WO2018016360A1 - Elliptical polarizing plate - Google Patents

Elliptical polarizing plate Download PDF

Info

Publication number
WO2018016360A1
WO2018016360A1 PCT/JP2017/025074 JP2017025074W WO2018016360A1 WO 2018016360 A1 WO2018016360 A1 WO 2018016360A1 JP 2017025074 W JP2017025074 W JP 2017025074W WO 2018016360 A1 WO2018016360 A1 WO 2018016360A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
liquid crystal
alignment
polarizing plate
Prior art date
Application number
PCT/JP2017/025074
Other languages
French (fr)
Japanese (ja)
Inventor
辰昌 葛西
伸行 幡中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201780044014.5A priority Critical patent/CN109477925B/en
Priority to CN202211209536.5A priority patent/CN115390178A/en
Priority to KR1020227037445A priority patent/KR102652054B1/en
Priority to KR1020197001520A priority patent/KR102481313B1/en
Publication of WO2018016360A1 publication Critical patent/WO2018016360A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to an elliptically polarizing plate.
  • the present invention also relates to a display device including an elliptically polarizing plate and a method for manufacturing the elliptically polarizing plate.
  • polarizing plates For flat panel display (FPD), optical films such as polarizing plates and retardation plates are used.
  • a polarizing plate a polarizing plate comprising a polarizing layer in which a dichroic dye such as iodine is oriented and adsorbed on a polyvinyl alcohol resin film and a protective film is widely used.
  • a retardation plate a retardation plate obtained by stretching a cycloolefin resin film, a polycarbonate resin film, or a triacetyl cellulose resin film is widely known.
  • a thin film polarizing plate and a retardation plate produced by applying a composition containing a polymerizable liquid crystal compound to a substrate have been developed.
  • Patent Document 1 discloses a retardation film that exhibits reverse wavelength dispersion
  • Patent Document 2 discloses a polarizing layer that exhibits high polarization performance
  • Patent Document 3 discloses a technique for forming a polarizing layer and a retardation film via a protective layer. These polarizing layers and retardation layers are often laminated together and used as an elliptically polarizing plate.
  • the conventional elliptically polarizing plate obtained in this way has a problem that an alignment defect or an optical axis shift occurs in the polarizing layer.
  • the alignment defect of the polarizing layer impairs the function as an elliptically polarizing plate at the defect portion.
  • the optical axis shift impairs the function as an elliptically polarizing plate.
  • An object of this invention is to provide the elliptically polarizing plate by which the orientation defect and optical axis shift of the polarizing layer were suppressed.
  • the present invention provides the following [1] to [13].
  • the retardation layer is a film composed of a polymer of a polymerizable liquid crystal compound
  • the alignment layer B is a film having a thickness of 80 nm to 800 nm
  • An elliptically polarizing plate in which the polarizing layer is a film in which a dichroic dye is dispersed and oriented in a film composed of a polymer of a polymerizable liquid crystal compound.
  • a liquid crystal display device comprising the elliptically polarizing plate according to any one of [1] to [10].
  • An organic EL display device comprising the elliptically polarizing plate according to any one of [1] to [11].
  • the present invention it is possible to provide an elliptically polarizing plate in which the optical axis misalignment between the retardation layer and the polarizing layer and the occurrence of alignment defects are suppressed.
  • the elliptically polarizing plate of the present invention is an elliptically polarizing plate in which an alignment layer A, a retardation layer, an alignment layer B, and a polarizing layer are provided in this order on a transparent substrate.
  • Transparent substrate As a transparent base material, a glass base material and a film base material are mentioned, A film base material is preferable. A long roll-like film is more preferable at the point which can manufacture continuously.
  • the resin constituting the film substrate include polyolefins such as polyethylene, polypropylene, norbornene polymers, cyclic olefin resins, polyvinyl alcohol, polyethylene terephthalate, polymethacrylates, polyacrylates, triacetylcellulose, and diacetylcellulose.
  • cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide and polyphenylene oxide;
  • Examples of the commercially available cellulose ester base material include “Fujitac Film” (manufactured by Fuji Photo Film Co., Ltd.); “KC8UX2M”, “KC8UY” and “KC4UY” (manufactured by Konica Minolta Opto Co., Ltd.).
  • cyclic olefin-based resins include “Topas” (registered trademark) (manufactured by Ticona (Germany)), “Arton” (registered trademark) (manufactured by JSR Corporation), “ZEONOR” (registered trademark), “ZEONEX” (registered trademark) (manufactured by Nippon Zeon Co., Ltd.) and “Apel” (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be mentioned.
  • Such a cyclic olefin-based resin can be formed into a substrate by forming a film by a known means such as a solvent casting method or a melt extrusion method.
  • cyclic olefin resin base materials can also be used.
  • Commercially available cyclic olefin-based resin base materials include “Essina” (registered trademark), “SCA40” (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), “Zeonor Film” (registered trademark) (manufactured by Optes Corporation). ) And “Arton Film” (registered trademark) (manufactured by JSR Corporation).
  • the thickness of the base material is preferably thin in view of easy practical handling, but if it is too thin, the strength tends to decrease and the workability tends to be poor.
  • the thickness of the substrate is usually 5 ⁇ m to 300 ⁇ m, preferably 20 ⁇ m to 200 ⁇ m.
  • the alignment layer A (alignment film for forming retardation layer) is a layer having an alignment regulating force that aligns the polymerizable liquid crystal compound used for forming the retardation layer in a desired direction.
  • the alignment layer A those having solvent resistance that does not dissolve due to application of a liquid crystal compound described later, and heat resistance in heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound described below are preferable.
  • the alignment film include a rubbing alignment film, a photo-alignment film, and a groove alignment film having a concavo-convex pattern and a plurality of grooves on the surface.
  • a photo-alignment film in which an alignment regulating force is induced by irradiation with polarized light is preferable in that the alignment direction can be easily controlled.
  • Such an alignment film facilitates the alignment of the polymerizable liquid crystal compound.
  • various orientations such as horizontal orientation, hybrid orientation, and tilt orientation can be controlled depending on the type of orientation film, rubbing conditions, and light irradiation conditions.
  • the alignment layer A used for forming the retardation layer the alignment film described in the alignment layer B described later can be used.
  • the alignment layer B may be the same as or different from the alignment layer A.
  • the thickness of the alignment layer A is usually in the range of 10 to 10000 nm (0.01 ⁇ m to 10 ⁇ m), preferably in the range of 80 to 800 nm (0.08 ⁇ m to 0.8 ⁇ m), more preferably 100 to 500 nm ( 0.1 ⁇ m to 0.5 ⁇ m).
  • the elliptically polarizing plate of the present invention has a retardation layer next to the alignment layer A.
  • the retardation layer is formed by applying a composition containing a polymerizable liquid crystal compound (hereinafter also referred to as a retardation layer forming composition) onto the alignment layer A to form an application layer, and the polymerizable liquid crystal compound is formed in the application layer. It is preferable from the viewpoint that the layer can be made thin and the wavelength dispersion characteristic can be arbitrarily designed.
  • a composition used for forming a retardation layer (hereinafter referred to as a retardation layer forming composition) is a solvent, a photopolymerization initiator, a photosensitizer, a polymerization inhibitor, a leveling agent, and an adhesion improver. And the like.
  • the retardation layer in the elliptically polarizing plate of the present invention is usually a polymerization contained in the optical anisotropic layer forming composition by applying the retardation layer forming composition to the alignment layer A formed on the substrate. It is formed by polymerizing a conductive liquid crystal compound.
  • the retardation layer is usually a film having a thickness of 5 ⁇ m or less cured with the polymerizable liquid crystal compound aligned, and preferably cured with the polymerizable liquid crystal compound aligned in the horizontal direction with respect to the substrate surface. This is a cured liquid crystal film.
  • the retardation layer cured in a state where the polymerizable liquid crystal compound is aligned in the horizontal direction with respect to the substrate surface has an in-plane retardation R ( ⁇ ) with respect to light having a wavelength of ⁇ nm as shown in the following formula (1). It is preferable to satisfy the optical characteristics, and it is more preferable to satisfy the optical characteristics represented by the following formula (1), the following formula (2), and the following formula (3).
  • Re (550) represents an in-plane retardation value (in-plane retardation) for light having a wavelength of 550 nm.
  • Re (450) / Re (550) ⁇ 1.0 (2) 1.00 ⁇ Re (650) / Re (550) (3)
  • Re (450) is the in-plane retardation value for light having a wavelength of 450 nm
  • Re (550) is the in-plane retardation value for light having a wavelength of 550 nm
  • Re (650) is the in-plane retardation value for light having a wavelength of 650 nm.
  • the in-plane retardation value of the retardation layer can be adjusted by the thickness of the retardation layer. Since the in-plane retardation value is determined by the following equation (4), ⁇ n ( ⁇ ) and film thickness d may be adjusted to obtain a desired in-plane retardation value (Re ( ⁇ )). .
  • the thickness of the retardation layer is preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 1 ⁇ m to 3 ⁇ m.
  • the thickness of the retardation layer can be measured with an interference film thickness meter, a laser microscope or a stylus thickness meter.
  • ⁇ n ( ⁇ ) depends on the molecular structure of the polymerizable liquid crystal compound described later.
  • Re ( ⁇ ) d ⁇ ⁇ n ( ⁇ ) (4) (In the formula, Re ( ⁇ ) represents the in-plane retardation value at the wavelength ⁇ nm, d represents the film thickness, and ⁇ n ( ⁇ ) represents the birefringence at the wavelength ⁇ nm.)
  • the polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable functional group, particularly a photopolymerizable functional group.
  • the photopolymerizable functional group refers to a group that can participate in a polymerization reaction by an active radical or an acid generated from a photopolymerization initiator.
  • Examples of the photopolymerizable functional group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group.
  • the thermic liquid crystal may be either a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic liquid crystal is preferred in terms of enabling precise film thickness control. Further, the phase order structure in the thermotropic liquid crystal may be a nematic phase structure or a smectic phase structure.
  • the polymerizable liquid crystal compound forming the retardation layer is particularly preferably a compound having the structure of the following formula (I) from the viewpoint of exhibiting the above-described reverse wavelength dispersion.
  • Ar represents a divalent aromatic group, and the divalent aromatic group contains at least one of a nitrogen atom, an oxygen atom and a sulfur atom.
  • G 1 and G 2 each independently represents a divalent aromatic group or a divalent alicyclic hydrocarbon group.
  • the hydrogen atom contained in the divalent aromatic group or divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, carbon
  • the carbon atom constituting the divalent aromatic group or divalent alicyclic hydrocarbon group which may be substituted with an alkoxy group, cyano group or nitro group of 1 to 4 is an oxygen atom or a sulfur atom Alternatively, it may be substituted with a nitrogen atom.
  • L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.
  • k and l each independently represent an integer of 0 to 3, and satisfy the relationship of 1 ⁇ k + 1.
  • E 1 and E 2 each independently represents an alkanediyl group having 1 to 17 carbon atoms, wherein a hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom, The —CH 2 — contained may be substituted with —O— or —Si—.
  • P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
  • G 1 and G 2 are each independently preferably a 1,4-phenyl group which may be substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, 1,4-cyclohexyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably 1,4 substituted with a methyl group A phenyl group, an unsubstituted 1,4-phenyl group, or an unsubstituted 1,4-trans-cyclohexyl group, particularly preferably an unsubstituted 1,4-phenyl group or an unsubstituted 1,4- a trans-cyclohexyl group;
  • at least one of a plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2 More
  • R a and R b represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • L 1 and L 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, or —OCO—.
  • B 1 and B 2 are each independently preferably a single bond, —O—, —S—, —CH 2 O—, —COO—, or —OCO—, and more preferably a single bond, —O— -, -COO-, or -OCO-.
  • E 1 and E 2 are each independently preferably an alkanediyl group having 1 to 17 carbon atoms, and more preferably an alkanediyl group having 4 to 12 carbon atoms.
  • Examples of the polymerizable group represented by P 1 or P 2 include epoxy group, vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, and oxiranyl group. And an oxetanyl group. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
  • Ar preferably has an aromatic heterocycle.
  • the aromatic heterocycle include a furan ring, a benzofuran ring, a pyrrole ring, a thiophene ring, a pyridine ring, a thiazole ring, a benzothiazole ring, a thienothiazole ring, an oxazole ring, a benzoxazole ring, and a phenanthroline ring.
  • a thiazole ring, a benzothiazole ring, or a benzofuran ring is preferable, and a benzothiazole group is more preferable.
  • Ar includes a nitrogen atom, the nitrogen atom preferably has ⁇ electrons.
  • (I) 2-valent of [pi Total N [pi electrons contained in the aromatic group preferably 10 or more represented by Ar, more preferably 14 or more, further preferably 18 or more. Moreover, Preferably it is 30 or less, More preferably, it is 26 or less, More preferably, it is 24 or less.
  • Examples of the aromatic group represented by Ar include the following groups.
  • Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom, or an alkyl having 1 to 12 carbon atoms.
  • Q 1 , Q 2 and Q 3 each independently represents —CR 2 ′ R 3 ′ —, —S—, —NH—, —NR 2 ′ —, —CO— or —O—, and R 2 ′ And R 3 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Y 1 , Y 2 and Y 3 each independently represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
  • W 1 and W 2 each independently represents a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
  • Examples of the aromatic hydrocarbon group in Y 1 , Y 2 and Y 3 include aromatic hydrocarbon groups having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
  • a naphthyl group is preferred, and a phenyl group is more preferred.
  • the aromatic heterocyclic group has 4 to 20 carbon atoms and contains at least one hetero atom such as a nitrogen atom such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, or a benzothiazolyl group, an oxygen atom, or a sulfur atom.
  • a furyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group are preferable.
  • Y 1 , Y 2 and Y 3 may each independently be an optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group.
  • the polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aggregate of aromatic rings.
  • the polycyclic aromatic heterocyclic group refers to a condensed polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
  • Z 0 , Z 1 and Z 2 are each independently preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms.
  • 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a cyano group
  • Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, or a cyano group.
  • Q 1 , Q 2 and Q 3 are preferably —NH—, —S—, —NR 2 ′ — and —O—, and R 2 ′ is preferably a hydrogen atom.
  • R 2 ′ is preferably a hydrogen atom.
  • —S—, —O—, and —NH— are particularly preferable.
  • Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
  • Examples thereof include a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, an indole ring, a quinoline ring, an isoquinoline ring, a purine ring, and a pyrrolidine ring.
  • This aromatic heterocyclic group may have a substituent.
  • Y 1 may be the above-described optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
  • the total content of the polymerizable liquid crystal compound in the solid content of 100 parts by mass of the retardation layer forming composition is usually 70 parts by mass to 99.5 parts by mass, preferably 80 parts by mass to 99 parts by mass. Part, more preferably 80 parts by weight to 94 parts by weight. If the total content is within the above range, the orientation of the obtained retardation layer tends to be high.
  • solid content means the total amount of the component remove
  • the elliptically polarizing plate of the present invention has an alignment layer B next to the retardation layer.
  • the alignment layer B is an alignment film for forming a polarizing layer.
  • the alignment layer B has a solvent resistance that does not dissolve due to application of a composition for forming a polarizing layer, which will be described later, and has heat resistance in heat treatment for removing the solvent and aligning a polymerizable liquid crystal compound, which will be described later. Those are preferred.
  • the alignment film include a rubbing alignment film, a photo-alignment film, and a groove alignment film having a concavo-convex pattern and a plurality of grooves on the surface.
  • a photo-alignment film in which an alignment regulating force is induced by irradiation with polarized light is preferable in that the alignment direction can be easily controlled.
  • Such an alignment film facilitates the alignment of the polymerizable liquid crystal compound.
  • various orientations such as horizontal orientation, hybrid orientation, and tilt orientation can be controlled depending on the type of orientation film, rubbing conditions, and light irradiation conditions.
  • the thickness of the alignment layer B is in the range of 80 to 800 nm (0.08 ⁇ m to 0.8 ⁇ m), preferably in the range of 100 to 500 nm (0.1 ⁇ m to 0.5 ⁇ m), and more preferably 150 nm (0 .15 ⁇ m) or more.
  • the film thickness is smaller than this range, the optical axis of the polarizing layer next to the alignment layer B deviates from a desired value due to the influence of the layer formed immediately below the alignment layer, that is, the retardation layer. There is a case.
  • the alignment regulating force may be reduced and an alignment defect may occur in the polarizing layer.
  • Examples of the alignment polymer used for the rubbing alignment film include polyamides and gelatins having amide bonds, polyimides having imide bonds and polyamic acids, polyvinyl alcohols, alkyl-modified polyvinyl alcohols, polyacrylamides, polyacrylamides, and hydrolysates thereof.
  • Examples include oxazole, polyethyleneimine, polystyrene, polyvinyl pyrrolidone, polyacrylic acid and polyacrylic acid esters.
  • polyvinyl alcohol is preferable. Two or more kinds of orientation polymers may be combined.
  • a rubbing alignment film is generally formed by applying a composition in which an orientation polymer is dissolved in a solvent to a substrate, removing the solvent to form a coating film, and rubbing the coating film to impart alignment regulating force. Can do.
  • the concentration of the orienting polymer in the orienting polymer composition may be in a range where the orienting polymer is completely dissolved in the solvent.
  • the content of the orientation polymer with respect to the orientation polymer composition is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass.
  • Alignment polymer composition can be obtained from the market.
  • Examples of the commercially available oriented polymer composition include Sanever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.), Optmer (registered trademark, manufactured by JSR).
  • Examples of the method for applying the orientation polymer composition include the same method as the method for applying the composition for forming an optically anisotropic layer described later.
  • Examples of the method for removing the solvent contained in the oriented polymer composition include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
  • Examples of the rubbing treatment include a method in which a rubbing cloth is wound and the coating film is brought into contact with a rotating rubbing roll. If masking is performed when the rubbing treatment is performed, a plurality of regions (patterns) having different orientation directions can be formed in the alignment film.
  • a composition for forming a photo-alignment film usually containing a polymer or monomer having a photoreactive group and a solvent is applied onto a substrate or the like, and after removing the solvent, polarized light (preferably polarized UV) It is obtained by irradiating.
  • polarized light preferably polarized UV
  • the photo-alignment film can arbitrarily control the direction of the alignment regulating force by selecting the polarization direction of the polarized light to be irradiated.
  • the photoreactive group refers to a group that generates alignment ability when irradiated with light. Specific examples include groups that are involved in photoreactions that are the origin of alignment ability, such as alignment-induced reactions, isomerization reactions, photodimerization reactions, photocrosslinking reactions, or photodecomposition reactions of molecules generated by light irradiation.
  • an unsaturated bond particularly a group having a double bond is preferable, and a carbon-carbon double bond (C ⁇ C bond), a carbon-nitrogen double bond (C ⁇ N bond), and nitrogen-nitrogen.
  • a group having at least one selected from the group consisting of a double bond (N ⁇ N bond) and a carbon-oxygen double bond (C ⁇ O bond) is particularly preferred.
  • Examples of the photoreactive group having a C ⁇ C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group, and a cinnamoyl group.
  • Examples of the photoreactive group having a C ⁇ N bond include groups having a structure such as an aromatic Schiff base and an aromatic hydrazone.
  • Examples of the photoreactive group having an N ⁇ N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and a group having an azoxybenzene structure.
  • Examples of the photoreactive group having a C ⁇ O bond include a benzophenone group, a coumarin group, an anthraquinone group, and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, and a halogenated alkyl group.
  • a group that participates in the photodimerization reaction or photocrosslinking reaction is preferable in terms of excellent orientation.
  • a photoreactive group involved in the photodimerization reaction is preferable, and a cinnamoyl group is preferable in that a photoalignment film having a relatively small amount of polarized light irradiation necessary for alignment and having excellent thermal stability and stability over time can be easily obtained.
  • chalcone groups are preferred.
  • the polymer having a photoreactive group a polymer having a cinnamoyl group in which a terminal portion of the polymer side chain has a cinnamic acid structure or a cinnamic acid ester structure is particularly preferable.
  • the content of the polymer or monomer having a photoreactive group in the composition for forming a photoalignment film can be adjusted by the kind of the polymer or monomer and the thickness of the target photoalignment film, and is at least 0.2% by mass or more. The range is preferably 0.3 to 10% by mass.
  • Examples of the method for applying the composition for forming a photo-alignment film include the same methods as those for applying the composition for forming an optically anisotropic layer described later.
  • Examples of the method for removing the solvent from the applied composition for forming a photo-alignment film include the same method as the method for removing the solvent from the oriented polymer composition.
  • the composition for forming a photo-alignment film applied on a substrate or the like is directly irradiated with polarized light on a solvent-removed composition. May be used such that the polarized light is transmitted and irradiated.
  • the polarized light is preferably substantially parallel light.
  • the wavelength of the polarized light to be irradiated should be in a wavelength range where the photoreactive group of the polymer or monomer having the photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength in the range of 250 nm to 400 nm is particularly preferable.
  • Examples of the light source for irradiating the polarized light include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet lasers such as KrF and ArF, and the like.
  • a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, and a metal halide lamp are preferable because of high emission intensity of ultraviolet rays having a wavelength of 313 nm.
  • the polarizing element include polarizing prisms such as polarizing filters, Glan Thompson, and Grand Taylor, and wire grids.
  • a wire grid type polarizing element is preferable from the viewpoint of an increase in area and resistance to heat.
  • a plurality of regions (patterns) having different liquid crystal alignment directions can be formed by performing masking when performing rubbing or polarized light irradiation.
  • the groove alignment film is a film having a concavo-convex pattern or a plurality of grooves (grooves) on the film surface.
  • a polymerizable liquid crystal compound is applied to a film having a plurality of linear grooves arranged at equal intervals, liquid crystal molecules are aligned in a direction along the groove.
  • a method for obtaining a groove alignment film a method of forming a concavo-convex pattern by performing development and rinsing after exposure through an exposure mask having a pattern-shaped slit on the photosensitive polyimide film surface, a plate having grooves on the surface A layer of a pre-curing UV curable resin on a solid master, a method of curing after transferring the resin layer to a base material, etc., and a pre-curing UV curable resin film formed on the base material, etc. And a method of forming a concavo-convex by pressing a roll-shaped master having a plurality of grooves, followed by curing.
  • the elliptically polarizing plate of the present invention has a polarizing layer next to the alignment layer B.
  • a composition containing a polymerizable liquid crystal compound hereinafter, also referred to as “polarizing layer forming composition”
  • polarizing layer forming composition a composition containing a polymerizable liquid crystal compound
  • the composition for forming a polarizing layer may further contain a solvent, a photopolymerization initiator, a photosensitizer, a polymerization inhibitor, a leveling agent, an adhesion improver, and the like.
  • the polarizing layer in the elliptically polarizing plate of the present invention is usually a polymerization that is applied to the polarizing layer forming composition by applying the polarizing layer forming composition on the alignment layer B formed on a transparent substrate or the like. It is formed by polymerizing a conductive liquid crystal compound.
  • a polarizing layer is a film
  • the polymerizable liquid crystal compound may be cured in a state where the dichroic dye and the polymerizable liquid crystal compound are horizontally aligned with respect to the transparent substrate surface.
  • the polymerizable liquid crystal compound may be cured in a state where the dichroic dye and the polymerizable liquid crystal compound are vertically aligned with respect to the transparent substrate surface.
  • a polymerizable liquid crystal compound is a cured liquid crystal film cured in a smectic liquid crystal phase, and more preferably a cured liquid crystal film cured in a higher order smectic liquid crystal phase. is there.
  • the high-order smectic liquid crystal phase here means a smectic B phase, a smectic D phase, a smectic E phase, a smectic F phase, a smectic G phase, a smectic H phase, a smectic I phase, a smectic J phase, a smectic K phase, and a smectic L phase.
  • a smectic B phase, a smectic F phase, and a smectic I phase are more preferable.
  • a polarizing layer having a higher degree of orientational order can be produced.
  • the polarizing layer produced from a high-order smectic liquid crystal phase having a high degree of orientational order can obtain a Bragg peak derived from a high-order structure such as a hexatic phase or a crystal phase in X-ray diffraction measurement.
  • the Bragg peak is a peak derived from a molecular periodic surface periodic structure.
  • a polarizing layer having a periodic interval of 3.0 to 5.0 mm is obtained. be able to.
  • the polymerizable liquid crystal compound exhibits a nematic liquid crystal phase or a smectic liquid crystal phase can be confirmed, for example, as follows.
  • the solvent contained in the coating film is removed by heat treatment under the condition that the polymerizable liquid crystal compound is not polymerized.
  • the coating film formed on the substrate is heated to the isotropic phase temperature, and the liquid crystal phase that is expressed by gradually cooling is inspected by texture observation, X-ray diffraction measurement or differential scanning calorimetry using a polarizing microscope. To do.
  • Whether the polymerizable liquid crystal compound and the dichroic dye are not phase-separated in the nematic liquid crystal phase and the smectic liquid crystal phase can be confirmed by, for example, surface observation with various microscopes or scattering degree measurement with a haze meter.
  • the optically anisotropic layer obtained by curing the polymerizable liquid crystal compound in a state where the dichroic dye and the polymerizable liquid crystal compound are horizontally aligned with respect to the transparent substrate surface has an absorbance A1 ( ⁇ ) in the liquid crystal alignment horizontal direction with respect to light having a wavelength of ⁇ nm.
  • the ratio (dichroic ratio) of the absorbance A2 ( ⁇ ) in the vertical direction of the liquid crystal alignment is preferably 7 or more, more preferably 20 or more, and further preferably 30 or more. The higher this value, the more the polarizing plate has better absorption selectivity. Although it depends on the type of dichroic dye, it is about 5 to 10 in the case of a liquid crystal cured film cured in a nematic liquid crystal phase.
  • polarizing layers having various hues By mixing two or more dichroic dyes having different absorption wavelengths, polarizing layers having various hues can be produced, and a polarizing layer having absorption in the entire visible light region can be obtained. By setting it as the polarizing layer which has such an absorption characteristic, it can blacken and can expand
  • the polarization performance of the polarizing layer can be measured using a spectrophotometer. For example, the transmittance (T1) in the transmission axis direction (orientation vertical direction) and the transmittance (T2) in the absorption axis direction (the same orientation direction) in the wavelength range of 380 nm to 780 nm, which is visible light, are applied to the spectrophotometer as a polarizer.
  • the polarization performance in the visible light range is calculated using the following formulas (Formula 1) and (Formula 2) to calculate the single transmittance and the degree of polarization at each wavelength, and further according to the 2 degree field of view (C light source) of JIS Z 8701.
  • C light source 2 degree field of view
  • the hue of the polarizing plate alone (Single hue), a hue in which the polarizing plates are arranged in parallel (parallel hue), and a hue in which the polarizing plates are arranged orthogonally (orthogonal hue) are obtained. It can be determined that the closer the value of a * and b * is to 0, the more neutral the hue is.
  • the polymerizable liquid crystal compound is a compound having a polymerizable group and having liquid crystallinity.
  • the polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group.
  • the photopolymerizable group refers to a group that can participate in a polymerization reaction by an active radical, an acid, or the like generated from a photopolymerization initiator described later.
  • Examples of the polymerizable group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
  • the liquid crystal may be a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic liquid crystal is preferable when mixed with a dichroic dye described later.
  • the polymerizable liquid crystal compound when it is a thermotropic liquid crystal, it may be a thermotropic liquid crystal compound exhibiting a nematic liquid crystal phase or a thermotropic liquid crystal compound exhibiting a smectic liquid crystal phase.
  • the polymerizable liquid crystal compound is preferably a smectic liquid crystal compound, more preferably a higher order smectic liquid crystal compound, from the viewpoint that higher polarization characteristics can be obtained.
  • higher-order smectic liquid crystal compounds that form a smectic B phase, a smectic D phase, a smectic E phase, a smectic F phase, a smectic G phase, a smectic H phase, a smectic I phase, a smectic J phase, a smectic K phase, or a smectic L phase. More preferred are higher-order smectic liquid crystal compounds that form a smectic B phase, a smectic F phase, or a smectic I phase.
  • a polarizing layer with higher polarization performance can be produced.
  • a polarizing layer having a high polarization performance can obtain a Bragg peak derived from a higher order structure such as a hexatic phase or a crystal phase in X-ray diffraction measurement.
  • the Bragg peak is a peak derived from a periodic structure of molecular orientation, and a film having a periodic interval of 3 to 6 mm can be obtained.
  • the polarizing layer used in the present invention preferably contains a polymer of a polymerizable liquid crystal compound obtained by polymerizing the polymerizable liquid crystal compound in a smectic phase from the viewpoint of obtaining higher polarization characteristics.
  • Such a compound include a compound represented by the following formula (A) (hereinafter sometimes referred to as compound (A)).
  • the said polymeric liquid crystal compound may be used independently and may be used in combination of 2 or more type.
  • X 1 , X 2 and X 3 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group, wherein the divalent aromatic group or divalent alicyclic group The hydrogen atom contained in the hydrocarbon group is substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, or a nitro group.
  • the carbon atom constituting the divalent aromatic group or divalent alicyclic hydrocarbon group may be substituted with an oxygen atom, a sulfur atom or a nitrogen atom.
  • X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent It is.
  • Y 1 , Y 2 , W 1 and W 2 are each independently a single bond or a divalent linking group.
  • V 1 and V 2 each independently represent an optionally substituted alkanediyl group having 1 to 20 carbon atoms, and —CH 2 — constituting the alkanediyl group is —O—, — S- or -NH- may be substituted.
  • U 1 and U 2 each independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
  • X 1 , X 2 and X 3 are a 1,4-phenylene group which may have a substituent, or a cyclohexane which may have a substituent
  • a 1,4-diyl group is preferred.
  • X 1 and X 3 are more preferably a cyclohexane-1,4-diyl group which may have a substituent, and the cyclohexane-1,4-diyl group is trans-cyclohexane. More preferred is a -1,4-diyl group.
  • the optionally substituted 1,4-phenylene group or the optionally substituted cyclohexane-1,4-diyl group may be a methyl group ,
  • An alkyl group having 1 to 4 carbon atoms such as an ethyl group and a butyl group, a cyano group, and a halogen atom such as a chlorine atom and a fluorine atom, but are preferably unsubstituted.
  • Y 1 and Y 2 each independently represent a single bond, —CH 2 CH 2 —, —CH 2 O—, —COO—, —OCO—, —N ⁇ N—, —CR a ⁇ CR b —, — C ⁇ C— or CR a ⁇ N— is preferred, and R a and R b each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Y 1 and Y 2 are more preferably —CH 2 CH 2 —, —COO—, —OCO— or a single bond, and more preferably Y 1 and Y 2 are different from each other. When Y 1 and Y 2 are different from each other, smectic liquid crystallinity tends to be easily developed.
  • W 1 and W 2 are each independently preferably a single bond, —O—, —S—, —COO— or OCO—, and more preferably each independently a single bond or —O—.
  • Examples of the alkanediyl group having 1 to 20 carbon atoms represented by V 1 and V 2 include a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, and a butane-1,4. -Diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane -1,14-diyl group and icosane-1,20-diyl group.
  • V 1 and V 2 are preferably an alkanediyl group having 2 to 12 carbon atoms, and more preferably a linear alkanediyl group having 6 to 12 carbon atoms.
  • the crystallinity is improved and smectic liquid crystallinity tends to be easily exhibited.
  • the substituent that the optionally substituted alkanediyl group having 1 to 20 carbon atoms has include a cyano group and a halogen atom such as a chlorine atom and a fluorine atom.
  • the alkanediyl group includes It is preferably unsubstituted, and more preferably an unsubstituted and linear alkanediyl group.
  • U 1 and U 2 are both preferably a polymerizable group, more preferably a photopolymerizable group. Since the polymerizable liquid crystal compound having a photopolymerizable group can be polymerized under a lower temperature condition than the thermally polymerizable group, it is advantageous in that the liquid crystal can form a polymer with a higher degree of order.
  • the polymerizable groups represented by U 1 and U 2 may be different from each other, but are preferably the same.
  • the polymerizable group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group.
  • acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and methacryloyloxy group or acryloyloxy group is more preferable.
  • Examples of such polymerizable liquid crystal compounds include the following.
  • the exemplified compound (A) can be used alone or in combination for the polarizing layer. Moreover, when combining 2 or more types of polymeric liquid crystal compounds, it is preferable that at least 1 type is a compound (A), and it is more preferable that 2 or more types are a compound (A).
  • liquid crystallinity may be temporarily maintained even at a temperature lower than the liquid crystal-crystal phase transition temperature.
  • the mixing ratio when combining two kinds of polymerizable liquid crystal compounds is usually 1:99 to 50:50, preferably 5:95 to 50:50, more preferably 10:90 to 50:50. It is.
  • Compound (A) is, for example, Lub et al. Recl. Trav. Chim. It is manufactured by a known method described in Pays-Bas, 115, 321-328 (1996), or Japanese Patent No. 4719156.
  • the content of the polymerizable liquid crystal compound in the composition for forming a polarizing layer is usually 50 to 99.5 parts by weight, preferably 60 to 99 parts by weight, based on 100 parts by weight of the solid content of the composition for forming a polarizing layer. More preferably, it is 70 to 98 parts by mass, and still more preferably 80 to 97 parts by mass. If the content ratio of the polymerizable liquid crystal compound is within the above range, the orientation tends to be high.
  • solid content means the total amount of the component remove
  • a dichroic dye refers to a dye having the property that the absorbance in the major axis direction of a molecule is different from the absorbance in the minor axis direction.
  • the dichroic dye preferably has a property of absorbing visible light, and more preferably has an absorption maximum wavelength ( ⁇ MAX) in the range of 380 to 680 nm.
  • ⁇ MAX absorption maximum wavelength
  • Examples of such dichroic dyes include acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes and anthraquinone dyes, and among them, azo dyes are preferable.
  • azo dye examples include monoazo dyes, bisazo dyes, trisazo dyes, tetrakisazo dyes, and stilbene azo dyes, and bisazo dyes and trisazo dyes are preferable.
  • Dichroic dyes may be used alone or in combination, but in order to obtain absorption in the entire visible light range, it is preferable to combine three or more types of dichroic dyes, and more preferable to combine three or more types of azo dyes. preferable.
  • Examples of the azo dye include a compound represented by the formula (B) (hereinafter sometimes referred to as “compound (B)”).
  • T 1 -A 1 (-N NA 2 )
  • p -N NA 3 -T 2 (B)
  • a 1 and A 2 and A 3 are independently of each other an optionally substituted 1,4-phenylene group, naphthalene-1,4-diyl group or an optionally substituted divalent group.
  • a 1 and / or A 2 is a 1,4-phenylene group
  • T 1 and T 2 are electron withdrawing groups or electron emitting groups, and are substantially in the azo bond plane.
  • p represents an integer of 0 to 4. When p is 2, two A 2 may be the same or different from each other.
  • p represents an integer of 0 to 4. When p is 2, two A 2 may be the same or different from each other.
  • Examples of the substituent that the 1,4-phenylene group, naphthalene-1,4-diyl group and divalent heterocyclic group in A 1 and A 2 and A 3 optionally have include a methyl group, an ethyl group, and a butyl group.
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, and a hexyl group.
  • alkanediyl group having 2 to 8 carbon atoms examples include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group Hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group and the like.
  • a 1 and A 2 and A 3 are unsubstituted, 1,4-phenylene groups in which hydrogen is substituted with methyl groups or methoxy groups, or divalent groups
  • the heterocyclic group is preferably, and p is preferably 0 or 1.
  • p is 1 and at least two of the three structures A 1, A 2 and A 3 are 1,4-phenylene groups in that both molecular synthesis is easy and high performance is achieved. More preferred.
  • divalent heterocyclic group examples include groups in which two hydrogen atoms have been removed from quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole and benzoxazole.
  • a 2 is a divalent heterocyclic group, a structure in which the molecular bond angle is substantially 180 ° is preferable.
  • benzothiazole, benzimidazole, benzoxazole in which two 5-membered rings are condensed A structure is more preferable.
  • T 1 and T 2 are an electron withdrawing group or an electron emitting group, and preferably have different structures, and T 1 is an electron withdrawing group and a T 2 electron emitting group, or T 1 is an electron emitting group and a T 2 electron withdrawing group. More preferably, it is a group relationship. Specifically, T 1 and T 2 are each independently one alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, or an alkyl group having 1 to 6 carbon atoms.
  • An amino group having two amino groups, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms, or a trifluoromethyl group is preferable.
  • An amino group having one or two alkyl groups of ⁇ 6 or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms is preferred.
  • azo dyes examples include the following.
  • B 1 to B 20 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, a substituted or unsubstituted amino group (a substituted amino group and The definition of an unsubstituted amino group is as described above, and represents a chlorine atom or a trifluoromethyl group.
  • n1 to n4 each independently represents an integer of 0 to 3.
  • the plurality of B 2 may be the same or different
  • the plurality of B 6 may be the same or different
  • n3 is 2 or more
  • the plurality of B 9 may be the same or different
  • the plurality of B 14 may be the same or different.
  • the anthraquinone dye is preferably a compound represented by the formula (2-7).
  • R 1 to R 8 each independently represent a hydrogen atom, —R x , —NH 2 , —NHR x , —NR x 2 , —SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the oxazine dye is preferably a compound represented by the formula (2-8).
  • R 9 to R 15 each independently represent a hydrogen atom, —R x , —NH 2 , —NHR x , —NR x 2 , —SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the acridine dye is preferably a compound represented by the formula (2-9).
  • R 16 to R 23 each independently represent a hydrogen atom, —R x , —NH 2 , —NHR x , —NR x 2 , —SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • examples of the alkyl group having 1 to 4 carbon atoms represented by R x include a methyl group, an ethyl group, a propyl group, and a butyl group. A pentyl group, a hexyl group, and the like.
  • examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xylyl group, and a naphthyl group.
  • cyanine dye a compound represented by the formula (2-10) and a compound represented by the formula (2-11) are preferable.
  • D 1 and D 2 each independently represent a group represented by any one of formulas (2-10a) to (2-10d).
  • n5 represents an integer of 1 to 3.
  • D 3 and D 4 each independently represent a group represented by any one of formulas (2-11a) to (2-11h).
  • n6 represents an integer of 1 to 3.
  • the content of the dichroic dye (the total amount when there are a plurality of types) is usually 1 to 30 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound from the viewpoint of obtaining good light absorption characteristics.
  • the amount is preferably 2 to 20 parts by mass, more preferably 3 to 15 parts by mass. If the content of the dichroic dye is less than this range, light absorption becomes insufficient and sufficient polarization performance cannot be obtained, and if it is more than this range, the alignment of liquid crystal molecules may be inhibited.
  • the optical axis of the polarizing layer and the retardation layer is substantially parallel, that is, the optical axis of the polarizing layer and the optical axis of the retardation layer are substantially in the plane of the elliptically polarizing plate.
  • the optical axis of the polarizing layer and the optical axis of the retardation layer intersect in the plane of the elliptically polarizing plate, not the relationship that does not intersect.
  • the angle formed by the optical axis of the polarizing layer and the optical axis of the retardation layer that intersect each other is preferably 40 to 50 °, which is the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizing layer, and is 41 to 49. More preferably, the angle is more preferably from 43 to 47 °, particularly preferably substantially 45 °, and ideally 45 °.
  • the ellipticity is improved when the angle formed by the retardation axis of the retardation layer and the absorption axis of the polarizing layer is within the above range, and the polarizing plate of the present invention substantially functions as a circularly polarizing plate particularly when the angle is 45 °. .
  • solvent a solvent capable of completely dissolving the polymerizable liquid crystal compound used in forming the retardation layer or polarizing layer is preferable, and a solvent inert to the polymerization reaction of the polymerizable liquid crystal compound is preferable.
  • the solvent examples include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -Ester solvents such as butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane Aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile; tetrahydride Ether solvents such
  • the content of the solvent in 100 parts by weight of the composition is preferably 50 parts by weight to 98 parts by weight, and more preferably 70 parts by weight to 95 parts by weight. Accordingly, the solid content in 100 parts by mass of the composition is preferably 2 to 50 parts by mass.
  • the solid content of the composition is 50 parts by mass or less, since the viscosity of the composition is low, the thickness of the film containing the polymerizable liquid crystal compound becomes substantially uniform, and unevenness occurs in the film containing the polymerizable liquid crystal compound. It tends to be difficult.
  • the solid content can be appropriately determined in consideration of the thickness of the film containing the polymerizable liquid crystal compound to be produced.
  • the polymerization initiator is a compound that can initiate a polymerization reaction such as a polymerizable liquid crystal compound.
  • produces a radical by light irradiation is more preferable.
  • the photopolymerization initiator include benzoin compounds, benzophenone compounds, benzyl ketal compounds, ⁇ -hydroxy ketone compounds, ⁇ -amino ketone compounds, triazine compounds, iodonium salts, and sulfonium salts.
  • Irgacure (registered trademark) 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369, Irgacure 379, Irgacure 127, Irgacure 2959, Irgacure 754, Irgacure 379EG (above, BASF Japan Ltd.) ), Sequol BZ, Sequol Z, Sequol BEE (above, Seiko Chemical Co., Ltd.), kayacure BP100 (Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (Dow), Adekaoptomer SP- 152, Adekaoptomer SP-170, Adekaoptomer N-1717, Adekaoptomer N-1919, Adeka Arkles NCI-831, Adeka Arkles NCI-930 (and above, shares) Company ADEKA), TAZ-A,
  • the maximum absorption wavelength is preferably 300 nm to 380 nm, more preferably 300 nm to 360 nm, and among these, ⁇ - An acetophenone polymerization initiator and an oxime photopolymerization initiator are preferred.
  • Examples of ⁇ -acetophenone compounds include 2-methyl-2-morpholino-1- (4-methylsulfanylphenyl) propan-1-one, 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutane-1 -One and 2-dimethylamino-1- (4-morpholinophenyl) -2- (4-methylphenylmethyl) butan-1-one, and the like, more preferably 2-methyl-2-morpholino-1- ( 4-methylsulfanylphenyl) propan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutan-1-one.
  • Examples of commercially available ⁇ -acetophenone compounds include Irgacure 369, 379EG, 907 (above, manufactured by BASF Japan Ltd.), Sequol BEE (manufactured by Seiko Chemical Co., Ltd.), and the like.
  • the oxime photopolymerization initiator generates methyl radicals when irradiated with light. Polymerization of the polymerizable liquid crystal compound in the deep part of the film containing the polymerizable liquid crystal compound suitably proceeds by this methyl radical. Moreover, it is preferable to use the photoinitiator which can utilize the ultraviolet-ray with a wavelength of 350 nm or more efficiently from a viewpoint that the polymerization reaction in the deep part of the film
  • a photopolymerization initiator capable of efficiently using ultraviolet rays having a wavelength of 350 nm or more
  • a triazine compound or an oxime ester type carbazole compound is preferable, and an oxime ester type carbazole compound is more preferable from the viewpoint of sensitivity.
  • oxime ester type carbazole compounds include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) ) -9H-carbazol-3-yl] -1- (O-acetyloxime) and the like.
  • oxime ester type carbazole compounds include Irgacure OXE-01, Irgacure OXE-02, Irgacure OXE-03 (above, manufactured by BASF Japan Ltd.), Adekaoptomer N-1919, Adeka Arcles NCI-831 (above ADEKA Co., Ltd.).
  • the addition amount of the photopolymerization initiator is usually 0.1 to 30 parts by weight, preferably 1 to 20 parts by weight, more preferably 3 parts per 100 parts by weight of the polymerizable liquid crystal compound. Parts by mass to 18 parts by mass. If it is in the said range, reaction of a polymeric group will fully advance and it will be hard to disturb the orientation of a polymeric liquid crystal compound.
  • Polymerization inhibitors include hydroquinones having substituents such as hydroquinone and alkyl ethers; catechols having substituents such as alkyl ethers such as butylcatechol; pyrogallols, 2,2,6,6-tetramethyl-1- And radical scavengers such as piperidinyloxy radical; thiophenols; ⁇ -naphthylamines and ⁇ -naphthols.
  • the content of the polymerization inhibitor is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Yes, preferably 0.5 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass.
  • the sensitivity of the photopolymerization initiator can be increased by using a photosensitizer.
  • the photosensitizer include xanthones such as xanthone and thioxanthone; anthracene having a substituent such as anthracene and alkyl ether; phenothiazine; and rubrene.
  • the photosensitizer include xanthones such as xanthone and thioxanthone; anthracene having a substituent such as anthracene and alkyl ether; phenothiazine; and rubrene.
  • the content of the photosensitizer is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal compound. 3 parts by mass.
  • the leveling agent is an additive having a function of adjusting the fluidity of the composition and flattening a film obtained by applying the composition.
  • an organic modified silicone oil system, polyacrylate system and perfluorocarbon An alkyl type leveling agent is mentioned.
  • DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all are manufactured by Toray Dow Corning Co., Ltd.), KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001 (all manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452, TSF4460 (all, Momentive Performance Materials Japan GK) Manufactured), Fluorinert (registered trademark) FC-72, FC-40, FC-43, FC-3283 (above, Manufactured by Sumitomo 3M Co., Ltd.), MegaFace (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F
  • the content of the leveling agent in the retardation layer forming composition and polarizing layer forming composition used in the present invention is preferably 0.01 parts by mass to 5 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. 0.1 to 3 parts by mass is more preferable. It is preferable that the content of the leveling agent is within the above range because the polymerizable liquid crystal compound can be easily horizontally aligned and the resulting film containing the polymerizable liquid crystal compound tends to be smoother.
  • the retardation layer forming composition and the polarizing layer forming composition used in the present invention may contain two or more kinds of leveling agents.
  • Examples of the adhesive for bonding the polarizing layer and the retardation layer or the retardation layer and the display device include a pressure-sensitive adhesive, a dry-solidifying adhesive, and a chemically reactive adhesive.
  • Examples of the chemically reactive adhesive include an active energy ray curable adhesive.
  • an adhesive layer formed from a pressure-sensitive adhesive, a dry-solidifying adhesive, or an active energy ray-curable adhesive is preferable.
  • a pressure-sensitive adhesive or an adhesive layer formed from an active energy ray-curable adhesive is preferable.
  • the pressure-sensitive adhesive usually contains a polymer and may contain a solvent.
  • the polymer include acrylic polymers, silicone polymers, polyesters, polyurethanes, and polyethers.
  • acrylic pressure-sensitive adhesives containing acrylic polymers have excellent optical transparency, moderate wettability and cohesive strength, excellent adhesion, and high weather resistance and heat resistance. It is preferable because it does not easily float or peel off under humidifying conditions.
  • Acrylic polymers include (meth) acrylates in which the alkyl group in the ester moiety is an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group or a butyl group (hereinafter, acrylate and methacrylate are collectively referred to as (meth) acrylate).
  • Acrylic acid and methacrylic acid may be collectively referred to as (meth) acrylic acid) and (meth) having a functional group such as (meth) acrylic acid or hydroxyethyl (meth) acrylate
  • a copolymer with an acrylic monomer is preferred.
  • a pressure-sensitive adhesive containing such a copolymer is excellent in adhesiveness, and even when removed after being bonded to a display device, it is relatively easy to remove without causing adhesive residue or the like on the display device. Is preferable.
  • the glass transition temperature of the acrylic polymer is preferably 25 ° C. or less, and more preferably 0 ° C. or less.
  • the mass average molecular weight of such an acrylic polymer is preferably 100,000 or more.
  • the solvent examples include the solvents mentioned as the solvent.
  • the pressure-sensitive adhesive may contain a light diffusing agent.
  • the light diffusing agent is an additive that imparts light diffusibility to the pressure-sensitive adhesive, and may be fine particles having a refractive index different from the refractive index of the polymer included in the pressure-sensitive adhesive.
  • Examples of the light diffusing agent include fine particles made of an inorganic compound and fine particles made of an organic compound (polymer). Many of the polymers that the adhesive contains as an active ingredient, including acrylic polymers, have a refractive index of about 1.4 to 1.6. It is preferable to select appropriately.
  • the refractive index difference between the polymer contained in the pressure-sensitive adhesive as an active ingredient and the light diffusing agent is usually 0.01 or more, and is preferably 0.01 to 0.2 from the viewpoint of the brightness and display properties of the display device.
  • the fine particles used as the light diffusing agent are preferably spherical fine particles, and fine particles close to monodispersion, more preferably fine particles having an average particle diameter of 2 ⁇ m to 6 ⁇ m.
  • the refractive index is measured by a general minimum deviation method or Abbe refractometer. Examples of the fine particles made of an inorganic compound include aluminum oxide (refractive index 1.76) and silicon oxide (refractive index 1.45).
  • Fine particles comprising an organic compound include melamine beads (refractive index 1.57), polymethyl methacrylate beads (refractive index 1.49), methyl methacrylate / styrene copolymer resin beads (refractive index 1.50). To 1.59), polycarbonate beads (refractive index 1.55), polyethylene beads (refractive index 1.53), polystyrene beads (refractive index 1.6), polyvinyl chloride beads (refractive index 1.46), and silicone. Examples thereof include resin beads (refractive index: 1.46).
  • the content of the light diffusing agent is usually 3 to 30 parts by mass with respect to 100 parts by mass of the polymer.
  • the thickness of the pressure-sensitive adhesive is determined according to its adhesion and the like and is not particularly limited, but is usually 1 ⁇ m to 40 ⁇ m. From the viewpoint of processability and durability, the thickness is preferably 3 ⁇ m to 25 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m.
  • the dry-solidifying adhesive may contain a solvent.
  • the dry-solidifying adhesive contains, as a main component, a polymer of a monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group, or a urethane resin. Examples include aldehydes, epoxy compounds, epoxy resins, melamine compounds, zirconia compounds, and compositions containing a curable compound such as a zinc compound.
  • Examples of the polymer of a monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group include an ethylene-maleic acid copolymer, an itaconic acid copolymer, an acrylic acid copolymer, and an acrylamide. Examples include copolymers, saponified products of polyvinyl acetate, and polyvinyl alcohol resins.
  • polyvinyl alcohol resin examples include polyvinyl alcohol, partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Can be mentioned.
  • the content of the polyvinyl alcohol-based resin in the aqueous adhesive is usually 1 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of water.
  • the urethane resin examples include polyester ionomer type urethane resins.
  • the polyester ionomer type urethane resin here is a urethane resin having a polyester skeleton, and a resin in which a small amount of an ionic component (hydrophilic component) is introduced. Since such an ionomer type urethane resin is emulsified in water without using an emulsifier and becomes an emulsion, it can be an aqueous adhesive. When a polyester ionomer type urethane resin is used, it is effective to blend a water-soluble epoxy compound as a crosslinking agent.
  • the epoxy resin examples include a polyamide epoxy resin obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid and epichlorohydrin.
  • a polyamide epoxy resin obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid and epichlorohydrin.
  • Commercially available products of such polyamide epoxy resins include “Smilease Resin (registered trademark) 650” and “Smilease Resin 675” (above, manufactured by Sumika Chemtex Co., Ltd.), “WS-525” (manufactured by Nippon PMC Co., Ltd.). Etc.
  • the addition amount is usually 1 part by mass to 100 parts by mass, preferably 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol resin.
  • the thickness of the adhesive layer formed from the dry-solidifying adhesive is usually 0.001 ⁇ m to 5 ⁇ m, preferably 0.01 ⁇ m to 2 ⁇ m, more preferably 0.01 ⁇ m to 0.5 ⁇ m. is there. If the adhesive layer formed from the dry-solidifying adhesive is too thick, the optically anisotropic layer tends to be defective in appearance.
  • the active energy ray-curable adhesive may contain a solvent.
  • An active energy ray-curable adhesive is an adhesive that cures upon irradiation with active energy rays.
  • Examples of the active energy ray-curable adhesive include a cationic polymerizable adhesive containing an epoxy compound and a cationic polymerization initiator, a radical polymerizable adhesive containing an acrylic curing component and a radical polymerization initiator, and an epoxy compound.
  • a cationic polymerizable curing component such as an acrylic compound
  • a radical polymerizable curing component such as an acrylic compound
  • an adhesive containing a cationic polymerization initiator and a radical polymerization initiator for example, an adhesive that is cured by irradiating an electron beam.
  • radically polymerizable active energy ray-curable adhesives containing an acrylic curing component and a radical polymerization initiator and cationic polymerizable active energy ray-curable adhesives containing an epoxy compound and a cationic polymerization initiator are provided.
  • the acrylic curing component include (meth) acrylates such as methyl (meth) acrylate and hydroxyethyl (meth) acrylate, and (meth) acrylic acid.
  • the active energy ray-curable adhesive containing an epoxy compound may further contain a compound other than the epoxy compound.
  • compounds other than epoxy compounds include oxetane compounds and acrylic compounds.
  • the radical polymerization initiator include the photopolymerization initiators described above.
  • a cationic polymerization initiator As a commercial product of a cationic polymerization initiator, “Kayarad” (registered trademark) series (manufactured by Nippon Kayaku Co., Ltd.), “Syracure UVI” series (manufactured by Dow Chemical Co., Ltd.), “CPI” series (manufactured by San Apro Corporation) “TAZ”, “BBI” and “DTS” (manufactured by Midori Chemical Co., Ltd.), “Adekaoptomer” series (manufactured by ADEKA Corporation), “RHODORSIL” (registered trademark) (manufactured by Rhodia Corporation) It is done.
  • the content of the radical polymerization initiator and the cationic polymerization initiator is usually 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the active energy ray-curable adhesive. Part.
  • the active energy ray-curable adhesive further contains an ion trap agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow regulator, a plasticizer, an antifoaming agent, and the like. May be.
  • the active energy ray is defined as an energy ray capable of decomposing a compound that generates active species to generate active species.
  • active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, and electron beams, and ultraviolet rays and electron beams are preferable.
  • Preferable ultraviolet irradiation conditions are the same as the polymerization of the polymerizable liquid crystal compound described above.
  • the refractive index difference between adjacent layers is preferably 0.20 or less, more preferably 0.15 or less, and 0.10 or less in order to reduce the influence of loss due to interface reflection. More preferably it is.
  • the polarizing layer or retardation layer of the present invention may be referred to as an optically anisotropic layer.
  • the composition for forming a polarizing layer or the composition for forming a retardation layer may be referred to as an optically anisotropic layer forming composition.
  • the manufacturing method of the polarizing layer and the retardation layer may be the same or different.
  • An optically anisotropic layer can be formed by applying the optically anisotropic layer forming composition on the transparent substrate or the alignment film.
  • a method for applying the optically anisotropic layer forming composition on the substrate extrusion coating method, direct gravure coating method, reverse gravure coating method, CAP coating method, slit coating method, micro gravure method, die coating method, An ink jet method is exemplified.
  • coating using coaters such as a dip coater, a bar coater, a spin coater, etc. are mentioned.
  • a coating method by a microgravure method, an ink jet method, a slit coating method, or a die coating method is preferable, and when applying to a single-wafer substrate such as glass, uniformity is achieved.
  • a high spin coating method is preferred.
  • a composition for forming a photo-alignment film or the like is applied to a substrate to form an alignment film, and the composition for forming an optical anisotropic layer is continuously formed on the obtained alignment film. It can also be applied.
  • drying of composition for forming optically anisotropic layer examples include natural drying, ventilation drying, heat drying, reduced pressure drying, and a combination thereof. Of these, natural drying or heat drying is preferred.
  • the drying temperature is preferably in the range of 0 to 200 ° C, more preferably in the range of 20 to 150 ° C, and still more preferably in the range of 50 to 130 ° C.
  • the drying time is preferably 10 seconds to 20 minutes, more preferably 30 seconds to 10 minutes.
  • the composition for forming a photo-alignment film and the alignment polymer composition can be similarly dried.
  • Photopolymerization is preferred as a method for polymerizing the polymerizable liquid crystal compound.
  • Photopolymerization is carried out by irradiating an active energy ray to a laminate in which a composition for forming an optically anisotropic layer containing a polymerizable liquid crystal compound is applied on a substrate or an alignment film.
  • the active energy rays to be irradiated include the type of polymerizable liquid crystal compound contained in the dry film (particularly, the type of photopolymerizable functional group of the polymerizable liquid crystal compound), and a photopolymerization initiator when it contains a photopolymerization initiator. Depending on the type and amount thereof, it is appropriately selected.
  • Specific examples include one or more kinds of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, ⁇ -rays, ⁇ -rays, and ⁇ -rays.
  • ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction and that a photopolymerization apparatus widely used in this field can be used. It is preferable to select the kind of the liquid crystalline compound.
  • Examples of the light source of the active energy ray include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, and a wavelength range.
  • Examples include LED light sources that emit light of 380 to 440 nm, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, and the like.
  • Ultraviolet irradiation intensity is usually, 10mW / cm 2 ⁇ 3,000mW / cm 2.
  • the ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the cationic polymerization initiator or radical polymerization initiator.
  • the time for light irradiation is usually 0.1 second to 10 minutes, preferably 0.1 second to 5 minutes, more preferably 0.1 seconds to 3 minutes, and further preferably 0.1 seconds. ⁇ 1 minute.
  • the accumulated light quantity is usually 10 mJ / cm 2 to 3,000 mJ / cm 2 , preferably 50 mJ / cm 2 to 2,000 mJ / cm 2 , more preferably it is 100mJ / cm 2 ⁇ 1,000mJ / cm 2.
  • the integrated light quantity is less than this range, the polymerizable liquid crystal compound is not sufficiently cured.
  • the elliptically polarizing plate including the optically anisotropic layer may be colored.
  • the present invention can provide a display device including the retardation plate of the present invention as one embodiment.
  • the display device may include the elliptically polarizing plate according to the embodiment.
  • the display device is a device having a display mechanism, and includes a light emitting element or a light emitting device as a light emitting source.
  • Display devices include liquid crystal display devices, organic electroluminescence (EL) display devices, inorganic electroluminescence (EL) display devices, touch panel display devices, electron emission display devices (field emission display devices (FED, etc.), surface field emission display devices.
  • the liquid crystal display device includes any of a transmissive liquid crystal display device, a transflective liquid crystal display device, a reflective liquid crystal display device, a direct view liquid crystal display device, a projection liquid crystal display device, and the like. These display devices may be a display device that displays a two-dimensional image, or may be a stereoscopic display device that displays a three-dimensional image. In particular, an organic EL display device and a touch panel display device are preferable as the display device including the retardation layer and the polarizing layer according to the present invention.
  • % and “part” in Examples and Comparative Examples are “% by mass” and “part by mass”.
  • the polymer films, apparatuses and measurement methods used in Examples 1 to 6 and Comparative Examples 1 and 2 are as follows.
  • -ZF-14 made by Nippon Zeon Co., Ltd. was used for the cycloolefin polymer (COP) film.
  • -AGF-B10 manufactured by Kasuga Electric Co., Ltd. was used as the corona treatment device.
  • the corona treatment was performed once using the above corona treatment device under the conditions of an output of 0.3 kW and a treatment speed of 3 m / min.
  • -SPOT CURE SP-7 with a polarizer unit manufactured by USHIO INC. was used as the polarized UV irradiation device.
  • -Olympus Corporation LEXT was used for the laser microscope.
  • -As the high-pressure mercury lamp, UNICURE VB-15201BY-A manufactured by USHIO INC. was used.
  • the in-plane retardation value and the axial angle of the retardation layer / polarizing layer were measured using KOBRA-WPR manufactured by Oji Scientific Instruments.
  • the optical properties of the polarizing layer were measured using UV-3150 manufactured by Shimadzu Corporation.
  • the film thickness was measured using an ellipsometer M-220 manufactured by JASCO Corporation.
  • composition for forming alignment layers A and B is prepared by mixing 5 parts of a photoalignable material having the following structure and 95 parts of cyclopentanone (solvent) as components and stirring the resulting mixture at 80 ° C. for 1 hour. Got.
  • the weight average molecular weight of the following photo-alignment material used for the alignment layer A is 30000
  • the molecular weight of the following photo-alignment material used for the alignment film B is as shown in Table 1.
  • a polymerizable liquid crystal compound A having the following structure, a polyacrylate compound (leveling agent) (BYK-361N; manufactured by BYK-Chemie) and the following polymerization initiator are mixed as components to obtain a composition for forming a retardation layer. It was.
  • Polymerizable liquid crystal compound A The polymerizable liquid crystal compound A was produced by the method described in JP 2010-31223 A. The amount of the polyacrylate compound was 0.01 parts with respect to 100 parts of the polymerizable liquid crystal compound A.
  • a polymerization initiator 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (Irgacure 369 (Irg369); manufactured by BASF Japan Ltd.) with respect to 100 parts of the polymerizable liquid crystal compound A 6 parts were added. Furthermore, N-methyl-2-pyrrolidone (NMP) was added as a solvent so that the solid content concentration was 13%, and the mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming a retardation layer.
  • NMP N-methyl-2-pyrrolidone
  • composition for forming polarizing layer (Preparation of composition for forming polarizing layer) The following components were mixed and stirred at 80 ° C. for 1 hour to obtain a polarizing layer forming composition.
  • dichroic dye an azo dye described in Examples of JP2013-101328A was used.
  • the polymerizable liquid crystal compounds represented by the formulas (1-6) and (1-7) were produced according to the method described in lub et al., Recl.Trav.Chim.Pays-Bas, 115, 321-328 (1996). .
  • Polymerizable liquid crystal compound 75 copies 25 copies
  • Dichroic dye 1 Polyazo dye; Compound (1-8) 2.5 parts Compound (1-5) 2.5 parts Compound (1-16) 2.5 parts
  • a polymerization initiator 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (Irgacure 369; manufactured by Ciba Specialty Chemicals) 6 parts leveling agent; Polyacrylate compound (BYK-361N; manufactured by BYK-Chemie) 1.2 parts solvent; o-xylene 250 parts
  • Example 1 [Production of retardation layer] A composition for forming alignment layer A is applied onto a COP film (ZF-14-50) manufactured by Nippon Zeon Co., Ltd., dried at 80 ° C. for 1 minute, and polarized UV irradiation apparatus (SPOT CURE SP-7; Polarized UV exposure was performed at an axial angle of 45 ° with an integrated light amount of 100 mJ / cm 2 . When the film thickness of the obtained alignment layer A was measured with an ellipsometer, it was 100 nm. Subsequently, the composition for forming a retardation layer prepared above was applied onto the alignment layer A using a bar coater, dried at 120 ° C.
  • SPOT CURE SP-7 Polarized UV irradiation apparatus
  • a high-pressure mercury lamp (Unicure VB-15201BY-A, By using the Ushio Electric Co., Ltd.) and irradiating ultraviolet rays from the surface side coated with the composition of the retardation layer (accumulated light amount at a wavelength of 313 nm: 500 mJ / cm 2 in a nitrogen atmosphere)
  • a laminate including a phase difference layer was formed.
  • the laminate including the obtained retardation layer was processed once using a corona treatment apparatus (AGF-B10, manufactured by Kasuga Denki Co., Ltd.) under conditions of an output of 0.3 kW and a processing speed of 3 m / min. .
  • the composition for forming the alignment layer B was applied with a bar coater, dried at 80 ° C. for 1 minute, and using a polarized UV irradiation apparatus (SPOT CURE SP-7; manufactured by USHIO INC.), Polarized UV exposure was carried out with an integrated light quantity of 100 mJ / cm 2 and an axial angle of 90 °. It was 150 nm when the film thickness of the obtained alignment layer B was measured with the ellipsometer. After applying the composition for forming a polarizing layer using a bar coater, it was dried in a drying oven set at 120 ° C.
  • SPOT CURE SP-7 polarized UV irradiation apparatus
  • a dry coating film in which the polymerizable liquid crystal compound and the dichroic dye were aligned.
  • the dried coating film is naturally cooled to room temperature, and then irradiated with ultraviolet rays using a high-pressure mercury lamp (Unicure VB-15201BY-A, manufactured by USHIO INC.) (In a nitrogen atmosphere, wavelength: 365 nm, integrated light quantity at wavelength 365 nm): 1000 mJ / cm 2 ) to obtain an elliptically polarizing plate including a retardation layer and a polarizing layer, in which a polymerizable liquid crystal compound was polymerized to prepare a polarizing layer.
  • a high-pressure mercury lamp Unicure VB-15201BY-A, manufactured by USHIO INC.
  • the slow axis direction of the retardation layer was 45 °
  • the absorption axis angle of the polarizing layer was 0 °. It is ideal that the angle formed by the retardation axis of the retardation plate and the absorption axis of the polarizing plate used in the circularly polarizing plate is 45 °, but the retardation layer of the produced elliptical polarizing plate is absorbed by the retardation axis and the polarizing layer.
  • the angle formed by the axes was 45 °, and it was found that no axis deviation occurred.
  • the degree of polarization and single transmittance of the obtained elliptically polarizing plate were measured as follows.
  • the transmittance (T 1 ) in the transmission axis direction and the transmittance (T 2 ) in the absorption axis direction are doubled using a spectrophotometer (UV-3150, manufactured by Shimadzu Corporation) with a folder with a polarizer. Measurement was performed by a beam method in a wavelength range of 380 to 680 nm in 2 nm steps.
  • Example 2 to 6 An elliptically polarizing plate is formed in the same manner as in Example 1 except that the thickness of the alignment layer B is adjusted by changing the thickness of the wire bar when the photo-orientation material is applied with a bar coater during the formation of the alignment layer B. Was made.
  • Table 1 shows the results of measuring the optical characteristics of the polarizing layers described in the above-mentioned Examples and Comparative Examples.
  • the elliptically polarizing plate of the example could be manufactured without causing axial misalignment of the polarizing layer and occurrence of alignment defects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

[Problem] To provide an elliptical polarizing plate in which alignment defects or optical axis deviation is suppressed. [Solution] In this elliptical polarizing plate, an alignment layer A, a phase difference layer, an alignment layer B, and a polarization layer are provided in this order on a transparent substrate, the optical axes of the polarization layer and the phase difference layer are essentially non-parallel, the phase difference layer is a film configured from a polymer of a polymerizable liquid crystal compound, the alignment layer B is a film having a thickness of 80 nm to 800 nm, and the polarization layer is obtained by aligning a dichroic pigment in a film configured from a polymer of a polymerizable liquid crystal compound.

Description

楕円偏光板Elliptical polarizing plate
本発明は、楕円偏光板に関する。また、本発明は、楕円偏光板を備える表示装置および楕円偏光板の製造方法にも関する。 The present invention relates to an elliptically polarizing plate. The present invention also relates to a display device including an elliptically polarizing plate and a method for manufacturing the elliptically polarizing plate.
 フラットパネル表示装置(FPD)には、偏光板や位相差板等の光学フィルムが用いられている。このような偏光板としては、ポリビニルアルコール系樹脂フィルムにヨウ素等の二色性色素が配向吸着された偏光層と保護フィルムからなる偏光板が広く用いられている。位相差板としては、シクロオレフィン系樹脂フィルムやポリカーボネート系樹脂フィルムまたは、トリアセチルセルロース系樹脂フィルムを延伸した位相差板が広く知られている。近年の薄型化に伴い、重合性液晶化合物を含む組成物を基材に塗布することにより製造される薄膜の偏光板ならびに位相差板が開発されている。例えば、特許文献1には、逆波長分散性を示す位相差膜、特許文献2には、高い偏光性能を示す偏光層が開示されている。また、更に薄膜化のために、例えば特許文献3には保護層を介して偏光層と位相差膜を形成する技術が開発されている。これらの偏光層と位相差層とは互いに積層して楕円偏光板として用いられることが多い。 For flat panel display (FPD), optical films such as polarizing plates and retardation plates are used. As such a polarizing plate, a polarizing plate comprising a polarizing layer in which a dichroic dye such as iodine is oriented and adsorbed on a polyvinyl alcohol resin film and a protective film is widely used. As a retardation plate, a retardation plate obtained by stretching a cycloolefin resin film, a polycarbonate resin film, or a triacetyl cellulose resin film is widely known. Along with the recent reduction in thickness, a thin film polarizing plate and a retardation plate produced by applying a composition containing a polymerizable liquid crystal compound to a substrate have been developed. For example, Patent Document 1 discloses a retardation film that exhibits reverse wavelength dispersion, and Patent Document 2 discloses a polarizing layer that exhibits high polarization performance. In order to further reduce the thickness, for example, Patent Document 3 discloses a technique for forming a polarizing layer and a retardation film via a protective layer. These polarizing layers and retardation layers are often laminated together and used as an elliptically polarizing plate.
特表2010-537955号公報Special table 2010-537955 特表2013-101328号公報Special table 2013-101328 gazette 特表2014-63143号公報Special table 2014-63143 gazette
 しかしながら、このようにして得られる従前の楕円偏光板は、偏光層に配向欠陥や光軸ズレが生じるという問題があった。偏光層の配向欠陥は、欠陥部分で楕円偏光板としての機能を損なう。また、光軸ズレは楕円偏光板としての機能を損なう。
 本発明者らが検討した結果、配向欠陥や光軸ズレが抑制された偏光板を提供し得ることを見出した。
 本発明は、偏光層の配向欠陥や光軸ズレが抑制された楕円偏光板を提供することを目的とする。
However, the conventional elliptically polarizing plate obtained in this way has a problem that an alignment defect or an optical axis shift occurs in the polarizing layer. The alignment defect of the polarizing layer impairs the function as an elliptically polarizing plate at the defect portion. Further, the optical axis shift impairs the function as an elliptically polarizing plate.
As a result of studies by the present inventors, it has been found that a polarizing plate in which alignment defects and optical axis misalignment are suppressed can be provided.
An object of this invention is to provide the elliptically polarizing plate by which the orientation defect and optical axis shift of the polarizing layer were suppressed.
 即ち、本発明は、以下の[1]~[13]を提供するものである。
[1]透明基材上に、配向層A、位相差層、配向層Bおよび偏光層がこの順で設けられた楕円偏光板であって、
前記偏光層と前記位相差層の光軸が実質的に平行関係でなく、
前記位相差層は、重合性液晶化合物の重合体から構成される膜であり、
前記配向層Bが、80nm~800nmの厚さを有する膜であり、
前記偏光層が、重合性液晶化合物の重合体から構成される膜中に二色性色素が分散配向した膜である
楕円偏光板。
[2] 前記透明基材、配向層A、位相差層、配向層B、偏光層の平均屈折率が全て1.4~1.7の範囲である[1]記載の楕円偏光板。
[3] 隣接する層の屈折率差が0.2以下である[1]または[2]記載の楕円偏光板。
[4] 前記偏光層と位相差層の光軸のなす角が40°~50°の範囲である[1]~[3]のいずれかに記載の楕円偏光板。
[5] 前記配向層A及び配向層Bが共に光配向膜である[1]~[4]のいずれかに記載の楕円偏光板。
[6] 前記配向層A及び配向層Bがシンナモイル基を含有する光配向膜である[1]~[5]のいずれかに記載の楕円偏光板。
[7] 前記配向層A及び配向層Bが重量平均分子量20000~50000である樹脂を含有する光配向膜である[1]~[6]のいずれかに記載の楕円偏光板。
[8] 前記偏光層が、スメクチック液晶状態の重合体から構成される膜である[1]~[7]のいずれかに記載の楕円偏光板。
[9] 前記二色性色素が、アゾ色素である[1]~[8]のいずれかに記載の楕円偏光板。
[10] 前記位相差層が以下の式を全てみたす[1]~[9]のいずれかに記載の楕円偏光板。
  100nm<Re(550)<160nm …(1)
  Re(450)/Re(550)≦1.0 …(2)
  1.00≦Re(650)/Re(550) …(3)
 (Re(450)、Re(550)、Re(650)はそれぞれ波長450nm、550nm、650nmにおける面内リタデーションを表す。)
[11] [1]~[10]のいずれかに記載の楕円偏光板を備えた液晶表示装置。
[12] [1]~[11]のいずれかに記載の楕円偏光板を備えた有機EL表示装置。
[13] 透明基材上に、
配向材料Aと溶剤を含む組成物を塗布し、乾燥後に偏光UVを照射して配向層Aを形成する工程(1)と、
前記配向層A上に、重合性液晶化合物、重合開始剤及び溶剤を含有した組成物を塗布して、乾燥後にUV照射して液晶状態で重合させる事で位相差層を形成する工程(2)と、
配向材料Bと溶剤を含む組成物を塗布し、乾燥後に偏光UVを照射して配向層Bを形成する工程(3)と、
前記配向層B上に、重合性液晶化合物、二色性色素、重合開始剤及び溶剤を含有した組成物を塗布して、乾燥後にUV照射して液晶状態で重合させる事で偏光層を形成する工程(4)と、を有する楕円偏光板の製造方法。
That is, the present invention provides the following [1] to [13].
[1] An elliptically polarizing plate in which an alignment layer A, a retardation layer, an alignment layer B and a polarizing layer are provided in this order on a transparent substrate,
The optical axis of the polarizing layer and the retardation layer is not substantially parallel,
The retardation layer is a film composed of a polymer of a polymerizable liquid crystal compound,
The alignment layer B is a film having a thickness of 80 nm to 800 nm,
An elliptically polarizing plate in which the polarizing layer is a film in which a dichroic dye is dispersed and oriented in a film composed of a polymer of a polymerizable liquid crystal compound.
[2] The elliptically polarizing plate according to [1], wherein the transparent base material, the alignment layer A, the retardation layer, the alignment layer B, and the polarizing layer all have an average refractive index in the range of 1.4 to 1.7.
[3] The elliptically polarizing plate according to [1] or [2], wherein the difference in refractive index between adjacent layers is 0.2 or less.
[4] The elliptically polarizing plate according to any one of [1] to [3], wherein an angle formed by an optical axis of the polarizing layer and the retardation layer is in a range of 40 ° to 50 °.
[5] The elliptically polarizing plate according to any one of [1] to [4], wherein the alignment layer A and the alignment layer B are both photo-alignment films.
[6] The elliptically polarizing plate according to any one of [1] to [5], wherein the alignment layer A and the alignment layer B are photo-alignment films containing a cinnamoyl group.
[7] The elliptically polarizing plate according to any one of [1] to [6], wherein the alignment layer A and the alignment layer B are photo-alignment films containing a resin having a weight average molecular weight of 20000 to 50000.
[8] The elliptically polarizing plate according to any one of [1] to [7], wherein the polarizing layer is a film composed of a polymer in a smectic liquid crystal state.
[9] The elliptically polarizing plate according to any one of [1] to [8], wherein the dichroic dye is an azo dye.
[10] The elliptically polarizing plate according to any one of [1] to [9], wherein the retardation layer satisfies all of the following formulas.
100 nm <Re (550) <160 nm (1)
Re (450) / Re (550) ≦ 1.0 (2)
1.00 ≦ Re (650) / Re (550) (3)
(Re (450), Re (550), and Re (650) represent in-plane retardation at wavelengths of 450 nm, 550 nm, and 650 nm, respectively)
[11] A liquid crystal display device comprising the elliptically polarizing plate according to any one of [1] to [10].
[12] An organic EL display device comprising the elliptically polarizing plate according to any one of [1] to [11].
[13] On the transparent substrate,
Applying a composition containing an alignment material A and a solvent, and irradiating polarized UV after drying to form an alignment layer A;
Step (2) of forming a retardation layer by applying a composition containing a polymerizable liquid crystal compound, a polymerization initiator and a solvent on the alignment layer A, drying and then polymerizing in a liquid crystal state by UV irradiation. When,
Applying a composition containing an alignment material B and a solvent, irradiating polarized UV after drying to form an alignment layer B;
On the alignment layer B, a composition containing a polymerizable liquid crystal compound, a dichroic dye, a polymerization initiator and a solvent is applied, and after drying, a UV light is irradiated and polymerized in a liquid crystal state to form a polarizing layer. And a manufacturing method of an elliptically polarizing plate having step (4).
 本発明によれば、位相差層と偏光層の光軸ズレと配向欠陥発生が抑制された楕円偏光板を提供することが可能となる。 According to the present invention, it is possible to provide an elliptically polarizing plate in which the optical axis misalignment between the retardation layer and the polarizing layer and the occurrence of alignment defects are suppressed.
 以下、本発明の実施形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. Note that the scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention.
 本発明の楕円偏光板は、透明基材上に、配向層A、位相差層、配向層B、偏光層がこの順で設けられた楕円偏光板である。 The elliptically polarizing plate of the present invention is an elliptically polarizing plate in which an alignment layer A, a retardation layer, an alignment layer B, and a polarizing layer are provided in this order on a transparent substrate.
 [透明基材]
 透明基材としては、ガラス基材及びフィルム基材が挙げられ、フィルム基材が好ましい、連続的に製造できる点で長尺のロール状フィルムがより好ましい。
 フィルム基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド及びポリフェニレンオキシド;等のプラスチックが挙げられる。
 市販のセルロースエステル基材としては、“フジタックフィルム”(富士写真フイルム株式会社製);“KC8UX2M”、“KC8UY”及び“KC4UY”(以上、コニカミノルタオプト株式会社製)等が挙げられる。
 市販の環状オレフィン系樹脂としては、“Topas”(登録商標)(Ticona社(独)製)、“アートン”(登録商標)(JSR株式会社製)、“ゼオノア(ZEONOR)”(登録商標)、“ゼオネックス(ZEONEX)”(登録商標)(以上、日本ゼオン株式会社製)及び“アペル”(登録商標)(三井化学株式会社製)が挙げられる。このような環状オレフィン系樹脂を、溶剤キャスト法、溶融押出法等の公知の手段により製膜して、基材とすることができる。市販されている環状オレフィン系樹脂基材を用いることもできる。市販の環状オレフィン系樹脂基材としては、“エスシーナ”(登録商標)、“SCA40”(登録商標)(以上、積水化学工業株式会社製)、“ゼオノアフィルム”(登録商標)(オプテス株式会社製)及び“アートンフィルム”(登録商標)(JSR株式会社製)が挙げられる。
 基材の厚さは、実用的な取り扱いが容易である点では、薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。基材の厚さは、通常、5μm~300μmであり、好ましくは20μm~200μmである。
[Transparent substrate]
As a transparent base material, a glass base material and a film base material are mentioned, A film base material is preferable. A long roll-like film is more preferable at the point which can manufacture continuously.
Examples of the resin constituting the film substrate include polyolefins such as polyethylene, polypropylene, norbornene polymers, cyclic olefin resins, polyvinyl alcohol, polyethylene terephthalate, polymethacrylates, polyacrylates, triacetylcellulose, and diacetylcellulose. And cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide and polyphenylene oxide;
Examples of the commercially available cellulose ester base material include “Fujitac Film” (manufactured by Fuji Photo Film Co., Ltd.); “KC8UX2M”, “KC8UY” and “KC4UY” (manufactured by Konica Minolta Opto Co., Ltd.).
Commercially available cyclic olefin-based resins include “Topas” (registered trademark) (manufactured by Ticona (Germany)), “Arton” (registered trademark) (manufactured by JSR Corporation), “ZEONOR” (registered trademark), “ZEONEX” (registered trademark) (manufactured by Nippon Zeon Co., Ltd.) and “Apel” (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be mentioned. Such a cyclic olefin-based resin can be formed into a substrate by forming a film by a known means such as a solvent casting method or a melt extrusion method. Commercially available cyclic olefin resin base materials can also be used. Commercially available cyclic olefin-based resin base materials include “Essina” (registered trademark), “SCA40” (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), “Zeonor Film” (registered trademark) (manufactured by Optes Corporation). ) And “Arton Film” (registered trademark) (manufactured by JSR Corporation).
The thickness of the base material is preferably thin in view of easy practical handling, but if it is too thin, the strength tends to decrease and the workability tends to be poor. The thickness of the substrate is usually 5 μm to 300 μm, preferably 20 μm to 200 μm.
[配向層A(位相差層を形成するための配向膜)]
透明基材上には、まず配向層Aが形成されている。配向層A(又は配向膜Aと呼ぶ)は、位相差層の形成に用いる重合性液晶化合物を所望の方向に配向させる配向規制力を有する層である。
 配向層Aとしては、後述する液晶化合物の塗布等により溶解しない溶剤耐性を有し、また、溶剤の除去や後述の重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。配向膜の種類としては、ラビング配向膜、光配向膜および、表面に凹凸パターンや複数の溝を有するグルブ配向膜等が挙げられる。長尺のロール状フィルムに適用する場合には、配向方向を容易に制御できる点で、偏光照射により配向規制力を誘起される光配向膜が好ましい。
 このような配向膜は、重合性液晶化合物の配向を容易にする。また、配向膜の種類やラビング条件や光照射条件によって、水平配向、ハイブリッド配向、および傾斜配向等の様々な配向の制御が可能である。
位相差層を形成するために用いる配向層Aは、後述する配向層Bに記載の配向膜を使用することが可能である。配向層Bは配向層Aと同じであっても、異なっていてもよい。
[Alignment layer A (alignment film for forming retardation layer)]
An alignment layer A is first formed on the transparent substrate. The alignment layer A (or alignment film A) is a layer having an alignment regulating force that aligns the polymerizable liquid crystal compound used for forming the retardation layer in a desired direction.
As the alignment layer A, those having solvent resistance that does not dissolve due to application of a liquid crystal compound described later, and heat resistance in heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound described below are preferable. Examples of the alignment film include a rubbing alignment film, a photo-alignment film, and a groove alignment film having a concavo-convex pattern and a plurality of grooves on the surface. When applied to a long roll-shaped film, a photo-alignment film in which an alignment regulating force is induced by irradiation with polarized light is preferable in that the alignment direction can be easily controlled.
Such an alignment film facilitates the alignment of the polymerizable liquid crystal compound. In addition, various orientations such as horizontal orientation, hybrid orientation, and tilt orientation can be controlled depending on the type of orientation film, rubbing conditions, and light irradiation conditions.
As the alignment layer A used for forming the retardation layer, the alignment film described in the alignment layer B described later can be used. The alignment layer B may be the same as or different from the alignment layer A.
 配向層Aの厚さは、通常10~10000nm(0.01μm~10μm)の範囲であり、好ましくは80~800nm(0.08μm~0.8μm)の範囲であり、さらに好ましくは100~500nm(0.1μm~0.5μm)の範囲である。この膜厚範囲内で配向層Aを形成する事により、配向欠陥を抑制する事が可能である。
 [位相差層]
The thickness of the alignment layer A is usually in the range of 10 to 10000 nm (0.01 μm to 10 μm), preferably in the range of 80 to 800 nm (0.08 μm to 0.8 μm), more preferably 100 to 500 nm ( 0.1 μm to 0.5 μm). By forming the alignment layer A within this film thickness range, alignment defects can be suppressed.
[Phase difference layer]
 本発明の楕円偏光板は配向層Aの次に位相差層を有する。この位相差層は、重合性液晶化合物を含む組成物(以下、位相差層形成用組成物とも呼ぶ)を配向層A上に塗布して塗布層を形成し、この塗布層において重合性液晶化合物を配向した状態とし、この状態で重合硬化させて、重合体からなる層とすることが、薄型化ならびに波長分散特性を任意に設計できる点で好ましい。また、位相差層の形成用に用いられる組成物(以下、位相差層形成用組成物という)は、溶剤、光重合開始剤、光増感剤、重合禁止剤、レベリング剤及び密着性向上剤等をさらに含み得る。 The elliptically polarizing plate of the present invention has a retardation layer next to the alignment layer A. The retardation layer is formed by applying a composition containing a polymerizable liquid crystal compound (hereinafter also referred to as a retardation layer forming composition) onto the alignment layer A to form an application layer, and the polymerizable liquid crystal compound is formed in the application layer. It is preferable from the viewpoint that the layer can be made thin and the wavelength dispersion characteristic can be arbitrarily designed. A composition used for forming a retardation layer (hereinafter referred to as a retardation layer forming composition) is a solvent, a photopolymerization initiator, a photosensitizer, a polymerization inhibitor, a leveling agent, and an adhesion improver. And the like.
 本発明の楕円偏光板における位相差層は、通常、基材上に形成された配向層Aに、位相差層形成用組成物を塗布し、上記光学異方層形成用組成物に含まれる重合性液晶化合物を重合することによって形成される。位相差層は、通常、重合性液晶化合物が配向した状態で硬化した、厚さが5μm以下の膜であり、好ましくは重合性液晶化合物が基材面に対して水平方向に配向した状態で硬化した液晶硬化膜である。 The retardation layer in the elliptically polarizing plate of the present invention is usually a polymerization contained in the optical anisotropic layer forming composition by applying the retardation layer forming composition to the alignment layer A formed on the substrate. It is formed by polymerizing a conductive liquid crystal compound. The retardation layer is usually a film having a thickness of 5 μm or less cured with the polymerizable liquid crystal compound aligned, and preferably cured with the polymerizable liquid crystal compound aligned in the horizontal direction with respect to the substrate surface. This is a cured liquid crystal film.
重合性液晶化合物が基材面に対して水平方向に配向した状態で硬化した位相差層は、波長λnmの光に対する面内位相差であるR(λ)が、下記式(1)に示される光学特性を満たすことが好ましく、下記式(1)、下記式(2)及び下記式(3)で示される光学特性を満たすことがより好ましい。
  100nm<Re(550)<160nm …(1)
(式中、Re(550)は波長550nmの光に対する面内位相差値(面内リタデーション)を表す。)
  Re(450)/Re(550)≦1.0 …(2)
  1.00≦Re(650)/Re(550) …(3)
(式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。) 
位相差層の「Re(450)/Re(550)」が1.0を超えると、当該位相差層を備える楕円偏光板での短波長側での光抜けが大きくなることから1.0以下が好ましく、より好ましくは0.95以下、さらに好ましくは0.92以下である。
The retardation layer cured in a state where the polymerizable liquid crystal compound is aligned in the horizontal direction with respect to the substrate surface has an in-plane retardation R (λ) with respect to light having a wavelength of λ nm as shown in the following formula (1). It is preferable to satisfy the optical characteristics, and it is more preferable to satisfy the optical characteristics represented by the following formula (1), the following formula (2), and the following formula (3).
100 nm <Re (550) <160 nm (1)
(In the formula, Re (550) represents an in-plane retardation value (in-plane retardation) for light having a wavelength of 550 nm.)
Re (450) / Re (550) ≦ 1.0 (2)
1.00 ≦ Re (650) / Re (550) (3)
(Where Re (450) is the in-plane retardation value for light having a wavelength of 450 nm, Re (550) is the in-plane retardation value for light having a wavelength of 550 nm, and Re (650) is the in-plane retardation value for light having a wavelength of 650 nm. Represents the phase difference value.)
When “Re (450) / Re (550)” of the retardation layer exceeds 1.0, light leakage on the short wavelength side in the elliptically polarizing plate provided with the retardation layer becomes large, so that it is 1.0 or less. Is more preferable, 0.95 or less, still more preferably 0.92 or less.
 位相差層の面内位相差値は、位相差層の厚さによって調整することができる。面内位相差値は下記式(4)によって決定されることから、所望の面内位相差値(Re(λ))を得るには、Δn(λ)と膜厚dとを調整すればよい。位相差層の厚さは、0.5μm~5μmが好ましく、1μm~3μmがより好ましい。位相差層の厚さは、干渉膜厚計、レーザー顕微鏡又は触針式膜厚計により測定することができる。尚、Δn(λ)は、後述する重合性液晶化合物の分子構造に依存する。
  Re(λ)=d×Δn(λ) …(4)
(式中、Re(λ)は波長λnmにおける面内位相差値を表し、dは膜厚を表し、Δn(λ)は波長λnmにおける複屈折率を表す。)
The in-plane retardation value of the retardation layer can be adjusted by the thickness of the retardation layer. Since the in-plane retardation value is determined by the following equation (4), Δn (λ) and film thickness d may be adjusted to obtain a desired in-plane retardation value (Re (λ)). . The thickness of the retardation layer is preferably 0.5 μm to 5 μm, more preferably 1 μm to 3 μm. The thickness of the retardation layer can be measured with an interference film thickness meter, a laser microscope or a stylus thickness meter. Δn (λ) depends on the molecular structure of the polymerizable liquid crystal compound described later.
Re (λ) = d × Δn (λ) (4)
(In the formula, Re (λ) represents the in-plane retardation value at the wavelength λnm, d represents the film thickness, and Δn (λ) represents the birefringence at the wavelength λnm.)
 [位相差層形成用の重合性液晶化合物]
 重合性液晶化合物とは、重合性官能基、特に光重合性官能基を有する液晶化合物である。光重合性官能基とは、光重合開始剤から発生した活性ラジカルや酸などによって重合反応に関与し得る基のことをいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよいが、緻密な膜厚制御が可能な点でサーモトロピック性液晶が好ましい。また、サーモトロピック性液晶における相秩序構造としてはネマチック相構造でもスメクチック相構造でもよい。
[Polymerizable liquid crystal compound for retardation layer formation]
The polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable functional group, particularly a photopolymerizable functional group. The photopolymerizable functional group refers to a group that can participate in a polymerization reaction by an active radical or an acid generated from a photopolymerization initiator. Examples of the photopolymerizable functional group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable. The thermic liquid crystal may be either a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic liquid crystal is preferred in terms of enabling precise film thickness control. Further, the phase order structure in the thermotropic liquid crystal may be a nematic phase structure or a smectic phase structure.
 本発明において、位相差層を形成する重合性液晶化合物としては、前述した逆波長分散性を発現する点で下記式(I)の構造を有する化合物が特に好ましい。
Figure JPOXMLDOC01-appb-I000001
In the present invention, the polymerizable liquid crystal compound forming the retardation layer is particularly preferably a compound having the structure of the following formula (I) from the viewpoint of exhibiting the above-described reverse wavelength dispersion.
Figure JPOXMLDOC01-appb-I000001
 式(I)中、Arは2価の芳香族基を表し、該2価の芳香族基中には窒素原子、酸素原子、硫黄原子のうち少なくとも1つ以上が含まれる。
 GおよびGはそれぞれ独立に、2価の芳香族基または2価の脂環式炭化水素基を表す。ここで、該2価の芳香族基または2価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基に置換されていてもよく、該2価の芳香族基または2価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子または窒素原子に置換されていてもよい。
 L、L、BおよびBはそれぞれ独立に、単結合または二価の連結基である。
 k、lは、それぞれ独立に0~3の整数を表し、1≦k+lの関係を満たす。ここで、2≦k+lである場合、BおよびB、GおよびGは、それぞれ互いに同一であっても異なっていてもよい。
 EおよびEはそれぞれ独立に、炭素数1~17のアルカンジイル基を表し、ここで、アルカンジイル基に含まれる水素原子は、ハロゲン原子で置換されていてもよく、該アルカンジイル基に含まれる-CH-は、-O-、-Si-で置換されていてもよい。
 PおよびPは互いに独立に、重合性基または水素原子を表し、少なくとも1つは重合性基である。
In formula (I), Ar represents a divalent aromatic group, and the divalent aromatic group contains at least one of a nitrogen atom, an oxygen atom and a sulfur atom.
G 1 and G 2 each independently represents a divalent aromatic group or a divalent alicyclic hydrocarbon group. Here, the hydrogen atom contained in the divalent aromatic group or divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, carbon The carbon atom constituting the divalent aromatic group or divalent alicyclic hydrocarbon group which may be substituted with an alkoxy group, cyano group or nitro group of 1 to 4 is an oxygen atom or a sulfur atom Alternatively, it may be substituted with a nitrogen atom.
L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.
k and l each independently represent an integer of 0 to 3, and satisfy the relationship of 1 ≦ k + 1. Here, when 2 ≦ k + 1, B 1 and B 2 , G 1 and G 2 may be the same or different from each other.
E 1 and E 2 each independently represents an alkanediyl group having 1 to 17 carbon atoms, wherein a hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom, The —CH 2 — contained may be substituted with —O— or —Si—.
P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
 GおよびGは、それぞれ独立に、好ましくは、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-フェニル基、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-シクロヘキシル基であり、より好ましくはメチル基で置換された1,4-フェニル基、無置換の1,4-フェニル基、または無置換の1,4-trans-シクロヘキシル基であり、特に好ましくは無置換の1,4-フェニル基、または無置換の1,4-trans-シクロヘキシル基である。
 また、複数存在するGおよびGのうち少なくとも1つは2価の脂環式炭化水素基であることが好ましく、また、LまたはLに結合するGおよびGのうち少なくとも1つは2価の脂環式炭化水素基であることがより好ましい。
G 1 and G 2 are each independently preferably a 1,4-phenyl group which may be substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, 1,4-cyclohexyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably 1,4 substituted with a methyl group A phenyl group, an unsubstituted 1,4-phenyl group, or an unsubstituted 1,4-trans-cyclohexyl group, particularly preferably an unsubstituted 1,4-phenyl group or an unsubstituted 1,4- a trans-cyclohexyl group;
In addition, at least one of a plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2 More preferably, it is a divalent alicyclic hydrocarbon group.
 LおよびLはそれぞれ独立に、好ましくは、単結合、-O-、-CHCH-、-CHO-、-COO-、-OCO-、-N=N-、-CR=CR-、または-C≡C-である。ここでRおよびRは炭素数1~4のアルキル基または水素原子を表す。LおよびLはそれぞれ独立に、より好ましくは単結合、-O-、-CHCH-、-COO-、または-OCO-である。 L 1 and L 2 are each independently preferably a single bond, —O—, —CH 2 CH 2 —, —CH 2 O—, —COO—, —OCO—, —N═N—, —CR a = CR b- , or -C≡C-. Here, R a and R b represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. L 1 and L 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, or —OCO—.
 BおよびBはそれぞれ独立に、好ましくは、単結合、-O-、-S-、-CHO-、-COO-、または-OCO-であり、より好ましくは、単結合、-O-、-COO-、または-OCO-である。 B 1 and B 2 are each independently preferably a single bond, —O—, —S—, —CH 2 O—, —COO—, or —OCO—, and more preferably a single bond, —O— -, -COO-, or -OCO-.
 kおよびlは、逆波長分散性発現の観点から2≦k+l≦6の範囲が好ましく、k+l=4であることが好ましく、k=2かつl=2であることがより好ましい。k=2かつl=2であると対称構造となるため好ましい。 K and l are preferably in the range of 2 ≦ k + l ≦ 6 from the viewpoint of expression of inverse wavelength dispersion, preferably k + l = 4, and more preferably k = 2 and l = 2. It is preferable that k = 2 and l = 2 because a symmetrical structure is obtained.
 EおよびEはそれぞれ独立に、炭素数1~17のアルカンジイル基が好ましく、炭素数4~12のアルカンジイル基がより好ましい。 E 1 and E 2 are each independently preferably an alkanediyl group having 1 to 17 carbon atoms, and more preferably an alkanediyl group having 4 to 12 carbon atoms.
 PまたはPで表される重合性基としては、エポキシ基、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、およびオキセタニル基等が挙げられる。
中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。
Examples of the polymerizable group represented by P 1 or P 2 include epoxy group, vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, and oxiranyl group. And an oxetanyl group.
Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
 Arは芳香族複素環を有することが好ましい。当該芳香族複素環としては、フラン環、ベンゾフラン環、ピロール環、チオフェン環、ピリジン環、チアゾール環、ベンゾチアゾール環、チエノチアゾール環、オキサゾール環、ベンゾオキサゾール環、およびフェナンスロリン環等が挙げられる。なかでも、チアゾール環、ベンゾチアゾール環、またはベンゾフラン環を有することが好ましく、ベンゾチアゾール基を有することがより好ましい。
また、Arに窒素原子が含まれる場合、当該窒素原子はπ電子を有することが好ましい。
Ar preferably has an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a benzofuran ring, a pyrrole ring, a thiophene ring, a pyridine ring, a thiazole ring, a benzothiazole ring, a thienothiazole ring, an oxazole ring, a benzoxazole ring, and a phenanthroline ring. . Of these, a thiazole ring, a benzothiazole ring, or a benzofuran ring is preferable, and a benzothiazole group is more preferable.
In addition, when Ar includes a nitrogen atom, the nitrogen atom preferably has π electrons.
 式(I)中、Arで表される2価の芳香族基に含まれるπ電子の合計数Nπは10以上が好ましく、より好ましくは14以上であり、さらに好ましくは18以上である。また、好ましくは30以下であり、より好ましくは26以下であり、さらに好ましくは24以下である。 Wherein (I), 2-valent of [pi Total N [pi electrons contained in the aromatic group preferably 10 or more represented by Ar, more preferably 14 or more, further preferably 18 or more. Moreover, Preferably it is 30 or less, More preferably, it is 26 or less, More preferably, it is 24 or less.
 Arで表される芳香族基としては、例えば以下の基が挙げられる。 Examples of the aromatic group represented by Ar include the following groups.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 式(Ar-1)~式(Ar-20)中、*印は連結部を表し、Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルキルスルフィニル基、炭素数1~12のアルキルスルホニル基、カルボキシル基、炭素数1~12のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~12のアルキルチオ基、炭素数1~12のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~12のN-アルキルスルファモイル基または炭素数2~12のN,N-ジアルキルスルファモイル基を表す。 In formulas (Ar-1) to (Ar-20), * represents a linking part, and Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom, or an alkyl having 1 to 12 carbon atoms. Group, cyano group, nitro group, alkylsulfinyl group having 1 to 12 carbon atoms, alkylsulfonyl group having 1 to 12 carbon atoms, carboxyl group, fluoroalkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 6 carbon atoms, An alkylthio group having 1 to 12 carbon atoms, an N-alkylamino group having 1 to 12 carbon atoms, an N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 12 carbon atoms, or carbon This represents an N, N-dialkylsulfamoyl group of formula 2 to 12.
 Q、QおよびQは、それぞれ独立に、-CR’R’-、-S-、-NH-、-NR’-、-CO-または-O-を表し、R’およびR’は、それぞれ独立に、水素原子または炭素数1~4のアルキル基を表す。 Q 1 , Q 2 and Q 3 each independently represents —CR 2 ′ R 3 ′ —, —S—, —NH—, —NR 2 ′ —, —CO— or —O—, and R 2 ′ And R 3 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 Y、YおよびYは、それぞれ独立に、置換されていてもよい芳香族炭化水素基または芳香族複素環基を表す。 Y 1 , Y 2 and Y 3 each independently represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
 WおよびWは、それぞれ独立に、水素原子、シアノ基、メチル基またはハロゲン原子を表し、mは0~6の整数を表す。 W 1 and W 2 each independently represents a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
 Y、YおよびYにおける芳香族炭化水素基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等の炭素数6~20の芳香族炭化水素基が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。芳香族複素環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む炭素数4~20の芳香族複素環基が挙げられ、フリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基が好ましい。 Examples of the aromatic hydrocarbon group in Y 1 , Y 2 and Y 3 include aromatic hydrocarbon groups having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. A naphthyl group is preferred, and a phenyl group is more preferred. The aromatic heterocyclic group has 4 to 20 carbon atoms and contains at least one hetero atom such as a nitrogen atom such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, or a benzothiazolyl group, an oxygen atom, or a sulfur atom. An aromatic heterocyclic group is mentioned, and a furyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group are preferable.
 Y、YおよびYは、それぞれ独立に、置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。多環系芳香族炭化水素基は、縮合多環系芳香族炭化水素基、または芳香環集合に由来する基をいう。多環系芳香族複素環基は、縮合多環系芳香族複素環基、または芳香環集合に由来する基をいう。 Y 1 , Y 2 and Y 3 may each independently be an optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group. The polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aggregate of aromatic rings. The polycyclic aromatic heterocyclic group refers to a condensed polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
 Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルコキシ基であることが好ましく、Zは、水素原子、炭素数1~12のアルキル基、シアノ基がさらに好ましく、ZおよびZは、水素原子、フッ素原子、塩素原子、メチル基、シアノ基がさらに好ましい。 Z 0 , Z 1 and Z 2 are each independently preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms. 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a cyano group, and Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, or a cyano group.
 Q、QおよびQは、-NH-、-S-、-NR’-、-O-が好ましく、R’は水素原子が好ましい。中でも-S-、-O-、-NH-が特に好ましい。 Q 1 , Q 2 and Q 3 are preferably —NH—, —S—, —NR 2 ′ — and —O—, and R 2 ′ is preferably a hydrogen atom. Of these, —S—, —O—, and —NH— are particularly preferable.
 式(Ar-1)~(Ar-20)の中でも、式(Ar-6)および式(Ar-7)が分子の安定性の観点から好ましい。
 式(Ar-14)~(Ar-20)において、Yは、これが結合する窒素原子およびZと共に、芳香族複素環基を形成していてもよい。例えば、ピロール環、イミダゾール環、ピロリン環、ピリジン環、ピラジン環、ピリミジン環、インドール環、キノリン環、イソキノリン環、プリン環、ピロリジン環等が挙げられる。この芳香族複素環基は、置換基を有していてもよい。また、Yは、これが結合する窒素原子およびZと共に、前述した置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。
Of the formulas (Ar-1) to (Ar-20), the formulas (Ar-6) and (Ar-7) are preferable from the viewpoint of molecular stability.
In formulas (Ar-14) to (Ar-20), Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 . Examples thereof include a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, an indole ring, a quinoline ring, an isoquinoline ring, a purine ring, and a pyrrolidine ring. This aromatic heterocyclic group may have a substituent. Y 1 may be the above-described optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
 上記位相差層形成用組成物の固形分100質量部に占める、重合性液晶化合物の合計の含有量は、通常、70質量部~99.5質量部であり、好ましくは80質量部~99質量部であり、より好ましくは80質量部~94質量部である。上記合計の含有量が上記範囲内であれば、得られる位相差層の配向性が高くなる傾向がある。ここで、固形分とは、組成物から溶剤を除いた成分の合計量のことをいう。 The total content of the polymerizable liquid crystal compound in the solid content of 100 parts by mass of the retardation layer forming composition is usually 70 parts by mass to 99.5 parts by mass, preferably 80 parts by mass to 99 parts by mass. Part, more preferably 80 parts by weight to 94 parts by weight. If the total content is within the above range, the orientation of the obtained retardation layer tends to be high. Here, solid content means the total amount of the component remove | excluding the solvent from the composition.
[配向層B(偏光層を形成するための配向膜)]
本発明の楕円偏光板は、位相差層の次に配向層Bを有する。配向層Bは、偏光層を形成するための配向膜である。
 配向層Bとしては、後述する偏光層形成用組成物の塗布等により溶解しない溶剤耐性を有し、また、溶剤の除去や後述の重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。配向膜の種類としては、ラビング配向膜、光配向膜および、表面に凹凸パターンや複数の溝を有するグルブ配向膜等が挙げられる。長尺のロール状フィルムに適用する場合には、配向方向を容易に制御できる点で、偏光照射により配向規制力を誘起される光配向膜が好ましい。
 このような配向膜は、重合性液晶化合物の配向を容易にする。また、配向膜の種類やラビング条件や光照射条件によって、水平配向、ハイブリッド配向、および傾斜配向等の様々な配向の制御が可能である。
[Alignment layer B (alignment film for forming polarizing layer)]
The elliptically polarizing plate of the present invention has an alignment layer B next to the retardation layer. The alignment layer B is an alignment film for forming a polarizing layer.
The alignment layer B has a solvent resistance that does not dissolve due to application of a composition for forming a polarizing layer, which will be described later, and has heat resistance in heat treatment for removing the solvent and aligning a polymerizable liquid crystal compound, which will be described later. Those are preferred. Examples of the alignment film include a rubbing alignment film, a photo-alignment film, and a groove alignment film having a concavo-convex pattern and a plurality of grooves on the surface. When applied to a long roll-shaped film, a photo-alignment film in which an alignment regulating force is induced by irradiation with polarized light is preferable in that the alignment direction can be easily controlled.
Such an alignment film facilitates the alignment of the polymerizable liquid crystal compound. In addition, various orientations such as horizontal orientation, hybrid orientation, and tilt orientation can be controlled depending on the type of orientation film, rubbing conditions, and light irradiation conditions.
 配向層Bの厚さは、80~800nm(0.08μm~0.8μm)の範囲であり、好ましくは100~500nm(0.1μm~0.5μm)の範囲であり、更に好ましくは150nm(0.15μm)以上である。この範囲よりも膜厚が小さい場合には、配向層の直下に形成されている層、すなわち位相差層などの影響を受け、配向層Bの次の偏光層の光軸が所望の値からずれる場合がある。一方で、この範囲よりも膜厚が大きい場合には、配向規制力が低下して偏光層に配向欠陥が生じる場合がある。 The thickness of the alignment layer B is in the range of 80 to 800 nm (0.08 μm to 0.8 μm), preferably in the range of 100 to 500 nm (0.1 μm to 0.5 μm), and more preferably 150 nm (0 .15 μm) or more. When the film thickness is smaller than this range, the optical axis of the polarizing layer next to the alignment layer B deviates from a desired value due to the influence of the layer formed immediately below the alignment layer, that is, the retardation layer. There is a case. On the other hand, when the film thickness is larger than this range, the alignment regulating force may be reduced and an alignment defect may occur in the polarizing layer.
 ラビング配向膜に用いられる配向性ポリマーとしては、例えば、アミド結合を有するポリアミドやゼラチン類、イミド結合を有するポリイミドおよびその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸およびポリアクリル酸エステル類が挙げられる。中でも、ポリビニルアルコールが好ましい。2種以上の配向性ポリマーを組み合わせてもよい。 Examples of the alignment polymer used for the rubbing alignment film include polyamides and gelatins having amide bonds, polyimides having imide bonds and polyamic acids, polyvinyl alcohols, alkyl-modified polyvinyl alcohols, polyacrylamides, polyacrylamides, and hydrolysates thereof. Examples include oxazole, polyethyleneimine, polystyrene, polyvinyl pyrrolidone, polyacrylic acid and polyacrylic acid esters. Among these, polyvinyl alcohol is preferable. Two or more kinds of orientation polymers may be combined.
 ラビング配向膜は、通常、配向性ポリマーが溶剤に溶解した組成物を基材に塗布し、溶剤を除去して塗布膜を形成し、該塗布膜をラビングすることで配向規制力を付与することができる。 A rubbing alignment film is generally formed by applying a composition in which an orientation polymer is dissolved in a solvent to a substrate, removing the solvent to form a coating film, and rubbing the coating film to impart alignment regulating force. Can do.
 配向性ポリマー組成物中の配向性ポリマーの濃度は、配向性ポリマーが溶剤に完溶する範囲であればよい。配向性ポリマー組成物に対する配向性ポリマーの含有量は、好ましくは0.1~20質量%であり、より好ましくは0.1~10質量%である。 The concentration of the orienting polymer in the orienting polymer composition may be in a range where the orienting polymer is completely dissolved in the solvent. The content of the orientation polymer with respect to the orientation polymer composition is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass.
 配向性ポリマー組成物は、市場から入手できる。市販の配向性ポリマー組成物としては、サンエバー(登録商標、日産化学工業(株)製)、オプトマー(登録商標、JSR(株)製)等が挙げられる。 Alignment polymer composition can be obtained from the market. Examples of the commercially available oriented polymer composition include Sanever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.), Optmer (registered trademark, manufactured by JSR).
 配向性ポリマー組成物を塗布する方法としては、後述する光学異方性層形成用組成物を塗布する方法と同様の方法が挙げられる。配向性ポリマー組成物に含まれる溶剤を除去する方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。 Examples of the method for applying the orientation polymer composition include the same method as the method for applying the composition for forming an optically anisotropic layer described later. Examples of the method for removing the solvent contained in the oriented polymer composition include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
 ラビング処理の方法としては、例えば、ラビング布が巻きつけられ、回転しているラビングロールに、前記塗布膜を接触させる方法が挙げられる。ラビング処理を行う時に、マスキングを行えば、配向の方向が異なる複数の領域(パターン)を配向膜に形成することもできる。 Examples of the rubbing treatment include a method in which a rubbing cloth is wound and the coating film is brought into contact with a rotating rubbing roll. If masking is performed when the rubbing treatment is performed, a plurality of regions (patterns) having different orientation directions can be formed in the alignment film.
 光配向膜は、通常、光反応性基を有するポリマーまたはモノマーと溶剤とを含む光配向膜形成用組成物を基材等の上に塗布し、溶剤を除去後に偏光(好ましくは、偏光UV)を照射することで得られる。光配向膜は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御することができる。 For the photo-alignment film, a composition for forming a photo-alignment film usually containing a polymer or monomer having a photoreactive group and a solvent is applied onto a substrate or the like, and after removing the solvent, polarized light (preferably polarized UV) It is obtained by irradiating. The photo-alignment film can arbitrarily control the direction of the alignment regulating force by selecting the polarization direction of the polarized light to be irradiated.
 光反応性基とは、光照射することにより配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起反応、異性化反応、光二量化反応、光架橋反応もしくは光分解反応等の配向能の起源となる光反応に関与する基が挙げられる。光反応性基としては、不飽和結合、特に二重結合を有する基が好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)および炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも一つを有する基が特に好ましい。 The photoreactive group refers to a group that generates alignment ability when irradiated with light. Specific examples include groups that are involved in photoreactions that are the origin of alignment ability, such as alignment-induced reactions, isomerization reactions, photodimerization reactions, photocrosslinking reactions, or photodecomposition reactions of molecules generated by light irradiation. As the photoreactive group, an unsaturated bond, particularly a group having a double bond is preferable, and a carbon-carbon double bond (C═C bond), a carbon-nitrogen double bond (C═N bond), and nitrogen-nitrogen. A group having at least one selected from the group consisting of a double bond (N═N bond) and a carbon-oxygen double bond (C═O bond) is particularly preferred.
 C=C結合を有する光反応性基としては、例えば、ビニル基、ポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、カルコン基およびシンナモイル基が挙げられる。C=N結合を有する光反応性基としては、例えば、芳香族シッフ塩基、芳香族ヒドラゾン等の構造を有する基が挙げられる。N=N結合を有する光反応性基としては、例えば、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、および、アゾキシベンゼン構造を有する基が挙げられる。C=O結合を有する光反応性基としては、例えば、ベンゾフェノン基、クマリン基、アントラキノン基およびマレイミド基が挙げられる。これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基等の置換基を有していてもよい。 Examples of the photoreactive group having a C═C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group, and a cinnamoyl group. Examples of the photoreactive group having a C═N bond include groups having a structure such as an aromatic Schiff base and an aromatic hydrazone. Examples of the photoreactive group having an N═N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and a group having an azoxybenzene structure. Examples of the photoreactive group having a C═O bond include a benzophenone group, a coumarin group, an anthraquinone group, and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, and a halogenated alkyl group.
 光二量化反応または光架橋反応に関与する基が、配向性に優れる点で好ましい。中でも、光二量化反応に関与する光反応性基が好ましく、配向に必要な偏光照射量が比較的少なく、かつ熱安定性や経時安定性に優れる光配向膜が得られやすいという点で、シンナモイル基およびカルコン基が好ましい。光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造または桂皮酸エステル構造となるようなシンナモイル基を有するものが特に好ましい。 A group that participates in the photodimerization reaction or photocrosslinking reaction is preferable in terms of excellent orientation. Among them, a photoreactive group involved in the photodimerization reaction is preferable, and a cinnamoyl group is preferable in that a photoalignment film having a relatively small amount of polarized light irradiation necessary for alignment and having excellent thermal stability and stability over time can be easily obtained. And chalcone groups are preferred. As the polymer having a photoreactive group, a polymer having a cinnamoyl group in which a terminal portion of the polymer side chain has a cinnamic acid structure or a cinnamic acid ester structure is particularly preferable.
 光配向膜形成用組成物中の光反応性基を有するポリマーまたはモノマーの含有量は、ポリマーまたはモノマーの種類や目的とする光配向膜の厚さによって調節でき、少なくとも0.2質量%以上とすることが好ましく、0.3~10質量%の範囲がより好ましい。 The content of the polymer or monomer having a photoreactive group in the composition for forming a photoalignment film can be adjusted by the kind of the polymer or monomer and the thickness of the target photoalignment film, and is at least 0.2% by mass or more. The range is preferably 0.3 to 10% by mass.
 光配向膜形成用組成物を塗布する方法としては、後述する光学異方性層形成用組成物を塗布する方法と同様の方法が挙げられる。塗布された光配向膜形成用組成物から、溶剤を除去する方法としては、配向性ポリマー組成物から溶剤を除去する方法と同じ方法が挙げられる。 Examples of the method for applying the composition for forming a photo-alignment film include the same methods as those for applying the composition for forming an optically anisotropic layer described later. Examples of the method for removing the solvent from the applied composition for forming a photo-alignment film include the same method as the method for removing the solvent from the oriented polymer composition.
 偏光を照射するには、基材等の上に塗布された光配向膜形成用組成物から、溶剤を除去したものに直接、偏光を照射する形式でも、塗布される基材等の側から偏光を照射し、偏光を透過させて照射する形式でもよい。また、当該偏光は、実質的に平行光であると好ましい。照射する偏光の波長は、光反応性基を有するポリマーまたはモノマーの光反応性基が、光エネルギーを吸収し得る波長域のものがよい。具体的には、波長250nm~400nmの範囲のUV(紫外線)が特に好ましい。当該偏光を照射する光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArF等の紫外光レーザー等が挙げられる。中でも、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプが、波長313nmの紫外線の発光強度が大きいため好ましい。
前記光源からの光を、適当な偏光素子を通過して照射することにより、偏光UVを照射することができる。偏光素子としては、偏光フィルター、グラントムソン、およびグランテーラー等の偏光プリズム、ならびにワイヤーグリッドが挙げられる。中でも大面積化と熱による耐性の観点からワイヤーグリッドタイプの偏光素子が好ましい。
In order to irradiate polarized light, the composition for forming a photo-alignment film applied on a substrate or the like is directly irradiated with polarized light on a solvent-removed composition. May be used such that the polarized light is transmitted and irradiated. The polarized light is preferably substantially parallel light. The wavelength of the polarized light to be irradiated should be in a wavelength range where the photoreactive group of the polymer or monomer having the photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength in the range of 250 nm to 400 nm is particularly preferable. Examples of the light source for irradiating the polarized light include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet lasers such as KrF and ArF, and the like. Among these, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, and a metal halide lamp are preferable because of high emission intensity of ultraviolet rays having a wavelength of 313 nm.
By irradiating light from the light source through an appropriate polarizing element, polarized UV light can be irradiated. Examples of the polarizing element include polarizing prisms such as polarizing filters, Glan Thompson, and Grand Taylor, and wire grids. Among these, a wire grid type polarizing element is preferable from the viewpoint of an increase in area and resistance to heat.
尚、ラビング又は偏光照射を行うときに、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。 Note that a plurality of regions (patterns) having different liquid crystal alignment directions can be formed by performing masking when performing rubbing or polarized light irradiation.
グルブ(groove)配向膜は、膜表面に凹凸パターン又は複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に重合性液晶化合物を塗布した場合、その溝に沿った方向に液晶分子が配向する。
 グルブ配向膜を得る方法としては、感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光後、現像及びリンス処理を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、硬化前のUV硬化樹脂の層を形成し、樹脂層を基材等へ移してから硬化する方法、及び、基材等の上に形成した硬化前のUV硬化樹脂の膜に、複数の溝を有するロール状の原盤を押し当てて凹凸を形成し、その後硬化する方法等が挙げられる。
The groove alignment film is a film having a concavo-convex pattern or a plurality of grooves (grooves) on the film surface. When a polymerizable liquid crystal compound is applied to a film having a plurality of linear grooves arranged at equal intervals, liquid crystal molecules are aligned in a direction along the groove.
As a method for obtaining a groove alignment film, a method of forming a concavo-convex pattern by performing development and rinsing after exposure through an exposure mask having a pattern-shaped slit on the photosensitive polyimide film surface, a plate having grooves on the surface A layer of a pre-curing UV curable resin on a solid master, a method of curing after transferring the resin layer to a base material, etc., and a pre-curing UV curable resin film formed on the base material, etc. And a method of forming a concavo-convex by pressing a roll-shaped master having a plurality of grooves, followed by curing.
 [偏光層]
 本発明の楕円偏光板は、配向層Bの次に偏光層を有する。この偏光層は、重合性液晶化合物を含む組成物(以下、「偏光層形成用組成物」ともいう)を配向層B上に塗布形成し、二色性色素と重合性液晶化合物が配向した状態における重合性液晶化合物の重合体からなる偏光層を形成することで作製することができる。すなわち、液晶化合物中に包摂された二色性色素によって光が異方性吸収されることによって、吸収軸に平行な振動面を有する直線偏光成分は吸収し、直交する振動面を有する直線偏光成分を透過する偏光板となる。このような偏光板は二色性色素により色相を任意に制御可能である点、ならびに薄型化できる点で好ましい。また、偏光層形成用組成物は、溶剤、光重合開始剤、光増感剤、重合禁止剤、レベリング剤及び密着性向上剤等をさらに含み得る。
[Polarizing layer]
The elliptically polarizing plate of the present invention has a polarizing layer next to the alignment layer B. In this polarizing layer, a composition containing a polymerizable liquid crystal compound (hereinafter, also referred to as “polarizing layer forming composition”) is applied and formed on the alignment layer B, and the dichroic dye and the polymerizable liquid crystal compound are aligned. It can produce by forming the polarizing layer which consists of a polymer of the polymerizable liquid crystal compound in. That is, when the light is anisotropically absorbed by the dichroic dye included in the liquid crystal compound, the linearly polarized light component having a vibration surface parallel to the absorption axis is absorbed, and the linearly polarized light component having a vibration surface orthogonal to the absorption axis. It becomes the polarizing plate which permeate | transmits. Such a polarizing plate is preferable in that the hue can be arbitrarily controlled by the dichroic dye and the thickness can be reduced. The composition for forming a polarizing layer may further contain a solvent, a photopolymerization initiator, a photosensitizer, a polymerization inhibitor, a leveling agent, an adhesion improver, and the like.
 本発明の楕円偏光板における偏光層は、通常、透明基材等の上に形成された配向層B上に、偏光層形成用組成物を塗布し、上記偏光層形成用組成物に含まれる重合性液晶化合物を重合することによって形成される。偏光層は、通常、重合性液晶化合物が配向した状態で硬化した、厚さが5μm以下の膜であり、好ましくは4μm以下であり、より好ましくは3μm以下である。膜厚がこの範囲よりも厚くなると配向膜による配向規制力が低下し、配向欠陥を生じやすい傾向にある。 The polarizing layer in the elliptically polarizing plate of the present invention is usually a polymerization that is applied to the polarizing layer forming composition by applying the polarizing layer forming composition on the alignment layer B formed on a transparent substrate or the like. It is formed by polymerizing a conductive liquid crystal compound. A polarizing layer is a film | membrane with a thickness of 5 micrometers or less normally hardened | cured in the state which the polymeric liquid crystal compound orientated, Preferably it is 4 micrometers or less, More preferably, it is 3 micrometers or less. When the film thickness is larger than this range, the alignment regulating force by the alignment film is reduced, and alignment defects tend to occur.
 X-Y平面での偏光特性を得る場合には、二色性色素と重合性液晶化合物が透明基材面に対して水平配向した状態で重合性液晶化合物を硬化すればよいし、Z方向(偏光層の膜厚方向)での偏光特性を得る場合には、二色性色素と重合性液晶化合物が透明基材面に対して垂直配向した状態で重合性液晶化合物を硬化すればよい。この際、偏光吸収の選択性の観点から、好ましくは重合性液晶化合物がスメクチック液晶相の状態で硬化した液晶硬化膜であり、さらに好ましくは高次スメクチック液晶相の状態で硬化した液晶硬化膜である。ここでいう高次スメクチック液晶相とは、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相及びスメクチックL相であり、中でも、スメクチックB相、スメクチックF相及びスメクチックI相がより好ましい。 In order to obtain polarization characteristics in the XY plane, the polymerizable liquid crystal compound may be cured in a state where the dichroic dye and the polymerizable liquid crystal compound are horizontally aligned with respect to the transparent substrate surface. In order to obtain polarization characteristics in the film thickness direction of the polarizing layer, the polymerizable liquid crystal compound may be cured in a state where the dichroic dye and the polymerizable liquid crystal compound are vertically aligned with respect to the transparent substrate surface. At this time, from the viewpoint of selectivity of polarized light absorption, preferably a polymerizable liquid crystal compound is a cured liquid crystal film cured in a smectic liquid crystal phase, and more preferably a cured liquid crystal film cured in a higher order smectic liquid crystal phase. is there. The high-order smectic liquid crystal phase here means a smectic B phase, a smectic D phase, a smectic E phase, a smectic F phase, a smectic G phase, a smectic H phase, a smectic I phase, a smectic J phase, a smectic K phase, and a smectic L phase. Among them, a smectic B phase, a smectic F phase, and a smectic I phase are more preferable.
 これらの高次スメクチック液晶相であると、配向秩序度のより高い偏光層を製造することができる。また、このように配向秩序度の高い高次スメクチック液晶相から作製した偏光層はX線回折測定においてヘキサチック相やクリスタル相といった高次構造由来のブラッグピークが得られるものである。当該ブラッグピークとは、分子配向の面周期構造に由来するピークであり、本実施形態に係る偏光層形成用組成物によれば、周期間隔が3.0~5.0Åである偏光層を得ることができる。 When these higher-order smectic liquid crystal phases are used, a polarizing layer having a higher degree of orientational order can be produced. In addition, the polarizing layer produced from a high-order smectic liquid crystal phase having a high degree of orientational order can obtain a Bragg peak derived from a high-order structure such as a hexatic phase or a crystal phase in X-ray diffraction measurement. The Bragg peak is a peak derived from a molecular periodic surface periodic structure. According to the polarizing layer forming composition according to this embodiment, a polarizing layer having a periodic interval of 3.0 to 5.0 mm is obtained. be able to.
 重合性液晶化合物が、ネマチック液晶相やスメクチック液晶相を示すか否かは、例えば、以下のようにして確認できる。基材に偏光層形成用組成物を塗布して塗布膜を形成した後、重合性液晶化合物が重合しない条件で加熱処理することで塗布膜に含有される溶剤を除去する。続いて、基材上に形成された塗布膜を等方相温度まで加熱し、徐々に冷却することで発現する液晶相を、偏光顕微鏡によるテクスチャー観察、X線回折測定又は示差走査熱量測定により検査する。ネマチック液晶相及びスメクチック液晶相において、重合性液晶化合物と二色性色素とが相分離していないことは、例えば、各種顕微鏡による表面観察やヘイズメーターによる散乱度測定により確認できる。 Whether or not the polymerizable liquid crystal compound exhibits a nematic liquid crystal phase or a smectic liquid crystal phase can be confirmed, for example, as follows. After forming the coating film by applying the composition for forming a polarizing layer on the substrate, the solvent contained in the coating film is removed by heat treatment under the condition that the polymerizable liquid crystal compound is not polymerized. Subsequently, the coating film formed on the substrate is heated to the isotropic phase temperature, and the liquid crystal phase that is expressed by gradually cooling is inspected by texture observation, X-ray diffraction measurement or differential scanning calorimetry using a polarizing microscope. To do. Whether the polymerizable liquid crystal compound and the dichroic dye are not phase-separated in the nematic liquid crystal phase and the smectic liquid crystal phase can be confirmed by, for example, surface observation with various microscopes or scattering degree measurement with a haze meter.
 二色性色素と重合性液晶化合物が透明基材面に対して水平配向した状態で重合性液晶化合物を硬化した光学異方層は、波長λnmの光に対する液晶配向水平方向の吸光度A1(λ)と液晶配向垂直方向の吸光度A2(λ)の比(二色比)が7以上であれば好ましく、20以上であればより好ましく、さらに好ましくは30以上である。この値が高ければ高い程、吸収選択性の優れる偏光板である。二色性色素の種類にもよるが、ネマチック液晶相の状態で硬化した液晶硬化膜の場合には5~10程度である。 The optically anisotropic layer obtained by curing the polymerizable liquid crystal compound in a state where the dichroic dye and the polymerizable liquid crystal compound are horizontally aligned with respect to the transparent substrate surface has an absorbance A1 (λ) in the liquid crystal alignment horizontal direction with respect to light having a wavelength of λ nm. The ratio (dichroic ratio) of the absorbance A2 (λ) in the vertical direction of the liquid crystal alignment is preferably 7 or more, more preferably 20 or more, and further preferably 30 or more. The higher this value, the more the polarizing plate has better absorption selectivity. Although it depends on the type of dichroic dye, it is about 5 to 10 in the case of a liquid crystal cured film cured in a nematic liquid crystal phase.
 吸収波長の異なる2種以上の二色性色素を混合することで、様々な色相の偏光層を作製することができ、可視光全域に吸収を有する偏光層とすることができる。このような吸収特性を有する偏光層とすることで、黒色化することができ、様々な用途に展開しうる。偏光層の偏光性能は、分光光度計を用いて測定することができる。例えば、可視光である波長380nm~780nmの範囲で透過軸方向(配向垂直方向)の透過率(T1)及び吸収軸方向(配向同一方向)の透過率(T2)を、分光光度計に偏光子付フォルダーをセットした装置を用いてダブルビーム法で測定することができる。可視光範囲での偏光性能は、下記式(式1)ならびに(式2)を用いて、各波長における単体透過率、偏光度を算出し、さらにJIS Z 8701の2度視野(C光源)により視感度補正を行うことで、視感度補正単体透過率(Ty)および視感度補正偏光度(Py)で算出することができる。また、同様に測定した透過率からC光源の等色関数を用いて、L*a*b*(CIE)表色系における色度a*及びb*を算出することで、偏光板単体の色相(単体色相)、偏光板を平行配置した色相(平行色相)、偏光板を直交配置した色相(直交色相)が得られる。
a*及びb*は値が0に近いほど、ニュートラルな色相であると判断できる。
By mixing two or more dichroic dyes having different absorption wavelengths, polarizing layers having various hues can be produced, and a polarizing layer having absorption in the entire visible light region can be obtained. By setting it as the polarizing layer which has such an absorption characteristic, it can blacken and can expand | deploy for various uses. The polarization performance of the polarizing layer can be measured using a spectrophotometer. For example, the transmittance (T1) in the transmission axis direction (orientation vertical direction) and the transmittance (T2) in the absorption axis direction (the same orientation direction) in the wavelength range of 380 nm to 780 nm, which is visible light, are applied to the spectrophotometer as a polarizer. It can be measured by the double beam method using a device with a folder attached. The polarization performance in the visible light range is calculated using the following formulas (Formula 1) and (Formula 2) to calculate the single transmittance and the degree of polarization at each wavelength, and further according to the 2 degree field of view (C light source) of JIS Z 8701. By performing the visibility correction, it is possible to calculate with the visibility correction single transmittance (Ty) and the visibility correction polarization degree (Py). Further, by calculating the chromaticity a * and b * in the L * a * b * (CIE) color system using the colorimetric function of the C light source from the transmittance measured in the same manner, the hue of the polarizing plate alone (Single hue), a hue in which the polarizing plates are arranged in parallel (parallel hue), and a hue in which the polarizing plates are arranged orthogonally (orthogonal hue) are obtained.
It can be determined that the closer the value of a * and b * is to 0, the more neutral the hue is.
単体透過率(%)= (T1+T2)/2   ・・・(式1)
偏光度(%) = (T1-T2)/(T1+T2)×100   ・・・(式2)
Single transmittance (%) = (T1 + T2) / 2 (Formula 1)
Polarization degree (%) = (T1−T2) / (T1 + T2) × 100 (Expression 2)
[偏光層形成用の重合性液晶化合物]
 重合性液晶化合物とは、重合性基を有し、かつ、液晶性を有する化合物である。重合性基は、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、光重合性基とは、後述する光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶はサーモトロピック液晶でもリオトロピック液晶でもよいが、後述する二色性色素と混合する場合には、サーモトロピック液晶が好ましい。
[Polymerizable liquid crystal compound for forming polarizing layer]
The polymerizable liquid crystal compound is a compound having a polymerizable group and having liquid crystallinity. The polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group. Here, the photopolymerizable group refers to a group that can participate in a polymerization reaction by an active radical, an acid, or the like generated from a photopolymerization initiator described later. Examples of the polymerizable group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable. The liquid crystal may be a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic liquid crystal is preferable when mixed with a dichroic dye described later.
 重合性液晶化合物がサーモトロピック液晶である場合は、ネマチック液晶相を示すサーモトロピック性液晶化合物であってもよいし、スメクチック液晶相を示すサーモトロピック性液晶化合物であってもよい。本発明において重合性液晶化合物は、より高い偏光特性が得られるという観点から、好ましくはスメクチック液晶化合物であり、より好ましくは高次スメクチック液晶化合物である。中でも、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相またはスメクチックL相を形成する高次スメクチック液晶化合物がより好ましく、スメクチックB相、スメクチックF相またはスメクチックI相を形成する高次スメクチック液晶化合物がさらに好ましい。重合性液晶化合物が形成する液晶相がこれらの高次スメクチック相であると、偏光性能のより高い偏光層を製造することができる。また、このように偏光性能の高い偏光層はX線回折測定においてヘキサチック相やクリスタル相といった高次構造由来のブラッグピークが得られるものである。当該ブラッグピークは分子配向の周期構造に由来するピークであり、その周期間隔が3~6Åである膜を得ることができる。本発明で用いる偏光層は、この重合性液晶化合物がスメクチック相の状態で重合された重合性液晶化合物の重合体を含むことが、より高い偏光特性が得られるという観点から好ましい。 When the polymerizable liquid crystal compound is a thermotropic liquid crystal, it may be a thermotropic liquid crystal compound exhibiting a nematic liquid crystal phase or a thermotropic liquid crystal compound exhibiting a smectic liquid crystal phase. In the present invention, the polymerizable liquid crystal compound is preferably a smectic liquid crystal compound, more preferably a higher order smectic liquid crystal compound, from the viewpoint that higher polarization characteristics can be obtained. Among them, higher-order smectic liquid crystal compounds that form a smectic B phase, a smectic D phase, a smectic E phase, a smectic F phase, a smectic G phase, a smectic H phase, a smectic I phase, a smectic J phase, a smectic K phase, or a smectic L phase. More preferred are higher-order smectic liquid crystal compounds that form a smectic B phase, a smectic F phase, or a smectic I phase. When the liquid crystal phase formed by the polymerizable liquid crystal compound is such a high-order smectic phase, a polarizing layer with higher polarization performance can be produced. In addition, such a polarizing layer having a high polarization performance can obtain a Bragg peak derived from a higher order structure such as a hexatic phase or a crystal phase in X-ray diffraction measurement. The Bragg peak is a peak derived from a periodic structure of molecular orientation, and a film having a periodic interval of 3 to 6 mm can be obtained. The polarizing layer used in the present invention preferably contains a polymer of a polymerizable liquid crystal compound obtained by polymerizing the polymerizable liquid crystal compound in a smectic phase from the viewpoint of obtaining higher polarization characteristics.
 このような化合物としては、具体的には、下記式(A)で表される化合物(以下、化合物(A)ということがある。)等が挙げられる。当該重合性液晶化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specific examples of such a compound include a compound represented by the following formula (A) (hereinafter sometimes referred to as compound (A)). The said polymeric liquid crystal compound may be used independently and may be used in combination of 2 or more type.
  U-V-W-X-Y-X-Y-X-W-V-U   (A)
[式(A)中、
、XおよびXは、それぞれ独立に、2価の芳香族基または2価の脂環式炭化水素基を表し、ここで、該2価の芳香族基または2価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基に置換されていてもよく、該2価の芳香族基または2価の脂環式炭化水素基を構成する炭素原子が、酸素原子または硫黄原子または窒素原子に置換されていてもよい。ただし、X、XおよびXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基または置換基を有していてもよいシクロヘキサン-1,4-ジイル基である。
 Y、Y、WおよびWは、互いに独立に、単結合または二価の連結基である。
 VおよびVは、互いに独立に、置換基を有していてもよい炭素数1~20のアルカンジイル基を表し、該アルカンジイル基を構成する-CH-は、-O-、-S-または-NH-に置き換わっていてもよい。
 UおよびUは、互いに独立に、重合性基または水素原子を表し、少なくとも1つは重合性基である。
U 1 −V 1 −W 1 −X 1 −Y 1 −X 2 −Y 2 −X 3 −W 2 −V 2 −U 2 (A)
[In the formula (A),
X 1 , X 2 and X 3 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group, wherein the divalent aromatic group or divalent alicyclic group The hydrogen atom contained in the hydrocarbon group is substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, or a nitro group. The carbon atom constituting the divalent aromatic group or divalent alicyclic hydrocarbon group may be substituted with an oxygen atom, a sulfur atom or a nitrogen atom. Provided that at least one of X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent It is.
Y 1 , Y 2 , W 1 and W 2 are each independently a single bond or a divalent linking group.
V 1 and V 2 each independently represent an optionally substituted alkanediyl group having 1 to 20 carbon atoms, and —CH 2 — constituting the alkanediyl group is —O—, — S- or -NH- may be substituted.
U 1 and U 2 each independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
 化合物(A)において、X、XおよびXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基、または、置換基を有していてもよいシクロヘキサン-1,4-ジイル基であることが好ましい。特に、XおよびXは置換基を有していてもよいシクロヘキサン-1,4-ジイル基であることがより好ましく、該シクロへキサン-1,4-ジイル基は、トランス-シクロへキサン-1,4-ジイル基であることがさらに好ましい。トランス-シクロへキサン-1,4-ジイル基の構造を含む場合、スメクチック液晶性が発現しやすい傾向にある。また、置換基を有していてもよい1,4-フェニレン基、または、置換基を有していてもよいシクロへキサン-1,4-ジイル基が任意に有する置換基としては、メチル基、エチル基およびブチル基などの炭素数1~4のアルキル基、シアノ基および塩素原子、フッ素原子などのハロゲン原子が挙げられるが、好ましくは無置換である。 In the compound (A), at least one of X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent, or a cyclohexane which may have a substituent A 1,4-diyl group is preferred. In particular, X 1 and X 3 are more preferably a cyclohexane-1,4-diyl group which may have a substituent, and the cyclohexane-1,4-diyl group is trans-cyclohexane. More preferred is a -1,4-diyl group. When the structure of trans-cyclohexane-1,4-diyl group is included, smectic liquid crystallinity tends to be easily developed. In addition, the optionally substituted 1,4-phenylene group or the optionally substituted cyclohexane-1,4-diyl group may be a methyl group , An alkyl group having 1 to 4 carbon atoms such as an ethyl group and a butyl group, a cyano group, and a halogen atom such as a chlorine atom and a fluorine atom, but are preferably unsubstituted.
 YおよびYは、互いに独立に、単結合、-CHCH-、-CHO-、-COO-、-OCO-、-N=N-、-CR=CR-、-C≡C-またはCR=N-が好ましく、RおよびRは、互いに独立に、水素原子または炭素数1~4のアルキル基を表す。YおよびYは、-CHCH-、-COO-、-OCO-または単結合であるとより好ましく、YおよびYが互いに異なることがより好ましい。YおよびYが互いに異なる場合には、スメクチック液晶性が発現しやすい傾向にある。 Y 1 and Y 2 each independently represent a single bond, —CH 2 CH 2 —, —CH 2 O—, —COO—, —OCO—, —N═N—, —CR a ═CR b —, — C≡C— or CR a ═N— is preferred, and R a and R b each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Y 1 and Y 2 are more preferably —CH 2 CH 2 —, —COO—, —OCO— or a single bond, and more preferably Y 1 and Y 2 are different from each other. When Y 1 and Y 2 are different from each other, smectic liquid crystallinity tends to be easily developed.
 WおよびWは、互いに独立に、単結合、-O-、-S-、-COO-またはOCO-が好ましく、互いに独立に単結合または-O-であることがより好ましい。 W 1 and W 2 are each independently preferably a single bond, —O—, —S—, —COO— or OCO—, and more preferably each independently a single bond or —O—.
 VおよびVで表される炭素数1~20のアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、テトラデカン-1,14-ジイル基およびイコサン-1,20-ジイル基などが挙げられる。VおよびVは、好ましくは炭素数2~12のアルカンジイル基であり、より好ましくは直鎖状の炭素数6~12のアルカンジイル基である。直鎖状の炭素数6~12のアルカンジイル基とすることで結晶性が向上し、スメクチック液晶性を発現しやすい傾向にある。
 置換基を有していてもよい炭素数1~20のアルカンジイル基が任意に有する置換基としては、シアノ基および塩素原子、フッ素原子などのハロゲン原子などが挙げられるが、該アルカンジイル基は、無置換であることが好ましく、無置換かつ直鎖状のアルカンジイル基であることがより好ましい。
Examples of the alkanediyl group having 1 to 20 carbon atoms represented by V 1 and V 2 include a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, and a butane-1,4. -Diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane -1,14-diyl group and icosane-1,20-diyl group. V 1 and V 2 are preferably an alkanediyl group having 2 to 12 carbon atoms, and more preferably a linear alkanediyl group having 6 to 12 carbon atoms. By using a straight-chain alkanediyl group having 6 to 12 carbon atoms, the crystallinity is improved and smectic liquid crystallinity tends to be easily exhibited.
Examples of the substituent that the optionally substituted alkanediyl group having 1 to 20 carbon atoms has include a cyano group and a halogen atom such as a chlorine atom and a fluorine atom. The alkanediyl group includes It is preferably unsubstituted, and more preferably an unsubstituted and linear alkanediyl group.
 UおよびUは、ともに重合性基であると好ましく、ともに光重合性基であるとより好ましい。光重合性基を有する重合性液晶化合物は、熱重合性基よりも低温条件下で重合できるため、液晶がより秩序度の高い状態で重合体を形成できる点で有利である。 U 1 and U 2 are both preferably a polymerizable group, more preferably a photopolymerizable group. Since the polymerizable liquid crystal compound having a photopolymerizable group can be polymerized under a lower temperature condition than the thermally polymerizable group, it is advantageous in that the liquid crystal can form a polymer with a higher degree of order.
 UおよびUで表される重合性基は互いに異なっていてもよいが、同一であることが好ましい。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、メタクリロイルオキシ基、あるいは、アクリロイルオキシ基がより好ましい。 The polymerizable groups represented by U 1 and U 2 may be different from each other, but are preferably the same. Examples of the polymerizable group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and methacryloyloxy group or acryloyloxy group is more preferable.
 このような重合性液晶化合物としては、例えば、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000003
Examples of such polymerizable liquid crystal compounds include the following.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 例示した前記化合物の中でも、式(1-2)、式(1-3)、式(1-4)、式(1-6)、式(1-7)、式(1-8)、式(1-13)、式(1-14)および式(1-15)で表される化合物からなる群より選ばれる少なくとも1種が好ましい。 Among the exemplified compounds, the formula (1-2), formula (1-3), formula (1-4), formula (1-6), formula (1-7), formula (1-8), formula At least one selected from the group consisting of compounds represented by (1-13), formula (1-14) and formula (1-15) is preferred.
 例示した化合物(A)は、単独または組み合わせて、偏光層に用いることができる。また、2種以上の重合性液晶化合物を組み合わせる場合には、少なくとも1種が化合物(A)であることが好ましく、2種以上が化合物(A)であることがより好ましい。2種以上の重合性液晶化合物を組み合わせることにより、液晶-結晶相転移温度以下の温度でも一時的に液晶性を保持することができる場合がある。2種類の重合性液晶化合物を組み合わせる場合の混合比としては、通常、1:99~50:50であり、好ましくは5:95~50:50であり、より好ましくは10:90~50:50である。 The exemplified compound (A) can be used alone or in combination for the polarizing layer. Moreover, when combining 2 or more types of polymeric liquid crystal compounds, it is preferable that at least 1 type is a compound (A), and it is more preferable that 2 or more types are a compound (A). By combining two or more polymerizable liquid crystal compounds, liquid crystallinity may be temporarily maintained even at a temperature lower than the liquid crystal-crystal phase transition temperature. The mixing ratio when combining two kinds of polymerizable liquid crystal compounds is usually 1:99 to 50:50, preferably 5:95 to 50:50, more preferably 10:90 to 50:50. It is.
 化合物(A)は、例えば、Lub et al. Recl.Trav.Chim.Pays-Bas,115, 321-328(1996)、または特許第4719156号等に記載の公知方法で製造される。 Compound (A) is, for example, Lub et al. Recl. Trav. Chim. It is manufactured by a known method described in Pays-Bas, 115, 321-328 (1996), or Japanese Patent No. 4719156.
 偏光層形成用組成物における重合性液晶化合物の含有割合は、偏光層形成用組成物の固形分100質量部に対して、通常50~99.5質量部であり、好ましくは60~99質量部であり、より好ましくは70~98質量部であり、さらに好ましくは80~97質量部である。重合性液晶化合物の含有割合が上記範囲内であれば、配向性が高くなる傾向がある。ここで、固形分とは、偏光層形成用組成物から溶剤を除いた成分の合計量のことをいう。 The content of the polymerizable liquid crystal compound in the composition for forming a polarizing layer is usually 50 to 99.5 parts by weight, preferably 60 to 99 parts by weight, based on 100 parts by weight of the solid content of the composition for forming a polarizing layer. More preferably, it is 70 to 98 parts by mass, and still more preferably 80 to 97 parts by mass. If the content ratio of the polymerizable liquid crystal compound is within the above range, the orientation tends to be high. Here, solid content means the total amount of the component remove | excluding the solvent from the composition for polarizing layer formation.
[偏光層形成用の二色性色素]
 二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素をいう。二色性色素としては、可視光を吸収する特性を有する特性を有する事が好ましく、380~680nmの範囲に吸収極大波長(λMAX)を有するものがより好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素およびアントラキノン色素などが挙げられるが、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素およびスチルベンアゾ色素などが挙げられ、好ましくはビスアゾ色素およびトリスアゾ色素である。二色性色素は単独でも、組み合わせてもよいが、可視光全域で吸収を得るためには、3種類以上の二色性色素を組み合わせるのが好ましく、3種類以上のアゾ色素を組み合わせるのがより好ましい。
[Dichroic dye for polarizing layer formation]
A dichroic dye refers to a dye having the property that the absorbance in the major axis direction of a molecule is different from the absorbance in the minor axis direction. The dichroic dye preferably has a property of absorbing visible light, and more preferably has an absorption maximum wavelength (λMAX) in the range of 380 to 680 nm. Examples of such dichroic dyes include acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes and anthraquinone dyes, and among them, azo dyes are preferable. Examples of the azo dye include monoazo dyes, bisazo dyes, trisazo dyes, tetrakisazo dyes, and stilbene azo dyes, and bisazo dyes and trisazo dyes are preferable. Dichroic dyes may be used alone or in combination, but in order to obtain absorption in the entire visible light range, it is preferable to combine three or more types of dichroic dyes, and more preferable to combine three or more types of azo dyes. preferable.
 アゾ色素としては、例えば、式(B)で表される化合物(以下、「化合物(B)」ということもある)が挙げられる。
 T-A(-N=N-A-N=N-A-T(B)
[式(B)中、
  AおよびAおよびAは、互いに独立に、置換基を有していてもよい1,4-フェニレン基、ナフタレン-1,4-ジイル基または置換基を有していてもよい2価の複素環基を表し、Aまたは/及びAは1,4-フェニレン基であり、TおよびTは電子吸引基あるいは電子放出基であり、アゾ結合面内に対して実質的に180°の位置に有する。pは0~4の整数を表す。pが2である場合、二つのAは互いに同一でも異なっていてもよい。]
Examples of the azo dye include a compound represented by the formula (B) (hereinafter sometimes referred to as “compound (B)”).
T 1 -A 1 (-N = NA 2 ) p -N = NA 3 -T 2 (B)
[In the formula (B)
A 1 and A 2 and A 3 are independently of each other an optionally substituted 1,4-phenylene group, naphthalene-1,4-diyl group or an optionally substituted divalent group. A 1 and / or A 2 is a 1,4-phenylene group, T 1 and T 2 are electron withdrawing groups or electron emitting groups, and are substantially in the azo bond plane. At 180 ° position. p represents an integer of 0 to 4. When p is 2, two A 2 may be the same or different from each other. ]
 AおよびAおよびAにおける1,4-フェニレン基、ナフタレン-1,4-ジイル基および2価の複素環基が任意に有する置換基としては、メチル基、エチル基およびブチル基などの炭素数1~4のアルキル基;メトキシ基、エトキシ基およびブトキシ基などの炭素数1~4のアルコキシ基;トリフルオロメチル基などの炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;塩素原子、フッ素原子などのハロゲン原子;アミノ基、ジエチルアミノ基およびピロリジノ基などの置換または無置換アミノ基(置換アミノ基とは、炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。)が挙げられる。なお、炭素数1~6のアルキル基としては、メチル基、エチル基およびヘキシル基などが挙げられる。炭素数2~8のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基などが挙げられる。スメクチック液晶のような高秩序液晶構造中に包摂するためには、AおよびAおよびAは無置換または水素がメチル基またはメトキシ基で置換された1,4-フェニレン基、または2価の複素環基が好ましく、pは0または1である事が好ましい。中でもpが1であり、かつ、AおよびAおよびAの3つの構造のうち少なくとも2つが1,4-フェニレン基である事が分子合成の簡便さと高い性能の両方を有するという点でより好ましい。 Examples of the substituent that the 1,4-phenylene group, naphthalene-1,4-diyl group and divalent heterocyclic group in A 1 and A 2 and A 3 optionally have include a methyl group, an ethyl group, and a butyl group. An alkyl group having 1 to 4 carbon atoms; an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group and a butoxy group; a fluorinated alkyl group having 1 to 4 carbon atoms such as a trifluoromethyl group; a cyano group; a nitro group A halogen atom such as a chlorine atom or a fluorine atom; a substituted or unsubstituted amino group such as an amino group, a diethylamino group or a pyrrolidino group (a substituted amino group is an amino group having one or two alkyl groups having 1 to 6 carbon atoms); Or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms. Is H 2.) Can be mentioned. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a hexyl group. Examples of the alkanediyl group having 2 to 8 carbon atoms include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group Hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group and the like. For inclusion in a highly ordered liquid crystal structure such as a smectic liquid crystal, A 1 and A 2 and A 3 are unsubstituted, 1,4-phenylene groups in which hydrogen is substituted with methyl groups or methoxy groups, or divalent groups The heterocyclic group is preferably, and p is preferably 0 or 1. Among them, p is 1 and at least two of the three structures A 1, A 2 and A 3 are 1,4-phenylene groups in that both molecular synthesis is easy and high performance is achieved. More preferred.
2価の複素環基としては、キノリン、チアゾール、ベンゾチアゾール、チエノチアゾール、イミダゾール、ベンゾイミダゾール、オキサゾールおよびベンゾオキサゾールから2個の水素原子を除いた基が挙げられる。Aが2価の複素環基の場合には、分子結合角度が実質的に180°となる構造が好ましく、具体的には、二つの5員環が縮合したベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール構造がより好ましい。 Examples of the divalent heterocyclic group include groups in which two hydrogen atoms have been removed from quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole and benzoxazole. When A 2 is a divalent heterocyclic group, a structure in which the molecular bond angle is substantially 180 ° is preferable. Specifically, benzothiazole, benzimidazole, benzoxazole in which two 5-membered rings are condensed A structure is more preferable.
 TおよびTは電子吸引基あるいは電子放出基であり、異なる構造である事が好ましく、Tが電子吸引基およびT電子放出基、あるいは、Tが電子放出基およびT電子吸引基の関係である事がさらに好ましい。具体的には、TおよびTは互いに独立に炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、シアノ基、ニトロ基、炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基、またはトリフルオロメチル基が好ましく、中でもスメクチック液晶のような高秩序液晶構造中に包摂するためには、分子の排除体積がより小さい構造体である必要があるため、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、シアノ基、炭素数1~6のアルキル基を1つまたは2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基が好ましい。 T 1 and T 2 are an electron withdrawing group or an electron emitting group, and preferably have different structures, and T 1 is an electron withdrawing group and a T 2 electron emitting group, or T 1 is an electron emitting group and a T 2 electron withdrawing group. More preferably, it is a group relationship. Specifically, T 1 and T 2 are each independently one alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, or an alkyl group having 1 to 6 carbon atoms. An amino group having two amino groups, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms, or a trifluoromethyl group is preferable. In order to be included in the liquid crystal structure, it is necessary to have a structure in which the excluded volume of the molecule is smaller, so that the alkyl group having 1 to 4 carbon atoms, the alkoxy group having 1 to 4 carbon atoms, the cyano group, and the carbon number 1 An amino group having one or two alkyl groups of ˜6 or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms is preferred.
 このようなアゾ色素としては、例えば、以下のようなものが挙げられる。 Examples of such azo dyes include the following.
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
 式(2-1)~(2-6)中、
 B~B20は、互いに独立に、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、シアノ基、ニトロ基、置換または無置換のアミノ基(置換アミノ基および無置換アミノ基の定義は前記のとおり)、塩素原子またはトリフルオロメチル基を表す。
 n1~n4は、それぞれ独立に0~3の整数を表す。
 n1が2以上である場合、複数のBはそれぞれ同一であってもよいし、異なっていてもよく、
 n2が2以上である場合、複数のBはそれぞれ同一であってもよいし、異なっていてもよく、
 n3が2以上である場合、複数のBはそれぞれ同一であってもよいし、異なっていてもよく、
 n4が2以上である場合、複数のB14はそれぞれ同一であってもよいし、異なっていてもよい。
In formulas (2-1) to (2-6),
B 1 to B 20 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, a substituted or unsubstituted amino group (a substituted amino group and The definition of an unsubstituted amino group is as described above, and represents a chlorine atom or a trifluoromethyl group.
n1 to n4 each independently represents an integer of 0 to 3.
When n1 is 2 or more, the plurality of B 2 may be the same or different,
When n2 is 2 or more, the plurality of B 6 may be the same or different,
When n3 is 2 or more, the plurality of B 9 may be the same or different,
When n4 is 2 or more, the plurality of B 14 may be the same or different.
 前記アントラキノン色素としては、式(2-7)で表される化合物が好ましい。 The anthraquinone dye is preferably a compound represented by the formula (2-7).
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
[式(2-7)中、
 R~Rは、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表す。]
[In the formula (2-7),
R 1 to R 8 each independently represent a hydrogen atom, —R x , —NH 2 , —NHR x , —NR x 2 , —SR x or a halogen atom.
R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
 前記オキサジン色素としては、式(2-8)で表される化合物が好ましい。 The oxazine dye is preferably a compound represented by the formula (2-8).
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
[式(2-8)中、
 R~R15は、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表す。]
[In the formula (2-8),
R 9 to R 15 each independently represent a hydrogen atom, —R x , —NH 2 , —NHR x , —NR x 2 , —SR x or a halogen atom.
R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
 前記アクリジン色素としては、式(2-9)で表される化合物が好ましい。 The acridine dye is preferably a compound represented by the formula (2-9).
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
[式(2-9)中、
 R16~R23は、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SRまたはハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基または炭素数6~12のアリール基を表す。]
[In the formula (2-9),
R 16 to R 23 each independently represent a hydrogen atom, —R x , —NH 2 , —NHR x , —NR x 2 , —SR x or a halogen atom.
R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
 式(2-7)、式(2-8)および式(2-9)における、Rで表される炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基およびヘキシル基等が挙げられ、炭素数6~12のアリール基としては、フェニル基、トルイル基、キシリル基およびナフチル基等が挙げられる。 In the formula (2-7), formula (2-8) and formula (2-9), examples of the alkyl group having 1 to 4 carbon atoms represented by R x include a methyl group, an ethyl group, a propyl group, and a butyl group. A pentyl group, a hexyl group, and the like. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xylyl group, and a naphthyl group.
 前記シアニン色素としては、式(2-10)で表される化合物および式(2-11)で表される化合物が好ましい。 As the cyanine dye, a compound represented by the formula (2-10) and a compound represented by the formula (2-11) are preferable.
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
[式(2-10)中、
 DおよびDは、互いに独立に、式(2-10a)~式(2-10d)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-I000013

 n5は1~3の整数を表す。]
[In the formula (2-10),
D 1 and D 2 each independently represent a group represented by any one of formulas (2-10a) to (2-10d).
Figure JPOXMLDOC01-appb-I000013

n5 represents an integer of 1 to 3. ]
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
[式(2-11)中、
 DおよびDは、互いに独立に、式(2-11a)~式(2-11h)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-I000015

 n6は1~3の整数を表す。]
[In the formula (2-11),
D 3 and D 4 each independently represent a group represented by any one of formulas (2-11a) to (2-11h).
Figure JPOXMLDOC01-appb-I000015

n6 represents an integer of 1 to 3. ]
 二色性色素の含有量(複数種含む場合にはその合計量)は、良好な光吸収特性を得る観点から、重合性液晶化合物100質量部に対して、通常1~30質量部であり、好ましくは2~20質量部であり、より好ましくは3~15質量部である。二色性色素の含有量がこの範囲より少ないと光吸収が不十分となり、十分な偏光性能が得られず、この範囲よりも多いと液晶分子の配向を阻害する場合がある。 The content of the dichroic dye (the total amount when there are a plurality of types) is usually 1 to 30 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound from the viewpoint of obtaining good light absorption characteristics. The amount is preferably 2 to 20 parts by mass, more preferably 3 to 15 parts by mass. If the content of the dichroic dye is less than this range, light absorption becomes insufficient and sufficient polarization performance cannot be obtained, and if it is more than this range, the alignment of liquid crystal molecules may be inhibited.
[偏光層と位相差層の成す角]
本発明の楕円偏光板において、偏光層と位相差層の光軸は実質的に平行関係、即ち、偏光層の光軸と位相差層の光軸とは楕円偏光板の面内で実質的に交わらない関係ではなく、楕円偏光板の面内で偏光層の光軸と位相差層の光軸とが交わっている。互いに交わる偏光層の光軸と位相差層の光軸とのなす角度は、位相差層の遅相軸と偏光層の吸収軸の成す角で40~50°であることが好ましく、41~49°であることがより好ましく、43~47°であることがさらに好ましく、実質的に45°であることが特に好ましく、理想的には45°である。位相差層遅相軸と偏光層吸収軸の成す角が上記範囲内の場合に楕円率が向上し、特に45°である場合に本発明の偏光板は、実質的に円偏光板として機能する。
[Angle formed by polarizing layer and retardation layer]
In the elliptically polarizing plate of the present invention, the optical axis of the polarizing layer and the retardation layer is substantially parallel, that is, the optical axis of the polarizing layer and the optical axis of the retardation layer are substantially in the plane of the elliptically polarizing plate. The optical axis of the polarizing layer and the optical axis of the retardation layer intersect in the plane of the elliptically polarizing plate, not the relationship that does not intersect. The angle formed by the optical axis of the polarizing layer and the optical axis of the retardation layer that intersect each other is preferably 40 to 50 °, which is the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizing layer, and is 41 to 49. More preferably, the angle is more preferably from 43 to 47 °, particularly preferably substantially 45 °, and ideally 45 °. The ellipticity is improved when the angle formed by the retardation axis of the retardation layer and the absorption axis of the polarizing layer is within the above range, and the polarizing plate of the present invention substantially functions as a circularly polarizing plate particularly when the angle is 45 °. .
[溶剤]
 溶剤としては、前述の位相差層又は偏光層形成時に使用する重合性液晶化合物を完全に溶解し得る溶剤が好ましく、また、重合性液晶化合物の重合反応に不活性な溶剤であることが好ましい。
 溶剤としては、例えば、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル及びプロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート及び乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン及びメチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン及びヘプタン等の脂肪族炭化水素溶剤;トルエン及びキシレン等の芳香族炭化水素溶剤;アセトニトリル等のニトリル溶剤;テトラヒドロフラン及びジメトキシエタン等のエーテル溶剤;クロロホルム及びクロロベンゼン等の塩素含有溶剤;ジメチルアセトアミド、ジメチルホルミアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶剤等が挙げられる。これら溶剤は、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。中でも、アルコール溶剤、エステル溶剤、ケトン溶剤、塩素含有溶剤、アミド系溶剤および芳香族炭化水素溶剤が好ましい。
[solvent]
As the solvent, a solvent capable of completely dissolving the polymerizable liquid crystal compound used in forming the retardation layer or polarizing layer is preferable, and a solvent inert to the polymerization reaction of the polymerizable liquid crystal compound is preferable.
Examples of the solvent include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ -Ester solvents such as butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane Aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile; tetrahydride Ether solvents such as furan and dimethoxyethane; chlorine-containing solvents such as chloroform and chlorobenzene; amide solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone Etc. These solvents may be used alone or in combination of two or more. Among these, alcohol solvents, ester solvents, ketone solvents, chlorine-containing solvents, amide solvents, and aromatic hydrocarbon solvents are preferable.
 組成物100質量部に占める溶剤の含有量は、50質量部~98質量部が好ましく、70重量部~95重量部がより好ましい。従って、組成物100質量部に占める固形分は、2質量部~50質量部が好ましい。組成物の固形分が50質量部以下であると、組成物の粘度が低くなることから、重合性液晶化合物を含む膜の厚みが略均一になり、重合性液晶化合物を含む膜にムラが生じ難くなる傾向がある。上記固形分は、製造しようとする重合性液晶化合物を含む膜の厚みを考慮して適宜定めることができる。 The content of the solvent in 100 parts by weight of the composition is preferably 50 parts by weight to 98 parts by weight, and more preferably 70 parts by weight to 95 parts by weight. Accordingly, the solid content in 100 parts by mass of the composition is preferably 2 to 50 parts by mass. When the solid content of the composition is 50 parts by mass or less, since the viscosity of the composition is low, the thickness of the film containing the polymerizable liquid crystal compound becomes substantially uniform, and unevenness occurs in the film containing the polymerizable liquid crystal compound. It tends to be difficult. The solid content can be appropriately determined in consideration of the thickness of the film containing the polymerizable liquid crystal compound to be produced.
[光重合開始剤]
 重合開始剤は、重合性液晶化合物等の重合反応を開始し得る化合物である。重合開始剤としては、光照射によってラジカルを発生する光重合開始剤がより好ましい。
 光重合開始剤としては、例えば、ベンゾイン化合物、ベンゾフェノン化合物、ベンジルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、トリアジン化合物、ヨードニウム塩及びスルホニウム塩が挙げられる。具体的には、イルガキュア(Irgacure、登録商標)907、イルガキュア184、イルガキュア651、イルガキュア819、イルガキュア250、イルガキュア369、イルガキュア379、イルガキュア127、イルガキュア2959、イルガキュア754、イルガキュア379EG(以上、BASFジャパン株式会社製)、セイクオールBZ、セイクオールZ、セイクオールBEE(以上、精工化学株式会社製)、カヤキュアー(kayacure)BP100(日本化薬株式会社製)、カヤキュアーUVI-6992(ダウ社製)、アデカオプトマーSP-152、アデカオプトマーSP-170、アデカオプトマーN-1717、アデカオプトマーN-1919、アデカアークルズNCI-831、アデカアークルズNCI-930(以上、株式会社ADEKA製)、TAZ-A、TAZ-PP(以上、日本シイベルヘグナー社製)及びTAZ-104(三和ケミカル社製)が挙げられる。
 位相差層形成用組成物、又は偏光層形成用組成物において、含まれる光重合開始剤は、少なくとも1種類であり、1種類若しくは2種類であることが好ましい。
[Photopolymerization initiator]
The polymerization initiator is a compound that can initiate a polymerization reaction such as a polymerizable liquid crystal compound. As a polymerization initiator, the photoinitiator which generate | occur | produces a radical by light irradiation is more preferable.
Examples of the photopolymerization initiator include benzoin compounds, benzophenone compounds, benzyl ketal compounds, α-hydroxy ketone compounds, α-amino ketone compounds, triazine compounds, iodonium salts, and sulfonium salts. Specifically, Irgacure (registered trademark) 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369, Irgacure 379, Irgacure 127, Irgacure 2959, Irgacure 754, Irgacure 379EG (above, BASF Japan Ltd.) ), Sequol BZ, Sequol Z, Sequol BEE (above, Seiko Chemical Co., Ltd.), kayacure BP100 (Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (Dow), Adekaoptomer SP- 152, Adekaoptomer SP-170, Adekaoptomer N-1717, Adekaoptomer N-1919, Adeka Arkles NCI-831, Adeka Arkles NCI-930 (and above, shares) Company ADEKA), TAZ-A, TAZ-PP (Nippon Siebel Hegner, Inc.) and TAZ-104 (Sanwa Chemical Co., Ltd.).
In the composition for forming a retardation layer or the composition for forming a polarizing layer, the contained photopolymerization initiator is at least one, and preferably one or two.
光重合開始剤は、光源から発せられるエネルギーを十分に活用でき、生産性に優れるため、極大吸収波長が300nm~380nmであることが好ましく、300nm~360nmであることがより好ましく、中でも、α-アセトフェノン系重合開始剤、オキシム系光重合開始剤が好ましい。 Since the photopolymerization initiator can fully utilize the energy emitted from the light source and is excellent in productivity, the maximum absorption wavelength is preferably 300 nm to 380 nm, more preferably 300 nm to 360 nm, and among these, α- An acetophenone polymerization initiator and an oxime photopolymerization initiator are preferred.
α-アセトフェノン化合物としては、2-メチル-2-モルホリノ-1-(4-メチルスルファニルフェニル)プロパン-1-オン、2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジルブタン-1-オンおよび2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-(4-メチルフェニルメチル)ブタン-1-オン等が挙げられ、より好ましくは2-メチル-2-モルホリノ-1-(4-メチルスルファニルフェニル)プロパン-1-オンおよび2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジルブタン-1-オン等が挙げられる。α-アセトフェノン化合物の市販品としては、イルガキュア369、379EG、907(以上、BASFジャパン(株)製)およびセイクオールBEE(精工化学社製)等が挙げられる。 Examples of α-acetophenone compounds include 2-methyl-2-morpholino-1- (4-methylsulfanylphenyl) propan-1-one, 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutane-1 -One and 2-dimethylamino-1- (4-morpholinophenyl) -2- (4-methylphenylmethyl) butan-1-one, and the like, more preferably 2-methyl-2-morpholino-1- ( 4-methylsulfanylphenyl) propan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutan-1-one. Examples of commercially available α-acetophenone compounds include Irgacure 369, 379EG, 907 (above, manufactured by BASF Japan Ltd.), Sequol BEE (manufactured by Seiko Chemical Co., Ltd.), and the like.
 オキシム系光重合開始剤は、光が照射されることによってメチルラジカルを生成させる。このメチルラジカルにより重合性液晶化合物を含む膜の深部における重合性液晶化合物の重合が好適に進行する。また、重合性液晶化合物を含む膜の深部における重合反応をより効率的に進行させるという観点から、波長350nm以上の紫外線を効率的に利用可能な光重合開始剤を使用することが好ましい。波長350nm以上の紫外線を効率的に利用可能な光重合開始剤としては、トリアジン化合物やオキシムエステル型カルバゾール化合物が好ましく、感度の観点からはオキシムエステル型カルバゾール化合物がより好ましい。オキシムエステル型カルバゾール化合物としては、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等が挙げられる。オキシムエステル型カルバゾール化合物の市販品としては、イルガキュアOXE-01、イルガキュアOXE-02、イルガキュアOXE-03(以上、BASFジャパン株式会社製)、アデカオプトマーN-1919、アデカアークルズNCI-831(以上、株式会社ADEKA製)等が挙げられる。 The oxime photopolymerization initiator generates methyl radicals when irradiated with light. Polymerization of the polymerizable liquid crystal compound in the deep part of the film containing the polymerizable liquid crystal compound suitably proceeds by this methyl radical. Moreover, it is preferable to use the photoinitiator which can utilize the ultraviolet-ray with a wavelength of 350 nm or more efficiently from a viewpoint that the polymerization reaction in the deep part of the film | membrane containing a polymeric liquid crystal compound advances more efficiently. As a photopolymerization initiator capable of efficiently using ultraviolet rays having a wavelength of 350 nm or more, a triazine compound or an oxime ester type carbazole compound is preferable, and an oxime ester type carbazole compound is more preferable from the viewpoint of sensitivity. Examples of oxime ester type carbazole compounds include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) ) -9H-carbazol-3-yl] -1- (O-acetyloxime) and the like. Commercially available oxime ester type carbazole compounds include Irgacure OXE-01, Irgacure OXE-02, Irgacure OXE-03 (above, manufactured by BASF Japan Ltd.), Adekaoptomer N-1919, Adeka Arcles NCI-831 (above ADEKA Co., Ltd.).
 光重合開始剤の添加量は、重合性液晶化合物100質量部に対して、通常、0.1質量部~30質量部であり、好ましくは1質量部~20質量部であり、より好ましくは3質量部~18質量部である。上記範囲内であれば、重合性基の反応が十分に進行し、かつ、重合性液晶化合物の配向を乱し難い。 The addition amount of the photopolymerization initiator is usually 0.1 to 30 parts by weight, preferably 1 to 20 parts by weight, more preferably 3 parts per 100 parts by weight of the polymerizable liquid crystal compound. Parts by mass to 18 parts by mass. If it is in the said range, reaction of a polymeric group will fully advance and it will be hard to disturb the orientation of a polymeric liquid crystal compound.
 重合禁止剤を配合することにより、重合性液晶化合物の重合反応をコントロールすることができる。重合禁止剤としては、ハイドロキノンおよびアルキルエーテル等の置換基を有するハイドロキノン類;ブチルカテコール等のアルキルエーテル等の置換基を有するカテコール類;ピロガロール類、2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル等のラジカル補捉剤;チオフェノール類;β-ナフチルアミン類およびβ-ナフトール類が挙げられる。重合禁止剤の含有量は、重合性液晶化合物の配向を乱すことなく、重合性液晶化合物を重合するためには、重合性液晶化合物100質量部に対して、通常0.1~10質量部であり、好ましくは0.5~5質量部であり、さらに好ましくは0.5~3質量部である。 By adding a polymerization inhibitor, the polymerization reaction of the polymerizable liquid crystal compound can be controlled. Polymerization inhibitors include hydroquinones having substituents such as hydroquinone and alkyl ethers; catechols having substituents such as alkyl ethers such as butylcatechol; pyrogallols, 2,2,6,6-tetramethyl-1- And radical scavengers such as piperidinyloxy radical; thiophenols; β-naphthylamines and β-naphthols. In order to polymerize the polymerizable liquid crystal compound without disturbing the orientation of the polymerizable liquid crystal compound, the content of the polymerization inhibitor is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Yes, preferably 0.5 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass.
さらに、光増感剤を用いることにより、光重合開始剤を高感度化することができる。光増感剤としては、例えば、キサントン、チオキサントン等のキサントン類;アントラセンおよびアルキルエーテル等の置換基を有するアントラセン類;フェノチアジン;ルブレンが挙げられる。光増感剤としては、例えば、キサントン、チオキサントン等のキサントン類;アントラセンおよびアルキルエーテル等の置換基を有するアントラセン類;フェノチアジン;ルブレンが挙げられる。光増感剤の含有量は、重合性液晶化合物100質量部に対して、通常0.1~10質量部であり、好ましくは0.5~5質量部であり、さらに好ましくは0.5~3質量部である。 Furthermore, the sensitivity of the photopolymerization initiator can be increased by using a photosensitizer. Examples of the photosensitizer include xanthones such as xanthone and thioxanthone; anthracene having a substituent such as anthracene and alkyl ether; phenothiazine; and rubrene. Examples of the photosensitizer include xanthones such as xanthone and thioxanthone; anthracene having a substituent such as anthracene and alkyl ether; phenothiazine; and rubrene. The content of the photosensitizer is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal compound. 3 parts by mass.
[レベリング剤]
レベリング剤とは、組成物の流動性を調整し、組成物を塗布して得られる膜をより平坦にする機能を有する添加剤であり、例えば、有機変性シリコーンオイル系、ポリアクリレート系およびパーフルオロアルキル系のレベリング剤が挙げられる。具体的には、DC3PA、SH7PA、DC11PA、SH28PA、SH29PA、SH30PA、ST80PA、ST86PA、SH8400、SH8700、FZ2123(以上、全て東レ・ダウコーニング(株)製)、KP321、KP323、KP324、KP326、KP340、KP341、X22-161A、KF6001(以上、全て信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF-4446、TSF4452、TSF4460(以上、全てモメンティブ パフォーマンス マテリアルズ ジャパン合同会社製)、フロリナート(fluorinert)(登録商標)FC-72、同FC-40、同FC-43、同FC-3283(以上、全て住友スリーエム(株)製)、メガファック(登録商標)R-08、同R-30、同R-90、同F-410、同F-411、同F-443、同F-445、同F-470、同F-477、同F-479、同F-482、同F-483(以上、いずれもDIC(株)製)、エフトップ(商品名)EF301、同EF303、同EF351、同EF352(以上、全て三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S-381、同S-382、同S-383、同S-393、同SC-101、同SC-105、KH-40、SA-100(以上、全てAGCセイミケミカル(株)製)、商品名E1830、同E5844((株)ダイキンファインケミカル研究所製)、BM-1000、BM-1100、BYK-352、BYK-353およびBYK-361N(いずれも商品名:BM Chemie社製)等が挙げられる。中でも、ポリアクリレート系レベリング剤およびパーフルオロアルキル系レベリング剤が好ましい。
[Leveling agent]
The leveling agent is an additive having a function of adjusting the fluidity of the composition and flattening a film obtained by applying the composition. For example, an organic modified silicone oil system, polyacrylate system and perfluorocarbon An alkyl type leveling agent is mentioned. Specifically, DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all are manufactured by Toray Dow Corning Co., Ltd.), KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001 (all manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452, TSF4460 (all, Momentive Performance Materials Japan GK) Manufactured), Fluorinert (registered trademark) FC-72, FC-40, FC-43, FC-3283 (above, Manufactured by Sumitomo 3M Co., Ltd.), MegaFace (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, F-470, F-477, F-479, F-482, F-482 (all of which are manufactured by DIC Corporation), Ftop (trade name) EF301, EF303, EF351, EF352 (all from Mitsubishi Materials Electronics Chemical Co., Ltd.), Surflon (registered trademark) S-381, S-382, S-383, S-393, SC-101, SC-105, KH -40, SA-100 (all are manufactured by AGC Seimi Chemical Co., Ltd.), trade names E1830, E5844 (manufactured by Daikin Fine Chemical Laboratory Co., Ltd.), BM-1000, BM-1100, BYK-352, BY -353 and BYK-361N (both trade name: BM Chemie Co., Ltd.), and the like. Of these, polyacrylate leveling agents and perfluoroalkyl leveling agents are preferred.
本発明に用いる位相差層形成用組成物、及び偏光層形成用組成物におけるレベリング剤の含有量は、重合性液晶化合物100質量部に対して、0.01質量部~5質量部が好ましく、0.1質量部~3質量部がさらに好ましい。レベリング剤の含有量が、上記範囲内であると、重合性液晶化合物を水平配向させることが容易であり、かつ得られる重合性液晶化合物を含む膜がより平滑となる傾向があるため好ましい。本発明に用いる位相差層形成用組成物、及び偏光層形成用組成物は、レベリング剤を2種類以上含有していてもよい。 The content of the leveling agent in the retardation layer forming composition and polarizing layer forming composition used in the present invention is preferably 0.01 parts by mass to 5 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. 0.1 to 3 parts by mass is more preferable. It is preferable that the content of the leveling agent is within the above range because the polymerizable liquid crystal compound can be easily horizontally aligned and the resulting film containing the polymerizable liquid crystal compound tends to be smoother. The retardation layer forming composition and the polarizing layer forming composition used in the present invention may contain two or more kinds of leveling agents.
 [粘着剤]
 偏光層と位相差層あるいは位相差層と表示装置とを貼り合わせるための粘接着剤としては、感圧式粘着剤、乾燥固化型接着剤及び化学反応型接着剤が挙げられる。化学反応型接着剤としては、例えば、活性エネルギー線硬化型接着剤が挙げられる。偏光層と位相差層との間の粘接着剤としては、感圧式粘着剤、乾燥固化型接着剤、活性エネルギー線硬化型接着剤から形成される接着剤層が好ましく、位相差層と表示装置との間の粘接着剤としては、感圧式粘着剤又は活性エネルギー線硬化型接着剤から形成される粘着層が好ましい。
[Adhesive]
Examples of the adhesive for bonding the polarizing layer and the retardation layer or the retardation layer and the display device include a pressure-sensitive adhesive, a dry-solidifying adhesive, and a chemically reactive adhesive. Examples of the chemically reactive adhesive include an active energy ray curable adhesive. As the adhesive between the polarizing layer and the retardation layer, an adhesive layer formed from a pressure-sensitive adhesive, a dry-solidifying adhesive, or an active energy ray-curable adhesive is preferable. As the adhesive between the apparatus and the apparatus, a pressure-sensitive adhesive or an adhesive layer formed from an active energy ray-curable adhesive is preferable.
 感圧式粘着剤は、通常、ポリマーを含み、溶剤を含んでいてもよい。
 ポリマーとしては、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、又はポリエーテル等が挙げられる。中でも、アクリル系ポリマーを含むアクリル系の粘着剤は、光学的な透明性に優れ、適度の濡れ性や凝集力を有し、接着性に優れ、さらには耐候性や耐熱性等が高く、加熱や加湿の条件下で浮きや剥がれ等が生じ難いため好ましい。
The pressure-sensitive adhesive usually contains a polymer and may contain a solvent.
Examples of the polymer include acrylic polymers, silicone polymers, polyesters, polyurethanes, and polyethers. Among them, acrylic pressure-sensitive adhesives containing acrylic polymers have excellent optical transparency, moderate wettability and cohesive strength, excellent adhesion, and high weather resistance and heat resistance. It is preferable because it does not easily float or peel off under humidifying conditions.
 アクリル系ポリマーとしては、エステル部分のアルキル基がメチル基、エチル基又はブチル基等の炭素数1~20のアルキル基である(メタ)アクリレート(以下、アクリレート、メタクリレートを総称して(メタ)アクリレートと称することがあり、アクリル酸とメタクリル酸とを総称して(メタ)アクリル酸と称することがある)と、(メタ)アクリル酸やヒドロキシエチル(メタ)アクリレート等の官能基を有する(メタ)アクリル系モノマーとの共重合体が好ましい。 Acrylic polymers include (meth) acrylates in which the alkyl group in the ester moiety is an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group or a butyl group (hereinafter, acrylate and methacrylate are collectively referred to as (meth) acrylate). Acrylic acid and methacrylic acid may be collectively referred to as (meth) acrylic acid) and (meth) having a functional group such as (meth) acrylic acid or hydroxyethyl (meth) acrylate A copolymer with an acrylic monomer is preferred.
 このような共重合体を含む感圧式粘着剤は、粘着性に優れており、表示装置に貼合した後に取り除くときも、表示装置に糊残り等を生じさせることなく、比較的容易に取り除くことが可能であるので好ましい。アクリル系ポリマーのガラス転移温度は、25℃以下が好ましく、0℃以下がより好ましい。このようなアクリル系ポリマーの質量平均分子量は、10万以上であることが好ましい。 A pressure-sensitive adhesive containing such a copolymer is excellent in adhesiveness, and even when removed after being bonded to a display device, it is relatively easy to remove without causing adhesive residue or the like on the display device. Is preferable. The glass transition temperature of the acrylic polymer is preferably 25 ° C. or less, and more preferably 0 ° C. or less. The mass average molecular weight of such an acrylic polymer is preferably 100,000 or more.
 溶剤としては、前記溶剤として挙げられた溶剤等が挙げられる。感圧式粘着剤は、光拡散剤を含有していてもよい。光拡散剤は、粘着剤に光拡散性を付与する添加剤であり、粘着剤が含むポリマーの屈折率と異なる屈折率を有する微粒子であればよい。光拡散剤としては、無機化合物からなる微粒子、及び有機化合物(ポリマー)からなる微粒子が挙げられる。アクリル系ポリマーを含めて、粘着剤が有効成分として含むポリマーの多くは1.4~1.6程度の屈折率を有するため、その屈折率が1.2~1.8である光拡散剤から適宜選択することが好ましい。粘着剤が有効成分として含むポリマーと光拡散剤との屈折率差は、通常、0.01以上であり、表示装置の明るさと表示性の観点からは、0.01~0.2が好ましい。光拡散剤として用いる微粒子は、球形の微粒子、それも単分散に近い微粒子が好ましく、平均粒径が2μm~6μmである微粒子がより好ましい。 屈折率は、一般的な最小偏角法又はアッベ屈折計によって測定される。
 無機化合物からなる微粒子としては、酸化アルミニウム(屈折率1.76)及び酸化ケイ素(屈折率1.45)等が挙げられる。有機化合物(ポリマー)からなる微粒子としては、メラミンビーズ(屈折率1.57)、ポリメタクリル酸メチルビーズ(屈折率1.49)、メタクリル酸メチル/スチレン共重合体樹脂ビーズ(屈折率1.50~1.59)、ポリカーボネートビーズ(屈折率1.55)、ポリエチレンビーズ(屈折率1.53)、ポリスチレンビーズ(屈折率1.6)、ポリ塩化ビニルビーズ(屈折率1.46)、及びシリコーン樹脂ビーズ(屈折率1.46)等が挙げられる。光拡散剤の含有量は、通常、ポリマー100質量部に対して、3質量部~30質量部である。
 感圧式粘着剤の厚さは、その密着力等に応じて決定されるため、特に制限されないが、通常、1μm~40μmである。加工性や耐久性等の点から、当該厚さは3μm~25μmが好ましく、5μm~20μmがより好ましい。粘着剤から形成される粘接着剤層の厚さを5μm~20μmとすることにより、表示装置を正面から見た場合や斜めから見た場合の明るさを保ち、表示像のにじみやボケを生じ難くすることができる。
Examples of the solvent include the solvents mentioned as the solvent. The pressure-sensitive adhesive may contain a light diffusing agent. The light diffusing agent is an additive that imparts light diffusibility to the pressure-sensitive adhesive, and may be fine particles having a refractive index different from the refractive index of the polymer included in the pressure-sensitive adhesive. Examples of the light diffusing agent include fine particles made of an inorganic compound and fine particles made of an organic compound (polymer). Many of the polymers that the adhesive contains as an active ingredient, including acrylic polymers, have a refractive index of about 1.4 to 1.6. It is preferable to select appropriately. The refractive index difference between the polymer contained in the pressure-sensitive adhesive as an active ingredient and the light diffusing agent is usually 0.01 or more, and is preferably 0.01 to 0.2 from the viewpoint of the brightness and display properties of the display device. The fine particles used as the light diffusing agent are preferably spherical fine particles, and fine particles close to monodispersion, more preferably fine particles having an average particle diameter of 2 μm to 6 μm. The refractive index is measured by a general minimum deviation method or Abbe refractometer.
Examples of the fine particles made of an inorganic compound include aluminum oxide (refractive index 1.76) and silicon oxide (refractive index 1.45). Fine particles comprising an organic compound (polymer) include melamine beads (refractive index 1.57), polymethyl methacrylate beads (refractive index 1.49), methyl methacrylate / styrene copolymer resin beads (refractive index 1.50). To 1.59), polycarbonate beads (refractive index 1.55), polyethylene beads (refractive index 1.53), polystyrene beads (refractive index 1.6), polyvinyl chloride beads (refractive index 1.46), and silicone. Examples thereof include resin beads (refractive index: 1.46). The content of the light diffusing agent is usually 3 to 30 parts by mass with respect to 100 parts by mass of the polymer.
The thickness of the pressure-sensitive adhesive is determined according to its adhesion and the like and is not particularly limited, but is usually 1 μm to 40 μm. From the viewpoint of processability and durability, the thickness is preferably 3 μm to 25 μm, more preferably 5 μm to 20 μm. By making the thickness of the adhesive layer formed from the adhesive 5 μm to 20 μm, the brightness of the display device when viewed from the front or obliquely is maintained, and blurring or blurring of the display image is prevented. It can be made difficult to occur.
 [乾燥固化型接着剤]
 乾燥固化型接着剤は、溶剤を含んでいてもよい。
 乾燥固化型接着剤としては、水酸基、カルボキシル基又はアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体、又は、ウレタン樹脂を主成分として含有し、さらに、多価アルデヒド、エポキシ化合物、エポキシ樹脂、メラミン化合物、ジルコニア化合物、及び亜鉛化合物等の架橋剤又は硬化性化合物を含有する組成物等が挙げられる。水酸基、カルボキシル基又はアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体としては、エチレン-マレイン酸共重合体、イタコン酸共重合体、アクリル酸共重合体、アクリルアミド共重合体、ポリ酢酸ビニルのケン化物、及び、ポリビニルアルコール系樹脂等が挙げられる。
[Dry-solidifying adhesive]
The dry-solidifying adhesive may contain a solvent.
The dry-solidifying adhesive contains, as a main component, a polymer of a monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group, or a urethane resin. Examples include aldehydes, epoxy compounds, epoxy resins, melamine compounds, zirconia compounds, and compositions containing a curable compound such as a zinc compound. Examples of the polymer of a monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group include an ethylene-maleic acid copolymer, an itaconic acid copolymer, an acrylic acid copolymer, and an acrylamide. Examples include copolymers, saponified products of polyvinyl acetate, and polyvinyl alcohol resins.
 ポリビニルアルコール系樹脂としては、ポリビニルアルコール、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、及び、アミノ基変性ポリビニルアルコール等が挙げられる。水系の粘接着剤におけるポリビニルアルコール系樹脂の含有量は、水100質量部に対して、通常、1質量部~10質量部であり、好ましくは1質量部~5質量部である。 Examples of the polyvinyl alcohol resin include polyvinyl alcohol, partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Can be mentioned. The content of the polyvinyl alcohol-based resin in the aqueous adhesive is usually 1 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of water.
 ウレタン樹脂としては、ポリエステル系アイオノマー型ウレタン樹脂等が挙げられる。
ここでいうポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その中に少量のイオン性成分(親水成分)が導入された樹脂である。係るアイオノマー型ウレタン樹脂は、乳化剤を使用せずに、水中で乳化してエマルジョンとなるため、水系の粘接着剤とすることができる。ポリエステル系アイオノマー型ウレタン樹脂を用いる場合は、架橋剤として水溶性のエポキシ化合物を配合することが有効である。
Examples of the urethane resin include polyester ionomer type urethane resins.
The polyester ionomer type urethane resin here is a urethane resin having a polyester skeleton, and a resin in which a small amount of an ionic component (hydrophilic component) is introduced. Since such an ionomer type urethane resin is emulsified in water without using an emulsifier and becomes an emulsion, it can be an aqueous adhesive. When a polyester ionomer type urethane resin is used, it is effective to blend a water-soluble epoxy compound as a crosslinking agent.
 エポキシ樹脂としては、ジエチレントリアミン又はトリエチレンテトラミン等のポリアルキレンポリアミンとアジピン酸等のジカルボン酸との反応で得られるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂等が挙げられる。係るポリアミドエポキシ樹脂の市販品としては、“スミレーズレジン(登録商標)650”及び“スミレーズレジン675”(以上、住化ケムテックス株式会社製)、“WS-525”(日本PMC株式会社製)等が挙げられる。エポキシ樹脂を配合する場合、その添加量は、ポリビニルアルコール系樹脂100質量部に対して、通常、1質量部~100質量部であり、好ましくは1質量部~50質量部である。 Examples of the epoxy resin include a polyamide epoxy resin obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid and epichlorohydrin. Commercially available products of such polyamide epoxy resins include “Smilease Resin (registered trademark) 650” and “Smilease Resin 675” (above, manufactured by Sumika Chemtex Co., Ltd.), “WS-525” (manufactured by Nippon PMC Co., Ltd.). Etc. When the epoxy resin is blended, the addition amount is usually 1 part by mass to 100 parts by mass, preferably 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol resin.
 乾燥固化型接着剤から形成される粘接着剤層の厚さは、通常、0.001μm~5μmであり、好ましくは0.01μm~2μmであり、さらに好ましくは0.01μm~0.5μmである。乾燥固化型接着剤から形成される粘接着剤層が厚すぎると、光学異方層が外観不良となり易い。 The thickness of the adhesive layer formed from the dry-solidifying adhesive is usually 0.001 μm to 5 μm, preferably 0.01 μm to 2 μm, more preferably 0.01 μm to 0.5 μm. is there. If the adhesive layer formed from the dry-solidifying adhesive is too thick, the optically anisotropic layer tends to be defective in appearance.
 [活性エネルギー線硬化型接着剤]
 活性エネルギー線硬化型接着剤は、溶剤を含んでいてもよい。活性エネルギー線硬化型接着剤とは、活性エネルギー線の照射を受けて硬化する接着剤である。
 活性エネルギー線硬化型接着剤としては、エポキシ化合物とカチオン重合開始剤とを含有するカチオン重合性の接着剤、アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の接着剤、エポキシ化合物等のカチオン重合性の硬化成分及びアクリル系化合物等のラジカル重合性の硬化成分の両者を含有し、さらにカチオン重合開始剤及びラジカル重合開始剤を含有する接着剤、及び、これら重合開始剤を含まずに電子ビームを照射することで硬化される接着剤等が挙げられる。
[Active energy ray-curable adhesive]
The active energy ray-curable adhesive may contain a solvent. An active energy ray-curable adhesive is an adhesive that cures upon irradiation with active energy rays.
Examples of the active energy ray-curable adhesive include a cationic polymerizable adhesive containing an epoxy compound and a cationic polymerization initiator, a radical polymerizable adhesive containing an acrylic curing component and a radical polymerization initiator, and an epoxy compound. Contains both a cationic polymerizable curing component such as an acrylic compound and a radical polymerizable curing component such as an acrylic compound, and further contains an adhesive containing a cationic polymerization initiator and a radical polymerization initiator, and these polymerization initiators. For example, an adhesive that is cured by irradiating an electron beam.
中でも、アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の活性エネルギー線硬化型接着剤、エポキシ化合物とカチオン重合開始剤とを含有するカチオン重合性の活性エネルギー線硬化型接着剤が好ましい。アクリル系硬化成分としては、メチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリレート及び(メタ)アクリル酸等が挙げられる。エポキシ化合物を含有する活性エネルギー線硬化型接着剤は、エポキシ化合物以外の化合物をさらに含有していてもよい。エポキシ化合物以外の化合物としては、オキセタン化合物やアクリル化合物等が挙げられる。
 ラジカル重合開始剤としては、前述した光重合開始剤が挙げられる。カチオン重合開始剤の市販品としては、“カヤラッド”(登録商標)シリーズ(日本化薬株式会社製)、“サイラキュアUVI“シリーズ(ダウケミカル社製)、“CPI”シリーズ(サンアプロ株式会社製)、“TAZ”、“BBI”及び“DTS”(以上、みどり化学株式会社製)、“アデカオプトマー”シリーズ(株式会社ADEKA製)、“RHODORSIL”(登録商標)(ローディア株式会社製)等が挙げられる。ラジカル重合開始剤並びにカチオン重合開始剤の含有量は、活性エネルギー線硬化型接着剤100質量部に対して、通常、0.5質量部~20質量部であり、好ましくは1質量部~15質量部である。
Among them, radically polymerizable active energy ray-curable adhesives containing an acrylic curing component and a radical polymerization initiator, and cationic polymerizable active energy ray-curable adhesives containing an epoxy compound and a cationic polymerization initiator are provided. preferable. Examples of the acrylic curing component include (meth) acrylates such as methyl (meth) acrylate and hydroxyethyl (meth) acrylate, and (meth) acrylic acid. The active energy ray-curable adhesive containing an epoxy compound may further contain a compound other than the epoxy compound. Examples of compounds other than epoxy compounds include oxetane compounds and acrylic compounds.
Examples of the radical polymerization initiator include the photopolymerization initiators described above. As a commercial product of a cationic polymerization initiator, “Kayarad” (registered trademark) series (manufactured by Nippon Kayaku Co., Ltd.), “Syracure UVI” series (manufactured by Dow Chemical Co., Ltd.), “CPI” series (manufactured by San Apro Corporation) “TAZ”, “BBI” and “DTS” (manufactured by Midori Chemical Co., Ltd.), “Adekaoptomer” series (manufactured by ADEKA Corporation), “RHODORSIL” (registered trademark) (manufactured by Rhodia Corporation) It is done. The content of the radical polymerization initiator and the cationic polymerization initiator is usually 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the active energy ray-curable adhesive. Part.
 活性エネルギー線硬化型接着剤には、さらに、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤及び消泡剤等が含有されていてもよい。 The active energy ray-curable adhesive further contains an ion trap agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow regulator, a plasticizer, an antifoaming agent, and the like. May be.
 本明細書において活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線等が挙げられ、紫外線及び電子線が好ましい。好ましい紫外線の照射条件は前述した重合性液晶化合物の重合と同様である。 In this specification, the active energy ray is defined as an energy ray capable of decomposing a compound that generates active species to generate active species. Examples of such active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, α rays, β rays, γ rays, and electron beams, and ultraviolet rays and electron beams are preferable. Preferable ultraviolet irradiation conditions are the same as the polymerization of the polymerizable liquid crystal compound described above.
[積層体各層の屈折率]
 ある層Aに、別の層Bが直下に積層されている場合、層Aの屈折率をnA、層Bの屈折率をnBとすると、層Aに垂直な方向から光が入射したときの層Aと層Bにおける界面反射率は以下の式(K)であらわされる。
界面反射率(%)=(n-n/(n+n×100      ・・・(K)

このため、積層体の隣接する層の屈折率差が大きい場合には、界面反射による損失が大きくなる。積層体から成る楕円偏光板においては、界面反射による損失の影響を小さくするために、隣接する層の屈折率差は0.20以下が好ましく、0.15以下がより好ましく、0.10以下であることがさらに好ましい。
[Refractive index of each layer of laminate]
When another layer B is laminated immediately below a certain layer A, assuming that the refractive index of the layer A is nA and the refractive index of the layer B is nB, the layer when light enters from a direction perpendicular to the layer A The interface reflectance in A and layer B is expressed by the following equation (K).
Interface reflectance (%) = (n A −n B ) 2 / (n A + n B ) 2 × 100 (K)

For this reason, when the difference in refractive index between adjacent layers of the laminate is large, loss due to interface reflection increases. In the elliptically polarizing plate made of a laminate, the refractive index difference between adjacent layers is preferably 0.20 or less, more preferably 0.15 or less, and 0.10 or less in order to reduce the influence of loss due to interface reflection. More preferably it is.
[偏光層、又は位相差層の製造方法]
 以下、本発明の偏光層又は位相差層は、光学異方性層という場合がある。また、偏光層形成用組成物又は位相差層形成用組成物は、光学異方性層形成用組成物という場合がある。偏光層、及び位相差層の製造方法は同じであっても、異なっていてもよい。
[Method for producing polarizing layer or retardation layer]
Hereinafter, the polarizing layer or retardation layer of the present invention may be referred to as an optically anisotropic layer. The composition for forming a polarizing layer or the composition for forming a retardation layer may be referred to as an optically anisotropic layer forming composition. The manufacturing method of the polarizing layer and the retardation layer may be the same or different.
[光学異方性層形成用組成物の塗布]
 前述の透明基材または配向膜上に光学異方性層形成用組成物が塗布することで光学異方性層を形成することができる。光学異方性層形成用組成物を基材上に塗布する方法としては、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、CAPコーティング法、スリットコーティング法、マイクログラビア法、ダイコーティング法、インクジェット法等が挙げられる。また、ディップコーター、バーコーター、スピンコーター等のコーターを用いて塗布する方法等も挙げられる。中でも、Roll to Roll形式で連続的に塗布する場合には、マイクログラビア法、インクジェット法、スリットコーティング法、ダイコーティング法による塗布方法が好ましく、ガラス等の枚葉基材に塗布する場合には、均一性の高いスピンコーティング法が好ましい。Roll to Roll形式で塗布する場合、基材に光配向膜形成用組成物等を塗布して配向膜を形成し、さらに得られた配向膜上に光学異方性層形成用組成物を連続的に塗布することもできる。
[Coating of composition for forming optically anisotropic layer]
An optically anisotropic layer can be formed by applying the optically anisotropic layer forming composition on the transparent substrate or the alignment film. As a method for applying the optically anisotropic layer forming composition on the substrate, extrusion coating method, direct gravure coating method, reverse gravure coating method, CAP coating method, slit coating method, micro gravure method, die coating method, An ink jet method is exemplified. Moreover, the method of apply | coating using coaters, such as a dip coater, a bar coater, a spin coater, etc. are mentioned. In particular, when applying continuously in the Roll to Roll format, a coating method by a microgravure method, an ink jet method, a slit coating method, or a die coating method is preferable, and when applying to a single-wafer substrate such as glass, uniformity is achieved. A high spin coating method is preferred. In the case of coating in the Roll to Roll format, a composition for forming a photo-alignment film or the like is applied to a substrate to form an alignment film, and the composition for forming an optical anisotropic layer is continuously formed on the obtained alignment film. It can also be applied.
[光学異方性層形成用組成物の乾燥]
 光学異方性層形成用組成物に含まれる溶剤を除去する乾燥方法としては、例えば、自然乾燥、通風乾燥、加熱乾燥、減圧乾燥およびこれらを組み合わせた方法が挙げられる。中でも、自然乾燥または加熱乾燥が好ましい。乾燥温度は、0~200℃の範囲が好ましく、20~150℃の範囲がより好ましく、50~130℃の範囲がさらに好ましい。乾燥時間は、10秒間~20分間が好ましく、より好ましくは30秒間~10分間である。光配向膜形成用組成物および配向性ポリマー組成物も同様に乾燥することができる。
[Drying of composition for forming optically anisotropic layer]
Examples of the drying method for removing the solvent contained in the composition for forming an optically anisotropic layer include natural drying, ventilation drying, heat drying, reduced pressure drying, and a combination thereof. Of these, natural drying or heat drying is preferred. The drying temperature is preferably in the range of 0 to 200 ° C, more preferably in the range of 20 to 150 ° C, and still more preferably in the range of 50 to 130 ° C. The drying time is preferably 10 seconds to 20 minutes, more preferably 30 seconds to 10 minutes. The composition for forming a photo-alignment film and the alignment polymer composition can be similarly dried.
[重合性液晶化合物の重合]
 重合性液晶化合物を重合させる方法としては、光重合が好ましい。光重合は、基材上または配向膜上に重合性液晶化合物を含む光学異方性層形成用組成物が塗布された積層体に活性エネルギー線を照射することにより実施される。照射する活性エネルギー線としては、乾燥被膜に含まれる重合性液晶化合物の種類(特に、重合性液晶化合物が有する光重合性官能基の種類)、光重合開始剤を含む場合には光重合開始剤の種類、およびそれらの量に応じて適宜選択される。具体的には、可視光、紫外光、赤外光、X線、α線、β線、およびγ線からなる群より選択される一種以上の光が挙げられる。中でも、重合反応の進行を制御し易い点、および光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって光重合可能なように、重合性液晶化合物の種類を選択することが好ましい。
[Polymerization of polymerizable liquid crystal compound]
Photopolymerization is preferred as a method for polymerizing the polymerizable liquid crystal compound. Photopolymerization is carried out by irradiating an active energy ray to a laminate in which a composition for forming an optically anisotropic layer containing a polymerizable liquid crystal compound is applied on a substrate or an alignment film. The active energy rays to be irradiated include the type of polymerizable liquid crystal compound contained in the dry film (particularly, the type of photopolymerizable functional group of the polymerizable liquid crystal compound), and a photopolymerization initiator when it contains a photopolymerization initiator. Depending on the type and amount thereof, it is appropriately selected. Specific examples include one or more kinds of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, α-rays, β-rays, and γ-rays. Among them, ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction and that a photopolymerization apparatus widely used in this field can be used. It is preferable to select the kind of the liquid crystalline compound.
 前記活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 Examples of the light source of the active energy ray include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, and a wavelength range. Examples include LED light sources that emit light of 380 to 440 nm, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, and the like.
 紫外線照射強度は、通常、10mW/cm~3,000mW/cmである。紫外線照射強度は、好ましくはカチオン重合開始剤又はラジカル重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒~10分であり、好ましくは0.1秒~5分であり、より好ましくは0.1秒~3分であり、さらに好ましくは0.1秒~1分である。このような紫外線照射強度で1回又は複数回照射すると、その積算光量は、通常10mJ/cm~3,000mJ/cm、好ましくは50mJ/cm~2,000mJ/cm、より好ましくは100mJ/cm~1,000mJ/cmである。積算光量がこの範囲以下である場合には、重合性液晶化合物の硬化が不十分となる。逆に、積算光量がこの範囲以上である場合には、光学異方層を含む楕円偏光板が着色する場合がある。 Ultraviolet irradiation intensity is usually, 10mW / cm 2 ~ 3,000mW / cm 2. The ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the cationic polymerization initiator or radical polymerization initiator. The time for light irradiation is usually 0.1 second to 10 minutes, preferably 0.1 second to 5 minutes, more preferably 0.1 seconds to 3 minutes, and further preferably 0.1 seconds. ~ 1 minute. When irradiating once or a plurality of times with such ultraviolet irradiation intensity, the accumulated light quantity is usually 10 mJ / cm 2 to 3,000 mJ / cm 2 , preferably 50 mJ / cm 2 to 2,000 mJ / cm 2 , more preferably it is 100mJ / cm 2 ~ 1,000mJ / cm 2. When the integrated light quantity is less than this range, the polymerizable liquid crystal compound is not sufficiently cured. On the contrary, when the integrated light quantity is more than this range, the elliptically polarizing plate including the optically anisotropic layer may be colored.
 [表示装置]
 本発明は、実施形態の一つとして本発明の位相差板を含む表示装置を提供することができる。また、上記表示装置は、上記実施形態に係る楕円偏光板を含み得る。
 上記表示装置とは、表示機構を有する装置であり、発光源として発光素子又は発光装置を含む。表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(電場放出表示装置(FED等)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置)、プラズマ表示装置、投射型表示装置(グレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置等)及び圧電セラミックディスプレイ等が挙げられる。
液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置及び投写型液晶表示装置等の何れをも含む。これら表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。特に、本発明からなる位相差層と偏光層とを備える表示装置としては、有機EL表示装置及びタッチパネル表示装置が好ましい。
[Display device]
The present invention can provide a display device including the retardation plate of the present invention as one embodiment. The display device may include the elliptically polarizing plate according to the embodiment.
The display device is a device having a display mechanism, and includes a light emitting element or a light emitting device as a light emitting source. Display devices include liquid crystal display devices, organic electroluminescence (EL) display devices, inorganic electroluminescence (EL) display devices, touch panel display devices, electron emission display devices (field emission display devices (FED, etc.), surface field emission display devices. (SED)), electronic paper (display device using electronic ink or electrophoretic element), plasma display device, projection display device (grating light valve (GLV) display device, display device having digital micromirror device (DMD)) Etc.) and piezoelectric ceramic displays.
The liquid crystal display device includes any of a transmissive liquid crystal display device, a transflective liquid crystal display device, a reflective liquid crystal display device, a direct view liquid crystal display device, a projection liquid crystal display device, and the like. These display devices may be a display device that displays a two-dimensional image, or may be a stereoscopic display device that displays a three-dimensional image. In particular, an organic EL display device and a touch panel display device are preferable as the display device including the retardation layer and the polarizing layer according to the present invention.
 以下、実施例及び比較例により本発明をさらに詳細に説明するが、本発明は、これらの例に限定されるものではない。実施例及び比較例中の「%」及び「部」は、特記しない限り、「質量%」及び「質量部」である。
 実施例1~6、比較例1~2において使用したポリマーフィルム、装置及び測定方法は、以下の通りである。
・シクロオレフィンポリマー(COP)フィルムには、日本ゼオン株式会社製のZF-14を用いた。
・コロナ処理装置には、春日電機株式会社製のAGF-B10を用いた。
・コロナ処理は、上記コロナ処理装置を用いて、出力0.3kW、処理速度3m/分の条件で1回行った。
・偏光UV照射装置には、ウシオ電機株式会社製の偏光子ユニット付SPOT CURE SP-7を用いた。
・レーザー顕微鏡には、オリンパス株式会社製のLEXTを用いた。
・高圧水銀ランプには、ウシオ電機株式会社製のユニキュアVB-15201BY-Aを用いた。
・面内位相差値、及び位相差層・偏光層の軸角度は、王子計測機器株式会社製のKOBRA-WPRを用いて測定した。
・偏光層の光学特性の測定は、島津製作所株式会社製 UV-3150を用いて測定した。
・膜厚は、日本分光株式会社製のエリプソメータ M-220を用いて測定した。
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these examples. Unless otherwise specified, “%” and “part” in Examples and Comparative Examples are “% by mass” and “part by mass”.
The polymer films, apparatuses and measurement methods used in Examples 1 to 6 and Comparative Examples 1 and 2 are as follows.
-ZF-14 made by Nippon Zeon Co., Ltd. was used for the cycloolefin polymer (COP) film.
-AGF-B10 manufactured by Kasuga Electric Co., Ltd. was used as the corona treatment device.
The corona treatment was performed once using the above corona treatment device under the conditions of an output of 0.3 kW and a treatment speed of 3 m / min.
-SPOT CURE SP-7 with a polarizer unit manufactured by USHIO INC. Was used as the polarized UV irradiation device.
-Olympus Corporation LEXT was used for the laser microscope.
-As the high-pressure mercury lamp, UNICURE VB-15201BY-A manufactured by USHIO INC. Was used.
The in-plane retardation value and the axial angle of the retardation layer / polarizing layer were measured using KOBRA-WPR manufactured by Oji Scientific Instruments.
The optical properties of the polarizing layer were measured using UV-3150 manufactured by Shimadzu Corporation.
The film thickness was measured using an ellipsometer M-220 manufactured by JASCO Corporation.
 [配向層A、及びB形成用組成物の調製]
 下記構造の光配向性材料5部とシクロペンタノン(溶剤)95部とを成分として混合し、得られた混合物を80℃で1時間攪拌することにより、配向層A、及びB形成用組成物を得た。なお、配向層Aに使用した下記光配向性材料の重量平均分子量は30000、配向膜Bに使用した下記光配向性材料の分子量は表1に記載の通りである。
Figure JPOXMLDOC01-appb-I000016
[Preparation of composition for forming alignment layers A and B]
A composition for forming alignment layers A and B is prepared by mixing 5 parts of a photoalignable material having the following structure and 95 parts of cyclopentanone (solvent) as components and stirring the resulting mixture at 80 ° C. for 1 hour. Got. In addition, the weight average molecular weight of the following photo-alignment material used for the alignment layer A is 30000, and the molecular weight of the following photo-alignment material used for the alignment film B is as shown in Table 1.
Figure JPOXMLDOC01-appb-I000016
 [位相差層形成用組成物の調製]
 下記構造の重合性液晶化合物Aと、ポリアクリレート化合物(レベリング剤)(BYK-361N;BYK-Chemie社製)と、下記重合開始剤とを成分として混合し、位相差層形成用組成物を得た。
重合性液晶化合物A
Figure JPOXMLDOC01-appb-I000017

 重合性液晶化合物Aは、特開2010-31223号公報に記載の方法で製造した。 ポリアクリレート化合物の量は、重合性液晶化合物A100部に対して0.01部とした。
 重合開始剤として、重合性液晶化合物A100部に対して、2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369(Irg369);BASFジャパン株式会社製)を6部添加した。
 更に、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を溶剤として添加し、80℃で1時間攪拌することにより、位相差層形成用組成物を得た。
[Preparation of composition for forming retardation layer]
A polymerizable liquid crystal compound A having the following structure, a polyacrylate compound (leveling agent) (BYK-361N; manufactured by BYK-Chemie) and the following polymerization initiator are mixed as components to obtain a composition for forming a retardation layer. It was.
Polymerizable liquid crystal compound A
Figure JPOXMLDOC01-appb-I000017

The polymerizable liquid crystal compound A was produced by the method described in JP 2010-31223 A. The amount of the polyacrylate compound was 0.01 parts with respect to 100 parts of the polymerizable liquid crystal compound A.
As a polymerization initiator, 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (Irgacure 369 (Irg369); manufactured by BASF Japan Ltd.) with respect to 100 parts of the polymerizable liquid crystal compound A 6 parts were added.
Furthermore, N-methyl-2-pyrrolidone (NMP) was added as a solvent so that the solid content concentration was 13%, and the mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming a retardation layer.
〔偏光層形成用組成物の調製〕
 下記の成分を混合し、80℃で1時間攪拌することで、偏光層形成用組成物を得た。二色性色素には、特開2013-101328号公報の実施例に記載のアゾ系色素を用いた。式(1-6)及び(1-7)で示される重合性液晶化合物は、lub et al., Recl.Trav.Chim.Pays-Bas, 115, 321-328(1996)記載の方法に従って製造した。
(Preparation of composition for forming polarizing layer)
The following components were mixed and stirred at 80 ° C. for 1 hour to obtain a polarizing layer forming composition. As the dichroic dye, an azo dye described in Examples of JP2013-101328A was used. The polymerizable liquid crystal compounds represented by the formulas (1-6) and (1-7) were produced according to the method described in lub et al., Recl.Trav.Chim.Pays-Bas, 115, 321-328 (1996). .
重合性液晶化合物:
Figure JPOXMLDOC01-appb-I000018
                 75部

Figure JPOXMLDOC01-appb-I000019
                 25部
Polymerizable liquid crystal compound:
Figure JPOXMLDOC01-appb-I000018
75 copies

Figure JPOXMLDOC01-appb-I000019
25 copies
二色性色素1:
ポリアゾ色素;化合物(1-8)  2.5部
Figure JPOXMLDOC01-appb-I000020

   化合物(1-5)  2.5部
Figure JPOXMLDOC01-appb-I000021

   化合物(1-16)  2.5部
Figure JPOXMLDOC01-appb-I000022
Dichroic dye 1:
Polyazo dye; Compound (1-8) 2.5 parts
Figure JPOXMLDOC01-appb-I000020

Compound (1-5) 2.5 parts
Figure JPOXMLDOC01-appb-I000021

Compound (1-16) 2.5 parts
Figure JPOXMLDOC01-appb-I000022
重合開始剤;
2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369;チバスペシャルティケミカルズ社製)     6部
レベリング剤;
ポリアクリレート化合物(BYK-361N;BYK-Chemie社製)
                                 1.2部
溶剤;o-キシレン                         250部
A polymerization initiator;
2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (Irgacure 369; manufactured by Ciba Specialty Chemicals) 6 parts leveling agent;
Polyacrylate compound (BYK-361N; manufactured by BYK-Chemie)
1.2 parts solvent; o-xylene 250 parts
 [実施例1]
 [位相差層の製造]
 日本ゼオン株式会社製のCOPフィルム(ZF-14-50)上に、配向層A形成用組成物をバーコーター塗布し、80℃で1分間乾燥し、偏光UV照射装置(SPOT CURE SP-7;ウシオ電機株式会社製)を用いて、100mJ/cmの積算光量で、軸角度45°にて偏光UV露光を実施した。得られた配向層Aの膜厚をエリプソメータで測定したところ、100nmであった。
 続いて、配向層A上に、先に調製した位相差層形成用組成物を、バーコーターを用いて塗布し、120℃で1分間乾燥した後、高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、位相差層の組成物を塗布した面側から紫外線を照射(窒素雰囲気下、波長313nmにおける積算光量:500mJ/cm)することにより、配向層A、位相差層を含む積層体を形成した。
 続いて、得られた位相差層を含む積層体上を、コロナ処理装置(AGF-B10、春日電機株式会社製)を用いて出力0.3kW、処理速度3m/分の条件で1回処理した。コロナ処理を施した表面に、配向層B形成用組成物をバーコーター塗布し、80℃で1分間乾燥し、偏光UV照射装置(SPOT CURE SP-7;ウシオ電機株式会社製)を用いて、100mJ/cmの積算光量で、軸角度90°で偏光UV露光を実施した。得られた配向層Bの膜厚をエリプソメータで測定したところ、150nmであった。
バーコーターを用いて偏光層形成用組成物を塗布した後、120℃に設定した乾燥オーブンで1分間乾燥することで、重合性液晶化合物及び二色性色素が配向した乾燥塗膜を得た。この乾燥塗膜を室温まで自然冷却した後に高圧水銀ランプ(ユニキュアVB―15201BY-A、ウシオ電機株式会社製)を用いて、紫外線を照射(窒素雰囲気下、波長:365nm、波長365nmにおける積算光量:1000mJ/cm2)することにより重合性液晶化合物を重合して偏光層を作製した、位相差層と偏光層を含む楕円偏光板を得た。
[Example 1]
[Production of retardation layer]
A composition for forming alignment layer A is applied onto a COP film (ZF-14-50) manufactured by Nippon Zeon Co., Ltd., dried at 80 ° C. for 1 minute, and polarized UV irradiation apparatus (SPOT CURE SP-7; Polarized UV exposure was performed at an axial angle of 45 ° with an integrated light amount of 100 mJ / cm 2 . When the film thickness of the obtained alignment layer A was measured with an ellipsometer, it was 100 nm.
Subsequently, the composition for forming a retardation layer prepared above was applied onto the alignment layer A using a bar coater, dried at 120 ° C. for 1 minute, and then a high-pressure mercury lamp (Unicure VB-15201BY-A, By using the Ushio Electric Co., Ltd.) and irradiating ultraviolet rays from the surface side coated with the composition of the retardation layer (accumulated light amount at a wavelength of 313 nm: 500 mJ / cm 2 in a nitrogen atmosphere) A laminate including a phase difference layer was formed.
Subsequently, the laminate including the obtained retardation layer was processed once using a corona treatment apparatus (AGF-B10, manufactured by Kasuga Denki Co., Ltd.) under conditions of an output of 0.3 kW and a processing speed of 3 m / min. . On the surface subjected to corona treatment, the composition for forming the alignment layer B was applied with a bar coater, dried at 80 ° C. for 1 minute, and using a polarized UV irradiation apparatus (SPOT CURE SP-7; manufactured by USHIO INC.), Polarized UV exposure was carried out with an integrated light quantity of 100 mJ / cm 2 and an axial angle of 90 °. It was 150 nm when the film thickness of the obtained alignment layer B was measured with the ellipsometer.
After applying the composition for forming a polarizing layer using a bar coater, it was dried in a drying oven set at 120 ° C. for 1 minute to obtain a dry coating film in which the polymerizable liquid crystal compound and the dichroic dye were aligned. The dried coating film is naturally cooled to room temperature, and then irradiated with ultraviolet rays using a high-pressure mercury lamp (Unicure VB-15201BY-A, manufactured by USHIO INC.) (In a nitrogen atmosphere, wavelength: 365 nm, integrated light quantity at wavelength 365 nm): 1000 mJ / cm 2 ) to obtain an elliptically polarizing plate including a retardation layer and a polarizing layer, in which a polymerizable liquid crystal compound was polymerized to prepare a polarizing layer.
〔楕円偏光板の位相差値測定〕
得られた楕円偏光板の波長450nm、波長550nmならびに波長650nmの面内位相差値を測定したところ、各波長での位相差値は、Re(450)=116nm、Re(550)=140nm、Re(650)=144nmであり、面内位相差値の関係は以下の通りとなった。
 Re(450)/Re(550)=0.83
 Re(650)/Re(550)=1.03
(式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。)
 即ち、位相差層Aは下記式(1)~(3)で表される光学特性を有した。
  100nm<Re(550)<160nm …(1)
  Re(450)/Re(550)≦1.0 …(2)
  1.00≦Re(650)/Re(550) …(3)
また、位相差層の遅相軸方向は45°、偏光層の吸収軸角度は0°であった。円偏光板に用いられる位相差板遅相軸・偏光板の吸収軸が成す角は45°となる事が理想であるが、作製した楕円偏光板の位相差層遅相軸・偏光層の吸収軸が成す角は45°であり、軸ズレは発生していないことが分かった。
[Measurement of retardation value of elliptically polarizing plate]
When the in-plane retardation values of the obtained elliptically polarizing plate at a wavelength of 450 nm, a wavelength of 550 nm and a wavelength of 650 nm were measured, the retardation values at each wavelength were Re (450) = 116 nm, Re (550) = 140 nm, Re (650) = 144 nm, and the relationship between the in-plane retardation values is as follows.
Re (450) / Re (550) = 0.83
Re (650) / Re (550) = 1.03
(Where Re (450) is the in-plane retardation value for light having a wavelength of 450 nm, Re (550) is the in-plane retardation value for light having a wavelength of 550 nm, and Re (650) is the in-plane retardation value for light having a wavelength of 650 nm. Represents the phase difference value.)
That is, the retardation layer A had optical characteristics represented by the following formulas (1) to (3).
100 nm <Re (550) <160 nm (1)
Re (450) / Re (550) ≦ 1.0 (2)
1.00 ≦ Re (650) / Re (550) (3)
Further, the slow axis direction of the retardation layer was 45 °, and the absorption axis angle of the polarizing layer was 0 °. It is ideal that the angle formed by the retardation axis of the retardation plate and the absorption axis of the polarizing plate used in the circularly polarizing plate is 45 °, but the retardation layer of the produced elliptical polarizing plate is absorbed by the retardation axis and the polarizing layer. The angle formed by the axes was 45 °, and it was found that no axis deviation occurred.
〔偏光度、単体透過率の測定〕
 得られた楕円偏光板の偏光度及び、単体透過率は以下のように測定した。透過軸方向の透過率(T)及び吸収軸方向の透過率(T)を、分光光度計(島津製作所株式会社製 UV-3150)に偏光子付フォルダーをセットした装置を用いて、ダブルビーム法により2nmステップ380~680nmの波長範囲で測定した。下記式(p)ならびに(q)を用いて、各波長における単体透過率、偏光度を算出し、さらにJIS Z 8701の2度視野(C光源)により視感度補正を行い、視感度補正単体透過率(Ty)および視感度補正偏光度(Py)を算出したところ、単体透過率は42%、偏光度は97%であり、偏光板として有用な値であることを確認した。
単体透過率(%)=(T+T)/2         (p)
偏光度(%)={(T-T)/(T+T)}×100    (q)
[Measurement of polarization degree and single transmittance]
The degree of polarization and single transmittance of the obtained elliptically polarizing plate were measured as follows. The transmittance (T 1 ) in the transmission axis direction and the transmittance (T 2 ) in the absorption axis direction are doubled using a spectrophotometer (UV-3150, manufactured by Shimadzu Corporation) with a folder with a polarizer. Measurement was performed by a beam method in a wavelength range of 380 to 680 nm in 2 nm steps. Using the following formulas (p) and (q), the single transmittance and the degree of polarization at each wavelength are calculated, and the visibility is corrected by the 2 degree field of view (C light source) of JIS Z 8701. When the ratio (Ty) and the visibility corrected polarization degree (Py) were calculated, the single transmittance was 42% and the polarization degree was 97%, and it was confirmed that these were useful values as a polarizing plate.
Single transmittance (%) = (T 1 + T 2 ) / 2 (p)
Polarization degree (%) = {(T 1 −T 2 ) / (T 1 + T 2 )} × 100 (q)
〔楕円偏光板の屈折率〕
各層の屈折率を屈折率計(株式会社アタゴ製「多波長アッベ屈折計DR-M4」)を用いてJIS  K7142に準じて測定した結果、以下の通りであった。
基材      ・・・1.53
配向膜A     ・・・1.55
位相差層     ・・・1.62
配向膜B     ・・・1.55
偏光層      ・・・1.54
[Refractive index of elliptically polarizing plate]
The refractive index of each layer was measured according to JIS K7142 using a refractometer (“Multi-wavelength Abbe refractometer DR-M4” manufactured by Atago Co., Ltd.).
Base material ... 1.53
Alignment film A 1.55
Retardation layer ... 1.62
Alignment film B 1.55
Polarizing layer ... 1.54
[実施例2~6]
 配向層Bの形成時に、光配向性材料をバーコーター塗布する際のワイヤーバーの太さを変えることで配向層Bの膜厚を調整したこと以外は実施例1と同様にして、楕円偏光板を作製した。
[Examples 2 to 6]
An elliptically polarizing plate is formed in the same manner as in Example 1 except that the thickness of the alignment layer B is adjusted by changing the thickness of the wire bar when the photo-orientation material is applied with a bar coater during the formation of the alignment layer B. Was made.
[比較例1、2]
 配向層Bの形成時に、光配向性材料をバーコーター塗布する際のワイヤーバーの太さを変えることで偏光層Bの膜厚を調整したこと以外は実施例1と同様にして、位相差層と偏光層を含む円偏光板を作製した。
[Comparative Examples 1 and 2]
In the same manner as in Example 1 except that the thickness of the polarizing layer B was adjusted by changing the thickness of the wire bar when the photo-orientable material was applied with a bar coater when the alignment layer B was formed. A circularly polarizing plate including a polarizing layer was prepared.
[規則91に基づく訂正 24.07.2017] 
上記実施例・比較例に記載の偏光層の光学特性を測定した結果を表1に示す。
Figure WO-DOC-T1
[Correction 24.07.2017 under Rule 91]
Table 1 shows the results of measuring the optical characteristics of the polarizing layers described in the above-mentioned Examples and Comparative Examples.
Figure WO-DOC-T1
 実施例の楕円偏光板は、偏光層の軸ズレと配向欠陥発生を起こすことなく製造する事ができた。 The elliptically polarizing plate of the example could be manufactured without causing axial misalignment of the polarizing layer and occurrence of alignment defects.

Claims (13)

  1. 透明基材上に、配向層A、位相差層、配向層Bおよび偏光層がこの順で設けられた楕円偏光板であって、
    前記偏光層と前記位相差層の光軸が実質的に平行関係でなく、
    前記位相差層は、重合性液晶化合物の重合体から構成される膜であり、
    前記配向層Bは、80nm~800nmの厚さを有する膜であり、
    前記偏光層は、重合性液晶化合物の重合体から構成される膜中に二色性色素が配向している
    楕円偏光板。
    An elliptically polarizing plate in which an alignment layer A, a retardation layer, an alignment layer B and a polarizing layer are provided in this order on a transparent substrate,
    The optical axis of the polarizing layer and the retardation layer is not substantially parallel,
    The retardation layer is a film composed of a polymer of a polymerizable liquid crystal compound,
    The alignment layer B is a film having a thickness of 80 nm to 800 nm,
    The polarizing layer is an elliptically polarizing plate in which a dichroic dye is aligned in a film composed of a polymer of a polymerizable liquid crystal compound.
  2. 前記透明基材、配向層A、位相差層、配向層Bおよび偏光層の平均屈折率が全て1.4~1.7の範囲である請求項1記載の楕円偏光板。 The elliptically polarizing plate according to claim 1, wherein the transparent substrate, the alignment layer A, the retardation layer, the alignment layer B and the polarizing layer all have an average refractive index in the range of 1.4 to 1.7.
  3. 隣接する層の屈折率差が0.2以下である請求項1または2記載の楕円偏光板。 The elliptically polarizing plate according to claim 1 or 2, wherein the refractive index difference between adjacent layers is 0.2 or less.
  4. 前記偏光層と位相差層の光軸のなす角が40°~50°の範囲である請求項1~3のいずれかに記載の楕円偏光板。 The elliptically polarizing plate according to any one of claims 1 to 3, wherein an angle formed by an optical axis of the polarizing layer and the retardation layer is in a range of 40 ° to 50 °.
  5. 前記配向層A及び配向層Bが共に光配向膜である請求項1~4のいずれかに記載の楕円偏光板。 The elliptically polarizing plate according to any one of claims 1 to 4, wherein both the alignment layer A and the alignment layer B are photo-alignment films.
  6. 前記配向層A及び配向層Bがシンナモイル基を含有する光配向膜である請求項1~5のいずれかに記載の楕円偏光板。 6. The elliptically polarizing plate according to claim 1, wherein the alignment layer A and the alignment layer B are photo-alignment films containing a cinnamoyl group.
  7. 前記配向層A及び配向層Bが重量平均分子量20000~50000である樹脂を含有する光配向膜である請求項1~6のいずれかに記載の楕円偏光板。 The elliptically polarizing plate according to any one of claims 1 to 6, wherein the alignment layer A and the alignment layer B are photo-alignment films containing a resin having a weight average molecular weight of 20,000 to 50,000.
  8. 前記偏光層が、スメクチック液晶状態の重合体から構成される膜である請求項1~7のいずれかに記載の楕円偏光板。 The elliptically polarizing plate according to any one of claims 1 to 7, wherein the polarizing layer is a film composed of a polymer in a smectic liquid crystal state.
  9. 前記二色性色素が、アゾ色素である請求項1~8のいずれかに記載の楕円偏光板。 The elliptically polarizing plate according to any one of claims 1 to 8, wherein the dichroic dye is an azo dye.
  10. 前記位相差層が以下の式を全て満たす請求項1~9のいずれかに記載の楕円偏光板。
      100nm<Re(550)<160nm …(1)
      Re(450)/Re(550)≦1.0 …(2)
      1.00≦Re(650)/Re(550) …(3)
    (Re(450)、Re(550)、Re(650)はそれぞれ波長450nm、550nm、650nmにおける面内リタデーションを表す。)
    The elliptically polarizing plate according to any one of claims 1 to 9, wherein the retardation layer satisfies all of the following expressions.
    100 nm <Re (550) <160 nm (1)
    Re (450) / Re (550) ≦ 1.0 (2)
    1.00 ≦ Re (650) / Re (550) (3)
    (Re (450), Re (550), and Re (650) represent in-plane retardation at wavelengths of 450 nm, 550 nm, and 650 nm, respectively)
  11. 請求項1~10のいずれかに記載の楕円偏光板を備えた液晶表示装置。 A liquid crystal display device comprising the elliptically polarizing plate according to any one of claims 1 to 10.
  12. 請求項1~11のいずれかに記載の楕円偏光板を備えた有機EL表示装置。 An organic EL display device comprising the elliptically polarizing plate according to any one of claims 1 to 11.
  13. 透明基材上に、
    配向材料A及び溶剤を含む組成物を塗布し、乾燥後に偏光UVを照射して配向層Aを形成する工程(1)と、
    前記配向層A上に、重合性液晶化合物、重合開始剤及び溶剤を含有する組成物を塗布し、乾燥後にUV照射して液晶状態で重合させることで位相差層を形成する工程(2)と、
    配向材料B及び溶剤を含む組成物を塗布し、乾燥後に偏光UVを照射して配向層Bを形成する工程(3)と、
    前記配向層B上に、重合性液晶化合物、二色性色素、重合開始剤及び溶剤を含有する組成物を塗布し、乾燥後にUV照射して液晶状態で重合させることで偏光層を形成する工程(4)と、
    を有する楕円偏光板の製造方法。
    On the transparent substrate,
    Applying a composition containing an alignment material A and a solvent, and irradiating polarized UV after drying to form an alignment layer A (1);
    A step (2) of forming a retardation layer by applying a composition containing a polymerizable liquid crystal compound, a polymerization initiator and a solvent on the alignment layer A, followed by drying and polymerizing in a liquid crystal state by UV irradiation. ,
    Applying a composition containing an alignment material B and a solvent, and irradiating polarized UV after drying to form the alignment layer B;
    A step of forming a polarizing layer by applying a composition containing a polymerizable liquid crystal compound, a dichroic dye, a polymerization initiator, and a solvent on the alignment layer B, and drying and polymerizing in a liquid crystal state by UV irradiation. (4) and
    The manufacturing method of the elliptically polarizing plate which has this.
PCT/JP2017/025074 2016-07-21 2017-07-10 Elliptical polarizing plate WO2018016360A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780044014.5A CN109477925B (en) 2016-07-21 2017-07-10 Elliptical polarizing plate
CN202211209536.5A CN115390178A (en) 2016-07-21 2017-07-10 Elliptical polarizing plate
KR1020227037445A KR102652054B1 (en) 2016-07-21 2017-07-10 Elliptical polarizing plate
KR1020197001520A KR102481313B1 (en) 2016-07-21 2017-07-10 ellipsoidal polarizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-143109 2016-07-21
JP2016143109 2016-07-21

Publications (1)

Publication Number Publication Date
WO2018016360A1 true WO2018016360A1 (en) 2018-01-25

Family

ID=60992985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025074 WO2018016360A1 (en) 2016-07-21 2017-07-10 Elliptical polarizing plate

Country Status (5)

Country Link
JP (1) JP7166049B2 (en)
KR (2) KR102652054B1 (en)
CN (2) CN115390178A (en)
TW (1) TWI723200B (en)
WO (1) WO2018016360A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203192A1 (en) * 2018-04-17 2019-10-24 富士フイルム株式会社 Polarizer, circularly polarizing plate, and image display device
WO2020066832A1 (en) * 2018-09-28 2020-04-02 住友化学株式会社 Polarization film and production method therefor
CN111048575A (en) * 2020-01-03 2020-04-21 武汉华星光电半导体显示技术有限公司 Organic light emitting display panel and method of manufacturing the same
WO2020218104A1 (en) * 2019-04-26 2020-10-29 住友化学株式会社 Composition for forming liquid crystal cured film and use of same
CN111954836A (en) * 2018-04-27 2020-11-17 住友化学株式会社 Optically anisotropic film
CN111971597A (en) * 2018-04-13 2020-11-20 住友化学株式会社 Polymerizable liquid crystal composition
CN112771422A (en) * 2018-10-26 2021-05-07 东洋纺株式会社 Film for transfer of liquid crystal compound alignment layer
CN112955318A (en) * 2018-11-09 2021-06-11 住友化学株式会社 Vertically aligned liquid crystal cured film and laminate comprising same
CN114375418A (en) * 2019-09-17 2022-04-19 住友化学株式会社 Laminate and elliptically polarizing plate comprising same
TWI852954B (en) 2018-11-09 2024-08-21 日商住友化學股份有限公司 Vertically aligned liquid crystal cured film and laminate containing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201907188A (en) * 2017-05-01 2019-02-16 日商東京威力科創股份有限公司 Optical member manufacturing method
JP7059035B2 (en) * 2018-02-14 2022-04-25 住友化学株式会社 Vertically oriented LCD cured film
TWI839166B (en) * 2018-02-14 2024-04-11 日商住友化學股份有限公司 Composition, vertical alignment liquid crystal cured film, laminate, elliptical polarizing plate and organic EL display device
JP7398868B2 (en) * 2018-02-14 2023-12-15 住友化学株式会社 Composition
JP7265389B2 (en) * 2018-03-29 2023-04-26 住友化学株式会社 Composition and polarizing film
JP6778353B2 (en) 2018-03-30 2020-10-28 富士フイルム株式会社 Polarizer and image display device
WO2020004303A1 (en) * 2018-06-27 2020-01-02 富士フイルム株式会社 Polarizer and image display device
JP7302954B2 (en) * 2018-08-23 2023-07-04 住友化学株式会社 Laminate containing horizontal alignment liquid crystal cured film
JP7549452B2 (en) 2019-02-12 2024-09-11 住友化学株式会社 Circular polarizing plate and organic EL display device using the same
JPWO2020184463A1 (en) * 2019-03-08 2020-09-17
JP7317549B2 (en) * 2019-04-02 2023-07-31 日東電工株式会社 Polarizing plate and image display device
JP7322628B2 (en) * 2019-09-20 2023-08-08 Jsr株式会社 Manufacturing method of circularly polarizing plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330726A (en) * 2000-05-22 2001-11-30 Dainippon Printing Co Ltd Polarizing element and method for manufacturing polarizing element
JP2001330719A (en) * 2000-05-22 2001-11-30 Dainippon Printing Co Ltd Color filter, method for manufacturing the same and liquid crystal display device
JP2005352320A (en) * 2004-06-11 2005-12-22 Dainippon Printing Co Ltd Polarizing plate and manufacturing method thereof
WO2006093131A1 (en) * 2005-03-01 2006-09-08 Dai Nippon Printing Co., Ltd. Film with alignment film and optical device
JP2013101328A (en) * 2011-10-12 2013-05-23 Sumitomo Chemical Co Ltd Polarizing film, circularly polarizing plate and their manufacturing method
JP2014063143A (en) * 2012-08-31 2014-04-10 Sumitomo Chemical Co Ltd Circularly polarizing plate and display device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149015A (en) * 1997-11-14 1999-06-02 Nitto Denko Corp Laminated wavelength plate, circularly polarized light plate and liquid crystal display device
JP2001337225A (en) * 2000-05-29 2001-12-07 Nitto Denko Corp Laminated optical element and liquid crystal display device
TWI273277B (en) * 2002-09-12 2007-02-11 Fujifilm Corp Phase difference plate and circular polarizing plate
JP2004309772A (en) * 2003-04-07 2004-11-04 Nippon Oil Corp Method of manufacturing optical laminated body, elliptic polarization plate and circular polarization plate made of the laminated bodies, and liquid crystal display device
JP4404624B2 (en) * 2003-12-25 2010-01-27 日東電工株式会社 Elliptical polarizing plate and image display device
JP4553258B2 (en) * 2005-02-25 2010-09-29 日東電工株式会社 Manufacturing method of elliptically polarizing plate and image display device using elliptically polarizing plate
JP2006292910A (en) * 2005-04-08 2006-10-26 Nitto Denko Corp Method of manufacturing elliptically polarizing plate, and image display device using the elliptically polarizing plate
US8025936B2 (en) * 2005-12-01 2011-09-27 Fujifilm Corporation Optical compensation film, polarizing plate and liquid crystal display device
JP5202889B2 (en) * 2007-06-29 2013-06-05 日東電工株式会社 Multilayer polarizing plate, method for producing the same, and liquid crystal display device
US8323527B2 (en) 2007-09-03 2012-12-04 Merck Patent Gmbh Fluorene derivatives
KR101933220B1 (en) * 2011-07-07 2018-12-27 스미또모 가가꾸 가부시키가이샤 Polarizing device, circular polarizing plate and method of producing the same
TW201311743A (en) * 2011-07-07 2013-03-16 Sumitomo Chemical Co Photoreactive liquid crystal alignment agent, liquid crystal alignment element and preparation method thereof
KR20130106633A (en) * 2012-03-20 2013-09-30 동우 화인켐 주식회사 Polarizing plate and image display device comprising the same
WO2014133154A1 (en) * 2013-03-01 2014-09-04 日産化学工業株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP2014199332A (en) * 2013-03-29 2014-10-23 大日本印刷株式会社 Production method of retardation film
TWI645962B (en) * 2013-08-09 2019-01-01 住友化學股份有限公司 Optically anisotropic sheet
KR102329698B1 (en) * 2013-08-09 2021-11-23 스미또모 가가꾸 가부시키가이샤 Process for producing long circularly polarizing plate and long circularly polarizing plate
JP2015079230A (en) * 2013-09-10 2015-04-23 住友化学株式会社 Manufacturing method for laminate
KR20150093591A (en) * 2014-02-07 2015-08-18 스미또모 가가꾸 가부시키가이샤 Process for producing long polarizing film
JP2015203733A (en) * 2014-04-11 2015-11-16 大日本印刷株式会社 Optical film and method for manufacturing optical film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330726A (en) * 2000-05-22 2001-11-30 Dainippon Printing Co Ltd Polarizing element and method for manufacturing polarizing element
JP2001330719A (en) * 2000-05-22 2001-11-30 Dainippon Printing Co Ltd Color filter, method for manufacturing the same and liquid crystal display device
JP2005352320A (en) * 2004-06-11 2005-12-22 Dainippon Printing Co Ltd Polarizing plate and manufacturing method thereof
WO2006093131A1 (en) * 2005-03-01 2006-09-08 Dai Nippon Printing Co., Ltd. Film with alignment film and optical device
JP2013101328A (en) * 2011-10-12 2013-05-23 Sumitomo Chemical Co Ltd Polarizing film, circularly polarizing plate and their manufacturing method
JP2014063143A (en) * 2012-08-31 2014-04-10 Sumitomo Chemical Co Ltd Circularly polarizing plate and display device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971597A (en) * 2018-04-13 2020-11-20 住友化学株式会社 Polymerizable liquid crystal composition
JPWO2019203192A1 (en) * 2018-04-17 2021-04-22 富士フイルム株式会社 Polarizing element, circular polarizing plate and image display device
JP7457739B2 (en) 2018-04-17 2024-03-28 富士フイルム株式会社 Polarizing elements, circular polarizing plates and image display devices
US11703708B2 (en) 2018-04-17 2023-07-18 Fujifilm Corporation Polarizing element, circularly polarizing plate, and image display device
JP2022078095A (en) * 2018-04-17 2022-05-24 富士フイルム株式会社 Polarization element, circular polarization plate and image display device
JP7027531B2 (en) 2018-04-17 2022-03-01 富士フイルム株式会社 Polarizing element, circular polarizing plate and image display device
WO2019203192A1 (en) * 2018-04-17 2019-10-24 富士フイルム株式会社 Polarizer, circularly polarizing plate, and image display device
CN111954836A (en) * 2018-04-27 2020-11-17 住友化学株式会社 Optically anisotropic film
WO2020066832A1 (en) * 2018-09-28 2020-04-02 住友化学株式会社 Polarization film and production method therefor
CN112771422B (en) * 2018-10-26 2023-10-24 东洋纺株式会社 Film for transferring alignment layer of liquid crystal compound
CN112771423A (en) * 2018-10-26 2021-05-07 东洋纺株式会社 Film for transfer of liquid crystal compound alignment layer
CN112771422A (en) * 2018-10-26 2021-05-07 东洋纺株式会社 Film for transfer of liquid crystal compound alignment layer
CN112771423B (en) * 2018-10-26 2023-10-27 东洋纺株式会社 Film for transferring alignment layer of liquid crystal compound
CN112955318A (en) * 2018-11-09 2021-06-11 住友化学株式会社 Vertically aligned liquid crystal cured film and laminate comprising same
TWI852954B (en) 2018-11-09 2024-08-21 日商住友化學股份有限公司 Vertically aligned liquid crystal cured film and laminate containing the same
CN113906322A (en) * 2019-04-26 2022-01-07 住友化学株式会社 Composition for forming liquid crystal cured film and use thereof
WO2020218104A1 (en) * 2019-04-26 2020-10-29 住友化学株式会社 Composition for forming liquid crystal cured film and use of same
JP2020181152A (en) * 2019-04-26 2020-11-05 住友化学株式会社 Liquid crystal cured film-forming composition and use thereof
JP7560940B2 (en) 2019-04-26 2024-10-03 住友化学株式会社 Composition for forming liquid crystal cured film and its use
CN114375418B (en) * 2019-09-17 2024-03-12 住友化学株式会社 Laminate and elliptical polarizing plate comprising same
CN114375418A (en) * 2019-09-17 2022-04-19 住友化学株式会社 Laminate and elliptically polarizing plate comprising same
CN111048575A (en) * 2020-01-03 2020-04-21 武汉华星光电半导体显示技术有限公司 Organic light emitting display panel and method of manufacturing the same

Also Published As

Publication number Publication date
CN109477925B (en) 2022-10-25
JP7166049B2 (en) 2022-11-07
KR102652054B1 (en) 2024-03-27
TWI723200B (en) 2021-04-01
CN115390178A (en) 2022-11-25
KR20220149628A (en) 2022-11-08
JP2018022152A (en) 2018-02-08
KR20190027826A (en) 2019-03-15
KR102481313B1 (en) 2022-12-23
CN109477925A (en) 2019-03-15
TW201807440A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP7166049B2 (en) Elliptical polarizer
JP7356480B2 (en) Optical film and its manufacturing method
JP6285529B2 (en) Elliptical polarizing plate
JP7299746B2 (en) Elliptical polarizer
JP7491660B2 (en) Retardation plate with optical compensation function
JP7461122B2 (en) Laminate and elliptically polarizing plate including same
JP2021182144A (en) Composite polarizing plate and liquid crystal display device
WO2019082745A1 (en) Polarizing film and method for manufacturing same
JP6762336B2 (en) Optically anisotropic film
WO2019082746A1 (en) Method for manufacturing polarizing film, and polarizing film
JP2019035952A (en) Phase difference plate with optical compensation function for flexible display
JP6675049B1 (en) Polymerizable liquid crystal composition
JP6646698B2 (en) Polymerizable liquid crystal composition
JP7087033B2 (en) Optically anisotropic film
CN112513697B (en) Horizontally oriented liquid crystal cured film and laminate comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001520

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830880

Country of ref document: EP

Kind code of ref document: A1