JP5578074B2 - Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
JP5578074B2
JP5578074B2 JP2010515902A JP2010515902A JP5578074B2 JP 5578074 B2 JP5578074 B2 JP 5578074B2 JP 2010515902 A JP2010515902 A JP 2010515902A JP 2010515902 A JP2010515902 A JP 2010515902A JP 5578074 B2 JP5578074 B2 JP 5578074B2
Authority
JP
Japan
Prior art keywords
polysiloxane
liquid crystal
formula
alkoxysilane
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010515902A
Other languages
Japanese (ja)
Other versions
JPWO2009148099A1 (en
Inventor
里枝 軍司
賢一 元山
謙治 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2010515902A priority Critical patent/JP5578074B2/en
Publication of JPWO2009148099A1 publication Critical patent/JPWO2009148099A1/en
Application granted granted Critical
Publication of JP5578074B2 publication Critical patent/JP5578074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Silicon Polymers (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Description

本発明は、アルコキシシランを重縮合して得られるポリシロキサンを含有する液晶配向剤、及び前記液晶配向剤から得られる液晶配向膜、並びにその液晶配向膜を有する液晶表示素子に関する。   The present invention relates to a liquid crystal alignment agent containing polysiloxane obtained by polycondensation of alkoxysilane, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.

液晶表示素子は、透明電極上にポリアミック酸及び/又はポリイミドを主成分とする液晶配向膜が設けられている2枚の基板を対向配置し、その間隙内に液晶物質を充填させた構造であることが一般に知られている。最もよく知られている方式としては、TN(Twisted Nematic)型液晶表示素子であるが、これよりも高いコンストラスト比が実現できるSTN(Super Twisted Nematic)型、視野角依存性が少ないIPS(In−Plane Switching)型、垂直配向(VA:Vertical Alignment)型等の開発がされている。   The liquid crystal display element has a structure in which two substrates, each having a liquid crystal alignment film mainly composed of polyamic acid and / or polyimide on a transparent electrode, are arranged to face each other, and a liquid crystal material is filled in a gap between the substrates. It is generally known. The most well-known method is a TN (Twisted Nematic) type liquid crystal display element, but an STN (Super Twisted Nematic) type that can realize a higher contrast ratio than this, and an IPS (Insert) with less viewing angle dependency. -Plane Switching (VA) type, vertical alignment (VA) type, etc. have been developed.

ビジネス用途及びホームシアター用の液晶プロジェクタ用途においては、光源に照射強度の強いメタルハライドランプが用いられており、高耐熱性だけでなく高耐光性を有する液晶配向膜材料が要望されている。
このような状況のなかで、従来から用いられているポリイミド等の有機系の液晶配向膜材料と共に、無機系の液晶配向膜材料も注目されてきている。
In business applications and home theater liquid crystal projector applications, a metal halide lamp with high irradiation intensity is used as a light source, and a liquid crystal alignment film material having not only high heat resistance but also high light resistance is desired.
Under such circumstances, inorganic liquid crystal alignment film materials have been attracting attention along with organic liquid crystal alignment film materials such as polyimide that have been used conventionally.

例えば、塗布型の無機系配向膜の材料として、テトラアルコキシシランと、トリアルコキシシランと、アルコール及び蓚酸との反応生成物を含有する配向剤組成物が提案され、液晶表示素子の電極基板上で垂直配向性、耐熱性及び均一性に優れる液晶配向膜を形成することが報告されている。(特許文献1参照。)
また、テトラアルコキシシラン、特定のトリアルコキシシラン及び水との反応生成物と特定のグリコールエーテル系溶媒を含有する液晶配向剤組成物が提案され、表示不良を防止し、長時間駆動後も残像特性の良好な、液晶を配向させる能力を低下させることなく、且つ光及び熱に対する電圧保持率の低下が少ない液晶配向膜を形成することが報告されている。(特許文献2参照。)
近年、液晶TVをはじめとする液晶表示素子の技術革新は目覚しく、これを達成するために、特に素子の長期の信頼性向上がこれまでにも増して大きな課題となってきている。そのため均質な液晶配向膜を再現性良く得ることと共に、長期に安定な膜を得ることが求められてきている。
特に、液晶表示素子を製造する過程で、環境からの影響を受けずに、再現性良く均質な液晶配向膜を製造することは、素子の信頼性を確保する上で非常に重要になってきている。
For example, as a material for a coating-type inorganic alignment film, an alignment agent composition containing a reaction product of tetraalkoxysilane, trialkoxysilane, alcohol, and oxalic acid has been proposed. It has been reported that a liquid crystal alignment film excellent in vertical alignment, heat resistance and uniformity is formed. (See Patent Document 1.)
In addition, a liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, specific trialkoxysilane and water and a specific glycol ether solvent has been proposed to prevent display failure and afterimage characteristics even after long-time driving. It has been reported that a liquid crystal alignment film is formed without decreasing the ability to align liquid crystal and having little decrease in voltage holding ratio against light and heat. (See Patent Document 2.)
In recent years, technological innovation of liquid crystal display elements such as liquid crystal TVs has been remarkable, and in order to achieve this, improvement of the long-term reliability of the elements has become a greater challenge than ever. Therefore, it has been required to obtain a uniform liquid crystal alignment film with good reproducibility and to obtain a stable film for a long time.
In particular, in the process of manufacturing a liquid crystal display element, it is very important to manufacture a uniform liquid crystal alignment film with good reproducibility without being affected by the environment in order to ensure the reliability of the element. Yes.

また、液晶表示素子外部から侵入する水分に対する耐性も、長期信頼性を確保するためには、重要である。   In addition, resistance to moisture entering from the outside of the liquid crystal display element is also important for ensuring long-term reliability.

特開平09−281502号公報JP 09-281502 A 特開2005−250244号公報JP 2005-250244 A

上記の無機系の液晶配向膜は、液晶配向剤を用いて成膜する際に、アルコキシ基やシラノール基が残存すると空気中に存在する水分の影響を受けやすい。そのためこれまでは均質な液晶配向膜が得られにくく、結果として、液晶表示素子の信頼性低下に繋がるため、問題となっている。
さらに、液晶表示素子の外部から侵入する水分、例えばシール材部等から侵入する水分も、液晶配向膜に影響を与えるため、液晶表示素子の信頼性低下が懸念される。
そのため、液晶配向膜の水分に対する耐性を向上させることは液晶表示素子の信頼性を確保する上で重要な課題となっている。
The inorganic liquid crystal alignment film is easily affected by moisture present in the air if an alkoxy group or silanol group remains when the film is formed using a liquid crystal aligning agent. Therefore, until now, it has been difficult to obtain a uniform liquid crystal alignment film, resulting in a decrease in the reliability of the liquid crystal display element, which is a problem.
Furthermore, since moisture entering from the outside of the liquid crystal display element, for example, moisture entering from the sealing material portion or the like also affects the liquid crystal alignment film, there is a concern that the reliability of the liquid crystal display element is lowered.
Therefore, improving the resistance of the liquid crystal alignment film to moisture is an important issue in securing the reliability of the liquid crystal display element.

本発明の課題は、液晶配向性が良好で、膜の安定性が高い液晶配向膜を形成でき、且つ、外部からの水分の影響を受けにくく、液晶表示素子の電気特性に優れる液晶配向膜を形成可能なケイ素系液晶配向剤、該ケイ素系液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することである。   An object of the present invention is to provide a liquid crystal alignment film that has excellent liquid crystal alignment properties, can form a liquid crystal alignment film with high film stability, is hardly affected by moisture from the outside, and has excellent electrical characteristics of a liquid crystal display element. A silicon-based liquid crystal aligning agent that can be formed, a liquid crystal aligning film obtained from the silicon-based liquid crystal aligning agent, and a liquid crystal display device having the liquid crystal aligning film.

本発明は、上記の課題を達成しうるものであり、以下を要旨とする。
[1]フッ素原子で置換されていてもよく、かつ、酸素原子、リン原子、若しくは硫黄原子を有していてもよい炭素原子数8〜30の炭化水素基、及びウレイド基を有する炭素原子数1〜12の炭化水素基を有する、1種類又は2種類以上のポリシロキサンを含有し、前者の炭化水素基と後者のウレイド基を有する炭化水素基は、いずれも同一のポリシロキサンに結合していてもよく、又は、それぞれ別のポリシロキサンに結合していてもよいことを特徴とする液晶配向剤。
[2]式(1)で表されるアルコキシシラン、及び式(2)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサン(AB )を含有する前記[1]に記載の液晶配向剤。
(XSi(OR3−p (1)
(Xは、フッ素原子で置換されていてもよく、かつ酸素原子、リン原子、若しくは硫黄原子を含有していてもよい炭素原子数8〜30の炭化水素基であり、Xは炭素原子数1〜5のアルキル基であり、Rは炭素原子数1〜5のアルキル基であり、pは0から2の整数を表す。)
{Si(OR (2)
(Xは、ウレイド基を有する炭素原子数1〜12の炭化水素基であり、Rは炭素原子数1〜5のアルキル基であり、qは1又は2の整数を表す。)
[3]下記のポリシロキサン(A)及びポリシロキサン(B)を含有する前記[1]に記載の液晶配向剤。
ポリシロキサン(A):式(1)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサン、
(XSi(OR3−p (1)
(X、X、R、及びpは、上記〔1〕における式(1)でそれぞれ定義したものと同じである。)
ポリシロキサン(B):式(2)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサン。
{Si(OR (2)
(X、R、及びqは、上記〔1〕における式(2)でそれぞれ定義したものと同じである。)
The present invention can achieve the above-described problems, and the gist thereof is as follows.
[1] The number of carbon atoms having a hydrocarbon group having 8 to 30 carbon atoms which may be substituted with a fluorine atom and which may have an oxygen atom, a phosphorus atom or a sulfur atom, and a ureido group 1 type or 2 types or more of polysiloxanes having 1 to 12 hydrocarbon groups, the former hydrocarbon groups and the hydrocarbon groups having the latter ureido groups are all bonded to the same polysiloxane. Or a liquid crystal aligning agent that may be bonded to different polysiloxanes.
[2] The polysiloxane (AB) obtained by polycondensation of an alkoxysilane represented by the formula (1) and an alkoxysilane containing the alkoxysilane represented by the formula (2) Liquid crystal aligning agent.
X 1 (X 2) p Si (OR 1) 3-p (1)
(X 1 is a hydrocarbon group having 8 to 30 carbon atoms which may be substituted with a fluorine atom and may contain an oxygen atom, a phosphorus atom or a sulfur atom, and X 2 is a carbon atom. An alkyl group having 1 to 5 carbon atoms, R 1 is an alkyl group having 1 to 5 carbon atoms, and p represents an integer of 0 to 2.)
X 3 {Si (OR 2 ) 3 } q (2)
(X 3 is a hydrocarbon group having 1 to 12 carbon atoms having a ureido group, R 2 is an alkyl group having 1 to 5 carbon atoms, and q represents an integer of 1 or 2.)
[3] The liquid crystal aligning agent according to [1], comprising the following polysiloxane (A) and polysiloxane (B).
Polysiloxane (A): polysiloxane obtained by polycondensation of alkoxysilane containing alkoxysilane represented by formula (1),
X 1 (X 2) p Si (OR 1) 3-p (1)
(X 1 , X 2 , R 1 , and p are the same as those defined in Formula (1) in [1] above.)
Polysiloxane (B): Polysiloxane obtained by polycondensation of alkoxysilane containing alkoxysilane represented by formula (2).
X 3 {Si (OR 2 ) 3 } q (2)
(X 3 , R 2 , and q are the same as those defined in Formula (2) in [1] above.)

[4]前記ポリシロキサン(AB)が、さらに、下記式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、前記[2]に記載の液晶配向剤。
(XSi(OR4−n (3)
(Xは、水素原子、又はハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、イソシアネート基若しくはアクリロキシ基で置換されていてもよく、かつ不飽和結合若しくはヘテロ原子を有していてもよい炭素原子数1〜6の炭化水素基であり、Rは炭素原子数1〜5のアルキル基であり、nは0〜3の整数を表す。)
[5]前記ポリシロキサン(A)が、式(1)で表されるアルコキシシラン及び式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、前記[3]に記載の液晶配向剤。
(XSi(OR4−n (3)
(X、R及びnは、それぞれ上記〔4〕における式(2)でそれぞれ定義したものと同じである。)
[6]前記ポリシロキサン(B)が、式(2)で表されるアルコキシシラン及び式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、前記[3]又は[5]に記載の液晶配向剤。
(XSi(OR4−n (3)
(X、R及びnは、それぞれ上記〔4〕における式(2)でそれぞれ定義したものと同じである。)
[4] The liquid crystal alignment according to [2], wherein the polysiloxane (AB) is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane represented by the following formula (3): Agent.
(X 4 ) n Si (OR 3 ) 4-n (3)
(X 4 may be substituted with a hydrogen atom, a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group or an acryloxy group, and may have an unsaturated bond or a hetero atom. It is a good hydrocarbon group having 1 to 6 carbon atoms, R 3 is an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 3).
[5] The polysiloxane (A) is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the formula (1) and an alkoxysilane containing the alkoxysilane represented by the formula (3). The liquid crystal aligning agent as described in [3].
(X 4 ) n Si (OR 3 ) 4-n (3)
(X 4 , R 3 and n are the same as those defined in Formula (2) in [4] above).
[6] The polysiloxane (B) is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the formula (2) and an alkoxysilane containing the alkoxysilane represented by the formula (3). The liquid crystal aligning agent as described in [3] or [5].
(X 4 ) n Si (OR 3 ) 4-n (3)
(X 4 , R 3 and n are the same as those defined in Formula (2) in [4] above).

[7]前記ポリシロキサン(AB)が、式(1)で表されるアルコキシシランと式(3)で表されるアルコキシシランを有機溶媒中で加水分解・縮合させた後、式(2)で表されるアルコキシシランを加えて加水分解・縮合する工程を含む方法で製造される前記[4]に記載の液晶配向剤。
[8]前記ポリシロキサン(A)が、式(3)で表されるアルコキシシランを有機溶媒中で加水分解・縮合させた後、式(1)で表されるアルコキシシランを加えて加水分解・縮合する工程を含む方法で製造される前記[5]に記載の液晶配向剤。
[9]前記ポリシロキサン(B)が、式(3)で表されるアルコキシシランを有機溶媒中で加水分解・縮合させた後、式(2)で表されるアルコキシシランを加えて加水分解・縮合する工程を含む方法で製造される前記[6]に記載の液晶配向剤。
[10]前記式(3)で表されるアルコキシシランが、式(3)におけるnが0である、テトラアルコキシシランである前記[4]〜[9]のいずれかに記載の液晶配向剤。
[11]前記式(1)で表されるアルコキシシランが、ポリシロキサン(AB)を得るための全アルコキシシラン中、0.1〜30モル%含まれ、かつ前記式(2)で表されるアルコキシシランが、全アルコキシシラン中、0.1〜50モル%含まれる前記[2]、[4]又は[7]に記載の液晶配向剤。
[12]前記式(3)で表されるアルコキシシランが、ポリシロキサン(AB)を得るための全アルコキシシラン中、20〜99.8モル%含まれ前記[4]又は[7]に記載の液晶配向剤。
[13]ポリシロキサンの含有量が、SiO換算濃度で、0.5〜15質量%含有される前記[1]〜[12]のいずれかに記載の液晶配向剤。
[7] The polysiloxane (AB) is obtained by hydrolyzing and condensing the alkoxysilane represented by the formula (1) and the alkoxysilane represented by the formula (3) in an organic solvent. The liquid crystal aligning agent as described in said [4] manufactured by the method including the process of adding the alkoxysilane represented and hydrolyzing and condensing.
[8] The polysiloxane (A) is hydrolyzed and condensed with an alkoxysilane represented by the formula (1) after hydrolyzing and condensing the alkoxysilane represented by the formula (3) in an organic solvent. The liquid crystal aligning agent as described in said [5] manufactured by the method including the process of condensing.
[9] The polysiloxane (B) is hydrolyzed / condensed with an alkoxysilane represented by the formula (3) in an organic solvent, and then added with an alkoxysilane represented by the formula (2). The liquid crystal aligning agent as described in said [6] manufactured by the method including the process of condensing.
[10] The liquid crystal aligning agent according to any one of [4] to [9], wherein the alkoxysilane represented by the formula (3) is a tetraalkoxysilane in which n in the formula (3) is 0.
[11] The alkoxysilane represented by the formula (1) is contained in an amount of 0.1 to 30 mol% in the total alkoxysilane for obtaining the polysiloxane (AB), and is represented by the formula (2). The liquid crystal aligning agent according to [2] , [4] or [7] , wherein the alkoxysilane is contained in an amount of 0.1 to 50 mol% in all alkoxysilanes.
[12] The alkoxysilane represented by the formula (3) is contained in 20 to 99.8 mol% in the total alkoxysilane for obtaining the polysiloxane (AB), and is described in the above [4] or [7] Liquid crystal aligning agent.
[13] The liquid crystal aligning agent according to any one of [1] to [12], wherein the polysiloxane content is 0.5 to 15% by mass in terms of SiO 2 concentration.

[14]さらに、ポリシロキサン(A)及びポリシロキサン(B)を溶解する有機溶媒を含有する前記[3]、[5]、[6]、[8]又は[9]に記載の液晶配向剤。
[15]液晶配向剤中、ポリシロキサン(A)及びポリシロキサン(B)が、それらに含まれる合計ケイ素原子をSiO換算して0.5〜15質量%含有される前記[3]、[5]、[6]、[8]、[9]又は[14]に記載の液晶配向剤。
[16]ポリシロキサン(A):ポリシロキサン(B)の比率が、それらに含まれるケイ素原子量において、5:95〜99.5:0.5である前記[3]、[5]、[6]、[8] 、[9] 、[14]又は[15]に記載の液晶配向剤。
[17]ポリシロキサン(A)を得るために用いられる全アルコキシシランに対し、式(1)で表されるアルコキシシランが、0.2〜30モル%であり、かつ式(3)で表されるアルコキシシランが70〜99.8モル%である前記[5]又は[8]に記載の液晶配向剤。
[18]ポリシロキサン(B)を得るために用いられる全アルコキシシランに対し、式(2)で表されるアルコキシシランが、0.5〜60モル%であり、かつ式(3)で表されるアルコキシシランが40〜99.5モル%である前記[6]又は[9]に記載の液晶配向剤。
[19]前記式(2)で表されるアルコキシシランが、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン、ビス[3−(トリエトキシシリル)プロピル]ウレア、ビス[3−(トリメトキシシリル)プロピル]ウレア、及びビス[3−(トリプロポキシシリル)プロピル]ウレアからなる群から選ばれる少なくとも1種である、前記 [2]〜[12]及び[14]〜[18]のいずれかに記載の液晶配向剤。
[20]前記[1]〜[19]のいずれかに記載の液晶配向剤を基板に塗布し、乾燥、焼成して得られる液晶配向膜。
[21]前記[20]に記載の液晶配向膜を有する液晶表示素子。

[14] The liquid crystal aligning agent according to [3], [5], [6], [8] or [9] , further comprising an organic solvent that dissolves polysiloxane (A) and polysiloxane (B) .
[15] In the liquid crystal aligning agent, the polysiloxane (A) and the polysiloxane (B) are contained in an amount of 0.5 to 15% by mass in terms of SiO 2 in terms of the total silicon atoms contained therein [3], [ [5] The liquid crystal aligning agent according to [6], [8], [9] or [14] .
[16] The above-mentioned [3], [5], [6] wherein the ratio of polysiloxane (A): polysiloxane (B) is 5:95 to 99.5: 0.5 in terms of the amount of silicon atoms contained in them. ], [8] , [9], [14] or [15].
[17] The alkoxysilane represented by the formula (1) is 0.2 to 30 mol% with respect to the total alkoxysilane used to obtain the polysiloxane (A), and is represented by the formula (3). The liquid crystal aligning agent according to [5] or [8] , wherein the alkoxysilane is 70 to 99.8 mol%.
[18] The alkoxysilane represented by the formula (2) is 0.5 to 60 mol% with respect to the total alkoxysilane used to obtain the polysiloxane (B), and is represented by the formula (3). The liquid crystal aligning agent according to [6] or [9] , wherein the alkoxysilane is 40 to 99.5 mol%.
[19] The alkoxysilane represented by the formula (2) is γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltripropoxysilane, bis [3- (triethoxysilyl) propyl. ] [2] to [12] , which is at least one selected from the group consisting of urea, bis [3- (trimethoxysilyl) propyl] urea, and bis [3- (tripropoxysilyl) propyl] urea [14] The liquid crystal aligning agent according to any one of [18].
[20] A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of [1] to [19] to a substrate, drying and baking.
[21] A liquid crystal display device having the liquid crystal alignment film according to [20].

本発明によれば、良好な液晶配向性を示す液晶配向膜を形成することができ、電気特性に優れる液晶表示素子が得られるケイ素系液晶配向剤が得られる。また、本発明の液晶配向膜は、外部からの水分の影響を受けにくいため、信頼性の高い液晶表示素子、特に、電気特性の信頼性が高く、安定した高画質な液晶表示素子が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the liquid crystal aligning film which shows favorable liquid crystal aligning property can be formed, and the silicon type liquid crystal aligning agent from which the liquid crystal display element excellent in an electrical property is obtained is obtained. In addition, since the liquid crystal alignment film of the present invention is not easily affected by moisture from the outside, a highly reliable liquid crystal display element, in particular, a highly reliable liquid crystal display element with high electrical property reliability can be obtained. .

本発明の液晶配向剤の使用により、何故に良好な液晶配向性、特に外部からの水分の影響を受けにくい信頼性の高い液晶配向膜が得られるかのメカニズムについては必ずしも明らかではないが、後記する本発明の実施例と比較例との対比から、本発明の実施例では、たとえ水処理した場合も水処理しない場合と同等の電気特性の優れた液晶セルが得られることより、本発明の液晶配向剤に含有されるポリシロキサンが特定の炭素原子数の炭化水素基と、ウレイド基を有する特定の炭素数の炭化水素基と、を併有することに基因するものと思われる。   Although it is not always clear why the liquid crystal aligning agent of the present invention is used, it is not always clear about the mechanism for obtaining a good liquid crystal aligning property, in particular, a highly reliable liquid crystal aligning film that is hardly affected by external moisture. From the comparison between the embodiment of the present invention and the comparative example, in the embodiment of the present invention, a liquid crystal cell having excellent electrical characteristics equivalent to that in the case where the water treatment is performed or not is obtained. This is probably because the polysiloxane contained in the liquid crystal aligning agent has both a hydrocarbon group having a specific number of carbon atoms and a hydrocarbon group having a specific number of carbon atoms having a ureido group.

本発明の液晶配向剤は、フッ素原子で置換されていてもよく、かつ、酸素原子、リン原子若しくは硫黄原子を含有していてもよい炭素原子数8〜30、好ましくは8〜22の炭化水素基、及びウレイド基を有する炭素原子数1〜12、好ましくは1〜7の炭化水素基を有する、1種類又は2種類以上のポリシロキサンを含有し、前者の特定の炭化水素基と、後者のウレイド基を有する特定の炭化水素基とは、下記する第一の態様のように、同一のポリシロキサンに結合していてもよく、また、下記する第二の態様のように、それぞれ別のポリシロキサンに結合していてもよい。以下に、本発明の第一の態様及び第二の態様について説明する。   The liquid crystal aligning agent of the present invention is a hydrocarbon having 8 to 30 carbon atoms, preferably 8 to 22 carbon atoms which may be substituted with fluorine atoms and may contain oxygen, phosphorus or sulfur atoms. Containing one or two or more kinds of polysiloxane having 1 to 12 carbon atoms, preferably 1 to 7 carbon atoms having a ureido group, and the former specific hydrocarbon group and the latter The specific hydrocarbon group having a ureido group may be bonded to the same polysiloxane as in the first embodiment described below, and each of the different hydrocarbon groups may be different from each other as in the second embodiment described below. It may be bonded to siloxane. Below, the 1st aspect and 2nd aspect of this invention are demonstrated.

〔本発明の第一の態様〕
下記の式(1)で表されるアルコキシシラン、及び下記の式(2)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサン(AB)を含有する液晶配向剤である。
(XSi(OR3−p (1)
(X、X、R、pは、上記においてそれぞれ定義したとおりである。)
{Si(OR (2)
(X、R、qは、上記においてそれぞれ定義したとおりである。)
[ポリシロキサン(AB)]
(XSi(OR3−p (1)
式(1)において、X(以下、第一の特定有機基ともいう)は、上記に定義したとおりであるが、炭素原子数は8〜30、好ましくは8〜22の炭化水素基であって、液晶を一方向に配向させる効果を有する。第一の特定有機基の例としては、アルキル基、フルオロアルキル基、アルケニル基、フェネチル基、ビニルフェニルアルキル基、ナフチル基、フルオロフェニルアルキル基等が挙げられる。第一の特定有機基が有する酸素原子、リン原子若しくは硫黄原子のうちでは、酸素原子が好ましく、その例としては、アリロキシアルキル基、ベンゾイルオキシアルキル基、アルコキシフェノキシアルキル基、エポキシシクロアルキル基等が挙げられる。特に、第一の特定有機基がアルキル基又はフルオロアルキル基であるアルコキシシランは比較的安価で市販品として入手が容易であるため好ましい。本発明に用いるポリシロキサン(AB)は、第一の特定有機基を複数種有していてもよい。
式(1)におけるXは、炭素原子数1〜7、好ましくは1〜3のアルキル基である。より好ましくは、Xがメチル基又はエチル基である。
式(1)におけるRは、炭素原子数1〜5、好ましくは1〜3のアルキル基であり、より好ましくは、メチル基又はエチル基である。式(1)におけるpは0〜2、好ましくは0〜1の整数である。
[First embodiment of the present invention]
It is a liquid crystal aligning agent containing polysiloxane (AB) obtained by polycondensing the alkoxysilane containing the alkoxysilane represented by the following formula (1) and the alkoxysilane represented by the following formula (2). .
X 1 (X 2) p Si (OR 1) 3-p (1)
(X 1 , X 2 , R 1 and p are as defined above.)
X 3 {Si (OR 2 ) 3 } q (2)
(X 3 , R 2 and q are as defined above.)
[Polysiloxane (AB)]
X 1 (X 2) p Si (OR 1) 3-p (1)
In the formula (1), X 1 (hereinafter also referred to as the first specific organic group) is as defined above, but is a hydrocarbon group having 8 to 30 carbon atoms, preferably 8 to 22 carbon atoms. Thus, the liquid crystal is aligned in one direction. Examples of the first specific organic group include an alkyl group, a fluoroalkyl group, an alkenyl group, a phenethyl group, a vinylphenylalkyl group, a naphthyl group, and a fluorophenylalkyl group. Of the oxygen atom, phosphorus atom or sulfur atom possessed by the first specific organic group, an oxygen atom is preferred. Examples thereof include an allyloxyalkyl group, a benzoyloxyalkyl group, an alkoxyphenoxyalkyl group, and an epoxycycloalkyl group. Is mentioned. In particular, an alkoxysilane in which the first specific organic group is an alkyl group or a fluoroalkyl group is preferable because it is relatively inexpensive and easily available as a commercial product. The polysiloxane (AB) used in the present invention may have a plurality of first specific organic groups.
X 2 in formula (1) is an alkyl group having 1 to 7 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, X 2 is a methyl group or an ethyl group.
R 1 in Formula (1) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group. P in Formula (1) is an integer of 0-2, preferably 0-1.

なかでも、式(1)で表されるアルコキシシランは、下記の式(1―1)で表されるアルコキシシランが好ましい。
Si(OR (1−1)
(Rはフッ素原子で置換されていてもよい炭素原子数8〜30の炭化水素基であり、Rは炭素原子数1〜5のアルキル基を表す。)
Among these, the alkoxysilane represented by the formula (1) is preferably an alkoxysilane represented by the following formula (1-1).
R 4 Si (OR 5 ) 3 (1-1)
(R 4 is a hydrocarbon group having 8 to 30 carbon atoms which may be substituted with a fluorine atom, and R 5 represents an alkyl group having 1 to 5 carbon atoms.)

上記式(1)で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。
例えば、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリメトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、ノナデシルトリメトキシシラン、ノナデシルトリエトキシシラン、ウンデシルトリエトキシシラン、ウンデシルトリメトキシシラン、21−ドコセニルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、イソオクチルトリエトキシシラン、フェネチルトリエトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、m−ビニルフェニルエチルトリメトキシシラン、p−ビニルフェニルエチルトリメトキシシラン、(1−ナフチル)トリエトキシシラン、(1−ナフチル)トリメトキシシラン、アリロキシウンデシルトリエトキシシラン、ベンゾイルオキシプロピルトリメトキシシラン、3−(4−メトキシフェノキシ)プロピルトリメトキシシラン、1−[(2−トリエトキシシリル)エチル]シクロヘキサン−3,4−エポキシド、2−(ジフェニルフォスフィノ)エチルトリエトキシシラン、ジエトキシメチルオクタデシルシラン、ジメトキシメチルオクタデシルシラン、ジエトキシドデシルメチルシラン、ジメトキシドデシルメチルシラン、ジエトキシデシルメチルシラン、ジメトキシデシルメチルシラン、ジエトキシオクチルメチルシラン、ジメトキシオクチルメチルシラン、エトキシジメチルオクタデシルシラン、メトキシジメチルオクタデシルシラン等が挙げられる。なかでも、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリメトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、ノナデシルトリメトキシシラン、ノナデシルトリエトキシシラン、ウンデシルトリエトキシシラン、又はウンデシルトリメトキシシラン、ジエトキシメチルオクタデシルシラン、ジエトキシドデシルメチルシランが好ましい。
Although the specific example of the alkoxysilane represented by the said Formula (1) is given, it is not limited to this.
For example, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, heptadecyltrimethoxysilane, Heptadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, nonadecyltrimethoxysilane, nonadecyltriethoxysilane, undecyltriethoxysilane, undecyltrimethoxysilane, 21-docosenyltriethoxysilane, trideca Fluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecaful Rhodecyltriethoxysilane, isooctyltriethoxysilane, phenethyltriethoxysilane, pentafluorophenylpropyltrimethoxysilane, m-vinylphenylethyltrimethoxysilane, p-vinylphenylethyltrimethoxysilane, (1-naphthyl) triethoxysilane , (1-naphthyl) trimethoxysilane, allyloxyundecyltriethoxysilane, benzoyloxypropyltrimethoxysilane, 3- (4-methoxyphenoxy) propyltrimethoxysilane, 1-[(2-triethoxysilyl) ethyl] Cyclohexane-3,4-epoxide, 2- (diphenylphosphino) ethyltriethoxysilane, diethoxymethyloctadecylsilane, dimethoxymethyloctadecylsilane, diethoxydodecyl Chirushiran, dimethoxy dodecyl methyl silane, diethoxy decyl methyl silane, dimethoxy decyl methyl silane, diethoxy-octyl methyl silane, dimethoxy octyl methyl silane, ethoxy dimethyl octadecyl silane, methoxy dimethyloctadecylsilane like. Among them, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, heptadecyltrimethoxysilane , Heptadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, nonadecyltrimethoxysilane, nonadecyltriethoxysilane, undecyltriethoxysilane, or undecyltrimethoxysilane, diethoxymethyloctadecylsilane, diethoxy Dodecylmethylsilane is preferred.

上記第一の特定有機基を有する式(1)で表されるアルコキシシランの使用量は、ポリシロキサン(AB)を得るために用いる全アルコキシシラン中において、0.1モル%未満の場合には、良好な液晶配向性が得られない場合があるため、0.1モル%以上が好ましく、より好ましくは0.5モル%以上であり、更に好ましくは1モル%以上である。また、30モル%を超える場合は、形成される液晶配向膜が充分に硬化しない場合があるため、30モル%以下が好ましく、より好ましくは22モル%以下、更に好ましくは15モル%以下である。
{Si(OR (2)
上記式(2)におけるX(以下、第二の特定有機基ともいう)は、上記に定義したとおりであるが、ウレイド基を有する炭化水素基の炭素原子数は好ましくは1〜7である。式(2)におけるRは、上記に定義したとおりであるが、好ましくは炭素原子数が1〜3のアルキル基であり、より好ましくはメチル基又はエチル基である。
When the amount of the alkoxysilane represented by the formula (1) having the first specific organic group is less than 0.1 mol% in the total alkoxysilane used for obtaining the polysiloxane (AB), Since good liquid crystal orientation may not be obtained, it is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, and further preferably 1 mol% or more. Moreover, since it may not fully harden | cure the liquid crystal aligning film formed when it exceeds 30 mol%, 30 mol% or less is preferable, More preferably, it is 22 mol% or less, More preferably, it is 15 mol% or less. .
X 3 {Si (OR 2 ) 3 } q (2)
X 3 (hereinafter also referred to as a second specific organic group) in the above formula (2) is as defined above, but the hydrocarbon group having a ureido group preferably has 1 to 7 carbon atoms. . R 2 in formula (2) is as defined above, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group.

式(2)で表されるアルコキシシランにおいて、qが1の場合は式(2−1)で表されるアルコキシシランである。
Si(OR (2−1)
また、qが2の場合は式(2−2)で表されるアルコキシシランである。
(RO)Si−X3−Si(OR (2−2)
式(2−1)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン、(R)−N−1−フェニルエチル−N’−トリエトキシシリルプロピルウレア、(R)−N−1−フェニルエチル−N’−トリメトキシシリルプロピルウレア等が挙げられる。
なかでも、γ-ウレイドプロピルトリエトキシシラン、又はγ-ウレイドプロピルトリメトキシシランは、市販品として入手が容易であるため特に好ましい。
In the alkoxysilane represented by the formula (2), when q is 1, it is an alkoxysilane represented by the formula (2-1).
X 3 Si (OR 2 ) 3 (2-1)
Moreover, when q is 2, it is an alkoxysilane represented by Formula (2-2).
(R 2 O) 3 Si- X 3- Si (OR 2) 3 (2-2)
Although the specific example of the alkoxysilane represented by Formula (2-1) is given, it is not limited to these. For example, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltripropoxysilane, (R) -N-1-phenylethyl-N′-triethoxysilylpropylurea, (R) — N-1-phenylethyl-N′-trimethoxysilylpropylurea and the like can be mentioned.
Among these, γ-ureidopropyltriethoxysilane or γ-ureidopropyltrimethoxysilane is particularly preferable because it is easily available as a commercial product.

式(2−2)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、ビス[3−(トリエトキシシリル)プロピル]ウレア、ビス[3−(トリエトキシシリル)エチル]ウレア、ビス[3−(トリメトキシシリル)プロピル]ウレア、ビス[3−(トリプロポキシシリル)プロピル]ウレア等が挙げられる。なかでも、ビス[3−(トリエトキシシリル)プロピル]ウレアは、市販品として入手が容易であるため特に好ましい。
本発明に用いるポリシロキサン(AB)は、式(2)で表されるアルコキシシランを複数種有していてもよい。
Although the specific example of the alkoxysilane represented by Formula (2-2) is given, it is not limited to these. For example, bis [3- (triethoxysilyl) propyl] urea, bis [3- (triethoxysilyl) ethyl] urea, bis [3- (trimethoxysilyl) propyl] urea, bis [3- (tripropoxysilyl) Propyl] urea and the like. Among these, bis [3- (triethoxysilyl) propyl] urea is particularly preferable because it is easily available as a commercial product.
The polysiloxane (AB) used in the present invention may have a plurality of alkoxysilanes represented by the formula (2).

上記第二の特定有機基を有する式(2)で表されるアルコキシシランの使用量は、ポリシロキサン(AB)を得るために用いる全アルコキシシラン中において、0.1モル%未満の場合には、良好な水に対する信頼特性が得られない場合があるため、0.1モル%以上が好ましく、より好ましくは0.2モル%以上であり、更に好ましくは0.5モル%以上である。また、50モル%を超える場合は、形成される液晶配向膜が充分に硬化しない場合があるため、50モル%以下が好ましく、より好ましくは40モル%以下であり、更に好ましくは30モル%以下である。   When the amount of the alkoxysilane represented by the formula (2) having the second specific organic group is less than 0.1 mol% in the total alkoxysilane used for obtaining the polysiloxane (AB), In some cases, the reliability with respect to good water may not be obtained, so 0.1 mol% or more is preferable, more preferably 0.2 mol% or more, and still more preferably 0.5 mol% or more. Moreover, since it may not fully harden | cure the liquid crystal aligning film formed when it exceeds 50 mol%, 50 mol% or less is preferable, More preferably, it is 40 mol% or less, More preferably, it is 30 mol% or less. It is.

ポリシロキサン(AB)では、式(1)で表されるアルコキシシランが、使用される全アルコキシシラン中、好ましくは0.1〜30モル%、特に好ましくは0.5〜22モル%含まれ、かつ式(2)で表されるアルコキシシランが使用される全アルコキシシラン中、0.1〜50モル%、特に好ましくは0.5〜30モル%含まれるのが好ましい。   In the polysiloxane (AB), the alkoxysilane represented by the formula (1) is preferably contained in an amount of 0.1 to 30 mol%, particularly preferably 0.5 to 22 mol% in all alkoxysilanes used. And it is preferable that 0.1-50 mol% is contained in all the alkoxysilanes by which the alkoxysilane represented by Formula (2) is used, Most preferably, it is 0.5-30 mol%.

本発明のポリシロキサン(AB)は、式(1)及び式(2)で表されるアルコキシシラン以外に、下記式(3)で表されるアルコキシシランを使用することが好ましい。式(3)で表されるアルコキシシランは、ポリシロキサン(AB)に種々の特性を付与させることが可能であるため、必要特性に応じて一種又は複数種を選択して用いることができる。
(XSi(OR4−n (3)
上記式(3)におけるXは上記に定義したとおりであるが、Xが上記炭素原子数が1〜6の炭化水素基(以下、第三の特定有機基ともいう。)の場合、第三の特定有機基は、脂肪族炭化水素、脂肪族環、芳香族環、ヘテロ環のような環構造若しくは分岐構造を有していてもよく、不飽和結合、若しくは酸素原子、硫黄原子、リン原子等のヘテロ原子等を含んでいてもよい。また、第三の特定有機基は、上記のように、ハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、イソシアネート基、アクリロキシ基などで置換されていてもよい。
式(3)におけるRは、上記に定義したとおりであるが、好ましくは炭素原子数1〜3のアルキル基であり、より好ましくは、メチル基又はエチル基である。式(3)におけるnは上記に定義したとおりであるが、好ましくは0〜2の整数を表す。
The polysiloxane (AB) of the present invention preferably uses an alkoxysilane represented by the following formula (3) in addition to the alkoxysilane represented by the formulas (1) and (2). Since the alkoxysilane represented by the formula (3) can impart various characteristics to the polysiloxane (AB), one or more kinds can be selected and used according to the required characteristics.
(X 4 ) n Si (OR 3 ) 4-n (3)
X 4 in the above formula (3) is as defined above, but when X 4 is a hydrocarbon group having 1 to 6 carbon atoms (hereinafter also referred to as a third specific organic group), The three specific organic groups may have a ring structure or a branched structure such as an aliphatic hydrocarbon, an aliphatic ring, an aromatic ring, a heterocyclic ring, an unsaturated bond, or an oxygen atom, a sulfur atom, a phosphorus ring. It may contain heteroatoms such as atoms. The third specific organic group may be substituted with a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group, an acryloxy group, or the like as described above.
R 3 in formula (3) is as defined above, preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group. N in the formula (3) is as defined above, and preferably represents an integer of 0 to 2.

上記式(3)で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。
式(3)のアルコキシシランにおいて、Xが水素原子である場合のアルコキシシランの具体例としては、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシラン等が挙げられる。
Although the specific example of the alkoxysilane represented by the said Formula (3) is given, it is not limited to this.
In the alkoxysilane of the formula (3), specific examples of the alkoxysilane when X 4 is a hydrogen atom include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane and the like.

また、式(3)のアルコキシシランにおいて、Xが第三の特定有機基である場合のアルコキシシランの具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、メチルトリプロポキシシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、アリルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、m−ビニルフェニルトリメトキシシラン、p−ビニルフェニルトリメトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン等が挙げられる。Further, in the alkoxysilane of the formula (3), specific examples of the alkoxysilane when X 4 is the third specific organic group include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxy Silane, propyltrimethoxysilane, propyltriethoxysilane, methyltripropoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, allyltriethoxysilane, 3-methacryloxy Propyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-isocyanatopropyltrie Toxisilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane , Diphenyldiethoxysilane, m-vinylphenyltrimethoxysilane, p-vinylphenyltrimethoxysilane, trimethylethoxysilane, trimethylmethoxysilane and the like.

本発明に用いるポリシロキサン(AB)は、基板との密着性、液晶分子との親和性改善等を目的として、本発明の効果を損なわない限りにおいて、上記した第三の特定有機基を一種又は複数種有していてもよい。   As long as the polysiloxane (AB) used in the present invention does not impair the effects of the present invention for the purpose of improving the adhesion with the substrate and the affinity with the liquid crystal molecules, You may have multiple types.

式(3)で表されるアルコキシシランにおいて、nが0であるアルコキシシランは、テトラアルコキシシランである。テトラアルコキシシランは、式(1)及び式(2)で表されるアルコキシシランと縮合し易いので、本発明のポリシロキサンを得るために好ましい。
上記式(3)においてnが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランがより好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。
式(3)で表されるアルコキシシランを併用する場合、式(3)で表されるアルコキシシランの使用量は、ポリシロキサン(AB)を得るために用いる全アルコキシシラン中において、20〜99.8モル%であることが好ましい。より好ましくは、35〜99.8モル%である。更に好ましくは、式(3)で表されるアルコキシシランが50〜99.8モル%である。
In the alkoxysilane represented by the formula (3), the alkoxysilane in which n is 0 is tetraalkoxysilane. Tetraalkoxysilane is preferable for obtaining the polysiloxane of the present invention because it easily condenses with the alkoxysilane represented by the formulas (1) and (2).
As the alkoxysilane in which n is 0 in the above formula (3), tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
When using together the alkoxysilane represented by Formula (3), the usage-amount of the alkoxysilane represented by Formula (3) is 20-99. In all the alkoxysilanes used in order to obtain polysiloxane (AB). It is preferably 8 mol%. More preferably, it is 35-99.8 mol%. More preferably, the alkoxysilane represented by Formula (3) is 50-99.8 mol%.

〔本発明の第二の態様〕
下記のポリシロキサン(A)及び下記のポリシロキサン(B)を含有する液晶配向剤である。
ポリシロキサン(A):式(1)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサン、
(XSi(OR3−p (1)
(X、X、R、pは、上記においてそれぞれ定義したとおりである。)
ポリシロキサン(B):式(2)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサン。
{Si(OR (2)
(X、R、qは、上記においてそれぞれ定義したとおりである。)
[ポリシロキサン(A)]
ポリシロキサン(A)は、下記式(1)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサンである。
(XSi(OR3−p (1)
ここにおける式(1)のX、X、R、及びpは、上記で定義したとおりであり、それぞれの好ましいものも上記と同じである。
[Second embodiment of the present invention]
It is a liquid crystal aligning agent containing the following polysiloxane (A) and the following polysiloxane (B).
Polysiloxane (A): polysiloxane obtained by polycondensation of alkoxysilane containing alkoxysilane represented by formula (1),
X 1 (X 2) p Si (OR 1) 3-p (1)
(X 1 , X 2 , R 1 and p are as defined above.)
Polysiloxane (B): Polysiloxane obtained by polycondensation of alkoxysilane containing alkoxysilane represented by formula (2).
X 3 {Si (OR 2 ) 3 } q (2)
(X 3 , R 2 and q are as defined above.)
[Polysiloxane (A)]
The polysiloxane (A) is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane represented by the following formula (1).
X 1 (X 2) p Si (OR 1) 3-p (1)
In the formula (1), X 1 , X 2 , R 1 , and p are as defined above, and preferred examples thereof are also the same as described above.

上記式(1)で表されるアルコキシシランの説明は、上記ポリシロキサン(AB)の項において行った式(1)で表されるアルコキシシランの説明と同じであり、その好ましい態様も含めて全ての説明が適用される。また、本発明に用いるポリシロキサン(A)は、第一の特定有機基を複数種有していてもよい。   The explanation of the alkoxysilane represented by the above formula (1) is the same as the explanation of the alkoxysilane represented by the formula (1) performed in the section of the above polysiloxane (AB), and all including preferred embodiments thereof. The explanations apply. Moreover, the polysiloxane (A) used for this invention may have multiple types of 1st specific organic groups.

第一の特定有機基を有する式(1)で表されるアルコキシシランの使用量は、ポリシロキサン(A)を得るために用いる全アルコキシシラン中において、0.2モル%未満の場合には、良好な液晶配向性が得られない場合があるため、0.2モル%以上が好ましく、より好ましくは0.5モル%以上であり、更に好ましくは1モル%以上である。また、30モル%を超える場合は、形成される液晶配向膜が充分に硬化しない場合があるため、30モル%以下が好ましく、より好ましくは25モル%以下であり、更に好ましくは20モル%以下である。   When the amount of the alkoxysilane represented by the formula (1) having the first specific organic group is less than 0.2 mol% in the total alkoxysilane used to obtain the polysiloxane (A), Since good liquid crystal orientation may not be obtained, it is preferably 0.2 mol% or more, more preferably 0.5 mol% or more, and further preferably 1 mol% or more. Further, when it exceeds 30 mol%, the liquid crystal alignment film to be formed may not be sufficiently cured. Therefore, it is preferably 30 mol% or less, more preferably 25 mol% or less, still more preferably 20 mol% or less. It is.

本発明に用いるポリシロキサン(A)は、式(1)で表されるアルコキシシランとともに、下記式(3)で表されるアルコキシシランの少なくとも1種を含むアルコキシシランを重縮合して得られるポリシロキサンが好ましい。式(3)で表されるアルコキシシランはポリシロキサンに種々の特性を付与することが可能である。そのため必要に応じて式(3)で表されるアルコキシシランの中から一種又は複数種を選択して用いることができる。
(XSi(OR4−n (3)
ここにおける式(3)のX、及びRは、その好ましい態様も含めてポリシロキサン(AB)の項の式(3)における記載と同じであり、また、式(3)で表されるアルコキシシランの具体例についても、ポリシロキサン(AB)の項での記載と同じである。
The polysiloxane (A) used in the present invention is obtained by polycondensing an alkoxysilane containing at least one of the alkoxysilanes represented by the following formula (3) together with the alkoxysilane represented by the formula (1). Siloxane is preferred. The alkoxysilane represented by the formula (3) can impart various properties to the polysiloxane. Therefore, one or more kinds of alkoxysilanes represented by formula (3) can be selected and used as necessary.
(X 4 ) n Si (OR 3 ) 4-n (3)
X 4 and R 3 in formula (3) herein are the same as those described in formula (3) in the section of polysiloxane (AB), including preferred embodiments thereof, and are represented by formula (3). Specific examples of alkoxysilane are the same as described in the section of polysiloxane (AB).

本発明においてポリシロキサン(A)は、基板との密着性、液晶分子との親和性改善等を目的として、本発明の効果を損なわない限りにおいて、第三の特定有機基を一種又は複数種有していてもよい。
ポリシロキサン(A)を得る際に、式(3)で表されるアルコキシシランを併用する場合、ポリシロキサン(A)を得るために用いる全アルコキシシラン中において、式(3)で表されるアルコキシシランが70〜99.8モル%であることが好ましく、より好ましくは、75〜99.8モル%であり、更に好ましくは、80〜99.8モル%である。
本発明では、ポリシロキサン(A)は式(1)で表されるアルコキシシラン及び式(3)で表されるアルコキシシランからなる群から選ばれる少なくとも1種の化合物を重縮合して得られるポリシロキサンであることが好ましい。
In the present invention, the polysiloxane (A) has one or more kinds of the third specific organic group as long as the effects of the present invention are not impaired for the purpose of improving the adhesion with the substrate and the affinity with the liquid crystal molecules. You may do it.
When the alkoxysilane represented by the formula (3) is used in combination when obtaining the polysiloxane (A), the alkoxy represented by the formula (3) in all the alkoxysilanes used to obtain the polysiloxane (A). It is preferable that silane is 70-99.8 mol%, More preferably, it is 75-99.8 mol%, More preferably, it is 80-99.8 mol%.
In the present invention, the polysiloxane (A) is a polycondensate obtained by polycondensing at least one compound selected from the group consisting of an alkoxysilane represented by the formula (1) and an alkoxysilane represented by the formula (3). Siloxane is preferred.

[ポリシロキサン(B)]
ポリシロキサン(B)は、式(2)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサンである。
{Si(OR (2)
ここにおける式(2)のX、R及びqは、上記に定義したとおりであり、それぞれの好ましいものも上記と同じである。
また、式(2)で表されるアルコキシシランの説明は、上記ポリシロキサン(AB)の項において記載した式(2)で表されるアルコキシシランの説明と同じであり、その好ましい態様も含めて全ての説明が適用される。また、本発明に用いるポリシロキサン(B)は、第二の特定有機基を複数種有していてもよい。
本発明に用いるポリシロキサン(B)は、式(2)で表されるアルコキシシランを複数種有していてもよい。
[Polysiloxane (B)]
The polysiloxane (B) is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane represented by the formula (2).
X 3 {Si (OR 2 ) 3 } q (2)
In the formula (2), X 3 , R 2 and q are as defined above, and preferred examples thereof are also the same as described above.
In addition, the explanation of the alkoxysilane represented by the formula (2) is the same as the explanation of the alkoxysilane represented by the formula (2) described in the section of the polysiloxane (AB), including preferred embodiments thereof. All explanations apply. Moreover, the polysiloxane (B) used for this invention may have multiple types of 2nd specific organic groups.
The polysiloxane (B) used in the present invention may have a plurality of alkoxysilanes represented by the formula (2).

第二の特定有機基を有する式(2)で表されるアルコキシシランの使用量は、ポリシロキサン(B)を得るために用いる全アルコキシシラン中において、0.5モル%未満の場合には良好な水に対する信頼特性が得られない場合があるため、0.5モル%以上が好ましい。より好ましくは1.0モル%以上である。更に好ましくは2.0モル%以上である。また、60モル%を超える場合は、形成される液晶配向膜が充分に硬化しない場合があるため、60モル%以下が好ましく、より好ましくは50モル%以下であり、更に好ましくは40モル%以下である。   The amount of the alkoxysilane represented by the formula (2) having the second specific organic group is good when it is less than 0.5 mol% in the total alkoxysilane used to obtain the polysiloxane (B). Therefore, 0.5 mol% or more is preferable because reliable characteristics against water may not be obtained. More preferably, it is 1.0 mol% or more. More preferably, it is 2.0 mol% or more. Moreover, since it may not fully harden | cure the liquid crystal aligning film formed when it exceeds 60 mol%, 60 mol% or less is preferable, More preferably, it is 50 mol% or less, More preferably, it is 40 mol% or less. It is.

また、本発明に用いるポリシロキサン(B)は、式(2)で表されるアルコキシシランとともに、下記式(3)で表されるアルコキシシランの少なくとも1種を含むアルコキシシランを重縮合して得ることができる。
(XSi(OR4−n (3)
ここにおける式(3)のX、R及びnは、その好ましい態様も含めてポリシロキサン(AB)の項で記載したとおりであり、また、式(3)で表されるアルコキシシランの具体例についても、ポリシロキサン(AB)の項での記載と同じである。
The polysiloxane (B) used in the present invention is obtained by polycondensation of an alkoxysilane containing at least one of the alkoxysilanes represented by the following formula (3) together with the alkoxysilane represented by the formula (2). be able to.
(X 4 ) n Si (OR 3 ) 4-n (3)
In the formula (3), X 4 , R 3 and n are as described in the section of the polysiloxane (AB) including preferred embodiments thereof, and are specific examples of the alkoxysilane represented by the formula (3). The examples are the same as those described in the section on polysiloxane (AB).

本発明に用いるポリシロキサン(B)は、基板との密着性、液晶分子との親和性改善等を目的として、本発明の効果を損なわない限りにおいて、第三の特定有機基を一種又は複数種有していてもよい。
ポリシロキサン(B)において、式(3)で表されるアルコキシシランを併用する場合、ポリシロキサン(B)を得るために用いる全アルコキシシラン中において、式(3)で表されるアルコキシシランが40〜99.5モル%であることが好ましく、より好ましくは、50〜99.5モル%であり、更に好ましくは60〜99.5モル%である。
本発明では、ポリシロキサン(B)は式(2)で表されるアルコキシシランと式(3)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサンであることが好ましい。
As long as the polysiloxane (B) used in the present invention does not impair the effects of the present invention for the purpose of improving the adhesion with the substrate and the affinity with the liquid crystal molecules, one or more kinds of the third specific organic group are used. You may have.
In the polysiloxane (B), when the alkoxysilane represented by the formula (3) is used in combination, the alkoxysilane represented by the formula (3) is 40 in all the alkoxysilanes used to obtain the polysiloxane (B). It is preferable that it is -99.5 mol%, More preferably, it is 50-99.5 mol%, More preferably, it is 60-99.5 mol%.
In the present invention, the polysiloxane (B) is preferably a polysiloxane obtained by polycondensation of an alkoxysilane represented by the formula (2) and an alkoxysilane containing the alkoxysilane represented by the formula (3).

[ポリシロキサン(AB)の製造方法]
本発明に用いるポリシロキサン(AB)を得る方法は特に限定されない。本発明においては、上記した式(1)及び式(2)を必須成分とするアルコキシシランを有機溶媒中で縮合させて得られる。通常、ポリシロキサン(AB)は、上記アルコキシシランを重縮合して、有機溶媒に均一に溶解した溶液として得られる。
アルコキシシランを重縮合する方法としては、例えば、アルコキシシランをアルコール又はグリコールなどの溶媒中で加水分解・縮合する方法が挙げられる。
その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。
本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5〜2.5倍モルであるのが好ましい。
[Production Method of Polysiloxane (AB)]
The method for obtaining the polysiloxane (AB) used in the present invention is not particularly limited. In the present invention, it is obtained by condensing an alkoxysilane having the above-mentioned formulas (1) and (2) as essential components in an organic solvent. Usually, polysiloxane (AB) is obtained as a solution in which the above alkoxysilane is polycondensed and uniformly dissolved in an organic solvent.
Examples of the method of polycondensing alkoxysilane include a method of hydrolyzing and condensing alkoxysilane in a solvent such as alcohol or glycol.
At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole.
In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.

また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、硝酸などの金属塩;などの触媒が用いられる。加えて、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌する方法、還流下で1時間加熱・撹拌する方法などが挙げられる。   Usually, for the purpose of promoting hydrolysis / condensation reaction, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine, triethylamine A metal salt such as hydrochloric acid, sulfuric acid or nitric acid; In addition, it is also common to further promote the hydrolysis / condensation reaction by heating the solution in which the alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, a method of heating / stirring at 50 ° C. for 24 hours, a method of heating / stirring under reflux for 1 hour, and the like can be mentioned.

また、別法として、例えば、アルコキシシラン、溶媒及び蓚酸の混合物を加熱して重縮合する方法が挙げられる。具体的には、あらかじめアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、用いる蓚酸の量は、アルコキシシランが有する全アルコキシ基の1モルに対して0.2〜2モルとすることが好ましい。この方法における加熱は、液温50〜180℃で行うことができる。好ましくは、液の蒸発、揮散などが起こらないように、還流下で数十分〜十数時間加熱する方法である。   As another method, for example, a method of heating and polycondensing a mixture of alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to obtain an alcohol solution of oxalic acid, the alkoxysilane is mixed while the solution is heated. In that case, it is preferable that the quantity of the oxalic acid to be used shall be 0.2-2 mol with respect to 1 mol of all the alkoxy groups which alkoxysilane has. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. Preferably, it is a method of heating for several tens of minutes to several tens of hours under reflux so that the liquid does not evaporate or volatilize.

本発明のポリシロキサン(AB)を得る際に、アルコキシシランを複数種用いる場合は、アルコキシシランをあらかじめ混合した混合物として混合してもよいし、複数種のアルコキシシランを順次混合してもよい。   When using multiple types of alkoxysilane when obtaining the polysiloxane (AB) of this invention, you may mix as a mixture which mixed alkoxysilane beforehand, and may mix multiple types of alkoxysilane sequentially.

アルコキシシランを重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、アルコキシシランを溶解するものであれば特に限定されない。また、アルコキシシランが溶解しない場合でも、アルコキシシランの重縮合反応の進行とともに溶解するものであればよい。一般的には、アルコキシシランの重縮合反応によりアルコールが生成するため、アルコール類、グリコール類、グリコールエーテル類、又はアルコール類と相溶性の良好な有機溶媒が用いられる。   The solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even when alkoxysilane does not melt | dissolve, what melt | dissolves as the polycondensation reaction of alkoxysilane progresses is sufficient. In general, since an alcohol is generated by a polycondensation reaction of alkoxysilane, an alcohol, a glycol, a glycol ether, or an organic solvent having good compatibility with the alcohol is used.

上記重合溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール,ジアセトンアルコール等のアルコール類:エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,2−ペンタンジオール、1,3−ペンタンジオール、1,4−ペンタンジオール、1,5−ペンタンジオール、2,4−ペンタンジオール、2,3−ペンタンジオール、1,6−ヘキサンジオール等のグリコール類:エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のグリコールエーテル類、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、γ−ブチロラクトン、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド、m−クレゾール等が挙げられる。
本発明においては、上記の重合溶媒を複数種混合して用いてもよい。
Specific examples of the polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol and diacetone alcohol: ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5 -Glycols such as pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol: ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, Lenglycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, Diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene Glycol ethers such as ethylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone , Dimethyl sulfoxide, tetramethylurea, hexamethylphosphotriamide, m-cresol and the like.
In the present invention, a plurality of the above polymerization solvents may be mixed and used.

更に、本発明のポリシロキサン(AB)を得るための別の方法として、式(1)で表されるアルコキシシランと式(3)で表されるアルコキシシランを有機溶媒中で加水分解・縮合させた後、式(2)で表されるアルコキシシランを加えて加水分解・縮合する工程を含む、ポリシロキサン(AB)の製造方法が挙げられる。
(XSi(OR3−p (1)
(X、X、R、及びpは、上記においてそれぞれ定義したとおりである。)
{Si(OR (2)
(X、R、及びqは、上記においてそれぞれ定義したとおりである。)
(XSi(OR4−n (3)
(X、R、及びnは、上記においてそれぞれ定義したとおりである。)
その際、式(1)と式(3)で表されるアルコキシシランの加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。
Furthermore, as another method for obtaining the polysiloxane (AB) of the present invention, the alkoxysilane represented by the formula (1) and the alkoxysilane represented by the formula (3) are hydrolyzed and condensed in an organic solvent. Then, the manufacturing method of polysiloxane (AB) including the process of adding the alkoxysilane represented by Formula (2), and hydrolyzing and condensing is mentioned.
X 1 (X 2) p Si (OR 1) 3-p (1)
(X 1 , X 2 , R 1 , and p are as defined above.)
X 3 {Si (OR 2 ) 3 } q (2)
(X 3 , R 2 , and q are as defined above.)
(X 4 ) n Si (OR 3 ) 4-n (3)
(X 4 , R 3 , and n are as defined above.)
At that time, the hydrolysis / condensation reaction of the alkoxysilane represented by the formulas (1) and (3) may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole.

本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5〜2.5倍モルであるのが好ましい。
また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、硝酸などの金属塩;などの触媒が用いられる。加えて、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌する方法、還流下で1時間加熱・撹拌する方法などが挙げられる。
In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.
Usually, for the purpose of promoting hydrolysis / condensation reaction, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine, triethylamine A metal salt such as hydrochloric acid, sulfuric acid or nitric acid; In addition, it is also common to further promote the hydrolysis / condensation reaction by heating the solution in which the alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, a method of heating / stirring at 50 ° C. for 24 hours, a method of heating / stirring under reflux for 1 hour, and the like can be mentioned.

上記した方法で得られた、式(1)で表されるアルコキシシランと式(3)で表されるアルコキシシランを加水分解・縮合した溶液に、式(2)で表されるアルコキシシランを加え、攪拌を続けることで、ポリシロキサン(AB)の溶液を製造できる。この時、この溶液を加熱することで、更に、加水分解・縮合反応を促進させることもできる。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌する方法、還流下で1時間加熱・撹拌する方法などが挙げられる。
アルコキシシランを重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、上記した[ポリシロキサン(AB)の製造方法]に記載の重合溶媒と同じであり、具体例も同じであり、これらの溶媒は複数種用いてもよい。
上記の方法で得られたポリシロキサンの重合溶液(以下、重合溶液ともいう。)は、原料として仕込んだ全アルコキシシランのケイ素原子をSiOに換算した濃度(以下、SiO換算濃度と称す。)を好ましくは20質量%以下、さらには5〜15質量%とすることがより好ましい。この濃度範囲において任意の濃度を選択することにより、ゲルの生成を抑え、均質な溶液を得ることができる。
The alkoxysilane represented by the formula (2) is added to the solution obtained by hydrolysis and condensation of the alkoxysilane represented by the formula (1) and the alkoxysilane represented by the formula (3) obtained by the method described above. By continuing the stirring, a solution of polysiloxane (AB) can be produced. At this time, the hydrolysis / condensation reaction can be further promoted by heating the solution. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, a method of heating / stirring at 50 ° C. for 24 hours, a method of heating / stirring under reflux for 1 hour, and the like can be mentioned.
The solvent used for polycondensation of alkoxysilane (hereinafter, also referred to as polymerization solvent) is the same as the polymerization solvent described in the above [Production method of polysiloxane (AB)], and specific examples thereof are also the same. A plurality of these solvents may be used.
The polysiloxane polymerization solution (hereinafter also referred to as polymerization solution) obtained by the above method is a concentration obtained by converting silicon atoms of all alkoxysilanes charged as raw materials into SiO 2 (hereinafter referred to as SiO 2 conversion concentration). ) Is preferably 20% by mass or less, and more preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained.

[ポリシロキサン(A)の製造方法]
本発明に用いるポリシロキサン(A)を得る方法は特に限定されないが、本発明においては、上記した式(1)のアルコキシシランを必須成分とするアルコキシシランを有機溶媒中で縮合させて得られる。通常、ポリシロキサン(A)は、上記アルコキシシランを重縮合して、有機溶媒に均一に溶解した溶液として得られる。
本発明における重縮合する方法としては、例えば、上記アルコキシシランをアルコール又はグリコールなどの溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシド基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。
本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5〜2.5倍モルであるのが好ましい。
また、ポリシロキサン(A)を得る際に、アルコキシシランを複数種用いる場合は、アルコキシシランをあらかじめ混合した混合物として混合してもよいし、複数種のアルコキシシランを順次混合してもよい。
[Production Method of Polysiloxane (A)]
The method for obtaining the polysiloxane (A) used in the present invention is not particularly limited. In the present invention, the polysiloxane (A) can be obtained by condensing an alkoxysilane having the above-described alkoxysilane of the formula (1) as an essential component in an organic solvent. Usually, the polysiloxane (A) is obtained as a solution obtained by polycondensation of the above alkoxysilane and uniformly dissolved in an organic solvent.
Examples of the polycondensation method in the present invention include a method of hydrolyzing and condensing the alkoxysilane in a solvent such as alcohol or glycol. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 moles of water of all alkoxide groups in the alkoxysilane, but it is usually preferable to add an excess amount of water over 0.5 moles.
In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.
Moreover, when using multiple types of alkoxysilane when obtaining polysiloxane (A), you may mix as a mixture which mixed alkoxysilane beforehand, and may mix multiple types of alkoxysilane sequentially.

ポリシロキサン(A)を得るために用いる重縮合する方法、重合溶媒などは、ポリシロキサン(AB)の製造方法の項での記載と同じであり、その好ましい範囲も同じである。
ポリシロキサン(A)を製造する別の方法として、式(3)で表されるアルコキシシランを有機溶媒中で加水分解・縮合させた後、式(1)で表されるアルコキシシランを加えて加水分解・縮合する工程を含むポリシロキサン(A)の製造方法が挙げられる。
(XSi(OR3−p (1)
(X、X、R1、及びpは、上記においてそれぞれ定義したとおりである。)
(XSi(OR4−n (3)
(X、R、及びnは、上記においてそれぞれ定義したとおりである。)
その際、式(3)で表されるアルコキシシランの加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合、理論上アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましく、0.5倍から2.5倍モルであるのが好ましい。
また、通常、加水分解・縮合反応を促進する目的で用いられる触媒、あるいは加熱の方法等は[ポリシロキサン(AB)の製造方法]に記載の触媒、あるいは加熱の方法と同じである。
The polycondensation method and the polymerization solvent used for obtaining the polysiloxane (A) are the same as those described in the section of the production method of the polysiloxane (AB), and the preferred ranges thereof are also the same.
As another method for producing the polysiloxane (A), the alkoxysilane represented by the formula (3) is hydrolyzed and condensed in an organic solvent, and then the alkoxysilane represented by the formula (1) is added to the water. A method for producing polysiloxane (A) including a step of decomposing and condensing may be mentioned.
X 1 (X 2) p Si (OR 1) 3-p (1)
(X 1 , X 2 , R 1 and p are as defined above.)
(X 4 ) n Si (OR 3 ) 4-n (3)
(X 4 , R 3 , and n are as defined above.)
At that time, the hydrolysis / condensation reaction of the alkoxysilane represented by the formula (3) may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically 0.5 times mole of water of all alkoxy groups in the alkoxysilane may be added, but it is usually preferable to add an excess amount of water more than 0.5 times mole, The molar ratio is preferably from 2 to 2.5 times.
Further, the catalyst used for the purpose of promoting the hydrolysis / condensation reaction, or the heating method is usually the same as the catalyst described in [Production method of polysiloxane (AB)] or the heating method.

上記した方法で得られた、式(3)で表されるアルコキシシランを加水分解・縮合した溶液に式(1)で表されるアルコキシシランを加え攪拌を続けることで、ポリシロキサン(A)の溶液を製造できる。この時、この溶液を加熱することで、更に、加水分解・縮合反応を促進させることができる。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・攪拌したり、還流下で1時間加熱・攪拌するなどの方法が挙げられる。
上記の方法で得られたポリシロキサン(A)の重合溶液(以下、重合溶液ともいう。)は、原料として仕込んだ全アルコキシシランのケイ素原子をSiOに換算した濃度(以下、SiO換算濃度と称す。)を20質量%以下とすることが一般的であり、さらに好ましくは5〜15質量%である。この濃度範囲において任意の濃度を選択することにより、ゲルの生成を抑え、均質な溶液を得ることができる。
By adding the alkoxysilane represented by the formula (1) to the solution obtained by hydrolysis and condensation of the alkoxysilane represented by the formula (3) obtained by the above-described method and continuing stirring, the polysiloxane (A) A solution can be produced. At this time, the hydrolysis / condensation reaction can be further promoted by heating the solution. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, heating and stirring at 50 ° C. for 24 hours, heating and stirring for 1 hour under reflux, and the like can be mentioned.
The polysiloxane (A) polymerization solution obtained by the above method (hereinafter also referred to as polymerization solution) is a concentration obtained by converting silicon atoms of all alkoxysilanes charged as raw materials into SiO 2 (hereinafter referred to as SiO 2 conversion concentration). Is generally 20% by mass or less, and more preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained.

[ポリシロキサン(B)の製造方法]
本発明のポリシロキサン(B)を得る方法は特に限定されないが、本発明では、上述の[ポリシロキサン(A)の製造方法]と同様である。
ポリシロキサン(B)を得る際に、アルコキシシランを複数種用いる場合は、アルコキシシランをあらかじめ混合した混合物として混合してもよいし、複数種のアルコキシシランを順次混合してもよい。
別法として、式(3)で表されるアルコキシシランを有機溶媒中で加水分解・縮合させた後、式(2)で表されるアルコキシシランを加えて加水分解・縮合する工程を含む、ポリシロキサン(B)の製造方法が挙げられる。
{Si(OR (2)
(X、R、及びqは、上記においてそれぞれ定義したとおりである。)
(XSi(OR4−n (3)
(X、R、及びnは、上記においてそれぞれ定義したとおりである。)
その際、式(3)で表されるアルコキシシランの加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。
[Production Method of Polysiloxane (B)]
The method for obtaining the polysiloxane (B) of the present invention is not particularly limited, but in the present invention, it is the same as the above-mentioned [Production method of polysiloxane (A)].
When using multiple types of alkoxysilane when obtaining polysiloxane (B), you may mix as a mixture which mixed alkoxysilane beforehand, and may mix multiple types of alkoxysilane sequentially.
As an alternative method, a process comprising hydrolyzing and condensing an alkoxysilane represented by the formula (3) in an organic solvent, followed by adding an alkoxysilane represented by the formula (2) and hydrolyzing and condensing the polysilane. A method for producing siloxane (B) is exemplified.
X 3 {Si (OR 2 ) 3 } q (2)
(X 3 , R 2 , and q are as defined above.)
(X 4 ) n Si (OR 3 ) 4-n (3)
(X 4 , R 3 , and n are as defined above.)
At that time, the hydrolysis / condensation reaction of the alkoxysilane represented by the formula (3) may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole.

本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5〜2.5倍モルであるのが好ましい。
また、通常、加水分解・縮合反応を促進する目的で用いられる触媒、あるいは加熱の方法等は[ポリシロキサン(AB)の製造方法]に記載の触媒、あるいは加熱の方法と同じである。
上記した方法で得られた、式(3)で表されるアルコキシシランを加水分解・縮合した溶液に、式(2)で表されるアルコキシシランを加え、攪拌を続けることで、ポリシロキサン(B)の溶液を製造できる。この時、この溶液を加熱することで、更に、加水分解・縮合反応を促進させることもできる。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌したり、還流下で1時間加熱・撹拌するなどの方法が挙げられる。
アルコキシシランを重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、上記した[ポリシロキサン(A)の製造方法]に記載の重合溶媒と同じであり、具体例も同じであり、これらの溶媒は複数種用いてもよい。
In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.
Further, the catalyst used for the purpose of promoting the hydrolysis / condensation reaction, or the heating method is usually the same as the catalyst described in [Production method of polysiloxane (AB)] or the heating method.
By adding the alkoxysilane represented by the formula (2) to the solution obtained by hydrolysis and condensation of the alkoxysilane represented by the formula (3) obtained by the above-described method and continuing stirring, the polysiloxane (B ) Solution. At this time, the hydrolysis / condensation reaction can be further promoted by heating the solution. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, heating and stirring at 50 ° C. for 24 hours, heating and stirring for 1 hour under reflux, and the like can be mentioned.
The solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is the same as the polymerization solvent described in the above-mentioned [Production method of polysiloxane (A)], and specific examples are also the same. A plurality of these solvents may be used.

[ポリシロキサン(AB)、ポリシロキサン(A)及びポリシロキサン(B)の溶液]
本発明においては、上記の方法で得られた重合溶液をそのままポリシロキサン(AB)、ポリシロキサン(A)及びポリシロキサン(B)の溶液としてもよいし、必要に応じて、上記の方法で得られた溶液を、濃縮したり、溶媒を加えて希釈したり又は他の溶媒に置換して、ポリシロキサン(AB)、ポリシロキサン(A)及びポリシロキサン(B)の溶液としてもよい。
その際、用いる溶媒(以下、添加溶媒ともいう)は、重合溶媒と同じでもよいし、別の溶媒でもよい。この添加溶媒は、ポリシロキサン(AB)、ポリシロキサン(A)及びポリシロキサン(B)が均一に溶解している限りにおいて特に限定されず、一種でも複数種でも任意に選択して用いることができる。
上記添加溶媒の具体例としては、上記した重合溶媒の例として挙げた溶媒のほかに、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸メチル、酢酸エチル、乳酸エチル等のエステル類が挙げられる。
これらの溶媒は、液晶配向剤の粘度の調整、又はスピンコート、フレキソ印刷、インクジェット等で液晶配向剤を基板上に塗布する際の塗布性を向上できる。
[Solution of polysiloxane (AB), polysiloxane (A) and polysiloxane (B)]
In the present invention, the polymerization solution obtained by the above method may be used as it is as a solution of polysiloxane (AB), polysiloxane (A) and polysiloxane (B), and if necessary, obtained by the above method. The obtained solution may be concentrated, diluted by adding a solvent, or substituted with another solvent to obtain a solution of polysiloxane (AB), polysiloxane (A), and polysiloxane (B).
In that case, the solvent to be used (hereinafter also referred to as an additive solvent) may be the same as the polymerization solvent, or may be another solvent. The additive solvent is not particularly limited as long as polysiloxane (AB), polysiloxane (A), and polysiloxane (B) are uniformly dissolved, and one or a plurality of types can be arbitrarily selected and used. .
Specific examples of the additive solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as methyl acetate, ethyl acetate, and ethyl lactate in addition to the solvents mentioned as examples of the polymerization solvent. .
These solvents can improve the applicability when the liquid crystal aligning agent is applied onto the substrate by adjusting the viscosity of the liquid crystal aligning agent, or by spin coating, flexographic printing, ink jetting or the like.

[その他の成分]
本発明においては、本発明の効果を損なわない限りにおいて、ポリシロキサン(AB)ポリシロキサン(A)及びポリシロキサン(B)以外のその他の成分、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、界面活性剤等の成分が含まれていてもよい。
[Other ingredients]
In the present invention, as long as the effects of the present invention are not impaired, other components other than polysiloxane (AB) polysiloxane (A) and polysiloxane (B), such as inorganic fine particles, metalloxane oligomers, metalloxane polymers, Components such as a leveling agent and a surfactant may be contained.

無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、又はフッ化マグネシウム微粒子等の微粒子が好ましく、特にコロイド溶液の状態であるものが好ましい。このコロイド溶液は、無機微粒子を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。本発明においては、無機微粒子を含有させることにより、形成される硬化被膜の表面形状及びその他の機能を付与することが可能となる。無機微粒子としては、その平均粒子径が0.001〜0.2μmであることが好ましく、更に好ましくは0.001〜0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液を用いて形成される硬化被膜の透明性が低下する場合がある。
無機微粒子の分散媒としては、水及び有機溶剤を挙げることができる。コロイド溶液としては、被膜形成用塗布液の安定性の観点から、pH又はpKaが1〜10に調整されていることが好ましく、より好ましくは2〜7である。
As the inorganic fine particles, fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and those in the state of a colloidal solution are particularly preferable. This colloidal solution may be a dispersion of inorganic fine particles in a dispersion medium, or a commercially available colloidal solution. In the present invention, the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions. The inorganic fine particles preferably have an average particle size of 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm. When the average particle diameter of the inorganic fine particles exceeds 0.2 μm, the transparency of the cured film formed using the prepared coating liquid may be lowered.
Examples of the dispersion medium for the inorganic fine particles include water and organic solvents. As a colloidal solution, it is preferable that pH or pKa is adjusted to 1-10, More preferably, it is 2-7 from a stability viewpoint of the coating liquid for film formation.

コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキシレングリコール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン等のエステル類;テトラヒドロフラン、1,4−ジオキサン等のエ−テル類を挙げることができる。これらの中で、アルコール類又はケトン類が好ましい。これら有機溶剤は、単独で又は2種以上を混合して分散媒として使用することができる。   Examples of the organic solvent used for the dispersion medium of the colloidal solution include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and γ-butyrolactone; Examples include ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols or ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.

メタロキサンオリゴマー、メタロキサンポリマーとしては、ケイ素、チタン、アルミニウム、タンタル、アンチモン、ビスマス、錫、インジウム、亜鉛等の単独又は複合酸化物前駆体が用いられる。メタロキサンオリゴマー、メタロキサンポリマーとしては、市販品であっても、金属アルコキシド、硝酸塩、塩酸塩、カルボン酸塩等のモノマーから、加水分解等の常法により得られたものであってもよい。
メタロキサンオリゴマー、及びメタロキサンポリマーの具体例としては、市販品であるコルコート社製の、メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48、EMS−485、SS−101等のシロキサンオリゴマー又はシロキサンポリマー、関東化学社製のチタニウム−n−ブトキシドテトラマー等のチタノキサンオリゴマーが挙げられる。これらは単独又は2種以上混合して使用してもよい。
また、レベリング剤及び界面活性剤等は、公知のものを用いることができ、特に市販品は入手が容易なので好ましい。
また、ポリシロキサンに、上記したその他の成分を混合する方法は、ポリシロキサンと同時でも、後であってもよく、特に限定されない。
As the metalloxane oligomer and metalloxane polymer, single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used. The metalloxane oligomer or metalloxane polymer may be a commercially available product or may be obtained from a monomer such as a metal alkoxide, nitrate, hydrochloride, or carboxylate by a conventional method such as hydrolysis.
Specific examples of the metalloxane oligomer and the metalloxane polymer include siloxane oligomers such as methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48, EMS-485, and SS-101 manufactured by Colcoat, which are commercially available products. Alternatively, titanoxane oligomers such as siloxane polymer and titanium-n-butoxide tetramer manufactured by Kanto Chemical Co., Ltd. may be mentioned. You may use these individually or in mixture of 2 or more types.
Moreover, a leveling agent, surfactant, etc. can use a well-known thing, and since a commercial item is easy to acquire especially, it is preferable.
Moreover, the method of mixing the above-mentioned other components with polysiloxane may be simultaneous with or after polysiloxane, and is not particularly limited.

[液晶配向剤]
本発明の液晶配向剤は上述したポリシロキサン(AB)、又はポリシロキサン(A)及びポリシロキサン(B)、さらに必要に応じてその他の成分を含有する溶液である。その際、溶媒としては、上述した重合溶媒及び添加溶媒からなる群から選ばれる少なくとも1種の溶媒が用いられる。液晶配向剤中におけるポリシロキサン(AB)の含有量、あるいはポリシロキサン(A)及びポリシロキサン(B)の合計の含有量は、それぞれポリシロキサン(AB)のSiO換算濃度、あるいはポリシロキサン(A)及びポリシロキサン(B)の合計ケイ素原子量のSiO換算濃度が好ましくは0.5〜15質量%、より好ましくは1〜6質量%である。上記のSiO換算濃度の範囲であれば、一回の塗布で所望の膜厚を得やすく、充分な溶液のポットライフが得られ易い。
[Liquid crystal aligning agent]
The liquid crystal aligning agent of the present invention is a solution containing the above-described polysiloxane (AB), or polysiloxane (A) and polysiloxane (B), and other components as necessary. At that time, as the solvent, at least one solvent selected from the group consisting of the polymerization solvent and the additive solvent described above is used. The content of polysiloxane (AB) in the liquid crystal aligning agent, or the total content of polysiloxane (A) and polysiloxane (B) is the SiO 2 equivalent concentration of polysiloxane (AB) or polysiloxane (A ) And polysiloxane (B) in terms of the total silicon atomic weight, the SiO 2 equivalent concentration is preferably 0.5 to 15% by mass, more preferably 1 to 6% by mass. When the concentration is within the above SiO 2 equivalent concentration range, it is easy to obtain a desired film thickness by a single application, and it is easy to obtain a sufficient pot life of the solution.

本発明において、液晶配向剤中のポリシロキサン(A)とポリシロキサン(B)の混合比は、ポリシロキサン(A)及びポリシロキサン(B)に含まれる合計ケイ素原子量に対して、ポリシロキサン(A)に含まれる合計ケイ素原子量は、5モル%以上が好ましい。ポリシロキサン(A)に含まれる合計ケイ素原子量が5モル%より少ない場合、良好な垂直配向性が得られにくくなる。また、ポリシロキサン(A)に含まれる合計ケイ素原子量が99.5モル%を超えると、ポリシロキサン(B)の含有割合が小さくなり、良好な水に対する信頼性が得られにくくなるため、99.5モル%以下が好ましい。   In the present invention, the mixing ratio of the polysiloxane (A) and the polysiloxane (B) in the liquid crystal aligning agent is determined based on the total amount of silicon atoms contained in the polysiloxane (A) and the polysiloxane (B). ) Is preferably 5 mol% or more. When the total amount of silicon atoms contained in the polysiloxane (A) is less than 5 mol%, it becomes difficult to obtain good vertical alignment. Moreover, since the content rate of polysiloxane (B) will become small and the reliability with respect to favorable water will become difficult to be obtained when the total amount of silicon atoms contained in polysiloxane (A) exceeds 99.5 mol%. 5 mol% or less is preferable.

本発明の液晶配向剤を調製する方法は特に限定されない。本発明に用いるポリシロキサン(AB)、又はポリシロキサン(A)及びポリシロキサン(B)、さらに必要に応じて加えられるその他の成分が均一に混合した状態であればよい。通常、ポリシロキサン(AB)、ポリシロキサン(A)及びポリシロキサン(B)は、溶媒中で重縮合されるので、ポリシロキサン(AB)、ポリシロキサン(A)及びポリシロキサン(B)の溶液をそのまま用いるか、該溶液に必要に応じてその他の成分を添加することが簡便である。更には、前記の重合溶液をそのまま用いる方法が最も簡便である。
また、液晶配向剤中におけるポリシロキサン(AB)、ポリシロキサン(A)及びポリシロキサン(B)の含有量を調整する際には、上述した重合溶媒及び添加溶媒からなる群から選ばれる少なくとも1種の溶媒を用いることができる。
The method for preparing the liquid crystal aligning agent of the present invention is not particularly limited. The polysiloxane (AB) used in the present invention, or the polysiloxane (A) and the polysiloxane (B), and other components added as necessary may be in a uniformly mixed state. Usually, polysiloxane (AB), polysiloxane (A) and polysiloxane (B) are polycondensed in a solvent, so a solution of polysiloxane (AB), polysiloxane (A) and polysiloxane (B) is prepared. It is convenient to use it as it is or to add other components to the solution as necessary. Furthermore, the method using the polymerization solution as it is is the simplest.
Moreover, when adjusting content of polysiloxane (AB), polysiloxane (A), and polysiloxane (B) in a liquid crystal aligning agent, at least 1 sort (s) chosen from the group which consists of the superposition | polymerization solvent and addition solvent which were mentioned above. These solvents can be used.

[液晶配向膜]
本発明の液晶配向膜は、本発明の液晶配向剤を用いて得られる。例えば、本発明の液晶配向剤を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのまま液晶配向膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理等を行って、液晶配向膜とすることも可能である。
液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されないが、基板上に液晶を駆動するための透明電極が形成された基板が好ましい。
[Liquid crystal alignment film]
The liquid crystal aligning film of this invention is obtained using the liquid crystal aligning agent of this invention. For example, after applying the liquid crystal aligning agent of this invention to a board | substrate, the cured film obtained by drying and baking can also be used as a liquid crystal aligning film as it is. Further, the cured film can be rubbed, irradiated with polarized light or light having a specific wavelength, or treated with an ion beam or the like to form a liquid crystal alignment film.
The substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate in which a transparent electrode for driving liquid crystal is formed on the substrate is preferable.

具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。   Specific examples include glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, tri Examples thereof include a substrate in which a transparent electrode is formed on a plastic plate such as acetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose.

液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。
液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃〜150℃、好ましくは60℃〜100℃のホットプレート上で、0.5〜30分、好ましくは1〜5分乾燥させる方法が挙げられる。
Examples of the method for applying the liquid crystal aligning agent include spin coating, printing, ink jet, spraying, roll coating, and the like.In terms of productivity, the transfer printing method is widely used industrially. The present invention is also preferably used.
The drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, a drying process is included. Is preferred. The drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.

上記の方法で液晶配向剤を塗布して形成される塗膜は、焼成して硬化膜とすることができる。その際、焼成温度は、100℃〜350℃の任意の温度で行うことができるが、好ましくは140℃〜300℃であり、より好ましくは150℃〜230℃、更に好ましくは160℃〜220℃である。焼成時間は5分〜240分の任意の時間で焼成を行うことができる。好ましくは10〜90分であり、より好ましくは20〜90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環オーブン、IRオーブン、ベルト炉などを用いることができる。
液晶配向膜中のポリシロキサンは、焼成工程において、重縮合が進行する。しかし、本発明においては、本発明の効果を損なわない限り、完全に重縮合させる必要はない。但し、液晶セル製造行程で必要とされる、シール剤硬化などの熱処理温度より、10℃以上高い温度で焼成することが好ましい。
The coating film formed by applying the liquid crystal aligning agent by the above method can be baked to obtain a cured film. At that time, the firing temperature can be carried out at an arbitrary temperature of 100 ° C. to 350 ° C., preferably 140 ° C. to 300 ° C., more preferably 150 ° C. to 230 ° C., further preferably 160 ° C. to 220 ° C. It is. Firing can be performed at an arbitrary time of 5 minutes to 240 minutes. Preferably it is 10 to 90 minutes, More preferably, it is 20 to 90 minutes. For the heating, a generally known method such as a hot plate, a hot air circulation oven, an IR oven, a belt furnace or the like can be used.
The polysiloxane in the liquid crystal alignment film undergoes polycondensation in the firing step. However, in the present invention, it is not necessary to completely polycondense unless the effects of the present invention are impaired. However, firing is preferably performed at a temperature higher by 10 ° C. or more than the heat treatment temperature required for the liquid crystal cell production process, such as curing of the sealant.

この硬化膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が得られ易いので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。
上記硬化膜は、そのまま液晶配向膜として用いることもできるが、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理等を行って、液晶配向膜とすることも可能である。
The thickness of the cured film can be selected as necessary, but is preferably 5 nm or more, more preferably 10 nm or more, because the reliability of the liquid crystal display element can be easily obtained. Moreover, when the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is suitable.
The cured film can be used as a liquid crystal alignment film as it is. It is also possible.

[液晶表示素子]
本発明の液晶表示素子は、上記の方法により、基板に液晶配向膜を形成した後、公知の方法で液晶セルを作製して得ることができる。液晶セル作製の一例を挙げると、液晶配向膜が形成された1対の基板を、スペーサーを挟んで、シール剤で固定し、液晶を注入して封止する方法が一般的である。その際、用いるスペーサーの大きさは1〜30μmであるが、好ましくは2〜10μmである。
液晶を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶を注入する真空法、液晶を滴下した後に封止を行う滴下法などを挙げることができる。
液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。
具体例は[液晶配向膜]で記載した基板と同様である。
また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
[Liquid crystal display element]
The liquid crystal display element of the present invention can be obtained by forming a liquid crystal alignment film on a substrate by the above method and then preparing a liquid crystal cell by a known method. As an example of manufacturing a liquid crystal cell, a method is generally employed in which a pair of substrates on which a liquid crystal alignment film is formed are fixed with a sealant with a spacer interposed therebetween, and liquid crystal is injected and sealed. In this case, the size of the spacer used is 1 to 30 μm, preferably 2 to 10 μm.
The method for injecting the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting liquid crystal after the inside of the manufactured liquid crystal cell is decompressed, and a dropping method for sealing after dropping the liquid crystal.
The substrate used for the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate in which a transparent electrode for driving liquid crystal is formed on the substrate.
A specific example is the same as the substrate described in [Liquid crystal alignment film].
As a high-performance element such as a TFT type element, an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.

透過型の液晶素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
また、PSA型表示素子では、液晶セルに電圧を印加しながら紫外線や偏向紫外線等のエネルギー線を照射することで液晶のプレチルト角を発現することもできる。
In the case of a transmissive liquid crystal element, it is common to use a substrate as described above. However, in a reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used. It is. At that time, a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
In the PSA type display element, the pretilt angle of the liquid crystal can be expressed by irradiating energy rays such as ultraviolet rays and polarized ultraviolet rays while applying a voltage to the liquid crystal cell.

以下、合成例、及び実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限して解釈されるものではない。
本実施例における略語の説明は、以下のとおりである。
TEOS:テトラエトキシシラン
UPS:γ-ウレイドプロピルトリエトキシシラン
BisUREA:ビス[3−(トリエトキシシリル)プロピル]ウレア
C12:ドデシルトリエトキシシラン
C18:オクタデシルトリエトキシシラン
F13:トリデカフルオロオクチルトリメトキシシラン
MC18:ジエトキシメチルオクタデシルシラン
Phe:フェネチルトリメトキシシラン
Ben:ベンゾイルオキシプロピルトリメトキシシラン
ACPS:(3−アクリロキシプロピル)トリメトキシシラン
VTES:トリエトキシビニルシラン
MAPS:3−メタクリロキシプロピルトリエトキシシラン
HG:へキシレングリコール(別名:2−メチル−2,4−ペンタンジオール)
BCS:ブチルセロソルブ(別名:エチレングリコールモノブチルエーテル)
MeOH:メタノール
EtOH:エタノール
PGME:プロピレングリコールモノエチルエーテル
PB:プロピレングリコールモノブチルエーテル
DEG:ジエチレングリコール
NMP:N−メチルピロリドン
Hereinafter, although a synthesis example and an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is restrict | limited to the following Example and is not interpreted.
The explanation of the abbreviations in this embodiment is as follows.
TEOS: Tetraethoxysilane UPS: γ-Ureidopropyltriethoxysilane BisUREA: Bis [3- (triethoxysilyl) propyl] urea C12: Dodecyltriethoxysilane C18: Octadecyltriethoxysilane F13: Tridecafluorooctyltrimethoxysilane MC18 : Diethoxymethyloctadecylsilane Phe: phenethyltrimethoxysilane Ben: benzoyloxypropyltrimethoxysilane ACPS: (3-acryloxypropyl) trimethoxysilane VTES: triethoxyvinylsilane MAPS: 3-methacryloxypropyltriethoxysilane HG: to Xylene glycol (also known as 2-methyl-2,4-pentanediol)
BCS: Butyl cellosolve (also known as ethylene glycol monobutyl ether)
MeOH: methanol EtOH: ethanol PGME: propylene glycol monoethyl ether PB: propylene glycol monobutyl ether DEG: diethylene glycol NMP: N-methylpyrrolidone

<合成例1>
温度計、及び還流管を備え付けた200mL(ミリリットル)の四つ口反応フラスコにMeOH48.85g、TEOS19.58g、C18を2.08g、及びUPSの92質量%メタノール溶液を0.28g(UPS 0.26g)投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめMeOH24.52g、水3.60g及び触媒として蓚酸0.90gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が6質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しBCS15.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K1)を得た。
<Synthesis Example 1>
In a 200 mL (milliliter) four-necked reaction flask equipped with a thermometer and a reflux tube, 48.85 g of MeOH, 19.58 g of TEOS, 2.08 g of C18, and 0.28 g of a 92 mass% methanol solution of UPS (UPS 0. 26 g) was charged and stirred to prepare an alkoxysilane monomer solution. A solution prepared by previously mixing 24.52 g of MeOH, 3.60 g of water and 0.90 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after completion of the addition. Then, after heating for 1 hour under reflux, it was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 6% by mass.
The resulting polysiloxane solution 30.0g respect mixed BCS15.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the liquid crystal alignment agent (K1).

<合成例2>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにMeOH35.33g、TEOS31.25g、C12を2.77g、及びUPSの92質量%メタノール溶液を2.39g(UPS 2.20g)投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめMeOH17.76g、水9.00g及び触媒として蓚酸1.50gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が10質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しBCS45.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K2)を得た
<Synthesis Example 2>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 35.33 g of MeOH, 31.25 g of TEOS, 2.77 g of C12, and 2.39 g of a 92% by mass methanol solution of UPS (UPS 2.20 g). And stirring to prepare an alkoxysilane monomer solution. A solution prepared by previously mixing 17.76 g of MeOH, 9.00 g of water and 1.50 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after the completion of the addition. Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 10% by mass.
The resulting polysiloxane solution 30.0g respect mixed BCS45.0G, give in terms of SiO 2 solid content concentration of 4 mass% of the liquid crystal alignment agent (K2)

<合成例3>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにMeOH36.36g、TEOS29.51g、C18を3.47g、及びUPSの92質量%メタノール溶液を4.79g(UPS 4.41g)投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめMeOH18.37g、水6.00g及び触媒として蓚酸1.50gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が10質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しBCS45.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K3)を得た。
<Synthesis Example 3>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 36.36 g of MeOH, 29.51 g of TEOS, 3.47 g of C18, and 4.79 g (UPS 4.41 g) of a 92 mass% methanol solution of UPS. And stirring to prepare an alkoxysilane monomer solution. A solution prepared by mixing 18.37 g of MeOH, 6.00 g of water and 1.50 g of oxalic acid as a catalyst in advance was added dropwise to this solution over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after the completion of the addition. Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 10% by mass.
The resulting polysiloxane solution 30.0g respect mixed BCS45.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the liquid crystal alignment agent (K3).

<合成例4>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにMeOH46.07g、TEOS13.54g、C18を2.08g、及びUPSの92質量%メタノール溶液を8.62g(UPS 7.93g)投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめMeOH23.38g、水5.40g及び触媒として蓚酸0.90gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が6質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しBCS15.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K4)を得た。
<Synthesis Example 4>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 46.07 g of MeOH, 13.54 g of TEOS, 2.08 g of C18, and 8.62 g (UPS 7.93 g) of a 92 mass% methanol solution of UPS. And stirring to prepare an alkoxysilane monomer solution. To this solution, a solution in which 23.38 g of MeOH, 5.40 g of water and 0.90 g of oxalic acid as a catalyst were mixed dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the dropwise addition. Then, after heating for 1 hour under reflux, it was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 6% by mass.
The resulting polysiloxane solution 30.0g respect mixed BCS15.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the liquid crystal alignment agent (K4).

<合成例5>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにMeOH48.88g、TEOS19.37g、C18を2.08g、及びBisUREAの60質量%エタノール溶液を0.73g(BisUREA 0.44g)投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめMeOH24.44g、水3.60g及び触媒として蓚酸0.90gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が6質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しBCS15.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K5)を得た。
<Synthesis Example 5>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 48.88 g of MeOH, 19.37 g of TEOS, 2.08 g of C18, and 0.73 g of BisUREA in 60 mass% ethanol (BisUREA 0.44 g). And stirring to prepare an alkoxysilane monomer solution. To this solution, a solution in which 24.44 g of MeOH, 3.60 g of water and 0.90 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. Then, after heating for 1 hour under reflux, it was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 6% by mass.
The resulting polysiloxane solution 30.0g respect mixed BCS15.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the liquid crystal alignment agent (K5).

<合成例6>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにMeOH49.31g、TEOS17.92g、ACPS2.34g、C18を0.83g、及びUPSの92質量%メタノール溶液を0.57g(UPS 0.52g)投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめMeOH24.66g、水3.47g及び触媒として蓚酸0.90gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が6質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しPGME15.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K6)を得た。
<Synthesis Example 6>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 49.31 g of MeOH, 17.92 g of TEOS, 2.34 g of ACPS, 0.83 g of C18, and 0.57 g of UPS in a 92 wt% methanol solution (UPS 0 .52 g) was added and stirred to prepare an alkoxysilane monomer solution. To this solution, a solution in which 24.66 g of MeOH, 3.47 g of water and 0.90 g of oxalic acid as a catalyst were previously added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. Then, after heating for 1 hour under reflux, it was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 6% by mass.
The resulting polysiloxane solution 30.0g respect mixed PGME15.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the liquid crystal alignment agent (K6).

<合成例7>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにMeOH49.44g、TEOS20.00g、MC18を0.77g、及びUPSの92質量%メタノール溶液を0.57g(UPS 0.52g)投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめMeOH24.72g、水3.60g及び触媒として蓚酸0.90gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が6質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しPGME15.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K7)を得た。
<Synthesis Example 7>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 49.44 g of MeOH, 20.00 g of TEOS, 0.77 g of MC18, and 0.57 g of UPS 92 mass% methanol solution (UPS 0.52 g). And stirring to prepare an alkoxysilane monomer solution. To this solution, a solution in which 24.72 g of MeOH, 3.60 g of water and 0.90 g of oxalic acid as a catalyst were previously added dropwise over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after completion of the addition. Then, after heating for 1 hour under reflux, it was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 6% by mass.
The resulting polysiloxane solution 30.0g respect mixed PGME15.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the liquid crystal alignment agent (K7).

<合成例8>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにHG23.30g、BCS7.77g、TEOS39.17g、Phe2.26gを投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめHG11.65g、BCS3.88g、水10.8g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で30分加熱後、UPSの92質量%メタノール溶液を0.57g(UPS 0.27g)、放冷してSiO換算固形分濃度が6質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しBSC15.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K8)を得た。
<Synthesis Example 8>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 23.30 g of HG, 7.77 g of BCS, 39.17 g of TEOS, and 2.26 g of Phe, and stirred to prepare an alkoxysilane monomer solution. To this solution, a solution prepared by previously mixing 11.65 g of HG, 3.88 g of BCS, 10.8 g of water and 0.18 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Thereafter, after heating for 30 minutes under reflux, 0.57 g (UPS 0.27 g) of a 92 mass% UPS solution in methanol was allowed to cool to obtain a polysiloxane solution having a solid content concentration of 6 mass% in terms of SiO 2 .
The resulting polysiloxane solution 30.0g respect mixed BSC15.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the liquid crystal alignment agent (K8).

<合成例9>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにMeOH49.95g、TEOS19.58g、Benを1.42g、及びUPSの92質量%メタノール溶液を0.29g(UPS 0.27g)投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめMeOH24.98g、水3.60g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が6質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しBSC15.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K9)を得た。
<Synthesis Example 9>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 49.95 g of MeOH, 19.58 g of TEOS, 1.42 g of Ben, and 0.29 g of UPS 92 mass% methanol solution (UPS 0.27 g). And stirring to prepare an alkoxysilane monomer solution. To this solution, a solution in which 24.98 g of MeOH, 3.60 g of water and 0.18 g of oxalic acid as a catalyst were mixed dropwise over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after completion of the dropwise addition. Then, after heating for 1 hour under reflux, it was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 6% by mass.
The resulting polysiloxane solution 30.0g respect mixed BSC15.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the liquid crystal alignment agent (K9).

<合成例10>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにHG23.34g、BCS7.78g、TEOS40.83g、及びF13を0.94g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめHG11.67g、BCS3.89g、水10.80g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で30分加熱後、UPSの92質量%メタノール溶液を0.57g(UPS 0.52g)を投入して、さらに還流下で30分加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しEtOH42.0g、PGME18.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K10)を得た。
<Synthesis Example 10>
A 200 mL four-neck reaction flask equipped with a thermometer and a reflux tube was charged with 23.34 g of HG, 7.78 g of BCS, 40.83 g of TEOS, and 0.94 g of F13, and stirred to prepare an alkoxysilane monomer solution. . To this solution, a solution prepared by previously mixing 11.67 g of HG, 3.89 g of BCS, 10.80 g of water and 0.18 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Thereafter, after heating for 30 minutes under reflux, 0.57 g (UPS 0.52 g) of 92 mass% UPS solution was added, and after heating for 30 minutes under reflux, the mixture was allowed to cool and then solidified in terms of SiO 2 A polysiloxane solution having a concentration of 12% by mass was obtained.
43.0 g of EtOH and 18.0 g of PGME were mixed with 30.0 g of the obtained polysiloxane solution to obtain a liquid crystal aligning agent (K10) having a solid content concentration in terms of SiO 2 of 4% by mass.

<合成例11>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにHG22.48g、BCS7.49g、TEOS38.75g、及びC18を4.17g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめHG11.24g、BCS3.74g、水10.80g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で30分加熱後、UPSの92質量%メタノール溶液を1.15g(UPS 1.06g)を投入して、さらに還流下で30分加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しHG48.7g、BCS11.3gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K11)を得た。
<Synthesis Example 11>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 22.48 g of HG, 7.49 g of BCS, 38.75 g of TEOS, and 4.17 g of C18, and stirred to prepare an alkoxysilane monomer solution. . To this solution, HG 11.24 g, BCS 3.74 g, water 10.80 g and 0.18 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after completion of the addition. . Thereafter, after heating for 30 minutes under reflux, 1.15 g (UPS 1.06 g) of a 92 mass% UPS solution in methanol was added, and after heating for 30 minutes under reflux, the mixture was allowed to cool and then solidified in terms of SiO 2 A polysiloxane solution having a concentration of 12% by mass was obtained.
HG48.7g The obtained polysiloxane solution 30.0 g, were mixed BCS11.3G, give in terms of SiO 2 solid content concentration of 4 mass% of the liquid crystal alignment agent (K11).

<合成例12>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにHG22.86g、BCS7.62g、TEOS27.50g、VTES11.42g及びC18を1.67g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめHG11.43g、BCS3.81g、水10.80g及び触媒として蓚酸0.9gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で30分加熱後、UPSの92質量%メタノール溶液を1.15g(UPS 1.06g)、HG0.64及びBS0.21gの混合溶液を投入して、さらに還流下で30分加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しHG26.57g、BCS3.94g及びPB29.49gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K12)を得た。
<Synthesis Example 12>
A 200 mL four-neck reaction flask equipped with a thermometer and a reflux tube was charged with 1.67 g of HG 22.86 g, BCS 7.62 g, TEOS 27.50 g, VTES 11.42 g, and C18, and stirred to obtain a solution of an alkoxysilane monomer. Was prepared. To this solution, a solution prepared by previously mixing 11.43 g of HG, 3.81 g of BCS, 10.80 g of water and 0.9 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Then, after heating for 30 minutes under reflux, a mixed solution of 1.15 g (UPS 1.06 g) of 92% by mass methanol of UPS, HG0.64 and 0.21 g of BS was added, and further heated under reflux for 30 minutes. Thereafter, it was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 12% by mass.
HG26.57g The obtained polysiloxane solution 30.0 g, were mixed BCS3.94g and PB29.49G, obtain in terms of SiO 2 solid content concentration of 4 mass% of the liquid crystal alignment agent (K12).

<合成例13>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにHG20.75g、BCS6.92g、TEOS32.92g、MAPS8.71g及びC18を4.17g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめHG10.38g、BCS3.46g、水10.80g及び触媒として蓚酸0.9gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で30分加熱後、UPSの92質量%メタノール溶液を0.57g(UPS 0.52g)、HG0.32及びBS0.11gの混合溶液を投入して、さらに還流下で30分加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対しHG26.89g、BCS4.13g及びPB28.98gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(K13)を得た。
<Synthesis Example 13>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 20.75 g of HG, 6.92 g of BCS, 32.92 g of TEOS, 8.17 g of MAPS and 4.17 g of C18, and stirred to obtain a solution of an alkoxysilane monomer. Was prepared. To this solution, a solution prepared by previously mixing 10.38 g of HG, 3.46 g of BCS, 10.80 g of water and 0.9 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Then, after heating for 30 minutes under reflux, a mixed solution of 0.57 g of UPS 92 mass% methanol (UPS 0.52 g), HG 0.32 and BS 0.11 g was added and further heated under reflux for 30 minutes. after, SiO 2 in terms of solid concentration was obtained 12 wt% of the polysiloxane solution was allowed to cool.
HG26.89g The obtained polysiloxane solution 30.0 g, were mixed BCS4.13g and PB28.98G, obtain in terms of SiO 2 solid content concentration of 4 mass% of the liquid crystal alignment agent (K13).

<比較合成例1>
温度計、及び還流管を備え付けた200mLの四つ口反応フラスコにHG22.63g、BCS7.54g、TEOS39.58g及びC18を4.17g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめHG11.32g、BS3.77g、水10.8g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gとHG56.0g、BCS4.0gを混合し、SiO換算固形分濃度が4質量%の液晶配向剤(L1)を得た。
合成例1〜11及び比較合成例1におけるアルコキシシランの配合比を表1に示す。
<Comparative Synthesis Example 1>
A 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 22.63 g of HG, 7.54 g of BCS, 39.58 g of TEOS, and 4.17 g of C18, and stirred to prepare a solution of an alkoxysilane monomer. To this solution, a solution prepared by previously mixing 11.32 g of HG, 3.77 g of BS, 10.8 g of water and 0.18 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after the completion of the addition. . Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent solid content concentration of 12% by mass.
The resulting polysiloxane solution 30.0g and HG56.0G, mixed BCS4.0G, give in terms of SiO 2 solid content concentration of 4 mass% of the liquid crystal alignment agent (L1).
Table 1 shows the mixing ratio of alkoxysilanes in Synthesis Examples 1 to 11 and Comparative Synthesis Example 1.

Figure 0005578074
作製した液晶セルの液晶配向性及び電気特性は以下の方法により評価、測定した。
Figure 0005578074
The liquid crystal orientation and electrical characteristics of the produced liquid crystal cell were evaluated and measured by the following methods.

[液晶配向性]
前述の方法で作製した液晶セルを、偏光顕微鏡で観察し、液晶の配向状態を確認した。液晶セル全体で欠陥の無い均一な配向状態を示している場合には〇、液晶セルの一部に配向欠陥が見られる場合及び、垂直配向しない場合は×とした。
[電気特性]
液晶セルに、電圧±10V、周波数0.01Hzの三角波を印可した時のイオン密度を測定した。測定温度は80℃で行った。測定装置は、東陽テクニカ社製6245型液晶物性評価装置を用いた。
[Liquid crystal orientation]
The liquid crystal cell produced by the above-mentioned method was observed with a polarizing microscope, and the alignment state of the liquid crystal was confirmed. In the case where the entire liquid crystal cell shows a uniform alignment state with no defects, it is marked with ◯.
[Electrical characteristics]
The ion density was measured when a triangular wave having a voltage of ± 10 V and a frequency of 0.01 Hz was applied to the liquid crystal cell. The measurement temperature was 80 ° C. As a measuring device, a 6245 type liquid crystal property evaluation device manufactured by Toyo Technica Co., Ltd. was used.

<実施例1>
合成例1で得られた液晶配向剤(K1)を孔径0.45μmのメンブランフィルターで加圧濾過した後、ITO透明電極付きガラス基板にスピンコート法により成膜した。この基板を80℃のホットプレート上で5分間乾燥した後、210℃の熱風循環式クリーンオーブンで60分間焼成し、膜厚約80nmの液晶配向膜を形成した。
この基板を2枚用意し、片方の基板の液晶配向膜面に粒子径6μmのスペーサーを散布した後、基板の外縁部にスクリーン印刷法によりエポキシ系接着剤を塗布した。その後、液晶配向膜が向き合うように基板を張り合わせて圧着後に硬化させて空のセルを作製した。
この空のセルを、室温23℃、湿度98%の環境下に20時間放置し、水分を吸着させた(水処理)後、液晶(メルク社製MLC−6608(商品名))を真空注入法により注入した。この時、液晶注入前の空セルの脱気は5分間で行った。その後、注入孔をUV硬化樹脂により封止して液晶セル(水処理有り)を作製した。
他方、前述と同様の方法で作製した空のセルを、室温23℃、湿度43%の環境下に20時間放置し、液晶(メルク社製MLC−6608(商品名))を真空注入法により注入後、注入孔をUV硬化樹脂により封止して液晶セル(水処理無し)を作製した。
この液晶セルの電気特性を、上記した方法により測定した。その結果を、表2に示した。
<Example 1>
The liquid crystal aligning agent (K1) obtained in Synthesis Example 1 was subjected to pressure filtration with a membrane filter having a pore diameter of 0.45 μm, and then formed into a film on a glass substrate with an ITO transparent electrode by a spin coating method. The substrate was dried on a hot plate at 80 ° C. for 5 minutes and then baked in a hot air circulation clean oven at 210 ° C. for 60 minutes to form a liquid crystal alignment film having a thickness of about 80 nm.
Two substrates were prepared, and a spacer having a particle diameter of 6 μm was sprayed on the surface of the liquid crystal alignment film of one substrate, and then an epoxy adhesive was applied to the outer edge of the substrate by screen printing. Thereafter, the substrates were laminated so that the liquid crystal alignment films faced each other, and were cured after pressure bonding to produce empty cells.
This empty cell was allowed to stand in an environment of room temperature 23 ° C. and humidity 98% for 20 hours to adsorb moisture (water treatment), and then a liquid crystal (MLC-6608 (trade name) manufactured by Merck) was vacuum-injected. Injected. At this time, degassing of the empty cell before liquid crystal injection was performed in 5 minutes. Thereafter, the injection hole was sealed with a UV curable resin to prepare a liquid crystal cell (with water treatment).
On the other hand, an empty cell produced by the same method as described above is left in an environment of room temperature 23 ° C. and humidity 43% for 20 hours, and liquid crystal (MLC-6608 (trade name) manufactured by Merck) is injected by vacuum injection. Thereafter, the injection hole was sealed with a UV curable resin to prepare a liquid crystal cell (without water treatment).
The electrical characteristics of the liquid crystal cell were measured by the method described above. The results are shown in Table 2.

<実施例2〜13>
合成例2〜13で得られた液晶配向剤K2〜K13を用いて、実施例1と同様に液晶セルを作製し、電気特性を測定した。その結果を表2に示した。
<Examples 2 to 13>
Using the liquid crystal aligning agents K2 to K13 obtained in Synthesis Examples 2 to 13, liquid crystal cells were produced in the same manner as in Example 1, and the electrical characteristics were measured. The results are shown in Table 2.

<比較例1>
比較合成例1で得られた液晶配向剤L1を用いて、前述の方法で液晶セルを作製し、前述の方法で液晶セルの電気特性を測定した。その結果を、表2に示した。
<Comparative Example 1>
Using the liquid crystal aligning agent L1 obtained in Comparative Synthesis Example 1, a liquid crystal cell was prepared by the method described above, and the electrical characteristics of the liquid crystal cell were measured by the method described above. The results are shown in Table 2.

Figure 0005578074
表2から明らかなように、実施例1〜13の液晶セルでは、水処理有りの場合も、水処理無しの場合と比較して、イオン密度が上昇しないことが判った。一方、比較例1の液晶セルでは、水処理有りの場合は、水処理無しの場合と比較して、イオン密度が大きく上昇した。
Figure 0005578074
As is clear from Table 2, in the liquid crystal cells of Examples 1 to 13, it was found that the ion density did not increase when water treatment was performed, compared to the case without water treatment. On the other hand, in the liquid crystal cell of Comparative Example 1, when the water treatment was performed, the ion density was significantly increased as compared with the case without the water treatment.

<合成例21>
温度計、及び還流管を備え付けた1L(リットル)四つ口反応フラスコにHG113.17g、BCS37.72g、TEOS197.91g及びC18を20.84g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG56.59g、BS18.86g、水54.0g及び触媒として蓚酸0.90gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対し、HG56.04gとBCS3.96gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(K21)を得た。
<Synthesis Example 21>
A 1 L (liter) four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 113.17 g of HG, 37.72 g of BCS, 197.91 g of TEOS, and 20.84 g of C18, and stirred to prepare a solution of an alkoxysilane monomer. did. To this solution, a solution in which 56.59 g of HG, 18.86 g of BS, 54.0 g of water and 0.90 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent solid content concentration of 12% by mass.
To polysiloxane solution 30.0g obtained by mixing HG56.04g and BCS3.96g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (K21).

<合成例22>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにHG22.99g、BCS7.66g、TEOS27.78g及びC12を11.09g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.50g、BS3.83g、水15.0g及び触媒として蓚酸0.15gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、67℃で1時間加熱後、放冷してSiO換算固形分濃度が10質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対し、HG36.69gとBCS8.31gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(K22)を得た。
<Synthesis Example 22>
A 200 ml four-neck reaction flask equipped with a thermometer and a reflux tube was charged with 22.99 g of HG, 7.66 g of BCS, 27.78 g of TEOS and 11.09 g of C12, and stirred to prepare a solution of an alkoxysilane monomer. A solution prepared by mixing 11.50 g of HG, 3.83 g of BS, 15.0 g of water and 0.15 g of oxalic acid as a catalyst was added dropwise to the solution over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after completion of the addition. . Then, after heating at 67 ° C. for 1 hour, the mixture was allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent solid content concentration of 10% by mass.
To polysiloxane solution 30.0g obtained by mixing HG36.69g and BCS8.31g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (K22).

<合成例23>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにHG22.26g、BCS7.42g、TEOS38.33g、C18を4.17g、及びC12を2.00g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.13g、BS3.71g、水10.8g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対し、HG48.67gとBCS11.33gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(K23)を得た。
<Synthesis Example 23>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 22.26 g of HG, 7.42 g of BCS, 38.33 g of TEOS, 4.17 g of C18, and 2.00 g of C12, and stirred to obtain an alkoxysilane monomer. A solution of was prepared. A solution in which 11.13 g of HG, 3.71 g of BS, 10.8 g of water, and 0.18 g of oxalic acid as a catalyst were added dropwise to this solution over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after completion of the addition. . Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent solid content concentration of 12% by mass.
To polysiloxane solution 30.0g obtained by mixing HG48.67g and BCS11.33g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (K23).

<合成例24>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにHG23.54g、BCS7.85g、TEOS27.08g、C18を4.17g、及びMTESを10.7g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.77g、BS3.92g、水10.8g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対し、HG48.71gとBCS11.29gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(K24)を得た。
<Synthesis Example 24>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 23.54 g of HG, 7.85 g of BCS, 27.08 g of TEOS, 4.17 g of C18, and 10.7 g of MTES, and stirred to obtain an alkoxysilane monomer. A solution of was prepared. A solution prepared by mixing HG 11.77 g, BS 3.92 g, water 10.8 g and oxalic acid 0.18 g as a catalyst was added dropwise to the solution over 30 minutes at room temperature. . Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent solid content concentration of 12% by mass.
To polysiloxane solution 30.0g obtained by mixing HG48.71g and BCS11.29g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (K24).

<合成例25>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにHG22.79g、BCS7.60g、TEOS39.58g、及びMC18を3.87g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.39g、BS3.80g、水10.8g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液60.0gに対し、HG97.37gとBCS22.63gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(K25)を得た。
<Synthesis Example 25>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 22.79 g of HG, 7.60 g of BCS, 39.58 g of TEOS, and 3.87 g of MC18, and stirred to prepare a solution of the alkoxysilane monomer. To this solution, HG 11.39 g, BS 3.80 g, water 10.8 g and 0.18 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent solid content concentration of 12% by mass.
The obtained polysiloxane solution 60.0 g, mixed HG97.37g and BCS22.63g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (K25).

<合成例26>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにHG23.42g、BCS7.81g、TEOS41.25g、及びF13を0.94g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.71g、BS3.90g、水10.8g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液60.0gに対し、EtOH84.00gとPGME36.00gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(K26)を得た。
<Synthesis Example 26>
A 200 ml four-neck reaction flask equipped with a thermometer and a reflux tube was charged with 23.42 g of HG, 7.81 g of BCS, 41.25 g of TEOS, and 0.94 g of F13, and stirred to prepare an alkoxysilane monomer solution. To this solution, a solution prepared by previously mixing 11.71 g of HG, 3.90 g of BS, 10.8 g of water and 0.18 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after the completion of the addition. . Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent solid content concentration of 12% by mass.
The obtained polysiloxane solution 60.0 g, mixed EtOH84.00g and PGME36.00g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (K26).

<合成例27>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにHG23.59g、BCS7.86g、TEOS39.58g、及びPheを2.26g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.79g、BS3.93g、水10.8g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液60.0gに対し、HG97.42g、及びBCS22.58gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(K27)を得た。
<Synthesis Example 27>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 23.59 g of HG, 7.86 g of BCS, 39.58 g of TEOS, and 2.26 g of Phe, and stirred to prepare a solution of the alkoxysilane monomer. To this solution, a solution prepared by previously mixing 11.79 g of HG, 3.93 g of BS, 10.8 g of water and 0.18 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after the completion of the addition. . Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent solid content concentration of 12% by mass.
The obtained polysiloxane solution 60.0g, HG97.42g, and mixed BCS22.58g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (K27).

<合成例28>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにHG23.30g、BCS7.77g、TEOS39.58g、及びBenを2.84g投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG11.65g、BS3.88g、水10.8g及び触媒として蓚酸0.18gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が12質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液60.0gに対し、HG97.40g、及びBCS22.60gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(K28)を得た。
<Synthesis Example 28>
A 200 ml four-neck reaction flask equipped with a thermometer and a reflux tube was charged with 23.30 g of HG, 7.77 g of BCS, 39.58 g of TEOS, and 2.84 g of Ben, and stirred to prepare a solution of the alkoxysilane monomer. A solution prepared by previously mixing 11.65 g of HG, 3.88 g of BS, 10.8 g of water and 0.18 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent solid content concentration of 12% by mass.
The obtained polysiloxane solution 60.0g, HG97.40g, and mixed BCS22.60g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (K28).

<合成例29>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにMeOH34.50g、TEOS27.78g、及びUPSの92質量%メタノール溶液9.58g(UPS 8.81g)を投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めMeOH17.64g、水9.00g及び触媒として蓚酸1.50gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が10質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液30.0gに対し、HG30.71gとBCS8.21g、DEG6.09gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(L21)を得た。
<Synthesis Example 29>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 34.50 g of MeOH, 27.78 g of TEOS, and 9.58 g of a 92% by weight methanol solution of UPS (UPS 8.81 g), stirred, and alkoxylated. A solution of silane monomer was prepared. A solution prepared by previously mixing 17.64 g of MeOH, 9.00 g of water and 1.50 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after the completion of the addition. Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 10% by mass.
30.71 g of HG, 8.21 g of BCS, and 6.09 g of DEG were mixed with 30.0 g of the obtained polysiloxane solution to obtain a polysiloxane diluted solution (L21) having a solid content concentration of 4 mass% in terms of SiO 2 .

<合成例30>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにMeOH46.76g、TEOS10.42g、及びUPSの92質量%メタノール溶液14.37g(UPS 13.22g)を投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めMeOH23.95g、水3.60g及び触媒として蓚酸0.9gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が6質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液60.0gに対し、NMP30.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(L22)を得た。
<Synthesis Example 30>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 46.76 g of MeOH, 10.42 g of TEOS, and 14.37 g of a 92% by mass methanol solution of UPS (UPS 13.22 g), stirred, and alkoxylated. A solution of silane monomer was prepared. To this solution, a solution in which 23.95 g of MeOH, 3.60 g of water and 0.9 g of oxalic acid as a catalyst were previously added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. Then, after heating for 1 hour under reflux, it was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 6% by mass.
The obtained polysiloxane solution 60.0 g, were mixed NMP30.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (L22).

<合成例31>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにMeOH34.47g、TEOS24.31g、ACPS3.91g、及びUPSの92質量%メタノール溶液9.58g(UPS 8.81g)を投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めMeOH17.24g、水9.00g及び触媒として蓚酸1.50gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が10質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液40.0gに対し、HG48.0g、及びBCS12.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(L23)を得た。
<Synthesis Example 31>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 34.47 g of MeOH, 24.31 g of TEOS, 3.91 g of ACPS, and 9.58 g of a 92% by weight methanol solution of UPS (8.88 g of UPS) and stirred. Thus, a solution of the alkoxysilane monomer was prepared. A solution prepared by previously mixing 17.24 g of MeOH, 9.00 g of water and 1.50 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after the completion of the addition. Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 10% by mass.
The obtained polysiloxane solution 40.0g, HG48.0g, and mixed BCS12.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (L23).

<合成例32>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにMeOH37.14g、TEOS34.03g、及びUPSの92質量%メタノール溶液0.96g(UPS 0.88g)を投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめHG13.93g、BCS4.64g、水9.00g及び触媒として蓚酸0.3gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で1時間加熱後、放冷してSiO換算固形分濃度が10質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液90.0gに対し、HG108.0g、及びBCS27.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(L24)を得た。
<Synthesis Example 32>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 37.14 g of MeOH, 34.03 g of TEOS, and 0.96 g of a 92% by mass methanol solution of UPS (UPS 0.88 g), stirred, and alkoxylated. A solution of silane monomer was prepared. A solution prepared by mixing HG 13.93 g, BCS 4.64 g, water 9.00 g and oxalic acid 0.3 g as a catalyst was added dropwise to the solution over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Then, after heating for 1 hour under reflux, the mixture was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 10% by mass.
The obtained polysiloxane solution 90.0g, HG108.0g, and mixed BCS27.0g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (L24).

<合成例33>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにHG32.70g、BCS10.90g、及びTEOS18.75gを投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめHG16.35g、BCS5.45g、水5.40g及び触媒として蓚酸0.45gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、85℃で30分加熱後、BisUREAの60質量%メタノール溶液3.67g(BisUREA 2.20g)、HG4.75g、及びBCS1.58gを混合した溶液を投入し、さらに85℃で30分過熱後、放冷してSiO換算固形分濃度が6質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液40.0gに対し、HG17.31g、及びBCS2.69gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(L25)を得た。
<Synthesis Example 33>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 32.70 g of HG, 10.90 g of BCS, and 18.75 g of TEOS, and stirred to prepare a solution of an alkoxysilane monomer. To this solution, HG 16.35 g, BCS 5.45 g, water 5.40 g, and 0.45 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature, and stirred at room temperature for 30 minutes after completion of the addition. . Then, after heating at 85 ° C. for 30 minutes, a mixed solution of 3.67 g of BisUREA methanol solution (2.67 g of BisUREA 2.20 g), 4.75 g of HG, and 1.58 g of BCS was added, and further heated at 85 ° C. for 30 minutes. Thereafter, it was allowed to cool to obtain a polysiloxane solution having a solid content concentration in terms of SiO 2 of 6% by mass.
The obtained polysiloxane solution 40.0g, HG17.31g, and mixed BCS2.69g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (L25).

<合成例34>
温度計、及び還流管を備え付けた200ml四つ口反応フラスコにHG22.53g、BCS7.51g、及びTEOS27.78gを投入し、撹拌して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめHG11.26g、BCS3.75g、水9.00g及び触媒として蓚酸1.50gを混合した溶液を、室温下で30分かけて滴下し、滴下終了後30分室温下で撹拌した。その後、還流下で30分加熱後、UPSの92質量%メタノール溶液9・58g(UPS 8.81g)、HG5.32g、及びBCS1.77gを混合した溶液を投入し、さらに還流下で30分過熱後、放冷してSiO換算固形分濃度が10質量%のポリシロキサン溶液を得た。
得られたポリシロキサン溶液60.0gに対し、HG73.35g、及びBCS16.65gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液(L26)を得た。
上記合成例21〜34におけるアルコキシシランの配合比率を下記の表21及び表22に示す。
<Synthesis Example 34>
A 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube was charged with 22.53 g of HG, 7.51 g of BCS, and 27.78 g of TEOS, and stirred to prepare an alkoxysilane monomer solution. To this solution, a solution in which 11.26 g of HG, 3.75 g of BCS, 9.00 g of water and 1.50 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature, and the mixture was stirred at room temperature for 30 minutes after completion of the addition. . Thereafter, after heating for 30 minutes under reflux, a solution prepared by mixing 9.58 g of a 92 mass% UPS solution in methanol (UPS 8.81 g), 5.32 g of HG, and 1.77 g of BCS was added, and further heated for 30 minutes under reflux. after, SiO 2 in terms of solid concentration was obtained 10 wt% of the polysiloxane solution was allowed to cool.
The obtained polysiloxane solution 60.0g, HG73.35g, and mixed BCS16.65g, SiO 2 in terms of solid concentration was obtained 4% by weight of the polysiloxane dilute solution (L26).
The compounding ratio of alkoxysilane in the synthesis examples 21 to 34 is shown in Table 21 and Table 22 below.

Figure 0005578074
Figure 0005578074

Figure 0005578074
Figure 0005578074

<実施例21>
合成例21と同様にして得られたポリシロキサン希釈溶液(K21)97.5gと合成例29と同様にして得られたポリシロキサン溶液(L21)2.5gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL1)を得た。
<Example 21>
97.5 g of the polysiloxane diluted solution (K21) obtained in the same manner as in Synthesis Example 21 and 2.5 g of the polysiloxane solution (L21) obtained in the same manner as in Synthesis Example 29 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Obtained a liquid crystal aligning agent (KL1) which is a 4% by mass polysiloxane diluted solution.

<実施例22>
合成例21と同様にして得られたポリシロキサン希釈溶液(K21)90.0gと合成例29と同様にして得られたポリシロキサン溶液(L21)10.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL2)を得た。
<Example 22>
90.0 g of the polysiloxane diluted solution (K21) obtained in the same manner as in Synthesis Example 21 and 10.0 g of the polysiloxane solution (L21) obtained in the same manner as in Synthesis Example 29 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Obtained the liquid crystal aligning agent (KL2) which is a 4 mass% polysiloxane dilution solution.

<実施例23>
合成例21と同様にして得られたポリシロキサン希釈溶液(K21)80.0gと合成例30と同様にして得られたポリシロキサン溶液(L22)20.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL3)を得た。
<Example 23>
80.0 g of the polysiloxane diluted solution (K21) obtained in the same manner as in Synthesis Example 21 and 20.0 g of the polysiloxane solution (L22) obtained in the same manner as in Synthesis Example 30 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Liquid crystal aligning agent (KL3) which is a 4 mass% polysiloxane dilution solution was obtained.

<実施例24>
合成例22と同様にして得られたポリシロキサン希釈溶液(K22)50.0gと合成例30と同様にして得られたポリシロキサン溶液(L22)50.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL4)を得た。
<Example 24>
50.0 g of the polysiloxane diluted solution (K22) obtained in the same manner as in Synthesis Example 22 and 50.0 g of the polysiloxane solution (L22) obtained in the same manner as in Synthesis Example 30 were mixed to obtain a solid content concentration in terms of SiO 2 Obtained a liquid crystal aligning agent (KL4) which is a 4% by mass polysiloxane diluted solution.

<実施例25>
合成例23と同様にして得られたポリシロキサン希釈溶液(K23)90.0gと合成例29と同様にして得られたポリシロキサン溶液(L21)10.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL5)を得た。
<Example 25>
90.0 g of the polysiloxane diluted solution (K23) obtained in the same manner as in Synthesis Example 23 and 10.0 g of the polysiloxane solution (L21) obtained in the same manner as in Synthesis Example 29 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Obtained a liquid crystal aligning agent (KL5) which is a 4% by mass polysiloxane diluted solution.

<実施例26>
合成例24と同様にして得られたポリシロキサン希釈溶液(K24)90.0gと合成例29と同様にして得られたポリシロキサン溶液(L21)10.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL6)を得た。
<Example 26>
90.0 g of the polysiloxane diluted solution (K24) obtained in the same manner as in Synthesis Example 24 and 10.0 g of the polysiloxane solution (L21) obtained in the same manner as in Synthesis Example 29 were mixed to obtain a solid content concentration in terms of SiO 2 Liquid crystal aligning agent (KL6) which is a 4 mass% polysiloxane dilution solution was obtained.

<実施例27>
合成例21と同様にして得られたポリシロキサン希釈溶液(K21)90.0gと合成例31と同様にして得られたポリシロキサン溶液(L23)10.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL7)を得た。
<Example 27>
90.0 g of the polysiloxane diluted solution (K21) obtained in the same manner as in Synthesis Example 21 and 10.0 g of the polysiloxane solution (L23) obtained in the same manner as in Synthesis Example 31 were mixed to obtain a SiO 2 equivalent solid content Obtained the liquid crystal aligning agent (KL7) which is a 4 mass% polysiloxane dilution solution.

<実施例28>
合成例21と同様にして得られたポリシロキサン希釈溶液(K21)60.0gと合成例32と同様にして得られたポリシロキサン溶液(L24)40.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL8)を得た。
<Example 28>
60.0 g of the polysiloxane diluted solution (K21) obtained in the same manner as in Synthesis Example 21 and 40.0 g of the polysiloxane solution (L24) obtained in the same manner as in Synthesis Example 32 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Obtained a liquid crystal aligning agent (KL8) which was a 4% by mass polysiloxane diluted solution.

<実施例29>
合成例25と同様にして得られたポリシロキサン希釈溶液(K25)90.0gと合成例29と同様にして得られたポリシロキサン溶液(L21)10.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL9)を得た。
<Example 29>
90.0 g of the polysiloxane diluted solution (K25) obtained in the same manner as in Synthesis Example 25 and 10.0 g of the polysiloxane solution (L21) obtained in the same manner as in Synthesis Example 29 were mixed to obtain a solid content concentration in terms of SiO 2 Obtained a liquid crystal aligning agent (KL9) which is a 4% by mass polysiloxane diluted solution.

<実施例30>
合成例26と同様にして得られたポリシロキサン希釈溶液(K26)90.0gと合成例29と同様にして得られたポリシロキサン溶液(L21)10.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL10)を得た。
<Example 30>
90.0 g of the polysiloxane diluted solution (K26) obtained in the same manner as in Synthesis Example 26 and 10.0 g of the polysiloxane solution (L21) obtained in the same manner as in Synthesis Example 29 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Obtained a liquid crystal aligning agent (KL10) which was a 4% by mass polysiloxane diluted solution.

<実施例31>
合成例27と同様にして得られたポリシロキサン希釈溶液(K27)90.0gと合成例29と同様にして得られたポリシロキサン溶液(L21)10.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL11)を得た。
<Example 31>
90.0 g of the polysiloxane diluted solution (K27) obtained in the same manner as in Synthesis Example 27 and 10.0 g of the polysiloxane solution (L21) obtained in the same manner as in Synthesis Example 29 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Obtained a liquid crystal aligning agent (KL11) which was a 4% by mass polysiloxane diluted solution.

<実施例32>
合成例28と同様にして得られたポリシロキサン希釈溶液(K28)90.0gと合成例29と同様にして得られたポリシロキサン溶液(L21)10.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL12)を得た。
<Example 32>
90.0 g of the polysiloxane diluted solution (K28) obtained in the same manner as in Synthesis Example 28 and 10.0 g of the polysiloxane solution (L21) obtained in the same manner as in Synthesis Example 29 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Obtained the liquid crystal aligning agent (KL12) which is a 4 mass% polysiloxane dilution solution.

<実施例33>
合成例22と同様にして得られたポリシロキサン希釈溶液(K22)5.0gと合成例32と同様にして得られたポリシロキサン溶液(L24)95.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL13)を得た。
<Example 33>
The polysiloxane diluted solution (K22) 5.0 g obtained in the same manner as in Synthesis Example 22 and 95.0 g of the polysiloxane solution (L24) obtained in the same manner as in Synthesis Example 32 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Obtained a liquid crystal aligning agent (KL13) which was a 4% by mass polysiloxane diluted solution.

<実施例34>
合成例22と同様にして得られたポリシロキサン希釈溶液(K22)20.0gと合成例32と同様にして得られたポリシロキサン溶液(L24)80.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL14)を得た。
<Example 34>
20.0 g of the polysiloxane diluted solution (K22) obtained in the same manner as in Synthesis Example 22 and 80.0 g of the polysiloxane solution (L24) obtained in the same manner as in Synthesis Example 32 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Liquid crystal aligning agent (KL14) which is a 4 mass% polysiloxane dilution solution was obtained.

<実施例35>
合成例21と同様にして得られたポリシロキサン希釈溶液(K21)90.0gと合成例34と同様にして得られたポリシロキサン溶液(L26)10.0gを混合し、SiO換算固形分濃度が4質量%のポリシロキサン希釈溶液である液晶配向剤(KL15)を得た。
実施例21〜35におけるポリシロキサンの配合比を表23に示す。
<Example 35>
90.0 g of the polysiloxane diluted solution (K21) obtained in the same manner as in Synthesis Example 21 and 10.0 g of the polysiloxane solution (L26) obtained in the same manner as in Synthesis Example 34 were mixed, and the solid content concentration in terms of SiO 2 was mixed. Liquid crystal aligning agent (KL15) which is a 4 mass% polysiloxane dilution solution was obtained.
Table 23 shows the compounding ratio of the polysiloxane in Examples 21 to 35.

Figure 0005578074
Figure 0005578074

<実施例36>
実施例21で得られた液晶配向剤(KL1)を孔径0.45μmのメンブランフィルターで加圧濾過した後、ITO透明電極付きガラス基板にスピンコート法により成膜した。この基板を80℃のホットプレート上で5分間乾燥した後、210℃の熱風循環式クリーンオーブンで60分間焼成し、膜厚約80nmの液晶配向膜を形成した。
この基板を2枚用意し、片方の基板の液晶配向膜面に平均粒子径6μmのスペーサーを散布した後、基板の外縁部にスクリーン印刷法によりエポキシ系接着剤を塗布した。次いで、液晶配向膜が向き合うように基板を張り合わせて圧着後に硬化させて空のセルを作製した。
上記で得られた空のセルを、室温23℃、湿度98%の環境下に20時間放置し、水分を吸着させた後、液晶(MLC−6608、メルク社製商品名)を真空注入法により注入した。この時、液晶注入前の空セルの脱気は5分間で行った。その後、注入孔をUV硬化樹脂により封止して液晶セル(水処理有り)を作製した。
一方、上記で得られた別の空のセルを、室温23℃、湿度43%の環境下に20時間放置し、液晶(MLC−6608、メルク社製商品名)を真空注入法により注入後、注入孔をUV硬化樹脂により封止して液晶セル(水処理無し)を作製した。
この液晶セルの電気特性を、上記した方法により測定した。その結果を表24に示した。
<Example 36>
The liquid crystal aligning agent (KL1) obtained in Example 21 was subjected to pressure filtration with a membrane filter having a pore diameter of 0.45 μm, and then formed into a film on a glass substrate with an ITO transparent electrode by a spin coating method. The substrate was dried on a hot plate at 80 ° C. for 5 minutes and then baked in a hot air circulation clean oven at 210 ° C. for 60 minutes to form a liquid crystal alignment film having a thickness of about 80 nm.
Two substrates were prepared, and spacers with an average particle diameter of 6 μm were sprayed on the liquid crystal alignment film surface of one substrate, and then an epoxy adhesive was applied to the outer edge of the substrate by screen printing. Next, the substrates were bonded so that the liquid crystal alignment films faced each other, and were cured after pressure bonding to produce empty cells.
The empty cell obtained above was allowed to stand in an environment of room temperature 23 ° C. and humidity 98% for 20 hours to adsorb moisture, and then liquid crystal (MLC-6608, trade name manufactured by Merck & Co., Inc.) was vacuum-injected. Injected. At this time, degassing of the empty cell before liquid crystal injection was performed in 5 minutes. Thereafter, the injection hole was sealed with a UV curable resin to prepare a liquid crystal cell (with water treatment).
On the other hand, another empty cell obtained above was allowed to stand for 20 hours in an environment at room temperature of 23 ° C. and humidity of 43%, and liquid crystal (MLC-6608, a product name manufactured by Merck) was injected by a vacuum injection method. The injection hole was sealed with a UV curable resin to prepare a liquid crystal cell (without water treatment).
The electrical characteristics of the liquid crystal cell were measured by the method described above. The results are shown in Table 24.

<実施例37〜50>
実施例22〜35で得られた液晶配向剤KL2〜KL15を用いて、実施例36と同様にして液晶セルを作製し、電気特性を評価した。その結果を表24に示した。
<Examples 37 to 50>
Using the liquid crystal aligning agents KL2 to KL15 obtained in Examples 22 to 35, liquid crystal cells were produced in the same manner as in Example 36, and the electrical characteristics were evaluated. The results are shown in Table 24.

<比較例21>
合成例21で得られたポリシロキサン希釈溶液(K21)を用いて、実施例36と同様に液晶セルを作製し、また、液晶セルの電気特性を評価した。その結果を表24に示した。
<Comparative Example 21>
Using the polysiloxane diluted solution (K21) obtained in Synthesis Example 21, a liquid crystal cell was produced in the same manner as in Example 36, and the electrical characteristics of the liquid crystal cell were evaluated. The results are shown in Table 24.

Figure 0005578074
Figure 0005578074

表24から明らかなように、実施例36〜50の液晶セルでは、水処理有りの場合も、水処理無しの場合と比較して、イオン密度が上昇しないことが判った。一方、比較例21の液晶配向セルでは、水処理有りの場合は、水処理無しの場合と比較して、イオン密度が大きく上昇することが判った。   As is apparent from Table 24, it was found that in the liquid crystal cells of Examples 36 to 50, the ion density did not increase even when water treatment was performed, compared to the case where water treatment was not performed. On the other hand, in the liquid crystal alignment cell of Comparative Example 21, it was found that the ion density greatly increased when water treatment was performed compared to the case where water treatment was not performed.

本発明の液晶配向処理剤を用いて作製した液晶表示素子は、信頼性の高い、特に、電気特性の信頼性が高く、高画質な液晶表示デバイスとすることができ、TN型、STN型、IPS型、VA型、OCB型、PSA型等の液晶表示素子など、種々の方式による表示素子に好適に用いられる。

なお、2008年6月4日に出願された日本特許出願2008−147475号、及び2008年6月4日に出願された日本特許出願2008−147483号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal display element manufactured using the liquid crystal aligning agent of the present invention can be a highly reliable liquid crystal display device with high reliability, in particular, high electrical property reliability, TN type, STN type, It is suitably used for display elements of various types such as liquid crystal display elements of IPS type, VA type, OCB type, PSA type and the like.

The specification, claims, and abstract of Japanese Patent Application No. 2008-147475 filed on June 4, 2008 and Japanese Patent Application No. 2008-147483 filed on June 4, 2008. Is hereby incorporated by reference as a disclosure of the specification of the present invention.

Claims (21)

フッ素原子で置換されていてもよく、かつ、酸素原子、リン原子、若しくは硫黄原子を有していてもよい炭素原子数8〜30の炭化水素基、及びウレイド基を有する炭素原子数1〜12の炭化水素基を有する、1種類又は2種類以上のポリシロキサンを含有し、前者の上記炭化水素基と後者のウレイド基を有する炭化水素基は、いずれも同一のポリシロキサンに結合していてもよく、又は、それぞれ別のポリシロキサンに結合していてもよいことを特徴とする液晶配向剤。   A hydrocarbon group having 8 to 30 carbon atoms which may be substituted with a fluorine atom and may have an oxygen atom, a phosphorus atom or a sulfur atom, and 1 to 12 carbon atoms having a ureido group One or two or more types of polysiloxanes having the following hydrocarbon groups, the former hydrocarbon group and the latter hydrocarbon group having a ureido group may be bonded to the same polysiloxane. Or a liquid crystal aligning agent that may be bonded to different polysiloxanes. 式(1)で表されるアルコキシシラン、及び式(2)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサン(AB)を含有する請求項1に記載の液晶配向剤。
(XSi(OR3−p (1)
(Xはフッ素原子で置換されていてもよく、かつ、酸素原子、リン原子、若しくは硫黄原子を含有していてもよい炭素原子数8〜30の炭化水素基であり、Xは炭素原子数1〜5のアルキル基であり、Rは炭素原子数1〜5のアルキル基であり、pは0から2の整数を表す。)
{Si(OR (2)
(Xはウレイド基を有する炭素原子数1〜12の炭化水素基であり、Rは炭素原子数1〜5のアルキル基であり、qは1又は2の整数を表す。)
The liquid crystal aligning agent of Claim 1 containing the polysiloxane (AB) obtained by polycondensing the alkoxysilane containing the alkoxysilane represented by Formula (1), and the alkoxysilane represented by Formula (2). .
X 1 (X 2) p Si (OR 1) 3-p (1)
(X 1 is a hydrocarbon group having 8 to 30 carbon atoms which may be substituted with a fluorine atom and may contain an oxygen atom, a phosphorus atom or a sulfur atom, and X 2 is a carbon atom. An alkyl group having 1 to 5 carbon atoms, R 1 is an alkyl group having 1 to 5 carbon atoms, and p represents an integer of 0 to 2.)
X 3 {Si (OR 2 ) 3 } q (2)
(X 3 is a hydrocarbon group having 1 to 12 carbon atoms having a ureido group, R 2 is an alkyl group having 1 to 5 carbon atoms, and q represents an integer of 1 or 2.)
下記のポリシロキサン(A)及びポリシロキサン(B)を含有する請求項1に記載の液晶配向剤。
ポリシロキサン(A):式(1)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサン、
(XSi(OR3−p (1)
(Xはフッ素原子で置換されていてもよく、かつ、酸素原子、リン原子、若しくは硫黄原子を含有していてもよい炭素原子数8〜30の炭化水素基であり、Xは炭素原子数1〜5のアルキル基であり、Rは炭素原子数1〜5のアルキル基であり、pは0から2の整数を表す。)
ポリシロキサン(B):式(2)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサン。
{Si(OR (2)
(Xはウレイド基を有する炭素原子数1〜12の炭化水素基であり、Rは炭素原子数1〜5のアルキル基であり、qは1又は2の整数を表す。)
The liquid crystal aligning agent of Claim 1 containing the following polysiloxane (A) and polysiloxane (B).
Polysiloxane (A): polysiloxane obtained by polycondensation of alkoxysilane containing alkoxysilane represented by formula (1),
X 1 (X 2) p Si (OR 1) 3-p (1)
(X 1 is a hydrocarbon group having 8 to 30 carbon atoms which may be substituted with a fluorine atom and may contain an oxygen atom, a phosphorus atom or a sulfur atom, and X 2 is a carbon atom. An alkyl group having 1 to 5 carbon atoms, R 1 is an alkyl group having 1 to 5 carbon atoms, and p represents an integer of 0 to 2.)
Polysiloxane (B): Polysiloxane obtained by polycondensation of alkoxysilane containing alkoxysilane represented by formula (2).
X 3 {Si (OR 2 ) 3 } q (2)
(X 3 is a hydrocarbon group having 1 to 12 carbon atoms having a ureido group, R 2 is an alkyl group having 1 to 5 carbon atoms, and q represents an integer of 1 or 2.)
前記ポリシロキサン(AB)が、さらに、下記式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、請求項2に記載の液晶配向剤。
(XSi(OR4−n (3)
(Xは、水素原子、又はハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、イソシアネート基若しくはアクリロキシ基で置換されていてもよく、かつヘテロ原子を有していてもよい炭素原子数1〜6の炭化水素基であり、Rは炭素原子数1〜5のアルキル基であり、nは0〜3の整数を表す。)
The liquid crystal aligning agent according to claim 2, wherein the polysiloxane (AB) is a polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane represented by the following formula (3).
(X 4 ) n Si (OR 3 ) 4-n (3)
(X 4 is the number of carbon atoms which may be substituted with a hydrogen atom or a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group or an acryloxy group, and which may have a hetero atom. 1 to 6 hydrocarbon groups, R 3 is an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 3. )
前記ポリシロキサン(A)が、式(1)で表されるアルコキシシラン及び式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、請求項3に記載の液晶配向剤。
(XSi(OR4−n (3)
(Xは、水素原子、又はハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、イソシアネート基若しくはアクリロキシ基で置換されていてもよく、かつヘテロ原子を有していてもよい炭素原子数1〜6の炭化水素基であり、Rは炭素原子数1〜5のアルキル基であり、nは0〜3の整数を表す。)
The polysiloxane (A) is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the formula (1) and an alkoxysilane containing the alkoxysilane represented by the formula (3). The liquid crystal aligning agent of description.
(X 4 ) n Si (OR 3 ) 4-n (3)
(X 4 is the number of carbon atoms which may be substituted with a hydrogen atom or a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group or an acryloxy group, and which may have a hetero atom. 1 to 6 hydrocarbon groups, R 3 is an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 3. )
前記ポリシロキサン(B)が、式(2)で表されるアルコキシシラン及び式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである、請求項3又は5に記載の液晶配向剤。
(XSi(OR4−n (3)
(水素原子、又はハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、イソシアネート基若しくはアクリロキシ基で置換されていてもよく、かつヘテロ原子を有していてもよい炭素原子数1〜6の炭化水素基であり、Rは炭素原子数1〜5のアルキル基であり、nは0〜3の整数を表す。)
The polysiloxane (B) is a polysiloxane obtained by polycondensation of an alkoxysilane represented by the formula (2) and an alkoxysilane containing the alkoxysilane represented by the formula (3). 5. A liquid crystal aligning agent according to 5.
(X 4 ) n Si (OR 3 ) 4-n (3)
(A hydrogen atom or a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group or an acryloxy group, and may have a hetero atom and have 1 to 6 carbon atoms. A hydrocarbon group, R 3 is an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 3. )
前記ポリシロキサン(AB)が、式(1)で表されるアルコキシシランと式(3)で表されるアルコキシシランを有機溶媒中で加水分解・縮合させた後、式(2)で表されるアルコキシシランを加えて加水分解・縮合する工程を含む方法で製造される請求項4に記載の液晶配向剤。   The polysiloxane (AB) is represented by the formula (2) after hydrolyzing and condensing the alkoxysilane represented by the formula (1) and the alkoxysilane represented by the formula (3) in an organic solvent. The liquid crystal aligning agent of Claim 4 manufactured by the method including the process of adding and hydrolyzing and condensing alkoxysilane. 前記ポリシロキサン(A)が、式(3)で表されるアルコキシシランを有機溶媒中で加水分解・縮合させた後、式(1)で表されるアルコキシシランを加えて加水分解・縮合する工程を含む方法で製造される請求項5に記載の液晶配向剤。   The polysiloxane (A) is a step of hydrolyzing and condensing an alkoxysilane represented by the formula (3) in an organic solvent, and then adding and hydrolyzing and condensing the alkoxysilane represented by the formula (1). The liquid crystal aligning agent of Claim 5 manufactured by the method containing this. 前記ポリシロキサン(B)が、式(3)で表されるアルコキシシランを有機溶媒中で加水分解・縮合させた後、式(2)で表されるアルコキシシランを加えて加水分解・縮合する工程を含む方法で製造される請求項6に記載の液晶配向剤。   Step of hydrolyzing and condensing the alkoxysilane represented by the formula (2) after the polysiloxane (B) is hydrolyzed and condensed with the alkoxysilane represented by the formula (3) in an organic solvent. The liquid crystal aligning agent of Claim 6 manufactured by the method containing this. 前記式(3)で表されるアルコキシシランが、式(3)におけるnが0である、テトラアルコキシシランである請求項4〜9のいずれかに記載の液晶配向剤。   The liquid crystal aligning agent in any one of Claims 4-9 whose alkoxysilane represented by said Formula (3) is tetraalkoxysilane whose n in Formula (3) is 0. 前記式(1)で表されるアルコキシシランが、ポリシロキサン(AB)を得るための全アルコキシシラン中、0.1〜30モル%含まれ、かつ前記式(2)で表されるアルコキシシランが全アルコキシシラン中、0.1〜50モル%含まれる請求項2、4又は7に記載の液晶配向剤。 The alkoxysilane represented by the formula (1) is contained in an amount of 0.1 to 30 mol% in the total alkoxysilane for obtaining the polysiloxane (AB), and the alkoxysilane represented by the formula (2) The liquid crystal aligning agent of Claim 2, 4 or 7 contained in 0.1-50 mol% in all the alkoxysilanes. 前記式(3)で表されるアルコキシシランが、ポリシロキサン(AB)を得るための全アルコキシシラン中、20〜99.8モル%含まれ請求項4又は7に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 4 or 7 , wherein the alkoxysilane represented by the formula (3) is contained in an amount of 20 to 99.8 mol% in all alkoxysilanes for obtaining the polysiloxane (AB). ポリシロキサンの含有量が、SiO換算濃度で、0.5〜15質量%含有される請求項1〜12のいずれかに記載の液晶配向剤。The content of polysiloxane, in terms of SiO 2 concentration, the liquid crystal alignment agent according to any one of claims 1 to 12 contained 0.5 to 15 mass%. さらに、ポリシロキサン(A)及びポリシロキサン(B)を溶解する有機溶媒を含有する請求項3、5、6、8又は9に記載の液晶配向剤。 Furthermore, the liquid crystal aligning agent of Claim 3 , 5 , 6 , 8, or 9 containing the organic solvent which melt | dissolves polysiloxane (A) and polysiloxane (B). 液晶配向剤中、ポリシロキサン(A)及びポリシロキサン(B)が、それらに含まれる合計ケイ素原子をSiO換算して0.5〜15質量%含有される請求項3、5、6、8、9又は14に記載の液晶配向剤。 Liquid crystal in the alignment agent, the polysiloxane (A) and polysiloxane (B) is, according to claim 3, 5, 6 to the total silicon atoms contained therein are contained 0.5 to 15% by weight SiO 2 in terms, 8 , 9 or 14 liquid crystal aligning agent. ポリシロキサン(A):ポリシロキサン(B)の比率が、それらに含まれるケイ素原子量において、5:95〜99.5:0.5である請求項3、5、6、8、9、14又は
15のいずれかに記載の液晶配向剤。
The ratio of polysiloxane (A): polysiloxane (B) is from 5:95 to 99.5: 0.5 in terms of the amount of silicon atoms contained in them, 5, 5, 6, 8 , 9 , 14, or
The liquid crystal aligning agent in any one of 15 .
ポリシロキサン(A)を得るために用いられる全アルコキシシランに対し、式(1)で表されるアルコキシシランが、0.2〜30モル%であり、かつ式(3)で表されるアルコキシシランが70〜99.8モル%である請求項5又は8に記載の液晶配向剤。 The alkoxysilane represented by Formula (1) is 0.2-30 mol% with respect to all the alkoxysilanes used in order to obtain polysiloxane (A), and the alkoxysilane represented by Formula (3) The liquid crystal aligning agent of Claim 5 or 8 which is 70-99.8 mol%. ポリシロキサン(B)を得るために用いられる全アルコキシシランに対し、式(2)で表されるアルコキシシランが、0.5〜60モル%であり、かつ式(3)で表されるアルコキシシランが40〜99.5モル%である請求項6又は9に記載の液晶配向剤。 The alkoxysilane represented by Formula (2) is 0.5-60 mol% with respect to all the alkoxysilanes used in order to obtain polysiloxane (B), and is represented by Formula (3) The liquid crystal aligning agent of Claim 6 or 9 which is 40-99.5 mol%. 前記式(2)で表されるアルコキシシランが、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン、ビス[3−(トリエトキシシリル)プロピル]ウレア、ビス[3−(トリメトキシシリル)プロピル]ウレア、及びビス[3−(トリプロポキシシリル)プロピル]ウレアからなる群から選ばれる少なくとも1種である、請求項2〜12及び14〜18のいずれかに記載の液晶配向剤。 The alkoxysilane represented by the formula (2) is γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltripropoxysilane, bis [3- (triethoxysilyl) propyl] urea, 19. Any one of claims 2 to 12 and 14 to 18, which is at least one selected from the group consisting of bis [3- (trimethoxysilyl) propyl] urea and bis [3- (tripropoxysilyl) propyl] urea. Liquid crystal aligning agent as described in. 請求項1〜19のいずれかに記載の液晶配向剤を基板に塗布し、乾燥、焼成して得られる液晶配向膜。   The liquid crystal aligning film obtained by apply | coating the liquid crystal aligning agent in any one of Claims 1-19 to a board | substrate, drying and baking. 請求項20に記載の液晶配向膜を有する液晶表示素子。   The liquid crystal display element which has a liquid crystal aligning film of Claim 20.
JP2010515902A 2008-06-04 2009-06-03 Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Active JP5578074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010515902A JP5578074B2 (en) 2008-06-04 2009-06-03 Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008147475 2008-06-04
JP2008147483 2008-06-04
JP2008147483 2008-06-04
JP2008147475 2008-06-04
JP2010515902A JP5578074B2 (en) 2008-06-04 2009-06-03 Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
PCT/JP2009/060199 WO2009148099A1 (en) 2008-06-04 2009-06-03 Silicon-based liquid crystal orientating agent, liquid crystal orientated film and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2009148099A1 JPWO2009148099A1 (en) 2011-11-04
JP5578074B2 true JP5578074B2 (en) 2014-08-27

Family

ID=41398172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010515902A Active JP5578074B2 (en) 2008-06-04 2009-06-03 Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP5578074B2 (en)
KR (1) KR101551513B1 (en)
CN (1) CN102084288B (en)
TW (1) TWI452066B (en)
WO (1) WO2009148099A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716674B2 (en) * 2009-12-02 2015-05-13 日産化学工業株式会社 Liquid crystal alignment treatment agent and liquid crystal display element using the same
WO2011125984A1 (en) * 2010-04-06 2011-10-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN103492937B (en) * 2011-02-24 2016-10-26 日产化学工业株式会社 Silicon-containing liquid crystal aligning agent, liquid crystal orientation film and liquid crystal display cells
WO2012165354A1 (en) * 2011-05-27 2012-12-06 日産化学工業株式会社 Silicon-based liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5866897B2 (en) * 2011-09-08 2016-02-24 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
KR101820966B1 (en) * 2011-10-20 2018-01-23 삼성디스플레이 주식회사 Liquid crystal device alignment layer and methods for manufacturing the same
KR102082525B1 (en) * 2011-11-17 2020-02-27 닛산 가가쿠 가부시키가이샤 Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN104685411B (en) * 2012-07-31 2017-05-31 日产化学工业株式会社 The manufacture method of aligning agent for liquid crystal, liquid crystal orientation film, liquid crystal display cells and liquid crystal display cells
DE102012108939A1 (en) 2012-09-21 2014-03-27 Osram Opto Semiconductors Gmbh Optoelectronic component comprising a transparent coupling-out element
KR102018163B1 (en) * 2013-02-07 2019-09-04 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display device and menufacturing method thereof
CN105164580B (en) * 2013-03-01 2019-04-19 日产化学工业株式会社 Liquid crystal indicates element, liquid crystal orientation film and aligning agent for liquid crystal
WO2014196540A1 (en) * 2013-06-06 2014-12-11 日産化学工業株式会社 Alkoxysilane compound, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI671333B (en) * 2013-08-21 2019-09-11 日商日產化學工業股份有限公司 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
CN103804689B (en) * 2014-02-27 2017-01-04 湖北大学 A kind of silicone oligomer of the special resistance to anti-soil of polyureas and preparation method thereof
JP2017106941A (en) * 2014-04-09 2017-06-15 日産化学工業株式会社 Urea compound having alkoxysilyl group and liquid crystal aligning agent
WO2015199052A1 (en) * 2014-06-24 2015-12-30 日産化学工業株式会社 Polymer composition and liquid crystal alignment film for transverse electric field driving liquid crystal display element
KR102482054B1 (en) * 2016-09-13 2022-12-27 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329686A (en) * 1993-02-26 1994-11-29 Hoechst Ag Silane coupling agent containing ring structure element
JPH0743726A (en) * 1993-05-28 1995-02-14 Hoechst Japan Ltd Liquid crystal display element
WO2008044644A1 (en) * 2006-10-06 2008-04-17 Nissan Chemical Industries, Ltd. Silicon-containing liquid crystal aligning agent and liquid crystal alignment film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004495A (en) * 2006-01-18 2007-07-25 财团法人工业技术研究院 Structure of base plate, liquid crystal display, and method for manufacturing liquid crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329686A (en) * 1993-02-26 1994-11-29 Hoechst Ag Silane coupling agent containing ring structure element
JPH0743726A (en) * 1993-05-28 1995-02-14 Hoechst Japan Ltd Liquid crystal display element
WO2008044644A1 (en) * 2006-10-06 2008-04-17 Nissan Chemical Industries, Ltd. Silicon-containing liquid crystal aligning agent and liquid crystal alignment film

Also Published As

Publication number Publication date
WO2009148099A1 (en) 2009-12-10
JPWO2009148099A1 (en) 2011-11-04
KR20110018927A (en) 2011-02-24
TW201012853A (en) 2010-04-01
CN102084288B (en) 2013-08-14
TWI452066B (en) 2014-09-11
CN102084288A (en) 2011-06-01
KR101551513B1 (en) 2015-09-08

Similar Documents

Publication Publication Date Title
JP5578074B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5206413B2 (en) Silicon-based liquid crystal aligning agent and liquid crystal aligning film
JP5593611B2 (en) Silicon-based liquid crystal aligning agent, liquid crystal aligning film, and production method thereof
JP5605359B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5459229B2 (en) Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
KR101883521B1 (en) Silicon-based liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR101708949B1 (en) Liquid-crystal alignment material for ink-jet coating, liquid-crystal alignment film, and liquid-crystal display element
JP5716673B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5761180B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20140095555A (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5999084B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5459228B2 (en) Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
WO2014021174A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element and method for manufacturing liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5578074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350