WO2018016418A1 - 半導体製造装置用部品 - Google Patents

半導体製造装置用部品 Download PDF

Info

Publication number
WO2018016418A1
WO2018016418A1 PCT/JP2017/025609 JP2017025609W WO2018016418A1 WO 2018016418 A1 WO2018016418 A1 WO 2018016418A1 JP 2017025609 W JP2017025609 W JP 2017025609W WO 2018016418 A1 WO2018016418 A1 WO 2018016418A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
ceramic member
susceptor
bonding layer
bonding
Prior art date
Application number
PCT/JP2017/025609
Other languages
English (en)
French (fr)
Inventor
耕平 三矢
丹下 秀夫
元樹 堀田
貴道 小川
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to CN201780044335.5A priority Critical patent/CN109476553B/zh
Priority to KR1020197001578A priority patent/KR102209158B1/ko
Priority to JP2018502269A priority patent/JP6462949B2/ja
Priority to US16/316,367 priority patent/US20190304813A1/en
Publication of WO2018016418A1 publication Critical patent/WO2018016418A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/066Oxidic interlayers based on rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L2021/60007Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process
    • H01L2021/60022Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process using bump connectors, e.g. for flip chip mounting
    • H01L2021/60097Applying energy, e.g. for the soldering or alloying process
    • H01L2021/6015Applying energy, e.g. for the soldering or alloying process using conduction, e.g. chuck heater, thermocompression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/75981Apparatus chuck
    • H01L2224/75985Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10323Aluminium nitride [AlN]

Definitions

  • the technology disclosed in this specification relates to a component for a semiconductor manufacturing apparatus.
  • a susceptor (heating device) is used as a component for semiconductor manufacturing equipment.
  • the susceptor includes, for example, a plate-shaped ceramic holding member having a heater therein, a cylindrical ceramic supporting member disposed on one surface side of the holding member, and the holding member and the supporting member. And a bonding layer that bonds the one surface of the holding member and the one surface of the support member that are disposed and face each other.
  • a wafer is disposed on the holding surface opposite to the one surface of the holding member. The susceptor heats the wafer disposed on the holding surface using heat generated by applying a voltage to the heater.
  • the holding member and the supporting member are formed of a material mainly composed of AlN (aluminum nitride) having a relatively high thermal conductivity, and the bonding layer includes a rare earth element and oxygen.
  • a material formed of a material containing a rare earth single oxide having only the above-mentioned is known (for example, see Patent Document 1).
  • rare earth hydroxide When the rare earth single oxide reacts with moisture, rare earth hydroxide is produced. This rare earth hydroxide becomes easier to produce as the temperature increases.
  • the susceptor may be washed with chemicals or water before use and dried at a high temperature. Then, in the susceptor using the bonding layer containing the rare earth single oxide described above, the rare earth single oxide contained in the bonding layer reacts with moisture to generate a rare earth hydroxide, and the rare earth hydroxide is The powder may dry and become powder and may adhere to the wafer as foreign matter. In addition, the bonding strength between the holding member and the support member may be reduced due to the hollow portion of the bonding layer from which the rare earth hydroxide is removed.
  • Such a problem is not limited to the joining of the holding member and the support member constituting the susceptor, but is a common problem for joining ceramic members constituting a holding device such as an electrostatic chuck, for example.
  • Such a problem is not limited to the holding device, and is a problem common to bonding of ceramic members constituting components for a semiconductor manufacturing apparatus such as a shower head, for example.
  • a component for a semiconductor manufacturing apparatus disclosed in this specification includes a first ceramic member formed of a material containing AlN as a main component and a second ceramic member formed of a material containing AlN as a main component.
  • a semiconductor manufacturing apparatus comprising: a member; and a bonding layer that is disposed between the first ceramic member and the second ceramic member and bonds the first ceramic member and the second ceramic member.
  • the bonding layer includes a perovskite oxide represented by a chemical formula ABO 3 (where A is a rare earth element and B is Al), and includes only a rare earth element and oxygen. Contains no oxides.
  • the bonding layer includes a perovskite oxide represented by the chemical formula ABO 3 (where A is a rare earth element and B is Al (aluminum)), and includes a rare earth element. And rare earth single oxides containing only oxygen and oxygen. Since this perovskite oxide is a stable substance that hardly reacts with moisture as compared with a rare earth single oxide, scattering of the rare earth hydroxide and the bonding strength between the first ceramic member and the second ceramic member. Can be suppressed.
  • ABO 3 where A is a rare earth element and B is Al (aluminum)
  • a semiconductor manufacturing apparatus component disclosed in the present specification includes a first ceramic member formed of a material containing AlN as a main component and a second ceramic member formed of a material containing AlN as a main component.
  • Semiconductor manufacturing comprising: a member; and a plurality of joint portions that are disposed between the first ceramic member and the second ceramic member and join the first ceramic member and the second ceramic member.
  • the joint includes a perovskite oxide represented by a chemical formula ABO 3 (where A is a rare earth element and B is Al), and includes only a rare earth element and oxygen. Contains no single oxide.
  • the joint includes a perovskite oxide represented by the chemical formula ABO 3 (where A is a rare earth element and B is Al (aluminum)). And rare earth single oxides containing only oxygen and oxygen. Since this perovskite oxide is a stable substance that hardly reacts with moisture as compared with a rare earth single oxide, scattering of the rare earth hydroxide and the bonding strength between the first ceramic member and the second ceramic member. Can be suppressed.
  • ABO 3 where A is a rare earth element and B is Al (aluminum)
  • the rare earth element included in the perovskite oxide may include at least one of Gd, Nd, Tb, Eu, and Y.
  • the use of a bonding layer or a bonding portion containing a perovskite oxide having at least one of Gd, Nd, Tb, Eu, and Y makes it possible to scatter the rare earth hydroxide. A decrease in bonding strength between the ceramic member and the second ceramic member can be suppressed.
  • a holding device such as an electrostatic chuck or a vacuum chuck, a heating device such as a susceptor, or a semiconductor manufacturing device such as a shower head. It can be realized in the form of a component.
  • FIG. 1 is a perspective view schematically showing an external configuration of a susceptor 100 in the present embodiment
  • FIG. 2 is an explanatory diagram schematically showing an XZ cross-sectional configuration of the susceptor 100 in the present embodiment.
  • XYZ axes orthogonal to each other for specifying the direction are shown.
  • the positive direction of the Z-axis is referred to as the upward direction
  • the negative direction of the Z-axis is referred to as the downward direction.
  • the susceptor 100 is actually installed in a different direction. Also good.
  • the susceptor 100 corresponds to a semiconductor manufacturing apparatus component in the claims.
  • the susceptor 100 is an apparatus that holds an object (for example, a wafer W) and heats it to a predetermined processing temperature.
  • a thin film forming apparatus for example, a CVD apparatus or a sputtering apparatus
  • an etching apparatus that is used in a semiconductor device manufacturing process.
  • a plasma etching apparatus for example, a plasma etching apparatus.
  • the susceptor 100 includes a holding member 10 and a support member 20 that are arranged in a predetermined arrangement direction (in the present embodiment, the vertical direction (Z-axis direction)).
  • the holding member 10 and the supporting member 20 are configured such that the lower surface of the holding member 10 (hereinafter referred to as “holding side bonding surface S2”) and the upper surface of the supporting member 20 (hereinafter referred to as “supporting side bonding surface S3”) It arrange
  • the susceptor 100 further includes a bonding layer 30 disposed between the holding-side bonding surface S2 of the holding member 10 and the support-side bonding surface S3 of the support member 20.
  • the holding member 10 corresponds to the first ceramic member in the claims
  • the support member 20 corresponds to the second ceramic member in the claims.
  • the holding member 10 is, for example, a circular flat plate-like member, and is formed of ceramics whose main component is AlN (aluminum nitride).
  • the main component here means a component having the largest content ratio (weight ratio).
  • the diameter of the holding member 10 is, for example, about 100 mm to 500 mm, and the thickness of the holding member 10 is, for example, about 3 mm to 15 mm.
  • a heater 50 composed of a linear resistance heating element formed of a conductive material (for example, tungsten or molybdenum).
  • a pair of end portions of the heater 50 are disposed in the vicinity of the center portion of the holding member 10.
  • a pair of vias 52 are provided inside the holding member 10.
  • Each via 52 is a linear conductor extending in the vertical direction, and the upper end of each via 52 is connected to each end of the heater 50, and the lower end of each via 52 is connected to the holding side of the holding member 10. It arrange
  • a pair of power receiving electrodes 54 is disposed in the vicinity of the central portion of the holding-side joining surface S2 of the holding member 10. Each power receiving electrode 54 is connected to the lower end of each via 52. Thereby, the heater 50 and each receiving electrode 54 are electrically connected.
  • the support member 20 is, for example, a cylindrical member extending in the vertical direction, and has a through hole 22 penetrating in the vertical direction from the support side joining surface S3 (upper surface) to the lower surface S4. Similar to the holding member 10, the support member 20 is formed of ceramics mainly composed of AlN.
  • the outer diameter of the support member 20 is, for example, about 30 mm to 90 mm, the inner diameter is, for example, about 10 mm to 60 mm, and the length in the vertical direction is, for example, about 100 mm to 300 mm.
  • a pair of electrode terminals 56 are accommodated in the through hole 22 of the support member 20. Each electrode terminal 56 is a rod-shaped conductor extending in the vertical direction.
  • the upper ends of the electrode terminals 56 are joined to the power receiving electrodes 54 by brazing.
  • the heater 50 When a voltage is applied to the pair of electrode terminals 56 from a power source (not shown), the heater 50 generates heat to warm the holding member 10, and the upper surface of the holding member 10 (hereinafter referred to as “holding surface S ⁇ b> 1”).
  • the held wafer W is heated.
  • the heater 50 is arrange
  • two metal wires 60 (only one is shown in FIG. 2) of the thermocouple are accommodated.
  • Each metal wire 60 is disposed so as to extend in the vertical direction, and an upper end portion 62 of each metal wire 60 is embedded in the central portion of the holding member 10. Thereby, the temperature in the holding member 10 is measured, and the temperature control of the wafer W is realized based on the measurement result.
  • the joining layer 30 is an annular sheet layer, and joins the holding side joining surface S2 of the holding member 10 and the supporting side joining surface S3 of the support member 20.
  • the bonding layer 30 is made of a material that contains GdAlO 3 and Al 2 O 3 (alumina) and does not contain a rare earth single oxide having only rare earth elements and oxygen.
  • the outer diameter of the bonding layer 30 is, for example, about 30 mm to 90 mm, the inner diameter is, for example, about 10 mm to 60 mm, and the thickness is, for example, about 50 ⁇ m to 70 ⁇ m.
  • “not including a rare earth single oxide” means that the content of the rare earth single oxide in the bonding layer 30 is less than 2 wt%.
  • A-2. Manufacturing method of susceptor 100 Next, a method for manufacturing the susceptor 100 in the present embodiment will be described. First, the holding member 10 and the support member 20 are prepared. As described above, both the holding member 10 and the support member 20 are made of ceramics whose main component is AlN. In addition, since the holding member 10 and the support member 20 can be manufactured by a well-known manufacturing method, description of a manufacturing method is abbreviate
  • the holding-side joining surface S2 of the holding member 10 and the support-side joining surface S3 of the supporting member 20 are lapped so that the surface roughness of each joining surface S2, S3 is 1 ⁇ m or less and the flatness is 10 ⁇ m or less.
  • a bonding agent is applied to at least one of the holding-side bonding surface S2 of the holding member 10 and the support-side bonding surface S3 of the support member 20.
  • GdAlO 3 powder and Al 2 O 3 powder are mixed at a predetermined ratio, and further mixed with an acrylic binder and butyl carbitol to form a paste-like bonding agent.
  • the composition ratio of the forming material of the paste-like bonding agent is, for example, 48 mol% for GdAlO 3 and 52 mol% for Al 2 O 3 .
  • the laminated body of the holding member 10 and the support member 20 is placed in a hot press furnace and heated while being pressurized in nitrogen. Thereby, the paste-like bonding agent is melted to form the bonding layer 30, and the holding member 10 and the support member 20 are bonded by the bonding layer 30.
  • the pressure in this heating / pressure bonding is preferably set within a range of 0.1 MPa to 15 MPa. When the pressure in the heating and pressure bonding is set to 0.1 MPa or more, a gap that is not bonded is generated between the bonded members even when the surface of the bonded member (the holding member 10 or the support member 20) is wavy.
  • the temperature in this heating / pressure bonding is increased to 1750 ° C.
  • the state at 1750 ° C. is maintained for about 10 minutes, and then the temperature in the hot press furnace is lowered to room temperature.
  • post-treatment polishshing of outer periphery and upper and lower surfaces, formation of terminals, etc.
  • the susceptor 100 of the embodiment is manufactured by the manufacturing method described above.
  • the susceptor of the comparative example includes a holding member, a support member, and a bonding layer.
  • the susceptor 100 of the example and the susceptor of the comparative example are common in the following points.
  • the susceptor 100 of the embodiment differs from the susceptor of the comparative example in the following points.
  • the material of the bonding layer 30 of the susceptor 100 of the example: GdAlO 3 and Al 2 O 3 are included, and a rare earth single oxide having only rare earth elements and oxygen is not included.
  • the manufacturing method of the susceptor of the comparative example is different from the above-described manufacturing method of the susceptor 100 of the embodiment in that Gd 2 O 3 powder is mixed with acrylic binder and butyl carbitol instead of GdAlO 3 powder and Al 2 O 3 powder. By doing so, the point of forming a paste-like bonding agent is different, but the other points are basically the same.
  • the first He leak test was performed immediately after the manufacture of the susceptor 100 of the example.
  • the susceptor 100 of the example is subjected to ultrasonic cleaning in a solvent, and then subjected to ultrasonic cleaning in pure water.
  • the cleaned susceptor 100 is placed in a dryer at 120 ° C. Dry for 4 hours.
  • the 2nd He leak test was done about the susceptor 100 of the Example after drying.
  • the bonding layer 30 of the susceptor 100 of the example was cut, and the state of the cut surface was visually observed.
  • the cut surface of the bonding layer 30 of the susceptor 100 of the example was observed by SEM.
  • elemental analysis was performed on the cut surface of the bonding layer 30 of the susceptor 100 of the example by EDS, and the configuration of the bonding layer 30 was identified by XRD measurement.
  • FIG. 3 is an explanatory view showing the result of XRD measurement of the susceptor 100 of the example
  • FIG. 4 is an explanatory view showing the result of XRD measurement of the susceptor of the comparative example.
  • the bonding layer 30 contains GdAlO 3 and Al 2 O 3 and does not contain a rare earth single oxide before and after the water resistance test.
  • the configuration composition ratio, etc.
  • the bonding layer contained only Gd 2 O 3 before the water resistance test, but after the water resistance test, the bonding layer was Gd (OH ) Only 3 were included. That is, in the susceptor of the comparative example, the material for forming the bonding layer is changed from Gd 2 O 3 to Gd (OH) 3 before and after the water resistance test.
  • the bonding layer of the susceptor of the comparative example contains Gd 2 O 3 that is a rare earth single oxide, Gd 2 O 3 reacts with moisture by being washed, so that Gd 2 O 3 is a rare earth hydroxide. (OH) 3 is produced. After that, when the bonding layer is dried at a high temperature, Gd (OH) 3 is scattered as powder, and a portion of the bonding layer from which Gd (OH) 3 is removed becomes a cavity, thereby bonding the bonding layer. Strength decreases. For this reason, after the water resistance test, a He leak is detected in the He leak test, and adhesion of powder to the cut surface of the bonding layer 30 is observed in the appearance inspection and the SEM inspection. In the EDS and XRD measurements, the bonding layer is observed. It is considered that the forming material of Gd (OH) 3 was changed.
  • the bonding layer 30 of the susceptor 100 of the embodiment contains GdAlO 3 and Al 2 O 3 and does not contain a rare earth single oxide.
  • GdAlO 3 is a perovskite oxide, and the perovskite oxide is a stable substance that hardly reacts with moisture as compared with a rare earth single oxide. For this reason, according to the bonding layer 30 of the susceptor 100 of the embodiment, scattering of the rare earth hydroxide and a decrease in the bonding strength of the bonding layer can be suppressed.
  • the holding member 10 and the support member 20 may be bonded by a plurality of bonding portions instead of the bonding layer 30. Specifically, a plurality of joint portions arranged on one virtual plane orthogonal to the facing direction of the holding member 10 and the support member 20 are discretely formed between the holding member 10 and the support member 20. In addition, the holding member 10 and the support member 20 may be partially connected via AlN particles, which are forming materials of the holding member 10 and the support member 20.
  • a second bonding layer composition different from the bonding layer 30 (bonding portion) ( A second joint portion) may be interposed. That is, the holding member 10 and the support member 20 may be bonded through a plurality of bonding layers or bonding portions having different compositions.
  • the ceramics forming the holding member 10 and the support member 20 in the embodiment and the modification may contain other elements as long as they contain AlN (aluminum nitride) as a main component.
  • the material for forming the bonding layer 30 is a perovskite oxide other than GdAlO 3 (chemical formula ABO 3 (where A is a rare earth element and B is Al). May be included).
  • This rare earth element preferably contains at least one of Gd, Nd, Tb, Eu, and Y.
  • generation of rare earth hydroxide can be suppressed by mixing and baking an alumina with a perovskite type oxide.
  • the manufacturing method of the susceptor 100 in the above embodiment is merely an example, and various modifications are possible.
  • the present invention is not limited to the susceptor 100, and includes other heating devices such as polyimide heaters, a ceramic plate and a base plate, and a holding device (for example, an electrostatic chuck or a vacuum chuck) that holds an object on the surface of the ceramic plate. ), And other semiconductor manufacturing apparatus parts such as a shower head.
  • other heating devices such as polyimide heaters, a ceramic plate and a base plate, and a holding device (for example, an electrostatic chuck or a vacuum chuck) that holds an object on the surface of the ceramic plate. ), And other semiconductor manufacturing apparatus parts such as a shower head.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)

Abstract

希土類水酸化物の飛散や第1のセラミックス部材と第2のセラミックス部材との接合強度の低下を抑制する。 半導体製造装置用部品は、AlNを主成分とする材料により形成された第1のセラミックス部材と、AlNを主成分とする材料により形成された第2のセラミックス部材と、前記第1のセラミックス部材と前記第2のセラミックス部材との間に配置され、前記第1のセラミックス部材と前記第2のセラミックス部材とを接合する接合層と、を備え、前記接合層は、化学式ABO(但し、Aは希土類元素であり、BはAlである。)で表されるペロブスカイト型酸化物を含み、希土類元素と酸素とのみを有する希土類単一酸化物を含まない。

Description

半導体製造装置用部品
 本明細書に開示される技術は、半導体製造装置用部品に関する。
 半導体製造装置用部品として、サセプタ(加熱装置)が用いられる。サセプタは、例えば、内部にヒータを有する板状のセラミックス製の保持部材と、保持部材の一方の面側に配置される円筒状のセラミックス製の支持部材と、保持部材と支持部材との間に配置され、互いに対向する保持部材の一方の面と支持部材の一方の面とを接合する接合層とを備える。保持部材の上記一方の面とは反対側の保持面にウェハが配置される。サセプタは、ヒータに電圧が印加されることにより発生する熱を利用して、保持面に配置されたウェハを加熱する。このようなサセプタの中には、保持部材と支持部材とが、比較的に熱伝導率が高いAlN(窒化アルミニウム)を主成分とする材料により形成されており、接合層が、希土類元素と酸素とのみを有する希土類単一酸化物を含む材料により形成されたものが知られている(例えば特許文献1参照)。
特開平10-242252号公報
 希土類単一酸化物が水分と反応すると、希土類水酸化物が生成される。この希土類水酸化物は、温度が高いほど生成し易くなる。サセプタは、例えば使用前に薬品や水等で洗浄され、高温で乾燥されることがある。そうすると、上述した希土類単一酸化物を含む接合層が用いられたサセプタでは、接合層に含まれる希土類単一酸化物が水分と反応して希土類水酸化物が生成され、その希土類水酸化物が乾燥して粉体となって飛散し、異物としてウェハに付着することがある。また、接合層の内、希土類水酸化物が抜けた部分が空洞になることによって保持部材と支持部材との接合強度が低下することがある。
 なお、このような課題は、サセプタを構成する保持部材と支持部材との接合に限らず、例えば静電チャック等の保持装置を構成するセラミックス部材同士の接合にも共通の課題である。また、このような課題は、保持装置に限らず、例えばシャワーヘッド等の半導体製造装置用部品を構成するセラミックス部材同士の接合に共通の課題である。
 本明細書では、上述した課題を解決することが可能な技術を開示する。
 本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される半導体製造装置用部品は、AlNを主成分とする材料により形成された第1のセラミックス部材と、AlNを主成分とする材料により形成された第2のセラミックス部材と、前記第1のセラミックス部材と前記第2のセラミックス部材との間に配置され、前記第1のセラミックス部材と前記第2のセラミックス部材とを接合する接合層と、を備える半導体製造装置用部品において、前記接合層は、化学式ABO(但し、Aは希土類元素であり、BはAlである。)で表されるペロブスカイト型酸化物を含み、希土類元素と酸素とのみを有する希土類単一酸化物を含まない。本半導体製造装置用部品によれば、接合層は、化学式ABO(但し、Aは希土類元素であり、BはAl(アルミニウム)である。)で表されるペロブスカイト型酸化物を含み、希土類元素と酸素とのみを有する希土類単一酸化物を含まない。このペロブスカイト型酸化物は、希土類単一酸化物に比べて、水分と反応し難い安定した物質であるため、希土類水酸化物の飛散や第1のセラミックス部材と第2のセラミックス部材との接合強度の低下を抑制することができる。
(2)本明細書に開示される半導体製造装置用部品は、AlNを主成分とする材料により形成された第1のセラミックス部材と、AlNを主成分とする材料により形成された第2のセラミックス部材と、前記第1のセラミックス部材と前記第2のセラミックス部材との間に配置され、前記第1のセラミックス部材と前記第2のセラミックス部材とを接合する複数の接合部と、を備える半導体製造装置用部品において、前記接合部は、化学式ABO(但し、Aは希土類元素であり、BはAlである。)で表されるペロブスカイト型酸化物を含み、希土類元素と酸素とのみを有する希土類単一酸化物を含まない。本半導体製造装置用部品によれば、接合部は、化学式ABO(但し、Aは希土類元素であり、BはAl(アルミニウム)である。)で表されるペロブスカイト型酸化物を含み、希土類元素と酸素とのみを有する希土類単一酸化物を含まない。このペロブスカイト型酸化物は、希土類単一酸化物に比べて、水分と反応し難い安定した物質であるため、希土類水酸化物の飛散や第1のセラミックス部材と第2のセラミックス部材との接合強度の低下を抑制することができる。
(3)上記半導体製造装置用部品において、前記ペロブスカイト型酸化物が有する前記希土類元素は、Gd、Nd、Tb、Eu、Yの少なくとも1種を含むことを特徴とする構成としてもよい。本半導体製造装置用部品によれば、Gd、Nd、Tb、Eu、Yの少なくとも1種を有するペロブスカイト型酸化物を含む接合層や接合部を用いることによって、希土類水酸化物の飛散や第1のセラミックス部材と第2のセラミックス部材との接合強度の低下を抑制することができる。
 なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、静電チャック、真空チャック等の保持装置、サセプタ等の加熱装置、シャワーヘッド等の半導体製造装置用部品の形態で実現することが可能である。
本実施形態におけるサセプタ100の外観構成を概略的に示す斜視図である。 本実施形態におけるサセプタ100のXZ断面構成を概略的に示す説明図である。 本実施形態におけるサセプタ100のXRD測定の結果を示す説明図である。 比較例のサセプタのXRD測定の結果を示す説明図である。
A.実施形態:
A-1.サセプタ100の構成:
 図1は、本実施形態におけるサセプタ100の外観構成を概略的に示す斜視図であり、図2は、本実施形態におけるサセプタ100のXZ断面構成を概略的に示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向というものとするが、サセプタ100は実際にはそのような向きとは異なる向きで設置されてもよい。サセプタ100は、請求の範囲における半導体製造装置用部品に相当する。
 サセプタ100は、対象物(例えばウェハW)を保持しつつ所定の処理温度に加熱する装置であり、例えば半導体装置の製造工程で使用される薄膜形成装置(例えばCVD装置やスパッタリング装置)やエッチング装置(例えばプラズマエッチング装置)に備えられている。サセプタ100は、所定の配列方向(本実施形態では上下方向(Z軸方向))に並べて配置された保持部材10および支持部材20を備える。保持部材10と支持部材20とは、保持部材10の下面(以下、「保持側接合面S2」という)と支持部材20の上面(以下、「支持側接合面S3」という)とが上記配列方向に対向するように配置されている。サセプタ100は、さらに、保持部材10の保持側接合面S2と支持部材20の支持側接合面S3との間に配置された接合層30を備える。保持部材10は、請求の範囲における第1のセラミックス部材に相当し、支持部材20は、請求の範囲における第2のセラミックス部材に相当する。
(保持部材10)
 保持部材10は、例えば円形平面の板状部材であり、AlN(窒化アルミニウム)を主成分とするセラミックスにより形成されている。なお、ここでいう主成分とは、含有割合(重量割合)の最も多い成分を意味する。保持部材10の直径は、例えば100mm~500mm程度であり、保持部材10の厚さは、例えば3mm~15mm程度である。
 保持部材10の内部には、導電性材料(例えば、タングステンやモリブデン等)により形成された線状の抵抗発熱体で構成されたヒータ50が設けられている。ヒータ50の一対の端部は、保持部材10の中央部付近に配置されている。また、保持部材10の内部には、一対のビア52が設けられている。各ビア52は、上下方向に延びる線状の導電体であり、各ビア52の上端は、ヒータ50の各端部に接続されており、各ビア52の下端は、保持部材10の保持側接合面S2側に配置されている。また、保持部材10の保持側接合面S2の中央部付近には、一対の受電電極54が配置されている。各受電電極54は、各ビア52の下端に接続されている。これにより、ヒータ50と各受電電極54とが電気的に接続されている。
(支持部材20)
 支持部材20は、例えば上下方向に延びた円筒状部材であり、支持側接合面S3(上面)から下面S4まで上下方向に貫通する貫通孔22が形成されている。支持部材20は、保持部材10と同様に、AlNを主成分とするセラミックスにより形成されている。支持部材20の外径は、例えば30mm~90mm程度であり、内径は、例えば10mm~60mm程度であり、上下方向の長さは、例えば100mm~300mm程度である。支持部材20の貫通孔22内には、一対の電極端子56が収容されている。各電極端子56は、上下方向に延びる棒状の導電体である。各電極端子56の上端は、各受電電極54にロウ付けにより接合されている。一対の電極端子56に電源(図示せず)から電圧が印加されると、ヒータ50が発熱することによって保持部材10が温められ、保持部材10の上面(以下、「保持面S1」という)に保持されたウェハWが温められる。なお、ヒータ50は、保持部材10の保持面S1をできるだけ満遍なく温めるため、例えばZ方向視で略同心円状に配置されている。なお、支持部材20の貫通孔22内には、熱電対の2本の金属線60(図2では1本のみ図示)が収容されている。各金属線60は、上下方向に延びように配置され、各金属線60の上端部分62は、保持部材10の中央部に埋め込まれている。これにより、保持部材10内の温度が測定され、その測定結果に基づきウェハWの温度制御が実現される。
(接合層30)
 接合層30は、円環状のシート層であり、保持部材10の保持側接合面S2と支持部材20の支持側接合面S3とを接合している。接合層30は、GdAlOとAl(アルミナ)とを含み、希土類元素と酸素とのみを有する希土類単一酸化物を含まない材料により形成されている。接合層30の外径は、例えば30mm~90mm程度であり、内径は、例えば10mm~60mm程度であり、厚さは、例えば50μm~70μm程度である。なお、ここでいう「希土類単一酸化物を含まない」とは、接合層30中における希土類単一酸化物の含有割合が2重量%未満であることをいう。
A-2.サセプタ100の製造方法:
 次に、本実施形態におけるサセプタ100の製造方法を説明する。はじめに、保持部材10と支持部材20とを準備する。上述したように、保持部材10と支持部材20とは、いずれもAlNを主成分とするセラミックスにより形成されている。なお、保持部材10および支持部材20は、公知の製造方法によって製造可能であるため、ここでは製造方法の説明を省略する。
 次に、保持部材10の保持側接合面S2と支持部材20の支持側接合面S3とをラップ研磨し、各接合面S2,S3の表面粗さを1μm以下、平坦度を10μm以下にする。そして、保持部材10の保持側接合面S2と支持部材20の支持側接合面S3との少なくとも一方に、接合剤を塗布する。具体的には、GdAlO粉末とAl粉末とを所定の割合で混合し、さらに、アクリルバインダおよびブチルカルビトールと共に混合することにより、ペースト状の接合剤を形成する。なお、ペースト状の接合剤の形成材料の組成比は、例えば、GdAlOが48mol%であり、Alが52mol%であることが好ましい。そして、ペースト状の接合剤を、マスクを介して印刷することにより、保持部材10の保持側接合面S2と支持部材20の支持側接合面S3との少なくとも一方に塗布する。その後、支持部材20の支持側接合面S3と保持部材10の保持側接合面S2とを、ペースト状の接合剤を介して重ね合わせることにより、保持部材10と支持部材20との積層体を形成する。
 次に、保持部材10と支持部材20との積層体をホットプレス炉内に配置し、窒素中で加圧しつつ加熱する。これにより、ペースト状の接合剤が溶融して接合層30が形成され、保持部材10と支持部材20とが接合層30により接合される。この加熱・加圧接合における圧力は、0.1MPa以上、15MPa以下の範囲内に設定されることが好ましい。加熱・加圧接合における圧力が0.1MPa以上に設定されると、被接合部材(保持部材10や支持部材20)の表面にうねり等があった場合でも被接合部材間に接合されない隙間が生じることが抑制され、初期における保持部材10と支持部材20との接合強度(接合層30の接合強度)が低下することを抑制することができる。また、加熱・加圧接合における圧力が15MPa以下に設定されると、保持部材10の割れや支持部材20の変形が発生することを抑制することができる。なお、接合面S2,S3には、0.2Kgf/cm~3Kgf/cmの圧力が付与される。
 また、この加熱・加圧接合における温度は、1750℃まで上昇させることが好ましい。加熱・加圧接合における温度が1750℃まで上昇したら、1750℃の状態を約10分維持した後、ホットプレス炉内の温度を室温まで下げる。加熱・加圧接合の後、必要により後処理(外周や上下面の研磨、端子の形成等)を行う。以上の製造方法により、上述した構成のサセプタ100が製造される。
A-3.性能評価:
 実施例のサセプタ100と比較例のサセプタとについて、以下に説明する性能評価を行った。
A-3-1.実施例および比較例について:
 実施例のサセプタ100は、上述した製造方法で製造されたものである。比較例のサセプタは、保持部材と支持部材と接合層とを備える。実施例のサセプタ100と比較例のサセプタとは、以下の点で共通している。
(保持部材の構成)
 ・材料:AlNを主成分とするセラミックス
 ・直径:100mm~500mm
 ・厚さ:3mm~15mm
(支持部材の構成)
 ・材料:AlNを主成分とするセラミックス
 ・外径:30mm~90mm
 ・内径:10mm~60mm
 ・上下方向の長さ:100mm~300mm
(接合層の外形)
 ・外径:30mm~90mm
 ・内径:10mm~60mm
 ・厚さ:50μm~70μm
 実施例のサセプタ100と比較例のサセプタとは、以下の点で相違している。
(接合層の材料)
 ・実施例のサセプタ100の接合層30の材料:GdAlOとAlとを含み、希土類元素と酸素とのみを有する希土類単一酸化物を含まない。
 ・比較例のサセプタの接合層の材料:希土類単一酸化物であるGdを含む。
 比較例のサセプタの製造方法は、実施例のサセプタ100の上述の製造方法に対して、GdAlO粉末およびAl粉末の代わりに、Gd粉末をアクリルバインダおよびブチルカルビトールと共に混合することにより、ペースト状の接合剤を形成する点が相違しているが、これ以外の点は基本的に共通している。
A-3-2.評価手法:
(接合層の接合強度の評価について)
 接合層の接合強度の評価として、実施例のサセプタ100および比較例のサセプタについて、He(ヘリウム)リーク試験を行った。Heリーク試験では、例えば、実施例のサセプタ100の支持部材20の下側開口端にHeリークディテクタ(図示せず)を連結し、接合層30の外周側からHeガスを吹き付ける。そして、Heリークディテクタの検出結果に基づき、接合層30におけるHeのリークの検出の有無を確認した。Heのリークが検出されることは、接合層30中に空洞が存在しているために接合強度が低いことを意味する。本実施形態では、実施例のサセプタ100の製造直後に、1回目のHeリーク試験を行った。次に、実施例のサセプタ100に対し、溶剤中で超音波洗浄を行い、次に純水中で超音波洗浄を行い、洗浄後の実施例のサセプタ100を乾燥器に配置して120℃で4時間乾燥させた。そして、乾燥後の実施例のサセプタ100について、2回目のHeリーク試験を行った。
(接合層における水酸化物生成の抑制の評価について)
 接合層における水酸化物生成の抑制の評価として、実施例のサセプタ100および比較例のサセプタについて、耐水試験の前後に、外観検査と、SEM(走査型電子顕微鏡)検査と、EDS(エネルギー分散型X分析)およびXRD(X線回折)測定とを行った。耐水試験では、例えば、実施例のサセプタ100を、オートクレーブに配置し、飽和蒸気(飽和水蒸気量は1.2kg/m)によって高温高圧(123℃、0.22MPa)の環境下に12時間放置した。外観検査では、実施例のサセプタ100の接合層30を切断し、その切断面の状態を目視によって観察した。SEM検査では、実施例のサセプタ100の接合層30の切断面をSEMによって観察した。EDSおよびXRD測定では、実施例のサセプタ100の接合層30の切断面についてEDSによって元素分析を行い、XRD測定によって接合層30の構成を同定した。
A-3-3.評価結果:
(接合層の接合強度の評価について)
 実施例のサセプタ100では、1回目および2回目のHeリーク試験のいずれにおいても、Heのリークは検出されなかった。一方、比較例のサセプタでは、1回目のHeリーク試験において、Heのリークは検出されなかったが、2回目のHeリーク試験において、Heのリークが検出された。
 (接合層における水酸化物の飛散の抑制の評価について)
 図3は、実施例のサセプタ100のXRD測定の結果を示す説明図であり、図4は、比較例のサセプタのXRD測定の結果を示す説明図である。実施例のサセプタ100では、外観検査およびSEM検査のいずれにおいても、耐水試験の前後で、接合層30の切断面の状態に変化は見られなかった。また、EDSおよびXRD測定では、図3に示すように、耐水試験の前後のいずれにおいても、接合層30は、GdAlOとAlとを含み、希土類単一酸化物を含んでおらず、耐水試験の前後で、接合層30の構成(組成比等)に変化は見られなかった。
 一方、比較例のサセプタでは、外観検査およびSEM検査のいずれにおいても、耐水試験の前には、なんら異常が見られなかったが、耐水試験の後に、接合層30の切断面の一部に粉体が付着したり崩壊したりしていることが見られた。また、EDSおよびXRD測定では、図4に示すように、耐水試験の前には、接合層は、Gdのみを含んでいたが、耐水試験の後には、接合層は、Gd(OH)のみを含んでいた。即ち、比較例のサセプタでは、耐水試験の前後で、接合層の形成材料がGdからGd(OH)に変化している。
A-4.本実施形態の効果:
 比較例のサセプタの接合層は、希土類単一酸化物であるGdを含んでいるため、洗浄されることによって、Gdが水分と反応して、希土類水酸化物であるGd(OH)が生成される。その後、接合層が高温で乾燥されると、Gd(OH)が粉体となって飛散し、接合層の内、Gd(OH)が抜けた部分が空洞になることによって接合層の接合強度が低下する。このため、耐水試験の後において、Heリーク試験ではHeのリークが検出され、外観検査およびSEM検査では接合層30の切断面への粉体の付着等が見られ、EDSおよびXRD測定では接合層の形成材料がGd(OH)に変化したと考えられる。
 一方、実施例のサセプタ100の接合層30は、GdAlOとAlとを含み、希土類単一酸化物を含んでいない。GdAlOは、ペロブスカイト型酸化物であり、ペロブスカイト型酸化物は、希土類単一酸化物に比べて、水分と反応し難い安定した物質である。このため、実施例のサセプタ100の接合層30によれば、希土類水酸化物の飛散や接合層の接合強度の低下を抑制することができる。
B.変形例:
 本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
 上記実施形態において、保持部材10と支持部材20とが、接合層30ではなく、複数の接合部によって接合されているとしてもよい。具体的には、保持部材10と支持部材20との間に、保持部材10と支持部材20との対向方向に直交する一の仮想平面上に配置された複数の接合部が離散的に形成されているとともに、保持部材10と支持部材20とが、保持部材10および支持部材20の形成材料であるAlN粒子を介して部分的に連結されているとしてもよい。
 上記実施形態および変形例において、保持部材10と支持部材20との間に、例えば、接合層30(接合部)と共に、該接合層30(接合部)とは組成が異なる第2の接合層(第2の接合部)が介在しているとしてもよい。すなわち、保持部材10と支持部材20とが、組成が互いに異なる複数の接合層または接合部を介して接合されているとしてもよい。
 上記実施形態および変形例における保持部材10および支持部材20を形成するセラミックスは、AlN(窒化アルミニウム)を主成分として含んでいれば、他の元素を含んでいてもよい。
 上記実施形態および変形例において、接合層30(接合部)を形成する材料は、GdAlO以外のペロブスカイト型酸化物(化学式ABO(但し、Aは希土類元素であり、BはAlである。)で表される)を含んでいてもよい。この希土類元素は、Gd、Nd、Tb、Eu、Yの少なくとも1種を含むことが好ましい。なお、上記実施形態のように、ペロブスカイト型酸化物にアルミナを混合して焼成することによって、希土類水酸化物の生成を抑制することができる。
 また、上記実施形態におけるサセプタ100の製造方法はあくまで一例であり、種々変形可能である。
 本発明は、サセプタ100に限らず、ポリイミドヒータ等の他の加熱装置、セラミックス板とベース板とを備え、セラミックス板の表面上に対象物を保持する保持装置(例えば、静電チャックや真空チャック)、シャワーヘッド等の他の半導体製造装置用部品にも適用可能である。
 10:保持部材 20:支持部材 22:貫通孔 30:接合層 50:ヒータ 52:ビア 54:受電電極 56:電極端子 60:金属線 62:上端部分 100:サセプタ S1:保持面 S2:保持側接合面 S3:支持側接合面 S4:下面 W:ウェハ

Claims (3)

  1.  AlNを主成分とする材料により形成された第1のセラミックス部材と、
     AlNを主成分とする材料により形成された第2のセラミックス部材と、
     前記第1のセラミックス部材と前記第2のセラミックス部材との間に配置され、前記第1のセラミックス部材と前記第2のセラミックス部材とを接合する接合層と、を備える半導体製造装置用部品において、
     前記接合層は、化学式ABO(但し、Aは希土類元素であり、BはAlである。)で表されるペロブスカイト型酸化物を含み、希土類元素と酸素とのみを有する希土類単一酸化物を含まないことを特徴とする、半導体製造装置用部品。
  2.  AlNを主成分とする材料により形成された第1のセラミックス部材と、
     AlNを主成分とする材料により形成された第2のセラミックス部材と、
     前記第1のセラミックス部材と前記第2のセラミックス部材との間に配置され、前記第1のセラミックス部材と前記第2のセラミックス部材とを接合する複数の接合部と、を備える半導体製造装置用部品において、
     前記接合部は、化学式ABO(但し、Aは希土類元素であり、BはAlである。)で表されるペロブスカイト型酸化物を含み、希土類元素と酸素とのみを有する希土類単一酸化物を含まないことを特徴とする、半導体製造装置用部品。
  3.  請求項1または請求項2に記載の半導体製造装置用部品において、
     前記ペロブスカイト型酸化物が有する前記希土類元素は、Gd、Nd、Tb、Eu、Yの少なくとも1種を含むことを特徴とする、半導体製造装置用部品。
PCT/JP2017/025609 2016-07-20 2017-07-13 半導体製造装置用部品 WO2018016418A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780044335.5A CN109476553B (zh) 2016-07-20 2017-07-13 半导体制造装置用部件
KR1020197001578A KR102209158B1 (ko) 2016-07-20 2017-07-13 반도체 제조장치용 부품
JP2018502269A JP6462949B2 (ja) 2016-07-20 2017-07-13 半導体製造装置用部品
US16/316,367 US20190304813A1 (en) 2016-07-20 2017-07-13 Component for semiconductor production device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-142494 2016-07-20
JP2016142494 2016-07-20

Publications (1)

Publication Number Publication Date
WO2018016418A1 true WO2018016418A1 (ja) 2018-01-25

Family

ID=60992083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025609 WO2018016418A1 (ja) 2016-07-20 2017-07-13 半導体製造装置用部品

Country Status (6)

Country Link
US (1) US20190304813A1 (ja)
JP (1) JP6462949B2 (ja)
KR (1) KR102209158B1 (ja)
CN (1) CN109476553B (ja)
TW (1) TWI655170B (ja)
WO (1) WO2018016418A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349386A (ja) * 1998-06-05 1999-12-21 Taiheiyo Cement Corp 窒化アルミニウム焼結体の接合方法
JP2000252353A (ja) * 1999-02-26 2000-09-14 Toshiba Ceramics Co Ltd 静電チャックとその製造方法
JP2002080283A (ja) * 2000-09-04 2002-03-19 Toshiba Ceramics Co Ltd セラミックス接合体及びその製造方法
JP2004083366A (ja) * 2002-08-28 2004-03-18 Toshiba Ceramics Co Ltd 窒化アルミニウムセラミックス接合体及びその製造方法
JP2011057488A (ja) * 2009-09-08 2011-03-24 Taiheiyo Cement Corp セラミックス接合体及びその製造方法
JP2015067472A (ja) * 2013-09-27 2015-04-13 京セラ株式会社 セラミック接合体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3604888B2 (ja) * 1997-01-30 2004-12-22 日本碍子株式会社 窒化アルミニウム質セラミックス基材の接合体、窒化アルミニウム質セラミックス基材の接合体の製造方法及び接合剤
JPH10242252A (ja) 1997-02-28 1998-09-11 Kyocera Corp ウエハ加熱装置
EP1298107A4 (en) * 2001-04-13 2006-06-14 Sumitomo Electric Industries CONNECTED CERAMIC OBJECT, DEVICE FOR HOLDING SUBSTRATES AND DEVICE FOR TREATING SUBSTRATES
JP2003335583A (ja) * 2002-05-16 2003-11-25 Toshiba Ceramics Co Ltd アルミナ焼結体の接合体およびその接合方法
KR102276101B1 (ko) * 2013-12-27 2021-07-13 엔지케이 인슐레이터 엘티디 접합재 조성물, 질화알루미늄 접합체 및 그 제법
JP6434836B2 (ja) * 2015-03-20 2018-12-05 日本碍子株式会社 複合体、ハニカム構造体及び複合体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349386A (ja) * 1998-06-05 1999-12-21 Taiheiyo Cement Corp 窒化アルミニウム焼結体の接合方法
JP2000252353A (ja) * 1999-02-26 2000-09-14 Toshiba Ceramics Co Ltd 静電チャックとその製造方法
JP2002080283A (ja) * 2000-09-04 2002-03-19 Toshiba Ceramics Co Ltd セラミックス接合体及びその製造方法
JP2004083366A (ja) * 2002-08-28 2004-03-18 Toshiba Ceramics Co Ltd 窒化アルミニウムセラミックス接合体及びその製造方法
JP2011057488A (ja) * 2009-09-08 2011-03-24 Taiheiyo Cement Corp セラミックス接合体及びその製造方法
JP2015067472A (ja) * 2013-09-27 2015-04-13 京セラ株式会社 セラミック接合体

Also Published As

Publication number Publication date
CN109476553B (zh) 2021-09-10
CN109476553A (zh) 2019-03-15
US20190304813A1 (en) 2019-10-03
JP6462949B2 (ja) 2019-01-30
JPWO2018016418A1 (ja) 2018-07-19
TW201811713A (zh) 2018-04-01
KR102209158B1 (ko) 2021-01-28
KR20190019172A (ko) 2019-02-26
TWI655170B (zh) 2019-04-01

Similar Documents

Publication Publication Date Title
JP5107186B2 (ja) 加熱装置
JP5117146B2 (ja) 加熱装置
JP6495536B2 (ja) 半導体製造装置用部品の製造方法、および、半導体製造装置用部品
JP6490296B2 (ja) 半導体製造装置用部品
JP7064987B2 (ja) セラミックス接合体
JP6462949B2 (ja) 半導体製造装置用部品
JP2009141344A (ja) 基板保持体
JP7410730B2 (ja) 半導体製造装置用部品
JP4043219B2 (ja) 静電チャック
JP5345583B2 (ja) 静電チャック
JP2021040155A (ja) 静電チャック
JP2020167405A (ja) 静電チャック
JP6867907B2 (ja) セラミックス接合体およびセラミックス接合体の製造方法
JP2006210696A (ja) セラミック製静電チャック
JP2022116708A (ja) 接合体、およびセラミックヒータ
CN111755376A (zh) 静电吸盘

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502269

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001578

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830937

Country of ref document: EP

Kind code of ref document: A1