium, and salts of aluminum, zinc, copper, iron, ammonium, organic bases and amino acids. Is mentioned.
  • polysaccharides and the like preferably have a weight average molecular weight of 10,000 to 50,000,000, more preferably 100,000 to 20,000,000, and still more preferably 1,000,000. 000 to 10,000,000.
  • the molecular weight can be measured in pullulan conversion by gel permeation chromatography (GPC).
  • a plurality of (preferably two) polysaccharides having the anionic functional group can be used in combination. You may combine the polysaccharide which has an anionic functional group, and the polysaccharide which does not have an anionic functional group.
  • the type of combination of polysaccharides is not particularly limited as long as the above structure can be formed in a liquid medium by binding via a divalent metal cation. Preferably, the combination includes at least DAG or a salt thereof. .
  • suitable combinations of polysaccharides include DAG or a salt thereof, and polysaccharides other than DAG or a salt thereof (eg, xanthan gum, alginic acid, carrageenan, diutan gum, methylcellulose, locust bean gum or a salt thereof). It is. Specific combinations of polysaccharides include DAG and Ramzan gum, DAG and Valtan gum, DAG and Xanthan gum, DAG and Carrageenan, DAG and Xanthan gum, DAG and locust bean gum, DAG and ⁇ -carrageenan, DAG and sodium alginate, DAG And methyl cellulose, but are not limited thereto.
  • Deacylated gellan gum is a linear high chain composed of four sugar molecules, 1-3 linked glucose, 1-4 linked glucuronic acid, 1-4 linked glucose and 1-4 linked rhamnose. It is a molecular polysaccharide.
  • R 1 and R 2 are both hydrogen atoms, and n is a polysaccharide represented by an integer of 2 or more.
  • the R 1 is a glyceryl group
  • R 2 may also include an acetyl group, but the content of acetyl group and glyceryl groups, preferably not more than 10%, more preferably 1% or less.
  • the specific compound may be obtained by a chemical synthesis method, but when the specific compound is a natural product, conventional techniques are used from various plants, various animals, and various microorganisms containing the compound. It may be obtained by extraction, separation and purification.
  • gellan gum is produced by cultivating production microorganisms in a fermentation medium, recovering mucosa produced outside the cells by a conventional purification method, and drying and crushing the powder to a powder form. Can do. Further, in the case of deacylated gellan gum, it may be recovered after subjecting the mucosa to an alkali treatment to deacylate glyceryl groups and acetyl groups bound to 1-3-bound glucose residues.
  • gellan gum producing microorganisms examples include, but are not limited to, Sphingomonas erodea and microorganisms modified from the genes of the microorganisms.
  • deacylated gellan gum commercially available products such as “KELCOGEL (registered trademark of CPE Kelco) CG-LA” manufactured by Sanki Co., Ltd., “Kelcogel (Ciepe Kelco Co., Ltd.) manufactured by Saneigen FFI Co., Ltd. Registered trademark of the company) "or the like.
  • “Kelcogel (registered trademark of CPE Kelco) HT” manufactured by San-Ei Gen FFI Co., Ltd. can be used as native gellan gum.
  • the first liquid is usually a solution of a specific compound.
  • the solvent for the solution is not particularly limited as long as it can dissolve the specific compound, but is usually water or a hydrophilic solvent, preferably water. That is, in a preferred embodiment, the first liquid is an aqueous solution of a specific compound.
  • the concentration of the specific compound contained in the first liquid is such that when mixed with the second liquid, the specific compound is suspended in the mixed liquid by binding the specific compound via a divalent metal cation. Can be formed, and the structure is uniformly dispersed in the mixed solution, and the liquid medium composition finally obtained contains the structure to allow suspension culture of cells or tissues. As long as it is, it is not particularly limited. From the concentration of the specific compound in the medium composition capable of culturing cells or tissues in suspension culture and the ratio of the volume of the first liquid to the volume of the medium composition obtained in the final product, It is possible to calculate the concentration of a specific compound in the liquid.
  • a first liquid volume V 1 by mixing a second liquid volume V 2, the case of obtaining a culture medium composition of the liquid volume V 1 + V 2
  • media composition of the liquid In order to make the concentration of the specific compound in the liquid C% (w / v), the concentration of the specific compound in the first liquid is C ⁇ (V 1 + V 2 ) / V 1 % (w / v). do it.
  • the divalent metal cation concentration in the first liquid needs to be lower than the concentration at which the specific compound in the first liquid forms a structure.
  • the divalent metal cation include calcium ion, magnesium ion, zinc ion, manganese ion, iron ion, and copper ion.
  • calcium ions and magnesium ions contribute to the formation of a structure of a specific compound such as DAG.
  • the first liquid may contain factors other than the specific compound and the solvent. Such factors include, but are not limited to, physiologically acceptable buffers, salts, and isotonic agents.
  • the first liquid is prepared by adding a specific compound to the solvent (eg, water) and stirring at a temperature at which the specific compound can be dissolved (eg, 60 ° C. or higher, 80 ° C. or higher, 90 ° C. or higher), It can be carried out by dissolving until it becomes transparent.
  • a specific compound eg, water
  • the solvent eg, water
  • DAG that has been subjected to de-divalent metal cation treatment
  • it dissolves in water without requiring heating, so that the dissolution operation is easy.
  • the obtained solution of the specific compound is subjected to de-divalent metal cation treatment so that the divalent metal cation concentration in the solution is lower than the structure-forming concentration.
  • the first liquid is preferably sterilized.
  • the sterilization method include, but are not limited to, autoclave and filter sterilization.
  • the second liquid contains a divalent metal cation as a linking substance.
  • the divalent metal cation include calcium ion, magnesium ion, zinc ion, manganese ion, iron ion, and copper ion.
  • the type of the divalent metal cation is such that a specific compound contained in the first liquid can form a structure capable of floating a cell or tissue by binding through the divalent metal cation.
  • calcium ions are preferable.
  • the second liquid is usually a solution of a connecting substance (that is, a divalent metal cation).
  • the solvent for the solution is not particularly limited as long as it can dissolve the specific compound, but is usually water or a hydrophilic solvent, preferably water. That is, in a preferred embodiment, the second liquid is an aqueous solution of a linking substance (that is, a divalent metal cation).
  • the second liquid is a mixture of the first liquid and the second liquid, and the divalent metal cation concentration in the liquid medium composition finally obtained is the specific compound in the first liquid.
  • An amount of divalent metal cation sufficient to form a body is included.
  • the divalent metal cation concentration in the second liquid can be calculated from the divalent metal cation concentration in the finally obtained liquid medium composition and the mixing ratio of the first liquid and the second liquid. it can.
  • the second liquid may contain factors other than the linking substance (ie, divalent metal cation) and the solvent.
  • factors include media components suitable for culturing the intended cells.
  • the medium components include buffers (carbonate buffer, phosphate buffer, HEPES, etc.), inorganic salts (NaCl, etc.), various amino acids, various vitamins (choline, folic acid, etc.), sugars (glucose, etc.), antioxidants Agents (monothioglycerol, etc.), pyruvic acid, fatty acids, serum, antibiotics, insulin, transferrin, lactoferrin, cholesterol, various cytokines, various hormones, various growth factors, various extracellular matrices, etc. It is not limited.
  • the second liquid is preferably sterilized. Examples of the sterilization method include, but are not limited to, autoclave and filter sterilization.
  • the second liquid is a concentrate of a liquid medium containing a structure-forming concentration of a divalent metal cation (preferably, calcium ions and / or magnesium ions).
  • the second liquid contains, in addition to the divalent metal cation (preferably calcium ions and / or magnesium ions) and water, medium components suitable for culturing the intended cells.
  • the range of calcium ion concentration in a commonly used liquid culture medium for cell culture is about 0.1 to 2.0 mM, and the magnesium ion concentration is about 0.1 to 1.0 mM, so it depends on a specific compound such as DAG. It is sufficient for structure formation.
  • the concentration of the divalent metal cation (preferably calcium ions and / or magnesium ions) in the second liquid is determined in consideration of the mixing ratio with the first liquid, and in the finally obtained liquid medium composition
  • the divalent metal cation concentration is adjusted to be the structure forming concentration.
  • the concentration of the medium constituent component suitable for culturing the intended cells in the second liquid is determined in consideration of the mixing ratio with the first liquid, and the medium in the liquid medium composition finally obtained The concentration of the component is adjusted so as to be within a concentration range suitable for culturing the intended cell.
  • a first liquid volume V 1 by mixing a second liquid volume V 2, the case of obtaining a culture medium composition of the liquid volume V 1 + V 2
  • media composition of the liquid In order to set the concentration of the divalent metal cation therein to Ci, the concentration of the divalent metal cation in the second liquid may be set to Ci ⁇ (V 1 + V 2 ) / V 2 . The same applies to other connecting substances.
  • the liquid medium composition in order to set the concentration of the medium constituent component in the product to Cm, the concentration of the medium constituent component in the second liquid may be Cm ⁇ (V 1 + V 2 ) / V 2 .
  • the connecting material in which the specific compound contained in the first liquid is contained in the second liquid by mixing the first liquid and the second liquid by the production method of the present invention.
  • the second liquid may not contain some or all of the cell culture medium constituents described above.
  • the first liquid and the second liquid are mixed, and the specific compound contained in the first liquid is bound via the connecting substance contained in the second liquid. Is obtained, and the liquid medium composition of interest can be obtained by adding a part or all of the components for the liquid culture medium for cell culture to the liquid mixture.
  • the volume mixing ratio of the first liquid and the second liquid is such that the volume of the second liquid is 50 to 200, preferably 100, with respect to the volume 100 of the first liquid.
  • 90 mol% or more (preferably 95 mol% or more, more preferably 99% or more, and most preferably) of the specific compound contained in the liquid medium composition produced by the production method of the present invention. 100%) is derived from the first liquid, and is 90 mol% or more (preferably 95 mol% or more, more preferably 99% or more, most preferably) of the divalent metal cation contained in the medium composition. 100%) comes from the second liquid.
  • the liquid medium composition obtainable by the production method of the present invention has a specific compound contained in the first liquid via a linking substance (that is, a divalent metal cation) contained in the second liquid. And the structure is uniformly dispersed in the medium composition. When the medium composition is used, cells and tissues are cultured while maintaining a floating state. It is possible.
  • a linking substance that is, a divalent metal cation
  • the types of organisms from which the cells and tissues to be cultured are derived are not particularly limited and include not only animals (insects, fish, amphibians, reptiles, birds, pancrustaceans, hexapods, mammals, etc.) but also plants. included.
  • the cells to be cultured are anchorage-dependent cells.
  • the liquid medium composition obtainable by the production method of the present invention it is possible to cultivate anchorage-dependent cells while maintaining a floating state without using a carrier serving as a scaffold.
  • floating cells and / or tissues means that cells and / or tissues can contact the bottom surface of the culture vessel but do not adhere (non-adhered). Furthermore, in the present invention, when the cells and / or tissues are allowed to grow, differentiate or maintain, the cells are not subjected to external pressure or vibration to the liquid medium composition, or shaking or rotation in the composition.
  • the state in which the tissue is uniformly dispersed in the liquid medium composition and is in a floating state is called “floating stationary”, and culturing cells and / or tissues in this state is “floating stationary culture” "floating stationary culture” " In addition, the period that can be floated in “floating standing” includes 5 minutes or more, 1 hour or more, 24 hours or more, 48 hours or more, 7 days or more, etc. It is not limited to.
  • the liquid medium composition obtainable by the production method of the present invention is a suspension of cells and / or tissues at at least one point in the temperature range (eg, 0 to 40 ° C.) in which cells and tissues can be maintained and cultured. It can be left stationary.
  • the liquid medium composition obtainable according to the present invention is capable of allowing cells and / or tissues to float in suspension, preferably at at least one point in the temperature range of 25 to 37 ° C, and most preferably at 37 ° C.
  • Whether floating suspension is possible or not is determined by, for example, dispersing the cells to be cultured at a concentration of 2 ⁇ 10 4 cells / mL uniformly in the medium composition to be evaluated and injecting 10 mL into a 15 mL conical tube. For at least 5 minutes or more (eg, 1 hour or more, 24 hours or more, 48 hours or more, 7 days or more). By doing so, it can be evaluated. In the evaluation of the floating state, for example, when 70% or more of all the cells are in the floating state, it can be concluded that the floating state is maintained. Instead of the cells, polystyrene beads (Size 500-600 ⁇ m, manufactured by Polysciences Inc.) may be used for evaluation.
  • the viscosity of the liquid medium composition obtainable by the production method of the present invention is not substantially increased by including the structure. “Does not substantially increase the viscosity of the liquid” means that the viscosity of the liquid does not exceed 8 mPa ⁇ s.
  • the viscosity of the liquid at this time (that is, the viscosity of the liquid medium composition obtainable by the production method of the present invention) is 8 mPa ⁇ s or less, preferably 4 mPa ⁇ s or less at 37 ° C., More preferably, it is 2 mPa ⁇ s or less.
  • the viscosity of the liquid containing the structure is an E-type viscometer (produced by Toki Sangyo Co., Ltd., TV-22 viscometer, model: TVE-22L, cone rotor: standard rotor 1 ° 34 ' ⁇ R24) , Rotation speed 100 rpm).
  • E-type viscometer produced by Toki Sangyo Co., Ltd., TV-22 viscometer, model: TVE-22L, cone rotor: standard rotor 1 ° 34 ' ⁇ R24
  • the concentration of the specific compound in the liquid medium composition obtainable by the production method of the present invention depends on the type of the specific compound, and the specific compound forms the above-described structure in the liquid medium composition, Preferably, it can be set as appropriate as long as the cells and / or tissues can be floated uniformly (preferably allowed to stand still) without substantially increasing the viscosity of the liquid medium.
  • concentration of the specific compound in the liquid medium composition depends on the type of the specific compound, and the specific compound forms the above-described structure in the liquid medium composition, Preferably, it can be set as appropriate as long as the cells and / or tissues can be floated uniformly (preferably allowed to stand still) without substantially increasing the viscosity of the liquid medium.
  • W / v more preferably 0.01% to 0.05% (w / v), and most preferably 0.01% to 0.03% (w
  • xanthan gum 0.001% to 5.0% (w / v), preferably 0.01% to 1.0% (w / v), more preferably 0.05% to 0.5% (w / V), most preferably 0.1% to 0.2% (w / v).
  • the total of both compounds is 0.001% to 5.0% (w / v), preferably 0.005% to 1.0% (w / v), More preferably, it is 0.01% to 0.1% (w / v), and most preferably 0.03% to 0.05% (w / v).
  • native gellan gum it is 0.05% to 1.0% (w / v), preferably 0.05% to 0.1% (w / v).
  • the concentration of the polysaccharide is such that the combination of the polysaccharide forms the above structure in a liquid medium composition, ( Preferably, it can be set as appropriate as long as the cells and / or tissues can be floated uniformly (preferably allowed to stand still) without substantially increasing the viscosity of the liquid medium.
  • the concentration of DAG or a salt thereof is 0.005 to 0.02% (w / v), preferably 0.01.
  • concentration of polysaccharides other than DAG or a salt thereof is 0.0001-0.4% (w / v), preferably 0.005-0.4. % (W / v), more preferably 0.1 to 0.4% (w / v).
  • concentration of polysaccharides other than DAG or a salt thereof is 0.0001-0.4% (w / v), preferably 0.005-0.4. % (W / v), more preferably 0.1 to 0.4% (w / v).
  • DAG or a salt thereof 0.005 to 0.02% (preferably 0.01 to 0.02%) (w / v)
  • Polysaccharide xanthan gum other than DAG 0.1 to 0.4% (w / v) Sodium alginate: 0.0001 to 0.4% (w / v) (preferably 0.1 to 0.4% (w / v))
  • Native gellan gum 0.0001-0.4% (w / v)
  • Locato bean gum 0.1-0.4% (w / v)
  • Methyl cellulose 0.1 to 0.4% (w / v) (preferably 0.2 to 0.4% (w / v))
  • Carrageenan 0.05-0.1% (w / v)
  • Valtan gum 0.05-0.1% (w / v)
  • DAG or a salt thereof is used as the specific compound, and calcium ions are used as the linking substance.
  • the first liquid is an aqueous solution of DAG or a salt thereof.
  • the second liquid is a concentrated liquid medium containing calcium ions.
  • the volume mixing ratio of the first liquid and the second liquid is such that the volume (V 2 ) of the second liquid is 50 to 200 with respect to the volume (V 1 ) 100 of the first liquid, preferably Is 100.
  • the DAG concentration in the liquid medium composition obtained as a result of mixing is preferably 0.01% to 0.05% (w / v), most preferably 0.01% to 0.03% (w / v). v).
  • the calcium ion concentration in the liquid medium composition obtained as a result of mixing is such a concentration that DAG forms a structure, and is usually about 0.1 to 2.0 mM.
  • the concentration of the medium components in the liquid medium composition obtained as a result of the mixing is within a concentration range suitable for culturing the intended cells (eg, mammalian cells).
  • the DAG concentration in the first liquid is (V 1 + V 2 ) / V 1 (ie, 150/100 to 300/100, preferably the same as the DAG concentration in the liquid medium composition obtained as a result of the above mixing. Is the concentration obtained by multiplying by 200/100).
  • the calcium ion concentration in the second liquid is (V 1 + V 2 ) / V 2 (ie, 150/50 to 300/200), which is the calcium ion concentration in the liquid medium composition obtained as a result of the above mixing.
  • the concentration is preferably obtained by multiplying by 200/100).
  • the concentration of the medium constituent in the second liquid is equal to the concentration of the medium constituent in the liquid medium composition obtained as a result of the mixing described above, (V 1 + V 2 ) / V 2 (ie 150/50 The concentration obtained by multiplying by .about.300 / 200, preferably 200/100).
  • the liquid medium composition a structure in which DAG is bound via calcium ions is uniformly dispersed and contained, so that cells and / or tissues can be uniformly distributed without substantially increasing the viscosity. It can be floated (preferably left floating).
  • the cells and / or tissues are kept in a floating state without any operation such as shaking or rotation that may cause damage or loss of function of the cells or tissues. It can be cultured.
  • the culture medium composition when used, the culture medium can be easily replaced during culture, and the cultured cells and / or tissues can be easily recovered.
  • the medium composition is used, cells that have been conventionally cultured in a single layer on a plate and adhered to a cell container can be cultured in a floating state. It can be efficiently prepared in large quantities without loss of function.
  • the mixed liquid of the first liquid and the second liquid may be a medium composition for production purpose, but the medium composition for production purpose is obtained by further adding an additive to the liquid mixture. May be.
  • the first and second liquids are mixed, and the resulting medium composition is mixed (the structure formed by mixing the two liquids).
  • (Dispersion state) was evaluated. [Specifications of each part of the manufacturing equipment] Using the container (flexible bag) 1 and tubes 41 to 45 shown in FIG. 4 and the roller pump 5 as a peristaltic pump, the first and second liquids are mixed to produce a liquid medium composition. did.
  • the first liquid is an aqueous solution containing deacylated gellan gum (concentration: 0.040%)
  • the second liquid is a liquid medium containing calcium ions (calcium ion concentration: 3.29 mM).
  • the container 1 is a bag-like material (bag) using a flexible film made of polyethylene as a material for the wall, and has a volume of 100L.
  • the roller pump is RP-KGI manufactured by Furu Science.
  • the inner diameter of the circulation tube attached to the roller pump is 13 mm, and the outer diameter is 19 mm.
  • the feed rate of the roller pump is about 10 L / min.
  • the liquid feeding direction by the roller pump 5 is a direction in which the liquid exits from the opening 2 and travels to the opening 3 through the roller pump 5.
  • the liquid medium composition obtained above is preferably mixed, that is, a structure formed by mixing the first and second liquids (specification included in the first liquid Whether or not the structure in which the compound is assembled via the divalent metal cation contained in the second liquid is preferably dispersed and suspended in the liquid medium composition is shown below.
  • a performance evaluation test method (a test method newly defined for the present invention) was carried out and evaluated.
  • the structure is preferably dispersed and suspended in the medium composition, as schematically shown in FIG. 6 (a), the beads are also affected by the dispersive suspension of the structure. Further, it is dispersed in the medium composition and remains floating. On the other hand, when mixing is not preferable and the structure is floating as a larger aggregate in the medium composition, the remaining part of the medium composition without the structure becomes large. As schematically shown in (b), more beads settle without being affected by the floating structure. As described above, when beads are mixed in the medium composition, it is possible to confirm through the beads the state of dispersion of the structure that is difficult to visually confirm.
  • the production method and production apparatus of the present invention preferably uses the first and second liquids. It has been found to be an excellent method and apparatus that can be mixed.
  • a liquid containing a specific compound can be aseptically and easily and preferably mixed with an arbitrary liquid containing a linking substance such as a divalent metal cation.
  • a liquid medium composition in which the body is dispersed can be obtained in a large amount at a low cost.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Clinical Laboratory Science (AREA)
  • Botany (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

当該製造方法は、特定化合物を含有する第1の液体A1と、連結物質を含有する第2の液体B1とを混合して、液状の培地組成物を製造する方法であって、当該製造装置を用いて実施される。当該製造装置は、少なくとも2つの開口部2、3が壁部に設けられた容器1を有し、前記の2つの開口部は、容器外のチューブ4によって互いに連結され、該チューブは、蠕動ポンプ5にポンピングチューブとして装着され得る形状と柔軟性とを持った部分を有する。当該製造方法は、蠕動ポンプを作動させて、第1の液体と第2の液体を循環させて混合し、目的とする液状の培地組成物を容器内に形成する。

Description

液状の培地組成物の製造方法およびそれに用いられる製造装置
 本発明は、液状の培地組成物の製造方法、および該製造方法を実施するために用いられる製造装置に関するものである。より詳細には、本発明は、前記培地組成物を形成するために混合すべき少なくとも2種類の液体(特定の化合物を含有する第1の液体、および、該特定の化合物同士を結びつけて構造体を形成する物質を含有する第2の液体)を適切に混合し、前記構造体が分散した培地組成物を製造する製造方法と、その製造方法を好ましく実施するために用いられる製造装置に関するものである。
 近年、動物や植物体内で異なった役割を果たしている様々な器官、組織、及び細胞を生体外にて増殖或いは維持させるための技術が発展してきている。これらの器官、組織を生体外にて増殖或いは維持することは、それぞれ器官培養、組織培養と呼ばれており、器官、組織から分離された細胞を生体外にて増殖、分化或いは維持することは細胞培養と呼ばれている。
 細胞培養は、分離した細胞を培地中で生体外にて増殖、分化或いは維持する技術であり、生体内の各種器官、組織、細胞の機能及び構造を詳細に解析するために不可欠なものとなっている。
 また、当該技術により培養された細胞及び/又は組織は、化学物質、医薬品等の薬効及び毒性評価や、酵素、細胞増殖因子、抗体等の有用物質の大量生産、疾患や欠損により失われた器官、組織、細胞を補う再生医療、植物の品種改良、遺伝子組み換え作物の作成等様々な分野で利用されている。
 細胞等(器官、組織、細胞)を培養するための培地の1つとして、液体培地が挙げられ、本発明者らは、細胞等を浮遊状態で培養することが可能な液状の培地組成物の開発に成功した(特許文献1及び2)。
 特許文献1に記載された液状の培地組成物は、特定の化合物(特に、アニオン性官能基を有する高分子化合物)が2価金属カチオン等を介して集合し不定形の構造体となり、該構造体が液体培地中に分散して浮遊した状態となっているものである。以下、アニオン性官能基を有する高分子化合物などといった上記特定の化合物を「特定化合物」ともいい、該特定化合物同士を結びつける2価金属カチオン等の物質を「連結物質」ともいう。
 該培地組成物は、細胞等の障害や機能喪失を引き起こすリスクのある振とうや回転等の操作を伴わずに、細胞等を浮遊状態にて培養することができる好ましい液状の培地となる。
国際公開第2014/017513号 米国特許出願公開第2014/0106348 A1号明細書
 上記特許文献1に記載された液状の培地組成物の本来意図された好ましい状態は、特定化合物同士が2価金属カチオン等の連結物質を介して連結することにより形成された構造体が液体培地中に均一に分散した状態である。
 しかしながら、本発明者らが、該液状の培地組成物の実際の作製工程を詳細に検討したところ、そのような好ましい状態を得るためには、構造体が培地組成物中の局所に偏在して形成されないように、混合方法や混合条件に留意しなければならないことがわかった。
 例えば、特定化合物が脱アシル化ジェランガムの場合、該脱アシル化ジェランガムは、液体培地と混合した際に、液体培地中の連結物質(例えば、カルシウムイオン)を介して不定形な構造体を形成し、これが細胞等を浮遊させるための担体となる。
 しかし、連結物質を含んだ液体培地を攪拌しながら、その中に、特定化合物を含んだ液体を注ぎ入れるといった混合方法では、両液が外気に接触し、それにより外気中の細菌が培地中に混入するといった問題が生じる可能性がある。
 また、連結物質を含んだ液体培地中を容器内に収容し、そこへ特定化合物を高濃度に含んだ液体を注ぎ入れるといった混合方法では、両液が合流した瞬間に特定化合物が連結物質と接して構造体となり、よって該構造体は、混合液中に紐状に長く連なって浮遊する状態(または、紐状の構造体が塊状に絡み合った状態)となり、本来意図された均一な分散状態にはならない場合があることがわかった。また、そのような状態は、比較的高速で攪拌を行なったとしても発生することがわかった。また、液体培地中にそのような紐状の構造体がいったん形成されると、分子鎖が形成するダブルへリックスがお互いに連結物質(例えば、カルシウムイオン)を介して強固な三次元ネットワークを形成しているという該構造体の性質上、それを細かく切断して母材中に分散させることは容易ではないこともわかった。
 よって、目的の構造体が好ましく分散した混合液を得るためには、両液を高速で接触させ得るような特殊な撹拌装置が必要となるが、そのような特殊な撹拌装置の撹拌作用は、一般に、3L(Lはリットルを表す)以下程度の少量の液体に対して有効となるような限られたものである場合が多く、上記の構造体が好ましく分散した混合液を大量(例えば、20L以上など)に製造するのには適していないこともわかった。
 本発明の目的は、上記の問題を解決し、2価金属カチオンなどの連結物質を含んだ任意の液体と、特定化合物を含んだ液体とを、無菌的に混合し得、微細な構造体が分散した液状の培地組成物を大量に得ることができる製造方法、および、該製造方法を実施するために好ましく用いられる製造装置を提供することにある。
 前記目的を達成し得る本発明の主たる構成は、以下のとおりである。
〔1〕下記(i)の特定化合物を含有する第1の液体と、下記(ii)の連結物質を含有する第2の液体とを混合して、液状の培地組成物を製造する方法であって、
 少なくとも2つの開口部が壁部に設けられた容器を用い、ここで、前記少なくとも2つの開口部は、容器外のチューブによって互いに連結され、該チューブは、蠕動ポンプにポンピングチューブとして装着され得る形状と柔軟性とを持った部分を有するものであり、
 前記チューブを前記蠕動ポンプに装着し、該蠕動ポンプを作動させて、前記第1の液体と第2の液体を、前記チューブと前記容器との間を循環させて混合し、前記特定化合物が前記連結物質を介して結びついてなる構造体が分散した液状の培地組成物を容器内に形成することを特徴とする、
前記液状の培地組成物の製造方法。
  (i)2価金属カチオンを介して結びつくことにより細胞又は組織を浮遊させることができる構造体を形成することができる、アニオン性の官能基を有する高分子化合物である特定化合物。
  (ii)2価金属カチオンである連結物質。
〔2〕前記(i)の特定化合物が脱アシル化ジェランガムであり、第1の液体が該脱アシル化ジェランガムを含有する水溶液であり、
 前記(ii)の連結物質が、カルシウムイオンおよびマグネシウムイオンのうちの一方または両方であり、第2の液体が、カルシウムイオンおよびマグネシウムイオンのうちの一方または両方を含有する液体培地の濃縮液である、
前記〔1〕記載の液状の培地組成物の製造方法。
〔3〕前記液状の培地組成物中の脱アシル化ジェランガムの濃度が、0.001%(w/v)~1.0%(w/v)である、前記〔2〕記載の培地組成物の製造方法。
〔4〕第1の液体と第2の液体との体積混合比率が、第1の液体の体積100に対して、第2の液体の体積50~200である、前記〔1〕~〔3〕のいずれかに記載の液状の培地組成物の製造方法。
〔5〕前記一方の開口部が、前記容器の底面を構成する壁部に、または、側面を構成する壁部の底部に出口として設けられ、
 前記他方の開口部が、前記容器の上面を構成する壁部に、または、側面を構成する壁部の上部に入口として設けられており、
 前記蠕動ポンプを作動させて、第1の液体と第2の液体を、それら液体がチューブ内を前記出口から前記入口に向かう方向に移動させ、それにより、容器内の第1の液体と第2の液体を、上方から下方へ向かう方向に移動させる、
前記〔1〕~〔4〕のいずれかに記載の製造方法。
〔6〕前記2つの開口部が出口と入口として1対になっており、前記容器には前記2つの開口部が複数対設けられ、各対における2つの開口部がそれぞれにチューブで接続されており、
 前記第2の工程において、それぞれのチューブを別個の蠕動ポンプに装着し、該蠕動ポンプを作動させて、前記第1の液体と第2の液体とを、各チューブを通して循環させる、前記〔1〕~〔5〕のいずれかに記載の製造方法。
〔7〕前記容器が、該容器の内部に収容される液体の体積に応じて該容器の容積が変動し得るように柔軟な材料からなるものであり、それによって、該容器内の密閉性を確保しながらも該容器内に液体を注入しかつ該容器外に液体を排出することが可能となっている、前記〔1〕~〔6〕のいずれかに記載の製造方法。
〔8〕前記容器には、該容器内への液体の出し入れに用いる出入口用の開口部が設けられており、
 前記容器に第1の液体および第2の液体のうちのいずれか一方の液体を先に入れておき、該液体を前記蠕動ポンプで循環させながら、他方の液体を前記出入口用の開口部から容器内に注入する、
前記〔1〕~〔7〕のいずれかに記載の液状の培地組成物の製造方法。
〔9〕前記〔1〕記載の液状の培地組成物の製造方法を実施するために用いられる製造装置であって、
 当該製造装置は、前記製造方法において混合される第1の液体と第2の液体を収容するための容器を有し、
 該容器の壁部には少なくとも2つの開口部が設けられ、これらの開口部は、容器外のチューブによって互いに連結されており、
 前記チューブは、該チューブ内の液体を送るように構成された蠕動ポンプにポンピングチューブとして装着し得かつ該蠕動ポンプにおいてポンピングチューブとして作動し得る形状と柔軟性とを持った部分を有するものである、
前記製造装置。
〔10〕前記一方の開口部が、前記容器の底面を構成する壁部に、または、側面を構成する壁部の底部に設けられ、
 前記他方の開口部が、前記容器の上面を構成する壁部に、または、側面を構成する壁部の上部に設けられている、
前記〔9〕記載の製造装置。
〔11〕前記2つの開口部が出口と入口として1対になっており、前記容器には前記2つの開口部が複数対設けられ、各対における2つの開口部がそれぞれにチューブで接続されている、前記〔9〕または〔10〕記載の製造装置。
〔12〕さらに、前記蠕動ポンプを当該製造装置の構成要素として有し、該蠕動ポンプは、前記チューブを装着し該チューブをポンピングチューブとして作動させるものである、前記〔9〕~〔11〕のいずれかに記載の製造装置。
〔13〕前記一方の開口部が、前記容器の底面を構成する壁部に、または、側面を構成する壁部の底部に設けられ、
 前記他方の開口部が、前記容器の上面を構成する壁部に、または、側面を構成する壁部の上部に設けられており、
 前記チューブ内の液体が下側の開口部から上側の開口部へと移動するように、前記蠕動ポンプが作動するように構成され、それにより、容器内に収容された液体が、上方から下方へと移動するようになっている、
前記〔12〕記載の製造装置。
〔14〕前記容器が、該容器の内部に収容される液体の体積に応じて該容器の容積が変動し得るように柔軟な材料からなるものであり、それにより、該容器内の密閉性を確保しながらも該容器内に液体を注入しかつ該容器外に液体を排出することが可能となっている、前記〔9〕~〔13〕のいずれかに記載の製造装置。
〔15〕前記容器には、該容器内への液体の出し入れに用いる出入口用の開口部がさらに設けられている、前記〔9〕~〔14〕のいずれかに記載の製造装置。
 本発明の製造方法(以下、当該製造方法ともいう)によれば、図1のチューブ4に対する蠕動ポンプ5の作用によって、第1の液体と第2の液体とを、〔容器からチューブに出て、該チューブを通過し、もとの容器に戻る〕という閉鎖経路を循環させることができる。この閉鎖経路の循環により、両液体を、外気などの汚染源に接触させることなしに、かつ、容器とチューブ(これらを接続するためのコネクター部品を含む)以外の他の部材に接触させることなしに混合することが可能になる。
 以下、蠕動ポンプの作動によって、容器内の液体が、一方の開口部からチューブ内に出て行き、該チューブを通過し、他方の開口部から該容器内に再び戻って循環する移動を、〔液体が容器とチューブとの間で循環する〕とも表現し、単に〔液体が循環する〕とも表現する。
 また、当該製造方法によれば、両液体の合計が100Lにも達するような大量の液状の培地組成物を無菌的に効率良く製造できるようになる。
 また、本発明の製造装置(以下、当該製造装置ともいう)は、容器とチューブとを有してなる構成によって、当該製造方法を実施可能にし、前記の無菌的かつ大量の混合を可能にする。とりわけ、容器を柔軟な合成樹脂などの有機高分子材料からなる袋状物とすれば、装置全体を安価な袋状物とチューブとで構成することができるので、混合毎の使い捨てが可能になる。これにより、容器内やチューブ内の洗浄が不要になり、また、容器内やチューブ内の無菌性がより高くなる。
 また、当該製造装置は、蠕動ポンプを必須に含んだ装置であっても、チューブは蠕動ポンプの駆動部分に装着されるだけであって、一体的に連結されるわけではない。よって、容器とチューブとを有してなる循環経路に係る主要部分は、混合毎の使い捨てが可能であり、容器内やチューブ内の洗浄が不要である。
図1は、本発明の製造方法および製造装置を概略的に示す図である。 図2は、本発明の製造装置の構成例を示す図である。 図3は、本発明の製造装置の他の構成例を示す図である。 図4は、本発明の製造装置のその他の構成例を示す図である。図4(a)は容器の一方の端面を示している。図4(b)は容器の他方の端面を示している。図4(c)は製造装置全体の接続構造を示すブロック図であって、容器を斜視図で示している。図4(c)では、隠れた部分を破線で表しており、その隠れた部分に符号を付与するための引出し線にも破線を用いている。 図5は、本発明の製造方法および製造装置に用いられる蠕動ポンプの構造の一例を示す図である。 図6は、本発明の実施例において、製造した液状の培地組成物の混合状態を評価するための判定基準を示した模式図である。
 以下、本発明の製造方法を詳細に説明しながら、本発明の製造装置に言及し、当該製造装置の構造をも詳細に説明する。
 本発明の製造方法は、下記(i)の特定化合物を含有する第1の液体と、下記(ii)の連結物質を含有する第2の液体とを混合して、液状の培地組成物を製造する方法である。これら特定化合物、連結物質、および、それぞれを含有する第1の液体、第2の液体の詳細については後述する。
  (i)2価金属カチオンを介して結びつくことにより細胞又は組織を浮遊させることができる構造体を形成することができる、アニオン性の官能基を有する高分子化合物である特定化合物。
  (ii)2価金属カチオンである連結物質。
 当該製造方法は、図1に例示するように、少なくとも2つの開口部2、3が壁部に設けられた容器1を用いる。前記少なくとも2つの開口部2、3は、容器外のチューブ4によって互いに連結されており、該チューブ4は、蠕動ポンプ5にポンピングチューブとして装着され得る形状と柔軟性とを持った部分を、該チューブの一部または全部として有するものである。
 図1では、容器1内の液体が第1の液体A1と第2の液体B1とに明確に分離しているようには描いていないが、容器内の液体に対して符号A1、B1を付与することによって、第1の液体A1と第2の液体B1とが混合される途上であることを示唆している。
 前記容器1の壁部には少なくとも2つの開口部2、3が設けられ、これら少なくとも2つの開口部2、3は、容器1の外側にあるチューブ4によって互いに連結されている。該チューブ4は、蠕動ポンプ5に装着されてポンピングチューブとして機能し得る形状と柔軟性とを有するものである。図1では、蠕動ポンプ5の詳細な構造は図示しておらず、破線によって該蠕動ポンプの存在を示唆している。該蠕動ポンプ5は、本発明の製造装置の一部として含まれていてもよく、また、外部装置であってもよい。
 当該製造方法では、図1に示すように、チューブ4を蠕動ポンプ5に装着する。即ち、該チューブ4が蠕動ポンプ5のポンピングチューブとなるように、該チューブ4を該蠕動ポンプ5に係合させる。そして、該蠕動ポンプ4を作動させて、第1の液体A1と第2の液体B1を、容器1とチューブ4との間で循環させ、該循環によって、両液体を攪拌、混合し、液状の培地組成物を形成する。両液体が十分に攪拌、混合された液状の培地組成物中には、特定化合物が連結物質を介して結びついてなる構造体が均一に分散しており、細胞等を浮遊状態で培養するのに適したものとなっている。
 当該製造方法によって、上記したように、両液体の合計が1000Lにも達するような、またはそれ以上の任意の大量の第1の液体A1と第2の液体B1を取り扱うことができ、しかも、外気などの汚染源に接触させることなく、簡単な操作で両液を十分に混合することが可能になる。
 本発明による製造装置は、上述した本発明による製造方法を実施するために用いられる装置である。当該製造装置は、図1に示すように、当該製造方法において混合される第1の液体A1と第2の液体B1を収容するための容器1を有する。該容器1の壁部には少なくとも2つの開口部2、3が設けられ、これら少なくとも2つの開口部は、容器外のチューブ4によって互いに連結されており、これにより、容器1内に収容された液体が、一方の開口部2から出て該チューブ4を通過し他方の開口部3から前記容器1内に戻ることが可能な循環流路が形成されている。該チューブ4は、該チューブ内の液体を送るように構成された蠕動ポンプ5に装着し得るポンピングチューブとしての特性を有するものである。該チューブを蠕動ポンプに装着し、該蠕動ポンプを作動させることによって、容器内の液体は、外気などの汚染源に接触することなく、容器1とチューブ4との間で循環し、十分に混合されて、目的の液状の培地組成物が得られる。
 本発明の製造方法および本発明の製造装置に利用可能な上記容器1は、第1の液体および第2の液体に影響を与えることなく収容し得る材料からなるものが好ましい。
 該容器の容積は、特に限定はされないが、容積が大きいと、両液体を大量に混合し得る本発明の利点が顕著となる。該容器の好ましい容積は、特に限定はされず、要求に応じて適宜決定すればよいが、例えば、100L~1000L程度が一般的な細胞培養のための液体培地を大量生産するためには好ましい容積として例示される。
 上記容器1の材料は、特に限定されず、例えば、硬質または軟質の有機高分子材料(とりわけ合成樹脂材料など)、ガラス、金属などが挙げられる。硬質または軟質の有機高分子材料は、板状物でもフィルムであってもよい。前記の板状物やフィルムは、単一の材料からなるもの(単層品)であってもよいし、後述のように、互いに異なる材料からなる層を含んだ多層構造(2層以上)であってもよい。
 容器1の形状もまた、特に限定されず、例えば、立方体、直方体、円柱体、軟質の有機高分子材料製のフィルムからなる壁面を持った袋状物(例えば、2枚のフィルムの外周縁部を互いに接合した袋状物、底面と側面と持った袋状物、上面と底面と側面とを持った袋状物など)などであってもよい。
 容器1が軟質の有機高分子材料製のフィルムなどからなる柔軟な袋状物であれば、次に示す(a)~(c)の好ましい作用が得られる。
 (a)第1の液体または第2の液体を容器1に最初に注入する前に、該容器を収縮させて内部の空気を抜いておくことができる。容器1は、液体の注入につれて膨張することができるので、注入される液体は空気と接触することがない。
 (b)第1の液体と第2の液体とを循環させることによって十分に混合された混合物(液状の培地組成物)を、該容器を収縮させながら、空気と接触させないように該容器1から、外部容器へと取り出すことができる。
 (c)容器1が軟質の有機高分子材料製のフィルムなどからなる柔軟な袋状物であれば、該容器が安価に得られることから、該容器とチューブとを混合毎に使い捨てることができ、当該製造装置内の洗浄の手間が省けると共に、容器とチューブ内の無菌性がより高くなる。
 前記のような軟質の有機高分子材料製のフィルムからなる柔軟な袋状物としては、従来公知の細胞培養用のバッグと同様のものが挙げられる。そのような細胞培養用の柔軟なバッグの壁部を構成するフィルムの材料としては、例えば、エチレン・酢酸ビニル共重合樹脂(EVA樹脂)、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂などが挙げられる。フィルムが多層構造である場合、各層の材料は機能に応じて適宜選択すればよい。例えば、3層構造であれば、(ポリエチレンテレフタラート層(内層)/ポリエチレン層(中間層)/ナイロン層(外層))といった組合せが例示される。
 該壁部のフィルムの厚さは、特に限定はされないが、通常、50μm~150μm程度、好ましくは100μm程度である。
 前記の柔軟な袋状物の全体的な形態としては、2枚のフィルムの外周縁部を互いに接合した袋状物、底面と側面と持った袋状物、上面と底面と側面とを持った袋状物、種々の形状(直方体、6角柱(図4に示す)、多角柱、円柱など)を持った袋状物が例示される。
 前記の柔軟な袋状物には、市販の細胞培養用のバッグを転用してもよいし、本発明専用の容器として前記フィルムを用いて製作してもよい。いずれの場合も、容器の壁面に少なくとも2つの開口部を形成し、それらの開口部同士をチューブで連結し、閉鎖された循環経路を構成すれば、本発明による製造装置が得られる。
 図1に例示するように、容器1の壁部には、少なくとも2つの開口部2、3が設けられる。少なくとも2つの開口部のうちの一方の開口部(図の例では、下側の開口部2)は、容器1内からチューブ(循環用チューブ)4内へと液体A1、B1が出て行くための出口であり、他方の開口部(図の例では、上側の開口部3)は、循環用チューブ4内から容器1内へと液体が入るための入口である。
 これら少なくとも2つの開口部のいずれか一方または両方は、循環用チューブを取り外すことによって、容器内に記第1の液体と第2の液体を注入するための開口部として、または、容器内から両液体の混合物を取り出すための開口部として使用してもよい。
 液体の循環に用いられる前記2つの開口部2、3は、外界に開放されることがないように、循環用チューブ4によって無菌的に連結されることが好ましい。一方、液体を容器内に注入するためのチューブ(注入用チューブ)は、濾過滅菌前の液体に接触している。よって、それを、濾過滅菌後のチューブ部分で切り離し、循環用に連結して使用すれば、内容液が汚染させる可能性がある。
 以上の点からは、容器内に第1の液体および/または第2の液体を注入するための開口部は、循環用の2つの開口部とは別の開口部として必要数だけ設けることが好ましい。例えば、図3に示すように、専用の出入口としての開口部6を1つだけ設けて、該開口部6から、第1の液体と第2の液体を順次容器内に注入してもよいし、図4に示すように、2以上の開口部を設け、第1の液体と第2の液体を同時に容器内に注入してもよい。ここでいう「出入口としての開口部」は、液体を外部から容器内に注入するための入口用の開口部、および、混合後の液体(液状の培地組成物)を容器外に排出するための出口用の開口部をも意味する。例えば、入口用の開口部を設けておき、第1の液体と第2の液体を該入口用の開口部から容器内に注入し、混合後の液体を、循環のための開口部から取り出してもよい。また、例えば、出口用の開口部を設けておき、循環のための開口部から第1の液体と第2の液体を容器内に注入し、混合後の液体を出口専用の開口部から取り出してもよい。また、入口用の開口部と出口用の開口部をそれぞれ別個に容器に設けてもよい。
 これら製造装置内の無菌性を維持するためには、注入用チューブの途中に、濾過フィルターを挿入し、濾過された液体を容器へ注入することが好ましい。例えば、図3に示すチューブ4cの途中にカートリッジ式のフィルターを組み込んで経路に挿入する構成が可能である。
 また、容器、チューブ、滅菌フィルター、コネクターを接続する際に、外気によって汚染される恐れがあるため、容器、チューブ、滅菌フィルター、コネクターを全て接合し、閉鎖的な製造装置を構成した後に、γ線照射滅菌を実施することが好ましい。
 図2は、容器に設けられる開口の位置の他の例を示す図である。同図では、容器とチューブとを接続するためのコネクターやカップリングは図示を省略している。本発明では、容器の壁部に設けられる開口部2、3にチューブ4を接続し、蠕動ポンプの作用によって第1の液体と第2の液体を循環させ、両液体を混合する。よって、出口となる開口部2と入口となる開口部3とは、互いにできるだけ離れている方が両液体は効率良く混合される。出口と入口とが接近していると、これら開口部付近の液体だけが局所的に循環し、容器内の残る液体が循環の流れに加わらず取り残される可能性が高くなる。
 図2(a)の態様では、容器の下面を構成する壁部に出口となる開口部2が設けられ、入口となる開口部3は、上面を構成する壁部に設けられ、これらがチューブ4で接続されている。これにより、容器内には矢印で示すような、上方から下方に向かう流れが生じ、第1の液体と第2の液体は効率良く混合される。
 図2(b)の態様では、出口となる開口部2が前記容器の1つの壁部に設けられ、他方の開口部3が、前記壁部に対向する壁部に設けられ、これらがチューブ4で接続されている。これにより、容器内に矢印で示すように、容器内を水平に渡る流れが生じ、第1の液体と第2の液体は残らず混合される。
 図2(c)の態様では、出口となる複数の開口部(図の例では、2a、2bの2つ)が前記容器の1つの壁部(図の例では、容器の底面を構成する壁部)に設けられ、入口となる複数の開口部(図の例では、3a、3bの2つ)が、前記壁部に対向する壁部(図の例では、容器の上面を構成する壁部)に設けられ、これらが複数対の入口と出口となっており各対の開口部(2a、3a)、(2b、3b)がそれぞれにチューブ4a、4bで接続され、該チューブ4a、4bがそれぞれ蠕動ポンプ5a、5bに装着されている。これにより、容器内に矢印で示すように、容器内には上方から下方への幅広い平行な流れが生じ、容器内の液体が循環の流れに加わる可能性が高くなり、第1の液体と第2の液体は効率良く混合される。尚、図2(c)の態様のように、複数のチューブが接続されている場合、一方のチューブ内を液体が移動する方向(例えば、図2(c)では上昇方向)に対して、他方のチューブ内を液体が移動する方向を逆方向(例えば、図2(c)では下降方向)として、容器内の流れに意図的な乱れを生じさせてもよい。
 蠕動ポンプを作動させたときに一方の開口部から他方の開口部へと向かう流れの方向は、図1、図2(a)~(c)に示すように、鉛直方向(降下方向、上昇方向)、水平方向、斜め方向などであってよく、その他、渦巻きが生じるような方向、乱流が生じるような方向であってもよい。第1の液体が脱アシル化ジェランガムを含有する水溶液である場合には、脱アシル化ジェランガムが培養液中で浮上する傾向が見られるので、図1、図2(a)、図2(c)、図4に示すような、容器の上方から下方へと液体が降下する流れは、で、そのような浮上に抗してより効果的に混合を進行させる好ましい流れである。
 図1、図2(a)~(c)に示した開口部の配置や数は、一例であって、これらは方向を変え、適宜に組み合わせてもよい。例えば、図1の態様では、容器の垂直な壁部に2つの開口部2、3が設けられているが、これら2つの開口部は、容器の上面(または底面)の壁部に2つ設けられていてもよく、図1の容器の姿勢を変えて用いてもよい。また、図1の態様では、容器の右側の壁部だけに2つの開口部2、3が設けられているが、該壁部に対向する左側の壁部にも一対の開口部が設けられていてもよく、各対の開口部がそれぞれにチューブで接続されていてもよい。また、容器の上面に設けられた開口部と、容器の側面に設けられた開口部とが、対をなして、チューブで接続されてもよい。
 図2(a)~(c)の態様も同様であって、容器の姿勢を適宜変更して用いてもよい。
 容器に設けられる開口部は、必ずしも2つの開口部が出口と入口として1対になっている必要はなく、チューブを分岐させることによって、1つの開口部(例えば、出口)と複数の開口部(例えば、入口)とが対応していてもよい(図示せず)。
 開口部の口径は、特に限定はなれないが、接続されるチューブの口径と同等であることが好ましい。ここでいう開口部の口径とは、該開口部にチューブを接続するためのコネクターやカップリングが装着される場合には、該コネクターやカップリングの流路の内径である。容器内の無菌性を保つために、全ての開口部は、栓体、開閉バルブ、コネクター、カップリング、シール部材などによって使用時まで閉じられていることが好ましい。コネクターやカップリングは、それぞれの相手のコネクターやカップリングが連結されるまでは流路が閉鎖された構造を有しかつ相手のコネクターやカップリングが連結されることによって流路が無菌的に連通する構造を有するものが好ましい。
 また、開口部には、前記のコネクターやカップリングの替りに、短いチューブが結合され、該チューブの外界側出口が前記のコネクターやカップリングによって閉じられていてもよい。
 チューブは、後述の蠕動ポンプにポンピングチューブとして装着され得、かつ、ポンピングチューブとして機能・作動し得る形状と柔軟性とを持った部分を有する。
 蠕動ポンプにポンピングチューブとして装着され得、かつ、ポンピングチューブとして機能・作動し得る形状と柔軟性を持つとは、使用される蠕動ポンプに適合するチューブの内径、外形、および、長さを持つこと、および、蠕動ポンプのアクチュエーター(ローラーなど)に押圧されて潰れる軟らかさ、該アクチュエーターによる押圧から解放されたときに原形に復帰し得る弾性を持つことを、少なくとも意味する。
 チューブは、全体がポンピングチューブとなり得るものであってもよいし、蠕動ポンプに装着される部分だけがポンピングチューブとなり得るものであってもよい。
 ポンピングチューブとなる部分を蠕動ポンプに装着し、該蠕動ポンプを作動させることにより、前記第1の液体と第2の液体が前記チューブ内を移動する。これにより、両液体が循環し、混合され、特定化合物が連結物質を介して結びついてなる構造体が均一に分散した液状の培地組成物が容器内に形成される。
 チューブの態様は、ポンピングチューブとなる部分以外は、特に限定はされず、金属管などであってもよいが、第1の液体と第2の液体に影響を与えず、細胞培養に利用可能であり、柔軟で安価な樹脂製のチューブであることが好ましい。チューブ全体がポンピングチューブとして利用可能な態様は好ましい一例である。
 ポンピングチューブとなる部分の材料は、第1の液体と第2の液体に影響を与えず、細胞培養に利用可能であり、かつ、弾性と柔軟性とを持った樹脂材料、とりわけ合成樹脂材料が好ましく、スチレン系熱可塑性エラストマー、シリコン系樹脂、フッ素系樹脂、ポリ塩化ビニル系樹脂などが挙げられる。
 ポンピングチューブとなる部分の内径、肉厚、長さは、使用する蠕動ポンプに応じたものであればよく、内径は5mm~50mm程度、チューブの肉厚は2mm~6mm程度である。一例を挙げると、実施例で用いたチューブは、内径13mm、肉厚3mm(外径19mm)である。
 チューブ全体の長さは、接続すべき開口部同士の間の距離や、容器の大きさに応じて適宜決定すればよく、例えば、1500mm~3000mm程度が挙げられる。
 循環用のチューブは、容器の一方の開口に接続される部分から、他方の開口に接続される部分まで、一体に連続した一本のチューブであってもよいし、コネクターやカップリングによって、適宜、接続されて一本のチューブになったものでもよい。蠕動ポンプに接続する際の取り扱い性(装着性)を高めるため、ポンピングチューブとなる部分の両端部にコネクターやカップリングが設けられ、チューブ全体から着脱し得る構成であってもよい。そのようなコネクターやカップリングは、無菌コネクターなどと呼ばれる、無菌的に接続が可能なコネクターを用いることが好ましい。
 図3は、当該製造装置の他の構成例を示した図である。同図の例では、図2(c)の例と同様に、出口となる2つの開口部(2a、2b)が容器1の底面の壁部に設けられ、入口となる2つの開口部(3a、3b)が容器の上面の壁部に設けられ、これらが2対の入口と出口となっており、各対の開口部(2a、3a)、(2b、3b)が、それぞれにチューブ4a、4bで接続され、該チューブ4a、4bがそれぞれ蠕動ポンプ5a、5bに装着されている。そして、容器1の壁面(図の例では上面)には、出入口用の開口部6がさらに設けられ、外部容器7から、チューブ4cを通して、液体が容器1内に注入し得る構成となっている。
 図3に例示した構成によって、一方の液体を蠕動ポンプで循環させながら、そこへ他方の液体を注入するという手順が可能になる。とりわけ、図3に示したように、第2の液体B1を先に収容しておき、これを循環させながら、第1の液体A1を外部容器7から所定の流量にて容器1内に注入するという混合手順が可能になる。
 尚、外部容器7から容器1に液体を移動させるに際しては、チューブ4cを蠕動ポンプに装着し、該蠕動ポンプの送り能力を利用してもよいし、外部容器7を容器1よりも上方に配置し、外部容器7内の液体を、重力によってチューブ内を移動させ、容器1内へと落下させてもよい。
 図4は、当該製造装置の好ましい構成例を示した図である。
 容器1の全体的な形状は、図4(c)に示すように六角柱を呈する柔軟なバッグである。図の例では、該六角柱を呈する柔軟なバッグそれ自体は、市販の細胞培養バッグを利用したものである。図4(a)は容器1の一方の端面1aを示しており、図4(b)は容器1の他方の端面1bを示している。これら両端面1a、1bは、六角柱の端面として六角形を呈しており、これら両端面が垂直面となるように、容器の姿勢が保たれている。
 図4(a)に示すように、端面1aの上部には、容器1内に第1の液体を流入させるための開口部6aと、容器1内に第2の液体を流入させるための開口部6bとが設けられている。開口部6cは閉鎖されており、混合液の取り出しなどに利用され得る。一方、図4(b)に示すように、端面1bの下部と上部には、循環用の開口部2、3がそれぞれ設けられている。図の例では、全ての開口部には、管路となるチューブを接続するためのコネクターが設けられている。
 図4(c)は、当該製造装置全体の接続構成を示すブロック図である。容器1の端面1aでは、開口部6aに対しては、第1の液体が収容された外部容器7aが管路(チューブ)41を介して接続され、開口部6bに対しては、第2の液体が収容された外部容器7bがチューブ42を介して接続されている。これら外部容器7a、7bは、当該製造装置の要素として含めてもよいし、外部の液体供給源とみなしてもよい。
 開口部6aに接続されたチューブと、外部容器7aに接続されたチューブとが、無菌コネクターC1によって1つのチューブ41へと連結されている。同様に、開口部6bに接続されたチューブと、外部容器7bに接続されたチューブとが、無菌コネクターC2によって1つのチューブ42へと連結されている。一方、容器1の端面1bでは、開口部2にチューブ43が接続され、該チューブ43は無菌コネクターC3によってポンピングチューブ44に接続され、該ポンピングチューブ44はローラーポンプ5に装着されかつ通過して、無菌コネクターC4によってチューブ45に接続され、該チューブ45は開口部3に接続されている。
 図4(c)の例では、先ず、空気が抜かれて収縮した状態の容器1に対して、外部容器7bに収容された第2の液体が容器1に注入される。容器1は、注入された第2の液体の分だけ膨らむ。次いで、ローラーポンプ5が作動し、第2の液体を循環させながら、外部容器7aに収容された第1の液体が容器1に注入され、その後の循環により混合が進行する。ローラーポンプ5は、液体が開口部2から開口部3へ向かうように、ポンピングチューブ44への圧縮ポイントを移動させる。これにより、容器1内の液体は、上方から下方に向かうように移動する。
 本発明に利用可能な蠕動ポンプは、チューブポンプ(ローラーポンプとも呼ばれる)に代表されるように、弾性および柔軟性を持ったポンピングチューブを押しつぶす位置を、送り方向に移動させることで、該管路内の液体を移動させる作用を持ったポンプである。
 図5は、蠕動ポンプの構成の一例を概略的に示した図である。同図の例では、ハウジング11に円弧状や半円状の外周壁面11aが設けられ、該外周壁面11aに沿ってポンピングチューブ4が湾曲して装着されている。該外周壁面11aは、ポンピングチューブ4を外周側で支持している。該ポンピングチューブ4の湾曲の内周側では、アーム12に支持されたローラー13が回転軸14を中心に、液体送り方向(矢印fの方向)に回転し、それにより、蠕動運動のごとくポンピングチューブ4が液体送り方向に順次圧縮され、ポンピングチューブ内の液体が送られる。蠕動ポンプにチューブを装着するとは、図5に例示するように、チューブ4が蠕動ポンプのポンピングチューブとして機能するように、チューブ4を蠕動ポンプの送り駆動部分(チューブを順次圧縮する部分)に挿通してセットすることを意味する。
 図5の例では、直線状のアーム12の両端に2つのローラー13が設けられているが、蠕動ポンプによっては、より多数のローラが設けられたものや、アームを持たない1つの大きなローラーが偏心した軸を中心に回転するものなどもある。蠕動ポンプは、図5のように経路が湾曲した構造のものであってもよいし、直線的に配列された多数のアクチュエーターがポンピングチューブを局所的に順次圧縮し、該ポンピングチューブに蠕動運動を加える構造のものであってもよい。蠕動ポンプの送り構造の詳細については、従来技術を参照することができる。
 蠕動ポンプの送り能力(チューブ内を移動する液体の毎分の流量)は、市販のものでは、微小流量から大流量まで幅広く、0.01(mL/分)~10(L/分)程度が例示される。本発明において利用される蠕動ポンプの送り能力は、容器の容積に応じて決定してよく、特に限定はされないが、容器の容積が20L~100L程度である場合には、蠕動ポンプの送り能力は、3~18(L/分)程度が好ましい範囲として例示される。
 第1、第2の液体を混合するためのそれら液体の循環の流量を増大させるためには、より大きい内径のポンピングチューブと、より大きい送り能力を持った蠕動ポンプを用いてもよいし、小さい送り能力を持ったチューブと蠕動ポンプのペアを必要なペア数だけ平行に用い、液体を平行に循環させてもよい。
 容器の容積に対して、蠕動ポンプによる液体の流量が過度に小さいと、混合に長時間を要し、また、混合が十分になされない状態が局所的に生じる場合がある。
 蠕動ポンプの作動時間(即ち、循環を継続させて混合する時間)は、蠕動ポンプの送り量に応じて、また、混合状態に基づいて、適宜決定すればよい。一例を挙げると、容器の容積が50L~150L程度であって、蠕動ポンプの送り能力が10(L/分)程度である場合には、2~4時間程度が好ましい作動時間として例示される。
 蠕動ポンプは本発明の製造装置の一部を構成するものであってもよいし、本発明の装置にとって、利用すべき外部装置であってもよい。
 蠕動ポンプによって、第1の液体と第2の液体とを循環させて混合するに際しては、第1の液体と第2の液体のうちのいずれか一方の液体を先に容器に入れておき、該一方の液体を蠕動ポンプで循環させながら、他方の液体を容器内に注入すれば、両者はその後の循環により、好ましく混合される。
 第1の液体が該脱アシル化ジェランガムを含有する水溶液であり、第2の液体が2価金属カチオンである連結物質を含有する液体(例えば、カルシウムイオンおよび/またはマグネシウムイオンを含有する液体培地)であるような場合には、一方の液体を蠕動ポンプで循環させながら、他方の液体を容器内に注入するという手順が好ましく、予め両液体を所定の割合にて容器内に注入した後で循環を開始する場合に比べて、脱アシル化ジェランガムが培養液の局所に偏重し難くなるという効果が得られる。とりわけ、第2の液体(前記液体培地)を先に容器に収容し、これを蠕動ポンプで循環させながら、第1の液体(該脱アシル化ジェランガムを含有する水溶液)を容器内に注入する場合には、脱アシル化ジェランガムがより好ましく分散する傾向が見られる。
 混合時の一例を挙げると、容器の容積が50L~150L程度であって、第1の液体と第2の液体の体積比率が1:1であり、蠕動ポンプの送り能力が10(L/分)程度である場合には、一方の液体を先に容器1に収容し、蠕動ポンプを作動させて液体を循環させながら、0.5時間~1.0時間程度の間に、他方の液体を全量容器1に注入し、その後さらに2.0時間~4.0時間程度、混合液の循環を継続することが好ましい。
 尚、一方の液体を蠕動ポンプで循環させながら、他方の液体を容器内に注入するという手順では、図3に当該製造装置の構成例を示すように、液体を循環させるための2つの開口部に加えて、後から容器内に液体を注入するための開口部6を別途設けることが好ましい。該開口部6は、出入口用であってもよい。
 蠕動ポンプは、手動によって作動と停止の制御を行ってもよいし、当該製造装置に制御装置を設け、該制御装置によって、予め定められた時間だけ蠕動ポンプが自動的に作動するように制御してもよい。
〔第1の液体〕
 第1の液体は、特定化合物として、2価金属カチオンを介して結びつくことにより細胞又は組織を浮遊させることができる構造体を形成することができる、アニオン性の官能基を有する高分子化合物を含有する。
 アニオン性の官能基としては、カルボキシ基、スルホ基、リン酸基及びそれらの塩が挙げられ、カルボキシ基またはその塩が好ましい。本発明に用いられる高分子化合物には、前記アニオン性の官能基の群より選択される1種又は2種以上が含まれていてもよい。
 本発明に用いられる高分子化合物の好ましい具体例としては、特に制限されるものではないが、単糖類(例えば、トリオース、テトロース、ペントース、ヘキソース、ヘプトース等)が10個以上重合した多糖類が挙げられ、より好ましくは、アニオン性の官能基を有する酸性多糖類が挙げられる。ここにいう酸性多糖類とは、その構造中にアニオン性の官能基を有すれば特に制限されないが、例えば、ウロン酸(例えば、グルクロン酸、イズロン酸、ガラクツロン酸、マンヌロン酸)を有する多糖類、構造中の一部に硫酸基又はリン酸基を有する多糖類、或いはその両方の構造を持つ多糖類であって、天然から得られる多糖類のみならず、微生物により産生された多糖類、遺伝子工学的に産生された多糖類、或いは酵素を用いて人工的に合成された多糖類も含まれる。より具体的には、ヒアルロン酸、ジェランガム、脱アシル化ジェランガム(以下、DAGという場合もある)、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、ザンタンガム、ヘキスロン酸、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルマタン硫酸、ラムナン硫酸及びそれらの塩からなる群より1種又は2種以上から構成される多糖類が例示される。多糖類は、好ましくは、ヒアルロン酸、DAG、ダイユータンガム、キサンタンガム、カラギーナン又はそれらの塩であり、より好ましくは、DAG又はその塩である。DAGはリン酸化したものを使用することもできる。当該リン酸化は公知の手法で行うことができる。
 ここでいう塩とは、例えば、リチウム、ナトリウム、カリウムといったアルカリ金属の塩、カルシウム、バリウム、マグネシウムといったアルカリ土類金属の塩又はアルミニウム、亜鉛、銅、鉄、アンモニウム、有機塩基及びアミノ酸等の塩が挙げられる。
 これらの高分子化合物(多糖類等)の重量平均分子量は、好ましくは10,000乃至50,000,000であり、より好ましくは100,000乃至20,000,000、更に好ましくは1,000,000乃至10,000,000である。例えば、当該分子量は、ゲル浸透クロマトグラフィー(GPC)によるプルラン換算で測定できる。
 本発明においては、上記アニオン性の官能基を有する多糖類を複数種(好ましくは2種)組み合わせて使用することができる。アニオン性の官能基を有する多糖類とアニオン性の官能基を有さない多糖類とを組み合わせてもよい。多糖類の組み合わせの種類は、2価金属カチオンを介して結びつくことにより上述の構造体を液体培地中に形成することができれば特に限定されないが、好ましくは、当該組合せは少なくともDAG又はその塩を含む。即ち、好適な多糖類の組合せには、DAG又はその塩、及びDAG又はその塩以外の多糖類(例、キサンタンガム、アルギン酸、カラギーナン、ダイユータンガム、メチルセルロース、ローカストビーンガム又はそれらの塩)が含まれる。具体的な多糖類の組み合わせとしては、DAGとラムザンガム、DAGとダイユータンガム、DAGとキサンタンガム、DAGとカラギーナン、DAGとザンタンガム、DAGとローカストビーンガム、DAGとκ-カラギーナン、DAGとアルギン酸ナトリウム、DAGとメチルセルロース等が挙げられるが、これらに限定されない。
 脱アシル化ジェランガムとは、1-3結合したグルコース、1-4結合したグルクロン酸、1-4結合したグルコース及び1-4結合したラムノースの4分子の糖を構成単位とする直鎖状の高分子多糖類であり、以下の一般式(I)において、R、Rが共に水素原子であり、nは2以上の整数で表わされる多糖類である。ただし、Rがグリセリル基を、Rがアセチル基を含んでいてもよいが、アセチル基及びグリセリル基の含有量は、好ましくは10%以下であり、より好ましくは1%以下である。
Figure JPOXMLDOC01-appb-C000001
 特定化合物は、化学合成法で得られたものであってもよいが、当該特定化合物が天然物である場合は、当該化合物を含有している各種植物、各種動物、各種微生物から慣用技術を用いて抽出及び分離精製することにより得られたものであってもよい。例えば、ジェランガムは、発酵培地で生産微生物を培養し、菌体外に生産された粘膜物を通常の精製方法にて回収し、乾燥、粉砕等の工程後、粉末状にすることにより製造することができる。また、脱アシル化ジェランガムの場合は、粘膜物を回収する際にアルカリ処理を施し、1-3結合したグルコース残基に結合したグリセリル基とアセチル基を脱アシル化した後に回収すればよい。ジェランガムの生産微生物の例としては、これに限定されるものではないが、スフィンゴモナス・エロディア(Sphingomonas elodea)及び当該微生物の遺伝子を改変した微生物が挙げられる。
 脱アシル化ジェランガムの場合、市販のもの、例えば、三晶株式会社製「KELCOGEL(シーピー・ケルコ社の登録商標)CG-LA」、三栄源エフ・エフ・アイ株式会社製「ケルコゲル(シーピー・ケルコ社の登録商標)」等を使用することができる。また、ネイティブ型ジェランガムとして、三栄源エフ・エフ・アイ株式会社製「ケルコゲル(シーピー・ケルコ社の登録商標)HT」等を使用することができる。
 第1の液体は、通常、特定化合物の溶液である。当該溶液のための溶媒は、特定化合物を溶解可能なものである限り、特に限定されないが、通常、水又は親水性溶媒であり、好ましくは水である。即ち、好ましい態様において第1の液体は、特定化合物の水溶液である。
 第1の液体中に含有される特定化合物の濃度は、第2の液体と混合した際に、混合液中で、特定化合物が2価金属カチオンを介して結びつくことにより細胞又は組織を浮遊させることができる構造体を形成し、且つ該構造体が混合液中に均一に分散し、更に、最終的に得られる液状の培地組成物が、当該構造体を含むことにより細胞又は組織を浮遊培養可能である限り、特に限定されない。下に詳述した、細胞又は組織を浮遊培養可能な培地組成物中の特定化合物の濃度と、最終産物で得られる培地組成物の体積に対する、第1の液体の体積の比率から、第1の液体中の特定化合物の濃度を算出することが可能である。例えば、体積Vの第1の液体と、体積Vの第2の液体とを混合して、体積V+Vの液状の培地組成物を最終的に得る場合、当該液状の培地組成物中の特定化合物の濃度をC%(w/v)とするためには、第1の液体中の特定化合物の濃度を、C×(V+V)/V%(w/v)とすればよい。
 第1の液体中の2価金属カチオン濃度は、第1の液体中の特定化合物が、構造体を形成する濃度を下回る必要がある。2価金属カチオンとしては、カルシウムイオン、マグネシウムイオン、亜鉛イオン、マンガンイオン、鉄イオン、銅イオン等が挙げられる。特に、カルシウムイオンおよびマグネシウムイオンのうちの一方または両方(以下、「カルシウムイオンおよび/またはマグネシウムイオン」とも表現する)が、DAG等の特定化合物の構造体形成に寄与する。
 第1の液体には、特定化合物、溶媒以外の因子が含まれていてもよい。該因子としては、生理的に許容可能な緩衝剤、塩、等張剤が挙げられるが、これらに限定されない。
 第1の液体の調製は、特定化合物を上記溶媒(例、水)に添加し、当該特定化合物が溶解可能な温度(例えば、60℃以上、80℃以上、90℃以上)にて攪拌し、透明な状態になるまで溶解することにより行うことができる。脱2価金属カチオン処理をしたDAGを用いると、加熱を要することなく水に溶解するので、溶解操作が容易である。必要であれば、得られた特定化合物の溶液を、脱2価金属カチオン処理に付し、溶液中の2価金属カチオン濃度が構造体形成濃度を下回るようにする。必要に応じて、溶媒中に予め特定化合物以外の因子を加えておいてもよいし、得られた特定化合物の溶液に特定化合物以外の因子を加えてもよい。第1の液体は滅菌処理されていることが好ましい。滅菌処理の方法としては、オートクレーブ、ろ過滅菌等を挙げることができるがこれらに限定されない。
〔第2の液体〕
 第2の液体は、連結物質として2価金属カチオンを含有する。2価金属カチオンとしては、カルシウムイオン、マグネシウムイオン、亜鉛イオン、マンガンイオン、鉄イオン、銅イオン等が挙げられる。2価金属カチオンの種類は、第1の液体中に含まれる特定化合物が、当該2価金属カチオンを介して結びつくことにより細胞又は組織を浮遊させることができる構造体を形成することが可能であれば特に限定されないが、好ましくはカルシウムイオンである。
 第2の液体は、通常、連結物質(即ち、2価金属カチオン)の溶液である。当該溶液のための溶媒は、特定化合物を溶解可能なものである限り、特に限定されないが、通常、水又は親水性溶媒であり、好ましくは水である。即ち、好ましい態様において第2の液体は、連結物質(即ち、2価金属カチオン)の水溶液である。
 第2の液体には、第1の液体と第2の液体とを混合し、最終的に得られる液状の培地組成物中の2価金属カチオン濃度が、第1の液体中の特定化合物が構造体を形成するのに十分となる量の2価金属カチオンが含まれる。
 第2の液体中の2価金属カチオン濃度は、最終的に得られる液状の培地組成物中の2価金属カチオン濃度と、第1の液体と第2の液体との混合比率から算出することができる。
 第2の液体には、連結物質(即ち、2価金属カチオン)、溶媒以外の因子が含まれていてもよい。該因子としては、意図した細胞を培養するのに適した培地構成成分が挙げられる。当該培地構成成分としては、緩衝剤(炭酸緩衝剤、リン酸緩衝剤、HEPES等)、無機塩(NaCl等)、各種アミノ酸、各種ビタミン(コリン、葉酸等)、糖類(グルコース等)、抗酸化剤(モノチオグリセロール等)、ピルビン酸、脂肪酸、血清、抗生物質、インシュリン、トランスフェリン、ラクトフェリン、コレステロール、各種サイトカイン、各種ホルモン、各種増殖因子、各種細胞外マトリックス等を挙げることができるが、これらに限定されない。第2の液体は滅菌処理されていることが好ましい。滅菌処理の方法としては、オートクレーブ、ろ過滅菌等を挙げることができるがこれらに限定されない。
 好ましい態様において、第2の液体は、構造体形成濃度の2価金属カチオン(好ましくは、カルシウムイオンおよび/またはマグネシウムイオン)を含有する液体培地の濃縮液である。第2の液体は、2価金属カチオン(好ましくは、カルシウムイオンおよび/またはマグネシウムイオン)及び水に加えて、意図した細胞を培養するのに適した培地構成成分を含有する。一般的に使用される細胞培養用液体培地中のカルシウムイオン濃度の範囲は0.1~2.0mM程度、マグネシウムイオン濃度は0.1~1.0mM程度であるので、DAG等の特定化合物による構造体形成に十分である。第2の液体における、2価金属カチオン(好ましくは、カルシウムイオンおよび/またはマグネシウムイオン)の濃度は、第1の液体との混合比を考慮し、最終的に得られる液状の培地組成物中の2価金属カチオン濃度が、構造体形成濃度となるように調整される。他の連結物質についても同様である。また、第2の液体における、意図した細胞を培養するのに適した培地構成成分の濃度は、第1の液体との混合比を考慮し、最終的に得られる液状の培地組成物中の培地構成成分の濃度が、意図した細胞を培養するのに適した濃度範囲内となるように調整される。例えば、体積Vの第1の液体と、体積Vの第2の液体とを混合して、体積V+Vの液状の培地組成物を最終的に得る場合、当該液状の培地組成物中の2価金属カチオンの濃度をCiとするためには、第2の液体中の2価金属カチオンの濃度を、Ci×(V+V)/Vとすればよい。他の連結物質についても同様である。同様に、体積Vの第1の液体と、体積Vの第2の液体とを混合して、体積V+Vの液状の培地組成物を最終的に得る場合、当該液状の培地組成物中の培地構成成分の濃度をCmとするためには、第2の液体中の培地構成成分の濃度を、Cm×(V+V)/Vとすればよい。
 本態様においては、本発明の製造方法により、第1の液体と第2の液体を混合することにより、第1の液体に含まれていた特定化合物が第2の液体に含まれていた連結物質を介して結びついてなる構造体を含む、目的とする液状の培地組成物を直ちに得ることができる。
 尤も、第2の液体には、上述の細胞培養用培地構成成分の一部又は全部が含まれていなくてもよい。その場合、本発明の製造方法において、第1の液体と第2の液体を混合し、第1の液体に含まれていた特定化合物が第2の液体に含まれていた連結物質を介して結びついてなる構造体を含む混合液を得て、当該混合液中に、上記細胞培養用液体培地構成成分の一部又は全部を加えることにより、目的とする液状の培地組成物を得ることができる。
 第1の液体と第2の液体の体積混合比率は、第1の液体の体積100に対して、第2の液体の体積が50~200、好ましくは100である。
 好適な態様において、本発明の製造方法により製造される液状の培地組成物中に含有される特定化合物の90モル%以上(好ましくは、95モル%以上、より好ましくは99%以上、最も好ましくは100%)は、第1の液体に由来し、該培地組成物中に含有される2価金属カチオンの90モル%以上(好ましくは、95モル%以上、より好ましくは99%以上、最も好ましくは100%)は、第2の液体に由来する。
〔液状の培地組成物〕
 本発明の製造方法により得ることができる液状の培地組成物は、第1の液体に含まれていた特定化合物が第2の液体に含まれていた連結物質(即ち、2価金属カチオン)を介して結びついてなる構造体を含有し、且つ該培地組成物中に該構造体が均一に分散されているので、当該培地組成物を用いると、浮遊状態を維持したまま、細胞や組織を培養することが可能である。
 培養の対象となる細胞や組織が由来する生物の種類は、特に限定されず、動物(昆虫、魚類、両生類、爬虫類、鳥類、汎甲殻類、六脚類、哺乳類等)のみならず、植物も含まれる。
 一態様において、培養の対象となる細胞は、足場依存性の細胞である。本発明の製造方法により得ることができる液状の培地組成物を用いると、足場依存性の細胞を、足場となる担体を用いることなく、浮遊状態を維持したまま、培養することが可能である。
 本発明において、細胞及び/又は組織の浮遊とは、培養容器に対して細胞及び/又は組織が底面に対し接触はし得るが付着しない状態(非接着)であることをいう。更に、本発明において、細胞及び/又は組織を増殖、分化或いは維持させる際、液体の培地組成物に対する外部からの圧力や振動或いは当該組成物中での振とう、回転操作等を伴わずに細胞及び/又は組織が当該液状の培地組成物中で均一に分散しなおかつ浮遊状態にある状態を「浮遊静置」といい、当該状態で細胞及び/又は組織を培養することを「浮遊静置培養」という。また、「浮遊静置」において浮遊させることのできる期間としては、5分以上、1時間以上、24時間以上、48時間以上、7日以上等が含まれるが、浮遊状態を保つ限りこれらの期間に限定されない。
 本発明の製造方法により得ることができる液状の培地組成物は、細胞や組織の維持や培養が可能な温度範囲(例えば、0~40℃)の少なくとも1点において、細胞及び/又は組織の浮遊静置が可能である。本発明により得ることができる液状の培地組成物は、好ましくは25~37℃の温度範囲の少なくとも1点において、最も好ましくは37℃において、細胞及び/又は組織の浮遊静置が可能である。
 浮遊静置が可能か否かは、例えば、培養対象の細胞を、2×10cells/mLの濃度で、評価対象の培地組成物中に均一に分散させ、15mLコニカルチューブ中に10mL注入し、少なくとも5分以上(例、1時間以上、24時間以上、48時間以上、7日以上)、4℃程度の低温下で静置し、当該細胞の浮遊状態が維持されるか否かを観察することにより、評価することができる。浮遊状態の評価は、例えば、全細胞のうちの70%以上が浮遊状態の場合、浮遊状態が維持されたと結論できる。細胞に代えて、ポリスチレンビーズ(Size 500-600μm、Polysciences Inc.製)に代替して評価してもよい。
 好ましい態様において、本発明の製造方法により得ることができる液状の培地組成物は、上記構造体を含むことによって、その粘度が実質的に高められていない。「液体の粘度を実質的に高めない」とは、液体の粘度が8mPa・sを上回らないことを意味する。この際の当該液体の粘度(すなわち、本発明の製造方法により得ることができる液状の培地組成物の粘度)は、37℃において、8mPa・s以下であり、好ましくは4mPa・s以下であり、より好ましくは2mPa・s以下である。構造体を含む液体の粘度は、37℃条件下でE型粘度計(東機産業株式会社製、TV-22型粘度計、機種:TVE-22L、コーンロータ:標準ロータ 1°34´×R24、回転数100rpm)を用いて測定することができる。
 本発明の製造方法により得ることができる液状の培地組成物中の特定化合物の濃度は、特定化合物の種類に依存し、特定化合物が上述の構造体を液状の培地組成物中に形成し、(好ましくは、当該液体培地の粘度を実質的に高めること無く)細胞及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる範囲で、適宜設定することができる。例えば、DAGの場合、0.001%乃至1.0%(w/v)、好ましくは0.003%乃至0.5%(w/v)、より好ましくは0.005%乃至0.3%(w/v)、更に好ましくは0.01%乃至0.05%(w/v)、最も好ましくは、0.01%乃至0.03%(w/v)である。キサンタンガムの場合、0.001%乃至5.0%(w/v)、好ましくは0.01%乃至1.0%(w/v)、より好ましくは0.05%乃至0.5%(w/v)、最も好ましくは、0.1%乃至0.2%(w/v)である。κ-カラギーナンおよびローカストビーンガム混合系の場合、両化合物の総和として、0.001%乃至5.0%(w/v)、好ましくは0.005%乃至1.0%(w/v)、より好ましくは0.01%乃至0.1%(w/v)、最も好ましくは、0.03%乃至0.05%(w/v)である。ネイティブ型ジェランガムの場合、0.05%乃至1.0%(w/v)、好ましくは、0.05%乃至0.1%(w/v)である。
 特定化合物として上記多糖類を複数種(好ましくは2種)組み合わせて使用する場合、当該多糖類の濃度は、当該多糖類の組み合わせが上述の構造体を液状の培地組成物中に形成し、(好ましくは、当該液体培地の粘度を実質的に高めること無く)細胞及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる範囲で、適宜設定することができる。例えば、DAG又はその塩と、DAG又はその塩以外の多糖類との組合せを用いる場合、DAG又はその塩の濃度としては0.005~0.02%(w/v)、好ましくは0.01~0.02%(w/v)が例示され、DAG又はその塩以外の多糖類の濃度としては、0.0001~0.4%(w/v)、好ましくは0.005~0.4%(w/v)、より好ましくは0.1~0.4%(w/v)が例示される。具体的な濃度範囲の組合せとしては、以下が例示される。
 DAG又はその塩:0.005~0.02%(好ましくは0.01~0.02%)(w/v)
 DAG以外の多糖類
キサンタンガム:0.1~0.4%(w/v)
アルギン酸ナトリウム:0.0001~0.4%(w/v)(好ましくは、0.1~0.4%(w/v))
ネイティブジェランガム:0.0001~0.4%(w/v)
ローカトビーンガム:0.1~0.4%(w/v)
メチルセルロース:0.1~0.4%(w/v)(好ましくは0.2~0.4%(w/v))
カラギーナン:0.05~0.1%(w/v)
ダイユータンガム:0.05~0.1%(w/v)
 なお該濃度は、以下の式で算出できる。
 濃度[%(w/v)]=特定化合物の重量(g)/培地組成物の体積(mL)×100
 好ましい態様において、特定化合物としてDAG又はその塩を用い、連結物質としてカルシウムイオンを用いる。第1の液体は、DAG又はその塩の水溶液である。第2の液体は、カルシウムイオンを含有する液体培地の濃縮液である。第1の液体と第2の液体の体積混合比は、上記したとおり、第1の液体の体積(V)100に対して、第2の液体の体積(V)が50~200、好ましくは100である。混合の結果として得られる液状の培地組成物中のDAG濃度は、好ましくは0.01%~0.05%(w/v)、最も好ましくは、0.01%~0.03%(w/v)である。混合の結果として得られる液状の培地組成物中のカルシウムイオン濃度は、DAGが構造体を形成する濃度であり、通常、0.1~2.0mM程度である。混合の結果として得られる液状の培地組成物中の培地構成成分の濃度は、意図した細胞(例、哺乳動物細胞)を培養するのに適した濃度範囲内である。
 第1の液体中のDAG濃度は、上述の混合の結果として得られる液状の培地組成物中のDAG濃度に、(V+V)/V(即ち、150/100~300/100、好ましくは、200/100)を乗じて得られる濃度である。
 第2の液体中のカルシウムイオン濃度は、上述の混合の結果として得られる液状の培地組成物中のカルシウムイオン濃度に、(V+V)/V(即ち、150/50~300/200、好ましくは、200/100)を乗じて得られる濃度である。
 第2の液体中の培地構成成分の濃度は、上述の混合の結果として得られる液状の培地組成物中の培地構成成分の濃度に、(V+V)/V(即ち、150/50~300/200、好ましくは、200/100)を乗じて得られる濃度である。
 該液状の培地組成物には、DAGがカルシウムイオンを介して結びついてなる構造体が均一に分散して含まれることにより、粘度が実質的に高められること無く、細胞及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことができる。
 本発明の製造方法により得られる液状の培地組成物を用いると、細胞や組織の障害や機能喪失を引き起こすリスクのある振とうや回転等の操作を伴わずに細胞及び/又は組織を浮遊状態にて培養することができる。更に、当該培地組成物を用いると、培養の際、容易に培地を交換することができる上に、培養した細胞及び/又は組織を容易に回収することもできる。当該培地組成物を用いると、従来プレート上で単層で、細胞容器に接着した状態での培養を要していた細胞を、浮遊状態にて培養することができるので、接着性の細胞をその機能を損なうことなく効率的に大量に調製することができる。
 第1の液体と第2の液体との混合液は、製造目的の培地組成物であってもよいが、該混合液に添加物をさらに加えることで製造目的の培地組成物となるものであってもよい。
 本発明の製造装置を用い、本発明の製造方法を実施することによって、第1、第2の液体を混合し、得られる培地組成物の混合状態(2液の混合によって形成される構造体の分散状態)を評価した。
〔製造装置の各部の仕様〕
 図4に示した容器(柔軟なバッグ)1と各チューブ41~45、および、蠕動ポンプとしてのローラーポンプ5を用いて、第1、第2の液体を混合し、液状の培地組成物を製造した。
 第1の液体は、脱アシル化ジェランガムを含有する水溶液(濃度:0.040%)であり、第2の液体は、カルシウムイオンを含有する液体培地(カルシウムイオン濃度:3.29mM)である。
 容器1は、ポリエチレン製の柔軟なフィルムを壁部の素材として用いた袋状物(バッグ)であり、容積は100Lである。
 ローラーポンプは、古江サイエンス(株)製のRP-KGIである。ローラーポンプに装着される循環用チューブの内径は13mmであり、外形は19mmである。ローラーポンプの送り量は、約10L/分である。ローラーポンプ5による液体の送り方向は、液体が開口部2から出てローラーポンプ5を経て開口部3へ向かうという方向である。
〔液状の培地組成物の製造〕
 空気が抜かれて収縮した状態の容器1に対して、外部容器7bに収容された第2の液体50Lを容器1に注入した。次いで、ローラーポンプ5を作動させ、第2の液体を循環させながら、外部容器7aに収容された第1の液体50Lを容器1に0.5時間をかけて注入した。また、第1の液体50Lの注入が完了した時点からさらに、循環を3時間継続させて混合を完了し、液状の培地組成物を得た。
〔混合状態の評価〕
 上記で得られた液状の培地組成物が、好ましく混合されたものであるかどうか、即ち、第1および第2の液体の混合によって形成された構造体(第1の液体に含まれていた特定化合物が、第2の液体に含まれていた2価金属カチオンを介して集合した構造体)が、液状の培地組成物中に好ましく分散して浮遊した状態となっているかどうかを、下記に示す性能評価試験方法(本発明のために新たに規定した試験方法)を実施し、評価した。
〔性能評価試験方法〕
 (1)構造体の形成時間を十分に確保する点から、試験は、培地組成物の混合を完了した時点から48時間後に開始する。
 (2)ポリスチレン製のビーズ(直径600μm、Polysciences社製)10mgを、容積15mLの滅菌済コニカルチューブに入れ、該コニカルチューブ内へさらに、評価すべき培地組成物を10mL注入し、転倒混和する。
 (3)転倒混和終了の直後において、コニカルチューブ内の培地組成物の液面までビーズが均一に分散していることを目視で確認する。
 (4)前記(3)の状態の試料を、コニカルチューブを立てた状態とし、培地成分の劣化防止の点から4℃の温度として、12時間以上静置した後、ビーズの分散状態(分散したままであるか、沈降する傾向があるか)を目視にて判定する。構造体が培地組成物中に好ましく分散して浮遊した状態となっていれば、図6(a)に模式的に示すように、該構造体の分散的な浮遊の影響を受けて、ビーズもまた培地組成物中に分散し浮遊したままとなる。一方、混合が好ましくなく、培地組成物中に構造体がより大きい集合体となって浮遊している場合には、培地組成物のうちの残りの構造体の無い部分も大きくなるので、図6(b)に模式的に示すように、構造体の浮遊の影響を受けずに沈降するビーズも多くなる。このように、培地組成物にビーズを混ぜれば、目視では確認し難い構造体の分散の様子を、該ビーズを通じて確認することができる。
 (5)ビーズの分散状態の判定基準
 合格:ビーズが培地組成物の液面まで均一に分散していること。本実施例では、15mLのコニカルチューブに10mLの培地組成物を注入した場合の判定の目安として、図6(a)に模式的に示すように、9mLのライン以上にビーズが分散しており、チューブの底にビーズの沈降による集まりが全くみられないこととした。
 不合格:ビーズが培地組成物の液面まで均一に分散していないこと。本実施例では、前記の合格基準とは逆に、15mLのコニカルチューブに10mLの培地組成物を注入した場合、図6(b)に模式的に示すように、9mLのライン以上にはビーズが無く、チューブの底(とりわけ、1.5mLラインよりも下部)にビーズの沈降による集まりが見られることとした。
〔評価結果〕
 上記で得られた培地組成物に対して、上記性能評価試験方法を実施した結果、ビーズの分散状態は合格であり、本発明の製造方法および製造装置が、第1および第2の液体を好ましく混合し得る優れた方法および装置であることがわかった。
 本発明の製造方法および製造装置によって、2価金属カチオンなどの連結物質を含んだ任意の液体に対して、特定化合物を含んだ液体を無菌的にかつ簡単にかつ好ましく混合し得、微細な構造体が分散した液状の培地組成物を安価にかつ大量に得ることができるようになった。
 本出願は、日本で出願された特願2016-144929(出願日:2016年7月22日)を基礎としており、その内容は本明細書に全て包含される。
  1    容器
  2、3  開口部
  4    チューブ
  5    蠕動ポンプ

Claims (15)

  1.  下記(i)の特定化合物を含有する第1の液体と、下記(ii)の連結物質を含有する第2の液体とを混合して、液状の培地組成物を製造する方法であって、
     少なくとも2つの開口部が壁部に設けられた容器を用い、ここで、前記少なくとも2つの開口部は、容器外のチューブによって互いに連結され、該チューブは、蠕動ポンプにポンピングチューブとして装着され得る形状と柔軟性とを持った部分を有するものであり、
     前記チューブを前記蠕動ポンプに装着し、該蠕動ポンプを作動させて、前記第1の液体と第2の液体を、前記チューブと前記容器との間を循環させて混合し、前記特定化合物が前記連結物質を介して結びついてなる構造体が分散した液状の培地組成物を容器内に形成することを特徴とする、
    前記液状の培地組成物の製造方法。
      (i)2価金属カチオンを介して結びつくことにより細胞又は組織を浮遊させることができる構造体を形成することができる、アニオン性の官能基を有する高分子化合物である特定化合物。
      (ii)2価金属カチオンである連結物質。
  2.  前記(i)の特定化合物が脱アシル化ジェランガムであり、第1の液体が該脱アシル化ジェランガムを含有する水溶液であり、
     前記(ii)の連結物質が、カルシウムイオンおよびマグネシウムイオンのうちの一方または両方であり、第2の液体が、カルシウムイオンおよびマグネシウムイオンのうちの一方または両方を含有する液体培地の濃縮液である、
    請求項1記載の液状の培地組成物の製造方法。
  3.  前記液状の培地組成物中の脱アシル化ジェランガムの濃度が、0.001%(w/v)~1.0%(w/v)である、請求項2に記載の培地組成物の製造方法。
  4.  第1の液体と第2の液体との体積混合比率が、第1の液体の体積100に対して、第2の液体の体積50~200である、請求項1~3のいずれか1項に記載の液状の培地組成物の製造方法。
  5.  前記一方の開口部が、前記容器の底面を構成する壁部に、または、側面を構成する壁部の底部に出口として設けられ、
     前記他方の開口部が、前記容器の上面を構成する壁部に、または、側面を構成する壁部の上部に入口として設けられており、
     前記蠕動ポンプを作動させて、第1の液体と第2の液体を、それら液体がチューブ内を前記出口から前記入口に向かう方向に移動させ、それにより、容器内の第1の液体と第2の液体を、上方から下方へ向かう方向に移動させる、
    請求項1~4のいずれか1項に記載の製造方法。
  6.  前記2つの開口部が出口と入口として1対になっており、前記容器には前記2つの開口部が複数対設けられ、各対における2つの開口部がそれぞれにチューブで接続されており、
     前記第2の工程において、それぞれのチューブを別個の蠕動ポンプに装着し、該蠕動ポンプを作動させて、前記第1の液体と第2の液体とを、各チューブを通して循環させる、請求項1~5のいずれか1項に記載の製造方法。
  7.  前記容器が、該容器の内部に収容される液体の体積に応じて該容器の容積が変動し得るように柔軟な材料からなるものであり、それによって、該容器内の密閉性を確保しながらも該容器内に液体を注入しかつ該容器外に液体を排出することが可能となっている、請求項1~6のいずれか1項に記載の製造方法。
  8.  前記容器には、該容器内への液体の出し入れに用いる出入口用の開口部が設けられており、
     前記容器に第1の液体および第2の液体のうちのいずれか一方の液体を先に入れておき、該液体を前記蠕動ポンプで循環させながら、他方の液体を前記出入口用の開口部から容器内に注入する、
    請求項1~7のいずれか1項に記載の液状の培地組成物の製造方法。
  9.  請求項1記載の液状の培地組成物の製造方法を実施するために用いられる製造装置であって、
     当該製造装置は、前記製造方法において混合される第1の液体と第2の液体を収容するための容器を有し、
     該容器の壁部には少なくとも2つの開口部が設けられ、これらの開口部は、容器外のチューブによって互いに連結されており、
     前記チューブは、該チューブ内の液体を送るように構成された蠕動ポンプにポンピングチューブとして装着し得かつ該蠕動ポンプにおいてポンピングチューブとして作動し得る形状と柔軟性とを持った部分を有するものである、
    前記製造装置。
  10.  前記一方の開口部が、前記容器の底面を構成する壁部に、または、側面を構成する壁部の底部に設けられ、
     前記他方の開口部が、前記容器の上面を構成する壁部に、または、側面を構成する壁部の上部に設けられている、
    請求項9記載の製造装置。
  11.  前記2つの開口部が出口と入口として1対になっており、前記容器には前記2つの開口部が複数対設けられ、各対における2つの開口部がそれぞれにチューブで接続されている、請求項9または10記載の製造装置。
  12.  さらに、前記蠕動ポンプを当該製造装置の構成要素として有し、該蠕動ポンプは、前記チューブを装着し該チューブをポンピングチューブとして作動させるものである、請求項9~11のいずれか1項に記載の製造装置。
  13.  前記一方の開口部が、前記容器の底面を構成する壁部に、または、側面を構成する壁部の底部に設けられ、
     前記他方の開口部が、前記容器の上面を構成する壁部に、または、側面を構成する壁部の上部に設けられており、
     前記チューブ内の液体が下側の開口部から上側の開口部へと移動するように、前記蠕動ポンプが作動するように構成され、それにより、容器内に収容された液体が、上方から下方へと移動するようになっている、
    請求項12記載の製造装置。
  14.  前記容器が、該容器の内部に収容される液体の体積に応じて該容器の容積が変動し得るように柔軟な材料からなるものであり、それにより、該容器内の密閉性を確保しながらも該容器内に液体を注入しかつ該容器外に液体を排出することが可能となっている、請求項9~13のいずれか1項に記載の製造装置。
  15.  前記容器には、該容器内への液体の出し入れに用いる出入口用の開口部がさらに設けられている、請求項9~14のいずれか1項に記載の製造装置。
PCT/JP2017/026453 2016-07-22 2017-07-21 液状の培地組成物の製造方法およびそれに用いられる製造装置 WO2018016621A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018528892A JP7028776B2 (ja) 2016-07-22 2017-07-21 液状の培地組成物の製造方法およびそれに用いられる製造装置
CN201780044015.XA CN109477054A (zh) 2016-07-22 2017-07-21 液态培养基组合物的制造方法及用于该制造方法的制造装置
US16/319,809 US20190264158A1 (en) 2016-07-22 2017-07-21 Method for producing liquid medium composition and production device used therefor
KR1020197005226A KR102447714B1 (ko) 2016-07-22 2017-07-21 액상의 배지 조성물의 제조 방법 및 그것에 이용되는 제조 장치
EP17831137.9A EP3489341A4 (en) 2016-07-22 2017-07-21 METHOD FOR PRODUCING A LIQUID MEDIA COMPOSITION AND PRODUCTION APPARATUS USED FOR IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016144929 2016-07-22
JP2016-144929 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016621A1 true WO2018016621A1 (ja) 2018-01-25

Family

ID=60992652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026453 WO2018016621A1 (ja) 2016-07-22 2017-07-21 液状の培地組成物の製造方法およびそれに用いられる製造装置

Country Status (7)

Country Link
US (1) US20190264158A1 (ja)
EP (1) EP3489341A4 (ja)
JP (1) JP7028776B2 (ja)
KR (1) KR102447714B1 (ja)
CN (1) CN109477054A (ja)
TW (1) TWI750204B (ja)
WO (1) WO2018016621A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020040135A1 (ja) * 2018-08-20 2021-08-10 剛士 田邊 細胞の培養又は誘導方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484445A (zh) * 2019-08-30 2019-11-22 英诺维尔智能科技(苏州)有限公司 一种适用于规模化生物制品生产的流体循环装置
WO2021166227A1 (ja) * 2020-02-21 2021-08-26 アイ ピース, インコーポレイテッド 溶液搬送装置
CN113813844B (zh) * 2021-10-21 2024-02-27 脾牛(武汉)国际生命科技有限公司 一种牛脾肽制剂生产用原料提取预处理装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500004A (ja) * 1997-12-31 2002-01-08 アドバンスド ティシュー サイエンシズ,インコーポレーテッド 3次元組織構築物の接種および培養時にinvivo条件をシミュレートするための装置および方法
JP2007215999A (ja) * 2006-01-12 2007-08-30 Millipore Corp 液体分与システム用の混合を促進させるリザーバ
JP2008519598A (ja) * 2004-11-11 2008-06-12 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 細胞培養デバイス
JP2008536525A (ja) * 2005-04-22 2008-09-11 ハイクローン ラボラトリーズ インコーポレイテッド チューブポートおよび関連した容器システム
WO2014017513A1 (ja) * 2012-07-24 2014-01-30 日産化学工業株式会社 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
WO2015111685A1 (ja) * 2014-01-23 2015-07-30 日産化学工業株式会社 培地組成物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334496A (en) * 1992-09-17 1994-08-02 Eastman Kodak Company Process and apparatus for reproducible production of non-uniform product distributions
CA2256621C (en) * 1996-06-11 2004-12-28 Merck & Co., Inc. Disposable storage, transport and resuspension system
US20100122992A1 (en) * 2008-11-14 2010-05-20 Veltek Associates, Inc. Apparatus and method for mixing and dispensing
DE102010031860B4 (de) * 2010-07-21 2016-03-03 Almatec Maschinenbau Gmbh Mischer
US9664671B2 (en) * 2012-07-24 2017-05-30 Nissan Chemical Industries, Ltd. Culture medium composition and method of culturing cell or tissue using thereof
US10370696B2 (en) * 2014-09-09 2019-08-06 Nissan Chemical Industries, Ltd. Method for cell recovery
CN104312903A (zh) * 2014-10-29 2015-01-28 贵阳医学院 一种用于肝组织体外循环灌流消化的实验仪器
CN205236005U (zh) * 2015-05-18 2016-05-18 北京慧荣和科技有限公司 培养皿分拣堆叠装置、运输系统和全自动艾姆斯实验仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500004A (ja) * 1997-12-31 2002-01-08 アドバンスド ティシュー サイエンシズ,インコーポレーテッド 3次元組織構築物の接種および培養時にinvivo条件をシミュレートするための装置および方法
JP2008519598A (ja) * 2004-11-11 2008-06-12 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 細胞培養デバイス
JP2008536525A (ja) * 2005-04-22 2008-09-11 ハイクローン ラボラトリーズ インコーポレイテッド チューブポートおよび関連した容器システム
JP2007215999A (ja) * 2006-01-12 2007-08-30 Millipore Corp 液体分与システム用の混合を促進させるリザーバ
WO2014017513A1 (ja) * 2012-07-24 2014-01-30 日産化学工業株式会社 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
WO2015111685A1 (ja) * 2014-01-23 2015-07-30 日産化学工業株式会社 培地組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489341A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020040135A1 (ja) * 2018-08-20 2021-08-10 剛士 田邊 細胞の培養又は誘導方法

Also Published As

Publication number Publication date
EP3489341A1 (en) 2019-05-29
US20190264158A1 (en) 2019-08-29
KR20190027928A (ko) 2019-03-15
CN109477054A (zh) 2019-03-15
JP7028776B2 (ja) 2022-03-02
JPWO2018016621A1 (ja) 2019-05-16
TWI750204B (zh) 2021-12-21
KR102447714B1 (ko) 2022-09-26
EP3489341A4 (en) 2020-03-25
TW201809259A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
WO2018016621A1 (ja) 液状の培地組成物の製造方法およびそれに用いられる製造装置
Andersen et al. 3D cell culture in alginate hydrogels
US6630154B1 (en) Polymer formulations containing perfluorinated compounds for the engineering of cells and tissues for transplantation that improves cell metabolism and survival, and methods for making same
US20220267480A1 (en) Method for preparing liquid medium composition, and preparation device and kit therefor
JP2022130591A (ja) 液状の培地組成物の製造方法および製造装置
WO2016125884A1 (ja) 担癌哺乳動物モデルの作成方法
JP7010233B2 (ja) 高品質な3次元培養用培地組成物の製造方法、及び3次元培養用培地組成物の保存安定性の評価方法
JP6981425B2 (ja) 粘性の高い無菌の3次元培養用培地組成物の製造方法
CN104017374B (zh) 一种丝蛋白纳米微纤可注射水凝胶及其制备方法
JPWO2018203548A1 (ja) 水溶性が改善されたアニオン性高分子化合物の調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528892

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197005226

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017831137

Country of ref document: EP

Effective date: 20190222