WO2014133154A1 - Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent - Google Patents

Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent Download PDF

Info

Publication number
WO2014133154A1
WO2014133154A1 PCT/JP2014/055138 JP2014055138W WO2014133154A1 WO 2014133154 A1 WO2014133154 A1 WO 2014133154A1 JP 2014055138 W JP2014055138 W JP 2014055138W WO 2014133154 A1 WO2014133154 A1 WO 2014133154A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
formula
display element
Prior art date
Application number
PCT/JP2014/055138
Other languages
French (fr)
Japanese (ja)
Inventor
徳俊 三木
耕平 後藤
雅章 片山
幸司 巴
奈穂 菊池
保坂 和義
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020157026534A priority Critical patent/KR102196272B1/en
Priority to CN201480024564.7A priority patent/CN105164580B/en
Priority to JP2015503058A priority patent/JP6459959B2/en
Publication of WO2014133154A1 publication Critical patent/WO2014133154A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Definitions

  • the present invention relates to a transmission / scattering type liquid crystal display element that is transparent when no voltage is applied and is in a scattering state when a voltage is applied, a liquid crystal alignment film used therefor, and a liquid crystal alignment treatment agent for forming the liquid crystal alignment film. is there.
  • a TN (Twisted Nematic) mode has been put to practical use as a liquid crystal display element using a liquid crystal material.
  • this mode light is switched using the optical rotation characteristics of the liquid crystal, and when used as a liquid crystal display element, it is necessary to use a polarizing plate.
  • the use efficiency of light becomes low by using a polarizing plate.
  • As a liquid crystal display element having a high light utilization efficiency without using a polarizing plate there is a liquid crystal display element that switches between a liquid crystal transmission state (also referred to as a transparent state) and a scattering state.
  • PDLC Dispersive liquid crystal
  • PNLC Polymer network liquid crystal
  • a liquid crystal display element using these includes a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates.
  • the liquid crystal composition is disposed, and the liquid crystal composition is cured in a state where a part or the whole of the liquid crystal composition exhibits liquid crystallinity, and is manufactured through a process of forming a cured product composite of liquid crystal and a polymerizable compound It is a liquid crystal display element.
  • this liquid crystal display element controls the permeation
  • a liquid crystal alignment film (also referred to as a vertical liquid crystal alignment film) that aligns the liquid crystal vertically is used.
  • the vertical liquid crystal alignment film is a highly hydrophobic film, the adhesion between the liquid crystal layer and the liquid crystal alignment film is lowered. Therefore, a large amount of a polymerizable compound (also referred to as a curing agent) for improving the adhesion between the liquid crystal layer and the liquid crystal alignment film must be introduced into the liquid crystal composition used for the reverse type element.
  • the liquid crystal alignment film used for the reverse element needs to have a high vertical alignment property of the liquid crystal.
  • the present inventor has achieved that the liquid crystal display element using a vertical liquid crystal alignment film obtained from a liquid crystal alignment treatment agent containing a polymer having a side chain having a specific structure achieves the above object.
  • the present invention has been found to be extremely effective.
  • the present invention has the following gist.
  • a liquid crystal composition including a polymerizable compound having a liquid crystal layer between a pair of substrates provided with electrodes and polymerized by at least one of active energy rays and heat is disposed between the pair of substrates,
  • at least one of the substrates has a liquid crystal alignment film that vertically aligns the liquid crystal, and the liquid crystal composition is cured in a state where a part or the whole of the liquid crystal composition exhibits liquid crystallinity, and the liquid crystal and the polymerizable compound are cured.
  • (Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, and Y 2 represents a single bond.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or having 17 to 51 carbon atoms having a steroid skeleton Represents a divalent organic group, and an arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a carbon number It may be substituted with 1-3 fluorine-containing alkoxyl group or a fluorine atom, Y 5 benzene A divalent cyclic group selected from the group consisting of a benzene
  • the liquid crystal alignment treatment agent includes at least one polymer selected from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, and polysiloxane.
  • the liquid crystal display element according to the above (1) which is a liquid crystal aligning agent.
  • the liquid crystal aligning agent is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide obtained by using a diamine compound having a side chain of the formula [1] as a part of the raw material.
  • the liquid crystal display element according to (2) which is a liquid crystal alignment treatment agent.
  • diamine compound according to (3) wherein the diamine compound is at least one polymer selected from the group consisting of a polyimide precursor obtained by using a diamine compound represented by the following formula [1a] and a polyimide.
  • Liquid crystal display element. (Y 1 to Y 6 are as defined in the above formula [1]. M represents an integer of 1 to 4).
  • the liquid crystal aligning agent is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide obtained by using a tetracarboxylic acid component represented by the following formula [2] as a part of the raw material.
  • the liquid crystal display element according to any one of the above (2) to (4), which is a liquid crystal alignment treatment agent containing (Z 1 represents a structure selected from the group consisting of the following formulas [2a] to [2j]).
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different, and in the formula [2g], Z 6 and Z 7 represent a hydrogen atom or a methyl group. Each may be the same or different).
  • the liquid crystal aligning agent is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the following formula [A1], represented by the formula [A1] and the following formula [A2] or formula [A3].
  • the liquid crystal display element according to the above (2) which is a liquid crystal aligning agent containing siloxane.
  • a 1 represents the structure represented by the formula [1]
  • a 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • a 3 represents an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 or 2
  • n represents an integer of 0 to 2
  • p represents an integer of 0 to 3
  • m + n + p represents an integer of 4.
  • B 1 represents an organic group having 2 to 12 carbon atoms having a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, a methacryl group, an acrylic group, a ureido group or a cinnamoyl group
  • B 2 represents a hydrogen atom or An alkyl group having 1 to 5 carbon atoms
  • B 3 represents an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 or 2
  • n represents an integer of 0 to 2
  • p represents 0 to 3 represents an integer of 3 (where m + n + p represents an integer of 4).
  • D 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • D 2 represents an alkyl group having 1 to 5 carbon atoms
  • n represents an integer of 0 to 3).
  • liquid crystal display element according to any one of (1) to (6), wherein the liquid crystal alignment treatment agent contains a compound represented by the following formula [6].
  • X 1 represents at least one structure selected from the group consisting of the structures represented by the following formulas [6a-1] to [6a-7].
  • X 2 represents a single bond, —CH 2 —, —O—.
  • the hydrogen atom bonded to any carbon atom may be replaced by —OSi (CH 3 ) 2 — or —Si (CH 3 ) 2 O—, and the hydroxyl group (OH group), carboxyl group (COOH group) X 4 represents a single bond, at least one linking group selected from the group consisting of —CH 2 —, —OCH 2 — and —O—CH 2 —CH 2 —.
  • X 5 represents at least one structure selected from the group consisting of structures represented by the following formulas [6b-1] to [6b-8], n represents an integer of 1 to 3, and m represents 1 Represents an integer of ⁇ 3.
  • a 1 represents a hydrogen atom or an alkylene group having 1 to 5 carbon atoms.
  • a 2 , A 3 , A 5 , A 6 and A 9 each independently represents a hydrogen atom or an alkylene group having 1 to 3 carbon atoms.
  • a 4 , A 7 and A 8 each independently represents an alkylene group having 1 to 3 carbon atoms.
  • B 1 represents a hydrogen atom or a benzene ring.
  • B 2 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring.
  • B 3 represents an alkylene having 1 to 12 carbon atoms. And at least one selected from the group consisting of a group, a fluorine-containing alkylene group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, and a fluorine-containing alkoxyl group having 1 to 12 carbon atoms.
  • the liquid crystal display device according to any one of the above (1) to (7), wherein the polymer having the structure represented by the formula [1] has a weight average molecular weight of 10,000 to 150,000.
  • the liquid crystal display element according to any one of (1) to (8), wherein the substrate of the liquid crystal display element is a glass substrate or a plastic substrate.
  • a liquid crystal alignment film used for the liquid crystal display device according to any one of (1) to (9).
  • the liquid crystal has high vertical alignment properties and good optical characteristics, that is, no voltage marking It is possible to provide a liquid crystal display element that has excellent transparency when applied and scattering characteristics when a voltage is applied, and has high adhesion between the liquid crystal layer and the vertical liquid crystal alignment film.
  • the liquid crystal display element of the present invention can be suitably used for a reverse element that is in a transmissive state when no voltage is applied and is in a scattering state when a voltage is applied.
  • the liquid crystal display element of the present invention is advantageously used as a liquid crystal display for display purposes, a light control window for controlling transmission and blocking of light, an optical shutter element, and the like.
  • the specific side chain structure represented by the formula [1] used in the liquid crystal display device of the present invention has a divalent group having 17 to 25 carbon atoms having a benzene ring, cyclohexyl ring or heterocyclic ring, or a steroid skeleton in the side chain portion. It has an organic group.
  • the side chain structure of these rings and organic groups shows a rigid structure as compared with the side chain structure of long-chain alkyl groups, which is a conventional technique for vertically aligning liquid crystals.
  • the reverse type device using the vertical liquid crystal alignment film having a specific side chain structure obtains a higher and more stable liquid crystal vertical alignment than the conventional long type alkyl group side chain structure reverse type device. be able to.
  • the specific side chain structure can obtain high vertical alignment even when the amount of side chain introduced is small compared to the side chain structure of a conventional long chain alkyl group. Therefore, a reverse element using a vertical liquid crystal alignment film having a specific side chain structure has high adhesion between the liquid crystal layer and the vertical liquid crystal alignment film.
  • the liquid crystal display element of the present invention using a vertical liquid crystal alignment film obtained from a liquid crystal alignment treatment agent containing a polymer having a specific side chain structure has high liquid crystal vertical alignment properties, good optical characteristics, That is, it is possible to obtain a liquid crystal display element that has good transparency when no voltage is applied and good scattering characteristics when a voltage is applied, and has high adhesion between the liquid crystal layer and the vertical liquid crystal alignment film.
  • the liquid crystal display element of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and includes a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates.
  • the liquid crystal composition is disposed in a state where at least one of the substrates has a liquid crystal alignment film that aligns the liquid crystal vertically and part or all of the liquid crystal composition exhibits liquid crystallinity.
  • the liquid crystal display device is a liquid crystal display device formed by forming a cured product composite of a liquid crystal and a polymerizable compound, and can be suitably used for a reverse type device that is in a transmission state when no voltage is applied and in a scattering state when a voltage is applied.
  • a nematic liquid crystal or a smectic liquid crystal can be used.
  • those having negative dielectric anisotropy are preferable.
  • those having a large dielectric anisotropy and a large refractive index anisotropy are preferable.
  • a liquid crystal display element as an active element such as a TFT (Thin Film Transistor)
  • VHR voltage holding ratio
  • a dichroic dye can be dissolved in a liquid crystal composition to form a guest-host type element.
  • an element is obtained that is transparent when no voltage is applied and absorbs (scatters) when a voltage is applied.
  • the direction of the director of the liquid crystal changes by 90 degrees depending on the presence or absence of voltage application. Therefore, by using the difference in the light absorption characteristics of the dichroic dye, a high contrast can be obtained as compared with a conventional guest-host type device that switches between random alignment and vertical alignment.
  • a guest-host type element in which a dichroic dye is dissolved is colored when the liquid crystal is aligned in the horizontal direction, and is opaque only in a scattering state. Therefore, as the voltage is applied, it is possible to obtain an element that switches from colorless and transparent when no voltage is applied to a colored opaque and colored transparent state.
  • the liquid crystal composition of the present invention contains a polymerizable compound that is polymerized by at least one of active energy rays such as ultraviolet rays and heat.
  • the polymerizable compound contained in the liquid crystal composition is a polymerizable compound that is polymerized by at least one of active energy rays such as ultraviolet rays and heat.
  • polymerization may proceed in any reaction form, and a cured product composite of liquid crystal and a polymerizable compound may be formed.
  • Specific reaction modes of polymerization include radical polymerization, cationic polymerization, anionic polymerization, or polyaddition reaction.
  • the polymerizable compound may be any compound as long as it dissolves in the liquid crystal.
  • the polymerizable compound when dissolved in the liquid crystal, it is necessary that a temperature at which a part or the whole of the liquid crystal composition exhibits a liquid crystal phase exists. Even when a part of the liquid crystal composition exhibits a liquid crystal phase, it is sufficient that the liquid crystal display element is confirmed with the naked eye and almost uniform transparency and scattering characteristics are obtained throughout the element.
  • the reaction form of the polymerizable compound is radical polymerization
  • the following radical type polymerizable compound can be used.
  • trimethylolpropane triacrylate pentaerythritol tetraacrylate, pentaerythritol triacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexaacrylate, dipentaerythritol monohydroxypentaacrylate, trimethylolpropane trimethacrylate, penta Examples thereof include monomers and oligomers such as erythritol tetramethacrylate, pentaerythritol trimethacrylate, ditrimethylolpropane tetramethacrylate, dipentaerythritol hexamethacrylate, dipentaerythritol monohydroxypentamethacrylate.
  • the radical type polymerizable compound may be used alone or in combination of two or more depending on the optical characteristics of the liquid crystal display element and the adhesion characteristics between the liquid crystal layer and the vertical liquid crystal alignment film.
  • a radical initiator that generates radicals by ultraviolet rays can be introduced into the liquid crystal composition.
  • a radical initiator that generates radicals by ultraviolet rays can be introduced into the liquid crystal composition.
  • the reaction form of the polymerizable compound is cationic polymerization or anionic polymerization
  • the following ionic type polymerizable compounds can be used. Specifically, it is a compound having at least one cross-linking group selected from the group consisting of a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group.
  • a melamine derivative, a benzoguanamine derivative or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group or both can be used.
  • the melamine derivative or benzoguanamine derivative may be an oligomer. These preferably have an average of 3 or more and less than 6 methylol groups or alkoxymethyl groups per one triazine ring.
  • Examples of such melamine derivatives and benzoguanamine derivatives include MX-750, which is an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Eight-substituted MW-30 (manufactured by Sanwa Chemical Co., Ltd.), Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamine, Cymel 235, Of methoxymethylated butoxymethylated melamine such as 236, 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 Methoxymethylated etoxy Methylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated be
  • Examples of the benzene having a hydroxyl group or an alkoxyl group or a phenolic compound include 1,3,5-tris (methoxymethoxy) benzene, 1,2,4-tris (isopropoxymethoxy) benzene, and 1,4-bis. (Sec-butoxymethoxy) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
  • a compound having an epoxy group and an isocyanate group and having a crosslinking group can also be used.
  • an ion initiator that generates an acid or a base by ultraviolet rays can be introduced into the liquid crystal composition.
  • triazine compounds, acetophenone derivative compounds, disulfone compounds, diazomethane compounds, sulfonic acid derivative compounds, diaryl iodonium salts, triaryl sulfonium salts, triaryl phosphonium salts, iron arene complexes, and the like can be used. However, it is not limited to these.
  • diphenyl iodonium chloride diphenyl iodonium trifluoromethanesulfonate
  • diphenyl iodonium mesylate diphenyl iodonium tosylate
  • diphenyl iodonium bromide diphenyl iodonium tetrafluoroborate
  • diphenyl iodonium hexafluoroantimonate diphenyl iodonium hexafluoroarsenate.
  • a radical type polymerizable compound is preferably used from the viewpoint of the optical characteristics of the liquid crystal display element.
  • the amount of the polymerizable compound introduced into the liquid crystal composition is not particularly limited, but when the amount of the polymerizable compound introduced is large, the polymerizable compound does not dissolve in the liquid crystal, or the temperature at which the liquid crystal composition exhibits a liquid crystal phase. Or the change between the transparent state and the scattering state of the element becomes small, and the optical characteristics deteriorate.
  • the amount of the polymerizable compound introduced is small, the curability of the liquid crystal layer is lowered, and further, the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film is lowered, and the alignment of the liquid crystal against mechanical external pressure is reduced. Is easily disturbed.
  • the introduction amount of the polymerizable compound is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the liquid crystal, and more preferably 5 to 40 parts by mass. Particularly preferred is 11 to 30 parts by mass. Further, the introduction amount of the radical initiator and the ionic initiator that promote the reaction of the polymerizable compound is not particularly limited, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the liquid crystal. However, 0.05 to 5 parts by mass is preferable. Particularly preferred is 0.05 to 3 parts by mass.
  • the liquid crystal display element of the present invention has a vertical liquid crystal alignment film that vertically aligns liquid crystal on at least one of the substrates.
  • the vertical liquid crystal alignment film in that case is obtained from the liquid-crystal aligning agent containing the specific polymer which has a specific side chain structure shown by following formula [1].
  • Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO.
  • More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 4 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom of these cyclic groups is an alkyl having 1 to 3 carbon atoms.
  • Y 4 may be a divalent organic group selected from the group consisting of organic groups having 17 to 51 carbon atoms having a steroid skeleton.
  • Y 5 represents a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl having 1 to 3 carbon atoms.
  • an alkoxyl group having 1 to 3 carbon atoms an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • a benzene ring or a cyclohexane ring is preferable.
  • n represents an integer of 0 to 4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. .
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • the specific polymer having the specific side chain structure is not particularly limited, but from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose and polysiloxane. It is preferably at least one polymer selected. Among these, a polyimide precursor, polyimide or polysiloxane is preferable. When a polyimide precursor or polyimide (also collectively referred to as a polyimide polymer) is used for the specific polymer, they are a polyimide precursor or polyimide obtained by reacting a diamine component and a tetracarboxylic acid component. Is preferred.
  • the polyimide precursor has a structure represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and each may be the same or different.
  • a 3 and A 4 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acetyl group, which may be the same or different, and n represents a positive integer).
  • the diamine component is a diamine compound having two primary or secondary amino groups in the molecule
  • the tetracarboxylic acid component is a tetracarboxylic acid compound, tetracarboxylic dianhydride, or tetracarboxylic acid dihalide compound.
  • Tetracarboxylic acid dialkyl ester compounds or tetracarboxylic acid dialkyl ester dihalide compounds Tetracarboxylic acid dialkyl ester compounds or tetracarboxylic acid dialkyl ester dihalide compounds.
  • the polyimide polymer can be obtained relatively easily by using a tetracarboxylic dianhydride represented by the following formula [B] and a diamine compound represented by the following formula [C] as raw materials.
  • Polyamic acid comprising the structural formula of the repeating unit represented by the formula [D] or polyimide obtained by imidizing the polyamic acid is preferred. (R 1 and R 2 have the same meaning as defined in formula [A
  • R 1 and R 2 have the same meaning as defined in formula [A].
  • the polymer of the formula [D] obtained above by the usual synthesis method is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A]. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
  • a diamine compound having a specific side chain structure As a method for introducing the upper specific side chain structure into the polyimide polymer, it is preferable to use a diamine compound having a specific side chain structure as a part of the raw material.
  • a diamine compound represented by the following formula [1a] also referred to as a specific side chain diamine compound.
  • Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO.
  • More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and an arbitrary hydrogen atom of these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 4 may be a divalent organic group selected from organic groups having 17 to 51 carbon atoms and having a steroid skeleton.
  • Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • a benzene ring or a cyclohexane ring is preferable.
  • n represents an integer of 0 to 4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • Preferable combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [1a] include pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.20). The same combinations as (2-1) to (2-629) listed in Tables 6 to 47 of the above are listed. It should be noted that Y 1 to Y 6 in each table of the International Publication are respectively replaced with Y 1 to Y 6 of the present invention. In addition, any of the organic groups having 12 to 25 carbon atoms having a steroid skeleton in (2-605) to (2-629) listed in the tables of International Publications each has a carbon number having a steroid skeleton of the present invention. It shall be read as 17 to 51 organic groups.
  • m is an integer of 1 to 4.
  • m is an integer of 1 to 4.
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—
  • R 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, A linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group or fluorine-containing alkoxyl group having 1 to 22 carbon atoms.
  • R 3 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or —CH 2 —
  • R 4 is a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms, or This is a fluorine-containing alkoxyl group.
  • R 5 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O —
  • R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
  • R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • a 2 is an oxygen atom or —COO— * (where a bond with “*” is bonded to A 3 ), and A 1 is an oxygen atom or —COO— * (note that “*” is attached).
  • Bond is bonded to (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • these specific side chain type diamine compounds are contained in an amount of 10 mol% or more and 80 mol% or less of the entire diamine component from the viewpoint of the vertical alignment of the liquid crystal and the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film. Preferably there is. More preferably, it is 10 mol% or more and 70 mol% or less.
  • the specific side chain type diamine compound described above depends on the solubility of the polyimide polymer in the solvent, the vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and the characteristics such as the optical characteristics of the liquid crystal display element. One type or a mixture of two or more types can be used.
  • a diamine compound represented by the following formula [2] is also preferably used.
  • X represents a substituent having a structure selected from the group consisting of the following formula [2a], formula [2b], formula [2c] and formula [2d].
  • m represents an integer of 1 to 4.
  • a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the acquisition of a raw material or the ease of a synthesis
  • b represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
  • X 1 and X 2 each independently represent a hydrocarbon group having 1 to 12 carbon atoms.
  • X 3 represents an alkyl group having 1 to 5 carbon atoms.
  • diamine compound represented by the formula [2] examples include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5-diaminophenol, 3,5- In addition to diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, the following formula [ Examples thereof include diamine compounds having structures represented by 2-1] to [2-6].
  • 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid 2, Preference is given to 5-diaminobenzoic acid, 3,5-diaminobenzoic acid, diamine compounds of the formula [2-1], formula [2-2] or formula [2-3].
  • the diamine compound represented by the formula [2] has properties such as solubility of a polyimide polymer in a solvent, vertical alignment of liquid crystal when a vertical liquid crystal alignment film is formed, and optical characteristics of a liquid crystal display element. Depending on the situation, one kind or a mixture of two or more kinds can be used.
  • diamine compounds other than the diamine compound shown by Formula [1a] and Formula [2] can also be used as a diamine compound.
  • Specific examples of other diamine compounds are shown below, but are not limited to these examples.
  • diamine compound examples include those having an alkyl group, a fluorine-containing alkyl group or a heterocyclic ring in the side chain of the diamine compound.
  • diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
  • a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
  • a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • diamine compounds represented by the following formulas [DA12] to [DA17] can also be used.
  • diamine compounds represented by the following formulas [DA18] to [DA21] can also be used as long as the effects of the present invention are not impaired.
  • a 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O —, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or —N (CH 3 ) CO—, each of m 1 and m 2 represents an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in the formula [DA19], m 3 and m 4 each represent an integer of 1 to 5, and in formula [DA20], A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, m 5 represents an integer of 1 to 5, [DA21] in, A 3 is
  • a diamine compound represented by the following formula [DA22] can also be used as long as the effects of the present invention are not impaired.
  • a 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — and —N (CH 3 )
  • a 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, — N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5),
  • a 4 is a nitrogen-containing aromatic heterocyclic ring, and n is an integer of 1 to 4 .
  • diamine compounds represented by the following formulas [DA23] and [DA24] can also be used.
  • the above-mentioned other diamine compound is one kind depending on the solubility of the polyimide polymer in the solvent, the vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and the characteristics such as the optical characteristics of the liquid crystal display element.
  • two or more types can be mixed and used.
  • tetracarboxylic acid component for producing the polyimide polymer examples include tetracarboxylic dianhydride represented by the following formula [3] and tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid derivative thereof, tetra It is preferable to use a carboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound (all are collectively referred to as a specific tetracarboxylic acid component).
  • Z 1 is a group having a structure selected from the following formulas [3a] to [3j].
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
  • Z 1 represents the formula [3a]
  • the formula [ 3c], Formula [3d], Formula [3e], Formula [3f], or Formula [3g] is preferable. More preferred is a structure represented by formula [3a], formula [3e], formula [3f] or formula [3g], and particularly preferred is formula [3e], formula [3f] or formula [3g]. It is.
  • the specific tetracarboxylic acid component is preferably 1 mol% or more of the total tetracarboxylic acid component. More preferred is 5 mol% or more, and particularly preferred is 10 mol% or more. Moreover, when using the specific tetracarboxylic acid component of the structure of Formula [3e], Formula [3f], or Formula [3g], the usage-amount is made into 20 mol% or more of the whole tetracarboxylic acid component, and it is desired. An effect is obtained. Preferably, it is 30 mol% or more.
  • tetracarboxylic acid component may be a tetracarboxylic acid component having a structure of the formula [3e], the formula [3f], or the formula [3g].
  • other tetracarboxylic acid components other than the specific tetracarboxylic acid component can be used for the polyimide polymer.
  • examples of other tetracarboxylic acid components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, dicarboxylic acid dihalide compounds, dicarboxylic acid dialkyl ester compounds, and dialkyl ester dihalide compounds.
  • tetracarboxylic acid components include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalene.
  • Tetracarboxylic acid 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ', 4'-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3', 4,4'-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro 2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5- Pyridine
  • the specific tetracarboxylic acid component and other tetracarboxylic acid components include solubility of the polyimide polymer in the solvent, vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and optical characteristics of the liquid crystal display element. Depending on the characteristics, one kind or a mixture of two or more kinds can be used.
  • the method for synthesizing the polyimide polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component.
  • At least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid.
  • a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine compound, dehydration polycondensation reaction of tetracarboxylic acid and primary or secondary diamine compound A method of obtaining a polyamic acid by using a polycarboxylic acid dihalide and a primary or secondary diamine compound is used.
  • a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine compound, a dicarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and a primary a method of polycondensation with a secondary diamine compound or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out in a solvent with the diamine component and the tetracarboxylic acid component.
  • the solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone
  • Examples include cyclohexanone, cyclopentanone, and 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination.
  • a solvent that does not dissolve the polyimide precursor may be used by mixing with the above solvent as long as the generated polyimide precursor does not precipitate.
  • water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated and dried solvent.
  • the reaction when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a polymer.
  • the polymerization temperature at that time can be selected from ⁇ 20 to 150 ° C., preferably ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration, and then a solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • Polyimide is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate (also referred to as imidation rate) of the amic acid group does not necessarily need to be 100%, depending on the application and purpose. Can be adjusted arbitrarily.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the molecular weight of the polyimide polymer is 5 in terms of weight average molecular weight measured by GPC (Gel Permeation Chromatography) method in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability during film formation, and coating properties. It is preferably 000 to 1,000,000, more preferably 10,000 to 150,000.
  • polysiloxane When polysiloxane is used for the specific polymer, a polysiloxane obtained by polycondensation of an alkoxysilane represented by the following formula [A1], represented by the formula [A1] and the following formula [A2] or formula [A3] Polysiloxane obtained by polycondensation of alkoxysilane containing any one of alkoxysilanes or polycondensation obtained by polycondensation of alkoxysilanes represented by formula [A1], formula [A2] and formula [A3] It is preferably any one of siloxanes (also collectively referred to as polysiloxane polymers).
  • a 1 represents the structure represented by Formula [1], and preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in Formula [1]
  • the same combinations as (2-1) to (2-629) described in Tables 6 to 47 on pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.27) can be mentioned.
  • Y1 to Y6 in each table of the International Publication are respectively replaced with Y 1 to Y 6 of the present invention.
  • any of the organic groups having 12 to 25 carbon atoms having a steroid skeleton in (2-605) to (2-629) listed in the tables of International Publications are all carbons having a steroid skeleton of the present invention. It shall be read as an organic group of formulas 17 to 51.
  • a 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Of these, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable.
  • a 3 is each an alkyl group having 1 to 5 carbon atoms. Of these, alkyl groups having 1 to 3 carbon atoms are preferred from the viewpoint of polycondensation reactivity.
  • m is an integer of 1 or 2. Among these, 1 is preferable from the viewpoint of synthesis.
  • n is an integer of 0-2.
  • p is an integer of 0 to 3. Among these, an integer of 1 to 3 is preferable from the viewpoint of polycondensation reactivity. More preferably, it is 2 or 3.
  • m + n + p is an integer of 4.
  • alkoxysilanes represented by the formula [A1] alkoxysilanes represented by the following formulas [A1-1] to [A1-32] may be used.
  • R 1 represents an alkyl group having 1 to 3 carbon atoms
  • R 2 represents an alkyl group having 1 to 3 carbon atoms
  • m represents 2 or 3
  • n represents 0 or 1
  • R 1 represents an alkyl group having 1 to 3 carbon atoms
  • R 2 represents an alkyl group having 1 to 3 carbon atoms
  • m represents 2 or 3
  • n represents 0 or 1
  • R 3 represents —O—, —COO—, —OCO—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—
  • R 4 represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
  • R 1 represents an alkyl group having 1 to 3 carbon atoms
  • R 2 represents an alkyl group having 1 to 3 carbon atoms
  • m represents 2 or 3
  • n represents 0 or 1
  • R 3 represents —O—, —COO—, —OCO—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —OCH 2 —, —CH 2 O—, —COOCH 2- or -CH 2 OCO-
  • R 4 is an alkyl group having 1 to 12 carbon atoms, alkoxy group fluorine-containing alkyl group, fluorine-containing alkoxy group, fluorine group, cyano group, trifluoromethane group, nitro group, (Azo group, formyl group, acetyl group, acetoxy group or hydroxyl group is shown.)
  • R 1 represents an alkyl group having 1 to 3 carbon atoms
  • R 2 represents an alkyl group having 1 to 3 carbon atoms
  • m represents 2 or 3
  • n represents 0 or 1
  • R 3 represents —O—, —COO—, —OCO—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—
  • R 4 represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
  • R 1 represents an alkyl group having 1 to 3 carbon atoms
  • R 2 represents an alkyl group having 1 to 3 carbon atoms
  • m represents 2 or 3
  • n represents 0 or 1
  • B 4 represents fluorine.
  • B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group
  • B 2 represents an oxygen atom or —COO— *.
  • B 1 is an oxygen atom or —COO— * (where the bond marked with “*” is (CH 2 ) a 2. ).
  • a 1 represents an integer of 0 or 1
  • a 2 represents an integer of 2 to 10
  • a 3 represents an integer of 0 or 1.
  • the alkoxysilane represented by the above formula [A1] is used for the solubility of the polysiloxane polymer in the solvent, the vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and the optical characteristics of the liquid crystal display element. Depending on the characteristics, one type or a mixture of two or more types can be used.
  • the alkoxysilane represented by the formula [A2] is represented by the following formula [A2].
  • B 1 is an organic group having 2 to 12 carbon atoms having a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, a methacryl group, an acrylic group, a ureido group, or a cinnamoyl group.
  • a vinyl group, an epoxy group, an amino group, a methacryl group, an acrylic group, or a ureido group is preferable from the viewpoint of availability. More preferably, they are a methacryl group, an acryl group, or a ureido group.
  • B 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Of these, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable.
  • B 3 is an alkyl group having 1 to 5 carbon atoms. Of these, alkyl groups having 1 to 3 carbon atoms are preferred from the viewpoint of polycondensation reactivity.
  • m is an integer of 1 or 2. Among these, 1 is preferable from the viewpoint of synthesis.
  • n is an integer of 0-2.
  • p is an integer of 0 to 3. Among these, an integer of 1 to 3 is preferable from the viewpoint of polycondensation reactivity. More preferably, it is 2 or 3.
  • m + n + p is an integer of 4.
  • alkoxysilane represented by the formula [A2] include allyltriethoxysilane, allyltrimethoxysilane, diethoxymethylvinylsilane, dimethoxymethylvinylsilane, triethoxyvinylsilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) Silane, m-styrylethyltriethoxysilane, p-styrylethyltriethoxysilane, m-styrylmethyltriethoxysilane, p-styrylmethyltriethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltri Methoxysilane, diethoxy (3-glycidyloxypropyl) methylsilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyltri
  • the alkoxysilane represented by the above formula [A2] is used for the solubility of the polysiloxane polymer in the solvent, the vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and the optical characteristics of the liquid crystal display element. Depending on the characteristics, one kind or a mixture of two or more kinds can be used.
  • the alkoxysilane represented by the formula [A3] is an alkoxysilane represented by the formula [A3].
  • D 1 is each a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and these may be substituted with a halogen atom, a nitrogen atom, an oxygen atom, or a sulfur atom.
  • An alkyl group having 1 to 3 carbon atoms is preferred, and each D 2 is an alkyl group having 1 to 5 carbon atoms, among which an alkyl group having 1 to 3 carbon atoms is preferred from the viewpoint of polycondensation reactivity.
  • N is an integer of 0 to 3.
  • alkoxysilane represented by the formula [A3] include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
  • examples of the alkoxysilane in which n is 0 include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and these alkoxysilanes are preferably used.
  • the alkoxysilane represented by the formula [A3] has properties such as solubility of the polysiloxane polymer in the solvent, vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and optical characteristics of the liquid crystal display element. Depending on the situation, one kind or a mixture of two or more kinds can be used.
  • the polysiloxane polymer is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the formula [A1], or an alkoxysilane represented by the formula [A1] and the formula [A2] or the formula [A3]. Any of polysiloxanes obtained by polycondensation of alkoxysilane containing one kind, or polysiloxanes obtained by polycondensation of alkoxysilanes represented by formula [A1], formula [A2] and formula [A3] Or one.
  • a polysiloxane obtained by polycondensation only with an alkoxysilane represented by the formula [A1] a polysiloxane obtained by polycondensation of two types of alkoxysilanes represented by the formulas [A1] and [A2]
  • three types of alkoxysilanes represented by formula [A1], formula [A2] and formula [A3] Any one of polysiloxanes obtained by polycondensation.
  • polysiloxanes obtained by polycondensation of a plurality of types of alkoxysilanes are preferred in terms of polycondensation reactivity and solubility of polysiloxane polymers in solvents. That is, polysiloxane obtained by polycondensation of two types of alkoxysilanes represented by formula [A1] and formula [A2], and polycondensation of two types of alkoxysilanes represented by formula [A1] and formula [A3]. Or a polysiloxane obtained by polycondensation of three types of alkoxysilanes represented by the formulas [A1], [A2] and [A3].
  • the alkoxysilane represented by the formula [A1] is preferably 1 to 40 mol%, more preferably all alkoxysilanes. Is 1-30 mol%.
  • the alkoxysilane represented by the formula [A2] is preferably 1 to 70 mol%, more preferably 1 to 60 mol% in all alkoxysilanes.
  • the alkoxysilane represented by the formula [A3] is preferably 1 to 99 mol%, more preferably 1 to 80 mol% in all alkoxysilanes.
  • the method for producing the polysiloxane polymer is not particularly limited.
  • the polysiloxane polymer is obtained by polycondensing an alkoxysilane represented by the formula [A1] in a solvent, by polycondensing an alkoxysilane represented by the formula [A1] and the formula [A2] in a solvent.
  • the polysiloxane polymer is obtained as a solution obtained by polycondensing these alkoxysilanes and uniformly dissolving in a solvent.
  • the method for polycondensing the polysiloxane polymer is not particularly limited.
  • a method in which an alkoxysilane is hydrolyzed and polycondensed in an alcohol solvent or a glycol solvent can be mentioned.
  • the hydrolysis / polycondensation reaction may be partially hydrolyzed or completely hydrolyzed.
  • complete hydrolysis theoretically, it is sufficient to add 0.5 times the molar amount of water of all alkoxy groups in the alkoxysilane, but it is possible to add an excessive amount of water more than 0.5 times the molar amount. preferable.
  • the amount of water used in the hydrolysis / polycondensation reaction can be appropriately selected according to the purpose, but 0.5 to 0.5% of all alkoxy groups in the alkoxysilane.
  • the molar amount is preferably 2.5 times.
  • acidic compounds such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid, alkaline such as ammonia, methylamine, ethylamine, ethanolamine or triethylamine
  • a compound or a catalyst such as a metal salt such as hydrochloric acid, nitric acid, or oxalic acid can be used.
  • the hydrolysis / polycondensation reaction can be promoted by heating the solution in which the alkoxysilane is dissolved.
  • the heating temperature and heating time in that case can be suitably selected according to the objective. For example, conditions such as heating and stirring at 50 ° C. for 24 hours and then stirring under reflux conditions for 1 hour can be mentioned.
  • another method for polycondensation includes a method in which a polycondensation reaction is carried out by heating a mixture of alkoxysilane, solvent and oxalic acid. Specifically, after adding oxalic acid to a solvent to prepare a solution of oxalic acid in advance, the alkoxysilane is mixed in a state where the solution is heated. At that time, the amount of oxalic acid used in the above reaction is preferably 0.2 to 2.0 mol with respect to 1 mol of all alkoxy groups in the alkoxysilane.
  • This reaction can be carried out at a solution temperature of 50 to 180 ° C., but is preferably carried out under reflux for several tens of minutes to several tens of hours so that the solvent does not evaporate or volatilize.
  • a mixture in which a plurality of types of alkoxysilanes are mixed in advance is used. Even if it reacts using, it may react, adding several types of alkoxysilane sequentially.
  • the solvent used for the polycondensation reaction of alkoxysilane is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even if it is a solvent in which an alkoxysilane does not melt
  • an alcohol is generally generated by the polycondensation reaction of alkoxysilane, and therefore, an alcohol solvent, a glycol solvent, a glycol ether solvent, or a solvent that is compatible with alcohol is used.
  • solvent used in such a polycondensation reaction include alcohol solvents such as methanol, ethanol, propanol, butanol or diacetone alcohol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1, 3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4 -Glucol solvents such as pentanediol, 1,5-pentanediol, 2,4-pentanediol, 2,3-pentanediol or 1,6-hexanediol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethyl Glycol monopropyl ether, ethylene
  • these solvents can also be used 1 type or in mixture of 2 or more types.
  • the concentration of silicon atoms contained in all alkoxysilanes charged as a raw material in terms of SiO 2 (also referred to as SiO 2 concentration) is 20% by mass or less. Is preferred. In particular, the content is preferably 5 to 15% by mass.
  • the polysiloxane polymer solution obtained by the above method may be used as it is as a specific polymer, and if necessary, the polysiloxane polymer solution obtained by the above method may be concentrated or a solvent. It can also be used as a specific polymer by diluting by addition or substitution with another solvent.
  • the solvent used for dilution by adding the solvent may be a solvent used for the polycondensation reaction or other solvents.
  • the additive solvent is not particularly limited as long as the polysiloxane polymer is uniformly dissolved, and one or two or more types can be arbitrarily selected and used.
  • examples of such an additive solvent include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ester solvents such as methyl acetate, ethyl acetate, and ethyl lactate, in addition to the solvent used in the polycondensation reaction.
  • the polysiloxane polymer when a polysiloxane polymer and another polymer are used as the specific polymer, the polysiloxane polymer is polycondensed before mixing the other polymer with the polysiloxane polymer.
  • the alcohol generated during the reaction is preferably distilled off at normal pressure or reduced pressure.
  • the liquid crystal aligning agent of the present invention is a coating solution for forming a vertical liquid crystal alignment film, and is a coating solution containing a specific polymer having a specific side chain structure represented by the formula [1] and a solvent.
  • the specific polymer having the specific side chain structure is not particularly limited, but at least selected from acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, or polysiloxane.
  • One polymer is preferred.
  • a polyimide precursor, polyimide or polysiloxane is preferable.
  • one kind or two or more kinds of these polymers can be used as the specific polymer.
  • All polymer components in the liquid crystal alignment treatment agent may be all specific polymers, or other polymers may be mixed.
  • the content of the other polymer is 0.5 to 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the specific polymer.
  • Examples of the other polymer include the polymer having no specific side chain structure represented by the formula [1].
  • Content of the solvent in a liquid-crystal aligning agent can be suitably selected from a viewpoint of obtaining the coating method of a liquid-crystal aligning agent, and the target film thickness.
  • the content of the solvent in the liquid crystal aligning agent is preferably 50 to 99.9% by mass.
  • 60 to 99% by mass is preferable, and 65 to 99% by mass is particularly preferable.
  • the solvent used for the liquid crystal aligning agent is not particularly limited as long as the solvent dissolves the specific polymer.
  • the specific polymer is a polyimide precursor, polyimide, polyamide or polyester, or when the solubility in a solvent such as acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, cellulose, polysiloxane is low, It is preferable to use a solvent (also referred to as solvent A) as shown below.
  • a solvent also referred to as solvent A
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferably used. These may be used alone or in combination.
  • a solvent also referred to as a solvent B shown below can be used.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents An alkyl group having 1 to 4 carbon atoms
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or a solvent represented by the formula [D1] to formula [D3] is used.
  • these solvents B can improve the coating properties and surface smoothness of the vertical liquid crystal alignment film when applying the liquid crystal aligning agent, a polyimide precursor, polyimide, polyamide or polyester was used as the specific polymer.
  • the solvent B is preferably 1 to 70% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 10 to 60% by mass is preferable, and 20 to 60% by mass is more preferable.
  • the liquid crystal aligning agent preferably contains a compound represented by the following formula [6] (hereinafter referred to as an adhesive compound) for the purpose of enhancing the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film.
  • X 1 represents at least one structure selected from the group consisting of structures represented by the following formulas [6a-1] to [6a-7].
  • the formula [6a-1], the formula [6a-2], the formula [6a-3], the formula [6a-5] or the formula [6a- 6] is preferable.
  • a structure represented by formula [6a-1], formula [6a-3], formula [6a-5] or formula [6a-6] is more preferable.
  • a 1 represents a hydrogen atom or an alkylene group having 1 to 5 carbon atoms. Among these, a hydrogen atom or an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound. More preferably, they are a hydrogen atom or a methyl group.
  • a 2 represents a hydrogen atom or an alkylene group having 1 to 3 carbon atoms. Among these, a hydrogen atom or an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound. More preferably, they are a hydrogen atom or a methyl group.
  • a 3 and A 5 each independently represents a hydrogen atom or an alkylene group having 1 to 3 carbon atoms. Among these, a hydrogen atom or an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound. More preferably, they are a hydrogen atom or a methyl group.
  • a 4 represents an alkylene group having 1 to 3 carbon atoms. Among these, an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound.
  • a 6 and A 9 each independently represents a hydrogen atom or an alkylene group having 1 to 3 carbon atoms.
  • a hydrogen atom or an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound. More preferably, they are a hydrogen atom or a C1-C1 alkylene group (methyl group).
  • a 7 and A 8 each independently represents an alkylene group having 1 to 3 carbon atoms. Among these, an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound.
  • X 2 represents a single bond, —CH 2 —, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 It represents at least one linking group selected from the group consisting of —, —COO—, —OCO—, —CON (CH 3 ) — and —N (CH 3 ) CO—.
  • a single bond —CH 2 —, —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO— is preferred. More preferably, they are a single bond, —CH 2 —, —O—, —NH—, —CONH—, —CH 2 O—, —OCH 2 —, —COO— or —OCO—.
  • X 3 is an alkylene group having 1 to 20 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), — (CH 2 —O—) q 1 (q represents an integer of 1 to 10) and at least one selected from the group consisting of organic groups having a benzene ring or a cyclohexane ring having 6 to 20 carbon atoms.
  • any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom
  • the hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom.
  • an alkylene group having 1 to 20 carbon atoms — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), — ( CH 2 —O—) q — (q represents an integer of 1 to 10) or structures represented by the following formulas [6c-1] to [6c-5] are preferable.
  • an alkylene group having 1 to 15 carbon atoms — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), — (CH 2 —O—) q — (q is And represents a structure represented by the following formula [6c-1], formula [6c-3], formula [6c-4] or formula [6c-5].
  • an alkylene group having 1 to 15 carbon atoms — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10)
  • Formula [6c-1], Formula [6c-4] Or it is a structure shown by Formula [6c-5].
  • X 4 represents at least one linking group selected from the group consisting of a single bond, —CH 2 —, —OCH 2 —, and O—CH 2 —CH 2 —.
  • a structure represented by a single bond, —CH 2 — or —OCH 2 — is preferable from the viewpoint of easy synthesis of the adhesive compound.
  • X 5 represents at least one structure selected from the group consisting of the structures represented by the following formulas [6b-1] to [6b-8].
  • the structure represented by the formula [6b-1], the formula [6b-2] or the formula [6b-6] is preferable from the viewpoint of the ease of synthesis of the adhesive compound.
  • B 1 represents a hydrogen atom or a benzene ring.
  • B 2 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring.
  • B 3 represents an alkylene group having 1 to 12 carbon atoms, a fluorine-containing alkylene group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, and a fluorine-containing alkoxyl group having 1 to 12 carbon atoms.
  • n represents an integer of 1 to 3. Especially, 1 or 2 is preferable from the point of the ease of the synthesis
  • m represents an integer of 1 to 3. Especially, 1 or 2 is preferable from the point of the ease of the synthesis
  • More specific structures of the adhesive compound include the following formulas [6-1a] to [6-3a], formulas [6-1b] to [6-3b], and formulas [6-1c] to [6- 3c] and compounds represented by the formulas [6-1d] to [6-3d].
  • X a in formula [6-1a], X d in formula [6-2a] and X g in formula [6-3a] are each independently a single bond, —O—, —CONH—, — At least one linking group selected from the group consisting of OCH 2 —, —COO— and —OCO—; Of these, a single bond, —O—, —OCH 2 — or —OCO— is preferable from the viewpoint of easy production of the adhesive compound.
  • X b in formula [6-1a], X e in formula [6-2a] and X h in formula [6-3a] are each independently an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), selected from the group consisting of structures represented by formula [6c-1], formula [6c-4] and formula [6c-5] At least one selected.
  • any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom
  • the hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom.
  • X c in formula [6-1a], X f in formula [6-2a] and X i in formula [6-3a] are each independently a single bond, —CH 2 — and —OCH 2 —.
  • At least one linking group selected from the group consisting of: N1 in Formula [6-1a], n2 in Formula [6-2a], and n3 in Formula [6-3a] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
  • M1 in Formula [6-1a], m2 in Formula [6-2a], and m3 in Formula [6-3a] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
  • X a in formula [6-1b], X d in formula [6-2b] and X g in formula [6-3b] are each independently a single bond, —O—, —CONH—, — At least one linking group selected from the group consisting of OCH 2 —, —COO— and —OCO—; Of these, a single bond, —O—, —OCH 2 — or —OCO— is preferable from the viewpoint of easy production of the adhesive compound. More preferably, it is a single bond, —O— or —OCH 2 —.
  • X b in formula [6-1b], X e in formula [6-2b], and X h in formula [6-3b] are each independently an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), selected from the group consisting of structures represented by formula [6c-1], formula [6c-4] and formula [6c-5] At least one selected.
  • any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom
  • the hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom.
  • X c in formula [6-1b], X f in formula [6-2b], and X i in formula [6-3b] are each independently a single bond, —CH 2 — and —OCH 2 —.
  • at least one linking group selected from A 1 in Formula [6-1b], A 2 in Formula [6-2b], and A 3 in Formula [6-3b] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
  • N1 in Formula [6-1b], n2 in Formula [6-2b], and n3 in Formula [6-3b] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
  • M1 in Formula [6-1b], m2 in Formula [6-2b], and m3 in Formula [6-3b] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
  • X a in formula [6-1c], X d in formula [6-2c], and X g in formula [6-3c] are each independently a single bond, —O—, —CONH—, — At least one linking group selected from the group consisting of OCH 2 —, —COO— and —OCO—; Of these, a single bond, —O—, —OCH 2 — or —OCO— is preferable from the viewpoint of easy production of the adhesive compound. More preferably, it is a single bond, —O— or —OCH 2 —.
  • X b in formula [6-1c], X e in formula [6-2c], and X h in formula [6-3c] are each independently an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), selected from the group consisting of structures represented by formula [6c-1], formula [6c-4] and formula [6c-5] At least one selected.
  • any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom
  • the hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom.
  • X c in formula [6-1c], X f in formula [6-2c], and X i in formula [6-3c] are each independently a single bond, —CH 2 — and —OCH 2 —.
  • At least one linking group selected from the group consisting of: A 1 in Formula [6-1c], A 4 in Formula [6-2c], and A 7 in Formula [6-3c] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
  • a 2 in formula [6-1c], A 5 in formula [6-2c], and A 8 in formula [6-3c] each independently represent an alkylene group having 1 to 2 carbon atoms.
  • a 3 in Formula [6-1c], A 6 in Formula [6-2c], and A 9 in Formula [6-3c] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
  • N1 in Formula [6-1c], n2 in Formula [6-2c], and n3 in Formula [6-3c] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
  • M1 in Formula [6-1c], m2 in Formula [6-2c], and m3 in Formula [6-3c] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
  • X a in formula [6-1d], X d in formula [6-2d] and X g in formula [6-3d] are each independently a single bond, —O—, —CONH—, — At least one linking group selected from the group consisting of OCH 2 —, —COO— and —OCO—; Of these, a single bond, —O—, —OCH 2 — or —OCO— is preferable from the viewpoint of easy production of the adhesive compound. More preferably, it is a single bond, —O— or —OCH 2 —.
  • X b in formula [6-1d], X e in formula [6-2d], and X h in formula [6-3d] are each independently an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), selected from the group consisting of structures represented by formula [6c-1], formula [6c-4] and formula [6c-5] At least one selected.
  • any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom
  • the hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom.
  • X c in formula [6-1d], X f in formula [6-2d], and X i in formula [6-3d] are each independently a single bond, —CH 2 — and —OCH 2 —.
  • at least one linking group selected from A 1 in Formula [6-1d], A 5 in Formula [6-2d], and A 8 in Formula [6-3d] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
  • a 2 in Formula [6-1d], A 6 in Formula [6-2d], and A 9 in Formula [6-3d] each independently represent an alkylene group having 1 to 2 carbon atoms.
  • a 3 in Formula [6-1d], A 7 in Formula [6-2d], and A 10 in Formula [6-3d] each independently represent an alkylene group having 1 to 2 carbon atoms.
  • a 4 in Formula [6-1d], A 8 in Formula [6-2d], and A 11 in Formula [6-3d] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
  • N1 in Formula [6-1d], n2 in Formula [6-2d], and n3 in Formula [6-3d] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
  • M1 in Formula [6-1d], m2 in Formula [6-2d], and m3 in Formula [6-3d] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
  • the adhesive compound it is preferable to use at least one compound selected from the group consisting of compounds represented by the following formulas [6-1] and [6-5]. (In formula [6-4], n represents an integer of 1 to 10, and in formula [6-5], m represents an integer of 1 to 10). Further, for example, specific examples of the adhesive compound include the following compounds. Polymerizability of trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, etc.
  • the said adhesive compound is an example of a compound, It is not limited to these.
  • One type of adhesive compound may be used, or two or more types may be combined.
  • the content of the adhesive compound in the liquid crystal aligning agent is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
  • the liquid crystal aligning agent is selected from the group consisting of a compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, or a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is also possible to introduce a compound having at least one kind of substituent (collectively referred to as a crosslinkable compound). In that case, it is necessary to have two or more of these substituents in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4]. Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] described in the paragraphs 58 to 59 of the international publication WO2011 / 132751 (published 2011.10.27).
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5]. Specifically, crosslinkable compounds represented by the formulas [5-1] to [5-42] described in the paragraphs 76 to 82 of the international publication WO2012 / 014898 (published in 2012.2.2) are listed. It is done.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol
  • Examples of the melamine derivative or benzoguanamine derivative include MX-750 in which an average of 3.7 methoxymethyl groups are substituted per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring. Substituted MW-30 (Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236, 238 , 212, 253, 254, etc., methoxymethylated butoxymethylated melamine, Cymel 506, 508, etc., carboxyl group-containing methoxymethylated isobutoxymethylated melamine, Cymel 1141, methoxy such as Cymel 1123 Methylated ethoxymethyl Benzomethylamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128,
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol. More specifically, International Publication WO2011 / 132751. (2011.10.27), pages 62 to 66, and crosslinkable compounds represented by the formulas [6-1] to [6-48].
  • the content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the amount is more preferably 0.1 to 50 parts by weight, and most preferably 1 to 30 parts by weight, based on 100 parts by weight of all polymer components.
  • Nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156] can also be added.
  • This amine compound may be added directly to the liquid crystal aligning agent, but it is preferably added after a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above.
  • the liquid crystal aligning agent a compound that improves the uniformity of the thickness of the vertical liquid crystal aligning film and the surface smoothness when the liquid crystal aligning agent is applied can be used as long as the effects of the present invention are not impaired. Further, a compound that improves the adhesion between the vertical liquid crystal alignment film and the substrate can be used. Examples of the compound that improves the film thickness uniformity and surface smoothness of the vertical liquid crystal alignment film include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (above, Sumitomo 3M Limited), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
  • the compound that improves the adhesion between the vertical liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the liquid crystal aligning agent When using a compound to be adhered to these substrates, it is preferably 0.1 to 30 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal aligning agent. 20 parts by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the storage stability of the liquid crystal aligning agent may be deteriorated.
  • the liquid crystal aligning agent includes a dielectric material for changing the electrical properties such as dielectric constant and conductivity of the vertical liquid crystal alignment film, as long as the effects of the present invention are not impaired. A conductive substance may be added.
  • the substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate, a polycarbonate substrate, or a PET (polyethylene terephthalate) substrate can be used.
  • a plastic substrate is preferable. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving a liquid crystal is formed.
  • a substrate on which a metal or dielectric multilayer film such as a silicon wafer or aluminum is formed can be used as long as the substrate is only on one side.
  • the substrates has a vertical liquid crystal alignment film that aligns liquid crystal molecules vertically.
  • This vertical liquid crystal alignment film can be obtained by applying a liquid crystal alignment treatment agent on a substrate and baking it, followed by alignment treatment by rubbing treatment or light irradiation. Further, in the case of a vertical liquid crystal alignment film, it can be used as a vertical liquid crystal alignment film without alignment treatment.
  • the application method of the liquid crystal alignment treatment agent is not particularly limited, but industrially includes screen printing, offset printing, flexographic printing, ink jet method, dipping method, roll coater method, slit coater method, spinner method, spray method, etc. Depending on the kind of the substrate and the desired thickness of the vertical liquid crystal alignment film, it can be appropriately selected.
  • the liquid crystal alignment treatment agent After the liquid crystal alignment treatment agent is applied on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal alignment treatment agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. Can evaporate the solvent at a temperature of 30 to 250 ° C. to form a vertical liquid crystal alignment film.
  • the thickness of the vertical liquid crystal alignment film after firing is disadvantageous in terms of power consumption of the liquid crystal display element if it is too thick, and if it is too thin, the reliability of the element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the liquid crystal composition used for the liquid crystal display element is a liquid crystal composition having at least a liquid crystal and a polymerizable compound.
  • examples of those other than the liquid crystal and the polymerizable compound include the initiator and a spacer for controlling an electrode gap (also referred to as a gap) of the liquid crystal display element.
  • the injection method of a liquid crystal composition is not specifically limited, For example, the following method is mentioned. That is, when a glass substrate is used as a substrate, a pair of substrates on which a vertical liquid crystal alignment film is formed is prepared, and a sealant is applied to four pieces of one side of the substrate except for a part, and then the vertical liquid crystal alignment film is formed. An empty cell is manufactured by attaching the substrate on the other side so that the surface is on the inside. And the method of obtaining the liquid crystal composition injection cell by injecting the liquid crystal composition under reduced pressure from a place where the sealant is not applied can be mentioned.
  • a plastic substrate is used as a substrate
  • a pair of substrates on which a vertical liquid crystal alignment film is formed is prepared, and a liquid crystal composition is applied on one substrate by an ODF (One Drop Filling) method or an inkjet method.
  • ODF One Drop Filling
  • a liquid crystal composition injection cell is obtained by dropping and then bonding the other substrate together.
  • the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film is high, it is not necessary to apply the sealing agent to the four pieces of the substrate.
  • the gap of the liquid crystal display element can be controlled by a spacer or the like.
  • Examples of the method include a method of introducing a spacer having a target size into the liquid crystal composition described above, and a method of using a substrate having a column spacer of a target size.
  • the size of the gap is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m. Particularly preferred is 3 to 30 ⁇ m. If the gap is too small, the contrast of the liquid crystal display element is lowered. If the gap is too large, the driving voltage of the element is increased.
  • the liquid crystal display element is obtained by curing the liquid crystal composition in a state where a part or the whole of the liquid crystal composition exhibits liquid crystallinity to form a cured product composite of the liquid crystal and the polymerizable compound.
  • the liquid crystal composition is cured by at least one of irradiation with active energy rays and heating the liquid crystal composition injection cell obtained above.
  • ultraviolet rays are suitable as the active energy ray.
  • the ultraviolet light has a wavelength of 250 nm to 400 nm, preferably 310 nm to 370 nm.
  • the temperature is 40 to 120 ° C., preferably 60 to 80 ° C. Further, both the ultraviolet treatment and the heat treatment may be performed simultaneously, or the heat treatment may be performed after the ultraviolet treatment.
  • the liquid crystal display element in the present invention is a liquid crystal display element used in transportation equipment and transportation machinery such as automobiles, railways and aircrafts, specifically, an optical shutter element used in a light control window and a room mirror for controlling transmission and blocking of light. It can use suitably for.
  • transparency when no voltage is applied and scattering characteristics when voltage is applied are good, so when this element is used for a glass window of a vehicle, when a conventional reverse type element is used.
  • the efficiency of taking in light at night is high, and the effect of preventing glare from outside light is also high. Therefore, it is possible to further improve the safety when driving a vehicle and the comfort when riding.
  • the liquid crystal display element when the liquid crystal display element is manufactured using a film substrate and is used by being attached to a glass window of a vehicle, the reliability of the element is higher than that of a conventional reverse type element. That is, poor adhesion and deterioration are less likely to occur due to the low adhesion between the liquid crystal layer and the vertical alignment film.
  • the liquid crystal display element can be used for a light guide plate of a display device such as an LCD (Liquid Crystal Display) or an OLED (Organic Light-Emitting Diode) display, or a back plate of a transparent display using these displays.
  • the transparent display and the liquid crystal display element are combined, and when the screen is displayed on the transparent display, the liquid crystal display element suppresses light from entering from the back side.
  • the liquid crystal display element is in a scattering state in which voltage is applied when performing screen display on a transparent display, and the screen display can be clarified. After the screen display is finished, no voltage is applied to the transparent display element. It becomes a state.
  • A1 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene
  • A2 1,3-diamino-4- [4- (trans-4-n-heptylcyclo) Hexyl) phenoxymethyl] benzene
  • A3 1,3-diamino-4- ⁇ 4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy ⁇ benzene
  • A4 A4] Diamine
  • B1 p-phenylenediamine
  • B2 m-phenylenediamine
  • B3 3,5-diaminobenzoic acid
  • B4 diamine represented by the following formula [B4]
  • B5 1,3-diamino-4-octadecyloxybenzene (conventional type) Diamine)
  • C1 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • C2 bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • C3 the following formula [C3 ]
  • C4 tetracarboxylic dianhydride represented by the following formula [C4]
  • D1 Alkoxysilane monomer represented by the following formula [D1] (alkoxysilane monomer having a specific side chain structure)
  • D2 3-Methacryloxypropyltrimethoxysilane (alkoxysilane monomer of the formula [A2])
  • D3 3-Ureidopropyltriethoxysilane (alkoxysilane monomer of formula [A2])
  • D4 Tetraethoxysilane (alkoxysilane monomer of formula [A3])
  • D5 Octadecyltriethoxysilane (conventional alkoxysilane monomer)
  • M1 Adhesive compound represented by the following formula [M1]
  • M2 Adhesive compound represented by the following formula [M2]
  • M3 Adhesive compound represented by the following formula [M3]
  • K1 Crosslinkable compound represented by the following formula [K1]
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • ⁇ -BL ⁇ -butyrolactone
  • BCS ethylene glycol monobutyl ether
  • ECS ethylene glycol monoethyl ether
  • PB propylene glycol monobutyl ether
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100 (X is the accumulated proton peak value derived from NH group of amic acid, y is the accumulated peak value of reference proton, ⁇ is the reference proton for one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) The number ratio.
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 63%, the number average molecular weight was 16,400, and the weight average molecular weight was 46,200.
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 54%, the number average molecular weight was 16,900, and the weight average molecular weight was 46,300.
  • ⁇ Synthesis Example 14> Prepare a solution of alkoxysilane monomer by mixing ECS (29.2 g), D1 (4.10 g) and D4 (38.8 g) in a 200 ml four-necked reaction flask equipped with a thermometer and reflux tube. did. To this solution, ECS (14.6 g), water (10.8 g), and a solution prepared by mixing oxalic acid (0.50 g) as a catalyst were added dropwise at 25 ° C. over 30 minutes. The mixture was further stirred at 25 ° C. for 30 minutes.
  • an ITO substrate with a vertical liquid crystal alignment film having a film thickness of 100 nm Two ITO substrates with the obtained vertical liquid crystal alignment film were prepared, and a 6 ⁇ m spacer was applied to the vertical liquid crystal alignment film surface of one of the substrates. Thereafter, the liquid crystal composition is dropped by the ODF method onto the surface of the vertical liquid crystal alignment film coated with the spacer of the substrate, and then bonded so that the interface of the vertical liquid crystal alignment film of the other substrate faces. The liquid crystal display element was obtained.
  • a metal halide lamp with an illuminance of 60 mW on the liquid crystal display element before the above treatment a wavelength of 350 nm or less was cut, and ultraviolet irradiation of 7 J / cm 2 in terms of 365 nm was performed to obtain a liquid crystal display element.
  • the inside of the irradiation device when the liquid crystal display element was irradiated with ultraviolet rays was controlled at 25 ° C.
  • the liquid crystal orientation was evaluated using this liquid crystal display element.
  • the liquid crystal orientation was observed with a polarizing microscope (ECLIPSE E600WPOL, manufactured by Nikon Corporation) to confirm whether or not the liquid crystal was vertically aligned. Specifically, a liquid crystal in which the liquid crystal is aligned vertically is regarded as excellent in this evaluation (good display in Tables 7 to 10).
  • the liquid crystal aligning agent of the Example or comparative example mentioned later was pressure-filtered with the membrane filter with a pore diameter of 1 micrometer, and the liquid crystal display element was produced. Specifically, this solution was washed with pure water on a 150 ⁇ 150 mm ITO (polyethylene terephthalate) substrate with an ITO electrode (length: 150 mm, width: 150 mm, thickness: 0.2 mm) on a bar coater. Then, heat treatment was performed at 100 ° C. for 5 minutes on a hot plate and at 180 ° C. for 1 minute in a heat circulation type clean oven to obtain an ITO substrate with a vertical liquid crystal alignment film having a film thickness of 100 nm.
  • ITO polyethylene terephthalate
  • the liquid crystal display element was obtained. Using a metal halide lamp with an illuminance of 60 mW, the obtained liquid crystal display element before treatment was cut at a wavelength of 350 nm or less, and irradiated with ultraviolet rays at 7 J / cm 2 in terms of 365 nm to obtain a liquid crystal display element.
  • the inside of the irradiation apparatus when irradiating a liquid crystal cell with ultraviolet rays was controlled at 25 ° C.
  • the liquid crystal orientation was evaluated using this liquid crystal display element.
  • the liquid crystal orientation was observed with a polarizing microscope (ECLIPSE E600WPOL, manufactured by Nikon Corporation) to confirm whether or not the liquid crystal was vertically aligned. Specifically, the liquid crystal aligned vertically was regarded as excellent in evaluation (good display in Tables 7 to 10).
  • the liquid crystal display element (glass substrate) was measured by measuring the transmittance in a state where no voltage was applied. Specifically, the transmittance was measured under the conditions of UV-3600 (manufactured by Shimadzu Corporation) as a measuring device, 25 ° C., the glass substrate with the ITO electrode as a reference, and a scan wavelength of 300 to 800 nm. The evaluation was performed at a transmittance of a wavelength of 450 nm, and the higher the transmittance, the better the evaluation (the transmittance values are shown in Tables 7 to 10).
  • the scattering characteristics at the time of voltage application were performed by applying 40V to the liquid crystal display element by AC driving and visually observing the alignment state of the liquid crystal. Specifically, those in which the element was clouded, that is, those in which scattering characteristics were obtained were regarded as being excellent in evaluation (good display in Tables 7 to 10).
  • NMP (9.60 g), BCS (9.40 g), M2 (0.15 g) and K1 (0.08 g) were added to the polyamic acid solution (1) (6.00 g) obtained in Synthesis Example 1.
  • the liquid crystal aligning agent (1) was obtained by stirring at 25 ° C. for 5 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • preparation of the above-mentioned liquid crystal display element evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • Example 2 NMP (7.50 g) and BCS (12.1 g) were added to the polyamic acid solution (2) (6.20 g) obtained in Synthesis Example 2, and the mixture was stirred at 25 ° C. for 5 hours. 2) was obtained.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • production of the above-mentioned liquid crystal display element evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), and Evaluation of adhesion (glass substrate, plastic substrate) was performed.
  • Example 3 Using the liquid crystal aligning agent (2) and the liquid crystal composition (2) obtained in Example 2, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal orientation (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
  • NMP (13.4 g) was added to the polyimide powder (3) (1.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (10.9 g) was added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (3).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • preparation of the above-mentioned liquid crystal display element evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • Example 5 Using the liquid crystal aligning agent (3) and the liquid crystal composition (2) obtained in Example 4, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal orientation (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
  • NEP (14.1 g) was added to the polyimide powder (3) (1.50 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • PB (9.40 g), M2 (0.45 g) and K1 (0.15 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (4).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • liquid crystal aligning agent (4) and the liquid crystal composition (1) production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), and Evaluation of adhesion (glass substrate, plastic substrate) was performed.
  • NEP (11.9 g) was added to the polyimide powder (3) (1.52 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (11.9g) and M1 (0.53g) were added to this solution, and it stirred at 25 degreeC for 5 hours, and obtained the liquid-crystal aligning agent (5).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • preparation of the above-mentioned liquid crystal display element evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • NEP (15.3 g) was added to the polyimide powder (4) (1.50 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (8.20g) was added to this solution, and it stirred at 25 degreeC for 5 hours, and obtained the liquid-crystal aligning agent (6).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • preparation of the liquid crystal display element evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • NEP (15.5 g) was added to the polyimide powder (4) (1.52 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours.
  • PB 8.30 g
  • M2 (0.53 g)
  • K1 (0.15 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (7).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • preparation of the liquid crystal display element evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • NMP (16.5 g) was added to the polyimide powder (5) (1.50 g) obtained in Synthesis Example 5 and dissolved by stirring at 70 ° C. for 24 hours.
  • This liquid crystal aligning agent was confirmed to be a uniform solution with no abnormalities such as turbidity and precipitation.
  • liquid crystal aligning agent (9) Using the liquid crystal aligning agent (9) and the liquid crystal composition (2), production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate) And adhesion (glass substrate, plastic substrate) were evaluated.
  • NEP (16.5 g) was added to the polyimide powder (5) (1.50 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (7.10g) and M3 (0.08g) were added to this solution, and it stirred at 25 degreeC for 5 hours, and obtained the liquid-crystal aligning agent (10).
  • This liquid crystal aligning agent was confirmed to be a uniform solution with no abnormalities such as turbidity and precipitation.
  • the liquid crystal aligning agent (10) and the liquid crystal composition (1) production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • NEP (15.3 g) was added to the polyimide powder (5) (1.50 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (2.40 g), PB (5.90 g), M2 (0.45 g) and K1 (0.08 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (11).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • liquid crystal aligning agent (11) Using the liquid crystal aligning agent (11) and the liquid crystal composition (1), production of the above-described liquid crystal display element / evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), and Evaluation of adhesion (glass substrate, plastic substrate) was performed.
  • Example 14 To the polyimide powder (5) obtained in Synthesis Example 5 (1.50 g), ⁇ -BL (17.6 g) was added and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (5.90 g) and M1 (0.60 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (12). This liquid crystal aligning agent was confirmed to be a uniform solution with no abnormalities such as turbidity and precipitation. Using the liquid crystal aligning agent (12) and the liquid crystal composition (2), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • NEP (13.4 g) was added to the polyimide powder (6) (1.55 g) obtained in Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours.
  • PB (10.9 g)
  • M2 (0.47 g)
  • K1 (0.08 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (13).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • preparation of the liquid crystal display element evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • NMP (14.4 g) was added to the polyimide powder (6) (1.53 g) obtained in Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (9.60 g) and K1 (0.15 g) were added to this solution, and the mixture was stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (14).
  • This liquid crystal aligning agent was confirmed to be a uniform solution with no turbidity or precipitation.
  • preparation of the liquid crystal display element evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • NEP (15.8 g) was added to the polyimide powder (7) (1.55 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours.
  • PB 8.50 g
  • M2 (0.39 g)
  • K1 (0.16 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (15).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • liquid crystal aligning agent (15) and the liquid crystal composition (1) production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), and Evaluation of adhesion (glass substrate, plastic substrate) was performed.
  • Example 18 NMP (16.5 g) was added to the polyimide powder (7) (1.50 g) obtained in Synthesis Example 7, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (7.10 g), M3 (0.15 g) and K1 (0.08 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the liquid crystal aligning agent (16) and the liquid crystal composition (1), production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • Example 19 ⁇ -BL (14.6 g) was added to the polyimide powder (8) (1.55 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (9.70 g) was added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the liquid crystal aligning agent (17) and the liquid crystal composition (2), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • NEP 13.0 g was added to the polyimide powder (8) (1.51 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours.
  • BCS (10.6 g), M2 (0.45 g) and K1 (0.15 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (18).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • preparation of the liquid crystal display element evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • Example 21 ECS (3.70 g) and BCS (11.3 g) were added to the polysiloxane solution (1) (15.0 g) obtained in Synthesis Example 12, and the mixture was stirred at 25 ° C. for 5 hours. 19) was obtained.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • the liquid crystal aligning agent (19) and the liquid crystal composition (1) production of the above-mentioned liquid crystal display element / evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), And adhesion (glass substrate, plastic substrate) were evaluated.
  • Example 22 Using the liquid crystal aligning agent (19) and the liquid crystal composition (2) obtained in Example 20, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
  • Example 23 ECS (10.0 g) and BCS (6.00 g) were added to the polysiloxane solution (2) (16.0 g) obtained in Synthesis Example 13, and the mixture was stirred at 25 ° C. for 5 hours. 20) was obtained.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • the liquid crystal aligning agent (20) and the liquid crystal composition (1) production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • Example 24 Using the liquid crystal aligning agent (20) and the liquid crystal composition (2) obtained in Example 23, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
  • Example 25 ECS (10.0 g), BCS (6.00 g) and M2 (0.24 g) were added to the polysiloxane solution (2) (10.0 g) obtained by the synthesis method of Synthesis Example 13, and 5 ° C. at 25 ° C. By stirring for a time, a liquid crystal aligning agent (21) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the liquid crystal aligning agent (21) and the liquid crystal composition (1), preparation of the liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
  • Example 27 Using the liquid-crystal aligning agent (22) and liquid-crystal composition (2) obtained in Example 26, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal orientation (glass substrate), evaluation of optical characteristics (glass substrate) ) And adhesion evaluation (glass substrate).
  • the liquid crystal display elements of the examples have higher liquid crystal vertical alignment than the comparative examples, and good optical characteristics, that is, transparency when no voltage is applied and scattering characteristics when a voltage is applied. Good, and furthermore, the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film is high.
  • the vertical alignment of the liquid crystal is high and good optical characteristics, that is, The transparency when no voltage was applied and the scattering characteristics when a voltage was applied were good.
  • liquid crystal composition (2) having a high content of the polymerizable compound in the liquid crystal composition was used, and only the side chain structure in the polymer was different between the specific side chain structure and the conventional side chain structure.
  • Comparison of Example 3 and Comparative Example 2 Comparison of Example 5 and Comparative Example 4, and Comparison of Example 22 and Comparative Example 8 Although the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film was excellent, the liquid crystal was not aligned vertically.
  • the vertical alignment property of the liquid crystal and the voltage application Although the transmittance characteristics at the time were excellent, the liquid crystal display element was peeled off due to poor adhesion between the liquid crystal layer and the vertical liquid crystal alignment film when stored in a high temperature and high humidity tank.
  • the liquid crystal display element of the present invention is useful for a liquid crystal display for display purposes, and further for a light control window, an optical shutter element, etc. for houses, buildings, vehicles, etc. for controlling transmission and blocking of light.
  • a light control window, an optical shutter element, etc. for houses, buildings, vehicles, etc. for controlling transmission and blocking of light.

Abstract

Provided is a liquid crystal display element that has a high liquid crystal vertical alignment property, high adhesion between a liquid crystal layer and a liquid crystal vertical alignment film, and favorable optical characteristics, in particular favorable transparency when voltage is not applied and favorable scattering when voltage is applied. Also provided are a liquid crystal alignment film and a liquid crystal alignment treatment agent for use in said element. The liquid crystal display element comprises a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition disposed between the pair of substrates, the liquid crystal composition containing a polymerizable compound that is polymerized by active energy rays and/or heat. Furthermore, at least one of the substrates has a liquid crystal alignment film that has a specific structure and vertically aligns liquid crystals. The liquid crystal display element is obtained by hardening the liquid crystal composition to form a hardened composite of liquid crystals and of the polymerizable compound while all or part of the liquid crystal composition exhibits liquid crystal properties.

Description

液晶表示素子、液晶配向膜及び液晶配向処理剤Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
 本発明は、電圧無印加時に透明状態となり、電圧印加時に散乱状態となる透過散乱型の液晶表示素子、それに用いられる液晶配向膜及びこの液晶配向膜を形成するための液晶配向処理剤に関するものである。 The present invention relates to a transmission / scattering type liquid crystal display element that is transparent when no voltage is applied and is in a scattering state when a voltage is applied, a liquid crystal alignment film used therefor, and a liquid crystal alignment treatment agent for forming the liquid crystal alignment film. is there.
 液晶材料を用いた液晶表示素子としては、TN(Twisted Nematic)モードが実用化されている。このモードでは、液晶の旋光特性を利用して、光のスイッチングを行うものであり、液晶表示素子として用いる際には、偏光板を用いる必要がある。しかしながら、偏光板を用いることで光の利用効率が低くなる。
 偏光板を用いずに光の利用効率の高い液晶表示素子として、液晶の透過状態(透明状態ともいう)と散乱状態との間でスイッチングを行う液晶表示素子があり、一般的には、高分子分散型液晶(PDLC(Polymer Dispersed Liquid Crystal))や高分子ネットワーク型液晶(PNLC(Polymer Network Liquid Crystal))を用いたものが知られている。
A TN (Twisted Nematic) mode has been put to practical use as a liquid crystal display element using a liquid crystal material. In this mode, light is switched using the optical rotation characteristics of the liquid crystal, and when used as a liquid crystal display element, it is necessary to use a polarizing plate. However, the use efficiency of light becomes low by using a polarizing plate.
As a liquid crystal display element having a high light utilization efficiency without using a polarizing plate, there is a liquid crystal display element that switches between a liquid crystal transmission state (also referred to as a transparent state) and a scattering state. A liquid crystal using a dispersive liquid crystal (PDLC (Polymer Dispersed Liquid Crystal)) or a polymer network liquid crystal (PNLC (Polymer Network Liquid Crystal)) is known.
 これらを用いた液晶表示素子は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、液晶組成物の一部又は全体が液晶性を示す状態で前記液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させる工程を経て製造される液晶表示素子である。そして、この液晶表示素子は、電圧の印加により、液晶の透過状態と散乱状態とを制御する。 A liquid crystal display element using these includes a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates. The liquid crystal composition is disposed, and the liquid crystal composition is cured in a state where a part or the whole of the liquid crystal composition exhibits liquid crystallinity, and is manufactured through a process of forming a cured product composite of liquid crystal and a polymerizable compound It is a liquid crystal display element. And this liquid crystal display element controls the permeation | transmission state and scattering state of a liquid crystal by application of a voltage.
 従来のPDLCやPNLCを用いた液晶表示素子としては、電圧無印加時に液晶分子がランダムな方向を向いているため、白濁(散乱)状態となり、電圧印加時には液晶が電界方向に配列し、光を透過して透過状態となるノーマル型素子が知られている。しかし、ノーマル型素子においては、透過状態を得るために常時電圧を印加しておく必要があるため、透明状態で使用される場合が多い用途、例えば窓ガラスで使用する場合には、消費電力が大きい。
 ノーマル型素子に対して、電圧無印加時に透過状態となり、電圧印加時には、散乱状態になるリバース型素子が報告されている(特許文献1、2参照)。
As a conventional liquid crystal display element using PDLC or PNLC, liquid crystal molecules are in a random direction when no voltage is applied, and thus becomes clouded (scattered). There is known a normal type element that is transmitted and becomes a transmission state. However, in a normal type element, it is necessary to always apply a voltage in order to obtain a transmissive state. Therefore, in applications that are often used in a transparent state, for example, when used in a window glass, power consumption is low. large.
A reverse type element has been reported that is in a transmission state when no voltage is applied to a normal type element and in a scattering state when a voltage is applied (see Patent Documents 1 and 2).
日本特許2885116号公報Japanese Patent No. 2885116 日本特許4132424号公報Japanese Patent No. 4132424
 リバース型素子では、液晶を垂直に配向させなければならないため、液晶を垂直に配向させる液晶配向膜(垂直液晶配向膜ともいう)が用いられる。その際、垂直液晶配向膜は疎水性が高い膜であるため、液晶層と液晶配向膜とのの密着性が低くなってしまう。そのため、リバース型素子に用いる液晶組成物には、液晶層と液晶配向膜との密着性を高めるための重合性化合物(硬化剤ともいう)を多く導入しなければならない。しかしながら、重合性化合物を多く導入すると、液晶の垂直配向性が阻害され、電圧無印加時の透明性と電圧印加時の散乱特性が大きく低下する問題がある。そのため、リバース型素子に用いる液晶配向膜は、液晶の垂直配向性が高いものが必要となる。 In the reverse type element, since the liquid crystal must be aligned vertically, a liquid crystal alignment film (also referred to as a vertical liquid crystal alignment film) that aligns the liquid crystal vertically is used. At that time, since the vertical liquid crystal alignment film is a highly hydrophobic film, the adhesion between the liquid crystal layer and the liquid crystal alignment film is lowered. Therefore, a large amount of a polymerizable compound (also referred to as a curing agent) for improving the adhesion between the liquid crystal layer and the liquid crystal alignment film must be introduced into the liquid crystal composition used for the reverse type element. However, when a large amount of the polymerizable compound is introduced, the vertical alignment of the liquid crystal is hindered, and there is a problem that transparency when no voltage is applied and scattering characteristics when a voltage is applied are greatly deteriorated. Therefore, the liquid crystal alignment film used for the reverse element needs to have a high vertical alignment property of the liquid crystal.
 そこで、本発明は、上記した特性を兼ね備えた液晶表示素子の提供を目的とする。すなわち、本発明は、液晶表示素子であり、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好で、更には、液晶層と垂直液晶配向膜との密着性が高い液晶表示素子を提供することを目的とする。加えて、上記液晶表示素子に用いる液晶配向膜及び液晶配向処理剤の提供を目的とする。 Therefore, an object of the present invention is to provide a liquid crystal display element having the above-described characteristics. That is, the present invention is a liquid crystal display element, which has high liquid crystal vertical alignment, good optical characteristics, that is, good transparency when no voltage is applied and good scattering characteristics when a voltage is applied. An object of the present invention is to provide a liquid crystal display element having high adhesion between the liquid crystal alignment film and the vertical liquid crystal alignment film. In addition, it aims at providing the liquid crystal aligning film and liquid-crystal aligning agent which are used for the said liquid crystal display element.
 本発明者は、鋭意研究を行った結果、特定構造の側鎖を有する重合体を含む液晶配向処理剤から得られた垂直液晶配向膜を用いた液晶表示素子が、上記の目的を達成するのに極めて有効であることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventor has achieved that the liquid crystal display element using a vertical liquid crystal alignment film obtained from a liquid crystal alignment treatment agent containing a polymer having a side chain having a specific structure achieves the above object. The present invention has been found to be extremely effective.
 すなわち、本発明は以下の要旨を有するものである。
(1)電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、更に、基板の少なくとも一方が液晶を垂直に配向させる液晶配向膜を有し、液晶組成物の一部又は全体が液晶性を示す状態で前記液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させて得られる液晶表示素子であり、前記液晶配向膜が、下記の式[1]で示される構造を有する重合体を含む液晶配向処理剤から得られる液晶配向膜からなる液晶表示素子。
Figure JPOXMLDOC01-appb-C000011
(Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-を示し、Yは単結合又は(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示し、Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す)。
That is, the present invention has the following gist.
(1) A liquid crystal composition including a polymerizable compound having a liquid crystal layer between a pair of substrates provided with electrodes and polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, In addition, at least one of the substrates has a liquid crystal alignment film that vertically aligns the liquid crystal, and the liquid crystal composition is cured in a state where a part or the whole of the liquid crystal composition exhibits liquid crystallinity, and the liquid crystal and the polymerizable compound are cured. A liquid crystal display element obtained by forming a compound composite, wherein the liquid crystal alignment film is a liquid crystal alignment film obtained from a liquid crystal alignment treatment agent containing a polymer having a structure represented by the following formula [1] Display element.
Figure JPOXMLDOC01-appb-C000011
(Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, and Y 2 represents a single bond. Or (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or having 17 to 51 carbon atoms having a steroid skeleton Represents a divalent organic group, and an arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a carbon number It may be substituted with 1-3 fluorine-containing alkoxyl group or a fluorine atom, Y 5 benzene A divalent cyclic group selected from the group consisting of a cyclohexane ring and a heterocyclic ring, wherein any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, It may be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n represents an integer of 0 to 4, and Y 6 represents 1 to 18 carbon atoms. Or a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms).
(2)前記液晶配向処理剤が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つの重合体を含む液晶配向処理剤である上記(1)に記載の液晶表示素子。
(3)前記液晶配向処理剤が、前記式[1]の側鎖を有するジアミン化合物を原料の一部に用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体を含む液晶配向処理剤である上記(2)に記載の液晶表示素子。
(4)前記ジアミン化合物が、下記の式[1a]で示されるジアミン化合物を用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体である上記(3)に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000012
(Y~Yは、前記式[1]中と同義である。mは1~4の整数を示す)。
(2) The liquid crystal alignment treatment agent includes at least one polymer selected from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, and polysiloxane. The liquid crystal display element according to the above (1), which is a liquid crystal aligning agent.
(3) The liquid crystal aligning agent is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide obtained by using a diamine compound having a side chain of the formula [1] as a part of the raw material. The liquid crystal display element according to (2), which is a liquid crystal alignment treatment agent.
(4) The diamine compound according to (3), wherein the diamine compound is at least one polymer selected from the group consisting of a polyimide precursor obtained by using a diamine compound represented by the following formula [1a] and a polyimide. Liquid crystal display element.
Figure JPOXMLDOC01-appb-C000012
(Y 1 to Y 6 are as defined in the above formula [1]. M represents an integer of 1 to 4).
(5)前記液晶配向処理剤が、下記の式[2]で示されるテトラカルボン酸成分を原料の一部に用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体を含む液晶配向処理剤である上記(2)~(4)のいずれかに記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000013
(Zは下記の式[2a]~式[2j]からなる群から選ばれる構造を示す)。
Figure JPOXMLDOC01-appb-C000014
(Z~Zは水素原子、メチル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよく、式[2g]中、Z及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい)。
(5) The liquid crystal aligning agent is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide obtained by using a tetracarboxylic acid component represented by the following formula [2] as a part of the raw material. The liquid crystal display element according to any one of the above (2) to (4), which is a liquid crystal alignment treatment agent containing
Figure JPOXMLDOC01-appb-C000013
(Z 1 represents a structure selected from the group consisting of the following formulas [2a] to [2j]).
Figure JPOXMLDOC01-appb-C000014
(Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different, and in the formula [2g], Z 6 and Z 7 represent a hydrogen atom or a methyl group. Each may be the same or different).
(6)前記液晶配向処理剤が、下記の式[A1]で示されるアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と下記の式[A2]又は式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサン、あるいは、式[A1]、式[A2]及び式[A3]で示されるアルコキシシランを重縮合させて得られるポリシロキサンを含む液晶配向処理剤である上記(2)に記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000015
(Aは前記式[1]で示される構造を示し、Aはそれぞれ水素原子又は炭素数1~5のアルキル基を示し、Aはそれぞれ炭素数1~5のアルキル基を示し、mは1又は2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4の整数を示す)。
Figure JPOXMLDOC01-appb-C000016
(Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基又はシンナモイル基を有する炭素数2~12の有機基を示し、Bはそれぞれ水素原子又は炭素数1~5のアルキル基を示し、Bはそれぞれ炭素数1~5のアルキル基を示し、mは1又は2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4の整数を示す)。
Figure JPOXMLDOC01-appb-C000017
(Dはそれぞれ水素原子又は炭素数1~5のアルキル基を示し、Dは炭素数1~5のアルキル基を示し、nは0~3の整数を示す)。
(6) The liquid crystal aligning agent is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the following formula [A1], represented by the formula [A1] and the following formula [A2] or formula [A3]. Polysiloxane obtained by polycondensation of alkoxysilane containing any one of alkoxysilanes or polycondensation obtained by polycondensation of alkoxysilanes represented by formula [A1], formula [A2] and formula [A3] The liquid crystal display element according to the above (2), which is a liquid crystal aligning agent containing siloxane.
Figure JPOXMLDOC01-appb-C000015
(A 1 represents the structure represented by the formula [1], A 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, A 3 represents an alkyl group having 1 to 5 carbon atoms, m Represents an integer of 1 or 2, n represents an integer of 0 to 2, and p represents an integer of 0 to 3, where m + n + p represents an integer of 4.
Figure JPOXMLDOC01-appb-C000016
(B 1 represents an organic group having 2 to 12 carbon atoms having a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, a methacryl group, an acrylic group, a ureido group or a cinnamoyl group, and B 2 represents a hydrogen atom or An alkyl group having 1 to 5 carbon atoms, B 3 represents an alkyl group having 1 to 5 carbon atoms, m represents an integer of 1 or 2, n represents an integer of 0 to 2, and p represents 0 to 3 represents an integer of 3 (where m + n + p represents an integer of 4).
Figure JPOXMLDOC01-appb-C000017
(D 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, D 2 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 3).
(7)前記液晶配向処理剤が、下記の式[6]で示される化合物を含有する上記(1)~(6)のいずれかに記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000018
(Xは下記の式[6a-1]~[6a-7]で示される構造からなる群から選ばれる少なくとも1種の構造を示す。Xは単結合、-CH-、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-及び-N(CH)CO-からなる群から選ばれる少なくとも1種の結合基を示す。Xは炭素数1~20のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、-(CH-O-)-(qは1~10の整数を示す)、及び炭素数6~20のベンゼン環又はシクロヘキサン環を有する有機基からなる群から選ばれる少なくとも1種を示す。その際、前記アルキレン基の任意の-CH-基は、-COO-、-OCO-、-CONH-、NHCO-、-CO-、-S-、-SO-、-CF-、-C(CF-、-Si(CH-、-OSi(CH-又は-Si(CHO-で置き換えられていても良く、任意の炭素原子に結合している水素原子は、水酸基(OH基)、カルボキシル基(COOH基)又はハロゲン原子で置き換えられていても良い。Xは単結合、-CH-、-OCH-及び-O-CH-CH-からなる群から選ばれる少なくとも1種の結合基を示す。Xは下記の式[6b-1]~[6b-8]で示される構造からなる群から選ばれる少なくとも1種の構造を示す。nは1~3の整数を示す。mは1~3の整数を示す。)
Figure JPOXMLDOC01-appb-C000019
(Aは水素原子又は炭素数1~5のアルキレン基を示す。A、A、A、A及びAはそれぞれ独立して、水素原子又は炭素数1~3のアルキレン基を示す。A、A及びAはそれぞれ独立して、炭素数1~3のアルキレン基を示す。)
Figure JPOXMLDOC01-appb-C000020
(Bは水素原子又はベンゼン環を示す。Bはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示す。Bは炭素数1~12のアルキレン基、炭素数1~12のフッ素含有アルキレン基、炭素数1~12のアルコキシル基及び炭素数1~12のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
(7) The liquid crystal display element according to any one of (1) to (6), wherein the liquid crystal alignment treatment agent contains a compound represented by the following formula [6].
Figure JPOXMLDOC01-appb-C000018
(X 1 represents at least one structure selected from the group consisting of the structures represented by the following formulas [6a-1] to [6a-7]. X 2 represents a single bond, —CH 2 —, —O—. , —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — and —N At least one linking group selected from the group consisting of (CH 3 ) CO—, wherein X 3 is an alkylene group having 1 to 20 carbon atoms, — (CH 2 —CH 2 —O) p — (p is 1 to Selected from the group consisting of organic groups having a benzene ring or a cyclohexane ring having 6 to 20 carbon atoms, and — (CH 2 —O—) q — (q represents an integer of 1 to 10) It indicates at least one kind that time, any -CH 2 in the alkylene group -. group, - OO -, - OCO -, - CONH-, NHCO -, - CO -, - S -, - SO 2 -, - CF 2 -, - C (CF 3) 2 -, - Si (CH 3) 2 -, The hydrogen atom bonded to any carbon atom may be replaced by —OSi (CH 3 ) 2 — or —Si (CH 3 ) 2 O—, and the hydroxyl group (OH group), carboxyl group (COOH group) X 4 represents a single bond, at least one linking group selected from the group consisting of —CH 2 —, —OCH 2 — and —O—CH 2 —CH 2 —. X 5 represents at least one structure selected from the group consisting of structures represented by the following formulas [6b-1] to [6b-8], n represents an integer of 1 to 3, and m represents 1 Represents an integer of ~ 3.)
Figure JPOXMLDOC01-appb-C000019
(A 1 represents a hydrogen atom or an alkylene group having 1 to 5 carbon atoms. A 2 , A 3 , A 5 , A 6 and A 9 each independently represents a hydrogen atom or an alkylene group having 1 to 3 carbon atoms. A 4 , A 7 and A 8 each independently represents an alkylene group having 1 to 3 carbon atoms.)
Figure JPOXMLDOC01-appb-C000020
(B 1 represents a hydrogen atom or a benzene ring. B 2 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring. B 3 represents an alkylene having 1 to 12 carbon atoms. And at least one selected from the group consisting of a group, a fluorine-containing alkylene group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, and a fluorine-containing alkoxyl group having 1 to 12 carbon atoms.)
(8)前記式[1]で示される構造を有する重合体が、重量平均分子量10,000~150,000である上記(1)~(7)のいずれかに記載の液晶表示素子。
(9)前記液晶表示素子の基板が、ガラス基板又はプラスチック基板である上記(1)~上記(8)のいずれかに記載の液晶表示素子。
(10)上記(1)~(9)のいずれかに記載の液晶表示素子に用いる液晶配向膜。
(11)上記(10)に記載の液晶配向膜を形成するための液晶配向処理剤。
(8) The liquid crystal display device according to any one of the above (1) to (7), wherein the polymer having the structure represented by the formula [1] has a weight average molecular weight of 10,000 to 150,000.
(9) The liquid crystal display element according to any one of (1) to (8), wherein the substrate of the liquid crystal display element is a glass substrate or a plastic substrate.
(10) A liquid crystal alignment film used for the liquid crystal display device according to any one of (1) to (9).
(11) A liquid crystal alignment treatment agent for forming the liquid crystal alignment film according to (10).
 本発明によれば、特定構造の側鎖を有する重合体を含む液晶配向処理剤から得られる垂直液晶配向膜を用いることにより、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好で、更には液晶層と垂直液晶配向膜との密着性が高い液晶表示素子を提供できる。特に、本発明の液晶表示素子は、電圧無印加時に透過状態となり、電圧印加時には、散乱状態になるリバース型素子に、好適に用いることができる。また、本発明の液晶表示素子は、表示を目的とする液晶ディスプレイ、光の透過と遮断を制御する調光窓や光シャッター素子などとして有利に使用される。 According to the present invention, by using a vertical liquid crystal alignment film obtained from a liquid crystal alignment treatment agent containing a polymer having a side chain of a specific structure, the liquid crystal has high vertical alignment properties and good optical characteristics, that is, no voltage marking It is possible to provide a liquid crystal display element that has excellent transparency when applied and scattering characteristics when a voltage is applied, and has high adhesion between the liquid crystal layer and the vertical liquid crystal alignment film. In particular, the liquid crystal display element of the present invention can be suitably used for a reverse element that is in a transmissive state when no voltage is applied and is in a scattering state when a voltage is applied. The liquid crystal display element of the present invention is advantageously used as a liquid crystal display for display purposes, a light control window for controlling transmission and blocking of light, an optical shutter element, and the like.
 本発明の液晶表示素子に使用される、式[1]で示される特定側鎖構造は、側鎖部位にベンゼン環、シクロヘキシル環又は複素環、又はステロイド骨格を有する炭素数17~25の2価の有機基を有する。これら環及び有機基の側鎖構造は、液晶を垂直に配向させる従来技術である長鎖アルキル基の側鎖構造に比べて剛直な構造を示す。これにより、特定側鎖構造を有する垂直液晶配向膜を用いたリバース型素子は、従来の長鎖アルキル基の側鎖構造のリバース型素子に比べて、高くて安定な液晶の垂直配向性を得ることができる。
 また、上記特定側鎖構造は、従来の長鎖アルキル基の側鎖構造に比べて、側鎖の導入量が少なくても高い垂直配向性を得ることができる。そのため、特定側鎖構造を有する垂直液晶配向膜を用いたリバース型素子は、液晶層と垂直液晶配向膜との密着性が高いものとなる。
The specific side chain structure represented by the formula [1] used in the liquid crystal display device of the present invention has a divalent group having 17 to 25 carbon atoms having a benzene ring, cyclohexyl ring or heterocyclic ring, or a steroid skeleton in the side chain portion. It has an organic group. The side chain structure of these rings and organic groups shows a rigid structure as compared with the side chain structure of long-chain alkyl groups, which is a conventional technique for vertically aligning liquid crystals. As a result, the reverse type device using the vertical liquid crystal alignment film having a specific side chain structure obtains a higher and more stable liquid crystal vertical alignment than the conventional long type alkyl group side chain structure reverse type device. be able to.
In addition, the specific side chain structure can obtain high vertical alignment even when the amount of side chain introduced is small compared to the side chain structure of a conventional long chain alkyl group. Therefore, a reverse element using a vertical liquid crystal alignment film having a specific side chain structure has high adhesion between the liquid crystal layer and the vertical liquid crystal alignment film.
 以上の点から、特定側鎖構造を有する重合体を含む液晶配向処理剤から得られる垂直液晶配向膜を用いた本発明の液晶表示素子は、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好で、更には液晶層と垂直液晶配向膜との密着性が高い液晶表示素子が得られる。 From the above points, the liquid crystal display element of the present invention using a vertical liquid crystal alignment film obtained from a liquid crystal alignment treatment agent containing a polymer having a specific side chain structure has high liquid crystal vertical alignment properties, good optical characteristics, That is, it is possible to obtain a liquid crystal display element that has good transparency when no voltage is applied and good scattering characteristics when a voltage is applied, and has high adhesion between the liquid crystal layer and the vertical liquid crystal alignment film.
<液晶表示素子>
 本発明の液晶表示素子は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、更に、基板の少なくとも一方が液晶を垂直に配向させるような液晶配向膜を有し、液晶組成物の一部又は全体が液晶性を示す状態で前記液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させてなる液晶表示素子である、電圧無印加時に透過状態となり、電圧印加時には散乱状態になるリバース型素子に好適に用いることができる。
<Liquid crystal display element>
The liquid crystal display element of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and includes a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates. The liquid crystal composition is disposed in a state where at least one of the substrates has a liquid crystal alignment film that aligns the liquid crystal vertically and part or all of the liquid crystal composition exhibits liquid crystallinity. The liquid crystal display device is a liquid crystal display device formed by forming a cured product composite of a liquid crystal and a polymerizable compound, and can be suitably used for a reverse type device that is in a transmission state when no voltage is applied and in a scattering state when a voltage is applied.
<液晶>
 本発明で用いる液晶は、ネマチック液晶やスメクチック液晶を用いることができる。なかでも、負の誘電異方性を有するものが好ましい。また、素子の低電圧駆動及び散乱特性の点からは、誘電率の異方性が大きく、屈折率の異方性が大きいものが好ましい。更に、液晶表示素子をTFT(Thin Film Transistor)などの能動素子として駆動させるためには、液晶の電気抵抗が高く、電圧保持率(VHR)が高いことが求められる。そのため、液晶には、電気抵抗が高く、紫外線などの活性エネルギー線によりVHRが低下しないフッ素系や塩素系の液晶を用いることが好ましい。
<LCD>
As the liquid crystal used in the present invention, a nematic liquid crystal or a smectic liquid crystal can be used. Among these, those having negative dielectric anisotropy are preferable. Further, in terms of low voltage driving and scattering characteristics of the element, those having a large dielectric anisotropy and a large refractive index anisotropy are preferable. Furthermore, in order to drive a liquid crystal display element as an active element such as a TFT (Thin Film Transistor), it is required that the liquid crystal has a high electric resistance and a high voltage holding ratio (VHR). For this reason, it is preferable to use a fluorine-based or chlorine-based liquid crystal that has high electrical resistance and does not lower VHR by active energy rays such as ultraviolet rays.
 液晶表示素子には、液晶組成物中に二色性染料を溶解させてゲストホスト型の素子とすることもできる。この場合には、電圧無印加時は透明で、電圧印加時に吸収(散乱)となる素子が得られる。また、液晶表示素子では、液晶のダイレクターの方向は、電圧印加の有無により90度変化する。そのため、この二色性染料の吸光特性の違いを利用することで、ランダム配向と垂直配向でスイッチングを行う従来のゲストホスト型の素子に比べて、高いコントラストが得られる。また、二色性染料を溶解させたゲストホスト型の素子では、液晶が水平方向に配向した場合に有色になり、散乱状態においてのみ、不透明となる。そのため、電圧を印加するにつれ、電圧無印加時の無色透明から有色不透明、有色透明の状態に切り替わる素子を得ることもできる。
<重合性化合物>
In the liquid crystal display element, a dichroic dye can be dissolved in a liquid crystal composition to form a guest-host type element. In this case, an element is obtained that is transparent when no voltage is applied and absorbs (scatters) when a voltage is applied. Further, in the liquid crystal display element, the direction of the director of the liquid crystal changes by 90 degrees depending on the presence or absence of voltage application. Therefore, by using the difference in the light absorption characteristics of the dichroic dye, a high contrast can be obtained as compared with a conventional guest-host type device that switches between random alignment and vertical alignment. A guest-host type element in which a dichroic dye is dissolved is colored when the liquid crystal is aligned in the horizontal direction, and is opaque only in a scattering state. Therefore, as the voltage is applied, it is possible to obtain an element that switches from colorless and transparent when no voltage is applied to a colored opaque and colored transparent state.
<Polymerizable compound>
 本発明の液晶組成物中には、紫外線などの活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物が含まれる。液晶組成物中に含まれる重合性化合物は、紫外線などの活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物である。その際、どのような反応形式で重合が進み、液晶と重合性化合物の硬化物複合体を形成させても良い。具体的な重合の反応形式としては、ラジカル重合、カチオン重合、アニオン重合又は重付加反応が挙げられる。
 上記の重合性化合物は、液晶に溶解すれば、どのような化合物であってもよい。ただし、重合性化合物を液晶に溶解した際に、液晶組成物の一部又は全体が液晶相を示す温度が存在することが必要となる。液晶組成物の一部が液晶相を示す場合であっても、液晶表示素子を肉眼で確認して、素子内全体が、ほぼ一様な透明性と散乱特性が得られていれば良い。
The liquid crystal composition of the present invention contains a polymerizable compound that is polymerized by at least one of active energy rays such as ultraviolet rays and heat. The polymerizable compound contained in the liquid crystal composition is a polymerizable compound that is polymerized by at least one of active energy rays such as ultraviolet rays and heat. At that time, polymerization may proceed in any reaction form, and a cured product composite of liquid crystal and a polymerizable compound may be formed. Specific reaction modes of polymerization include radical polymerization, cationic polymerization, anionic polymerization, or polyaddition reaction.
The polymerizable compound may be any compound as long as it dissolves in the liquid crystal. However, when the polymerizable compound is dissolved in the liquid crystal, it is necessary that a temperature at which a part or the whole of the liquid crystal composition exhibits a liquid crystal phase exists. Even when a part of the liquid crystal composition exhibits a liquid crystal phase, it is sufficient that the liquid crystal display element is confirmed with the naked eye and almost uniform transparency and scattering characteristics are obtained throughout the element.
 重合性化合物の反応形式がラジカル重合の場合、下記のラジカル型の重合性化合物を用いることができる。
 例えば、2-エチルヘキシルアクリレート、ブチルエチルアクリレート、ブトキシエチルアクリレート、2-シアノエチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、2-ヒドロキシプロピルアクリレート、2-エトキシエチルアクリレート、N,N-ジエチルアミノエチルアクリレート、N,N-ジメチルアミノエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、イソボニルアクリレート、イソデシルアクリレート、ラウリルアクリレート、モルホリンアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、2,2,2-トリフルオロエチルアクリレート、2,2,3,3,3-ペンタフルオロプロピルアクリレート、2,2,3,3-テトラフルオロプロピルアクリレート、2,2,3,4,4,4-ヘキサフルオロブチルアクリレート、2-エチルヘキシルメタクリレート、ブチルエチルメタクリレート、ブトキシエチルメタクリレート、2-シアノエチルメタクリレート、ベンジルメタクリレート、シクロヘキシルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-エトキシエチルアクリレート、N,N-ジエチルアミノエチルメタクリレート、N,N-ジメチルアミノエチルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンテニルメタクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、イソボニルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、モルホリンメタクリレート、フェノキシエチルメタクリレート、フェノキシジエチレングリコールメタクリレート、2,2,2-トリフルオロエチルメタクリレート、2,2,3,3-テトラフルオロプロピルメタクリレート、2,2,3,4,4,4-ヘキサフルオロブチルメタクリレート、4,4’-ビフェニルジアクリレート、ジエチルスチルべストロールジアクリレート、1,4-ビスアクリロイルオキシベンゼン、4,4’-ビスアクリロイルオキシジフェニルエーテル、4,4’-ビスアクリロイルオキシジフェニルメタン、3,9-[1,1-ジメチル-2-アクリロイルオキシエチル]-2,4,8,10-テトラスピロ[5,5]ウンデカン、α,α’-ビス[4-アクリロイルオキシフェニル]-1,4-ジイソプロピルベンゼン、1,4-ビスアクリロイルオキシテトラフルオロベンゼン、4,4’-ビスアクリロイルオキシオクタフルオロビフェニル、ジエチレングリコールアクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジアクリレート、ジシクロペンタニルジアクリレート、グリセロールジアクリレート、1,6-へキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、テトラエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、4,4’-ジアクリロイルオキシスチルベン、4,4’-ジアクリロイルオキシジメチルスチルベン、4,4’-ジアクリロイルオキシジエチルスチルベン、4,4’-ジアクリロイルオキシジプロピルスチルベン、4,4’-ジアクリロイルオキシジブチルスチルベン、4,4’-ジアクリロイルオキシジペンチルスチルベン、4,4’-ジアクリロイルオキシジヘキシルスチルベン、4,4’-ジアクリロイルオキシジフルオロスチルベン、2,2,3,3,4,4-ヘキサフルオロペンタンジオール-1,5-ジアクリレート、1,1,2,2,3,3-ヘキサフルオロプロピル-1,3-ジアクリレート、ジエチレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,6-へキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート、ペンタエリスリトールトリメタクリレート、ジトリメチロールプロパンテトラメタクリレート、ジペンタエリスリトールヘキサメタクリレート、ジペンタエリスリトールモノヒドロキシペンタメタクリレート、2,2,3,3,4,4-ヘキサフルオロペンタンジオール-1,5-ジメタクリレートなどのモノマー及びオリゴマーが挙げられる。
 なかでも、電圧印加時の散乱特性を高くすることを目的に、3個以上の官能基を有する多官能性型のラジカル型の重合性化合物を用いることが好ましい。
When the reaction form of the polymerizable compound is radical polymerization, the following radical type polymerizable compound can be used.
For example, 2-ethylhexyl acrylate, butyl ethyl acrylate, butoxyethyl acrylate, 2-cyanoethyl acrylate, benzyl acrylate, cyclohexyl acrylate, 2-hydroxypropyl acrylate, 2-ethoxyethyl acrylate, N, N-diethylaminoethyl acrylate, N, N— Dimethylaminoethyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, isobornyl acrylate, isodecyl acrylate, lauryl acrylate, morpholine acrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, 2,2, 2-trifluoroethyl acrylate, 2, , 3,3,3-pentafluoropropyl acrylate, 2,2,3,3-tetrafluoropropyl acrylate, 2,2,3,4,4,4-hexafluorobutyl acrylate, 2-ethylhexyl methacrylate, butylethyl methacrylate , Butoxyethyl methacrylate, 2-cyanoethyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, 2-hydroxypropyl methacrylate, 2-ethoxyethyl acrylate, N, N-diethylaminoethyl methacrylate, N, N-dimethylaminoethyl methacrylate, dicyclopentanyl methacrylate , Dicyclopentenyl methacrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, isobornyl methacrylate, isodecyl Tacrylate, lauryl methacrylate, morpholine methacrylate, phenoxyethyl methacrylate, phenoxydiethylene glycol methacrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, 2,2,3,4,4 4-hexafluorobutyl methacrylate, 4,4′-biphenyl diacrylate, diethylstilbestrol diacrylate, 1,4-bisacryloyloxybenzene, 4,4′-bisacryloyloxydiphenyl ether, 4,4′-bisacryloyloxy Diphenylmethane, 3,9- [1,1-dimethyl-2-acryloyloxyethyl] -2,4,8,10-tetraspiro [5,5] undecane, α, α'-bis [4-acryloyloxy Enyl] -1,4-diisopropylbenzene, 1,4-bisacryloyloxytetrafluorobenzene, 4,4′-bisacryloyloxyoctafluorobiphenyl, diethylene glycol acrylate, 1,4-butanediol diacrylate, 1,3-butylene Glycol diacrylate, dicyclopentanyl diacrylate, glycerol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, tetraethylene glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol tetraacrylate, pentaerythritol Triacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexaacrylate, dipentaeryth Tall monohydroxypentaacrylate, 4,4′-diaacryloyloxystilbene, 4,4′-diaacryloyloxydimethylstilbene, 4,4′-diaacryloyloxydiethylstilbene, 4,4′-diaacryloyloxydipropylstilbene, 4,4′-diacryloyloxydibutylstilbene, 4,4′-diaacryloyloxydipentylstilbene, 4,4′-diaacryloyloxydihexylstilbene, 4,4′-diacryloyloxydifluorostilbene, 2,2,3 3,4,4-hexafluoropentanediol-1,5-diacrylate, 1,1,2,2,3,3-hexafluoropropyl-1,3-diacrylate, diethylene glycol dimethacrylate, 1,4-butane Diol dimethacrylate, 1,3 -Butylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, pentaerythritol trimethacrylate, ditrimethylolpropane tetramethacrylate, And monomers and oligomers such as dipentaerythritol hexamethacrylate, dipentaerythritol monohydroxypentamethacrylate, 2,2,3,3,4,4-hexafluoropentanediol-1,5-dimethacrylate.
Among them, it is preferable to use a polyfunctional radical-type polymerizable compound having three or more functional groups for the purpose of enhancing the scattering characteristics when a voltage is applied.
 具体的には、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリストリトールトリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート、ペンタエリスリトールトリメタクリレート、ジトリメチロールプロパンテトラメタクリレート、ジペンタエリスリトールヘキサメタクリレート、ジペンタエリスリトールモノヒドロキシペンタメタクリレートなどのモノマー及びオリゴマーが挙げられる。
 上記のラジカル型の重合性化合物は、液晶表示素子の光学特性や液晶層と垂直液晶配向膜との密着性の特性に応じて、1種類又は2種類以上を混合して使用することもできる。
Specifically, trimethylolpropane triacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexaacrylate, dipentaerythritol monohydroxypentaacrylate, trimethylolpropane trimethacrylate, penta Examples thereof include monomers and oligomers such as erythritol tetramethacrylate, pentaerythritol trimethacrylate, ditrimethylolpropane tetramethacrylate, dipentaerythritol hexamethacrylate, dipentaerythritol monohydroxypentamethacrylate.
The radical type polymerizable compound may be used alone or in combination of two or more depending on the optical characteristics of the liquid crystal display element and the adhesion characteristics between the liquid crystal layer and the vertical liquid crystal alignment film.
 更に、重合性化合物の反応形式がラジカル重合の場合、液晶組成物中に、紫外線によりラジカルを発生するラジカル開始剤を導入することもできる。
 具体的には、tert-ブチルペルオキシ-iso-ブタレート、2,5-ジメチル-2,5-ビス(ベンゾイルジオキシ)へキサン、1,4-ビス[α-(tert-ブチルジオキシ)-iso-プロポキシ]ベンゼン、ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ビス(tert-ブチルジオキシ)へキセンヒドロペルオキシド、α-(iso-プロピルフェニル)-iso-プロピルヒドロペルオキシド、2,5-ジメチルへキサン、tert-ブチルヒドロペルオキシド、1,1-ビス(tert-ブチルジオキシ)-3,3,5-トリメチルシクロへキサン、ブチル-4,4-ビス(tert-ブチルジオキシ)バレレート、シクロへキサノンペルオキシド、2,2’,5,5’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-アミルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ビス(tert-ブチルペルオキシカルボニル)-4,4’-ジカルボキシベンゾフェノン、tert-ブチルペルオキシベンゾエート、ジ-tert-ブチルジペルオキシイソフタレートなどの有機過酸化物や、9,10-アントラキノン、1-クロロアントラキノン、2-クロロアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノンなどのキノン類、ベンゾインメチル、ベンゾインエチルエーテル、α-メチルベンゾイン、α-フェニルベンゾインなどのベンゾイン誘導体などが挙げられる。
Furthermore, when the reaction type of the polymerizable compound is radical polymerization, a radical initiator that generates radicals by ultraviolet rays can be introduced into the liquid crystal composition.
Specifically, tert-butylperoxy-iso-butrate, 2,5-dimethyl-2,5-bis (benzoyldioxy) hexane, 1,4-bis [α- (tert-butyldioxy) -iso-propoxy Benzene, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butyldioxy) hexene hydroperoxide, α- (iso-propylphenyl) -iso-propyl hydroperoxide, 2,5- Dimethylhexane, tert-butyl hydroperoxide, 1,1-bis (tert-butyldioxy) -3,3,5-trimethylcyclohexane, butyl-4,4-bis (tert-butyldioxy) valerate, cyclohexanone Peroxide, 2,2 ', 5,5'-tetra (tert-butylperoxide Xoxycarbonyl) benzophenone, 3,3 ′, 4,4′-tetra (tert-butylperoxycarbonyl) benzophenone, 3,3 ′, 4,4′-tetra (tert-amylperoxycarbonyl) benzophenone, 3,3 ′, 4,4′-tetra (tert-hexylperoxycarbonyl) benzophenone, 3,3′-bis (tert-butylperoxycarbonyl) -4,4′-dicarboxybenzophenone, tert-butylperoxybenzoate, di-tert-butyldi Organic peroxides such as peroxyisophthalate, quinones such as 9,10-anthraquinone, 1-chloroanthraquinone, 2-chloroanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, benzoin methyl, benzoin ethyl ether, and benzoin derivatives such as α-methylbenzoin and α-phenylbenzoin.
 重合性化合物の反応形式がカチオン重合又はアニオン重合の場合、下記のイオン型の重合性化合物を用いることができる。
 具体的には、ヒドロキシル基、ヒドロキシアルキル基、及び低級アルコキシアルキル基からなる群から選ばれる少なくとも1種の架橋形成基を有する化合物である。
 例えば、アミノ基の水素原子がメチロール基、アルコキシメチル基またその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体又はグリコールウリルを用いることができる。このメラミン誘導体やベンゾグアナミン誘導体はオリゴマーであっても良い。これらはトリアジン環1個当たり、メチルール基又はアルコキシメチル基を平均3個以上6個未満有するものが好ましい。
When the reaction form of the polymerizable compound is cationic polymerization or anionic polymerization, the following ionic type polymerizable compounds can be used.
Specifically, it is a compound having at least one cross-linking group selected from the group consisting of a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group.
For example, a melamine derivative, a benzoguanamine derivative or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group or both can be used. The melamine derivative or benzoguanamine derivative may be an oligomer. These preferably have an average of 3 or more and less than 6 methylol groups or alkoxymethyl groups per one triazine ring.
 このようなメラミン誘導体やベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)や、サイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイテック社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなどが挙げられる。 Examples of such melamine derivatives and benzoguanamine derivatives include MX-750, which is an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (manufactured by Sanwa Chemical Co., Ltd.), Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamine, Cymel 235, Of methoxymethylated butoxymethylated melamine such as 236, 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 Methoxymethylated etoxy Methylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cytec Co., Ltd.). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and the like.
 ヒドロキシル基又はアルコキシル基を有するベンゼン、又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメトキシ)ベンゼン、1,2,4-トリス(イソプロポキシメトキシ)ベンゼン、1,4-ビス(sec-ブトキシメトキシ)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノールなどが挙げられる。 Examples of the benzene having a hydroxyl group or an alkoxyl group or a phenolic compound include 1,3,5-tris (methoxymethoxy) benzene, 1,2,4-tris (isopropoxymethoxy) benzene, and 1,4-bis. (Sec-butoxymethoxy) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
 また、上記イオン型の重合性化合物としては、エポキシ基、イソシアネート基を含み架橋形成基を有する化合物を用いることもできる。具体的には、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシフェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。
 上記のイオン型の重合性化合物は、光学特性や液晶層と垂直液晶配向膜との密着性の特性に応じて、1種類又は2種類以上を混合して使用することもできる。
In addition, as the ionic polymerizable compound, a compound having an epoxy group and an isocyanate group and having a crosslinking group can also be used. Specifically, bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetraglycidyl-1,3-bis (aminoethyl) ) Cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy) -1-trifluoromethyl-2,2, 2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl, triglycidyl-p-aminophenol, tetraglycidylme Xylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxypropoxy) phenyl) ethyl) phenyl) propane, , 3-Bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3-epoxypropoxyphenyl) -1-methylethyl) Phenyl) ethyl) phenoxy) -2-propanol and the like.
The ionic polymerizable compounds may be used alone or in combination of two or more depending on the optical properties and the adhesion properties between the liquid crystal layer and the vertical liquid crystal alignment film.
 更に、重合性化合物の反応形式がカチオン重合又はアニオン重合の場合、液晶組成物中に、紫外線により酸又は塩基を発生するイオン開始剤を導入することもできる。
 具体的には、トリアジン系化合物、アセトフェノン誘導体化合物、ジスルホン系化合物、ジアゾメタン系化合物、スルホン酸誘導体化合物、ジアリールヨードニウム塩、トリアリールスルホニウム塩、トリアリールホスホニウム塩、鉄アレーン錯体などを用いることができるが、これらに限定されるものではない。より具体的には、例えば、ジフェニルヨードニウムクロライド、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムメシレート、ジフェニルヨードニウムトシレート、ジフェニルヨードニウムブロミド、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ビス(p-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(p-tert-ブチルフェニル)ヨードニウムメシレート、ビス(p-tert-ブチルフェニル)ヨードニウムトシレート、ビス(p-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(p-tert-ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(p-tert-ブチルフェニル)ヨードニウムクロリド、ビス(p-クロロフェニル)ヨードニウムクロライド、ビス(p-クロロフェニル)ヨードニウムテトラフルオロボレート、トリフェニルスルホニウムクロリド、トリフェニルスルホニウムブロミド、トリ(p-メトキシフェニル)スルホニウムテトラフルオロボレート、トリ(p-メトキシフェニル)スルホニウムヘキサフルオロホスホネート、トリ(p-エトキシフェニル)スルホニウムテトラフルオロボレート、トリフェニルホスホニウムクロリド、トリフェニルホスホニウムブロミド、トリ(p-メトキシフェニル)ホスホニウムテトラフルオロボレート、トリ(p-メトキシフェニル)ホスホニウムヘキサフルオロホスホネート、又はトリ(p-エトキシフェニル)ホスホニウムテトラフルオロボレートが挙げられる。
 また、ビス[[(2-ニトロベンジル)オキシ]カルボニルへキサン-1,6-ジアミン]、ニトロベンジルシクロへキシルカルバメート、ジ(メトキシベンジル)ヘキサメチレンジカルバメート、ビス[[(2-ニトロベンジル)オキシ]カルボニルへキサン-1,6-ジアミン]、ニトロベンジルシクロへキシルカルバメート又はジ(メトキシベンジル)ヘキサメチレンジカルバメートが挙げられる。
 上記の重合性化合物の中で、本発明では、液晶表示素子の光学特性の点から、ラジカル型の重合性化合物を用いることが好ましい。
Furthermore, when the reaction mode of the polymerizable compound is cationic polymerization or anionic polymerization, an ion initiator that generates an acid or a base by ultraviolet rays can be introduced into the liquid crystal composition.
Specifically, triazine compounds, acetophenone derivative compounds, disulfone compounds, diazomethane compounds, sulfonic acid derivative compounds, diaryl iodonium salts, triaryl sulfonium salts, triaryl phosphonium salts, iron arene complexes, and the like can be used. However, it is not limited to these. More specifically, for example, diphenyl iodonium chloride, diphenyl iodonium trifluoromethanesulfonate, diphenyl iodonium mesylate, diphenyl iodonium tosylate, diphenyl iodonium bromide, diphenyl iodonium tetrafluoroborate, diphenyl iodonium hexafluoroantimonate, diphenyl iodonium hexafluoroarsenate. Bis (p-tert-butylphenyl) iodonium hexafluorophosphate, bis (p-tert-butylphenyl) iodonium mesylate, bis (p-tert-butylphenyl) iodonium tosylate, bis (p-tert-butylphenyl) ) Iodonium trifluoromethanesulfonate, bis (p-tert-butylphenol) L) iodonium tetrafluoroborate, bis (p-tert-butylphenyl) iodonium chloride, bis (p-chlorophenyl) iodonium chloride, bis (p-chlorophenyl) iodonium tetrafluoroborate, triphenylsulfonium chloride, triphenylsulfonium bromide, triphenyl (P-methoxyphenyl) sulfonium tetrafluoroborate, tri (p-methoxyphenyl) sulfonium hexafluorophosphonate, tri (p-ethoxyphenyl) sulfonium tetrafluoroborate, triphenylphosphonium chloride, triphenylphosphonium bromide, tri (p-methoxy Phenyl) phosphonium tetrafluoroborate, tri (p-methoxyphenyl) phosphonium hexafluorophos Sulfonates, or tri (p- ethoxyphenyl) phosphonium tetrafluoroborate and the like.
Also, bis [[(2-nitrobenzyl) oxy] carbonylhexane-1,6-diamine], nitrobenzylcyclohexyl carbamate, di (methoxybenzyl) hexamethylene dicarbamate, bis [[(2-nitrobenzyl) Oxy] carbonylhexane-1,6-diamine], nitrobenzyl cyclohexyl carbamate or di (methoxybenzyl) hexamethylene dicarbamate.
Among the above polymerizable compounds, in the present invention, a radical type polymerizable compound is preferably used from the viewpoint of the optical characteristics of the liquid crystal display element.
 液晶組成物中における重合性化合物の導入量には特に制限は無いが、重合性化合物の導入量が多い場合、液晶中に重合性化合物が溶解しなかったり、液晶組成物が液晶相を示す温度がなかったり、素子の透明状態と散乱状態との変化が小さくなり光学特性が悪くなる。また、重合性化合物の導入量が少ない場合、液晶層の硬化性が低くなり、更には、液晶層と垂直液晶配向膜との密着性が低下し、機械的な外圧に対して液晶の配向性が乱れやすくなる。そのため、重合性化合物の導入量は、液晶100質量部に対して、1~50質量部であることが好ましく、なかでも、5~40質量部が好ましい。特に好ましいのは、11~30質量部である。
 また、重合性化合物の反応を促進するラジカル開始剤及びイオン開始剤の導入量には特に制限は無いが、好ましくは、液晶100質量部に対して、0.01~10質量部であり、なかでも、0.05~5質量部が好ましい。特に好ましいのは、0.05~3質量部である。
The amount of the polymerizable compound introduced into the liquid crystal composition is not particularly limited, but when the amount of the polymerizable compound introduced is large, the polymerizable compound does not dissolve in the liquid crystal, or the temperature at which the liquid crystal composition exhibits a liquid crystal phase. Or the change between the transparent state and the scattering state of the element becomes small, and the optical characteristics deteriorate. In addition, when the amount of the polymerizable compound introduced is small, the curability of the liquid crystal layer is lowered, and further, the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film is lowered, and the alignment of the liquid crystal against mechanical external pressure is reduced. Is easily disturbed. Therefore, the introduction amount of the polymerizable compound is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the liquid crystal, and more preferably 5 to 40 parts by mass. Particularly preferred is 11 to 30 parts by mass.
Further, the introduction amount of the radical initiator and the ionic initiator that promote the reaction of the polymerizable compound is not particularly limited, but is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the liquid crystal. However, 0.05 to 5 parts by mass is preferable. Particularly preferred is 0.05 to 3 parts by mass.
<特定重合体>
 本発明の液晶表示素子は、基板の少なくとも一方に液晶を垂直に配向させるような垂直液晶配向膜を有する。その際の垂直液晶配向膜は、下記の式[1]で示される特定側鎖構造を有する特定重合体を含む液晶配向処理剤から得られる。
Figure JPOXMLDOC01-appb-C000021
<Specific polymer>
The liquid crystal display element of the present invention has a vertical liquid crystal alignment film that vertically aligns liquid crystal on at least one of the substrates. The vertical liquid crystal alignment film in that case is obtained from the liquid-crystal aligning agent containing the specific polymer which has a specific side chain structure shown by following formula [1].
Figure JPOXMLDOC01-appb-C000021
 式[1]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-である。
 式[1]中、Yは単結合又は-(CH-(bは1~15の整数である)を示す。なかでも、単結合又は(CH-(bは1~10の整数である)が好ましい。
 式[1]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-又は-COO-である。
In the formula [1], Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Among these, from the viewpoint of availability of raw materials and ease of synthesis, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO. -Is preferred. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
In the formula [1], Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
In the formula [1], Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Of these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[1]中、Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基であり、これらの環状基条の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。更に、Yは、ステロイド骨格を有する炭素数17~51の有機基からなる群から選ばれる2価の有機基であってもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数17~51の有機基が好ましい。
 式[1]中、Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、ベンゼン環又はシクロへキサン環が好ましい。
In the formula [1], Y 4 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom of these cyclic groups is an alkyl having 1 to 3 carbon atoms. Group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Furthermore, Y 4 may be a divalent organic group selected from the group consisting of organic groups having 17 to 51 carbon atoms having a steroid skeleton. Among these, an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
In formula [1], Y 5 represents a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl having 1 to 3 carbon atoms. Group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
 式[1]中、nは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0~3が好ましい。より好ましいのは、0~2である。
 式[1]中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。
In the formula [1], n represents an integer of 0 to 4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
In the formula [1], Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. . Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[1]におけるY、Y、Y、Y、Y、Y及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表におけるY1~Y6は、それぞれ、本発明のY~Yに読み替えるものとする。また、国際公開公報の各表に掲載される(2-605)~(2-629)における、ステロイド骨格を有する炭素数12~25の有機基は、いずれも、ステロイド骨格を有する炭素数17~51の有機基に読み替えるものとする。 As a preferable combination of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [1], pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.27). The same combinations as (2-1) to (2-629) listed in Tables 6 to 47 of the above are listed. It should be noted that Y1 to Y6 in each table of the International Publication are respectively replaced with Y 1 to Y 6 of the present invention. In addition, the organic groups having 12 to 25 carbon atoms having a steroid skeleton in (2-605) to (2-629) listed in the tables of International Publications all have 17 to 17 carbon atoms having a steroid skeleton. It shall be read as 51 organic groups.
 上記特定側鎖構造を有する特定重合体としては、特に限定は無いが、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つの重合体であることが好ましい。なかでも、ポリイミド前駆体、ポリイミド又はポリシロキサンが好ましい。
 上記特定重合体にポリイミド前駆体又はポリイミド(総称してポリイミド系重合体ともいう)を用いる場合、それらは、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体又はポリイミドであることが好ましい。
The specific polymer having the specific side chain structure is not particularly limited, but from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose and polysiloxane. It is preferably at least one polymer selected. Among these, a polyimide precursor, polyimide or polysiloxane is preferable.
When a polyimide precursor or polyimide (also collectively referred to as a polyimide polymer) is used for the specific polymer, they are a polyimide precursor or polyimide obtained by reacting a diamine component and a tetracarboxylic acid component. Is preferred.
 ポリイミド前駆体とは、下記の式[A]で示される構造である。
Figure JPOXMLDOC01-appb-C000022
(Rは4価の有機基であり、Rは2価の有機基であり、A及びAは水素原子又は炭素数1~8のアルキル基を示し、それぞれ同じであっても異なってもよく、A及びAは水素原子、炭素数1~5のアルキル基又はアセチル基を示し、それぞれ同じであっても異なってもよく、nは正の整数を示す)。
The polyimide precursor has a structure represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000022
(R 1 is a tetravalent organic group, R 2 is a divalent organic group, A 1 and A 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and each may be the same or different. A 3 and A 4 each represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acetyl group, which may be the same or different, and n represents a positive integer).
 前記ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミン化合物であり、テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。
 ポリイミド系重合体は、下記の式[B]で示されるテトラカルボン酸二無水物と下記の式[C]で示されるジアミン化合物とを原料とすることで比較的簡便に得られるため、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。
Figure JPOXMLDOC01-appb-C000023
(R及びRは式[A]で定義したものと同意義である。)
The diamine component is a diamine compound having two primary or secondary amino groups in the molecule, and the tetracarboxylic acid component is a tetracarboxylic acid compound, tetracarboxylic dianhydride, or tetracarboxylic acid dihalide compound. , Tetracarboxylic acid dialkyl ester compounds or tetracarboxylic acid dialkyl ester dihalide compounds.
The polyimide polymer can be obtained relatively easily by using a tetracarboxylic dianhydride represented by the following formula [B] and a diamine compound represented by the following formula [C] as raw materials. Polyamic acid comprising the structural formula of the repeating unit represented by the formula [D] or polyimide obtained by imidizing the polyamic acid is preferred.
Figure JPOXMLDOC01-appb-C000023
(R 1 and R 2 have the same meaning as defined in formula [A].)
Figure JPOXMLDOC01-appb-C000024
(R及びRは、式[A]で定義したものと同意義である。)
 また、通常の合成手法で、上記で得られた式[D]の重合体に、式[A]で示されるA及びAの炭素数1~8のアルキル基、及び式[A]で示されるA及びAの炭素数1~5のアルキル基又はアセチル基を導入することもできる。
Figure JPOXMLDOC01-appb-C000024
(R 1 and R 2 have the same meaning as defined in formula [A].)
In addition, the polymer of the formula [D] obtained above by the usual synthesis method is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A]. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
 上位特定側鎖構造をポリイミド系重合体に導入する方法としては、特定側鎖構造を有するジアミン化合物を原料の一部に用いることが好ましい。特に下記の式[1a]で示されるジアミン化合物(特定側鎖型ジアミン化合物ともいう)を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000025
As a method for introducing the upper specific side chain structure into the polyimide polymer, it is preferable to use a diamine compound having a specific side chain structure as a part of the raw material. In particular, it is preferable to use a diamine compound represented by the following formula [1a] (also referred to as a specific side chain diamine compound).
Figure JPOXMLDOC01-appb-C000025
 式[1a]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-である。
 式[1a]中、Yは単結合又は-(CH-(bは1~15の整数である)を示す。なかでも、単結合又は(CH-(bは1~10の整数である)が好ましい。
 式[1a]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-又は-COO-である。
In the formula [1a], Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Among these, from the viewpoint of availability of raw materials and ease of synthesis, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO. -Is preferred. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
In the formula [1a], Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
In the formula [1a], Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Of these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[1a]中、Yはベンゼン環、シクロヘキサン環又は複素環から選ばれる2価の環状基であり、これらの環状基条の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。更に、Yは、ステロイド骨格を有する炭素数17~51の有機基から選ばれる2価の有機基であってもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数17~51の有機基が好ましい。
 式[1a]中、Yはベンゼン環、シクロヘキサン環又は複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、ベンゼン環又はシクロへキサン環が好ましい。
In the formula [1a], Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and an arbitrary hydrogen atom of these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Furthermore, Y 4 may be a divalent organic group selected from organic groups having 17 to 51 carbon atoms and having a steroid skeleton. Among these, an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
In the formula [1a], Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
 式[1a]中、nは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0~3が好ましい。より好ましいのは、0~2である。
 式[1a]中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。
In the formula [1a], n represents an integer of 0 to 4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
In the formula [1a], Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. . Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[1a]におけるY、Y、Y、Y、Y、Y及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表におけるY~Yは、それぞれ、本発明のY~Yに読み替えるものとする。
 また、国際公開公報の各表に掲載される(2-605)~(2-629)におけるステロイド骨格を有する炭素数12~25の有機基は、いずれも、本発明のステロイド骨格を有する炭素数17~51の有機基に読み替えるものとする。
Preferable combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [1a] include pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.20). The same combinations as (2-1) to (2-629) listed in Tables 6 to 47 of the above are listed. It should be noted that Y 1 to Y 6 in each table of the International Publication are respectively replaced with Y 1 to Y 6 of the present invention.
In addition, any of the organic groups having 12 to 25 carbon atoms having a steroid skeleton in (2-605) to (2-629) listed in the tables of International Publications each has a carbon number having a steroid skeleton of the present invention. It shall be read as 17 to 51 organic groups.
 なかでも、(2-25)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-268)~(2-315)、(2-364)~(2-387)、(2-436)~(2-483)又は(2-603)~(2-615)の組み合わせが好ましい。特に好ましい組み合わせは、(2-49)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-603)~(2-606)、(2-607)~(2-609)、(2-611)、(2-612)又は(2-624)である。
 式[1a]中、mは1~4の整数である。好ましくは、1である。
Among them, (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315) , (2-364) to (2-387), (2-436) to (2-483), or (2-603) to (2-615) are preferred. Particularly preferred combinations are (2-49) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-603) to (2- 606), (2-607) to (2-609), (2-611), (2-612) or (2-624).
In the formula [1a], m is an integer of 1 to 4. Preferably, 1.
 具体的には、例えば下記の式[1a-1]~式[1a-31]で示される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000026
(Rは-O-、-OCH-、-CHO-、-COOCH-又は-CHOCO-を示し、Rは炭素数1~22の直鎖状又は分岐状アルキル基、炭素数1~22の直鎖状又は分岐状アルコキシル基、炭素数1~22の直鎖状又は分岐状フッ素含有アルキル基又はフッ素含有アルコキシル基である。)
Specific examples include structures represented by the following formulas [1a-1] to [1a-31].
Figure JPOXMLDOC01-appb-C000026
(R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—, and R 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms, A linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group or fluorine-containing alkoxyl group having 1 to 22 carbon atoms.)
Figure JPOXMLDOC01-appb-C000027
(Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-又は-CH-を示し、Rは炭素数1~22の直鎖状又は分岐状アルキル基、炭素数1~22の直鎖状又は分岐状アルコキシル基、炭素数1~22の直鎖状又は分岐状フッ素含有アルキル基又はフッ素含有アルコキシル基である。)
Figure JPOXMLDOC01-appb-C000027
(R 3 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or —CH 2 —, R 4 is a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms, or This is a fluorine-containing alkoxyl group.)
Figure JPOXMLDOC01-appb-C000028
(Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-又は-NH-を示し、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。)
Figure JPOXMLDOC01-appb-C000028
(R 5 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O — Represents — or —NH—, and R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
Figure JPOXMLDOC01-appb-C000029
(Rは炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000029
(R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000030
(Rは炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000030
(R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000031
(Aはフッ素原子で置換されていてもよい炭素数3~20の直鎖状又は分岐状アルキル基であり、Aは1,4-シクロへキシレン基又は1,4-フェニレン基であり、Aは酸素原子又は-COO-*(ただし、「*」を付した結合手がAと結合する)であり、Aは酸素原子又は-COO-*(ただし、「*」を付した結合手が(CH)a)と結合する)である。また、aは0又は1の整数であり、aは2~10の整数であり、aは0又は1の整数である。)
Figure JPOXMLDOC01-appb-C000031
(A 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group. , A 2 is an oxygen atom or —COO— * (where a bond with “*” is bonded to A 3 ), and A 1 is an oxygen atom or —COO— * (note that “*” is attached). Bond is bonded to (CH 2 ) a 2 ). A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1. )
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 上記の式[1a-1]~[1a-31]中、特に好ましい構造のジアミン化合物は、式[1a-1]~式[1a-6]、式[1a-9]~式[1a-13]又は式[1a-22]~式[1a-31]などである。 Of the above formulas [1a-1] to [1a-31], particularly preferred diamine compounds have the structures [1a-1] to [1a-6], [1a-9] to [1a-13]. ] Or formula [1a-22] to formula [1a-31].
 また、本発明では、液晶の垂直配向性と、液晶層と垂直液晶配向膜との密着性の点から、これら特定側鎖型ジアミン化合物は、ジアミン成分全体の10モル%以上80モル%以下であることが好ましい。より好ましくは、10モル%以上70モル%以下である。
 上記の特定側鎖型ジアミン化合物は、ポリイミド系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、更には、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
In the present invention, these specific side chain type diamine compounds are contained in an amount of 10 mol% or more and 80 mol% or less of the entire diamine component from the viewpoint of the vertical alignment of the liquid crystal and the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film. Preferably there is. More preferably, it is 10 mol% or more and 70 mol% or less.
The specific side chain type diamine compound described above depends on the solubility of the polyimide polymer in the solvent, the vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and the characteristics such as the optical characteristics of the liquid crystal display element. One type or a mixture of two or more types can be used.
 上記ポリイミド系重合体を作製するためのジアミン成分としては、下記の式[2]で示されるジアミン化合物を用いることも好ましい。
Figure JPOXMLDOC01-appb-C000037
 式[2]中、Xは下記の式[2a]、式[2b]、式[2c]及び式[2d]からなる群から選ばれる構造の置換基を示す。mは1~4の整数を示す。
As the diamine component for producing the polyimide polymer, a diamine compound represented by the following formula [2] is also preferably used.
Figure JPOXMLDOC01-appb-C000037
In the formula [2], X represents a substituent having a structure selected from the group consisting of the following formula [2a], formula [2b], formula [2c] and formula [2d]. m represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式[2a]中、aは0~4の整数を示す。なかでも、原料の入手や合成の容易さの点から、0又は1の整数が好ましい。bは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0又は1の整数が好ましい。式[2c]中、X及びXはそれぞれ独立して炭素数1~12の炭化水素基を示す。式[2d]中、Xは炭素数1~5のアルキル基を示す。 In the formula [2a], a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the acquisition of a raw material or the ease of a synthesis | combination. b represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis | combination. In the formula [2c], X 1 and X 2 each independently represent a hydrocarbon group having 1 to 12 carbon atoms. In the formula [2d], X 3 represents an alkyl group having 1 to 5 carbon atoms.
 上記式[2]で示されるジアミン化合物の具体的な構造を下記に、挙げるが、これらの例に限定されるものではない。
 すなわち、式[2]で示されるジアミン化合物としては、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸の他に、下記の式[2-1]~[2-6]で示される構造のジアミン化合物を挙げることができる。
Specific examples of the diamine compound represented by the formula [2] are shown below, but are not limited to these examples.
That is, examples of the diamine compound represented by the formula [2] include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5-diaminophenol, 3,5- In addition to diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, the following formula [ Examples thereof include diamine compounds having structures represented by 2-1] to [2-6].
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 なかでも、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、式[2-1]、式[2-2]又は式[2-3]で示されるジアミン化合物が好ましい。特に好ましくは、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、3,5-ジアミノ安息香酸、式[2-1]又は式[2-2]で示されるジアミン化合物である。 Among them, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid, 2, Preference is given to 5-diaminobenzoic acid, 3,5-diaminobenzoic acid, diamine compounds of the formula [2-1], formula [2-2] or formula [2-3]. Particularly preferably, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 3,5-diaminobenzoic acid, represented by formula [2-1] or formula [2-2] It is a diamine compound.
 前記式[2]で示されるジアミン化合物は、ポリイミド系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、更には、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。 The diamine compound represented by the formula [2] has properties such as solubility of a polyimide polymer in a solvent, vertical alignment of liquid crystal when a vertical liquid crystal alignment film is formed, and optical characteristics of a liquid crystal display element. Depending on the situation, one kind or a mixture of two or more kinds can be used.
 上記ポリイミド系重合体を作製するためジアミン成分としては、式[1a]及び式[2]で示されるジアミン化合物以外のジアミン化合物(その他ジアミン化合物ともいう)をジアミン化合物として用いることもできる。下記に、その他ジアミン化合物の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’- ジアミノビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン又は1,12-ジアミノドデカンなどが挙げられる。
In order to produce the said polyimide-type polymer, diamine compounds other than the diamine compound shown by Formula [1a] and Formula [2] (it is also called another diamine compound) can also be used as a diamine compound. Specific examples of other diamine compounds are shown below, but are not limited to these examples.
For example, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-dicarboxy-4,4′-diaminobiphenyl, 3,3′-difluoro-4,4′-diaminobiphenyl, 3,3 ′ -Trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'- Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3'-diaminodiph Nylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline 3,3′-sulfonyldianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3 ' -Diaminodiphenylamine, N-methyl (4,4'-diaminodi Phenyl) amine, N-methyl (3,3′-diaminodiphenyl) amine, N-methyl (3,4′-diaminodiphenyl) amine, N-methyl (2,2′-diaminodiphenyl) amine, N-methyl ( 2,3′-diaminodiphenyl) amine, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2, , 3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2, 7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4- Aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis ( 4-Aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,4 ′-[1 , 4-F Nylenebis (methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1 , 3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [ (4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate) 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenoxy) Terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-amino) Benzamide), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1 , 3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis ( 4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′- (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoro Propane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 1, 3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bi Sus (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, , 6-Bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10-bis (4-aminophenoxy) ) Decane, 1,10-bis (3-aminophenoxy) decane, 1,11-bis (4-aminophenoxy) undecane, 1,11-bis (3-aminophenoxy) Ndecane, 1,12-bis (4-aminophenoxy) dodecane, 1,12-bis (3-aminophenoxy) dodecane, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, , 10-diaminodecane, 1,11-diaminoundecane or 1,12-diaminododecane.
 また、その他ジアミン化合物として、ジアミン化合物の側鎖にアルキル基、フッ素含有アルキル基又は複素環を有するものなどを挙げることもできる。
 具体的には、下記の式[DA1]~[DA13]で示されるジアミン化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000041
(Aは、炭素数1~22のアルキル基又はフッ素含有アルキル基を示す。)
Other examples of the diamine compound include those having an alkyl group, a fluorine-containing alkyl group or a heterocyclic ring in the side chain of the diamine compound.
Specifically, diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
Figure JPOXMLDOC01-appb-C000041
(A 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
(式[DA5]~式[DA10]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又は-NH-を示し、Aは炭素数1~22の直鎖状もしくは分岐状のアルキル基又は炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000044
(In formula [DA5] to [DA10], A 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—, A 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
Figure JPOXMLDOC01-appb-C000045
(pは1~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000045
(P represents an integer of 1 to 10)
 上記その他ジアミン化合物として、下記の式[DA12]~式[DA17]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000046
As the other diamine compounds, diamine compounds represented by the following formulas [DA12] to [DA17] can also be used.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
(式[DA14]中、mは0~3の整数を示し、式[DA17]中、nは1~5の整数を示す)。
Figure JPOXMLDOC01-appb-C000047
(In formula [DA14], m represents an integer of 0 to 3, and in formula [DA17], n represents an integer of 1 to 5).
 また、本発明の効果を損なわない限りにおいて、下記の式[DA18]~式[DA21]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000048
In addition, diamine compounds represented by the following formulas [DA18] to [DA21] can also be used as long as the effects of the present invention are not impaired.
Figure JPOXMLDOC01-appb-C000048
(式[DA18]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、m及びmはそれぞれ0~4の整数を示し、かつm+mは1~4の整数を示し、式[DA19]中、m及びmはそれぞれ1~5の整数を示し、式[DA20]中、Aは炭素数1~5の直鎖又は分岐アルキル基を示し、mは1~5の整数を示し、式[DA21]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、mは1~4の整数を示す)。 (In the formula [DA18], A 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O —, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or —N (CH 3 ) CO—, each of m 1 and m 2 represents an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and in the formula [DA19], m 3 and m 4 each represent an integer of 1 to 5, and in formula [DA20], A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, m 5 represents an integer of 1 to 5, [DA21] in, A 3 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3) 2 - -O -, - CO -, - NH -, - N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - OCH 2 -, - COO -, - OCO -, - CON ( CH 3 ) — or —N (CH 3 ) CO—, and m 6 represents an integer of 1 to 4.
 更に、本発明の効果を損なわない限りにおいて、下記の式[DA22]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000049
(Aは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-及び-N(CH)CO-からなる群から選ばれる2価の有機基であり、Aは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基又は芳香族炭化水素基であり、Aは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-又は-O(CH-(mは1~5の整数である)より選ばれ、Aは窒素含有芳香族複素環であり、nは1~4の整数である。)
 加えて、その他ジアミン化合物として、下記の式[DA23]及び式[DA24]で示されるジアミン化合物を用いることもできる。
Furthermore, a diamine compound represented by the following formula [DA22] can also be used as long as the effects of the present invention are not impaired.
Figure JPOXMLDOC01-appb-C000049
(A 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — and —N (CH 3 ) A divalent organic group selected from the group consisting of CO—, and A 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group or an aromatic hydrocarbon group. A 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, — N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), A 4 is a nitrogen-containing aromatic heterocyclic ring, and n is an integer of 1 to 4 .)
In addition, as other diamine compounds, diamine compounds represented by the following formulas [DA23] and [DA24] can also be used.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 上記のその他ジアミン化合物は、ポリイミド系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、更には、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
 ポリイミド系重合体を作製するためのテトラカルボン酸成分としては、下記の式[3]で示されるテトラカルボン酸二無水物やそのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物(すべてを総称して特定テトラカルボン酸成分ともいう)を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000051
(Zは下記の式[3a]~式[3j]から選ばれる構造の基である。)
The above-mentioned other diamine compound is one kind depending on the solubility of the polyimide polymer in the solvent, the vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and the characteristics such as the optical characteristics of the liquid crystal display element. Alternatively, two or more types can be mixed and used.
Examples of the tetracarboxylic acid component for producing the polyimide polymer include tetracarboxylic dianhydride represented by the following formula [3] and tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid derivative thereof, tetra It is preferable to use a carboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound (all are collectively referred to as a specific tetracarboxylic acid component).
Figure JPOXMLDOC01-appb-C000051
(Z 1 is a group having a structure selected from the following formulas [3a] to [3j].)
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 式[3a]中、Z~Zは水素原子、メチル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよい。
 式[3g]中、Z及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい。
 上記特定テトラカルボン酸成分である式[3]に示される構造中、Zは、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[3a]、式[3c]、式[3d]、式[3e]、式[3f]又は式[3g]で示される構造が好ましい。より好ましいのは、式[3a]、式[3e]、式[3f]又は式[3g]で示される構造であり、特に好ましいのは、式[3e]、式[3f]又は式[3g]である。
In the formula [3a], Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
In the formula [3g], Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
In the structure represented by the formula [3] which is the specific tetracarboxylic acid component, Z 1 represents the formula [3a], the formula [ 3c], Formula [3d], Formula [3e], Formula [3f], or Formula [3g] is preferable. More preferred is a structure represented by formula [3a], formula [3e], formula [3f] or formula [3g], and particularly preferred is formula [3e], formula [3f] or formula [3g]. It is.
 特定テトラカルボン酸成分は、全テトラカルボン酸成分中の1モル%以上であることが好ましい。より好ましいのは、5モル%以上であり、特に好ましいのは、10モル%以上である。
 また、式[3e]、式[3f]又は式[3g]の構造の特定テトラカルボン酸成分を用いる場合、その使用量は、テトラカルボン酸成分全体の20モル%以上とすることで、所望の効果が得られる。好ましくは、30モル%以上である。更に、テトラカルボン酸成分のすべてを式[3e]、式[3f]又は式[3g]の構造のテトラカルボン酸成分であってもよい。
 ポリイミド系重合体には、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることができる。
 その他のテトラカルボン酸成分としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、ジカルボン酸ジハライド化合物、ジカルボン酸ジアルキルエステル化合物又はジアルキルエステルジハライド化合物が挙げられる。
The specific tetracarboxylic acid component is preferably 1 mol% or more of the total tetracarboxylic acid component. More preferred is 5 mol% or more, and particularly preferred is 10 mol% or more.
Moreover, when using the specific tetracarboxylic acid component of the structure of Formula [3e], Formula [3f], or Formula [3g], the usage-amount is made into 20 mol% or more of the whole tetracarboxylic acid component, and it is desired. An effect is obtained. Preferably, it is 30 mol% or more. Further, all of the tetracarboxylic acid component may be a tetracarboxylic acid component having a structure of the formula [3e], the formula [3f], or the formula [3g].
As long as the effects of the present invention are not impaired, other tetracarboxylic acid components other than the specific tetracarboxylic acid component can be used for the polyimide polymer.
Examples of other tetracarboxylic acid components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, dicarboxylic acid dihalide compounds, dicarboxylic acid dialkyl ester compounds, and dialkyl ester dihalide compounds.
 すなわち、その他のテトラカルボン酸成分としては、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。 That is, other tetracarboxylic acid components include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalene. Tetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ', 4'-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3', 4,4'-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro 2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5- Pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid.
 特定テトラカルボン酸成分及びその他のテトラカルボン酸成分は、ポリイミド系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、更には、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
 ポリイミド系重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸と1級又は2級のジアミン化合物とを脱水重縮合反応させてポリアミド酸を得る方法又はジカルボン酸ジハライドと1級又は2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法が用いられる。
The specific tetracarboxylic acid component and other tetracarboxylic acid components include solubility of the polyimide polymer in the solvent, vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and optical characteristics of the liquid crystal display element. Depending on the characteristics, one kind or a mixture of two or more kinds can be used.
The method for synthesizing the polyimide polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid. Specifically, a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine compound, dehydration polycondensation reaction of tetracarboxylic acid and primary or secondary diamine compound A method of obtaining a polyamic acid by using a polycarboxylic acid dihalide and a primary or secondary diamine compound is used.
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミン化合物とを重縮合させる方法、カルボン酸基をジアルキルエステル化したジカルボン酸ジハライドと1級又は2級のジアミン化合物とを重縮合させる方法又はポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
 ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
To obtain the polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine compound, a dicarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and a primary Alternatively, a method of polycondensation with a secondary diamine compound or a method of converting a carboxyl group of a polyamic acid into an ester is used.
In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。
 これらは単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、更には生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
The reaction between the diamine component and the tetracarboxylic acid component is usually carried out in a solvent with the diamine component and the tetracarboxylic acid component. The solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the solvent used for reaction below is given, it is not limited to these examples.
For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, Examples include cyclohexanone, cyclopentanone, and 4-hydroxy-4-methyl-2-pentanone.
These may be used alone or in combination. Further, even a solvent that does not dissolve the polyimide precursor may be used by mixing with the above solvent as long as the generated polyimide precursor does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated and dried solvent.
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20~150℃の温度を選択することができるが、好ましくは-5~100℃である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することができる。 When the diamine component and the tetracarboxylic acid component are reacted in a solvent, the solution in which the diamine component is dispersed or dissolved in the solvent is stirred, and the tetracarboxylic acid component is added as it is or dispersed or dissolved in the solvent. Methods, conversely, a method of adding a diamine component to a solution in which a tetracarboxylic acid component is dispersed or dissolved in a solvent, a method of alternately adding a diamine component and a tetracarboxylic acid component, etc., and any of these methods May be used. In addition, when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a polymer. The polymerization temperature at that time can be selected from −20 to 150 ° C., preferably −5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration, and then a solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 ポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
Polyimide is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate (also referred to as imidation rate) of the amic acid group does not necessarily need to be 100%, depending on the application and purpose. Can be adjusted arbitrarily.
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
The temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類又は炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in a solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
 上記ポリイミド系重合体の分子量は、そこから得られる液晶配向膜の強度、膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。
 特定重合体にポリシロキサンを用いる場合、下記の式[A1]で示されるアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と下記の式[A2]又は式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサン、あるいは、式[A1]、式[A2]及び式[A3]で示されるアルコキシシランを重縮合させて得られるポリシロキサン(総称してポリシロキサン系重合体ともいう)のうちのいずれか1種であることが好ましい。
The molecular weight of the polyimide polymer is 5 in terms of weight average molecular weight measured by GPC (Gel Permeation Chromatography) method in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability during film formation, and coating properties. It is preferably 000 to 1,000,000, more preferably 10,000 to 150,000.
When polysiloxane is used for the specific polymer, a polysiloxane obtained by polycondensation of an alkoxysilane represented by the following formula [A1], represented by the formula [A1] and the following formula [A2] or formula [A3] Polysiloxane obtained by polycondensation of alkoxysilane containing any one of alkoxysilanes or polycondensation obtained by polycondensation of alkoxysilanes represented by formula [A1], formula [A2] and formula [A3] It is preferably any one of siloxanes (also collectively referred to as polysiloxane polymers).
Figure JPOXMLDOC01-appb-C000053
 式[A1]中、Aは前記式[1]で示される構造を示し、式[1]におけるY、Y、Y、Y、Y、Y及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表における、Y1~Y6は、それぞれ、本発明のY~Yに読み替えるものとする。また、国際公開公報の各表に掲載される(2-605)~(2-629)における、ステロイド骨格を有する炭素数12~25の有機基は、いずれも、本発明のステロイド骨格を有する炭素数17~51の有機基に読み替えるものとする。
Figure JPOXMLDOC01-appb-C000053
In Formula [A1], A 1 represents the structure represented by Formula [1], and preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in Formula [1] The same combinations as (2-1) to (2-629) described in Tables 6 to 47 on pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.27) can be mentioned. It should be noted that Y1 to Y6 in each table of the International Publication are respectively replaced with Y 1 to Y 6 of the present invention. In addition, any of the organic groups having 12 to 25 carbon atoms having a steroid skeleton in (2-605) to (2-629) listed in the tables of International Publications are all carbons having a steroid skeleton of the present invention. It shall be read as an organic group of formulas 17 to 51.
 式[A1]中、Aはそれぞれ水素原子又は炭素数1~5のアルキル基である。なかでも、水素原子又は炭素数1~3のアルキル基が好ましい。Aはそれぞれ炭素数1~5のアルキル基である。なかでも、重縮合の反応性の点から、炭素数1~3のアルキル基が好ましい。mは1又は2の整数である。なかでも、合成の点からは、1が好ましい。nは0~2の整数である。pは0~3の整数である。なかでも、重縮合の反応性の点から、1~3の整数が好ましい。より好ましくは、2又は3である。m+n+pは4の整数である。 In the formula [A1], A 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Of these, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable. A 3 is each an alkyl group having 1 to 5 carbon atoms. Of these, alkyl groups having 1 to 3 carbon atoms are preferred from the viewpoint of polycondensation reactivity. m is an integer of 1 or 2. Among these, 1 is preferable from the viewpoint of synthesis. n is an integer of 0-2. p is an integer of 0 to 3. Among these, an integer of 1 to 3 is preferable from the viewpoint of polycondensation reactivity. More preferably, it is 2 or 3. m + n + p is an integer of 4.
 式[A1]で示されるアルコキシシランの具体例としては、下記の式[A1-1]~[A1-32]で示されるアルコキシシランを用いることもできる。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
As specific examples of the alkoxysilane represented by the formula [A1], alkoxysilanes represented by the following formulas [A1-1] to [A1-32] may be used.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
(Rはそれぞれ炭素数1~3のアルキル基を示し、Rは炭素数1~3のアルキル基を示し、mは2又は3を示し、nは0又は1を示す。)
Figure JPOXMLDOC01-appb-C000062
(R 1 represents an alkyl group having 1 to 3 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, m represents 2 or 3, and n represents 0 or 1)
Figure JPOXMLDOC01-appb-C000063
(Rはそれぞれ炭素数1~3のアルキル基を示し、Rは炭素数1~3のアルキル基を示し、mは2又は3を示し、nは0又は1を示し、Rはそれぞれ-O-、-COO-、-OCO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-OCH-、-CHO-、-COOCH-又は-CHOCO-を示し、Rはそれぞれ炭素数1~12のアルキル基、アルコキシ基フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。)
Figure JPOXMLDOC01-appb-C000063
(R 1 represents an alkyl group having 1 to 3 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, m represents 2 or 3, n represents 0 or 1, and R 3 represents —O—, —COO—, —OCO—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—, wherein R 4 represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
(Rはそれぞれ炭素数1~3のアルキル基を示し、Rは炭素数1~3のアルキル基を示し、mは2又は3を示し、nは0又は1を示し、Rはそれぞれ-O-、-COO-、-OCO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-OCH-、-CHO-、-COOCH-又は-CHOCO-を示し、Rはそれぞれ炭素数1~12のアルキル基、アルコキシ基フッ素含有アルキル基、はフッ素含有アルコキシ基、フッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基を示す。) (R 1 represents an alkyl group having 1 to 3 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, m represents 2 or 3, n represents 0 or 1, and R 3 represents —O—, —COO—, —OCO—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —OCH 2 —, —CH 2 O—, —COOCH 2- or -CH 2 OCO-, wherein R 4 is an alkyl group having 1 to 12 carbon atoms, alkoxy group fluorine-containing alkyl group, fluorine-containing alkoxy group, fluorine group, cyano group, trifluoromethane group, nitro group, (Azo group, formyl group, acetyl group, acetoxy group or hydroxyl group is shown.)
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
(Rはそれぞれ炭素数1~3のアルキル基を示し、Rは炭素数1~3のアルキル基を示し、mは2又は3を示し、nは0又は1を示し、Rはそれぞれ-O-、-COO-、-OCO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-OCH-、-CHO-、-COOCH-又は-CHOCO-を示し、Rはそれぞれ炭素数1~12のアルキル基、アルコキシ基フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。) (R 1 represents an alkyl group having 1 to 3 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, m represents 2 or 3, n represents 0 or 1, and R 3 represents —O—, —COO—, —OCO—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—, wherein R 4 represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000067
(Rはそれぞれ炭素数1~3のアルキル基を示し、Rは炭素数1~3のアルキル基を示し、mは2又は3を示し、nは0又は1を示し、Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基を示し、Bは1,4-シクロへキシレン基又は1,4-フェニレン基を示し、Bは酸素原子又は-COO-*(但し、「*」を付した結合手がBと結合する。)を示し、Bは酸素原子又は-COO-*(但し、「*」を付した結合手が(CH)a)と結合する。)である。aは0又は1の整数を示し、aは2~10の整数を示し、aは0又は1の整数を示す。)
Figure JPOXMLDOC01-appb-C000067
(R 1 represents an alkyl group having 1 to 3 carbon atoms, R 2 represents an alkyl group having 1 to 3 carbon atoms, m represents 2 or 3, n represents 0 or 1, and B 4 represents fluorine. Represents an alkyl group having 3 to 20 carbon atoms which may be substituted with an atom, B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group, and B 2 represents an oxygen atom or —COO— *. (However, the bond marked with “*” binds to B 3 ), and B 1 is an oxygen atom or —COO— * (where the bond marked with “*” is (CH 2 ) a 2. ). a 1 represents an integer of 0 or 1, a 2 represents an integer of 2 to 10, and a 3 represents an integer of 0 or 1. )
 上記の式[A1]で示されるアルコキシシランは、ポリシロキサン系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、更には、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
 式[A2]で示されるアルコキシシランは、下記の式[A2]に示される。
Figure JPOXMLDOC01-appb-C000068
 式[A2]中、Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基又はシンナモイル基を有する炭素数2~12の有機基である。なかでも、入手の容易さの点から、ビニル基、エポキシ基、アミノ基、メタクリル基、アクリル基又はウレイド基が好ましい。より好ましくは、メタクリル基、アクリル基又はウレイド基である。
The alkoxysilane represented by the above formula [A1] is used for the solubility of the polysiloxane polymer in the solvent, the vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and the optical characteristics of the liquid crystal display element. Depending on the characteristics, one type or a mixture of two or more types can be used.
The alkoxysilane represented by the formula [A2] is represented by the following formula [A2].
Figure JPOXMLDOC01-appb-C000068
In the formula [A2], B 1 is an organic group having 2 to 12 carbon atoms having a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, a methacryl group, an acrylic group, a ureido group, or a cinnamoyl group. Of these, a vinyl group, an epoxy group, an amino group, a methacryl group, an acrylic group, or a ureido group is preferable from the viewpoint of availability. More preferably, they are a methacryl group, an acryl group, or a ureido group.
 式[A2]中、Bはそれぞれ水素原子又は炭素数1~5のアルキル基である。なかでも、水素原子又は炭素数1~3のアルキル基が好ましい。式[A2]中、Bはそれぞれ炭素数1~5のアルキル基である。なかでも、重縮合の反応性の点から、炭素数1~3のアルキル基が好ましい。式[A2]中、mは1又は2の整数である。なかでも、合成の点からは、1が好ましい。式[A2]中、nは0~2の整数である。pは0~3の整数である。なかでも、重縮合の反応性の点から、1~3の整数が好ましい。より好ましくは、2又は3である。m+n+pは4の整数である。 In the formula [A2], B 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Of these, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable. In the formula [A2], B 3 is an alkyl group having 1 to 5 carbon atoms. Of these, alkyl groups having 1 to 3 carbon atoms are preferred from the viewpoint of polycondensation reactivity. In the formula [A2], m is an integer of 1 or 2. Among these, 1 is preferable from the viewpoint of synthesis. In the formula [A2], n is an integer of 0-2. p is an integer of 0 to 3. Among these, an integer of 1 to 3 is preferable from the viewpoint of polycondensation reactivity. More preferably, it is 2 or 3. m + n + p is an integer of 4.
 式[A2]で示されるアルコキシシランの具体例としては、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリエトキシビニルシラン、ビニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、m-スチリルエチルトリエトキシシラン、p-スチリルエチルトリエトキシシラン、m-スチリルメチルトリエトキシシラン、p-スチリルメチルトリエトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-アミノプロピルジエトキシメチルシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、トリメトキシ[3-(フェニルアミノ)プロピル]シラン、3-メルカプトプロピル(ジメトキシ)メチルシラン、(3-メルカプトプロピル)トリエトキシシラン、(3-メルカプトプロピル)トリメトキシシラン、3-(トリエトキシシリル)プロピルイソシアネート、3-(トリエトキシシリル)プロピルメタクリレート、3-(トリメトキシシリル)プロピルメタクリレート、 3-(トリエトキシシリル)プロピルアクリレート、3-(トリメトキシシリル)プロピルアクリレート、3-(トリエトキシシリル)エチルメタクリレート、3-(トリメトキシシリル)エチルメタクリレート、3-(トリエトキシシリル)エチルアクリレート、3-(トリメトキシシリル)エチルアクリレート、3-(トリエトキシシリル)メチルメタクリレート、3-(トリメトキシシリル)メチルメタクリレート、 3-(トリエトキシシリル)メチルアクリレート、3-(トリメトキシシリル)メチルアクリレート、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン、(R)-N-1-フェニルエチル-N’-トリエトキシシリルプロピルウレア、(R)-N-1-フェニルエチル-N’-トリメトキシシリルプロピルウレア、ビス[3-(トリメトキシシリル)プロピル]ウレア、ビス[3-(トリプロポキシシリル)プロピル]ウレア、1-[3-(トリメトキシシリル)プロピル]ウレアなどが挙げられる。 Specific examples of the alkoxysilane represented by the formula [A2] include allyltriethoxysilane, allyltrimethoxysilane, diethoxymethylvinylsilane, dimethoxymethylvinylsilane, triethoxyvinylsilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) Silane, m-styrylethyltriethoxysilane, p-styrylethyltriethoxysilane, m-styrylmethyltriethoxysilane, p-styrylmethyltriethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltri Methoxysilane, diethoxy (3-glycidyloxypropyl) methylsilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyltrimethoxysilane, 2- (3,4 Epoxycyclohexyl) ethyltrimethoxysilane, 3- (2-aminoethylamino) propyldimethoxymethylsilane, 3- (2-aminoethylamino) propyltriethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3-aminopropyldiethoxymethylsilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, trimethoxy [3- (phenylamino) propyl] silane, 3-mercaptopropyl (dimethoxy) methylsilane, (3-mercapto Propyl) triethoxysilane, (3-mercaptopropyl) trimethoxysilane, 3- (triethoxysilyl) propyl isocyanate, 3- (triethoxysilyl) propyl methacrylate, 3- (trimethoxysilyl) ) Propyl methacrylate, 3- (triethoxysilyl) propyl acrylate, 3- (trimethoxysilyl) propyl acrylate, 3- (triethoxysilyl) ethyl methacrylate, 3- (trimethoxysilyl) ethyl methacrylate, 3- (triethoxysilyl) ) Ethyl acrylate, 3- (trimethoxysilyl) ethyl acrylate, 3- (triethoxysilyl) methyl methacrylate, 3- (trimethoxysilyl) methyl methacrylate, 3- (triethoxysilyl) methyl acrylate, 3- (trimethoxysilyl) ) Methyl acrylate, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltripropoxysilane, (R) -N-1-phenylethyl-N′-trie Toxisilylpropylurea, (R) -N-1-phenylethyl-N′-trimethoxysilylpropylurea, bis [3- (trimethoxysilyl) propyl] urea, bis [3- (tripropoxysilyl) propyl] urea 1- [3- (trimethoxysilyl) propyl] urea and the like.
 なかでも、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリエトキシビニルシラン、ビニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-(トリエトキシシリル)プロピルメタクリレート、3-(トリメトキシシリル)プロピルアクリレート、3-(トリメトキシシリル)プロピルメタクリレート、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピル(ジエトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシラン又は2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。
 上記の式[A2]で示されるアルコキシシランは、ポリシロキサン系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、更には、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
Among them, allyltriethoxysilane, allyltrimethoxysilane, diethoxymethylvinylsilane, dimethoxymethylvinylsilane, triethoxyvinylsilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, 3- (triethoxysilyl) propyl methacrylate, 3- (trimethoxysilyl) propyl acrylate, 3- (trimethoxysilyl) propyl methacrylate, 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyl (diethoxy) methylsilane, 3-glycidyloxypropyltrimethoxysilane or 2 -(3,4-Epoxycyclohexyl) ethyltrimethoxysilane is preferred.
The alkoxysilane represented by the above formula [A2] is used for the solubility of the polysiloxane polymer in the solvent, the vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and the optical characteristics of the liquid crystal display element. Depending on the characteristics, one kind or a mixture of two or more kinds can be used.
 式[A3]で示されるアルコキシシランは、式[A3]に示されるアルコキシシランである。
Figure JPOXMLDOC01-appb-C000069
(Dはそれぞれ水素原子又は炭素数1~5のアルキル基であるが、これらは、ハロゲン原子、窒素原子、酸素原子、硫黄原子で置換されていても良い。なかでも、水素原子又は炭素数1~3のアルキル基が好ましい。Dはそれぞれ炭素数1~5のアルキル基である。なかでも、重縮合の反応性の点から、炭素数1~3のアルキル基が好ましい。式[A3]中、nは0~3の整数である。)
The alkoxysilane represented by the formula [A3] is an alkoxysilane represented by the formula [A3].
Figure JPOXMLDOC01-appb-C000069
(D 1 is each a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and these may be substituted with a halogen atom, a nitrogen atom, an oxygen atom, or a sulfur atom. An alkyl group having 1 to 3 carbon atoms is preferred, and each D 2 is an alkyl group having 1 to 5 carbon atoms, among which an alkyl group having 1 to 3 carbon atoms is preferred from the viewpoint of polycondensation reactivity. ], N is an integer of 0 to 3.)
 式[A3]で示されるアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、メチルトリプロポキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエトキシジエチルシラン、ジブトキシジメチルシラン、(クロロメチル)トリエトキシシラン、3-クロロプロピルジメトキシメチルシラン、3-クロロプロピルトリエトキシシラン、2-シアノエチルトリエトキシシラン、トリメトキシ(3,3,3-トリフルオロプロピル)シラン、ヘキシルトリメトキシシラン又は3-トリメトキシシリルプロピルクロライドなどが挙げられる。 Specific examples of the alkoxysilane represented by the formula [A3] include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane. , Propyltrimethoxysilane, propyltriethoxysilane, methyltripropoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethoxydiethylsilane, dibutoxydimethylsilane, (chloromethyl) triethoxysilane, 3-chloropropyldimethoxymethylsilane , 3-chloropropyltriethoxysilane, 2-cyanoethyltriethoxysilane, trimethoxy (3,3,3-trifluoropropyl) silane, hexyltrimethoxy Such as orchids or 3-trimethoxysilylpropyl chloride.
 式[A3]中、nが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランが挙げられ、これらアルコキシシランを用いることが好ましい。
 式[A3]で示されるアルコキシシランは、ポリシロキサン系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、更には、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
In the formula [A3], examples of the alkoxysilane in which n is 0 include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and these alkoxysilanes are preferably used.
The alkoxysilane represented by the formula [A3] has properties such as solubility of the polysiloxane polymer in the solvent, vertical alignment of the liquid crystal when the vertical liquid crystal alignment film is formed, and optical characteristics of the liquid crystal display element. Depending on the situation, one kind or a mixture of two or more kinds can be used.
 ポリシロキサン系重合体は、前記式[A1]で示されるアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と前記式[A2]又は式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサン、又は、式[A1]、式[A2]及び式[A3]で示されるアルコキシシランを重縮合させて得られるポリシロキサンのうちのいずれか1種である。すなわち、式[A1]で示されるアルコキシシランのみで重縮合させて得られるポリシロキサン、式[A1]と式[A2]で示される2種類のアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と式[A3]で示される2種類のアルコキシシランを重縮合させて得られるポリシロキサン、又は式[A1]、式[A2]及び式[A3]で示される3種類のアルコキシシランを重縮合させて得られるポリシロキサンのうちのいずれか1種である。 The polysiloxane polymer is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the formula [A1], or an alkoxysilane represented by the formula [A1] and the formula [A2] or the formula [A3]. Any of polysiloxanes obtained by polycondensation of alkoxysilane containing one kind, or polysiloxanes obtained by polycondensation of alkoxysilanes represented by formula [A1], formula [A2] and formula [A3] Or one. That is, a polysiloxane obtained by polycondensation only with an alkoxysilane represented by the formula [A1], a polysiloxane obtained by polycondensation of two types of alkoxysilanes represented by the formulas [A1] and [A2], a formula A polysiloxane obtained by polycondensation of two types of alkoxysilanes represented by [A1] and formula [A3], or three types of alkoxysilanes represented by formula [A1], formula [A2] and formula [A3] Any one of polysiloxanes obtained by polycondensation.
 なかでも、重縮合の反応性やポリシロキサン系重合体の溶媒への溶解性の点から、複数種のアルコキシシランを重縮合させて得られるポリシロキサンが好ましい。すなわち、式[A1]と式[A2]で示される2種類のアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と式[A3]で示される2種類のアルコキシシランを重縮合させて得られるポリシロキサン、又は式[A1]、式[A2]及び式[A3]で示される3種類のアルコキシシランを重縮合させて得られるポリシロキサンである。 Of these, polysiloxanes obtained by polycondensation of a plurality of types of alkoxysilanes are preferred in terms of polycondensation reactivity and solubility of polysiloxane polymers in solvents. That is, polysiloxane obtained by polycondensation of two types of alkoxysilanes represented by formula [A1] and formula [A2], and polycondensation of two types of alkoxysilanes represented by formula [A1] and formula [A3]. Or a polysiloxane obtained by polycondensation of three types of alkoxysilanes represented by the formulas [A1], [A2] and [A3].
 上記ポリシロキサン系重合体を作製する際、複数種のアルコキシランを用いる場合、式[A1]で示されるアルコキシシランは、すべてのアルコキシシラン中、1~40モル%であることが好ましく、より好ましくは、1~30モル%である。また、式[A2]で示されるアルコキシシランは、すべてのアルコキシシラン中、1~70モル%であることが好ましく、より好ましくは、1~60モル%である。更に、式[A3]で示されるアルコキシシランは、すべてのアルコキシシラン中、1~99モル%であることが好ましくは、より好ましくは、1~80モル%である。
 ポリシロキサン系重合体を作製する方法は特に限定されない。ポリシロキサン系重合体は、前記式[A1]で示されるアルコキシシランを溶媒中で重縮合させて得る方法、式[A1]と前記式[A2]で示されるアルコキシシランを溶媒中で重縮合させて得る方法、式[A1]と前記式[A3]で示されるアルコキシシランを溶媒中で重縮合させて得る方法、更に、式[A1]、式[A2]及び式[A3]で示されるアルコキシシランを溶媒中で重縮合させて得る方法が挙げられる。また、ポリシロキサン系重合体は、これらアルコキシシランを重縮合して、溶媒に均一に溶解した溶液として得られる。
When a plurality of types of alkoxysilanes are used when preparing the polysiloxane-based polymer, the alkoxysilane represented by the formula [A1] is preferably 1 to 40 mol%, more preferably all alkoxysilanes. Is 1-30 mol%. In addition, the alkoxysilane represented by the formula [A2] is preferably 1 to 70 mol%, more preferably 1 to 60 mol% in all alkoxysilanes. Further, the alkoxysilane represented by the formula [A3] is preferably 1 to 99 mol%, more preferably 1 to 80 mol% in all alkoxysilanes.
The method for producing the polysiloxane polymer is not particularly limited. The polysiloxane polymer is obtained by polycondensing an alkoxysilane represented by the formula [A1] in a solvent, by polycondensing an alkoxysilane represented by the formula [A1] and the formula [A2] in a solvent. A method obtained by polycondensing an alkoxysilane represented by the formula [A1] and the formula [A3] in a solvent, and an alkoxy represented by the formula [A1], the formula [A2] and the formula [A3]. Examples thereof include a method obtained by polycondensation of silane in a solvent. The polysiloxane polymer is obtained as a solution obtained by polycondensing these alkoxysilanes and uniformly dissolving in a solvent.
 ポリシロキサン系重合体を重縮合する方法は特に限定されない。例えば、アルコキシシランをアルコール系溶媒やグリコール系溶媒中で、加水分解・重縮合反応させる方法が挙げられる。その際、加水分解・重縮合反応は、部分的に加水分解させても、完全に加水分解させてもよい。完全に加水分解する場合は、理論上、アルコキシシラン中のすべてのアルコキシ基の0.5倍モル量の水を加えれば良いが、0.5倍モル量よりも過剰量の水を加えることが好ましい。ポリシロキサン系重合体を得るためには、上記加水分解・重縮合反応に用いる水の量は、目的に応じて適宜選択することができるが、アルコキシシラン中のすべてのアルコキシ基の0.5~2.5倍モル量であることが好ましい。 The method for polycondensing the polysiloxane polymer is not particularly limited. For example, a method in which an alkoxysilane is hydrolyzed and polycondensed in an alcohol solvent or a glycol solvent can be mentioned. At that time, the hydrolysis / polycondensation reaction may be partially hydrolyzed or completely hydrolyzed. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times the molar amount of water of all alkoxy groups in the alkoxysilane, but it is possible to add an excessive amount of water more than 0.5 times the molar amount. preferable. In order to obtain a polysiloxane polymer, the amount of water used in the hydrolysis / polycondensation reaction can be appropriately selected according to the purpose, but 0.5 to 0.5% of all alkoxy groups in the alkoxysilane. The molar amount is preferably 2.5 times.
 また、加水分解・重縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸性化合物、アンモニア、メチルアミン、エチルアミン、エタノールアミン又はトリエチルアミンなどのアルカリ性化合物、あるいは、塩酸、硝酸、蓚酸などの金属塩などの触媒を用いることができる。加えて、アルコキシシランが溶解した溶液を加熱することでも、加水分解・重縮合反応を促進させることもできる。その際の加熱温度及び加熱時間は、目的に応じて適宜選択することができる。例えば、50℃で24時間加熱攪拌し、その後、還流条件下で1時間攪拌する等の条件が挙げられる。 Also, for the purpose of promoting hydrolysis and polycondensation reaction, acidic compounds such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid, alkaline such as ammonia, methylamine, ethylamine, ethanolamine or triethylamine A compound or a catalyst such as a metal salt such as hydrochloric acid, nitric acid, or oxalic acid can be used. In addition, the hydrolysis / polycondensation reaction can be promoted by heating the solution in which the alkoxysilane is dissolved. The heating temperature and heating time in that case can be suitably selected according to the objective. For example, conditions such as heating and stirring at 50 ° C. for 24 hours and then stirring under reflux conditions for 1 hour can be mentioned.
 更に、重縮合する別の方法として、アルコキシシラン、溶媒及び蓚酸の混合物を加熱して、重縮合反応する方法が挙げられる。具体的には、あらかじめ、溶媒に蓚酸を加えて、蓚酸の溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、上記反応に用いる蓚酸の量は、アルコキシシラン中のすべてのアルコキシ基の1モルに対して、0.2~2.0モルとすることが好ましい。また、この反応は、溶液の温度が50~180℃で行うことができるが、溶媒の蒸発や揮散が起こらないように、還流下で数十分から数十時間で行うことが好ましい。
 ポリシロキサン系重合体を作製する重縮合反応において、前記式[A1]、式[A2]及び式[A3]で示されるアルコキシシランを複種用いる場合は、複数種のアルコキシシランをあらかじめ混合した混合物を用いて反応しても、複数種のアルコキシシランを順次添加しながら反応してもよい。
Furthermore, another method for polycondensation includes a method in which a polycondensation reaction is carried out by heating a mixture of alkoxysilane, solvent and oxalic acid. Specifically, after adding oxalic acid to a solvent to prepare a solution of oxalic acid in advance, the alkoxysilane is mixed in a state where the solution is heated. At that time, the amount of oxalic acid used in the above reaction is preferably 0.2 to 2.0 mol with respect to 1 mol of all alkoxy groups in the alkoxysilane. This reaction can be carried out at a solution temperature of 50 to 180 ° C., but is preferably carried out under reflux for several tens of minutes to several tens of hours so that the solvent does not evaporate or volatilize.
In the polycondensation reaction for producing the polysiloxane polymer, when a plurality of alkoxysilanes represented by the formulas [A1], [A2] and [A3] are used, a mixture in which a plurality of types of alkoxysilanes are mixed in advance is used. Even if it reacts using, it may react, adding several types of alkoxysilane sequentially.
 アルコキシシランの重縮合反応に用いる溶媒としては、アルコキシシランが溶解するものであれば、特に限定されない。また、アルコキシシランが溶解しない溶媒であっても、アルコキシシランの重縮合反応の進行とともに溶解するものであればよい。重縮合反応に用いる溶媒としては、一般的に、アルコキシシランの重縮合反応によりアルコールが発生するため、アルコール系溶媒、グリコール系溶媒、グリコールエーテル系溶媒又はアルコールと相溶性がよい溶媒が用いられる。このような重縮合反応に用いる溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール又はジアセトンアルコールなどのアルコール系溶媒、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、2,3-ペンタンジオール又は1,6-ヘキサンジオールなどのグルコール系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル又はプロピレングリコールジブチルエーテルなどのグリコールエーテル系溶媒、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド又はm-クレゾールなどのアルコールと相性のよい溶媒が挙げられる。 The solvent used for the polycondensation reaction of alkoxysilane is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even if it is a solvent in which an alkoxysilane does not melt | dissolve, what is melt | dissolved will be sufficient as long as the polycondensation reaction of an alkoxysilane progresses. As the solvent used for the polycondensation reaction, an alcohol is generally generated by the polycondensation reaction of alkoxysilane, and therefore, an alcohol solvent, a glycol solvent, a glycol ether solvent, or a solvent that is compatible with alcohol is used. Specific examples of the solvent used in such a polycondensation reaction include alcohol solvents such as methanol, ethanol, propanol, butanol or diacetone alcohol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1, 3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4 -Glucol solvents such as pentanediol, 1,5-pentanediol, 2,4-pentanediol, 2,3-pentanediol or 1,6-hexanediol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethyl Glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether , Diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene Glycol ether solvents such as recall monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether or propylene glycol dibutyl ether, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, Examples thereof include solvents that are compatible with alcohols such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetramethylurea, hexamethylphosphotriamide, and m-cresol.
 また、本発明では、重縮合反応の際、これら溶媒を1種類又は2種類以上、混合して用いることもできる。
 前記方法により得られたポリシロキサン系重合体の溶液は、原料として仕込んだ全アルコキシシランが有する珪素原子をSiOに換算した濃度(SiO換算濃度ともいう)が、20質量%以下であることが好ましい。なかでも、5~15質量%であることが好ましい。この濃度範囲において任意の濃度を選択することで、溶液中のゲルの発生を抑制することができ、均一なポリシロキサン系重合体の溶液を得ることができる。
 前記方法で得られたポリシロキサン系重合体の溶液をそのまま、特定重合体として用いても良いし、必要に応じて、前記方法で得られたポリシロキサン系重合体の溶液を濃縮したり、溶媒を加えて希釈したり、他の溶媒に置換して、特定重合体として用いることもできる。
Moreover, in this invention, in the case of a polycondensation reaction, these solvents can also be used 1 type or in mixture of 2 or more types.
In the polysiloxane polymer solution obtained by the above method, the concentration of silicon atoms contained in all alkoxysilanes charged as a raw material in terms of SiO 2 (also referred to as SiO 2 concentration) is 20% by mass or less. Is preferred. In particular, the content is preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, the generation of gel in the solution can be suppressed, and a uniform polysiloxane polymer solution can be obtained.
The polysiloxane polymer solution obtained by the above method may be used as it is as a specific polymer, and if necessary, the polysiloxane polymer solution obtained by the above method may be concentrated or a solvent. It can also be used as a specific polymer by diluting by addition or substitution with another solvent.
 前記溶媒を加えて希釈する際に用いる溶媒(添加溶媒ともいう)は、重縮合反応に用いる溶媒やその他の溶媒であってもよい。この添加溶媒は、ポリシロキサン系重合体が均一に溶解している限りにおいては特に限定されず、1種類又は2種類以上を任意に選択して使用することができる。このような添加溶媒としては、前記重縮合反応に用いる溶媒に加え、アセトン、メチルエチルケトン又はメチルイソブチルケトンなどのケトン系溶媒、酢酸メチル、酢酸エチル又は乳酸エチルなどのエステル系溶媒などが挙げられる。
 更に、本発明において、特定重合体にポリシロキサン系重合体とそれ以外の重合体を用いる場合、ポリシロキサン系重合体にそれ以外の重合体を混合する前に、ポリシロキサン系重合体の重縮合反応の際に発生するアルコールを常圧又は減圧で留去しておくことが好ましい。
The solvent used for dilution by adding the solvent (also referred to as an added solvent) may be a solvent used for the polycondensation reaction or other solvents. The additive solvent is not particularly limited as long as the polysiloxane polymer is uniformly dissolved, and one or two or more types can be arbitrarily selected and used. Examples of such an additive solvent include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ester solvents such as methyl acetate, ethyl acetate, and ethyl lactate, in addition to the solvent used in the polycondensation reaction.
Furthermore, in the present invention, when a polysiloxane polymer and another polymer are used as the specific polymer, the polysiloxane polymer is polycondensed before mixing the other polymer with the polysiloxane polymer. The alcohol generated during the reaction is preferably distilled off at normal pressure or reduced pressure.
<液晶配向処理剤>
 本発明の液晶配向処理剤は、垂直液晶配向膜を形成するための塗布溶液であり、前記式[1]で示される特定側鎖構造を有する特定重合体及び溶媒を含有する塗布溶液である。
 上記特定側鎖構造を有する特定重合体としては、特に限定は無いが、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース又はポリシロキサンから選ばれる少なくとも1つの重合体であることが好ましい。なかでも、ポリイミド前駆体、ポリイミド又はポリシロキサンが好ましい。また、特定重合体には、これら重合体のなかの1種類又は2種類以上を用いることができる。
<Liquid crystal alignment agent>
The liquid crystal aligning agent of the present invention is a coating solution for forming a vertical liquid crystal alignment film, and is a coating solution containing a specific polymer having a specific side chain structure represented by the formula [1] and a solvent.
The specific polymer having the specific side chain structure is not particularly limited, but at least selected from acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, or polysiloxane. One polymer is preferred. Among these, a polyimide precursor, polyimide or polysiloxane is preferable. In addition, one kind or two or more kinds of these polymers can be used as the specific polymer.
 液晶配向処理剤におけるすべての重合体成分は、すべてが特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。その際、それ以外の他の重合体の含有量は、特定重合体100質量部に対して、0.5質量部~15質量部、好ましくは、1質量部~10質量部である。それ以外の他の重合体としては、前記式[1]で示される特定側鎖構造が無い前記重合体が挙げられる。 All polymer components in the liquid crystal alignment treatment agent may be all specific polymers, or other polymers may be mixed. In that case, the content of the other polymer is 0.5 to 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the specific polymer. Examples of the other polymer include the polymer having no specific side chain structure represented by the formula [1].
 液晶配向処理剤中の溶媒の含有量は、液晶配向処理剤の塗布方法や目的とする膜厚を得るという観点から、適宜選択することができる。なかでも、塗布により均一な垂直液晶配向膜を形成するとい観点から、液晶配向処理剤中の溶媒の含有量は50~99.9質量%であることが好ましい。なかでも、60~99質量%が好ましく、特に好ましくは、65~99質量%である。
 液晶配向処理剤に用いる溶媒は、特定重合体を溶解させる溶媒であれば特に限定されない。なかでも、特定重合体がポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルの場合、あるいは、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース、ポリシロキサンなどの溶媒への溶解性が低い場合は、下記に示すような溶媒(溶媒A類ともいう)を用いることが好ましい。
Content of the solvent in a liquid-crystal aligning agent can be suitably selected from a viewpoint of obtaining the coating method of a liquid-crystal aligning agent, and the target film thickness. Among these, from the viewpoint of forming a uniform vertical liquid crystal alignment film by coating, the content of the solvent in the liquid crystal aligning agent is preferably 50 to 99.9% by mass. Among these, 60 to 99% by mass is preferable, and 65 to 99% by mass is particularly preferable.
The solvent used for the liquid crystal aligning agent is not particularly limited as long as the solvent dissolves the specific polymer. Among them, when the specific polymer is a polyimide precursor, polyimide, polyamide or polyester, or when the solubility in a solvent such as acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, cellulose, polysiloxane is low, It is preferable to use a solvent (also referred to as solvent A) as shown below.
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノンなどである。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンを用いることが好ましい。これらは単独で使用しても、混合して使用してもよい。
 特定重合体が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース又はポリシロキサンである場合は、下記に示すような溶媒(溶媒B類ともいう)を用いることができる。
For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone. Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferably used. These may be used alone or in combination.
When the specific polymer is an acrylic polymer, a methacrylic polymer, a novolac resin, polyhydroxystyrene, cellulose, or polysiloxane, a solvent (also referred to as a solvent B) shown below can be used.
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル又は下記の式[D1]~式[D3]で示される溶媒などを挙げることができる。
Figure JPOXMLDOC01-appb-C000070
(式[D1]中、Dは炭素数1~3のアルキル基を示し、式[D2]中、Dは炭素数1~3のアルキル基を示し、式[D3]中、Dは炭素数1~4のアルキル基を示す)。
For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentane Diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2 Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1- (Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol dia Cetrate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, lactic acid Methyl, ethyl lactate, methyl acetate, ethyl acetate N-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isoamyl lactate or the following formula [D1] Examples thereof include a solvent represented by the formula [D3].
Figure JPOXMLDOC01-appb-C000070
(In the formula [D1], D 1 represents an alkyl group having 1 to 3 carbon atoms, in the formula [D2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D3], D 3 represents An alkyl group having 1 to 4 carbon atoms).
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル又は式[D1]~式[D3]で示される溶媒を用いることが好ましい。
 これら溶媒B類は、液晶配向処理剤を塗布する際の垂直液晶配向膜の塗膜性や表面平滑性を高めることができるため、特定重合体にポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルを用いた場合、前記溶媒A類と混合して用いることが好ましい。その際、溶媒B類は、液晶配向処理剤に含まれる溶媒全体の1~70質量%であることが好ましい。なかでも、10~60質量%が好ましく、より好ましくは20~60質量%である。
Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or a solvent represented by the formula [D1] to formula [D3] is used. Is preferred.
Since these solvents B can improve the coating properties and surface smoothness of the vertical liquid crystal alignment film when applying the liquid crystal aligning agent, a polyimide precursor, polyimide, polyamide or polyester was used as the specific polymer. In this case, it is preferable to use a mixture with the solvent A. In that case, the solvent B is preferably 1 to 70% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 10 to 60% by mass is preferable, and 20 to 60% by mass is more preferable.
 液晶配向処理剤には、液晶層と垂直液晶配向膜との密着性を高める目的で、下記の式[6]で示される化合物(以下、密着性化合物という)を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000071
 式[6]中、Xは下記の式[6a-1]~[6a-7]で示される構造からなる群から選ばれる少なくとも1種の構造を示す。なかでも、本発明の密着性化合物の製造の容易さの点から、式[6a-1]、式[6a-2]、式[6a-3]、式[6a-5]又は式[6a-6]で示される構造が好ましい。より好ましくは、式[6a-1]、式[6a-3]、式[6a-5]又は式[6a-6]で示される構造である。
Figure JPOXMLDOC01-appb-C000072
 式[6a-2]中、Aは水素原子又は炭素数1~5のアルキレン基を示す。なかでも、密着性化合物の製造の容易さの点から、水素原子又は炭素数1~2のアルキレン基が好ましい。より好ましくは、水素原子又はメチル基である。
 式[6a-3]中、Aは水素原子又は炭素数1~3のアルキレン基を示す。なかでも、密着性化合物の製造の容易さの点から、水素原子又は炭素数1~2のアルキレン基が好ましい。より好ましくは、水素原子又はメチル基である。
 式[6a-5]中、A及びAはそれぞれ独立して、水素原子又は炭素数1~3のアルキレン基を示す。なかでも、密着性化合物の製造の容易さの点から、水素原子又は炭素数1~2のアルキレン基が好ましい。より好ましくは、水素原子又はメチル基である。
 式[6a-5]中、Aは炭素数1~3のアルキレン基を示す。なかでも、密着性化合物の製造の容易さの点から、炭素数1~2のアルキレン基が好ましい。
 式[6a-6]中、A及びAはそれぞれ独立して、水素原子又は炭素数1~3のアルキレン基を示す。なかでも、密着性化合物の製造の容易さの点から、水素原子又は炭素数1~2のアルキレン基が好ましい。より好ましくは、水素原子又は炭素数1のアルキレン基(メチル基)である。
 式[6a-6]中、A及びAはそれぞれ独立して、炭素数1~3のアルキレン基を示す。なかでも、密着性化合物の製造の容易さの点から、炭素数1~2のアルキレン基が好ましい。
The liquid crystal aligning agent preferably contains a compound represented by the following formula [6] (hereinafter referred to as an adhesive compound) for the purpose of enhancing the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film.
Figure JPOXMLDOC01-appb-C000071
In the formula [6], X 1 represents at least one structure selected from the group consisting of structures represented by the following formulas [6a-1] to [6a-7]. Among these, from the viewpoint of easy production of the adhesive compound of the present invention, the formula [6a-1], the formula [6a-2], the formula [6a-3], the formula [6a-5] or the formula [6a- 6] is preferable. A structure represented by formula [6a-1], formula [6a-3], formula [6a-5] or formula [6a-6] is more preferable.
Figure JPOXMLDOC01-appb-C000072
In the formula [6a-2], A 1 represents a hydrogen atom or an alkylene group having 1 to 5 carbon atoms. Among these, a hydrogen atom or an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound. More preferably, they are a hydrogen atom or a methyl group.
In the formula [6a-3], A 2 represents a hydrogen atom or an alkylene group having 1 to 3 carbon atoms. Among these, a hydrogen atom or an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound. More preferably, they are a hydrogen atom or a methyl group.
In the formula [6a-5], A 3 and A 5 each independently represents a hydrogen atom or an alkylene group having 1 to 3 carbon atoms. Among these, a hydrogen atom or an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound. More preferably, they are a hydrogen atom or a methyl group.
In the formula [6a-5], A 4 represents an alkylene group having 1 to 3 carbon atoms. Among these, an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound.
In the formula [6a-6], A 6 and A 9 each independently represents a hydrogen atom or an alkylene group having 1 to 3 carbon atoms. Among these, a hydrogen atom or an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound. More preferably, they are a hydrogen atom or a C1-C1 alkylene group (methyl group).
In the formula [6a-6], A 7 and A 8 each independently represents an alkylene group having 1 to 3 carbon atoms. Among these, an alkylene group having 1 to 2 carbon atoms is preferable from the viewpoint of easy production of the adhesive compound.
 式[6]中、Xは単結合、-CH-、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-及び-N(CH)CO-からなる群から選ばれる少なくとも1種の結合基を示す。なかでも、密着性化合物の合成の容易さの点から、単結合、-CH-、-O-、-NH-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-が好ましい。より好ましくは、単結合、-CH-、-O-、-NH-、-CONH-、-CHO-、-OCH-、-COO-又は-OCO-である。特に好ましくは、単結合、-O-、-CONH-、-OCH-、-COO-又は-OCO-である。
 式[6]中、Xは炭素数1~20のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、-(CH-O-)-(qは1~10の整数を示す)、及び炭素数6~20のベンゼン環又はシクロヘキサン環を有する有機基からなる群から選ばれる少なくとも1種を示す。その際、前記アルキレン基の任意の-CH-基は、-COO-、-OCO-、-CONH-、NHCO-、-CO-、-S-、-SO-、-CF-、-C(CF-、-Si(CH-、-OSi(CH-又は-Si(CHO-で置き換えられていても良く、任意の炭素原子に結合している水素原子は、水酸基(OH基)、カルボキシル基(COOH基)又はハロゲン原子で置き換えられていても良い。なかでも、密着性化合物の製造の容易さの点から、炭素数1~20のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、-(CH-O-)-(qは1~10の整数を示す)又は下記の式[6c-1]~式[6c-5]で示される構造が好ましい。より好ましくは、炭素数1~15のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、-(CH-O-)-(qは1~10の整数を示す)、下記の式[6c-1]、式[6c-3]、式[6c-4]又は式[6c-5]で示される構造である。特に好ましくは、炭素数1~15のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、式[6c-1]、式[6c-4]又は式[6c-5]で示される構造である。
Figure JPOXMLDOC01-appb-C000073
 式[6]中、Xは単結合、-CH-、-OCH-及びO-CH-CH-からなる群から選ばれる少なくとも1種の結合基を示す。なかでも、密着性化合物の合成の容易さの点から、単結合、-CH-又は-OCH-で示される構造が好ましい。
 式[6]中、Xは下記の式[6b-1]~[6b-8]で示される構造からなる群から選ばれる少なくとも1種の構造を示す。なかでも、密着性化合物の合成の容易さの点から、式[6b-1]、式[6b-2]又は式[6b-6]で示される構造が好ましい。より好ましくは、式[6b-1]又は式[6b-2]で示される構造である。
Figure JPOXMLDOC01-appb-C000074
 式[6b-4]中、Bは水素原子又はベンゼン環を示す。
 式[6b-8]中、Bはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示す。
 式[6b-8]中、Bは炭素数1~12のアルキレン基、炭素数1~12のフッ素含有アルキレン基、炭素数1~12のアルコキシル基及び炭素数1~12のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。
 式[6]中、nは1~3の整数を示す。なかでも、密着性化合物の合成の容易さの点から、1又は2が好ましい。より好ましいのは、1である。
 式[6]中、mは1~3の整数を示す。なかでも、密着性化合物の合成の容易さの点から、1又は2が好ましい。
In the formula [6], X 2 represents a single bond, —CH 2 —, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 It represents at least one linking group selected from the group consisting of —, —COO—, —OCO—, —CON (CH 3 ) — and —N (CH 3 ) CO—. Among these, from the viewpoint of easy synthesis of the adhesive compound, a single bond, —CH 2 —, —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO— is preferred. More preferably, they are a single bond, —CH 2 —, —O—, —NH—, —CONH—, —CH 2 O—, —OCH 2 —, —COO— or —OCO—. Particularly preferred is a single bond, —O—, —CONH—, —OCH 2 —, —COO— or —OCO—.
In the formula [6], X 3 is an alkylene group having 1 to 20 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), — (CH 2 —O—) q 1 (q represents an integer of 1 to 10) and at least one selected from the group consisting of organic groups having a benzene ring or a cyclohexane ring having 6 to 20 carbon atoms. In this case, any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom The hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom. Among these, from the viewpoint of easy production of the adhesive compound, an alkylene group having 1 to 20 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), — ( CH 2 —O—) q — (q represents an integer of 1 to 10) or structures represented by the following formulas [6c-1] to [6c-5] are preferable. More preferably, an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), — (CH 2 —O—) q — (q is And represents a structure represented by the following formula [6c-1], formula [6c-3], formula [6c-4] or formula [6c-5]. Particularly preferably, an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), Formula [6c-1], Formula [6c-4] Or it is a structure shown by Formula [6c-5].
Figure JPOXMLDOC01-appb-C000073
In the formula [6], X 4 represents at least one linking group selected from the group consisting of a single bond, —CH 2 —, —OCH 2 —, and O—CH 2 —CH 2 —. Among these, a structure represented by a single bond, —CH 2 — or —OCH 2 — is preferable from the viewpoint of easy synthesis of the adhesive compound.
In the formula [6], X 5 represents at least one structure selected from the group consisting of the structures represented by the following formulas [6b-1] to [6b-8]. Among these, the structure represented by the formula [6b-1], the formula [6b-2] or the formula [6b-6] is preferable from the viewpoint of the ease of synthesis of the adhesive compound. A structure represented by the formula [6b-1] or the formula [6b-2] is more preferable.
Figure JPOXMLDOC01-appb-C000074
In the formula [6b-4], B 1 represents a hydrogen atom or a benzene ring.
In the formula [6b-8], B 2 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring.
In the formula [6b-8], B 3 represents an alkylene group having 1 to 12 carbon atoms, a fluorine-containing alkylene group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, and a fluorine-containing alkoxyl group having 1 to 12 carbon atoms. At least one selected from the group consisting of
In the formula [6], n represents an integer of 1 to 3. Especially, 1 or 2 is preferable from the point of the ease of the synthesis | combination of an adhesive compound. More preferred is 1.
In the formula [6], m represents an integer of 1 to 3. Especially, 1 or 2 is preferable from the point of the ease of the synthesis | combination of an adhesive compound.
 密着性化合物のより具体的な構造としては、下記の式[6-1a]~[6-3a]、式[6-1b]~[6-3b]、式[6-1c]~[6-3c]及び式[6-1d]~[6-3d]で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000075
 式[6-1a]中のX、式[6-2a]中のX及び式[6-3a]中のXはそれぞれ独立して、単結合、-O-、-CONH-、-OCH-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。なかでも、密着性化合物の製造の容易さの点から、単結合、-O-、-OCH-又は-OCO-が好ましい。より好ましくは、単結合、-O-又は-OCH-である。
 式[6-1a]中のX、式[6-2a]中のX及び式[6-3a]中のXはそれぞれ独立して、炭素数1~15のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、式[6c-1]、式[6c-4]及び式[6c-5]で示される構造からなる群から選ばれる少なくとも1種を示す。その際、前記アルキレン基の任意の-CH-基は、-COO-、-OCO-、-CONH-、NHCO-、-CO-、-S-、-SO-、-CF-、-C(CF-、-Si(CH-、-OSi(CH-又は-Si(CHO-で置き換えられていても良く、任意の炭素原子に結合している水素原子は、水酸基(OH基)、カルボキシル基(COOH基)又はハロゲン原子で置き換えられていても良い。
 式[6-1a]中のX、式[6-2a]中のX及び式[6-3a]中のXはそれぞれ独立して、単結合、-CH-及び-OCH-からなる群から選ばれる少なくとも1種の結合基を示す。
 式[6-1a]中のn1、式[6-2a]中のn2及び式[6-3a]中のn3はそれぞれ独立して、1又は2の整数を示す。なかでも、1が好ましい。
 式[6-1a]中のm1、式[6-2a]中のm2及び式[6-3a]中のm3はそれぞれ独立して、1又は2の整数を示す。なかでも、1が好ましい。
Figure JPOXMLDOC01-appb-C000076
 式[6-1b]中のX、式[6-2b]中のX及び式[6-3b]中のXはそれぞれ独立して、単結合、-O-、-CONH-、-OCH-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。なかでも、密着性化合物の製造の容易さの点から、単結合、-O-、-OCH-又は-OCO-が好ましい。より好ましくは、単結合、-O-又は-OCH-である。
 式[6-1b]中のX、式[6-2b]中のX及び式[6-3b]中のXはそれぞれ独立して、炭素数1~15のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、式[6c-1]、式[6c-4]及び式[6c-5]で示される構造からなる群から選ばれる少なくとも1種を示す。その際、前記アルキレン基の任意の-CH-基は、-COO-、-OCO-、-CONH-、NHCO-、-CO-、-S-、-SO-、-CF-、-C(CF-、-Si(CH-、-OSi(CH-又は-Si(CHO-で置き換えられていても良く、任意の炭素原子に結合している水素原子は、水酸基(OH基)、カルボキシル基(COOH基)又はハロゲン原子で置き換えられていても良い。
 式[6-1b]中のX、式[6-2b]中のX及び式[6-3b]中のXはそれぞれ独立して、単結合、-CH-及び-OCH-から選ばれる少なくとも1種の結合基を示す。
 式[6-1b]中のA、式[6-2b]中のA及び式[6-3b]中のAはそれぞれ独立して、水素原子又は炭素数1~2のアルキレン基を示す。なかでも、水素原子又はメチル基が好ましい。
 式[6-1b]中のn1、式[6-2b]中のn2及び式[6-3b]中のn3はそれぞれ独立して、1又は2の整数を示す。なかでも、1が好ましい。
 式[6-1b]中のm1、式[6-2b]中のm2及び式[6-3b]中のm3はそれぞれ独立して、1又は2の整数を示す。なかでも、1が好ましい。
Figure JPOXMLDOC01-appb-C000077
 式[6-1c]中のX、式[6-2c]中のX及び式[6-3c]中のXはそれぞれ独立して、単結合、-O-、-CONH-、-OCH-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。なかでも、密着性化合物の製造の容易さの点から、単結合、-O-、-OCH-又は-OCO-が好ましい。より好ましくは、単結合、-O-又は-OCH-である。
 式[6-1c]中のX、式[6-2c]中のX及び式[6-3c]中のXはそれぞれ独立して、炭素数1~15のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、式[6c-1]、式[6c-4]及び式[6c-5]で示される構造からなる群から選ばれる少なくとも1種を示す。その際、前記アルキレン基の任意の-CH-基は、-COO-、-OCO-、-CONH-、NHCO-、-CO-、-S-、-SO-、-CF-、-C(CF-、-Si(CH-、-OSi(CH-又は-Si(CHO-で置き換えられていても良く、任意の炭素原子に結合している水素原子は、水酸基(OH基)、カルボキシル基(COOH基)又はハロゲン原子で置き換えられていても良い。
 式[6-1c]中のX、式[6-2c]中のX及び式[6-3c]中のXはそれぞれ独立して、単結合、-CH-及び-OCH-からなる群から選ばれる少なくとも1種の結合基を示す。
 式[6-1c]中のA、式[6-2c]中のA及び式[6-3c]中のAはそれぞれ独立して、水素原子又は炭素数1~2のアルキレン基を示す。なかでも、水素原子又はメチル基が好ましい。
 式[6-1c]中のA、式[6-2c]中のA及び式[6-3c]中のAはそれぞれ独立して、炭素数1~2のアルキレン基を示す。
 式[6-1c]中のA、式[6-2c]中のA及び式[6-3c]中のAはそれぞれ独立して、水素原子又は炭素数1~2のアルキレン基を示す。なかでも、水素原子又はメチル基が好ましい。
 式[6-1c]中のn1、式[6-2c]中のn2及び式[6-3c]中のn3はそれぞれ独立して、1又は2の整数を示す。なかでも、1が好ましい。
 式[6-1c]中のm1、式[6-2c]中のm2及び式[6-3c]中のm3はそれぞれ独立して、1又は2の整数を示す。なかでも、1が好ましい。
Figure JPOXMLDOC01-appb-C000078
 式[6-1d]中のX、式[6-2d]中のX及び式[6-3d]中のXはそれぞれ独立して、単結合、-O-、-CONH-、-OCH-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種の結合基を示す。なかでも、密着性化合物の製造の容易さの点から、単結合、-O-、-OCH-又は-OCO-が好ましい。より好ましくは、単結合、-O-又は-OCH-である。
 式[6-1d]中のX、式[6-2d]中のX及び式[6-3d]中のXはそれぞれ独立して、炭素数1~15のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、式[6c-1]、式[6c-4]及び式[6c-5]で示される構造からなる群から選ばれる少なくとも1種を示す。その際、前記アルキレン基の任意の-CH-基は、-COO-、-OCO-、-CONH-、NHCO-、-CO-、-S-、-SO-、-CF-、-C(CF-、-Si(CH-、-OSi(CH-又は-Si(CHO-で置き換えられていても良く、任意の炭素原子に結合している水素原子は、水酸基(OH基)、カルボキシル基(COOH基)又はハロゲン原子で置き換えられていても良い。
 式[6-1d]中のX、式[6-2d]中のX及び式[6-3d]中のXはそれぞれ独立して、単結合、-CH-及び-OCH-から選ばれる少なくとも1種の結合基を示す。
 式[6-1d]中のA、式[6-2d]中のA及び式[6-3d]中のAはそれぞれ独立して、水素原子又は炭素数1~2のアルキレン基を示す。なかでも、水素原子又はメチル基が好ましい。
 式[6-1d]中のA、式[6-2d]中のA及び式[6-3d]中のAはそれぞれ独立して、炭素数1~2のアルキレン基を示す。
 式[6-1d]中のA、式[6-2d]中のA及び式[6-3d]中のA10はそれぞれ独立して、炭素数1~2のアルキレン基を示す。
 式[6-1d]中のA、式[6-2d]中のA及び式[6-3d]中のA11はそれぞれ独立して、水素原子又は炭素数1~2のアルキレン基を示す。なかでも、水素原子又はメチル基が好ましい。
 式[6-1d]中のn1、式[6-2d]中のn2及び式[6-3d]中のn3はそれぞれ独立して、1又は2の整数を示す。なかでも、1が好ましい。
 式[6-1d]中のm1、式[6-2d]中のm2及び式[6-3d]中のm3はそれぞれ独立して、1又は2の整数を示す。なかでも、1が好ましい。
More specific structures of the adhesive compound include the following formulas [6-1a] to [6-3a], formulas [6-1b] to [6-3b], and formulas [6-1c] to [6- 3c] and compounds represented by the formulas [6-1d] to [6-3d].
Figure JPOXMLDOC01-appb-C000075
X a in formula [6-1a], X d in formula [6-2a] and X g in formula [6-3a] are each independently a single bond, —O—, —CONH—, — At least one linking group selected from the group consisting of OCH 2 —, —COO— and —OCO—; Of these, a single bond, —O—, —OCH 2 — or —OCO— is preferable from the viewpoint of easy production of the adhesive compound. More preferably, it is a single bond, —O— or —OCH 2 —.
X b in formula [6-1a], X e in formula [6-2a] and X h in formula [6-3a] are each independently an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), selected from the group consisting of structures represented by formula [6c-1], formula [6c-4] and formula [6c-5] At least one selected. In this case, any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom The hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom.
X c in formula [6-1a], X f in formula [6-2a] and X i in formula [6-3a] are each independently a single bond, —CH 2 — and —OCH 2 —. At least one linking group selected from the group consisting of:
N1 in Formula [6-1a], n2 in Formula [6-2a], and n3 in Formula [6-3a] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
M1 in Formula [6-1a], m2 in Formula [6-2a], and m3 in Formula [6-3a] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
Figure JPOXMLDOC01-appb-C000076
X a in formula [6-1b], X d in formula [6-2b] and X g in formula [6-3b] are each independently a single bond, —O—, —CONH—, — At least one linking group selected from the group consisting of OCH 2 —, —COO— and —OCO—; Of these, a single bond, —O—, —OCH 2 — or —OCO— is preferable from the viewpoint of easy production of the adhesive compound. More preferably, it is a single bond, —O— or —OCH 2 —.
X b in formula [6-1b], X e in formula [6-2b], and X h in formula [6-3b] are each independently an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), selected from the group consisting of structures represented by formula [6c-1], formula [6c-4] and formula [6c-5] At least one selected. In this case, any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom The hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom.
X c in formula [6-1b], X f in formula [6-2b], and X i in formula [6-3b] are each independently a single bond, —CH 2 — and —OCH 2 —. And at least one linking group selected from
A 1 in Formula [6-1b], A 2 in Formula [6-2b], and A 3 in Formula [6-3b] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
N1 in Formula [6-1b], n2 in Formula [6-2b], and n3 in Formula [6-3b] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
M1 in Formula [6-1b], m2 in Formula [6-2b], and m3 in Formula [6-3b] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
Figure JPOXMLDOC01-appb-C000077
X a in formula [6-1c], X d in formula [6-2c], and X g in formula [6-3c] are each independently a single bond, —O—, —CONH—, — At least one linking group selected from the group consisting of OCH 2 —, —COO— and —OCO—; Of these, a single bond, —O—, —OCH 2 — or —OCO— is preferable from the viewpoint of easy production of the adhesive compound. More preferably, it is a single bond, —O— or —OCH 2 —.
X b in formula [6-1c], X e in formula [6-2c], and X h in formula [6-3c] are each independently an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), selected from the group consisting of structures represented by formula [6c-1], formula [6c-4] and formula [6c-5] At least one selected. In this case, any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom The hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom.
X c in formula [6-1c], X f in formula [6-2c], and X i in formula [6-3c] are each independently a single bond, —CH 2 — and —OCH 2 —. At least one linking group selected from the group consisting of:
A 1 in Formula [6-1c], A 4 in Formula [6-2c], and A 7 in Formula [6-3c] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
A 2 in formula [6-1c], A 5 in formula [6-2c], and A 8 in formula [6-3c] each independently represent an alkylene group having 1 to 2 carbon atoms.
A 3 in Formula [6-1c], A 6 in Formula [6-2c], and A 9 in Formula [6-3c] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
N1 in Formula [6-1c], n2 in Formula [6-2c], and n3 in Formula [6-3c] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
M1 in Formula [6-1c], m2 in Formula [6-2c], and m3 in Formula [6-3c] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
Figure JPOXMLDOC01-appb-C000078
X a in formula [6-1d], X d in formula [6-2d] and X g in formula [6-3d] are each independently a single bond, —O—, —CONH—, — At least one linking group selected from the group consisting of OCH 2 —, —COO— and —OCO—; Of these, a single bond, —O—, —OCH 2 — or —OCO— is preferable from the viewpoint of easy production of the adhesive compound. More preferably, it is a single bond, —O— or —OCH 2 —.
X b in formula [6-1d], X e in formula [6-2d], and X h in formula [6-3d] are each independently an alkylene group having 1 to 15 carbon atoms, — (CH 2 —CH 2 —O) p — (p represents an integer of 1 to 10), selected from the group consisting of structures represented by formula [6c-1], formula [6c-4] and formula [6c-5] At least one selected. In this case, any —CH 2 — group of the alkylene group is —COO—, —OCO—, —CONH—, NHCO—, —CO—, —S—, —SO 2 —, —CF 2 —, — C (CF 3) 2 -, - Si (CH 3) 2 -, - OSi (CH 3) 2 - or -Si (CH 3) may be replaced by 2 O-, bonded to any carbon atom The hydrogen atom may be replaced by a hydroxyl group (OH group), a carboxyl group (COOH group) or a halogen atom.
X c in formula [6-1d], X f in formula [6-2d], and X i in formula [6-3d] are each independently a single bond, —CH 2 — and —OCH 2 —. And at least one linking group selected from
A 1 in Formula [6-1d], A 5 in Formula [6-2d], and A 8 in Formula [6-3d] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
A 2 in Formula [6-1d], A 6 in Formula [6-2d], and A 9 in Formula [6-3d] each independently represent an alkylene group having 1 to 2 carbon atoms.
A 3 in Formula [6-1d], A 7 in Formula [6-2d], and A 10 in Formula [6-3d] each independently represent an alkylene group having 1 to 2 carbon atoms.
A 4 in Formula [6-1d], A 8 in Formula [6-2d], and A 11 in Formula [6-3d] each independently represent a hydrogen atom or an alkylene group having 1 to 2 carbon atoms. Show. Of these, a hydrogen atom or a methyl group is preferable.
N1 in Formula [6-1d], n2 in Formula [6-2d], and n3 in Formula [6-3d] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
M1 in Formula [6-1d], m2 in Formula [6-2d], and m3 in Formula [6-3d] each independently represent an integer of 1 or 2. Of these, 1 is preferable.
 密着性化合物としては、下記の式[6-1]及び式[6-5]で示される化合物からなる群から選ばれる少なくとも1種の化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
(式[6-4]中、nは1~10の整数を示し、式[6-5]中、mは1~10の整数を示す)。
 さらに、例えば、密着性化合物の具体例としては、下記に示す化合物が挙げられる。
 トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル、N-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する化合物が挙げられる。
 上記密着性化合物は、化合物の一例であり、これらに限定されるものではない。密着性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
 液晶配向処理剤における、密着性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~100質量部がより好ましく、特に、1~50質量部が最も好ましい。
As the adhesive compound, it is preferable to use at least one compound selected from the group consisting of compounds represented by the following formulas [6-1] and [6-5].
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
(In formula [6-4], n represents an integer of 1 to 10, and in formula [6-5], m represents an integer of 1 to 10).
Further, for example, specific examples of the adhesive compound include the following compounds.
Polymerizability of trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, etc. Compounds having 3 unsaturated groups in the molecule; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) Acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate Ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene Polymerizable unsaturated groups such as glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate, and hydroxypivalate neopentyl glycol di (meth) acrylate Compounds having two in the molecule; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, -Phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) And compounds having one polymerizable unsaturated group in the molecule, such as acryloyloxyethyl phosphate ester and N-methylol (meth) acrylamide.
The said adhesive compound is an example of a compound, It is not limited to these. One type of adhesive compound may be used, or two or more types may be combined.
The content of the adhesive compound in the liquid crystal aligning agent is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components. In order for the crosslinking reaction to proceed and to achieve the desired effect, the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
 液晶配向処理剤には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する化合物、或はヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する化合物(総称して架橋性化合物ともいう)を導入することもできる。その際、これら置換基は、架橋性化合物中に2個以上有する必要がある。 As long as the effects of the present invention are not impaired, the liquid crystal aligning agent is selected from the group consisting of a compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, or a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is also possible to introduce a compound having at least one kind of substituent (collectively referred to as a crosslinkable compound). In that case, it is necessary to have two or more of these substituents in the crosslinkable compound.
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン又は1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane or 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
 オキセタン基を有する架橋性化合物は、下記の式[4]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000081
 具体的には、国際公開公報WO2011/132751(2011.10.27公開)の58項~59項に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。
The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000081
Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] described in the paragraphs 58 to 59 of the international publication WO2011 / 132751 (published 2011.10.27).
 シクロカーボネート基を有する架橋性化合物としては、下記の式[5]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000082
 具体的には、国際公開公報WO2012/014898(2012.2.2公開)の76項~82項に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。
The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
Figure JPOXMLDOC01-appb-C000082
Specifically, crosslinkable compounds represented by the formulas [5-1] to [5-42] described in the paragraphs 76 to 82 of the international publication WO2012 / 014898 (published in 2012.2.2) are listed. It is done.
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂又はエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinylamide-formaldehyde resin or ethylene urea-formaldehyde resin. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used. The melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 上記メラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなど、パウダーリンク1174のようなメトキシメチロール化グリコールウリルなどが挙げられる。 Examples of the melamine derivative or benzoguanamine derivative include MX-750 in which an average of 3.7 methoxymethyl groups are substituted per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring. Substituted MW-30 (Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236, 238 , 212, 253, 254, etc., methoxymethylated butoxymethylated melamine, Cymel 506, 508, etc., carboxyl group-containing methoxymethylated isobutoxymethylated melamine, Cymel 1141, methoxy such as Cymel 1123 Methylated ethoxymethyl Benzomethylamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 (Mitsui Cyanamid) For example). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
 ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン又は2,6-ジヒドロキシメチル-p-tert-ブチルフェノールなどが挙げられる。
 より具体的には、国際公開公報WO2011/132751.(2011.10.27公開)の62頁~66頁に掲載される、式[6-1]~式[6-48]で示される架橋性化合物が挙げられる。
Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
More specifically, International Publication WO2011 / 132751. (2011.10.27), pages 62 to 66, and crosslinkable compounds represented by the formulas [6-1] to [6-48].
 液晶配向処理剤における、架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~100質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~50質量部がより好ましく、特に、1~30質量部が最も好ましい。
 液晶表示素子には、液晶配向膜中の電荷移動を促進し、素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751(2011.10.27公開)の69頁~73頁に掲載される、式[M1]~[M156]で示される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、液晶配向処理剤に直接添加しても構わないが、適当な溶媒で濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。
The content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components. In order for the crosslinking reaction to proceed and to achieve the desired effect, the amount is more preferably 0.1 to 50 parts by weight, and most preferably 1 to 30 parts by weight, based on 100 parts by weight of all polymer components.
In liquid crystal display elements, as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the element, it is published on pages 69 to 73 of International Publication No. WO2011 / 132751 (published 2011.10.20). Nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156] can also be added. This amine compound may be added directly to the liquid crystal aligning agent, but it is preferably added after a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above.
 液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の垂直液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。更に、垂直液晶配向膜と基板との密着性を向上させる化合物などを用いることもできる。
 垂直液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
As the liquid crystal aligning agent, a compound that improves the uniformity of the thickness of the vertical liquid crystal aligning film and the surface smoothness when the liquid crystal aligning agent is applied can be used as long as the effects of the present invention are not impaired. Further, a compound that improves the adhesion between the vertical liquid crystal alignment film and the substrate can be used.
Examples of the compound that improves the film thickness uniformity and surface smoothness of the vertical liquid crystal alignment film include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
Specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (above, Sumitomo 3M Limited), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
 垂直液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン又はN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
Specific examples of the compound that improves the adhesion between the vertical liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-tri Toxisilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxy Silane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyl Trimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Lopylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or N, N, N ′ , N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 これら基板との密着させる化合物を使用する場合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶配向処理剤の保存安定性が悪くなる場合がある。
 液晶配向処理剤には、上記以外の化合物の他に、本発明の効果が損なわれない範囲であれば、垂直液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
When using a compound to be adhered to these substrates, it is preferably 0.1 to 30 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal aligning agent. 20 parts by mass. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the storage stability of the liquid crystal aligning agent may be deteriorated.
In addition to the compounds other than the above, the liquid crystal aligning agent includes a dielectric material for changing the electrical properties such as dielectric constant and conductivity of the vertical liquid crystal alignment film, as long as the effects of the present invention are not impaired. A conductive substance may be added.
<垂直液晶配向膜・液晶表示素子の作製方法>
 液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板、ポリカーボネート基板又はPET(ポリエチレンテレフタレート)基板などのプラスチック基板などを用いることができる。本発明の液晶表示素子をリバース型素子として、調光窓などに用いる場合には、プラスチック基板であることが好ましい。また、プロセスの簡素化の観点からは、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることが好ましい。また、反射型のリバース型素子とする場合には、片側の基板のみにならば、シリコンウエハやアルミニウムなどの金属や誘電体多層膜が形成された基板を使用することができる。
<Production Method of Vertical Liquid Crystal Alignment Film / Liquid Crystal Display Element>
The substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate, a polycarbonate substrate, or a PET (polyethylene terephthalate) substrate can be used. When the liquid crystal display element of the present invention is used as a reverse element for a light control window or the like, a plastic substrate is preferable. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving a liquid crystal is formed. In the case of a reflective reverse element, a substrate on which a metal or dielectric multilayer film such as a silicon wafer or aluminum is formed can be used as long as the substrate is only on one side.
 液晶表示素子は、基板の少なくとも一方が、液晶分子を垂直に配向させるような垂直液晶配向膜を有する。この垂直液晶配向膜は、液晶配向処理剤を基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして得ることができる。また、垂直液晶配向膜の場合は、配向処理無しでも垂直液晶配向膜として用いることができる。
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、基板の種類や目的とする垂直液晶配向膜の膜厚に応じて、適宜選択することができる。
In the liquid crystal display element, at least one of the substrates has a vertical liquid crystal alignment film that aligns liquid crystal molecules vertically. This vertical liquid crystal alignment film can be obtained by applying a liquid crystal alignment treatment agent on a substrate and baking it, followed by alignment treatment by rubbing treatment or light irradiation. Further, in the case of a vertical liquid crystal alignment film, it can be used as a vertical liquid crystal alignment film without alignment treatment.
The application method of the liquid crystal alignment treatment agent is not particularly limited, but industrially includes screen printing, offset printing, flexographic printing, ink jet method, dipping method, roll coater method, slit coater method, spinner method, spray method, etc. Depending on the kind of the substrate and the desired thickness of the vertical liquid crystal alignment film, it can be appropriately selected.
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて垂直液晶配向膜とすることができる。焼成後の垂直液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~200nmである。
 液晶表示素子に用いる液晶組成物は、少なくとも液晶と重合性化合物を有する液晶組成物である。液晶と重合性化合物以外のものとしては、前記開始剤や液晶表示素子の電極間隙(ギャップともいう)を制御するためのスペーサが挙げられる。
After the liquid crystal alignment treatment agent is applied on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal alignment treatment agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. Can evaporate the solvent at a temperature of 30 to 250 ° C. to form a vertical liquid crystal alignment film. The thickness of the vertical liquid crystal alignment film after firing is disadvantageous in terms of power consumption of the liquid crystal display element if it is too thick, and if it is too thin, the reliability of the element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
The liquid crystal composition used for the liquid crystal display element is a liquid crystal composition having at least a liquid crystal and a polymerizable compound. Examples of those other than the liquid crystal and the polymerizable compound include the initiator and a spacer for controlling an electrode gap (also referred to as a gap) of the liquid crystal display element.
 液晶組成物の注入方法は、特に限定されないが、例えば、次の方法が挙げられる。すなわち、基板にガラス基板を用いる場合、垂直液晶配向膜が形成された一対の基板を用意し、片側の基板の4片を、一部分を除いてシール剤を塗布し、その後、垂直液晶配向膜の面が内側になるようにして、もう片側の基板を貼り合わせた空セルを作製する。そして、シール剤が塗布されていない場所から、液晶組成物を減圧注入して、液晶組成物注入セルを得る方法が挙げられる。
 更に、基板にプラスチック基板を用いる場合には、垂直液晶配向膜が形成された一対の基板を用意し、片側の基板の上にODF(One Drop Filling)法やインクジェット法などで、液晶組成物を滴下し、その後、もう片側の基板を貼り合わせて、液晶組成物注入セルを得る方法が挙げられる。
 本発明の液晶表示素子では、液晶層と垂直液晶配向膜との密着性が高いため、基板の4片にシール剤を塗布しなくても良い。
Although the injection method of a liquid crystal composition is not specifically limited, For example, the following method is mentioned. That is, when a glass substrate is used as a substrate, a pair of substrates on which a vertical liquid crystal alignment film is formed is prepared, and a sealant is applied to four pieces of one side of the substrate except for a part, and then the vertical liquid crystal alignment film is formed. An empty cell is manufactured by attaching the substrate on the other side so that the surface is on the inside. And the method of obtaining the liquid crystal composition injection cell by injecting the liquid crystal composition under reduced pressure from a place where the sealant is not applied can be mentioned.
Further, when a plastic substrate is used as a substrate, a pair of substrates on which a vertical liquid crystal alignment film is formed is prepared, and a liquid crystal composition is applied on one substrate by an ODF (One Drop Filling) method or an inkjet method. There is a method in which a liquid crystal composition injection cell is obtained by dropping and then bonding the other substrate together.
In the liquid crystal display element of the present invention, since the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film is high, it is not necessary to apply the sealing agent to the four pieces of the substrate.
 液晶表示素子のギャップは、スペーサなどで制御することができる。その方法は、上述した液晶組成物中に目的とする大きさのスペーサを導入する方法や、目的とする大きさのカラムスペーサを有する基板を用いる方法が挙げられる。また、ギャップの大きさは、1~100μmが好ましく、より好ましくは、2~50μmである。特に好ましくは、3~30μmである。ギャップが小さすぎると、液晶表示素子のコントラストが低下し、大きすぎると、素子の駆動電圧が高くなる。 The gap of the liquid crystal display element can be controlled by a spacer or the like. Examples of the method include a method of introducing a spacer having a target size into the liquid crystal composition described above, and a method of using a substrate having a column spacer of a target size. The size of the gap is preferably 1 to 100 μm, more preferably 2 to 50 μm. Particularly preferred is 3 to 30 μm. If the gap is too small, the contrast of the liquid crystal display element is lowered. If the gap is too large, the driving voltage of the element is increased.
 液晶表示素子は、液晶組成物の一部又は全体が液晶性を示す状態で、液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させて得られる。この液晶組成物の硬化は、前記で得られた液晶組成物注入セルに、活性エネルギー線の照射及び加熱の少なくとも一方の処理によって行う。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が250nm~400nm、好ましくは、310nm~370nmである。また、加熱処理の場合、その温度は、40~120℃、好ましくは60~80℃である。また、紫外線処理と加熱処理とを両方同時に行っても、紫外線処理をした後に加熱処理を行っても良い。液晶組成物の硬化は、紫外線処理のみが好ましい。
 本発明における液晶表示素子は、自動車、鉄道および航空機などの輸送機器および輸送機械に用いる液晶表示素子、具体的には、光の透過と遮断を制御する調光窓やルームミラーに用いる光シャッター素子などに好適に用いることができる。
 特に、前記の通り、電圧無印加時の透明性と電圧印加時の散乱特性が良好であることから、本素子を乗り物のガラス窓に使用した場合は、従来のリバース型素子を使用した場合に比べて、夜間時における光の取り入れ効率が高く、さらに、外光からの眩しさを防ぐ効果も高くなる。そのため、乗り物を運転する際の安全性や乗車時の快適性を、より改善することが可能となる。また、液晶表示素子をフィルム基板で作製し、それを乗り物のガラス窓に貼って使用する場合、従来のリバース型素子に比べて、本素子の信頼性が高くなる。すなわち、液晶層と垂直配向膜との密着性が低いことが要因の不良や劣化が起こりにくくなる。
 加えて、液晶表示素子は、LCD(Liquid Crystal Display)やOLED(Organic Light-emitting Diode)ディスプレイなどのディスプレイ装置の導光板やこれらディスプレイを用いた透明ディスプレイの裏板に用いることもできる。具体的には、透明ディスプレイの裏板に用いる場合は、透明ディスプレイと液晶表示素子とを合わせ、透明ディスプレイ上で画面表示を行う際に、その背面からの光の入り込みを液晶表示素子で抑制するために用いることができる。これにより、液晶表示素子は、透明ディスプレイ上で画面表示を行う際に電圧印加された散乱状態となり、画面表示を鮮明にすることができ、画面表示が終わった後には、電圧が無印加の透明状態となる。
The liquid crystal display element is obtained by curing the liquid crystal composition in a state where a part or the whole of the liquid crystal composition exhibits liquid crystallinity to form a cured product composite of the liquid crystal and the polymerizable compound. The liquid crystal composition is cured by at least one of irradiation with active energy rays and heating the liquid crystal composition injection cell obtained above. Here, ultraviolet rays are suitable as the active energy ray. The ultraviolet light has a wavelength of 250 nm to 400 nm, preferably 310 nm to 370 nm. In the case of heat treatment, the temperature is 40 to 120 ° C., preferably 60 to 80 ° C. Further, both the ultraviolet treatment and the heat treatment may be performed simultaneously, or the heat treatment may be performed after the ultraviolet treatment. Only the ultraviolet treatment is preferable for curing the liquid crystal composition.
The liquid crystal display element in the present invention is a liquid crystal display element used in transportation equipment and transportation machinery such as automobiles, railways and aircrafts, specifically, an optical shutter element used in a light control window and a room mirror for controlling transmission and blocking of light. It can use suitably for.
In particular, as described above, transparency when no voltage is applied and scattering characteristics when voltage is applied are good, so when this element is used for a glass window of a vehicle, when a conventional reverse type element is used. In comparison, the efficiency of taking in light at night is high, and the effect of preventing glare from outside light is also high. Therefore, it is possible to further improve the safety when driving a vehicle and the comfort when riding. Further, when the liquid crystal display element is manufactured using a film substrate and is used by being attached to a glass window of a vehicle, the reliability of the element is higher than that of a conventional reverse type element. That is, poor adhesion and deterioration are less likely to occur due to the low adhesion between the liquid crystal layer and the vertical alignment film.
In addition, the liquid crystal display element can be used for a light guide plate of a display device such as an LCD (Liquid Crystal Display) or an OLED (Organic Light-Emitting Diode) display, or a back plate of a transparent display using these displays. Specifically, when used for the back plate of a transparent display, the transparent display and the liquid crystal display element are combined, and when the screen is displayed on the transparent display, the liquid crystal display element suppresses light from entering from the back side. Can be used for As a result, the liquid crystal display element is in a scattering state in which voltage is applied when performing screen display on a transparent display, and the screen display can be clarified. After the screen display is finished, no voltage is applied to the transparent display element. It becomes a state.
 以下に実施例を挙げ、本発明を具体的に説明するが、これらに限定されない。
「合成例、実施例及び比較例で用いる略語」
 L1(液晶):MLC-6608(メルク社製)
 R1(重合性化合物):下記の式[R1]で示される化合物
 P1(光開始剤):下記の式[P1]で示される化合物
Figure JPOXMLDOC01-appb-C000083
EXAMPLES The present invention will be specifically described below with reference to examples, but is not limited thereto.
"Abbreviations used in synthesis examples, examples and comparative examples"
L1 (liquid crystal): MLC-6608 (Merck)
R1 (polymerizable compound): Compound represented by the following formula [R1] P1 (photoinitiator): Compound represented by the following formula [P1]
Figure JPOXMLDOC01-appb-C000083
 A1:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
 A2:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン
 A3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
 A4:下記の式[A4]で示されるジアミン
A1: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene A2: 1,3-diamino-4- [4- (trans-4-n-heptylcyclo) Hexyl) phenoxymethyl] benzene A3: 1,3-diamino-4- {4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene A4: A4] Diamine
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 B1:p-フェニレンジアミン
 B2:m-フェニレンジアミン
 B3:3,5-ジアミノ安息香酸
 B4:下記の式[B4]で示されるジアミン
 B5:1,3-ジアミノ-4-オクタデシルオキシベンゼン(従来型のジアミン)
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
B1: p-phenylenediamine B2: m-phenylenediamine B3: 3,5-diaminobenzoic acid B4: diamine represented by the following formula [B4] B5: 1,3-diamino-4-octadecyloxybenzene (conventional type) Diamine)
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
 C1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 C2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 C3:下記の式[C3]で示されるテトラカルボン酸二無水物
 C4:下記の式[C4]で示されるテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000088
C1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride C2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride C3: the following formula [C3 ] C4: tetracarboxylic dianhydride represented by the following formula [C4]
Figure JPOXMLDOC01-appb-C000088
 D1:下記の式[D1]で示されるアルコキシシランモノマー(特定側鎖構造を有するアルコキシシランモノマー)
 D2:3-メタクリロキシプロピルトリメトキシシラン(式[A2]のアルコキシシランモノマー)
 D3:3-ウレイドプロピルトリエトキシシラン(式[A2]のアルコキシシランモノマー)
 D4:テトラエトキシシラン(式[A3]のアルコキシシランモノマー)
 D5:オクタデシルトリエトキシシラン(従来型のアルコキシシランモノマー)
Figure JPOXMLDOC01-appb-C000089
D1: Alkoxysilane monomer represented by the following formula [D1] (alkoxysilane monomer having a specific side chain structure)
D2: 3-Methacryloxypropyltrimethoxysilane (alkoxysilane monomer of the formula [A2])
D3: 3-Ureidopropyltriethoxysilane (alkoxysilane monomer of formula [A2])
D4: Tetraethoxysilane (alkoxysilane monomer of formula [A3])
D5: Octadecyltriethoxysilane (conventional alkoxysilane monomer)
Figure JPOXMLDOC01-appb-C000089
 M1:下記の式[M1]で示される密着性化合物
 M2:下記の式[M2]で示される密着性化合物
 M3:下記の式[M3]で示される密着性化合物
Figure JPOXMLDOC01-appb-C000090
M1: Adhesive compound represented by the following formula [M1] M2: Adhesive compound represented by the following formula [M2] M3: Adhesive compound represented by the following formula [M3]
Figure JPOXMLDOC01-appb-C000090
 K1:下記の式[K1]で示される架橋性化合物
Figure JPOXMLDOC01-appb-C000091
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 γ-BL:γ-ブチロラクトン
 BCS:エチレングリコールモノブチルエーテル
 ECS:エチレングリコールモノエチルエーテル
 PB:プロピレングリコールモノブチルエーテル
K1: Crosslinkable compound represented by the following formula [K1]
Figure JPOXMLDOC01-appb-C000091
NMP: N-methyl-2-pyrrolidone NEP: N-ethyl-2-pyrrolidone γ-BL: γ-butyrolactone BCS: ethylene glycol monobutyl ether ECS: ethylene glycol monoethyl ether PB: propylene glycol monobutyl ether
「ポリイミド前駆体及びポリイミド系重合体の分子量測定」
 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805、Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
"Molecular weight measurement of polyimide precursor and polyimide polymer"
Using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko) and a column (KD-803, KD-805, manufactured by Shodex), the measurement was performed as follows.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
「ポリイミド系重合体のイミド化率の測定」
 ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
  イミド化率(%)=(1-α・x/y)×100
 (xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。)
"Measurement of imidization rate of polyimide polymer"
20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
(X is the accumulated proton peak value derived from NH group of amic acid, y is the accumulated peak value of reference proton, α is the reference proton for one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) The number ratio.
「ポリイミド系重合体の合成」
<合成例1>
 C1(2.96g,15.1mmol)、A1(2.91g,7.65mmol)、B2(0.17g,1.57mmol)及びB3(0.93g,6.11mmol)をNMP(20.9g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度25質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は、27,600、重量平均分子量は、81,000であった。
"Synthesis of polyimide polymers"
<Synthesis Example 1>
C1 (2.96 g, 15.1 mmol), A1 (2.91 g, 7.65 mmol), B2 (0.17 g, 1.57 mmol) and B3 (0.93 g, 6.11 mmol) were converted to NMP (20.9 g). Then, the mixture was reacted at 40 ° C. for 8 hours to obtain a polyamic acid solution (1) having a resin solid content concentration of 25% by mass. The number average molecular weight of this polyamic acid was 27,600, and the weight average molecular weight was 81,000.
<合成例2>
 C2(3.83g,15.3mmol)、A2(6.04g,15.3mmol)及びB3(2.33g,15.3mmol)をNMP(26.3g)中で混合し、50℃で2時間反応させた後、C1(2.94g,15.0mmol)とNMP(23.9g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(2)を得た。このポリアミド酸の数平均分子量は、18,500、重量平均分子量は、62,400であった。
<Synthesis Example 2>
C2 (3.83 g, 15.3 mmol), A2 (6.04 g, 15.3 mmol) and B3 (2.33 g, 15.3 mmol) were mixed in NMP (26.3 g) and reacted at 50 ° C. for 2 hours. After that, C1 (2.94 g, 15.0 mmol) and NMP (23.9 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (2) having a resin solid content concentration of 25 mass%. . The number average molecular weight of this polyamic acid was 18,500, and the weight average molecular weight was 62,400.
<合成例3>
 合成例2で得られたポリアミド酸溶液(2)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.91g)及びピリジン(2.42g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は20,900、重量平均分子量は58,100であった。
<Synthesis Example 3>
After adding NMP to the polyamic acid solution (2) (30.0 g) obtained in Synthesis Example 2 and diluting to 6% by mass, acetic anhydride (3.91 g) and pyridine (2.42 g) were used as imidization catalysts. In addition, the mixture was reacted at 70 ° C. for 2 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 60%, the number average molecular weight was 20,900, and the weight average molecular weight was 58,100.
<合成例4>
 C2(2.64g,10.6mmol)、A3(4.56g,10.5mmol)、B3(1.60g,10.5mmol)及びB4(1.07g,5.26mmol)をNMP(21.4g)中で混合し、80℃で5時間反応させた後、C1(3.02g,15.8mmol)とNMP(17.7g)を加え、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.88g)及びピリジン(2.41g)を加え、50℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は18,900、重量平均分子量は52,200であった。
<Synthesis Example 4>
C2 (2.64 g, 10.6 mmol), A3 (4.56 g, 10.5 mmol), B3 (1.60 g, 10.5 mmol) and B4 (1.07 g, 5.26 mmol) to NMP (21.4 g) After mixing at 80 ° C. for 5 hours, C1 (3.02 g, 15.8 mmol) and NMP (17.7 g) were added and reacted at 40 ° C. for 8 hours. The resin solid content concentration was 25 mass. % Polyamic acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (3.88 g) and pyridine (2.41 g) were added as imidization catalysts, and the mixture was stirred at 50 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (4). The imidation ratio of this polyimide was 55%, the number average molecular weight was 18,900, and the weight average molecular weight was 52,200.
<合成例5>
 C2(2.50g,10.0mmol)、A4(2.96g,6.00mmol)、B1(0.22g,2.00mmol)、B3(1.52g,10.0mmol)及びB4(0.41g,2.00mmol)をNMP(19.1g)中で混合し、80℃で5時間反応させた後、C1(1.92g,9.80mmol)とNMP(9.50g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.02g)及びピリジン(2.49g)を加え、50℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は48%であり、数平均分子量は15,600、重量平均分子量は47,300であった。
<Synthesis Example 5>
C2 (2.50 g, 10.0 mmol), A4 (2.96 g, 6.00 mmol), B1 (0.22 g, 2.00 mmol), B3 (1.52 g, 10.0 mmol) and B4 (0.41 g, 2.00 mmol) was mixed in NMP (19.1 g) and reacted at 80 ° C. for 5 hours, and then C1 (1.92 g, 9.80 mmol) and NMP (9.50 g) were added. The reaction was carried out for a time to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.02 g) and pyridine (2.49 g) were added as an imidization catalyst, and the mixture was stirred at 50 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (5). The imidation ratio of this polyimide was 48%, the number average molecular weight was 15,600, and the weight average molecular weight was 47,300.
<合成例6>
 C3(5.45g,24.3mmol)、A2(5.81g,14.7mmol)、B3(1.12g,7.36mmol)及びB4(0.50g,2.46mmol)をNMP(38.6g)中で混合し、40℃で10時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.00g)及びピリジン(2.48g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は63%であり、数平均分子量は16,400、重量平均分子量は46,200であった。
<Synthesis Example 6>
C3 (5.45 g, 24.3 mmol), A2 (5.81 g, 14.7 mmol), B3 (1.12 g, 7.36 mmol) and B4 (0.50 g, 2.46 mmol) were added to NMP (38.6 g). Then, the mixture was reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution having a resin solid content concentration of 25% by mass.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.00 g) and pyridine (2.48 g) were added as an imidization catalyst, and the mixture was kept at 70 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (6). The imidation ratio of this polyimide was 63%, the number average molecular weight was 16,400, and the weight average molecular weight was 46,200.
<合成例7>
 C3(5.45g,24.3mmol)、A4(3.63g,7.37mmol)及びB3(2.61g,17.2mmol)をNMP(35.1g)中で混合し、40℃で5時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(8.00g)及びピリジン(2.48g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は54%であり、数平均分子量は16,900、重量平均分子量は46,300であった。
<Synthesis Example 7>
C3 (5.45 g, 24.3 mmol), A4 (3.63 g, 7.37 mmol) and B3 (2.61 g, 17.2 mmol) were mixed in NMP (35.1 g) and reacted at 40 ° C. for 5 hours. Thus, a polyamic acid solution having a resin solid content concentration of 25% by mass was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (8.00 g) and pyridine (2.48 g) were added as an imidization catalyst, and the mixture was stirred at 50 ° C. for 3 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (7). The imidation ratio of this polyimide was 54%, the number average molecular weight was 16,900, and the weight average molecular weight was 46,300.
<合成例8>
 C4(4.59g,15.3mmol)、A3(6.62g,15.3mmol)、B3(1.86g,12.2mmol)及びB4(0.62g,3.05mmol)をNMP(27.6g)中で混合し、40℃で8時間反応させた後、C1(2.94g,15.0mmol)とNMP(22.3g)を加え、25℃で10時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(7.24g)及びピリジン(2.24g)を加え、40℃で1.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は70%であり、数平均分子量は17,100、重量平均分子量は37,200であった。
<Synthesis Example 8>
C4 (4.59 g, 15.3 mmol), A3 (6.62 g, 15.3 mmol), B3 (1.86 g, 12.2 mmol) and B4 (0.62 g, 3.05 mmol) in NMP (27.6 g) After mixing at 40 ° C. for 8 hours, C1 (2.94 g, 15.0 mmol) and NMP (22.3 g) were added, and the mixture was reacted at 25 ° C. for 10 hours. % Polyamic acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (7.24 g) and pyridine (2.24 g) were added as an imidization catalyst and 1. The reaction was allowed for 5 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (8). The imidation ratio of this polyimide was 70%, the number average molecular weight was 17,100, and the weight average molecular weight was 37,200.
<合成例9>
 C2(3.83g,15.3mmol)、B3(2.33g,15.3mmol)及びB5(5.76g,15.3mmol)をNMP(24.6g)中で混合し、80℃で1時間反応させた後、C1(2.94g,15.0mmol)とNMP(20.0g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(9)を得た。このポリアミド酸の数平均分子量は、21,500、重量平均分子量は、63,400であった。
<Synthesis Example 9>
C2 (3.83 g, 15.3 mmol), B3 (2.33 g, 15.3 mmol) and B5 (5.76 g, 15.3 mmol) were mixed in NMP (24.6 g) and reacted at 80 ° C. for 1 hour. After that, C1 (2.94 g, 15.0 mmol) and NMP (20.0 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (9) having a resin solid content concentration of 25 mass%. . The number average molecular weight of this polyamic acid was 21,500, and the weight average molecular weight was 63,400.
<合成例10>
 合成例9で得られたポリアミド酸溶液(9)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.93g)及びピリジン(2.43g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は61%であり、数平均分子量は18,900、重量平均分子量は54,100であった。
<Synthesis Example 10>
After adding NMP to the polyamic acid solution (9) (30.0 g) obtained in Synthesis Example 9 and diluting to 6% by mass, acetic anhydride (3.93 g) and pyridine (2.43 g) were used as imidization catalysts. In addition, the mixture was reacted at 70 ° C. for 2 hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (10). The imidation ratio of this polyimide was 61%, the number average molecular weight was 18,900, and the weight average molecular weight was 54,100.
<合成例11>
 C2(3.25g,13.0mmol)、B3(0.99g,6.51mmol)及びB5(7.35g,19.5mmol)をNMP(23.3g)中で混合し、80℃で5時間反応させた後、C1(2.53g,12.9mmol)とNMP(19.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.52g)及びピリジン(2.18g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は19,200、重量平均分子量は60,100であった。ポリイミド系重合体を表1に示す。
<Synthesis Example 11>
C2 (3.25 g, 13.0 mmol), B3 (0.99 g, 6.51 mmol) and B5 (7.35 g, 19.5 mmol) were mixed in NMP (23.3 g) and reacted at 80 ° C. for 5 hours. After that, C1 (2.53 g, 12.9 mmol) and NMP (19.1 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25 mass%.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (3.52 g) and pyridine (2.18 g) were added as an imidization catalyst, and the mixture was maintained at 70 ° C. for 2 hours. Reacted. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (11). The imidation ratio of this polyimide was 60%, the number average molecular weight was 19,200, and the weight average molecular weight was 60,100. The polyimide polymer is shown in Table 1.
Figure JPOXMLDOC01-appb-T000092
*1:ポリアミド酸。
Figure JPOXMLDOC01-appb-T000092
* 1: Polyamic acid.
「ポリシロキサン系重合体の合成」
<合成例12>
 温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(28.3g)、D1(4.10g)、D2(7.45g)及びD4(32.5g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめECS(14.2g)、水(10.8g)、触媒として蓚酸(0.70g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、更に25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたD3含有量が92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。更に30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(1)を得た。
"Synthesis of polysiloxane polymers"
<Synthesis Example 12>
In a 200 ml four-necked reaction flask equipped with a thermometer and reflux tube, ECS (28.3 g), D1 (4.10 g), D2 (7.45 g) and D4 (32.5 g) were mixed, A solution of alkoxysilane monomer was prepared. To this solution, ECS (14.2 g), water (10.8 g), and a solution prepared by mixing oxalic acid (0.70 g) as a catalyst were added dropwise at 25 ° C. over 30 minutes, The mixture was further stirred at 25 ° C. for 30 minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a previously prepared mixed solution of a methanol solution (1.20 g) with a D3 content of 92% by mass and ECS (0.90 g) was added. It was. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (1) having a SiO 2 equivalent concentration of 12% by mass.
<合成例13>
 温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(25.4g)、D1(8.20g)、D2(19.9g)及びD4(20.0g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめECS(12.7g)、水(10.8g)、及び触媒として蓚酸(1.10g)を混合して調製しておいた溶液を、25℃にて30分かけて滴下し、更に25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調製しておいたD3含有量92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。更に30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(2)を得た。
<Synthesis Example 13>
In a 200 ml four-necked reaction flask equipped with a thermometer and reflux tube, ECS (25.4 g), D1 (8.20 g), D2 (19.9 g) and D4 (20.0 g) were mixed, A solution of alkoxysilane monomer was prepared. To this solution, ECS (12.7 g), water (10.8 g), and a solution prepared by mixing oxalic acid (1.10 g) as a catalyst were added dropwise at 25 ° C. over 30 minutes. The mixture was further stirred at 25 ° C. for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 30 minutes, and a previously prepared mixed solution of a methanol solution (1.20 g) having a D3 content of 92% by mass and ECS (0.90 g) was added. . The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (2) having a SiO 2 equivalent concentration of 12% by mass.
<合成例14>
 温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(29.2g)、D1(4.10g)及びD4(38.8g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめECS(14.6g)、水(10.8g)、及び触媒として蓚酸(0.50g)を混合して調製しておいた溶液を、25℃にて30分かけて滴下し、更に25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調製しておいたD3含有量92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。更に30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(3)を得た。
<Synthesis Example 14>
Prepare a solution of alkoxysilane monomer by mixing ECS (29.2 g), D1 (4.10 g) and D4 (38.8 g) in a 200 ml four-necked reaction flask equipped with a thermometer and reflux tube. did. To this solution, ECS (14.6 g), water (10.8 g), and a solution prepared by mixing oxalic acid (0.50 g) as a catalyst were added dropwise at 25 ° C. over 30 minutes. The mixture was further stirred at 25 ° C. for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 30 minutes, and a previously prepared mixed solution of a methanol solution (1.20 g) having a D3 content of 92% by mass and ECS (0.90 g) was added. . The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (3) having a SiO 2 equivalent concentration of 12% by mass.
<合成例15>
 温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(28.3g)、D2(7.45g)、D4(32.5g)及びD5(4.07g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめECS(14.2g)、水(10.8g)、触媒として蓚酸(0.70g)を混合して調製しておいた溶液を、25℃にて30分かけて滴下し、更に25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調製しておいたD3含有量が92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。更に30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(4)を得た。
 ポリシロキサン系重合体(ポリシロキサン溶液)を表2に示す。
<Synthesis Example 15>
In a 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube, ECS (28.3 g), D2 (7.45 g), D4 (32.5 g) and D5 (4.07 g) were mixed, A solution of alkoxysilane monomer was prepared. To this solution, a solution prepared by mixing ECS (14.2 g), water (10.8 g), and oxalic acid (0.70 g) as a catalyst was added dropwise at 25 ° C. over 30 minutes, The mixture was further stirred at 25 ° C. for 30 minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a previously prepared mixed solution of a methanol solution (1.20 g) having a D3 content of 92 mass% and ECS (0.90 g) was added. It was. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (4) having a SiO 2 equivalent concentration of 12% by mass.
Table 2 shows the polysiloxane polymer (polysiloxane solution).
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000093
「液晶組成物(1)の製造」
 L1(11.5g)、R1(1.73g)及びP1(0.12g)を混合し、それを加熱後、25℃まで冷却すると液晶性を示す均一な液晶組成物(1)を得た。
「液晶組成物(2)の製造」
 L1(12.0g)、R1(2.40g)及びP1(0.12g)を混合し、それを加熱後、25℃まで冷却すると液晶性を示す均一な液晶組成物(2)を得た。
"Production of liquid crystal composition (1)"
When L1 (11.5 g), R1 (1.73 g) and P1 (0.12 g) were mixed and heated to cool to 25 ° C., a uniform liquid crystal composition (1) exhibiting liquid crystallinity was obtained.
"Production of liquid crystal composition (2)"
L1 (12.0 g), R1 (2.40 g) and P1 (0.12 g) were mixed, and after heating, cooling to 25 ° C. gave a uniform liquid crystal composition (2) exhibiting liquid crystallinity.
「液晶表示素子の作製・液晶配向性の評価(ガラス基板)」
 後記する実施例又は比較例の液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、液晶表示素子(リバース型素子)の作製を行った。具体的には、この溶液を純水及びIPA(イソプロピルアルコール)で洗浄した100×100mmのITO電極付きガラス基板(縦:100mm、横:100mm、厚さ:0.7mm)のITO面上にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの垂直液晶配向膜付きのITO基板を得た。得られた垂直液晶配向膜付きのITO基板を2枚用意し、その一方の基板の垂直液晶配向膜面に、6μmのスペーサを塗布した。その後、その基板のスペーサを塗布した垂直液晶配向膜面に、ODF法にて前記液晶組成物を滴下し、次いで、他方の基板の垂直液晶配向膜界面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。
"Production of liquid crystal display elements and evaluation of liquid crystal orientation (glass substrate)"
The liquid crystal aligning agent of the Example or comparative example mentioned later was pressure-filtered with the membrane filter with a pore diameter of 1 micrometer, and the liquid crystal display element (reverse type element) was produced. Specifically, this solution was spun onto the ITO surface of a glass substrate with 100 × 100 mm ITO electrodes (length: 100 mm, width: 100 mm, thickness: 0.7 mm) washed with pure water and IPA (isopropyl alcohol). Coating was performed on a hot plate at 100 ° C. for 5 minutes and in a heat circulation type clean oven at 230 ° C. for 30 minutes to obtain an ITO substrate with a vertical liquid crystal alignment film having a film thickness of 100 nm. Two ITO substrates with the obtained vertical liquid crystal alignment film were prepared, and a 6 μm spacer was applied to the vertical liquid crystal alignment film surface of one of the substrates. Thereafter, the liquid crystal composition is dropped by the ODF method onto the surface of the vertical liquid crystal alignment film coated with the spacer of the substrate, and then bonded so that the interface of the vertical liquid crystal alignment film of the other substrate faces. The liquid crystal display element was obtained.
 上記処理前の液晶表示素子に、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で7J/cmの紫外線照射を行い、液晶表示素子を得た。液晶表示素子に紫外線を照射している際の照射装置内を25℃に制御した。
 この液晶表示素子を用いて、液晶配向性の評価を行った。液晶配向性は、本素子を偏光顕微鏡(ECLIPSE E600WPOL、ニコン社製)で観察し、液晶が垂直に配向しているかどうかを確認した。具体的には、液晶が垂直に配向しているものを、本評価に優れる(表7~表10の良好表示)とした。
Using a metal halide lamp with an illuminance of 60 mW on the liquid crystal display element before the above treatment, a wavelength of 350 nm or less was cut, and ultraviolet irradiation of 7 J / cm 2 in terms of 365 nm was performed to obtain a liquid crystal display element. The inside of the irradiation device when the liquid crystal display element was irradiated with ultraviolet rays was controlled at 25 ° C.
The liquid crystal orientation was evaluated using this liquid crystal display element. The liquid crystal orientation was observed with a polarizing microscope (ECLIPSE E600WPOL, manufactured by Nikon Corporation) to confirm whether or not the liquid crystal was vertically aligned. Specifically, a liquid crystal in which the liquid crystal is aligned vertically is regarded as excellent in this evaluation (good display in Tables 7 to 10).
「液晶表示素子の作製・液晶配向性の評価(プラスチック基板)」
 後記する実施例又は比較例の液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、液晶表示素子の作製を行った。具体的には、この溶液を純水で洗浄した150×150mmのITO電極付きPET(ポリエチレンテレフタレート)基板(縦:150mm、横:150mm、厚さ:0.2mm)のITO面上にバーコーターにて塗布をし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて180℃で1分間加熱処理をして、膜厚が100nmの垂直液晶配向膜付きのITO基板を得た。 得られた垂直液晶配向膜付きのITO基板を2枚用意し、その一方の基板の垂直液晶配向膜面に、6μmのスペーサを塗布した。その後、その基板のスペーサを塗布した垂直液晶配向膜面に、ODF法にて前記液晶組成物を滴下し、次いで、他方の基板の垂直液晶配向膜界面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。
 得られた処理前の液晶表示素子に、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で7J/cmの紫外線照射を行い、液晶表示素子を得た。液晶セルに紫外線を照射する際の照射装置内を25℃に制御した。
 この液晶表示素子を用いて、液晶配向性の評価を行った。液晶配向性は、本素子を偏光顕微鏡(ECLIPSE E600WPOL、ニコン社製)で観察し、液晶が垂直に配向しているかどうかを確認した。具体的には、液晶が垂直に配向しているものを、評価に優れる(表7~表10中の良好表示)とした。
"Production of liquid crystal display elements and evaluation of liquid crystal orientation (plastic substrate)"
The liquid crystal aligning agent of the Example or comparative example mentioned later was pressure-filtered with the membrane filter with a pore diameter of 1 micrometer, and the liquid crystal display element was produced. Specifically, this solution was washed with pure water on a 150 × 150 mm ITO (polyethylene terephthalate) substrate with an ITO electrode (length: 150 mm, width: 150 mm, thickness: 0.2 mm) on a bar coater. Then, heat treatment was performed at 100 ° C. for 5 minutes on a hot plate and at 180 ° C. for 1 minute in a heat circulation type clean oven to obtain an ITO substrate with a vertical liquid crystal alignment film having a film thickness of 100 nm. . Two ITO substrates with the obtained vertical liquid crystal alignment film were prepared, and a 6 μm spacer was applied to the vertical liquid crystal alignment film surface of one of the substrates. Thereafter, the liquid crystal composition is dropped by the ODF method onto the surface of the vertical liquid crystal alignment film coated with the spacer of the substrate, and then bonded so that the interface of the vertical liquid crystal alignment film of the other substrate faces. The liquid crystal display element was obtained.
Using a metal halide lamp with an illuminance of 60 mW, the obtained liquid crystal display element before treatment was cut at a wavelength of 350 nm or less, and irradiated with ultraviolet rays at 7 J / cm 2 in terms of 365 nm to obtain a liquid crystal display element. The inside of the irradiation apparatus when irradiating a liquid crystal cell with ultraviolet rays was controlled at 25 ° C.
The liquid crystal orientation was evaluated using this liquid crystal display element. The liquid crystal orientation was observed with a polarizing microscope (ECLIPSE E600WPOL, manufactured by Nikon Corporation) to confirm whether or not the liquid crystal was vertically aligned. Specifically, the liquid crystal aligned vertically was regarded as excellent in evaluation (good display in Tables 7 to 10).
「光学特性(透明性と散乱特性)の評価(ガラス基板)」
 液晶表示素子(ガラス基板)について、その電圧無印加状態での透過率を測定することで行った。具体的には、測定装置にUV-3600(島津製作所社製)、25℃、リファレンスに上記ITO電極付きガラス基板、スキャン波長を300~800nmの条件で透過率を測定した。評価は、450nmの波長の透過率で行い、透過率が高いものほど、評価に優れるとした(表7~表10に透過率の値を示した)。
 電圧印加時の散乱特性は、液晶表示素子に、交流駆動で40Vを印加し、液晶の配向状態を目視観察することで行った。具体的には、本素子が白濁したもの、すなわち、散乱特性が得られたものを、評価に優れる(表7~表10中の良好表示)とした。
"Evaluation of optical properties (transparency and scattering properties) (glass substrate)"
The liquid crystal display element (glass substrate) was measured by measuring the transmittance in a state where no voltage was applied. Specifically, the transmittance was measured under the conditions of UV-3600 (manufactured by Shimadzu Corporation) as a measuring device, 25 ° C., the glass substrate with the ITO electrode as a reference, and a scan wavelength of 300 to 800 nm. The evaluation was performed at a transmittance of a wavelength of 450 nm, and the higher the transmittance, the better the evaluation (the transmittance values are shown in Tables 7 to 10).
The scattering characteristics at the time of voltage application were performed by applying 40V to the liquid crystal display element by AC driving and visually observing the alignment state of the liquid crystal. Specifically, those in which the element was clouded, that is, those in which scattering characteristics were obtained were regarded as being excellent in evaluation (good display in Tables 7 to 10).
「光学特性(透明性と散乱特性)の評価(プラスチック基板)」
 液晶表示素子(プラスチック基板)を用いて、その電圧無印加状態の透過率を測定することで行った。具体的には、測定装置にUV-3600(島津製作所社製)を用いて、25℃、リファレンスに上記ITO電極付きPET基板、スキャン波長を300~800nmの条件で透過率を測定した。評価は、450nmの波長の透過率で行い、透過率が高いものほど、評価に優れるとした。
 電圧印加時の散乱特性は、液晶表示素子に、交流駆動で40Vを印加し、液晶の配向状態を目視観察することで行った。具体的には、本素子が白濁したもの、すなわち、散乱特性が得られたものを、評価に優れる(表7~表9中の良好表示)とした。
"Evaluation of optical properties (transparency and scattering properties) (plastic substrate)"
Using a liquid crystal display element (plastic substrate), the transmittance was measured by applying no voltage. Specifically, UV-3600 (manufactured by Shimadzu Corporation) was used as a measurement apparatus, and the transmittance was measured under the conditions of 25 ° C., the above-mentioned PET substrate with an ITO electrode as a reference, and a scan wavelength of 300 to 800 nm. Evaluation was performed at a transmittance of a wavelength of 450 nm, and the higher the transmittance, the better the evaluation.
The scattering characteristics at the time of voltage application were performed by applying 40V to the liquid crystal display element by AC driving and visually observing the alignment state of the liquid crystal. Specifically, a device in which the element was clouded, that is, a device having a scattering characteristic, was regarded as excellent in evaluation (good display in Tables 7 to 9).
「液晶層と垂直液晶配向膜との密着性の評価(ガラス基板)」
 液晶表示素子を、温度80℃、湿度90%の高温高湿槽内に24時間保管し、本素子内の気泡の有無及び素子の剥離を確認した。その際、本素子内に気泡が見られずに素子の剥離(液晶層と垂直液晶配向膜とが剥がれている状態)が起こっていないものを、本評価に優れる(表7~表10中の良好表示)とした。
 この液晶表示素子の液晶層と垂直液晶配向膜との密着性の結果を表7~表10に示す。
"Evaluation of adhesion between liquid crystal layer and vertical liquid crystal alignment film (glass substrate)"
The liquid crystal display element was stored in a high-temperature and high-humidity tank having a temperature of 80 ° C. and a humidity of 90% for 24 hours, and the presence or absence of bubbles in the element and peeling of the element were confirmed. At this time, the case where no bubbles were observed in the device and the device was not peeled off (the liquid crystal layer and the vertical liquid crystal alignment film were peeled off) was excellent in this evaluation (Tables 7 to 10). Good display).
Tables 7 to 10 show the results of adhesion between the liquid crystal layer of this liquid crystal display element and the vertical liquid crystal alignment film.
「液晶層と垂直液晶配向膜との密着性の評価(プラスチック基板)」
 液晶表示素子を、温度80℃、湿度90%の高温高湿槽内に24時間保管し、本素子内の気泡の有無及び素子の剥離を確認した。その際、本素子内に気泡が見られずに素子の剥離(液晶層と垂直液晶配向膜とが剥がれている状態)が起こっていないものを、本評価に優れる(表7~表9中の良好表示)とした。
"Evaluation of adhesion between liquid crystal layer and vertical liquid crystal alignment film (plastic substrate)"
The liquid crystal display element was stored in a high-temperature and high-humidity tank having a temperature of 80 ° C. and a humidity of 90% for 24 hours, and the presence or absence of bubbles in the element and peeling of the element were confirmed. At that time, the case where no bubbles were observed in the device and the device was not peeled off (the liquid crystal layer and the vertical liquid crystal alignment film were peeled off) was excellent in this evaluation (Tables 7 to 9). Good display).
<実施例1>
 合成例1で得られたポリアミド酸溶液(1)(6.00g)に、NMP(9.60g)、BCS(9.40g)、M2(0.15g)及びK1(0.08g)を加え、25℃で5時間攪拌して、液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(1)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 1>
NMP (9.60 g), BCS (9.40 g), M2 (0.15 g) and K1 (0.08 g) were added to the polyamic acid solution (1) (6.00 g) obtained in Synthesis Example 1. The liquid crystal aligning agent (1) was obtained by stirring at 25 ° C. for 5 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (1) and the liquid crystal composition (1), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例2>
 合成例2で得られたポリアミド酸溶液(2)(6.20g)に、NMP(7.50g)及びBCS(12.1g)を加え、25℃で5時間攪拌して、液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(2)と液晶組成物(1)を用い、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<Example 2>
NMP (7.50 g) and BCS (12.1 g) were added to the polyamic acid solution (2) (6.20 g) obtained in Synthesis Example 2, and the mixture was stirred at 25 ° C. for 5 hours. 2) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (2) and the liquid crystal composition (1), production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), and Evaluation of adhesion (glass substrate, plastic substrate) was performed.
<実施例3>
 実施例2で得られた液晶配向処理剤(2)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 3>
Using the liquid crystal aligning agent (2) and the liquid crystal composition (2) obtained in Example 2, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal orientation (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
<実施例4>
 合成例3で得られたポリイミド粉末(3)(1.55g)に、NMP(13.4g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(10.9g)を加え、25℃で5時間攪拌して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(3)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 4>
NMP (13.4 g) was added to the polyimide powder (3) (1.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (10.9 g) was added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (3). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (3) and the liquid crystal composition (1), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例5>
 実施例4で得られた液晶配向処理剤(3)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 5>
Using the liquid crystal aligning agent (3) and the liquid crystal composition (2) obtained in Example 4, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal orientation (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
<実施例6>
 合成例3で得られたポリイミド粉末(3)(1.50g)に、NEP(14.1g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、PB(9.40g)、M2(0.45g)及びK1(0.15g)を加え、25℃で5時間攪拌して、液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(4)と液晶組成物(1)を用い、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<Example 6>
NEP (14.1 g) was added to the polyimide powder (3) (1.50 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (9.40 g), M2 (0.45 g) and K1 (0.15 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (4). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (4) and the liquid crystal composition (1), production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), and Evaluation of adhesion (glass substrate, plastic substrate) was performed.
<実施例7>
 合成例3で得られたポリイミド粉末(3)(1.52g)に、NEP(11.9g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(11.9g)及びM1(0.53g)を加え、25℃で5時間攪拌して、液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(5)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 7>
NEP (11.9 g) was added to the polyimide powder (3) (1.52 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. BCS (11.9g) and M1 (0.53g) were added to this solution, and it stirred at 25 degreeC for 5 hours, and obtained the liquid-crystal aligning agent (5). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (5) and the liquid crystal composition (2), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例8>
 合成例4で得られたポリイミド粉末(4)(1.50g)に、NEP(15.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(8.20g)を加え、25℃で5時間攪拌して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(6)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 8>
NEP (15.3 g) was added to the polyimide powder (4) (1.50 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours. BCS (8.20g) was added to this solution, and it stirred at 25 degreeC for 5 hours, and obtained the liquid-crystal aligning agent (6). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (6) and the liquid crystal composition (2), preparation of the liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例9>
 合成例4で得られたポリイミド粉末(4)(1.52g)に、NEP(15.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、PB(8.30g)、M2(0.53g)及びK1(0.15g)を加え、25℃で5時間攪拌して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(7)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 9>
NEP (15.5 g) was added to the polyimide powder (4) (1.52 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (8.30 g), M2 (0.53 g) and K1 (0.15 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (7) and the liquid crystal composition (1), preparation of the liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例10>
 合成例4で得られたポリイミド粉末(4)(1.55g)に、γ-BL(13.4g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(10.9g)及びM3(0.23g)を加え、25℃で5時間攪拌して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常はなく、均一溶液であることを確認した。
 液晶配向処理剤(8)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 10>
To the polyimide powder (4) obtained in Synthesis Example 4 (1.55 g), γ-BL (13.4 g) was added and dissolved by stirring at 70 ° C. for 24 hours. BCS (10.9g) and M3 (0.23g) were added to this solution, and it stirred at 25 degreeC for 5 hours, and obtained the liquid-crystal aligning agent (8). This liquid crystal aligning agent was confirmed to be a uniform solution with no abnormalities such as turbidity and precipitation.
Using the liquid crystal aligning agent (8) and the liquid crystal composition (1), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例11>
 合成例5で得られたポリイミド粉末(5)(1.50g)に、NMP(16.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(7.10g)及びK1(0.23g)を加え、25℃で5時間攪拌して、液晶配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常はなく均一な溶液であることが確認された。
 液晶配向処理剤(9)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<Example 11>
NMP (16.5 g) was added to the polyimide powder (5) (1.50 g) obtained in Synthesis Example 5 and dissolved by stirring at 70 ° C. for 24 hours. BCS (7.10g) and K1 (0.23g) were added to this solution, and it stirred at 25 degreeC for 5 hours, and obtained the liquid-crystal aligning agent (9). This liquid crystal aligning agent was confirmed to be a uniform solution with no abnormalities such as turbidity and precipitation.
Using the liquid crystal aligning agent (9) and the liquid crystal composition (2), production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate) And adhesion (glass substrate, plastic substrate) were evaluated.
<実施例12>
 合成例5で得られたポリイミド粉末(5)(1.50g)に、NEP(16.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(7.10g)及びM3(0.08g)を加え、25℃で5時間攪拌し、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常はなく、均一な溶液であることを確認した。
 液晶配向処理剤(10)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 12>
NEP (16.5 g) was added to the polyimide powder (5) (1.50 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. BCS (7.10g) and M3 (0.08g) were added to this solution, and it stirred at 25 degreeC for 5 hours, and obtained the liquid-crystal aligning agent (10). This liquid crystal aligning agent was confirmed to be a uniform solution with no abnormalities such as turbidity and precipitation.
Using the liquid crystal aligning agent (10) and the liquid crystal composition (1), production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例13>
 合成例5で得られたポリイミド粉末(5)(1.50g)に、NEP(15.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(2.40g)、PB(5.90g)、M2(0.45g)及びK1(0.08g)を加え、25℃で5時間攪拌して、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(11)と液晶組成物(1)を用い、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<Example 13>
NEP (15.3 g) was added to the polyimide powder (5) (1.50 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (2.40 g), PB (5.90 g), M2 (0.45 g) and K1 (0.08 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (11). Got. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (11) and the liquid crystal composition (1), production of the above-described liquid crystal display element / evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), and Evaluation of adhesion (glass substrate, plastic substrate) was performed.
<実施例14>
 合成例5で得られたポリイミド粉末(5)(1.50g)に、γ-BL(17.6g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(5.90g)及びM1(0.60g)を加え、25℃で5時間攪拌して、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出等の異常はなく、均一溶液であることを確認した。
 液晶配向処理剤(12)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 14>
To the polyimide powder (5) obtained in Synthesis Example 5 (1.50 g), γ-BL (17.6 g) was added and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (5.90 g) and M1 (0.60 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (12). This liquid crystal aligning agent was confirmed to be a uniform solution with no abnormalities such as turbidity and precipitation.
Using the liquid crystal aligning agent (12) and the liquid crystal composition (2), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例15>
 合成例6で得られたポリイミド粉末(6)(1.55g)に、NEP(13.4g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、PB(10.9g)、M2(0.47g)及びK1(0.08g)を加え、25℃で5時間攪拌して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(13)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 15>
NEP (13.4 g) was added to the polyimide powder (6) (1.55 g) obtained in Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (10.9 g), M2 (0.47 g) and K1 (0.08 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (13) and the liquid crystal composition (1), preparation of the liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例16>
 合成例6で得られたポリイミド粉末(6)(1.53g)に、NMP(14.4g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(9.60g)及びK1(0.15g)を加え、25℃で5時間攪拌し、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常はなく、均一な溶液であることが確認した。
 液晶配向処理剤(14)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 16>
NMP (14.4 g) was added to the polyimide powder (6) (1.53 g) obtained in Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours. BCS (9.60 g) and K1 (0.15 g) were added to this solution, and the mixture was stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (14). This liquid crystal aligning agent was confirmed to be a uniform solution with no turbidity or precipitation.
Using the liquid crystal aligning agent (14) and the liquid crystal composition (2), preparation of the liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例17>
 合成例7で得られたポリイミド粉末(7)(1.55g)に、NEP(15.8g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、PB(8.50g)、M2(0.39g)及びK1(0.16g)を加え、25℃で5時間攪拌して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(15)と液晶組成物(1)を用い、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<Example 17>
NEP (15.8 g) was added to the polyimide powder (7) (1.55 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (8.50 g), M2 (0.39 g) and K1 (0.16 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (15) and the liquid crystal composition (1), production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), and Evaluation of adhesion (glass substrate, plastic substrate) was performed.
<実施例18>
 合成例7で得られたポリイミド粉末(7)(1.50g)に、NMP(16.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(7.10g)、M3(0.15g)及びK1(0.08g)を加え、25℃で5時間攪拌して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(16)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 18>
NMP (16.5 g) was added to the polyimide powder (7) (1.50 g) obtained in Synthesis Example 7, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (7.10 g), M3 (0.15 g) and K1 (0.08 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (16) and the liquid crystal composition (1), production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例19>
 合成例8で得られたポリイミド粉末(8)(1.55g)に、γ-BL(14.6g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(9.70g)を加え、25℃で5時間攪拌して、液晶配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(17)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 19>
Γ-BL (14.6 g) was added to the polyimide powder (8) (1.55 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (9.70 g) was added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (17) and the liquid crystal composition (2), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例20>
 合成例8で得られたポリイミド粉末(8)(1.51g)に、NEP(13.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(10.6g)、M2(0.45g)及びK1(0.15g)を加え、25℃で5時間攪拌して、液晶配向処理剤(18)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(18)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 20>
NEP (13.0 g) was added to the polyimide powder (8) (1.51 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (10.6 g), M2 (0.45 g) and K1 (0.15 g) were added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (18). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (18) and the liquid crystal composition (1), preparation of the liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例21>
 合成例12で得られたポリシロキサン溶液(1)(15.0g)に、ECS(3.70g)及びBCS(11.3g)を加え、25℃で5時間攪拌して、液晶配向処理剤(19)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(19)と液晶組成物(1)を用い、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)、及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<Example 21>
ECS (3.70 g) and BCS (11.3 g) were added to the polysiloxane solution (1) (15.0 g) obtained in Synthesis Example 12, and the mixture was stirred at 25 ° C. for 5 hours. 19) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (19) and the liquid crystal composition (1), production of the above-mentioned liquid crystal display element / evaluation of liquid crystal alignment (glass substrate, plastic substrate), evaluation of optical properties (glass substrate, plastic substrate), And adhesion (glass substrate, plastic substrate) were evaluated.
<実施例22>
 実施例20で得られた液晶配向処理剤(19)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)、及び密着性の評価(ガラス基板)を行った。
<Example 22>
Using the liquid crystal aligning agent (19) and the liquid crystal composition (2) obtained in Example 20, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
<実施例23>
 合成例13で得られたポリシロキサン溶液(2)(16.0g)に、ECS(10.0g)及びBCS(6.00g)を加え、25℃で5時間攪拌して、液晶配向処理剤(20)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(20)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 23>
ECS (10.0 g) and BCS (6.00 g) were added to the polysiloxane solution (2) (16.0 g) obtained in Synthesis Example 13, and the mixture was stirred at 25 ° C. for 5 hours. 20) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (20) and the liquid crystal composition (1), production of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例24>
 実施例23で得られた液晶配向処理剤(20)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 24>
Using the liquid crystal aligning agent (20) and the liquid crystal composition (2) obtained in Example 23, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
<実施例25>
 合成例13の合成手法で得られたポリシロキサン溶液(2)(10.0g)に、ECS(10.0g)、BCS(6.00g)及びM2(0.24g)を加え、25℃で5時間攪拌して、液晶配向処理剤(21)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(21)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 25>
ECS (10.0 g), BCS (6.00 g) and M2 (0.24 g) were added to the polysiloxane solution (2) (10.0 g) obtained by the synthesis method of Synthesis Example 13, and 5 ° C. at 25 ° C. By stirring for a time, a liquid crystal aligning agent (21) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (21) and the liquid crystal composition (1), preparation of the liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例26>
 合成例14で得られたポリシロキサン溶液(3)(15.5g)に、ECS(9.70g)、PB(5.80g)を加え、25℃で5時間攪拌して、液晶配向処理剤(22)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(22)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 26>
ECS (9.70 g) and PB (5.80 g) were added to the polysiloxane solution (3) (15.5 g) obtained in Synthesis Example 14, and the mixture was stirred at 25 ° C. for 5 hours. 22) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (22) and the liquid crystal composition (1), preparation of the liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<実施例27>
 実施例26で得られた液晶配向処理剤(22)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Example 27>
Using the liquid-crystal aligning agent (22) and liquid-crystal composition (2) obtained in Example 26, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal orientation (glass substrate), evaluation of optical characteristics (glass substrate) ) And adhesion evaluation (glass substrate).
<比較例1>
 合成例9で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(9)(6.50g)に、NMP(7.90g)及びBCS(12.7g)を加え、25℃で5時間攪拌して、液晶配向処理剤(23)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(23)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Comparative Example 1>
NMP (7.90 g) and BCS (12.7 g) are added to the polyamic acid solution (9) (6.50 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 9, and the mixture is stirred at 25 ° C. for 5 hours. As a result, a liquid crystal aligning agent (23) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (23) and the liquid crystal composition (1), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<比較例2>
 比較例1で得られた液晶配向処理剤(23)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Comparative example 2>
Using the liquid crystal aligning agent (23) and the liquid crystal composition (2) obtained in Comparative Example 1, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
<比較例3>
 合成例10で得られたポリイミド粉末(10)(1.70g)に、NMP(14.6g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(12.0g)を加え、25℃で5時間攪拌して、液晶配向処理剤(24)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(24)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Comparative Example 3>
NMP (14.6 g) was added to the polyimide powder (10) (1.70 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (12.0 g) was added and stirred at 25 ° C. for 5 hours to obtain a liquid crystal aligning agent (24). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (24) and the liquid crystal composition (1), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<比較例4>
 比較例3で得られた液晶配向処理剤(24)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Comparative example 4>
Using the liquid crystal aligning agent (24) and the liquid crystal composition (2) obtained in Comparative Example 3, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
<比較例5>
 合成例11で得られたポリイミド粉末(11)(1.65g)に、NMP(14.2g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、BCS(11.6g)を加え、25℃で5時間攪拌して、液晶配向処理剤(25)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(25)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Comparative Example 5>
NMP (14.2 g) was added to the polyimide powder (11) (1.65 g) obtained in Synthesis Example 11, and dissolved by stirring at 70 ° C. for 24 hours. BCS (11.6g) was added to this solution, and it stirred at 25 degreeC for 5 hours, and obtained the liquid-crystal aligning agent (25). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (25) and the liquid crystal composition (1), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<比較例7>
 合成例15で得られたポリシロキサン溶液(4)(16.0g)に、ECS(4.00g)及びBCS(12.0g)を加え、25℃で5時間攪拌して、液晶配向処理剤(26)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 液晶配向処理剤(26)と液晶組成物(1)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Comparative Example 7>
ECS (4.00 g) and BCS (12.0 g) were added to the polysiloxane solution (4) (16.0 g) obtained in Synthesis Example 15, and the mixture was stirred at 25 ° C. for 5 hours. 26) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the liquid crystal aligning agent (26) and the liquid crystal composition (1), preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate), and evaluation of adhesion ( Glass substrate).
<比較例8>
 比較例7で得られた液晶配向処理剤(26)と液晶組成物(2)を用いて、上記した液晶表示素子の作製・液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<Comparative Example 8>
Using the liquid crystal aligning agent (26) and the liquid crystal composition (2) obtained in Comparative Example 7, preparation of the above-mentioned liquid crystal display element, evaluation of liquid crystal alignment (glass substrate), evaluation of optical properties (glass substrate) ) And adhesion evaluation (glass substrate).
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000101
*1:素子内に、配向欠陥が見られた。
*2:液晶が垂直配向していなかった。
*3:液晶が垂直配向していないため、測定できなかった。
*4:素子内に気泡が見られた。
*5:素子が、液晶層と垂直液晶配向膜との間で剥離した。
* 1: An alignment defect was observed in the device.
* 2: The liquid crystal was not vertically aligned.
* 3: Since the liquid crystal was not vertically aligned, measurement was not possible.
* 4: Bubbles were observed in the element.
* 5: The element peeled between the liquid crystal layer and the vertical liquid crystal alignment film.
 上記からわかるように、実施例の液晶表示素子は、比較例に比べて、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好で、更には液晶層と垂直液晶配向膜との密着性が高い。特に、液晶組成物中の重合性化合物の含有量が多い場合、すなわち、実施例において、液晶組成物(2)を用いた場合でも、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好であった。
 具体的には、重合体中の側鎖構造が異なる実施例と比較例との比較、すなわち、実施例2と比較例1との比較、実施例4と比較例3との比較、及び実施例21と比較例7との比較において、比較例の液晶表示素子は、実施例に比べて、液晶の垂直配向性不足に伴う配向欠陥が見られ、電圧無印加時の透過率も低くなった。更に、液晶組成物中の重合性化合物の含有量が少ない液晶組成物(1)を用いているため、比較例では、液晶層と垂直液晶配向膜との密着性が低く、高温高湿槽内に保管することで液晶表示素子内に気泡が見られた。
As can be seen from the above, the liquid crystal display elements of the examples have higher liquid crystal vertical alignment than the comparative examples, and good optical characteristics, that is, transparency when no voltage is applied and scattering characteristics when a voltage is applied. Good, and furthermore, the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film is high. In particular, when the content of the polymerizable compound in the liquid crystal composition is large, that is, in the example, even when the liquid crystal composition (2) is used, the vertical alignment of the liquid crystal is high and good optical characteristics, that is, The transparency when no voltage was applied and the scattering characteristics when a voltage was applied were good.
Specifically, a comparison between Examples and Comparative Examples having different side chain structures in the polymer, that is, a comparison between Example 2 and Comparative Example 1, a comparison between Example 4 and Comparative Example 3, and an Example In comparison between No. 21 and Comparative Example 7, in the liquid crystal display element of the comparative example, alignment defects due to insufficient vertical alignment of the liquid crystal were observed and the transmittance when no voltage was applied was also lower than in the example. Further, since the liquid crystal composition (1) having a small content of the polymerizable compound in the liquid crystal composition is used, in the comparative example, the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film is low, and the inside of the high temperature and high humidity tank In the liquid crystal display element, bubbles were observed.
 また、液晶組成物中の重合性化合物の含有量が多い液晶組成物(2)を用い、重合体中の側鎖構造のみが、特定側鎖構造と従来型の側鎖構造とで異なる実施例と比較例との比較、すなわち、実施例3と比較例2との比較、実施例5と比較例4との比較及び実施例22と比較例8との比較において、比較例の液晶表示素子は、液晶層と垂直液晶配向膜との密着性には優れているものの、液晶が垂直に配向しない結果となった。
 加えて、重合体中の側鎖構造を従来型の側鎖構造を用いて、その含有量を多くした場合、すなわち、比較例5、6の液晶表示素子は、液晶の垂直配向性及び電圧印加時の透過率の特性には優れているものの、高温高湿槽内に保管することで、液晶層と垂直液晶配向膜との密着性が悪いため、液晶表示素子の剥離が起こった。
Moreover, the liquid crystal composition (2) having a high content of the polymerizable compound in the liquid crystal composition was used, and only the side chain structure in the polymer was different between the specific side chain structure and the conventional side chain structure. Comparison of Example 3 and Comparative Example 2, Comparison of Example 5 and Comparative Example 4, and Comparison of Example 22 and Comparative Example 8 Although the adhesion between the liquid crystal layer and the vertical liquid crystal alignment film was excellent, the liquid crystal was not aligned vertically.
In addition, when the content of the side chain structure in the polymer is increased by using the conventional side chain structure, that is, in the liquid crystal display elements of Comparative Examples 5 and 6, the vertical alignment property of the liquid crystal and the voltage application Although the transmittance characteristics at the time were excellent, the liquid crystal display element was peeled off due to poor adhesion between the liquid crystal layer and the vertical liquid crystal alignment film when stored in a high temperature and high humidity tank.
 本発明の液晶表示素子は、表示を目的とする液晶ディスプレイ、更には、光の透過と遮断を制御する、住宅、ビル、車両用などの調光窓や光シャッター素子などに有用である。
 なお、2013年3月1日に出願された日本特許出願2013-040398号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal display element of the present invention is useful for a liquid crystal display for display purposes, and further for a light control window, an optical shutter element, etc. for houses, buildings, vehicles, etc. for controlling transmission and blocking of light.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2013-040398 filed on March 1, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (11)

  1.  電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、更に、基板の少なくとも一方が液晶を垂直に配向させる液晶配向膜を有し、液晶組成物の一部又は全体が液晶性を示す状態で前記液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させて得られる液晶表示素子であり、前記液晶配向膜が、下記の式[1]で示される構造を有する重合体を含む液晶配向処理剤から得られる液晶配向膜からなる液晶表示素子。
    Figure JPOXMLDOC01-appb-C000001
    (Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-を示し、Yは単結合又は(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-を示し、Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す)。
    A liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, At least one has a liquid crystal alignment film for vertically aligning liquid crystals, and the liquid crystal composition is cured in a state where a part or the whole of the liquid crystal composition exhibits liquid crystallinity, and a cured product composite of liquid crystal and a polymerizable compound A liquid crystal display element obtained by forming a liquid crystal display element, wherein the liquid crystal alignment film comprises a liquid crystal alignment film obtained from a liquid crystal aligning agent containing a polymer having a structure represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, and Y 2 represents a single bond. Or (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, wherein Y 4 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or 2 having 17 to 51 carbon atoms having a steroid skeleton. An arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or 1 carbon atom may be substituted with a fluorine-containing alkoxyl group or a fluorine atom ~ 3, Y 5 is a benzene ring A divalent cyclic group selected from the group consisting of a cyclohexane ring and a heterocyclic ring, wherein any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, carbon May be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n represents an integer of 0 to 4, and Y 6 has 1 to 18 carbon atoms. An alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms).
  2.  前記液晶配向処理剤が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つの重合体を含む液晶配向処理剤である請求項1に記載の液晶表示素子。 The liquid crystal aligning agent includes at least one polymer selected from the group consisting of acrylic polymer, methacrylic polymer, novolak resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, and polysiloxane. The liquid crystal display element according to claim 1, which is an agent.
  3.  前記液晶配向処理剤が、式[1]の側鎖を有するジアミン化合物を原料の一部に用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体を含む液晶配向処理剤である請求項2に記載の液晶表示素子。 Liquid crystal alignment treatment, wherein the liquid crystal alignment treatment agent includes at least one polymer selected from the group consisting of a polyimide precursor obtained by using a diamine compound having a side chain of the formula [1] as part of the raw material and polyimide. The liquid crystal display element according to claim 2, which is an agent.
  4.  前記ジアミン化合物が、下記の式[1a]で示されるジアミン化合物を用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体である請求項3に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000002
    (Y~Yは前記式[1]中と同義である。mは1~4の整数を示す)。
    The liquid crystal display element according to claim 3, wherein the diamine compound is at least one polymer selected from the group consisting of a polyimide precursor obtained by using a diamine compound represented by the following formula [1a] and a polyimide.
    Figure JPOXMLDOC01-appb-C000002
    (Y 1 to Y 6 are as defined in the above formula [1]. M represents an integer of 1 to 4).
  5.  前記液晶配向処理剤が、下記の式[2]で示されるテトラカルボン酸成分を原料の一部に用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体を含む液晶配向処理剤である請求項2~請求項4のいずれか一項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000003
    (Zは下記の式[2a]~式[2j]からなる群から選ばれる構造を示す)。
    Figure JPOXMLDOC01-appb-C000004
    (Z~Zは水素原子、メチル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよく、Z及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい)。
    The liquid crystal aligning agent contains at least one polymer selected from the group consisting of a polyimide precursor and a polyimide obtained by using a tetracarboxylic acid component represented by the following formula [2] as a part of the raw material. The liquid crystal display element according to any one of claims 2 to 4, which is an alignment treatment agent.
    Figure JPOXMLDOC01-appb-C000003
    (Z 1 represents a structure selected from the group consisting of the following formulas [2a] to [2j]).
    Figure JPOXMLDOC01-appb-C000004
    (Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different, and Z 6 and Z 7 represent a hydrogen atom or a methyl group, and each represents the same. Or different.)
  6.  前記液晶配向処理剤が、下記の式[A1]で示されるアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と下記の式[A2]又は式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサン、あるいは、式[A1]、式[A2]及び式[A3]で示されるアルコキシシランを重縮合させて得られるポリシロキサンのうちのいずれか1種を含む液晶配向処理剤である請求項2に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000005
    (Aは前記式[1]で示される構造を示し、Aはそれぞれ水素原子又は炭素数1~5のアルキル基を示し、Aはそれぞれ炭素数1~5のアルキル基を示し、mは1又は2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4の整数を示す)。
    Figure JPOXMLDOC01-appb-C000006
    (Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基又はシンナモイル基を有する炭素数2~12の有機基を示し、Bはそれぞれ水素原子又は炭素数1~5のアルキル基を示し、Bはそれぞれ炭素数1~5のアルキル基を示し、mは1又は2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4の整数を示す)。
    Figure JPOXMLDOC01-appb-C000007
    (Dはそれぞれ水素原子又は炭素数1~5のアルキル基を示し、Dは炭素数1~5のアルキル基を示し、nは0~3の整数を示す)。
    The liquid crystal aligning agent is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the following formula [A1], an alkoxysilane represented by the formula [A1] and the following formula [A2] or the formula [A3]. Among polysiloxanes obtained by polycondensation of alkoxysilanes containing any one of them, or polysiloxanes obtained by polycondensation of alkoxysilanes represented by formula [A1], formula [A2] and formula [A3] The liquid crystal display element of Claim 2 which is a liquid-crystal aligning agent containing any one of these.
    Figure JPOXMLDOC01-appb-C000005
    (A 1 represents the structure represented by the formula [1], A 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, A 3 represents an alkyl group having 1 to 5 carbon atoms, m Represents an integer of 1 or 2, n represents an integer of 0 to 2, and p represents an integer of 0 to 3, where m + n + p represents an integer of 4.
    Figure JPOXMLDOC01-appb-C000006
    (B 1 represents an organic group having 2 to 12 carbon atoms having a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, a methacryl group, an acrylic group, a ureido group or a cinnamoyl group, and B 2 represents a hydrogen atom or An alkyl group having 1 to 5 carbon atoms, B 3 represents an alkyl group having 1 to 5 carbon atoms, m represents an integer of 1 or 2, n represents an integer of 0 to 2, and p represents 0 to 3 represents an integer of 3 (where m + n + p represents an integer of 4).
    Figure JPOXMLDOC01-appb-C000007
    (D 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, D 2 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 3).
  7.  前記液晶配向処理剤が、下記の式[6]で示される化合物を含有する請求項1~6のいずれか一項に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000008
    (Xは下記の式[6a-1]~[6a-7]で示される構造からなる群から選ばれる少なくとも1種の構造を示す。Xは単結合、-CH-、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-及び-N(CH)CO-からなる群から選ばれる少なくとも1種の結合基を示す。Xは炭素数1~20のアルキレン基、-(CH-CH-O)-(pは1~10の整数を示す)、-(CH-O-)-(qは1~10の整数を示す)、及び炭素数6~20のベンゼン環又はシクロヘキサン環を有する有機基からなる群から選ばれる少なくとも1種を示す。その際、前記アルキレン基の任意の-CH-基は、-COO-、-OCO-、-CONH-、NHCO-、-CO-、-S-、-SO-、-CF-、-C(CF-、-Si(CH-、-OSi(CH-又は-Si(CHO-で置き換えられていても良く、任意の炭素原子に結合している水素原子は、水酸基(OH基)、カルボキシル基(COOH基)又はハロゲン原子で置き換えられていても良い。Xは単結合、-CH-、-OCH-及び-O-CH-CH-からなる群から選ばれる少なくとも1種の結合基を示す。Xは下記の式[6b-1]~[6b-8]で示される構造からなる群から選ばれる少なくとも1種の構造を示す。nは1~3の整数を示す。mは1~3の整数を示す。)
    Figure JPOXMLDOC01-appb-C000009
    (Aは水素原子又は炭素数1~5のアルキレン基を示す。A、A、A、A及びAはそれぞれ独立して、水素原子又は炭素数1~3のアルキレン基を示す。A、A及びAはそれぞれ独立して、炭素数1~3のアルキレン基を示す。)
    Figure JPOXMLDOC01-appb-C000010
    (Bは水素原子又はベンゼン環を示す。Bはベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示す。Bは炭素数1~12のアルキレン基、炭素数1~12のフッ素含有アルキレン基、炭素数1~12のアルコキシル基及び炭素数1~12のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
    The liquid crystal display element according to any one of claims 1 to 6, wherein the liquid crystal aligning agent contains a compound represented by the following formula [6].
    Figure JPOXMLDOC01-appb-C000008
    (X 1 represents at least one structure selected from the group consisting of the structures represented by the following formulas [6a-1] to [6a-7]. X 2 represents a single bond, —CH 2 —, —O—. , —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — and —N At least one linking group selected from the group consisting of (CH 3 ) CO—, wherein X 3 is an alkylene group having 1 to 20 carbon atoms, — (CH 2 —CH 2 —O) p — (p is 1 to Selected from the group consisting of organic groups having a benzene ring or a cyclohexane ring having 6 to 20 carbon atoms, and — (CH 2 —O—) q — (q represents an integer of 1 to 10) It indicates at least one kind that time, any -CH 2 in the alkylene group -. group, - OO -, - OCO -, - CONH-, NHCO -, - CO -, - S -, - SO 2 -, - CF 2 -, - C (CF 3) 2 -, - Si (CH 3) 2 -, The hydrogen atom bonded to any carbon atom may be replaced by —OSi (CH 3 ) 2 — or —Si (CH 3 ) 2 O—, and the hydroxyl group (OH group), carboxyl group (COOH group) X 4 represents a single bond, at least one linking group selected from the group consisting of —CH 2 —, —OCH 2 — and —O—CH 2 —CH 2 —. X 5 represents at least one structure selected from the group consisting of structures represented by the following formulas [6b-1] to [6b-8], n represents an integer of 1 to 3, and m represents 1 Represents an integer of ~ 3.)
    Figure JPOXMLDOC01-appb-C000009
    (A 1 represents a hydrogen atom or an alkylene group having 1 to 5 carbon atoms. A 2 , A 3 , A 5 , A 6 and A 9 each independently represents a hydrogen atom or an alkylene group having 1 to 3 carbon atoms. A 4 , A 7 and A 8 each independently represents an alkylene group having 1 to 3 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000010
    (B 1 represents a hydrogen atom or a benzene ring. B 2 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring. B 3 represents an alkylene having 1 to 12 carbon atoms. And at least one selected from the group consisting of a group, a fluorine-containing alkylene group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, and a fluorine-containing alkoxyl group having 1 to 12 carbon atoms.)
  8.  前記式[1]で示される構造を有する重合体が、重量平均分子量10,000~150,000である請求項1~7のいずれか一項に記載の液晶表示素子。 The liquid crystal display element according to any one of claims 1 to 7, wherein the polymer having the structure represented by the formula [1] has a weight average molecular weight of 10,000 to 150,000.
  9.  前記液晶表示素子の基板が、ガラス基板又はプラスチック基板である請求項1~8のいずれか一項に記載の液晶表示素子。 The liquid crystal display element according to any one of claims 1 to 8, wherein the substrate of the liquid crystal display element is a glass substrate or a plastic substrate.
  10.  請求項1~9のいずれか一項に記載の液晶表示素子に用いる液晶配向膜。 10. A liquid crystal alignment film used for the liquid crystal display element according to claim 1.
  11.  請求項10に記載の液晶配向膜を形成するための液晶配向処理剤。 A liquid crystal alignment treatment agent for forming the liquid crystal alignment film according to claim 10.
PCT/JP2014/055138 2013-03-01 2014-02-28 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent WO2014133154A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157026534A KR102196272B1 (en) 2013-03-01 2014-02-28 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
CN201480024564.7A CN105164580B (en) 2013-03-01 2014-02-28 Liquid crystal indicates element, liquid crystal orientation film and aligning agent for liquid crystal
JP2015503058A JP6459959B2 (en) 2013-03-01 2014-02-28 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-040398 2013-03-01
JP2013040398 2013-03-01

Publications (1)

Publication Number Publication Date
WO2014133154A1 true WO2014133154A1 (en) 2014-09-04

Family

ID=51428412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055138 WO2014133154A1 (en) 2013-03-01 2014-02-28 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent

Country Status (5)

Country Link
JP (1) JP6459959B2 (en)
KR (1) KR102196272B1 (en)
CN (1) CN105164580B (en)
TW (1) TWI662061B (en)
WO (1) WO2014133154A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105225724A (en) * 2014-06-30 2016-01-06 乐金显示有限公司 Organic insulating material and comprise its flexible display
WO2016047771A1 (en) * 2014-09-25 2016-03-31 日産化学工業株式会社 Lcd element
WO2016047770A1 (en) * 2014-09-25 2016-03-31 日産化学工業株式会社 Lcd element
JP2016133675A (en) * 2015-01-20 2016-07-25 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and production method of the same, liquid crystal display element, and retardation film and production method of the same
CN107077024A (en) * 2014-11-07 2017-08-18 日产化学工业株式会社 Liquid crystal represents element
KR20240007182A (en) 2021-05-13 2024-01-16 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2831103T3 (en) * 2016-02-26 2021-06-07 Nissan Chemical Corp Liquid crystal display device
CN105954935B (en) * 2016-06-24 2019-11-26 明基材料有限公司 Liquid-crystal apparatus
CN109477925B (en) * 2016-07-21 2022-10-25 住友化学株式会社 Elliptical polarizing plate
CN110770645B (en) * 2017-06-14 2022-06-03 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element using same, and method for producing liquid crystal alignment film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255315A (en) * 2001-12-28 2003-09-10 Asahi Glass Co Ltd Liquid crystal dimmer element and method for manufacturing the same
JP2007249041A (en) * 2006-03-17 2007-09-27 Fujifilm Corp Dimming material
JP2008058374A (en) * 2006-08-29 2008-03-13 Dainippon Ink & Chem Inc Liquid crystal element
WO2011132752A1 (en) * 2010-04-22 2011-10-27 日産化学工業株式会社 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885116B2 (en) 1994-07-05 1999-04-19 日本電気株式会社 Liquid crystal optical element and manufacturing method thereof
JP4132424B2 (en) 1999-06-22 2008-08-13 旭硝子株式会社 Manufacturing method of liquid crystal optical element
JP5578074B2 (en) * 2008-06-04 2014-08-27 日産化学工業株式会社 Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5904121B2 (en) * 2010-07-26 2016-04-13 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255315A (en) * 2001-12-28 2003-09-10 Asahi Glass Co Ltd Liquid crystal dimmer element and method for manufacturing the same
JP2007249041A (en) * 2006-03-17 2007-09-27 Fujifilm Corp Dimming material
JP2008058374A (en) * 2006-08-29 2008-03-13 Dainippon Ink & Chem Inc Liquid crystal element
WO2011132752A1 (en) * 2010-04-22 2011-10-27 日産化学工業株式会社 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748517B2 (en) 2014-06-30 2017-08-29 Lg Display Co., Ltd. Organic insulating material and flexible display including the same
CN105225724A (en) * 2014-06-30 2016-01-06 乐金显示有限公司 Organic insulating material and comprise its flexible display
US10381595B2 (en) 2014-06-30 2019-08-13 Lg Display Co., Ltd. Organic insulating material and flexible display including the same
TWI695881B (en) * 2014-09-25 2020-06-11 日商日產化學工業股份有限公司 Liquid crystal display element
WO2016047770A1 (en) * 2014-09-25 2016-03-31 日産化学工業株式会社 Lcd element
KR20170060069A (en) * 2014-09-25 2017-05-31 닛산 가가쿠 고교 가부시키 가이샤 Lcd element
JPWO2016047770A1 (en) * 2014-09-25 2017-07-06 日産化学工業株式会社 Liquid crystal display element
JPWO2016047771A1 (en) * 2014-09-25 2017-07-13 日産化学工業株式会社 Liquid crystal display element
CN107003571A (en) * 2014-09-25 2017-08-01 日产化学工业株式会社 Liquid crystal represents element
CN107003570A (en) * 2014-09-25 2017-08-01 日产化学工业株式会社 Liquid crystal represents element
KR102474324B1 (en) * 2014-09-25 2022-12-05 닛산 가가쿠 가부시키가이샤 Lcd element
KR102437798B1 (en) 2014-09-25 2022-08-29 닛산 가가쿠 가부시키가이샤 Lcd element
KR20170060071A (en) * 2014-09-25 2017-05-31 닛산 가가쿠 고교 가부시키 가이샤 Lcd element
TWI669378B (en) * 2014-09-25 2019-08-21 日商日產化學工業股份有限公司 Liquid crystal display element
US10647816B2 (en) 2014-09-25 2020-05-12 Nissan Chemical Industries, Ltd. Liquid crystal display device
WO2016047771A1 (en) * 2014-09-25 2016-03-31 日産化学工業株式会社 Lcd element
CN107003571B (en) * 2014-09-25 2020-10-09 日产化学工业株式会社 Liquid crystal display element
CN107077024B (en) * 2014-11-07 2020-11-17 日产化学工业株式会社 Liquid crystal display element
CN107077024A (en) * 2014-11-07 2017-08-18 日产化学工业株式会社 Liquid crystal represents element
JP2016133675A (en) * 2015-01-20 2016-07-25 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and production method of the same, liquid crystal display element, and retardation film and production method of the same
KR20240007182A (en) 2021-05-13 2024-01-16 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal device

Also Published As

Publication number Publication date
TW201504282A (en) 2015-02-01
CN105164580A (en) 2015-12-16
KR102196272B1 (en) 2020-12-29
JP6459959B2 (en) 2019-01-30
TWI662061B (en) 2019-06-11
CN105164580B (en) 2019-04-19
JPWO2014133154A1 (en) 2017-02-09
KR20150123881A (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP6414145B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6414053B2 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP6459959B2 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP6390611B2 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP6414215B2 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
WO2015022980A1 (en) Liquid crystal display element
KR101988082B1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6409774B2 (en) Liquid crystal display element, liquid crystal alignment treatment agent, and liquid crystal alignment film
JP6575510B2 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP5950137B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024564.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157026534

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14757161

Country of ref document: EP

Kind code of ref document: A1