WO2014196540A1 - Alkoxysilane compound, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Alkoxysilane compound, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
WO2014196540A1
WO2014196540A1 PCT/JP2014/064767 JP2014064767W WO2014196540A1 WO 2014196540 A1 WO2014196540 A1 WO 2014196540A1 JP 2014064767 W JP2014064767 W JP 2014064767W WO 2014196540 A1 WO2014196540 A1 WO 2014196540A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
alkoxysilane
aligning agent
Prior art date
Application number
PCT/JP2014/064767
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 佐久間
章吾 檜森
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2015521458A priority Critical patent/JP6398973B2/en
Priority to KR1020157037095A priority patent/KR102344233B1/en
Priority to CN201480044879.8A priority patent/CN105452262A/en
Publication of WO2014196540A1 publication Critical patent/WO2014196540A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Definitions

  • the present invention relates to an alkoxysilane compound, a method for producing the same, a liquid crystal aligning agent containing the alkoxysilane compound, a liquid crystal alignment film, and a liquid crystal display element.
  • VA vertical alignment
  • the VA method includes an MVA method (Multi-Vertical Alignment) in which protrusions for controlling the direction in which the liquid crystal is tilted are formed on the TFT substrate or the color filter substrate, and a direction in which the liquid crystal is tilted by forming an slit in the ITO electrode of the substrate.
  • MVA Multi-Vertical Alignment
  • PVA Plasma Vertical Alignment
  • PSA Polymer Sustained Alignment
  • the PSA method is a technology that has attracted attention in recent years.
  • This method increases the response speed of the liquid crystal by adding a photopolymerizable compound to the liquid crystal composition and applying a voltage to the liquid crystal panel to irradiate the liquid crystal with ultraviolet rays after the liquid crystal panel is tilted.
  • Technology see Patent Document 1.
  • a liquid crystal cell prepared using a liquid crystal composition containing a photopolymerizable compound and a liquid crystal alignment film made of polyimide or the like was irradiated with ultraviolet rays while applying a voltage, a photopolymerization reaction occurred and the liquid crystal molecules were tilted.
  • a polymer structure in which the direction is memorized is formed on the liquid crystal alignment film.
  • the alignment direction of the liquid crystal is fixed and a pretilt is generated, so that a liquid crystal display element having a better response speed can be obtained as compared with the method of controlling the inclination direction of the liquid crystal molecules only by the protrusions and slits.
  • This PSA method can be operated even in a structure in which a slit is formed in one electrode constituting a liquid crystal panel, and a protrusion such as MVA or a slit such as PVA is not provided in the opposite electrode pattern. It has a feature that simplification and excellent panel transmittance can be obtained (see Patent Document 2).
  • the PSA type liquid crystal display element has a problem that the solubility of the photopolymerizable compound added to the liquid crystal is low, and when the addition amount is increased, it is precipitated at a low temperature. On the other hand, if the addition amount of the photopolymerizable compound is reduced, a good alignment state and response speed cannot be obtained. In addition, the unreacted photopolymerizable compound remaining in the liquid crystal becomes an impurity in the liquid crystal, which causes a problem of reducing the reliability of the liquid crystal display element.
  • a liquid crystal alignment agent using a polymer in which a photoreactive side chain is introduced into a polymer molecule is applied to a substrate, and a liquid crystal layer in contact with the liquid crystal alignment film obtained by baking is provided.
  • a method has been developed in which a liquid crystal display element can be obtained by irradiating ultraviolet rays while applying a voltage to obtain a liquid crystal display element having a high response speed without adding a photopolymerizable compound to the liquid crystal. .
  • an inorganic liquid crystal alignment film material is known together with a conventionally used organic liquid crystal alignment film material such as polyimide.
  • a liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, trialkoxysilane, alcohol, and oxalic acid has been proposed as a material for a coating-type inorganic alignment film. It is reported that a liquid crystal alignment film having excellent vertical alignment properties, heat resistance and uniformity is formed (see Patent Document 4).
  • liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, specific trialkoxysilane and water and a specific glycol ether solvent has been proposed.
  • a liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, specific trialkoxysilane and water and a specific glycol ether solvent.
  • polysiloxane obtained by polycondensation of an alkoxysilane compound can be used as a component of a liquid crystal alignment film material.
  • good vertical alignment can be imparted by using an alkoxysilane compound having a ring structure (see Patent Documents 6, 7, and 8).
  • the alkoxysilane compound having this ring structure has a part containing one or more phenylene group, cyclohexylene group, etc., and the part and the alkoxysilyl group are directly connected or connected through an ether bond. What you are doing.
  • a method for producing such a compound a Grignard reaction between a cyclic compound having a halide site and an alkoxysilane, a hydrosilylation reaction between a cyclic compound having a carbon-carbon unsaturated bond site and a hydrosilane, or the like is used. (See Patent Documents 6 and 7).
  • the present invention has been made in view of such circumstances, an alkoxysilane compound having high production efficiency and excellent vertical alignment when used as a component of a liquid crystal alignment film material, a method for producing the same, and It aims at providing the liquid crystal aligning agent obtained by using this alkoxysilane compound, a liquid crystal aligning film, and a liquid crystal display element.
  • the present inventors have obtained a novel alkoxysilane compound in which the ring structure is linked by an amide bond, and a carboxylic acid having a ring structure as a method for producing the compound.
  • a novel alkoxysilane compound in which the ring structure is linked by an amide bond
  • a carboxylic acid having a ring structure as a method for producing the compound.
  • the present invention is based on such knowledge and has the following gist.
  • Z 1 , Z 2 and Z 3 are each independently R 1 , OR 1 or OCOR 1 (R 1 is a linear or branched hydrocarbon having 1 to 4 carbon atoms) Group except that Z 1 , Z 2 and Z 3 are all R 1.
  • a is an integer of 1 to 18.
  • m is 1 or 2.
  • Cy 1 is a divalent cyclic group selected from a phenylene group, a naphthylene group, and a cyclohexylene group.
  • Cy 2 is an organic group having a carbon number of 12-40 with a steroid skeleton, a phenylene group, a naphthylene group and a cyclohexylene group Divalent any hydrogen atom present on the cyclic group [Cy 1 and Cy 2 in the selected La, F, CN, OH, R 3 and OR 3 (R 3 is a straight-chain having 1 to 4 carbon atoms Or may be substituted with a group selected from a branched hydrocarbon group or a linear or branched fluorine-containing hydrocarbon group having 1 to 4 carbon atoms.] N is 0, 1 or 2 Z 5 is H, CN, R 4 or OR 4 (R 4 is a linear or branched hydrocarbon group having 1 to 18 carbon atoms, or a linear or branched fluorine atom having 1 to 18 carbon atoms.
  • a is 3 and m is 1 which is manufactured from an industrially inexpensive and available raw material. In addition, it is manufactured in a short synthesis step. More preferably, a is 3, m is 1, Z 4 is H, and Y 1 is a single bond.
  • Y 1 , Cy 1 , Cy 2 , Z 5 and n have the same meaning as described above.
  • Y 1 , Cy 1 , Cy 2 , Z 5 and n represent the same meaning as described above.
  • Z 1 , Z 2 , Z 3 , Z 4 , a and m have the same meaning as described above.
  • the liquid crystal aligning agent according to 9 above wherein the polysiloxane content is 0.5 to 15% by mass in terms of SiO 2 concentration.
  • a method for producing a liquid crystal display element wherein the liquid crystal aligning agent according to 9 or 10 above is applied, the liquid crystal is sandwiched between two baked substrates, and ultraviolet rays are irradiated in a state where a voltage is applied.
  • an alkoxysilane compound having a ring structure can be obtained with high production efficiency, and when the alkoxysilane compound is used as a constituent component of a liquid crystal alignment film material, it is equivalent to a similar compound that has been conventionally used.
  • the vertical alignment of Moreover, the alkoxysilane compound obtained by this invention and the polysiloxane obtained by using the same can be suitably used not only for liquid crystal alignment film materials but also for various functional materials.
  • alkoxysilane compound of the present invention represented by the formula [1] (alkoxysilane compound [1]) converts a carboxylic acid [2] having a ring structure into a chlorinating agent. It can be produced by derivatization to the corresponding acid chloride [3] by chlorination reaction with an alkoxy group [4] containing an amino group and an amidation reaction in the presence of a base.
  • chlorinating agent examples include thionyl chloride, oxalyl chloride, phosgene, chlorine, phosphorus oxychloride, phosphorus pentachloride, etc., preferably thionyl chloride, oxalyl chloride, or phosgene, more preferably thionyl chloride. It is.
  • the amount of the chlorinating agent is usually 1 to 100 times mol, preferably 1 to 30 times mol, more preferably 2 to 15 times mol with respect to the carboxylic acid [2].
  • the chlorination reaction can be carried out without a solvent, but a solvent can be used if necessary.
  • the solvent is not particularly limited as long as it is inert to the reaction.
  • hydrocarbons such as hexane, heptane or toluene, halogenated hydrocarbons such as chloroform, 1,2-dichloroethane or chlorobenzene, diethyl
  • ethers such as ether, tetrahydrofuran or 1,4-dioxane
  • esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof.
  • Hexane, heptane, or toluene more preferably toluene.
  • the chlorination reaction proceeds without a catalyst, but the progress can be accelerated by adding a catalyst.
  • the catalyst include organic bases such as triethylamine, pyridine, quinoline, N, N-dimethylaniline or N, N-dimethylformamide, and metal alkoxides such as sodium methoxide, potassium methoxide or potassium t-butoxide. Preferred is triethylamine, pyridine, or N, N-dimethylformamide, and more preferred is N, N-dimethylformamide.
  • the amount of the catalyst is usually 0 to 10 times mol, preferably 0.001 to 1 times mol, more preferably 0.005 to 0.1 times mol, relative to the carboxylic acid [2].
  • the reaction temperature is not particularly limited, but is usually ⁇ 90 to 200 ° C., preferably ⁇ 30 to 100 ° C., more preferably 50 to 80 ° C.
  • the reaction time is usually 0.05 to 100 hours, preferably 0.5 to 20 hours, more preferably 0.5 to 5 hours.
  • the acid chloride [3] obtained as described above can be isolated by distilling off the chlorinating agent and the solvent remaining in the reaction solution under reduced pressure.
  • the isolated acid chloride [3] has a sufficiently good purity, but in the case of liquid, it can be purified by distillation, and in the case of solid, it can be further purified by washing or recrystallization using a solvent. You can also
  • the solvent used for washing is not particularly limited.
  • hydrocarbons such as hexane, heptane or toluene, halogenated hydrocarbons such as chloroform, 1,2-dichloroethane or chlorobenzene, diethyl ether, tetrahydrofuran or 1,4 -Ethers such as dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof, preferably hexane, heptane or toluene And more preferably heptane.
  • the solvent used for recrystallization is not particularly limited as long as the acid chloride [3] dissolves upon heating and precipitates upon cooling.
  • hydrocarbons such as hexane, heptane or toluene, chloroform, 1,2-dichloroethane or chlorobenzene
  • Halogenated hydrocarbons such as, ethers such as diethyl ether, tetrahydrofuran or 1,4-dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and These mixtures are mentioned, Preferably they are hexane, heptane, or toluene, More preferably, it is heptane.
  • alkoxysilane compound [4] examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3 -Aminopropyldiethoxymethylsilane, bis [3- (trimethoxysilyl) propyl] amine and the like, preferably 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-methyl-3- Aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane are preferable, and 3-aminopropyltrimethoxysilane is more preferable, and 3-aminopropyltrimethoxysilane is more preferable, and 3-aminopropyltrimethoxysilane is more
  • the amount of the alkoxysilane compound [4] is usually 0.8 to 2.0 times mol, preferably 1 to 1.2 times mol, more preferably 1 to 1.05 times mol with respect to the acid chloride [3]. It is.
  • the base include organic bases such as triethylamine, diisopropylethylamine, tributylamine, pyridine, quinoline or collidine, and inorganic salts such as sodium hydrogen carbonate, sodium carbonate, potassium carbonate, cesium carbonate or potassium phosphate, preferably triethylamine. , Pyridine and potassium carbonate, more preferably triethylamine.
  • the solvent used in the amidation reaction is not particularly limited as long as it is inert to the reaction.
  • hydrocarbons such as hexane, heptane or toluene, halogens such as chloroform, 1,2-dichloroethane or chlorobenzene Hydrocarbons, ethers such as diethyl ether, tetrahydrofuran or 1,4-dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof
  • it is hexane, heptane, or toluene, More preferably, it is toluene.
  • the amidation reaction proceeds even without a catalyst, but can be accelerated by adding a catalyst.
  • the catalyst include organic bases such as triethylamine, pyridine, quinoline, N, N-dimethylaniline or N, N-dimethylformamide, and metal alkoxides such as sodium methoxide, potassium methoxide or potassium t-butoxide. Preferred is triethylamine, pyridine, or N, N-dimethylformamide, and more preferred is N, N-dimethylformamide.
  • the amount of the catalyst is usually 0 to 10 times mol, preferably 0.001 to 1 times mol, more preferably 0.005 to 0.1 times mol, relative to the carboxylic acid [2].
  • the reaction temperature is not particularly limited, but is usually ⁇ 90 to 200 ° C., preferably ⁇ 30 to 100 ° C., more preferably 50 to 80 ° C.
  • the reaction time is usually 0.05 to 100 hours, preferably 0.5 to 20 hours, more preferably 0.5 to 5 hours.
  • the alkoxysilane compound [1] obtained as described above is obtained by removing the organic salt or inorganic salt remaining in the reaction solution by filtration, diluting the filtrate with a solvent, washing this with pure water, The phase can be extracted and the solvent can be isolated by distillation under reduced pressure.
  • Examples of the solvent used for diluting the filtrate include hydrocarbons such as hexane, heptane and toluene, halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene, diethyl ether, tetrahydrofuran and 1,4-dioxane.
  • Ethers such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof, preferably toluene, 1,2-dichloroethane or Ethyl acetate, more preferably ethyl acetate.
  • the organic phase after washing with pure water may be dehydrated using magnesium sulfate, sodium sulfate or the like.
  • the isolated alkoxysilane compound [1] has sufficiently good purity, but in the case of a solid, it can be further purified by washing or recrystallization using a solvent.
  • the solvent used for washing is not particularly limited.
  • hydrocarbons such as hexane, heptane or toluene, halogenated hydrocarbons such as chloroform, 1,2-dichloroethane or chlorobenzene, diethyl ether, diisopropyl ether, tetrahydrofuran or Examples include ethers such as 1,4-dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof, preferably heptane, toluene Or it is diisopropyl ether, More preferably, it is diisopropyl ether.
  • the solvent used for recrystallization is not particularly limited as long as the alkoxysilane compound [1] dissolves upon heating and precipitates upon cooling.
  • hydrocarbons such as hexane, heptane or toluene, chloroform, 1,2-dichloroethane, Halogenated hydrocarbons such as chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran or 1,4-dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile And mixtures thereof, preferably heptane, toluene or diisopropyl ether, more preferably diisopropyl ether.
  • Carboxylic acid having a ring structure examples include the following compounds.
  • Z 5 represents the same meaning as described above.
  • R 5 and R 6 each independently represent H or CH 3.
  • the carboxylic acid containing a carbon-carbon double bond such as the above [2-7] to [2-11] is, for example, an aromatic halide (or triflate) as shown in [Reaction Formula 2] below. It can be obtained by Heck reaction with (meth) acrylic acid.
  • X 2 represents Cl, Br, I or OTf (triflate)
  • R 5 represents H or CH 3
  • Z 5 represents the same as described above.
  • carboxylic acid containing a carbon-carbon triple bond such as the above [2-12] to [2-16] is, for example, an aromatic halide (or triflate) as shown in [Reaction Formula 3] below. It can be produced by Sonogashira reaction with propiolic acid. (In the formula, X 2 and Z 5 represent the same as described above.)
  • a carboxylic acid containing an ether bond with the ring structure such as the above [2-17] to [2-24] is a base such as potassium carbonate as shown in the following [Reaction Scheme 4].
  • it can be produced by subjecting a ring structure compound containing a carboxylic acid group to an ester having a leaving group at the ⁇ -position, followed by a hydrolysis reaction using an acid or a base.
  • X 3 is Cl, Br, I, OMs (mesylate) or OTs
  • R 4 is H or CH 3
  • R 5 is CH 3 , C 2 H 5 , iso-propyl group, iso-butyl group or tert -Butyl group
  • Z 5 is the same as defined above.
  • a carboxylic acid having an ester bond with a ring structure such as the above [2-25] to [2-28] is a base such as potassium carbonate as shown in [Reaction Formula 5] below, for example.
  • a ring structure compound containing a carboxylic acid group is subjected to a nucleophilic substitution reaction with a tert-butyl ester having a leaving group at the ⁇ -position, and then tert-butyl using an acid such as formic acid or trifluoroacetic acid. It can be produced by subjecting only the ester moiety to a hydrolysis reaction. (Wherein X 3 represents Cl, Br, I, OMs or OTs, and Z 5 represents the same as described above.)
  • a carboxylic acid containing an ester bond with a ring structure such as [2-29] to [2-35] above is a ring containing a hydroxyl group, as shown, for example, in [Reaction Scheme 6] below. It can be produced by reacting a structural compound with succinic anhydride. (In the formula, Z 5 represents the same as described above.)
  • a carboxylic acid containing an ester bond with a ring structure such as the above [2-36] to [2-42] is a ring containing a hydroxyl group as shown in, for example, [Reaction Scheme 7] below. It can be produced by reacting a compound having a structure with glutaric anhydride. (In the formula, Z 5 represents the same as described above.)
  • the polysiloxane of the present invention is a polysiloxane obtained by polycondensation of an alkoxysilane compound represented by the above formula [1].
  • the polysiloxane of the present invention may further contain other alkoxysilane as a constituent component.
  • the other alkoxysilane include an alkoxysilane represented by the following formula (1), an alkoxysilane represented by the following formula (3), an alkoxysilane represented by the following formula (4), and an alkoxy represented by the following formula (5).
  • Examples thereof include silane, alkoxysilane represented by the following formula (6), and alkoxysilane represented by the following formula (7).
  • R 101 Si (OR 102 ) 3 (1) R 101 represents the structure of the following formula (2), and R 102 represents an alkyl group having 1 to 5 carbon atoms.
  • Y 1 is a single bond, — (CH 2 ) b — (b is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 117 R 118 ) c — (c is an integer of 1 to 15) R 117 and R 118 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
  • Y 3 is a single bond, — (CH 2 ) d — (d is 1 to 15 is an integer of 15), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is selected from the group consisting of a single bond, a benzene ring, a cyclohexyl ring, and a heterocyclic ring.
  • a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton and these cyclic groups
  • the above optional hydrogen atom is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom
  • Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups has a carbon number N1 may be substituted with an alkyl group having 1 to 3, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atom
  • Y 6 is an integer of 0 to 4.
  • Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or fluorine having 1 to 18 carbon atoms. Containing alkoxyl group Represent.
  • R 21 , R 22 , and R 23 are each independently —OCH 3 , —OC 2 H 5 , —OCH (CH 3 ) 2 , —OC (CH 3 ) 3 , —CH 3 , —Ph, —Cl, —OCOCH 3 , —OH, —H, or a combination thereof
  • R 24 represents a hydrogen atom or a methyl group
  • Y 21 represents a single bond, or A straight-chain or branched hydrocarbon group having 1 to 8 carbon atoms which may contain a double bond
  • Y 22 represents a single bond, —O—, —CO—, —COO—, —OCO—.
  • Y 23 is a single bond represents a bond group selected from -OCONH-, or .
  • Y 24 is a single bond representing a linear or branched hydrocarbon group having 1 to 8 carbon atoms Or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, Y 25 represents a single bond, —O—, or —NZ 2 —, Z 2 is a hydrogen atom, and has 1 to 18 carbon atoms.
  • Z 1 represents a linear or branched divalent hydrocarbon group having 1 to 18 carbon atoms which may contain an aromatic ring group or an aliphatic ring group.
  • R 103 is an alkyl group having 1 to 30 carbon atoms in which an arbitrary hydrogen atom is substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group
  • R 104 is an alkyl group having 1 to 5 carbon atoms. Represents a group.
  • R 13 is a hydrogen atom or a carbon in which any hydrogen atom may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group.
  • a hydrocarbon group having 1 to 10 carbon atoms R 14 is an alkyl group having 1 to 5 carbon atoms, and n2 represents an integer of 0 to 3.
  • R 16 Si (OR 17 ) 3 (7) (R 16 is an alkyl group having 1 to 5 carbon atoms, and R 17 is an alkyl group having 1 to 5 carbon atoms.)
  • Y 1 is a single bond, — (CH 2 ) b — (b is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond, — (CH 2 ) b — (b is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is a viewpoint that facilitates the synthesis of the side chain structure.
  • a single bond, — (CH 2 ) b — (b is an integer of 1 to 10), —O—, —CH 2 O— or —COO— is more preferable.
  • Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 117 R 118 ) c — (c is 1 And R 117 and R 118 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Of these, — (CH 2 ) c — (c is an integer of 1 to 10) is preferable from the viewpoint of significantly improving the response speed of the liquid crystal display device.
  • Y 3 is a single bond, — (CH 2 ) d — (d is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond, — (CH 2 ) d — (d is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is used to synthesize the side chain structure. It is preferable from the viewpoint of facilitating.
  • a single bond, — (CH 2 ) d — (d is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO— is more preferable.
  • Y 4 is a single bond or a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 carbon atom. It may be substituted with an alkyl group having 3 to 3, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Further, Y 4 may be a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton. Of these, an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexane ring, or a steroid skeleton is preferable.
  • Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 to It may be substituted with a 3 alkyl group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • n1 is an integer of 0 to 4.
  • it is an integer of 0-2.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. .
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • R 102 of the alkoxysilane represented by the formula (1) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, R 2 is a methyl group or an ethyl group.
  • alkoxysilane represented by the formula (1) include formulas [1-1] to [1-31], but are not limited thereto. Note that R 2 in the following formulas [1-1] to [1-31] is the same as R 102 in the formula (1).
  • R 105 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—
  • R 106 represents (It is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.)
  • R 107 represents a single bond, —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, — (CH 2 ) n O— ( n represents an integer of 1 to 5), —OCH 2 — or —CH 2 —, and R 108 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 109 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 - or -O- are shown
  • R 110 is a fluorine group, a cyano group, trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
  • R 111 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 112 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .
  • B 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • B 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group
  • B 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to B 3 )
  • B 1 is an oxygen atom or —COO— * (where “*” ”Is a bond with (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • the alkoxysilane represented by the formula (1) is soluble in a solvent when a siloxane polymer (polysiloxane) is used, liquid crystal alignment when a liquid crystal alignment film is used, pretilt angle characteristics, voltage holding ratio, accumulated charge. Depending on the characteristics such as, one kind or a mixture of two or more kinds may be used. Further, it can be used in combination with an alkoxysilane containing a long-chain alkyl group having 10 to 18 carbon atoms.
  • Such an alkoxysilane represented by the formula (1) can be produced by a known method as described in, for example, JP-A-61-286393.
  • R 21 , R 22 , and R 23 of the alkoxysilane represented by the formula (3) are each independently —OCH 3 , —OC 2 H 5 , —OCH (CH 3 ) 2 , —OC (CH 3 ). 3 , —CH 3 , —Ph (ie, —C 6 H 5 ), —Cl, —OCOCH 3 , —OH, —H, or a combination thereof.
  • R 21 , R 22 , and R 23 are each independently —OCH 3 or —OC 2 H 5 .
  • R 24 is a hydrogen atom or a methyl group.
  • Y 21 of the alkoxysilane represented by the formula (3) is a linear or branched hydrocarbon group having 1 to 8 carbon atoms which may contain a single bond or a double bond.
  • Y 21 is a single bond or a linear hydrocarbon group having 3 to 5 carbon atoms.
  • Y 22 of the alkoxysilane represented by the formula (3) is a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NPh—, -NHCO -, - N (CH 3 ) CO -, - NPhCO -, - NHSO 2 -, - N (CH 3) SO 2 -, - NPhSO 2 -, - S -, - SO 2 -, - NHCONH, -
  • the bonding group is selected from N (CH 3 ) CONH—, —NPhCONH—, —NHCOO—, and —OCONH—.
  • Y 22 is a single bond.
  • Y 23 is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, preferably a single bond.
  • Y 24 is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, preferably a single bond or a linear hydrocarbon group having 1 to 3 carbon atoms.
  • Y 25 is a single bond, —O—, or —NZ 2 —.
  • Z 2 is a hydrogen atom, a linear or branched hydrocarbon group having 1 to 18 carbon atoms, an aromatic ring group, or an aliphatic ring group.
  • Preferred is a single bond, —O—, or —NH—.
  • Cy of the alkoxysilane represented by the formula (3) represents a divalent cyclic group selected from the following and formed by bonding at any substitution position, and any hydrogen atom on these cyclic groups has 1 carbon atom. It may be substituted with an alkyl group having 3 to 3, an alkoxy group having 1 to 3 carbon atoms, a cyano group, a fluorine atom, and a chlorine atom.
  • Cy is a benzene ring or a biphenyl ring.
  • a divalent cyclic group formed by bonding at an arbitrary substitution position means that the position of two bonds of the following cyclic group may be arbitrary.
  • Z 1 represents a linear or branched divalent hydrocarbon group having 1 to 18 carbon atoms which may contain an aromatic ring group or an aliphatic ring group.
  • R 103 of the alkoxysilane represented by the formula (4) is an alkyl group in which an arbitrary hydrogen atom is substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group.
  • the number of substituted hydrogen atoms is one or more, preferably one.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. More preferably, it is 1-10.
  • R 104 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
  • alkoxysilane represented by Formula (4) is not limited to these.
  • R 13 of the alkoxysilane represented by the formula (6) has a hydrogen atom or an arbitrary hydrogen atom substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group. Or a hydrocarbon group having 1 to 10 carbon atoms, preferably an amino group, a glycid group, or a ureido group.
  • R 14 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and n2 represents an integer of 0 to 3, preferably 0 to 2.
  • R 13 of the alkoxysilane represented by the formula (6) is a hydrogen atom or an organic group having 1 to 10 carbon atoms.
  • R 13 which is an organic group having 1 to 10 carbon atoms include ring structures such as aliphatic hydrocarbons, aliphatic rings, aromatic rings and heterocyclic rings having 1 to 10 carbon atoms, These may contain an unsaturated bond, a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom, and may be linear or branched.
  • the number of carbon atoms is preferably 1-6.
  • any hydrogen atom of the hydrocarbon group may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group, or the like.
  • alkoxysilane represented by the formula (6) are given below, but are not limited thereto.
  • 3- (2-aminoethylaminopropyl) trimethoxysilane 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) Triethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethy
  • the alkoxysilane in which n2 is 0 is tetraalkoxysilane. Tetraalkoxysilane easily undergoes a polycondensation reaction with the alkoxysilane represented by the formula (1), (3) or (4).
  • alkoxysilane of the formula (6) tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
  • alkoxysilane represented by the formula (5) tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
  • R 16 of the alkoxysilane represented by the formula (7) is an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group preferably has 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms.
  • R 17 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
  • alkoxysilane represented by Formula (7) is not limited to these.
  • methyltriethoxysilane, methyltrimethoxysilane, dimethyltrimethoxysilane, dimethyltriethoxysilane, n-propyltrimethoxysilane, or n-propyltriethoxysilane is not limited to these.
  • the liquid crystal aligning agent of the present invention Since the polysiloxane contained in the liquid crystal aligning agent of the present invention is less expensive than an expensive polyimide, the liquid crystal aligning agent of the present invention can be manufactured at low cost and has high versatility.
  • the molecular weight of the polysiloxane of the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000 in terms of weight average molecular weight.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the proportion of the alkoxysilane compound represented by the formula [1] is 1 mol% or more in order to obtain good liquid crystal alignment in all alkoxysilane components (100 mol%) used to obtain polysiloxane.
  • the method for obtaining the polysiloxane of the present invention is not particularly limited, and a known method can be used.
  • a method of polycondensation of alkoxysilane in order to obtain polysiloxane for example, a method of hydrolyzing and condensing alkoxysilane in a solvent such as alcohol or glycol can be mentioned.
  • the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole.
  • the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 times mol of all alkoxy groups in the alkoxysilane. More preferably, it is 5 to 2 moles.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid, and alkalis such as ammonia, methylamine, ethylamine, ethanolamine, Metal salts such as hydrochloric acid, sulfuric acid and nitric acid are used as catalysts.
  • a method of heating and polycondensing a mixture of alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to obtain an alcohol solution of oxalic acid, the alkoxysilane is mixed while the solution is heated.
  • the amount of succinic acid used is preferably 0.2 to 2 mol, more preferably 0.5 to 2 mol, relative to 1 mol of all alkoxy groups contained in the alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. A method of heating for several tens of minutes to several tens of hours under reflux is preferred so that the liquid does not evaporate or volatilize.
  • alkoxysilanes when obtaining polysiloxane, a plurality of types of alkoxysilanes can be used.
  • alkoxysilanes may be mixed in advance as a mixture, or a plurality of types of alkoxysilanes may be sequentially mixed. May be. That is, there is no limitation on the order in which the alkoxysilane components are reacted. For example, the alkoxysilane components may be reacted at once, or after some alkoxysilanes are reacted, other alkoxysilanes are added. You may make it react.
  • the solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even when alkoxysilane does not melt
  • Such a polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1 , 5-pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol and other glycols, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether , Ethylene glycol monobutyl, ethylene
  • the polysiloxane polymerization solution (hereinafter also referred to as polymerization solution) obtained by the above method is a concentration obtained by converting silicon atoms of all alkoxysilanes charged as raw materials into SiO 2 (hereinafter referred to as SiO 2 conversion concentration). ), Preferably 20% by mass or less, more preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained.
  • the polysiloxane polymerization solution obtained by the above method may be used as a polymer component as it is. If necessary, the solution obtained by the above method is concentrated or a solvent is added.
  • the polymer component may be diluted with another solvent or substituted with another solvent.
  • the solvent to be used hereinafter also referred to as additive solvent
  • the additive solvent is not particularly limited as long as the polysiloxane is uniformly dissolved, and one kind or plural kinds can be arbitrarily selected and used.
  • the additive solvent include, in addition to the solvents mentioned as examples of the polymerization solvent, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and esters such as methyl acetate, ethyl acetate, and ethyl lactate. It is done. These solvents can adjust the viscosity of the liquid crystal aligning agent, and further improve the coating property when the liquid crystal aligning agent is applied on the substrate by spin coating, flexographic printing, ink jetting or the like.
  • inorganic fine particles for example, inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, and further components such as surfactants are included. It may be.
  • inorganic fine particles fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and those in the state of a colloidal solution are particularly preferable.
  • This colloidal solution may be a dispersion of inorganic fine particles in a dispersion medium, or a commercially available colloidal solution.
  • the inorganic fine particles preferably have an average particle size of 0.001 to 0.2 ⁇ m, more preferably 0.001 to 0.1 ⁇ m. When the average particle diameter of the inorganic fine particles exceeds 0.2 ⁇ m, the transparency of the cured film formed using the prepared coating liquid may be lowered.
  • the dispersion medium of the inorganic fine particles examples include water or an organic solvent.
  • the colloidal solution it is preferable that the pH or pKa is adjusted to 1 to 10 from the viewpoint of the stability of the coating solution for film formation. More preferably, it is 2-7.
  • organic solvent used for the dispersion medium of the colloidal solution examples include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; And ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols or ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion medium
  • metalloxane oligomer or metalloxane polymer single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used.
  • the metalloxane oligomer or metalloxane polymer may be a commercially available product or may be obtained from a monomer such as a metal alkoxide, nitrate, hydrochloride, carboxylate or the like by a conventional method such as hydrolysis. .
  • metalloxane oligomers or metalloxane polymers include siloxane oligomers such as methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48, EMS-485, and SS-101 manufactured by Colcoat.
  • siloxane polymers and titanoxane oligomers such as titanium-n-butoxide tetramer manufactured by Kanto Chemical Co., Inc. You may use these individually or in mixture of 2 or more types.
  • a leveling agent, surfactant, etc. can use a well-known thing, and since a commercial item is easy to acquire especially, it is preferable.
  • the method of mixing the above-mentioned other components with the polysiloxane may be simultaneous with or after the polysiloxane, and is not particularly limited.
  • the liquid crystal aligning agent of this invention is a solution containing the polysiloxane mentioned above and other components as needed.
  • the solvent a solvent selected from the group consisting of the above-mentioned polysiloxane polymerization solvent and additive solvent is used.
  • the content of polysiloxane in the liquid crystal aligning agent is preferably 0.5 to 15% by mass, more preferably 1 to 6% by mass in terms of SiO 2 equivalent concentration. Be in the range of such terms of SiO 2 concentration, easy to obtain a desired film thickness by a single coating, easy pot life sufficient solution is obtained.
  • the method for preparing the liquid crystal aligning agent of the present invention is not particularly limited.
  • the polysiloxane used in the present invention may be in a state where other components added as necessary are uniformly mixed. Since polysiloxane is usually polycondensed in a solvent, it is convenient to use the polysiloxane solution as it is or to add other components to the polysiloxane solution as necessary. Furthermore, the most convenient method is to use the polysiloxane polymerization solution as it is. Moreover, when adjusting content of polysiloxane in a liquid crystal aligning agent, the solvent chosen from the group which consists of the polymerization solvent and addition solvent of the polysiloxane mentioned above can be used.
  • the content of the organic solvent contained in the liquid crystal aligning agent of the present invention is preferably 90 to 99% by mass and more preferably 92 to 97% by mass in the liquid crystal aligning agent from the viewpoint of forming a uniform thin film by coating. These contents can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
  • the liquid crystal aligning film of this invention is obtained using the liquid crystal aligning agent mentioned above. After applying the liquid crystal aligning agent to the substrate, the cured film obtained by drying and baking is used as it is as the liquid crystal alignment film, or after being subjected to the alignment treatment by rubbing treatment or light irradiation, the liquid crystal alignment film is used. Can be used.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate; a plastic substrate such as an acrylic substrate or a polycarbonate substrate; Furthermore, it is preferable from the viewpoint of simplification of the process to use a substrate on which an ITO for driving a liquid crystal or an IZO (Indium Zinc Oxide) electrode is formed.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as metal aluminum can be used as the electrode.
  • glass plate polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, tri
  • a substrate in which a transparent electrode is formed on a plastic plate such as acetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. From the standpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • the drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, a drying process is included. Is preferred.
  • the drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like.
  • a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C., for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • Firing after applying the liquid crystal aligning agent can be performed at an arbitrary temperature of 100 ° C. to 350 ° C., preferably 140 ° C. to 300 ° C., more preferably 150 ° C. to 230 ° C., More preferably, it is 160 ° C to 220 ° C.
  • the firing time can be any time of 5 to 240 minutes, preferably 10 to 90 minutes, more preferably 20 to 80 minutes.
  • a generally known method such as a hot plate, a hot air circulation oven, an IR oven, a belt furnace or the like can be used.
  • the polysiloxane in the liquid crystal alignment film undergoes polycondensation in the firing step.
  • firing is preferably performed at a temperature that is 10 ° C. or more higher than the heat treatment temperature required for the manufacturing process of the liquid crystal cell, such as sealing agent curing.
  • the thickness of the cured film can be selected as necessary, but is preferably 5 nm or more, more preferably 10 nm or more, since the reliability of the liquid crystal display element can be easily obtained.
  • the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is suitable.
  • the liquid crystal display element of the present invention is formed of two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal aligning agent provided between the substrate and the liquid crystal layer.
  • a liquid crystal display element comprising a liquid crystal cell having the above-described liquid crystal alignment film.
  • the liquid crystal aligning agent of the present invention is applied onto two substrates and baked to form a liquid crystal aligning film, and the two substrates are arranged so that the liquid crystal aligning films face each other.
  • a known method can be exemplified. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and the liquid crystal is injected under reduced pressure to seal.
  • a pair of substrates on which a liquid crystal alignment film is formed are prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate, and then liquid crystal is dropped, and then the surface on which the liquid crystal alignment film is formed
  • the liquid crystal cell can also be manufactured by a method in which the other substrate is attached and sealed so that the inner side is on the inside.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the method for injecting the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting liquid crystal after the inside of the manufactured liquid crystal cell is decompressed, and a dropping method for sealing after dropping the liquid crystal.
  • the step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying a voltage between the electrodes installed on the substrate to thereby apply the voltage to the liquid crystal alignment film and the liquid crystal layer. There is a method of applying a voltage and irradiating ultraviolet rays while maintaining this voltage.
  • the voltage applied between the electrodes is, for example, 5 to 80 Vp-p, preferably 5 to 60 Vp-p.
  • the irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is improved.
  • the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed. Specific examples thereof include the same substrates as those described in the above ⁇ Liquid crystal alignment film>.
  • a substrate provided with a conventional electrode pattern or protrusion pattern may be used, but in the liquid crystal display element of the present invention, the liquid crystal aligning agent of the present invention is used as the liquid crystal aligning agent for forming the liquid crystal aligning film. Therefore, operation is possible even in a structure in which a line / slit electrode pattern of 1 to 10 ⁇ m is formed on one side substrate, and a slit pattern or projection pattern is not formed on the opposite substrate. This process can be simplified and high transmittance can be obtained.
  • a high-performance element such as a TFT type element
  • an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
  • a transmissive liquid crystal display element it is common to use a substrate as described above.
  • an opaque substrate such as a silicon wafer may be used. Is possible.
  • a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and a liquid crystal material used in a conventional vertical alignment method, for example, a negative type liquid crystal such as MLC-6608 or MLC-6609 manufactured by Merck Alternatively, MLC-2041 or the like can be used.
  • a liquid crystal material used in a conventional vertical alignment method for example, a negative type liquid crystal such as MLC-6608 or MLC-6609 manufactured by Merck Alternatively, MLC-2041 or the like can be used.
  • a prepared mixture of 0.3 g of a UPS content 92 mass% methanol solution, 0.1 g HG and 0.1 g BCS was prepared. added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (A) having a SiO 2 equivalent concentration of 12% by mass. 10.0 g of the obtained polysiloxane solution (A) and 20.0 g of BCS were mixed to obtain a liquid crystal aligning agent (K1) having a SiO 2 equivalent concentration of 4% by mass.
  • a solution prepared by mixing 3.8 g of HG, 1.3 g of BCS, 4.9 g of water and 0.8 g of oxalic acid as a catalyst in advance was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 30 minutes, and a prepared mixed solution of 0.1 g of a methanol solution with a UPS content of 92% by mass, 0.1 g of HG and 0.2 g of BCS was prepared. added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (C) having a SiO 2 equivalent concentration of 12% by mass. 10.0 g of the obtained polysiloxane solution (C) and 20.0 g of BCS were mixed to obtain a liquid crystal aligning agent intermediate (S1) having a SiO 2 equivalent concentration of 4% by mass.
  • S1 liquid crystal aligning agent intermediate
  • liquid crystal aligning agent intermediate (S1) and the liquid crystal aligning agent intermediate (U1) are mixed at a mass ratio of 3: 7 to obtain a liquid crystal aligning agent [K2] having a SiO 2 equivalent concentration of 4% by mass. It was.
  • liquid crystal aligning agent intermediate (S2) and the liquid crystal aligning agent intermediate (U1) are mixed at a mass ratio of 3: 7 to obtain a liquid crystal aligning agent [K3] having a SiO 2 conversion concentration of 4% by mass. It was.
  • a prepared mixture of 0.3 g of a UPS content 92 mass% methanol solution, 0.1 g HG and 0.1 g BCS was prepared. added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (F) having a SiO 2 equivalent concentration of 12% by mass. 10.0 g of the obtained polysiloxane solution (F) and 20.0 g of BCS were mixed to obtain a liquid crystal aligning agent intermediate (S3) having a SiO 2 equivalent concentration of 4% by mass.
  • S3 liquid crystal aligning agent intermediate
  • liquid crystal aligning agent intermediate (S3) and the liquid crystal aligning agent intermediate (U1) are mixed at a mass ratio of 3: 7 to obtain a liquid crystal aligning agent [K4] having a SiO 2 equivalent concentration of 4% by mass. It was.
  • liquid crystal aligning agent intermediate (S4) and the liquid crystal aligning agent intermediate (U1) are mixed at a mass ratio of 3: 7 to obtain a liquid crystal aligning agent [L2] having a SiO 2 equivalent concentration of 4% by mass. It was.
  • Example 1 The liquid crystal aligning agent [K1] obtained in Synthesis Example 4 was spin-coated on the ITO surface on which no electrode pattern was formed. After drying for 2 minutes on a hot plate at 80 ° C., baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm. Two substrates thus obtained were prepared, and 4 ⁇ m bead spacers were sprayed on the liquid crystal alignment film surface of one of the substrates, and a sealant was printed thereon. The liquid crystal alignment film surface of the other substrate was placed inside and bonded together, and then the sealing agent was cured to produce an empty cell. A liquid crystal cell 1 was prepared by injecting liquid crystal MLC-6608 (trade name, manufactured by Merck) into the empty cell by vacuum injection. The vertical alignment property of the liquid crystal cell 1 was evaluated by the method described later.
  • liquid crystal MLC-6608 trade name, manufactured by Merck
  • the above liquid crystal cell 1 was annealed in a circulation oven at 100 ° C. for 30 minutes.
  • the extracted liquid crystal cell was observed with a microscope in a state where the polarizing plate was in a crossed Nicol state, and the state of the domain, which was an alignment disorder of the liquid crystal, was observed.
  • the vertical alignment was good, and when many domains were observed, it was evaluated that the vertical alignment was not good (the results are shown in Table 1).
  • Example 1 A liquid crystal cell was prepared in the same manner as in Example 1 except that the liquid crystal aligning agent [K1] was changed to the liquid crystal aligning agent [L1] obtained in Synthesis Example 5, and the state of the domain after annealing was observed (results) In Table 1).
  • Example 2 The liquid crystal aligning agent [K2] obtained in Synthesis Example 6 was spin-coated on the ITO surface of the ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 ⁇ 300 ⁇ m and a line / space of 5 ⁇ m was formed. After drying for 2 minutes on a hot plate at 80 ° C., baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm. In addition, the liquid crystal aligning agent [K2] obtained in Example 2 was spin-coated on the ITO surface on which no electrode pattern was formed, dried on an 80 ° C. hot plate for 2 minutes, and then heated at 200 ° C. in the same manner as the above substrate. Firing was performed in a hot air circulation oven for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
  • Liquid crystal cell 2 was prepared by injecting liquid crystal MLC-6608 (trade name, manufactured by Merck) into the empty cell by vacuum injection. The response speed of the liquid crystal cell 2 was measured by the method described later.
  • the liquid crystal cell 2 (that is, a liquid crystal cell not irradiated with 5 J of ultraviolet rays from the outside of the liquid crystal cell in a state where a DC voltage of 20 V was applied) was annealed in a circulation oven at 100 ° C. for 30 minutes.
  • the extracted liquid crystal cell was observed with a microscope in a state where the polarizing plate was in a crossed Nicol state, and the state of the domain, which was an alignment disorder of the liquid crystal, was observed.
  • the vertical alignment was good
  • the vertical alignment was not good (the results are shown in Table 2).
  • Example 3 A liquid crystal cell was produced in the same manner as in Example 2 except that the liquid crystal aligning agent [K2] was changed to the liquid crystal aligning agent [K3] obtained in Synthesis Example 7, and the state of the domain after annealing was observed. Moreover, the response speed was measured (the result is described in Table 2).
  • Example 4 A liquid crystal cell was prepared in the same manner as in Example 2 except that the liquid crystal aligning agent [K2] was changed to the liquid crystal aligning agent [K4] obtained in Synthesis Example 8, and the state of the domain after annealing was observed. Moreover, the response speed was measured (the result is described in Table 2).
  • the liquid crystal cell produced using the liquid crystal aligning agent comprising the alkoxysilane compound of the present invention as a constituent component is perpendicular to the case of a similar compound conventionally used such as XS-18. It was confirmed that the orientation was equivalent. Moreover, it was confirmed that the response speed after ultraviolet irradiation is also equivalent.
  • the alkoxysilane compound of the present invention can be synthesized in a high yield and high purity without performing a purification operation such as distillation, and a liquid crystal alignment film produced using a liquid crystal alignment agent comprising the alkoxysilane compound as a constituent component Can provide a liquid crystal display element having excellent pretilt angle stability, and is useful for a vertical alignment type liquid crystal display element.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Crystal (AREA)
  • Silicon Polymers (AREA)

Abstract

Provided are an alkoxysilane that is used as a material for liquid crystal alignment films or the like, and a method for producing said alkoxysilane. An alkoxysilane represented by formula (1), wherein a ring structure is linked by an amide bond. (In the formula, Z1, Z2 and Z3 each represent a linear or branched C1-4 hydrocarbon group or the like; Z4 represents H, a methyl group or the like; Y1 represents a single bond, -C(CH3)=CH- or the like; Cy1 represents a phenylene group or the like; Cy2 represents a phenylene group or the like; Z5 represents H, a linear or branched C1-18 hydrocarbon group or the like; a represents an integer of 1-18; m represents 1 or 2; and n represents 0, 1 or 2.)

Description

アルコキシシラン化合物、液晶配向剤、液晶配向膜及び液晶表示素子Alkoxysilane compound, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、アルコキシシラン化合物及びその製造方法、並びに該アルコキシシラン化合物を含む液晶配向剤、液晶配向膜及び液晶表示素子に関する。 The present invention relates to an alkoxysilane compound, a method for producing the same, a liquid crystal aligning agent containing the alkoxysilane compound, a liquid crystal alignment film, and a liquid crystal display element.
 近年、液晶表示素子の表示方式の中でも、垂直配向型(VA方式)の液晶表示素子は、大画面の液晶テレビや高精細なモバイル用途(デジタルカメラや携帯電話の表示部)などに広く使用されている。VA方式には、液晶の倒れる方向を制御するための突起をTFT基板やカラーフィルタ基板に形成するMVA方式(Multi Vertical Alignment)や、基板のITO電極にスリットを形成し、電界によって液晶の倒れる方向を制御するPVA(Patterned Vertical Alignment)方式が知られている。別の配向方式として、PSA(Polymer Sustained Alignment)方式がある。 In recent years, among liquid crystal display elements, vertical alignment (VA) liquid crystal display elements are widely used for large-screen liquid crystal televisions and high-definition mobile applications (displays for digital cameras and mobile phones). ing. The VA method includes an MVA method (Multi-Vertical Alignment) in which protrusions for controlling the direction in which the liquid crystal is tilted are formed on the TFT substrate or the color filter substrate, and a direction in which the liquid crystal is tilted by forming an slit in the ITO electrode of the substrate. There is known a PVA (Patterned Vertical Alignment) method for controlling the above. Another alignment method is a PSA (Polymer Sustained Alignment) method.
 VA方式の中でも、PSA方式は近年注目されている技術である。この方式は、液晶組成物中に光重合性化合物を添加し、液晶パネルの作製後に、電圧を印加し液晶が倒れた状態で紫外線を液晶パネルに照射することで、液晶の応答速度を速くする技術である(特許文献1参照)。光重合性化合物を含んだ液晶組成物とポリイミド等からなる液晶配向膜とを用いて作製した液晶セルに、電圧を印加しながら紫外線を照射すると、光重合反応が起こり、液晶分子の傾いていた方向が記憶されたポリマー構造物が、液晶配向膜上に形成される。その結果、液晶の配向方向が固定化され、プレチルトが生じるので、突起やスリットのみで液晶分子の傾き方向を制御する方法と比べて、良好な応答速度を有する液晶表示素子を得る事ができる。 Among the VA methods, the PSA method is a technology that has attracted attention in recent years. This method increases the response speed of the liquid crystal by adding a photopolymerizable compound to the liquid crystal composition and applying a voltage to the liquid crystal panel to irradiate the liquid crystal with ultraviolet rays after the liquid crystal panel is tilted. Technology (see Patent Document 1). When a liquid crystal cell prepared using a liquid crystal composition containing a photopolymerizable compound and a liquid crystal alignment film made of polyimide or the like was irradiated with ultraviolet rays while applying a voltage, a photopolymerization reaction occurred and the liquid crystal molecules were tilted. A polymer structure in which the direction is memorized is formed on the liquid crystal alignment film. As a result, the alignment direction of the liquid crystal is fixed and a pretilt is generated, so that a liquid crystal display element having a better response speed can be obtained as compared with the method of controlling the inclination direction of the liquid crystal molecules only by the protrusions and slits.
 このPSA方式は、液晶パネルを構成する片側の電極にスリットを作製し、対向側の電極パターンにはMVAのような突起やPVAのようなスリットを設けていない構造でも動作可能であり、製造の簡略化や優れたパネル透過率が得られる特長を有している(特許文献2参照)。 This PSA method can be operated even in a structure in which a slit is formed in one electrode constituting a liquid crystal panel, and a protrusion such as MVA or a slit such as PVA is not provided in the opposite electrode pattern. It has a feature that simplification and excellent panel transmittance can be obtained (see Patent Document 2).
 しかし、PSA方式の液晶表示素子においては、液晶に添加する光重合性化合物の溶解性が低く、添加量を増やすと低温時に析出するといった問題がある。他方で、光重合性化合物の添加量を減らすと良好な配向状態、応答速度が得られなくなる。また、液晶中に残留する未反応の光重合性化合物は、液晶中の不純物となるため液晶表示素子の信頼性を低下させるといった問題もある。 However, the PSA type liquid crystal display element has a problem that the solubility of the photopolymerizable compound added to the liquid crystal is low, and when the addition amount is increased, it is precipitated at a low temperature. On the other hand, if the addition amount of the photopolymerizable compound is reduced, a good alignment state and response speed cannot be obtained. In addition, the unreacted photopolymerizable compound remaining in the liquid crystal becomes an impurity in the liquid crystal, which causes a problem of reducing the reliability of the liquid crystal display element.
 そこで、ポリマー分子中に光反応性の側鎖を導入したポリマーを用いた液晶配向剤を基板に塗布し、焼成して得られた液晶配向膜に接触させた液晶層を設け、この液晶層に電圧を印加しながら紫外線を照射して液晶表示素子を作製することにより、液晶中に光重合性化合物を添加せずとも、応答速度の速い液晶表示素子を得ることが出来る方式が開発されている。 Therefore, a liquid crystal alignment agent using a polymer in which a photoreactive side chain is introduced into a polymer molecule is applied to a substrate, and a liquid crystal layer in contact with the liquid crystal alignment film obtained by baking is provided. A method has been developed in which a liquid crystal display element can be obtained by irradiating ultraviolet rays while applying a voltage to obtain a liquid crystal display element having a high response speed without adding a photopolymerizable compound to the liquid crystal. .
 一方、液晶配向膜の材料としては、従来から用いられているポリイミド等の有機系の液晶配向膜材料と共に、無機系の液晶配向膜材料も知られている。例えば、塗布型の無機系配向膜の材料として、テトラアルコキシシランと、トリアルコキシシランと、アルコール及び蓚酸との反応生成物を含有する液晶配向剤組成物が提案され、液晶表示素子の電極基板上で垂直配向性、耐熱性及び均一性に優れる液晶配向膜を形成することが報告されている(特許文献4参照)。 On the other hand, as a material for the liquid crystal alignment film, an inorganic liquid crystal alignment film material is known together with a conventionally used organic liquid crystal alignment film material such as polyimide. For example, a liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, trialkoxysilane, alcohol, and oxalic acid has been proposed as a material for a coating-type inorganic alignment film. It is reported that a liquid crystal alignment film having excellent vertical alignment properties, heat resistance and uniformity is formed (see Patent Document 4).
 また、テトラアルコキシシラン、特定のトリアルコキシシラン及び水との反応生成物と特定のグリコールエーテル系溶媒とを含有する液晶配向剤組成物が提案されている。かかる液晶配向剤組成物を用いることにより、表示不良を防止し、長時間駆動後も残像特性が良好で、液晶を配向させる能力が低下せず、且つ光及び熱に対する電圧保持率の低下が少ない液晶配向膜を形成することが報告されている(特許文献5参照)。 In addition, a liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, specific trialkoxysilane and water and a specific glycol ether solvent has been proposed. By using such a liquid crystal aligning agent composition, display defects are prevented, afterimage characteristics are good even after long-time driving, the ability to align the liquid crystal does not decrease, and the decrease in voltage holding ratio against light and heat is small. Forming a liquid crystal alignment film has been reported (see Patent Document 5).
 アルコキシシラン化合物を重縮合して得られるポリシロキサンは、液晶配向膜材料の構成成分として使用できることが知られている。特に、VA方式の液晶表示素子においては、環構造を有するアルコキシシラン化合物を用いることにより、良好な垂直配向性を付与できることが報告されている(特許文献6、7、及び8参照)。 It is known that polysiloxane obtained by polycondensation of an alkoxysilane compound can be used as a component of a liquid crystal alignment film material. In particular, it has been reported that in a VA liquid crystal display element, good vertical alignment can be imparted by using an alkoxysilane compound having a ring structure (see Patent Documents 6, 7, and 8).
 この環構造を有するアルコキシシラン化合物としては、フェニレン基、シクロへキシレン基等が1つ以上含まれた部位を有し、その部位とアルコキシシリル基が直接連結しているか、エーテル結合を介して連結しているものが挙げられる。このような化合物の製造方法としては、ハライド部位を有する環式化合物とアルコキシシラン類とのGrignard反応や、炭素-炭素不飽和結合部位を有する環式化合物とヒドロシラン類とのヒドロシリル化反応等が用いられている(特許文献6、及び7参照)。 The alkoxysilane compound having this ring structure has a part containing one or more phenylene group, cyclohexylene group, etc., and the part and the alkoxysilyl group are directly connected or connected through an ether bond. What you are doing. As a method for producing such a compound, a Grignard reaction between a cyclic compound having a halide site and an alkoxysilane, a hydrosilylation reaction between a cyclic compound having a carbon-carbon unsaturated bond site and a hydrosilane, or the like is used. (See Patent Documents 6 and 7).
 しかしながら、これらの反応は何れも副生成物及び反応試剤由来の不純物の発生を伴うため、目的生成物を純度良く単離するには煩雑な精製操作を行わなければならず、生産効率が低いという問題がある。例えば、目的生成物の性状が液体の場合、精製操作として蒸留を行うことが多いが、目的生成物と副生成物の沸点差がそれ程大きくはなく、副生成物の分離に多くの時間を要することや収率が低下することが難点である。また、分子量の大きい目的生成物に関しては、高真空、高温条件下においても沸点に到達せず、蒸留すること自体が物理的に不可能であるため、精製操作として著しく生産効率の低いカラムクロマトグラフィを行わざるを得ない。 However, all of these reactions involve generation of impurities derived from by-products and reaction reagents. Therefore, complicated purification operations must be performed to isolate the target product with high purity, and production efficiency is low. There's a problem. For example, when the target product is liquid, distillation is often performed as a purification operation, but the boiling point difference between the target product and the by-product is not so large, and it takes a lot of time to separate the by-product. It is a difficult point that a thing and a yield fall. In addition, the target product having a large molecular weight does not reach the boiling point even under high vacuum and high temperature conditions, and distillation itself is physically impossible. I have to do it.
 一方、目的生成物の性状が固体の場合、通常、精製操作として再結晶を行うことが多いが、アルコキシシラン化合物の一般的な性質として結晶性が著しく低いということもあり、結晶性が高い副生成物の除去が極めて困難である。そのため、上記同様、精製操作として著しく生産効率の低いカラムクロマトグラフィを行わざるを得ない。 On the other hand, when the target product is solid, recrystallization is usually performed as a purification operation. However, as a general property of the alkoxysilane compound, crystallinity is remarkably low. Product removal is extremely difficult. Therefore, as described above, column chromatography with extremely low production efficiency must be performed as a purification operation.
日本特開昭61-286393号公報Japanese Unexamined Patent Publication No. Sho 61-286393 WO2012-165354号公報WO2012-165354 日本特開2012-159826号公報Japanese Unexamined Patent Publication No. 2012-159826 日本特開平09-281502号公報Japanese Unexamined Patent Publication No. 09-281502 日本特開2005-250244号公報Japanese Unexamined Patent Publication No. 2005-250244 日本特開2003-307720号公報Japanese Unexamined Patent Publication No. 2003-307720 日本特開2004-302061号公報Japanese Unexamined Patent Publication No. 2004-302061 WO2010/074269号公報WO2010 / 074269
 本発明は、このような事情に鑑みてなされたものであり、生産効率が高く、且つ、液晶配向膜材料の構成成分として用いた場合の垂直配向性に優れるアルコキシシラン化合物及びその製造方法、並びに該アルコキシシラン化合物を用いて得られる液晶配向剤、液晶配向膜及び液晶表示素子を提供することを目的とする。 The present invention has been made in view of such circumstances, an alkoxysilane compound having high production efficiency and excellent vertical alignment when used as a component of a liquid crystal alignment film material, a method for producing the same, and It aims at providing the liquid crystal aligning agent obtained by using this alkoxysilane compound, a liquid crystal aligning film, and a liquid crystal display element.
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、環構造がアミド結合で連結された新規のアルコキシシラン化合物、及び、当該化合物の製造方法として、環構造を有するカルボン酸を塩素化剤で処理して得られる酸クロリドとアミノ基含有のアルコキシシラン化合物とを反応させることにより、副生成物が殆ど発生せず、精製操作を行うことなく、高収率、高純度で目的生成物を得る手法を見出した。さらに、当該化合物を液晶配向膜材料の構成成分として用いた場合に、良好な垂直配向性を発揮することを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have obtained a novel alkoxysilane compound in which the ring structure is linked by an amide bond, and a carboxylic acid having a ring structure as a method for producing the compound. By reacting the acid chloride obtained by the treatment with a chlorinating agent and an amino group-containing alkoxysilane compound, almost no by-products are generated, and no purification is performed. A method for obtaining the product was found. Furthermore, when the said compound was used as a structural component of liquid crystal aligning film material, it discovered that favorable vertical alignment property was exhibited, and came to complete this invention.
 本発明はかかる知見に基づくもので、以下の要旨を有する。
1.下記の式[1]で表され、環構造がアミド結合で連結されたアルコキシシラン化合物。
Figure JPOXMLDOC01-appb-C000005
(式[1]中、Z1、Z2及びZ3は、それぞれ独立して、R、OR又はOCOR(Rは、炭素数1~4の直鎖状若しくは分岐状の炭化水素基)である。但し、Z1、Z2及びZ3が全てRである場合を除く。aは1~18の整数である。mは、1又は2である。Z4は、H、メチル基又はフェニル基である。Yは、単結合、-RO-、-ROCO-、-RCOO-、-CH=CH-、-C(CH)=CH-又は-C≡C-(Rは、炭素数1~3の直鎖状若しくは分岐状の炭化水素基)である。Cy1は、フェニレン基、ナフチレン基及びシクロヘキシレン基から選ばれる2価の環状基又はステロイド骨格を有する炭素数12~40の有機基である。Cy2は、フェニレン基、ナフチレン基及びシクロヘキシレン基から選ばれる2価の環状基〔Cy1及びCy2の環上にある任意の水素原子は、F、CN、OH、R及びOR(Rは、炭素数1~4の直鎖状若しくは分岐状の炭化水素基又は炭素数1~4の直鎖若しくは分岐状のフッ素含有炭化水素基)から選ばれる基で置き換えられていてもよい。〕である。nは、0、1又は2である。Zは、H、CN、R又はOR(Rは、炭素数1~18の直鎖若しくは分岐状の炭化水素基又は炭素数1~18の直鎖若しくは分岐状のフッ素含有炭化水素基)である。但し、Cy1がステロイド骨格を有する炭素数12~40の有機基である場合、nは0であり、Zは無置換である。)
2.aが3、mが1である上記1に記載のアルコキシシラン化合物。
3.aが3、mが1、Z4がH、Yが単結合である上記1に記載のアルコキシシラン化合物。
4.下記の式[2]で表されるカルボン酸を塩素化剤で処理することによって、下記の式[3]表される酸クロリドを得た後、該酸クロリドと下記の式[4] で表わされるアルコキシシラン化合物とを、塩基存在下で反応させることを特徴とする、上記1に記載のアルコキシシラン化合物の製造方法。
The present invention is based on such knowledge and has the following gist.
1. An alkoxysilane compound represented by the following formula [1] and having a ring structure linked by an amide bond.
Figure JPOXMLDOC01-appb-C000005
(In the formula [1], Z 1 , Z 2 and Z 3 are each independently R 1 , OR 1 or OCOR 1 (R 1 is a linear or branched hydrocarbon having 1 to 4 carbon atoms) Group except that Z 1 , Z 2 and Z 3 are all R 1. a is an integer of 1 to 18. m is 1 or 2. Z 4 is H, .Y 1 is a methyl group or a phenyl group, a single bond, -R 2 O -, - R 2 OCO -, - R 2 COO -, - CH = CH -, - C (CH 3) = CH- or - C≡C— (R 2 is a linear or branched hydrocarbon group having 1 to 3 carbon atoms) Cy 1 is a divalent cyclic group selected from a phenylene group, a naphthylene group, and a cyclohexylene group. or .Cy 2 is an organic group having a carbon number of 12-40 with a steroid skeleton, a phenylene group, a naphthylene group and a cyclohexylene group Divalent any hydrogen atom present on the cyclic group [Cy 1 and Cy 2 in the selected La, F, CN, OH, R 3 and OR 3 (R 3 is a straight-chain having 1 to 4 carbon atoms Or may be substituted with a group selected from a branched hydrocarbon group or a linear or branched fluorine-containing hydrocarbon group having 1 to 4 carbon atoms.] N is 0, 1 or 2 Z 5 is H, CN, R 4 or OR 4 (R 4 is a linear or branched hydrocarbon group having 1 to 18 carbon atoms, or a linear or branched fluorine atom having 1 to 18 carbon atoms. (However, when Cy 1 is a C 12-40 organic group having a steroid skeleton, n is 0 and Z 5 is unsubstituted.)
2. 2. The alkoxysilane compound according to 1 above, wherein a is 3 and m is 1.
3. 2. The alkoxysilane compound according to 1 above, wherein a is 3, m is 1, Z 4 is H, and Y 1 is a single bond.
4). By treating the carboxylic acid represented by the following formula [2] with a chlorinating agent to obtain an acid chloride represented by the following formula [3], the acid chloride and the following formula [4] are represented. The method for producing an alkoxysilane compound according to the above 1, wherein the alkoxysilane compound is reacted in the presence of a base.
 尚、産業上の利用可能性を考慮した場合、工業的に安価で入手可能な原料から製造される、aが3、mが1であるものが好ましく、それに加えて短い合成ステップで製造される、aが3、mが1、Z4がH、Yが単結合であるものがより好ましい。
Figure JPOXMLDOC01-appb-C000006
(式[2]中、Y、Cy1、Cy2、Z及びnは、前記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000007
(式[3]中、Y、Cy1、Cy2、Z及びnは、前記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000008
(式[4]中、Z1、Z2、Z3、Z4、a及びmは、前記と同じ意味を表す。)
In consideration of industrial applicability, it is preferable that a is 3 and m is 1 which is manufactured from an industrially inexpensive and available raw material. In addition, it is manufactured in a short synthesis step. More preferably, a is 3, m is 1, Z 4 is H, and Y 1 is a single bond.
Figure JPOXMLDOC01-appb-C000006
(In formula [2], Y 1 , Cy 1 , Cy 2 , Z 5 and n have the same meaning as described above.)
Figure JPOXMLDOC01-appb-C000007
(In formula [3], Y 1 , Cy 1 , Cy 2 , Z 5 and n represent the same meaning as described above.)
Figure JPOXMLDOC01-appb-C000008
(In the formula [4], Z 1 , Z 2 , Z 3 , Z 4 , a and m have the same meaning as described above.)
5.aが3、mが1である上記4に記載の製造方法。
6.aが3、mが1、Z4がH、Yが単結合である上記4に記載の製造方法。
7.上記1に記載のアルコキシシラン化合物を重縮合して得られるポリシロキサン。
8.上記1に記載のアルコキシシランの含有量が、全アルコキシシラン中、1~30モル%である上記7に記載のポリシロキサン。
9.上記7又は8に記載のポリシロキサンを含有する液晶配向剤。
10.ポリシロキサンの含有量が、SiO換算濃度で、0.5~15質量%である上記9に記載の液晶配向剤。
11.上記9又は10に記載の液晶配向剤を基板に塗布し、乾燥、焼成して得られる液晶配向膜。
12.上記11に記載の液晶配向膜を有する液晶表示素子。
13.上記9又は10に記載の液晶配向剤が塗布され、焼成された2枚の基板で液晶が挟持された液晶セルに、電圧を印加した状態で紫外線を照射してなる液晶表示素子。
14.上記9又は10に記載の液晶配向剤を塗布し、焼成した2枚の基板で液晶を挟持し、電圧を印加した状態で紫外線を照射する液晶表示素子の製造方法。
5. 5. The production method according to 4 above, wherein a is 3 and m is 1.
6). 5. The production method according to 4 above, wherein a is 3, m is 1, Z 4 is H, and Y 1 is a single bond.
7). A polysiloxane obtained by polycondensation of the alkoxysilane compound described in 1 above.
8). 8. The polysiloxane as described in 7 above, wherein the content of the alkoxysilane described in 1 is 1 to 30 mol% in the total alkoxysilane.
9. 9. A liquid crystal aligning agent containing the polysiloxane as described in 7 or 8 above.
10. 10. The liquid crystal aligning agent according to 9 above, wherein the polysiloxane content is 0.5 to 15% by mass in terms of SiO 2 concentration.
11. The liquid crystal aligning film obtained by apply | coating the liquid crystal aligning agent of said 9 or 10 to a board | substrate, drying and baking.
12 12. A liquid crystal display device having the liquid crystal alignment film as described in 11 above.
13. 11. A liquid crystal display element obtained by irradiating a liquid crystal cell, in which a liquid crystal is sandwiched between two substrates fired by applying the liquid crystal aligning agent described in 9 or 10 above, with ultraviolet rays applied to a liquid crystal cell.
14 A method for producing a liquid crystal display element, wherein the liquid crystal aligning agent according to 9 or 10 above is applied, the liquid crystal is sandwiched between two baked substrates, and ultraviolet rays are irradiated in a state where a voltage is applied.
 本発明によれば、高い生産効率で環構造を有するアルコキシシラン化合物を得ることができ、当該アルコキシシラン化合物を液晶配向膜材料の構成成分として用いた場合に、従来用いられてきた類似化合物と同等の垂直配向性を付与することができる。また、本発明により得られるアルコキシシラン化合物、及び、それを用いて得られるポリシロキサンは、液晶配向膜材料用途に限らず、各種機能性材料用途においても好適に活用し得るものである。 According to the present invention, an alkoxysilane compound having a ring structure can be obtained with high production efficiency, and when the alkoxysilane compound is used as a constituent component of a liquid crystal alignment film material, it is equivalent to a similar compound that has been conventionally used. The vertical alignment of Moreover, the alkoxysilane compound obtained by this invention and the polysiloxane obtained by using the same can be suitably used not only for liquid crystal alignment film materials but also for various functional materials.
 以下、本発明についてさらに詳しく説明する。
<アルコキシシラン化合物>
 前記式[1]で表される本発明のアルコキシシラン化合物(アルコキシシラン化合物[1])は、下記の[反応式1]に示すように、環構造を有するカルボン酸[2]を塩素化剤で塩素化反応させることにより、対応する酸クロリド[3]に誘導した後、アミノ基を含有するアルコキシシラン化合物[4]と、塩基存在下でアミド化反応させることにより製造することができる。
Hereinafter, the present invention will be described in more detail.
<Alkoxysilane compound>
As shown in the following [Reaction Formula 1], the alkoxysilane compound of the present invention represented by the formula [1] (alkoxysilane compound [1]) converts a carboxylic acid [2] having a ring structure into a chlorinating agent. It can be produced by derivatization to the corresponding acid chloride [3] by chlorination reaction with an alkoxy group [4] containing an amino group and an amidation reaction in the presence of a base.
Figure JPOXMLDOC01-appb-C000009
(式中、Y1、Cy、Cy、Z1、Z2、Z3、Z4、Z5、a、m及びnは、前記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000009
(In the formula, Y 1 , Cy 1 , Cy 2 , Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , a, m, and n represent the same meaning as described above.)
<塩素化反応>
 以下、[反応式1]の塩素化反応における反応条件、後処理操作の詳細について説明する。
 塩素化剤としては、塩化チオニル、オギザリルクロリド、ホスゲン、塩素、オキシ塩化リン、五塩化リンなどが挙げられ、好ましくは、塩化チオニル、オギザリルクロリド、又はホスゲンであり、より好ましくは、塩化チオニルである。塩素化剤の量は、カルボン酸[2]に対して通常、1~100倍モル、好ましくは1~30倍モル、より好ましくは2~15倍モルである。
<Chlorination reaction>
Hereinafter, the reaction conditions in the chlorination reaction of [Reaction Formula 1] and details of the post-treatment operation will be described.
Examples of the chlorinating agent include thionyl chloride, oxalyl chloride, phosgene, chlorine, phosphorus oxychloride, phosphorus pentachloride, etc., preferably thionyl chloride, oxalyl chloride, or phosgene, more preferably thionyl chloride. It is. The amount of the chlorinating agent is usually 1 to 100 times mol, preferably 1 to 30 times mol, more preferably 2 to 15 times mol with respect to the carboxylic acid [2].
 上記塩素化反応は、無溶媒でも行うことができるが、必要に応じて溶媒を使用することができる。溶媒としては、反応に不活性なものであれば特に限定はないが、例えば、ヘキサン、ヘプタン又はトルエンなどの炭化水素類、クロロホルム、1,2-ジクロロエタン又はクロロベンゼンなどのハロゲン系炭化水素類、ジエチルエーテル、テトラヒドロフラン又は1,4-ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、アセトン又はメチルエチルケトンなどのケトン類、アセトニトリル又はプロピオニトリル等のニトリル類、及び、これらの混合物が挙げられ、好ましくは、ヘキサン、ヘプタン、又はトルエンであり、より好ましくは、トルエンである。 The chlorination reaction can be carried out without a solvent, but a solvent can be used if necessary. The solvent is not particularly limited as long as it is inert to the reaction. For example, hydrocarbons such as hexane, heptane or toluene, halogenated hydrocarbons such as chloroform, 1,2-dichloroethane or chlorobenzene, diethyl Examples include ethers such as ether, tetrahydrofuran or 1,4-dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof. , Hexane, heptane, or toluene, more preferably toluene.
 また、上記塩素化反応は、触媒なしでも進行するが、触媒を添加することにより進行を速くすることができる。触媒としては、例えば、トリエチルアミン、ピリジン、キノリン、N、N-ジメチルアニリン又はN、N-ジメチルホルムアミドなどの有機塩基類、ナトリウムメトキシド、カリウムメトキシド又はカリウムt-ブトキシドなどの金属アルコキシド類が挙げられ、好ましくは、トリエチルアミン、ピリジン、又はN、N-ジメチルホルムアミドであり、より好ましくは、N、N-ジメチルホルムアミドである。触媒の量は、カルボン酸[2]に対して通常、0~10倍モル、好ましくは0.001~1倍モル、より好ましくは0.005~0.1倍モルである。 The chlorination reaction proceeds without a catalyst, but the progress can be accelerated by adding a catalyst. Examples of the catalyst include organic bases such as triethylamine, pyridine, quinoline, N, N-dimethylaniline or N, N-dimethylformamide, and metal alkoxides such as sodium methoxide, potassium methoxide or potassium t-butoxide. Preferred is triethylamine, pyridine, or N, N-dimethylformamide, and more preferred is N, N-dimethylformamide. The amount of the catalyst is usually 0 to 10 times mol, preferably 0.001 to 1 times mol, more preferably 0.005 to 0.1 times mol, relative to the carboxylic acid [2].
 反応温度は、特に限定されないが、通常、-90~200℃、好ましくは-30~100℃、より好ましくは50~80℃である。
 反応時間は、通常、0.05~100時間、好ましくは0.5~20時間、より好ましくは0.5~5時間である。
The reaction temperature is not particularly limited, but is usually −90 to 200 ° C., preferably −30 to 100 ° C., more preferably 50 to 80 ° C.
The reaction time is usually 0.05 to 100 hours, preferably 0.5 to 20 hours, more preferably 0.5 to 5 hours.
 上記のようにして得られた酸クロリド[3]は、反応液中に残存する塩素化剤及び溶媒を減圧留去することにより単離することができる。単離された酸クロリド[3]は十分に良好な純度であるが、液体の場合は蒸留を行う事で、固体の場合は溶媒を用いた洗浄あるいは再結晶を行う事で、さらに高純度化することもできる。 The acid chloride [3] obtained as described above can be isolated by distilling off the chlorinating agent and the solvent remaining in the reaction solution under reduced pressure. The isolated acid chloride [3] has a sufficiently good purity, but in the case of liquid, it can be purified by distillation, and in the case of solid, it can be further purified by washing or recrystallization using a solvent. You can also
 洗浄に用いる溶媒としては、特に限定されないが、例えば、ヘキサン、ヘプタン又はトルエンなどの炭化水素類、クロロホルム、1,2-ジクロロエタン又はクロロベンゼンなどのハロゲン系炭化水素類、ジエチルエーテル、テトラヒドロフラン又は1,4-ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、アセトン又はメチルエチルケトンなどのケトン類、アセトニトリル又はプロピオニトリル等のニトリル類、及び、これらの混合物が挙げられ、好ましくは、ヘキサン、ヘプタン、又はトルエンであり、より好ましくは、ヘプタンである。 The solvent used for washing is not particularly limited. For example, hydrocarbons such as hexane, heptane or toluene, halogenated hydrocarbons such as chloroform, 1,2-dichloroethane or chlorobenzene, diethyl ether, tetrahydrofuran or 1,4 -Ethers such as dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof, preferably hexane, heptane or toluene And more preferably heptane.
 再結晶に用いる溶媒としては、酸クロリド[3]が加熱時に溶解し冷却時に析出すれば特に限定されないが、例えば、ヘキサン、ヘプタン又はトルエンなどの炭化水素類、クロロホルム、1,2-ジクロロエタン又はクロロベンゼンなどのハロゲン系炭化水素類、ジエチルエーテル、テトラヒドロフラン又は1,4-ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、アセトン又はメチルエチルケトンなどのケトン類、アセトニトリル又はプロピオニトリル等のニトリル類、及び、これらの混合物が挙げられ、好ましくは、ヘキサン、ヘプタン、又はトルエンであり、より好ましくは、ヘプタンである。 The solvent used for recrystallization is not particularly limited as long as the acid chloride [3] dissolves upon heating and precipitates upon cooling. For example, hydrocarbons such as hexane, heptane or toluene, chloroform, 1,2-dichloroethane or chlorobenzene Halogenated hydrocarbons such as, ethers such as diethyl ether, tetrahydrofuran or 1,4-dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and These mixtures are mentioned, Preferably they are hexane, heptane, or toluene, More preferably, it is heptane.
<アミド化反応>
 以下、[反応式1]のアミド化反応における反応条件、後処理操作の詳細について説明する。
 アルコキシシラン化合物[4]としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-メチル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-アミノプロピルジエトキシメチルシラン、ビス[3-(トリメトキシシリル)プロピル]アミンなどが挙げられ、好ましくは、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-メチル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランであり、より好ましくは、3-アミノプロピルトリメトキシシランである。
<Amidation reaction>
Hereinafter, the reaction conditions in the amidation reaction of [Reaction Formula 1] and details of the post-treatment operation will be described.
Examples of the alkoxysilane compound [4] include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3 -Aminopropyldiethoxymethylsilane, bis [3- (trimethoxysilyl) propyl] amine and the like, preferably 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-methyl-3- Aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane are preferable, and 3-aminopropyltrimethoxysilane is more preferable.
 アルコキシシラン化合物[4]の量は、酸クロリド[3]に対して通常、0.8~2.0倍モル、好ましくは1~1.2倍モル、より好ましくは1~1.05倍モルである。
 塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、ピリジン、キノリン又はコリジンなどの有機塩基類、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム又は燐酸カリウムなどの無機塩類が挙げられ、好ましくは、トリエチルアミン、ピリジン、炭酸カリウムであり、より好ましくは、トリエチルアミンである。
The amount of the alkoxysilane compound [4] is usually 0.8 to 2.0 times mol, preferably 1 to 1.2 times mol, more preferably 1 to 1.05 times mol with respect to the acid chloride [3]. It is.
Examples of the base include organic bases such as triethylamine, diisopropylethylamine, tributylamine, pyridine, quinoline or collidine, and inorganic salts such as sodium hydrogen carbonate, sodium carbonate, potassium carbonate, cesium carbonate or potassium phosphate, preferably triethylamine. , Pyridine and potassium carbonate, more preferably triethylamine.
 上記アミド化反応に用いる溶媒としては、反応に不活性なものであれば特に限定はないが、例えば、ヘキサン、ヘプタン又はトルエンなどの炭化水素類、クロロホルム、1,2-ジクロロエタン又はクロロベンゼンなどのハロゲン系炭化水素類、ジエチルエーテル、テトラヒドロフラン又は1,4-ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、アセトン又はメチルエチルケトンなどのケトン類、アセトニトリル又はプロピオニトリル等のニトリル類、及び、これらの混合物が挙げられ、好ましくは、ヘキサン、ヘプタン、又はトルエンであり、より好ましくは、トルエンである。 The solvent used in the amidation reaction is not particularly limited as long as it is inert to the reaction. For example, hydrocarbons such as hexane, heptane or toluene, halogens such as chloroform, 1,2-dichloroethane or chlorobenzene Hydrocarbons, ethers such as diethyl ether, tetrahydrofuran or 1,4-dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof Preferably, it is hexane, heptane, or toluene, More preferably, it is toluene.
 また、上記アミド化反応は、触媒なしでも進行するが、触媒を添加することにより進行を速くすることができる。触媒としては、例えば、トリエチルアミン、ピリジン、キノリン、N、N-ジメチルアニリン又はN、N-ジメチルホルムアミドなどの有機塩基類、ナトリウムメトキシド、カリウムメトキシド又はカリウムt-ブトキシドなどの金属アルコキシド類が挙げられ、好ましくは、トリエチルアミン、ピリジン、又はN、N-ジメチルホルムアミドであり、より好ましくは、N、N-ジメチルホルムアミドである。触媒の量は、カルボン酸[2]に対して通常、0~10倍モル、好ましくは0.001~1倍モル、より好ましくは0.005~0.1倍モルである。 The amidation reaction proceeds even without a catalyst, but can be accelerated by adding a catalyst. Examples of the catalyst include organic bases such as triethylamine, pyridine, quinoline, N, N-dimethylaniline or N, N-dimethylformamide, and metal alkoxides such as sodium methoxide, potassium methoxide or potassium t-butoxide. Preferred is triethylamine, pyridine, or N, N-dimethylformamide, and more preferred is N, N-dimethylformamide. The amount of the catalyst is usually 0 to 10 times mol, preferably 0.001 to 1 times mol, more preferably 0.005 to 0.1 times mol, relative to the carboxylic acid [2].
 反応温度は、特に限定されないが、通常、-90~200℃、好ましくは-30~100℃、より好ましくは50~80℃である。
 反応時間は、通常、0.05~100時間、好ましくは0.5~20時間、より好ましくは0.5~5時間である。
The reaction temperature is not particularly limited, but is usually −90 to 200 ° C., preferably −30 to 100 ° C., more preferably 50 to 80 ° C.
The reaction time is usually 0.05 to 100 hours, preferably 0.5 to 20 hours, more preferably 0.5 to 5 hours.
 上記のようにして得られたアルコキシシラン化合物[1]は、反応液中に残存する有機塩あるいは無機塩をろ過で除き、ろ液を溶媒で希釈し、これを純水で洗浄した後、有機相を抜き出し、溶媒を減圧留去することにより単離することができる。 The alkoxysilane compound [1] obtained as described above is obtained by removing the organic salt or inorganic salt remaining in the reaction solution by filtration, diluting the filtrate with a solvent, washing this with pure water, The phase can be extracted and the solvent can be isolated by distillation under reduced pressure.
 ろ液の希釈に用いる溶媒としては、例えば、ヘキサン、ヘプタン又はトルエンなどの炭化水素類、クロロホルム、1,2-ジクロロエタン又はクロロベンゼンなどのハロゲン系炭化水素類、ジエチルエーテル、テトラヒドロフラン又は1,4-ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、アセトン又はメチルエチルケトンなどのケトン類、アセトニトリル又はプロピオニトリル等のニトリル類、及び、これらの混合物が挙げられ、好ましくは、トルエン、1,2-ジクロロエタン又は酢酸エチルであり、より好ましくは、酢酸エチルである。 Examples of the solvent used for diluting the filtrate include hydrocarbons such as hexane, heptane and toluene, halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and chlorobenzene, diethyl ether, tetrahydrofuran and 1,4-dioxane. Ethers such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof, preferably toluene, 1,2-dichloroethane or Ethyl acetate, more preferably ethyl acetate.
 純水で洗浄した後の有機相は、硫酸マグネシウム、硫酸ナトリウムなどを用いて脱水処理してもよい。 The organic phase after washing with pure water may be dehydrated using magnesium sulfate, sodium sulfate or the like.
 単離されたアルコキシシラン化合物[1]は十分に良好な純度であるが、固体の場合は溶媒を用いた洗浄あるいは再結晶を行う事で、さらに高純度化することもできる。 The isolated alkoxysilane compound [1] has sufficiently good purity, but in the case of a solid, it can be further purified by washing or recrystallization using a solvent.
 洗浄に用いる溶媒としては、特に限定されないが、例えば、ヘキサン、ヘプタン又はトルエンなどの炭化水素類、クロロホルム、1,2-ジクロロエタン又はクロロベンゼンなどのハロゲン系炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン又は1,4-ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、アセトン又はメチルエチルケトンなどのケトン類、アセトニトリル又はプロピオニトリル等のニトリル類、及び、これらの混合物が挙げられ、好ましくは、ヘプタン、トルエン又はジイソプロピルエーテルであり、より好ましくは、ジイソプロピルエーテルである。 The solvent used for washing is not particularly limited. For example, hydrocarbons such as hexane, heptane or toluene, halogenated hydrocarbons such as chloroform, 1,2-dichloroethane or chlorobenzene, diethyl ether, diisopropyl ether, tetrahydrofuran or Examples include ethers such as 1,4-dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile, and mixtures thereof, preferably heptane, toluene Or it is diisopropyl ether, More preferably, it is diisopropyl ether.
 再結晶に用いる溶媒としては、アルコキシシラン化合物[1]が加熱時に溶解し冷却時に析出すれば特に限定されないが、例えば、ヘキサン、ヘプタン又はトルエンなどの炭化水素類、クロロホルム、1,2-ジクロロエタン又はクロロベンゼンなどのハロゲン系炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン又は1,4-ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、アセトン又はメチルエチルケトンなどのケトン類、アセトニトリル又はプロピオニトリル等のニトリル類、及び、これらの混合物が挙げられ、好ましくは、ヘプタン、トルエン又はジイソプロピルエーテルであり、より好ましくは、ジイソプロピルエーテルである。 The solvent used for recrystallization is not particularly limited as long as the alkoxysilane compound [1] dissolves upon heating and precipitates upon cooling. For example, hydrocarbons such as hexane, heptane or toluene, chloroform, 1,2-dichloroethane, Halogenated hydrocarbons such as chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran or 1,4-dioxane, esters such as ethyl acetate, ketones such as acetone or methyl ethyl ketone, nitriles such as acetonitrile or propionitrile And mixtures thereof, preferably heptane, toluene or diisopropyl ether, more preferably diisopropyl ether.
<環構造を有するカルボン酸>
 環構造を有するカルボン酸[2]の例としては、以下のような化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010

(式中、Zは前記と同じ意味を表す。R及びRは、それぞれ独立に、H又はCHを表す。)
<Carboxylic acid having a ring structure>
Examples of the carboxylic acid [2] having a ring structure include the following compounds.
Figure JPOXMLDOC01-appb-C000010

(In the formula, Z 5 represents the same meaning as described above. R 5 and R 6 each independently represent H or CH 3. )
 上記[2-7]~[2-11]のような炭素-炭素二重結合を含有するカルボン酸は、例えば、下記の[反応式2]に示すように、芳香族ハライド(もしくはトリフラート)と(メタ)アクリル酸とをヘック(Heck)反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000011
(式中、XはCl、Br、I又はOTf(トリフラート)、RはH又はCH、Zは前記と同じものを表わす。)
The carboxylic acid containing a carbon-carbon double bond such as the above [2-7] to [2-11] is, for example, an aromatic halide (or triflate) as shown in [Reaction Formula 2] below. It can be obtained by Heck reaction with (meth) acrylic acid.
Figure JPOXMLDOC01-appb-C000011
(In the formula, X 2 represents Cl, Br, I or OTf (triflate), R 5 represents H or CH 3 , and Z 5 represents the same as described above.)
 また、上記[2-12]~[2-16]のような炭素-炭素三重結合を含有するカルボン酸は、例えば下記の[反応式3]に示すように、芳香族ハライド(もしくはトリフラート)とプロピオール酸とを薗頭反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000012
(式中、X及びZは、前記と同じものを表す。)
In addition, the carboxylic acid containing a carbon-carbon triple bond such as the above [2-12] to [2-16] is, for example, an aromatic halide (or triflate) as shown in [Reaction Formula 3] below. It can be produced by Sonogashira reaction with propiolic acid.
Figure JPOXMLDOC01-appb-C000012
(In the formula, X 2 and Z 5 represent the same as described above.)
 また、上記[2-17]~[2-24]のような環構造との間にエーテル結合を含有するカルボン酸は、例えば下記の[反応式4]に示すように、炭酸カリウムなどの塩基存在下、カルボン酸基を含有する環構造の化合物を、α位に脱離基を持つエステルに求核置換反応させた後、酸又は塩基を用いて加水分解反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000013
(式中、XはCl、Br、I、OMs(メシラート)又はOTs、RはH又はCH、RはCH、C、iso-プロピル基、iso-ブチル基又はtert-ブチル基、Z5は前記と同じものを表す。)。
A carboxylic acid containing an ether bond with the ring structure such as the above [2-17] to [2-24] is a base such as potassium carbonate as shown in the following [Reaction Scheme 4]. In the presence, it can be produced by subjecting a ring structure compound containing a carboxylic acid group to an ester having a leaving group at the α-position, followed by a hydrolysis reaction using an acid or a base. .
Figure JPOXMLDOC01-appb-C000013
Wherein X 3 is Cl, Br, I, OMs (mesylate) or OTs, R 4 is H or CH 3 , R 5 is CH 3 , C 2 H 5 , iso-propyl group, iso-butyl group or tert -Butyl group, Z 5 is the same as defined above.
 また、上記[2-25]~[2-28]のような環構造との間にエステル結合を含有するカルボン酸は、例えば下記の[反応式5]に示すように、炭酸カリウムなどの塩基存在下、カルボン酸基を含有する環構造の化合物を、α位に脱離基を持つtert-ブチルエステルに求核置換反応させた後、ギ酸又はトリフルオロ酢酸等の酸を用いてtert-ブチルエステル部分のみを加水分解反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000014
(式中、XはCl、Br、I、OMs又はOTs、Z5は前記と同じものを表す。)
A carboxylic acid having an ester bond with a ring structure such as the above [2-25] to [2-28] is a base such as potassium carbonate as shown in [Reaction Formula 5] below, for example. In the presence, a ring structure compound containing a carboxylic acid group is subjected to a nucleophilic substitution reaction with a tert-butyl ester having a leaving group at the α-position, and then tert-butyl using an acid such as formic acid or trifluoroacetic acid. It can be produced by subjecting only the ester moiety to a hydrolysis reaction.
Figure JPOXMLDOC01-appb-C000014
(Wherein X 3 represents Cl, Br, I, OMs or OTs, and Z 5 represents the same as described above.)
 また、上記[2-29]~[2-35]のような環構造との間にエステル結合を含有するカルボン酸は、例えば下記の[反応式6]に示すように、水酸基を含有する環構造の化合物とコハク酸無水物とを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000015
(式中、Z5は前記と同じものを表す。)
In addition, a carboxylic acid containing an ester bond with a ring structure such as [2-29] to [2-35] above is a ring containing a hydroxyl group, as shown, for example, in [Reaction Scheme 6] below. It can be produced by reacting a structural compound with succinic anhydride.
Figure JPOXMLDOC01-appb-C000015
(In the formula, Z 5 represents the same as described above.)
 また、上記[2-36]~[2-42]のような環構造との間にエステル結合を含有するカルボン酸は、例えば下記の[反応式7]に示すように、水酸基を含有する環構造の化合物とグルタル酸無水物とを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000016
(式中、Z5は前記と同じものを表す。)
In addition, a carboxylic acid containing an ester bond with a ring structure such as the above [2-36] to [2-42] is a ring containing a hydroxyl group as shown in, for example, [Reaction Scheme 7] below. It can be produced by reacting a compound having a structure with glutaric anhydride.
Figure JPOXMLDOC01-appb-C000016
(In the formula, Z 5 represents the same as described above.)
<ポリシロキサン>
 本発明のポリシロキサンは、上記式[1]で表わされるアルコキシシラン化合物を重縮合して得られるポリシロキサンである。
 本発明のポリシロキサンは、上記式[1]で表わされるアルコキシシラン化合物に加えて、さらに、他のアルコキシシランを構成成分として含有してもよい。当該他のアルコキシシランとしては、下記式(1)で表わされるアルコキシシラン、下記式(3)で表わされるアルコキシシラン、下記式(4)で表わされるアルコキシシラン、下記式(5)で表わされるアルコキシシラン、下記式(6)で表わされるアルコキシシラン、及び下記式(7)で表わされるアルコキシシランが挙げられる。
<Polysiloxane>
The polysiloxane of the present invention is a polysiloxane obtained by polycondensation of an alkoxysilane compound represented by the above formula [1].
In addition to the alkoxysilane compound represented by the above formula [1], the polysiloxane of the present invention may further contain other alkoxysilane as a constituent component. Examples of the other alkoxysilane include an alkoxysilane represented by the following formula (1), an alkoxysilane represented by the following formula (3), an alkoxysilane represented by the following formula (4), and an alkoxy represented by the following formula (5). Examples thereof include silane, alkoxysilane represented by the following formula (6), and alkoxysilane represented by the following formula (7).
     R101Si(OR102     (1)
(R101は下記式(2)の構造を表し、R102は炭素数1~5のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000017
(式(2)中、Yは単結合、-(CH-(bは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。Yは単結合、二重結合を含有する炭素数3~8の直鎖状若しくは分岐状の炭化水素基、又は、-(CR117118-(cは1~15の整数である。R117、及びR118はそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)である。Yは単結合、-(CH-(dは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。Yは単結合、ベンゼン環、シクロへキシル環、及び、複素環からなる群より選ばれる2価の環状基、又は、ステロイド骨格を有する炭素数17~51の2価の有機基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていても良い。Yはベンゼン環、シクロへキシル環及び複素環からなる群より選ばれる2価の環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。n1は0~4の整数である。Yは水素原子、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を表す。)
R 101 Si (OR 102 ) 3 (1)
(R 101 represents the structure of the following formula (2), and R 102 represents an alkyl group having 1 to 5 carbon atoms.)
Figure JPOXMLDOC01-appb-C000017
(In Formula (2), Y 1 is a single bond, — (CH 2 ) b — (b is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 117 R 118 ) c — (c is an integer of 1 to 15) R 117 and R 118 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) Y 3 is a single bond, — (CH 2 ) d — (d is 1 to 15 is an integer of 15), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is selected from the group consisting of a single bond, a benzene ring, a cyclohexyl ring, and a heterocyclic ring. Or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton, and these cyclic groups The above optional hydrogen atom is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups has a carbon number N1 may be substituted with an alkyl group having 1 to 3, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Y 6 is an integer of 0 to 4. Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or fluorine having 1 to 18 carbon atoms. Containing alkoxyl group Represent.)
Figure JPOXMLDOC01-appb-C000018
(式(3)中、R21、R22、及びR23は、それぞれ独立に、-OCH、-OC、-OCH(CH、-OC(CH、-CH、-Ph、-Cl、-OCOCH、-OH、-H、又は、それらの組合せからなる置換基を表す。R24は水素原子、又はメチル基を表す。Y21は単結合、又は、二重結合を含有していても良い炭素数1~8の直鎖状若しくは分岐状の炭化水素基を表す。Y22は単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NPh-、-NHCO-、-N(CH)CO-、-NPhCO-、-NHSO-、-N(CH)SO-、-NPhSO-、-S-、-SO-、-NHCONH、-N(CH)CONH-、-NPhCONH-、-NHCOO-、及び-OCONH-から選ばれる結合基を表す。Y23は単結合、又は炭素数1~8の直鎖状若しくは分岐状の炭化水素基を表す。Y24は単結合、又は炭素数1~8の直鎖状若しくは分岐状の炭化水素基を表す。Y25は単結合、-O-、又は-NZ-を表し、Zは水素原子、炭素数1~18の直鎖状若しくは分岐状の炭化水素基、芳香族環基、又は脂肪族環基を表す。Cyは下記から選ばれ任意の置換位置で結合形成される2価の環状基を表し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、シアノ基、フッ素原子、及び塩素原子から選ばれる基で置換されていても良い。)
Figure JPOXMLDOC01-appb-C000018
(In Formula (3), R 21 , R 22 , and R 23 are each independently —OCH 3 , —OC 2 H 5 , —OCH (CH 3 ) 2 , —OC (CH 3 ) 3 , —CH 3 , —Ph, —Cl, —OCOCH 3 , —OH, —H, or a combination thereof, R 24 represents a hydrogen atom or a methyl group, Y 21 represents a single bond, or A straight-chain or branched hydrocarbon group having 1 to 8 carbon atoms which may contain a double bond, Y 22 represents a single bond, —O—, —CO—, —COO—, —OCO—. , —NH—, —N (CH 3 ) —, —NPh—, —NHCO—, —N (CH 3 ) CO—, —NPhCO—, —NHSO 2 —, —N (CH 3 ) SO 2 —, — NPhSO 2 -, - S -, - SO 2 -, - NHCONH, -N (CH 3) CONH-, NPhCONH -, - NHCOO-, and .Y 23 is a single bond represents a bond group selected from -OCONH-, or .Y 24 is a single bond representing a linear or branched hydrocarbon group having 1 to 8 carbon atoms Or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, Y 25 represents a single bond, —O—, or —NZ 2 —, Z 2 is a hydrogen atom, and has 1 to 18 carbon atoms. Represents a linear or branched hydrocarbon group, an aromatic ring group, or an aliphatic ring group, wherein Cy represents a divalent cyclic group selected from the following and formed by bonding at an arbitrary substitution position. Any hydrogen atom on the cyclic group may be substituted with a group selected from an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a cyano group, a fluorine atom, and a chlorine atom.
Figure JPOXMLDOC01-appb-C000019
(Zは芳香族環基、又は脂肪族環基を含有していても良い炭素数1~18の直鎖状若しくは分岐状の2価の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000019
(Z 1 represents a linear or branched divalent hydrocarbon group having 1 to 18 carbon atoms which may contain an aromatic ring group or an aliphatic ring group.)
     R103Si(OR104     (4)
(R103は、任意の水素原子が、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換された炭素数1~30のアルキル基であり、R104は炭素数1~5のアルキル基を表す。)
R 103 Si (OR 104 ) 3 (4)
(R 103 is an alkyl group having 1 to 30 carbon atoms in which an arbitrary hydrogen atom is substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group, and R 104 is an alkyl group having 1 to 5 carbon atoms. Represents a group.)
     Si(OR15     (5)
(R15は炭素数1~5のアルキル基を表す。)
Si (OR 15 ) 4 (5)
(R 15 represents an alkyl group having 1 to 5 carbon atoms.)
    (R13n2Si(OR144-n     (6)
(式(6)中、R13は、水素原子、又は、任意の水素原子がヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、又はウレイド基で置換されていてもよい炭素数1~10の炭化水素基であり、R14は炭素数1~5のアルキル基であり、n2は0~3の整数を表す。)
(R 13 ) n2 Si (OR 14 ) 4-n (6)
(In formula (6), R 13 is a hydrogen atom or a carbon in which any hydrogen atom may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group. A hydrocarbon group having 1 to 10 carbon atoms, R 14 is an alkyl group having 1 to 5 carbon atoms, and n2 represents an integer of 0 to 3.)
    R16Si(OR17     (7)
(R16は、炭素数1~5のアルキル基であり、R17は、炭素数1~5のアルキル基である。)
R 16 Si (OR 17 ) 3 (7)
(R 16 is an alkyl group having 1 to 5 carbon atoms, and R 17 is an alkyl group having 1 to 5 carbon atoms.)
 式(2)中、Yは単結合、-(CH-(bは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。なかでも、単結合、-(CH-(bは1~15の整数である)、-O-、-CHO-又は-COO-が、側鎖構造の合成を容易にする観点から好ましい。さらに、単結合、-(CH-(bは1~10の整数である)、-O-、-CHO-又は-COO-がより好ましい。 In Formula (2), Y 1 is a single bond, — (CH 2 ) b — (b is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Among these, a single bond, — (CH 2 ) b — (b is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is a viewpoint that facilitates the synthesis of the side chain structure. To preferred. Further, a single bond, — (CH 2 ) b — (b is an integer of 1 to 10), —O—, —CH 2 O— or —COO— is more preferable.
 式(2)中、Yは単結合、二重結合を含有する炭素数3~8の直鎖状若しくは分岐状の炭化水素基、又は、-(CR117118-(cは1~15の整数であり、R117、及びR118はそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)である。なかでも、液晶表示素子の応答速度をより顕著に改善させる観点から、-(CH-(cは1~10の整数である)が好ましい。 In formula (2), Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 117 R 118 ) c — (c is 1 And R 117 and R 118 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Of these, — (CH 2 ) c — (c is an integer of 1 to 10) is preferable from the viewpoint of significantly improving the response speed of the liquid crystal display device.
 式(2)中、Yは単結合、-(CH-(dは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。なかでも、単結合、-(CH-(dは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-が、側鎖構造の合成を容易にする観点から好ましい。さらに、単結合、-(CH-(dは1~10の整数である)、-O-、-CHO-、-COO-又は-OCO-がより好ましい。 In the formula (2), Y 3 is a single bond, — (CH 2 ) d — (d is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Among them, a single bond, — (CH 2 ) d — (d is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is used to synthesize the side chain structure. It is preferable from the viewpoint of facilitating. Further, a single bond, — (CH 2 ) d — (d is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO— is more preferable.
 式(2)中、Yは単結合、又はベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子により置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数12~25の2価の有機基でもよい。なかでも、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数12~25の有機基が好ましい。 In formula (2), Y 4 is a single bond or a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 carbon atom. It may be substituted with an alkyl group having 3 to 3, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Further, Y 4 may be a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton. Of these, an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexane ring, or a steroid skeleton is preferable.
 式(2)中、Yはベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
 式(2)中、n1は0~4の整数である。好ましくは、0~2の整数である。
In Formula (2), Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 to It may be substituted with a 3 alkyl group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
In the formula (2), n1 is an integer of 0 to 4. Preferably, it is an integer of 0-2.
 式(2)中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基であることが好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。さらに好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。 In formula (2), Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. . Among these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式(1)で表されるアルコキシシランのR102は、炭素数1~5、好ましくは1~3のアルキル基である。より好ましくは、Rがメチル基又はエチル基である。 R 102 of the alkoxysilane represented by the formula (1) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, R 2 is a methyl group or an ethyl group.
 以下に式(1)で表されるアルコキシシランの具体例として式[1-1]~[1-31]を挙げるが、これに限定されるものではない。なお、下記式[1-1]~[1-31]におけるRは、式(1)におけるR102と同じである。 Specific examples of the alkoxysilane represented by the formula (1) include formulas [1-1] to [1-31], but are not limited thereto. Note that R 2 in the following formulas [1-1] to [1-31] is the same as R 102 in the formula (1).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(式[1-19]~式[1-21]中、R105は-O-、-OCH-、-CHO-、-COOCH-又は-CHOCO-を示し、R106は炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000025
(In the formulas [1-19] to [1-21], R 105 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—, and R 106 represents (It is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.)
Figure JPOXMLDOC01-appb-C000026
(式[1-22]~式[1-24]中、R107は単結合、-COO-、-OCO-、-COOCH-、-CHOCO-、-(CHO-(nは1~5の整数)、-OCH-又は-CH-を示し、R108は炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000026
(In the formulas [1-22] to [1-24], R 107 represents a single bond, —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, — (CH 2 ) n O— ( n represents an integer of 1 to 5), —OCH 2 — or —CH 2 —, and R 108 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000027
(式[1-25]及び式[1-26]中、R109は-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-又は-O-を示し、R110はフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。)
Figure JPOXMLDOC01-appb-C000027
(In the formulas [1-25] and [1-26], R 109 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 - or -O- are shown, R 110 is a fluorine group, a cyano group, trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
Figure JPOXMLDOC01-appb-C000028
(式[1-27]及び式[1-28]中、R111は炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000028
(In Formula [1-27] and Formula [1-28], R 111 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. )
Figure JPOXMLDOC01-appb-C000029
(式[1-29]及び式[1-30]中、R112は、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000029
(In Formula [1-29] and Formula [1-30], R 112 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .)
Figure JPOXMLDOC01-appb-C000030
(式[1-31]中、Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基であり、Bは1,4-シクロへキシレン基又は1,4-フェニレン基であり、Bは酸素原子又は-COO-*(但し、「*」を付した結合手がBと結合する。)であり、Bは酸素原子又は-COO-*(但し、「*」を付した結合手が(CH)a)と結合する。)である。また、aは0又は1の整数であり、aは2~10の整数であり、aは0又は1の整数である。)
Figure JPOXMLDOC01-appb-C000030
(In the formula [1-31], B 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and B 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group. B 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to B 3 ), and B 1 is an oxygen atom or —COO— * (where “*” ”Is a bond with (CH 2 ) a 2 ). A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1. )
 式(1)で表されるアルコキシシランは、シロキサンポリマー(ポリシロキサン)とした際の溶媒への溶解性、液晶配向膜とした場合における液晶の配向性、プレチルト角特性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。また、炭素数10~18の長鎖アルキル基を含有するアルコキシシランとの併用も可能である。 The alkoxysilane represented by the formula (1) is soluble in a solvent when a siloxane polymer (polysiloxane) is used, liquid crystal alignment when a liquid crystal alignment film is used, pretilt angle characteristics, voltage holding ratio, accumulated charge. Depending on the characteristics such as, one kind or a mixture of two or more kinds may be used. Further, it can be used in combination with an alkoxysilane containing a long-chain alkyl group having 10 to 18 carbon atoms.
 このような式(1)で表されるアルコキシシランは、例えば、特開昭61-286393号公報に記載されるような公知の方法で製造することが可能である。 Such an alkoxysilane represented by the formula (1) can be produced by a known method as described in, for example, JP-A-61-286393.
 式(3)で表されるアルコキシシランのR21、R22、及びR23は、それぞれ独立に、-OCH、-OC、-OCH(CH、-OC(CH、-CH、-Ph(すなわち-C)、-Cl、-OCOCH、-OH、-H、又はそれらの組合せからなる置換基である。好ましくは、R21、R22、及びR23は、それぞれ独立に、-OCH又は-OCである。 R 21 , R 22 , and R 23 of the alkoxysilane represented by the formula (3) are each independently —OCH 3 , —OC 2 H 5 , —OCH (CH 3 ) 2 , —OC (CH 3 ). 3 , —CH 3 , —Ph (ie, —C 6 H 5 ), —Cl, —OCOCH 3 , —OH, —H, or a combination thereof. Preferably, R 21 , R 22 , and R 23 are each independently —OCH 3 or —OC 2 H 5 .
 R24は、水素原子、又はメチル基である。 R 24 is a hydrogen atom or a methyl group.
 式(3)で表されるアルコキシシランのY21は、単結合、又は、二重結合を含有していても良い炭素数1~8の直鎖状若しくは分岐状の炭化水素基である。好ましくは、Y21は、単結合、又は炭素数3~5の直鎖状炭化水素基である。 Y 21 of the alkoxysilane represented by the formula (3) is a linear or branched hydrocarbon group having 1 to 8 carbon atoms which may contain a single bond or a double bond. Preferably, Y 21 is a single bond or a linear hydrocarbon group having 3 to 5 carbon atoms.
 式(3)で表されるアルコキシシランのY22は、単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NPh-、-NHCO-、-N(CH)CO-、-NPhCO-、-NHSO-、-N(CH)SO-、-NPhSO-、-S-、-SO-、-NHCONH、-N(CH)CONH-、-NPhCONH-、-NHCOO-、及び、-OCONH-から選ばれる結合基である。好ましくは、Y22は、単結合である。 Y 22 of the alkoxysilane represented by the formula (3) is a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NPh—, -NHCO -, - N (CH 3 ) CO -, - NPhCO -, - NHSO 2 -, - N (CH 3) SO 2 -, - NPhSO 2 -, - S -, - SO 2 -, - NHCONH, - The bonding group is selected from N (CH 3 ) CONH—, —NPhCONH—, —NHCOO—, and —OCONH—. Preferably, Y 22 is a single bond.
 Y23は単結合、又は、炭素数1~8の直鎖状若しくは分岐状の炭化水素基であり、好ましくは、単結合である。 Y 23 is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, preferably a single bond.
 Y24は単結合、又は、炭素数1~8の直鎖状若しくは分岐状の炭化水素基であり、好ましくは、単結合又は炭素数1~3の直鎖状の炭化水素基である。 Y 24 is a single bond or a linear or branched hydrocarbon group having 1 to 8 carbon atoms, preferably a single bond or a linear hydrocarbon group having 1 to 3 carbon atoms.
 Y25は単結合、-O-、又は、-NZ-である。ここで、Zは水素原子、炭素数1~18の直鎖状若しくは分岐状の炭化水素基、芳香族環基、又は、脂肪族環基である。好ましくは、単結合、-O-、又は-NH-である。 Y 25 is a single bond, —O—, or —NZ 2 —. Here, Z 2 is a hydrogen atom, a linear or branched hydrocarbon group having 1 to 18 carbon atoms, an aromatic ring group, or an aliphatic ring group. Preferred is a single bond, —O—, or —NH—.
 式(3)で表されるアルコキシシランのCyは、下記から選ばれ任意の置換位置で結合形成される2価の環状基を表し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、シアノ基、フッ素原子、及び、塩素原子から選ばれるもので置換されていても良い。好ましくは、Cyは、ベンゼン環、ビフェニル環である。なお、「任意の置換位置で結合形成される2価の環状基」とは、下記の環状基の2本の結合手の位置が任意でよいということを意味する。 Cy of the alkoxysilane represented by the formula (3) represents a divalent cyclic group selected from the following and formed by bonding at any substitution position, and any hydrogen atom on these cyclic groups has 1 carbon atom. It may be substituted with an alkyl group having 3 to 3, an alkoxy group having 1 to 3 carbon atoms, a cyano group, a fluorine atom, and a chlorine atom. Preferably, Cy is a benzene ring or a biphenyl ring. In addition, “a divalent cyclic group formed by bonding at an arbitrary substitution position” means that the position of two bonds of the following cyclic group may be arbitrary.
Figure JPOXMLDOC01-appb-C000031
(Zは芳香族環基、又は、脂肪族環基を含有していても良い炭素数1~18の直鎖状若しくは分岐状の2価の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000031
(Z 1 represents a linear or branched divalent hydrocarbon group having 1 to 18 carbon atoms which may contain an aromatic ring group or an aliphatic ring group.)
 式(4)で表されるアルコキシシランのR103は、任意の水素原子が、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換されたアルキル基である。置換されている水素原子は1つ以上であり、好ましくは1つである。アルキル基の炭素数は1~30が好ましく、より好ましくは1~20である。更に好ましくは1~10である。 R 103 of the alkoxysilane represented by the formula (4) is an alkyl group in which an arbitrary hydrogen atom is substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group. The number of substituted hydrogen atoms is one or more, preferably one. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. More preferably, it is 1-10.
 R104は、炭素数1~5のアルキル基であり、好ましくは炭素数1~3であり、特に好ましくは炭素数1~2である。 R 104 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
 式(4)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン、スチリルエチルトリメトキシシラン、スチリルエチルトリエトキシシラン、又は3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシランである。 Although the specific example of the alkoxysilane represented by Formula (4) is given, it is not limited to these. For example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxy Silane, acryloxyethyltrimethoxysilane, acryloxyethyltriethoxysilane, styrylethyltrimethoxysilane, styrylethyltriethoxysilane, or 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane.
 式(6)で表されるアルコキシシランのR13は、水素原子、又は任意の水素原子がヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、又はウレイド基で置換されていてもよい、炭素数1~10の炭化水素基であり、好ましくは、アミノ基、グリシド基、ウレイド基である。R14は炭素数1~5、好ましくは1~3のアルキル基であり、n2は0~3、好ましくは0~2の整数を表す。) R 13 of the alkoxysilane represented by the formula (6) has a hydrogen atom or an arbitrary hydrogen atom substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group. Or a hydrocarbon group having 1 to 10 carbon atoms, preferably an amino group, a glycid group, or a ureido group. R 14 represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and n2 represents an integer of 0 to 3, preferably 0 to 2. )
 式(6)で表されるアルコキシシランのR13は水素原子又は炭素数が1~10の有機基である。炭素数が1~10の有機基であるR13の例としては、炭素数が1~10の、脂肪族炭化水素、脂肪族環、芳香族環及びヘテロ環のような環構造が挙げられ、これらは不飽和結合や、酸素原子、窒素原子、硫黄原子等のヘテロ原子等を含んでいてもよく、また、直鎖状でも分岐状でもよい。炭素数が1~6であることが好ましい。加えて、この炭化水素基の任意の水素原子は、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基などで置換されていてもよい。 R 13 of the alkoxysilane represented by the formula (6) is a hydrogen atom or an organic group having 1 to 10 carbon atoms. Examples of R 13 which is an organic group having 1 to 10 carbon atoms include ring structures such as aliphatic hydrocarbons, aliphatic rings, aromatic rings and heterocyclic rings having 1 to 10 carbon atoms, These may contain an unsaturated bond, a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom, and may be linear or branched. The number of carbon atoms is preferably 1-6. In addition, any hydrogen atom of the hydrocarbon group may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group, or the like.
 このような式(6)で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。例えば、3-(2-アミノエチルアミノプロピル)トリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリエトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3―アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン及びγ-ウレイドプロピルトリプロポキシシラン等が挙げられる。 Specific examples of the alkoxysilane represented by the formula (6) are given below, but are not limited thereto. For example, 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) Triethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, diphenyl Diethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane and γ-ureidopropyltri And propoxysilane.
 式(6)で表されるアルコキシシランにおいて、n2が0であるアルコキシシランは、テトラアルコキシシランである。テトラアルコキシシランは、式(1)、(3)又は(4)で表されるアルコキシシランと重縮合反応をし易い。 In the alkoxysilane represented by the formula (6), the alkoxysilane in which n2 is 0 is tetraalkoxysilane. Tetraalkoxysilane easily undergoes a polycondensation reaction with the alkoxysilane represented by the formula (1), (3) or (4).
 このような式(6)のアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランが好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。 As the alkoxysilane of the formula (6), tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
 式(5)で表されるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランが好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。 As the alkoxysilane represented by the formula (5), tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
 式(7)で表されるアルコキシシランのR16は、炭素数1~5のアルキル基である。アルキル基の炭素数は1~4が好ましく、より好ましくは1~3である。 R 16 of the alkoxysilane represented by the formula (7) is an alkyl group having 1 to 5 carbon atoms. The alkyl group preferably has 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms.
 R17は、炭素数1~5のアルキル基であり、好ましくは炭素数1~3であり、特に好ましくは炭素数1~2である。 R 17 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
 式(7)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、メチルトリエトキシシラン、メチルトリメトキシシラン、ジメチルトリメトキシシラン、ジメチルトリエトキシシラン、n-プロピルトリメトキシシラン、又はn-プロピルトリエトキシシランである。 Although the specific example of the alkoxysilane represented by Formula (7) is given, it is not limited to these. For example, methyltriethoxysilane, methyltrimethoxysilane, dimethyltrimethoxysilane, dimethyltriethoxysilane, n-propyltrimethoxysilane, or n-propyltriethoxysilane.
 本発明の液晶配向剤が含有するポリシロキサンは、高価なポリイミド系と比較して安価なため、本発明の液晶配向剤は安価に製造することができ、汎用性が高い。 Since the polysiloxane contained in the liquid crystal aligning agent of the present invention is less expensive than an expensive polyimide, the liquid crystal aligning agent of the present invention can be manufactured at low cost and has high versatility.
 本発明のポリシロキサンの分子量は、重量平均分子量で2,000~500,000が好ましく、5,000~300,000がより好ましく、10,000~100,000がさらに好ましい。また、数平均分子量では、1,000~250,000が好ましく、2,500~150,000がより好ましく、5,000~50,000がさらに好ましい。 The molecular weight of the polysiloxane of the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000 in terms of weight average molecular weight. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
 上記式[1]で表わされるアルコキシシラン化合物の割合は、ポリシロキサンを得るために用いられる全アルコキシシラン成分中(100モル%)において、良好な液晶配向性を得るためは、1モル%以上が好ましく、1.5モル%以上がより好ましく、2モル%以上がさらに好ましい。また、形成される液晶配向膜の充分な硬化特性を得るためには、30モル%以下が好ましく、25モル%以下がより好ましい。 The proportion of the alkoxysilane compound represented by the formula [1] is 1 mol% or more in order to obtain good liquid crystal alignment in all alkoxysilane components (100 mol%) used to obtain polysiloxane. Preferably, 1.5 mol% or more is more preferable, and 2 mol% or more is more preferable. Further, in order to obtain sufficient curing characteristics of the liquid crystal alignment film to be formed, 30 mol% or less is preferable, and 25 mol% or less is more preferable.
<ポリシロキサンの製造方法>
 本発明のポリシロキサンを得る方法は特に限定されず、公知の方法を用いることができる。ポリシロキサンを得るためにアルコキシシランを重縮合する方法として、例えば、アルコキシシランをアルコール又はグリコールなどの溶媒中で、加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。
<Method for producing polysiloxane>
The method for obtaining the polysiloxane of the present invention is not particularly limited, and a known method can be used. As a method of polycondensation of alkoxysilane in order to obtain polysiloxane, for example, a method of hydrolyzing and condensing alkoxysilane in a solvent such as alcohol or glycol can be mentioned. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole.
 本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5~2.5倍モルであるのが好ましく、0.5~2倍モルがより好ましい。 In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 times mol of all alkoxy groups in the alkoxysilane. More preferably, it is 5 to 2 moles.
 また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸、アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ、塩酸、硫酸、硝酸などの金属塩などが触媒として用いられる。加えて、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌する、還流下で1時間加熱・撹拌するなどの方法が挙げられる。 Usually, for the purpose of promoting hydrolysis / condensation reaction, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid, and alkalis such as ammonia, methylamine, ethylamine, ethanolamine, Metal salts such as hydrochloric acid, sulfuric acid and nitric acid are used as catalysts. In addition, it is also common to further promote the hydrolysis / condensation reaction by heating the solution in which the alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, a method of heating / stirring at 50 ° C. for 24 hours or heating / stirring under reflux for 1 hour can be mentioned.
 また、別法として、例えば、アルコキシシラン、溶媒及び蓚酸の混合物を加熱して重縮合する方法が挙げられる。具体的には、あらかじめアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、用いる蓚酸の量は、アルコキシシランが有する全アルコキシ基の1モルに対して0.2~2モルとすることが好ましく、0.5~2モルがより好ましい。この方法における加熱は、液温50~180℃で行うことができる。好ましくは、液の蒸発、揮散などが起こらないように、還流下で数十分~十数時間加熱する方法である。 As another method, for example, a method of heating and polycondensing a mixture of alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to obtain an alcohol solution of oxalic acid, the alkoxysilane is mixed while the solution is heated. In this case, the amount of succinic acid used is preferably 0.2 to 2 mol, more preferably 0.5 to 2 mol, relative to 1 mol of all alkoxy groups contained in the alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. A method of heating for several tens of minutes to several tens of hours under reflux is preferred so that the liquid does not evaporate or volatilize.
 本発明においては、ポリシロキサンを得る際に、アルコキシシランを複数種用いることができるが、その場合は、アルコキシシランをあらかじめ混合した混合物として混合してもよいし、複数種のアルコキシシランを順次混合してもよい。すなわち、アルコキシシラン成分を反応させる順序には限定はなく、例えば、アルコキシシラン成分を一度に反応させてもよく、また、一部のアルコキシシランを反応させた後に、他のアルコキシシランを添加して反応させてもよい。 In the present invention, when obtaining polysiloxane, a plurality of types of alkoxysilanes can be used. In that case, alkoxysilanes may be mixed in advance as a mixture, or a plurality of types of alkoxysilanes may be sequentially mixed. May be. That is, there is no limitation on the order in which the alkoxysilane components are reacted. For example, the alkoxysilane components may be reacted at once, or after some alkoxysilanes are reacted, other alkoxysilanes are added. You may make it react.
 アルコキシシランを重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、アルコキシシランを溶解するものであれば特に限定されない。また、アルコキシシランが溶解しない場合でも、アルコキシシランの重縮合反応の進行とともに溶解するものであればよい。一般的には、アルコキシシランの重縮合反応によりアルコールが生成するため、アルコール類、グリコール類、グリコールエーテル類、又はアルコール類と相溶性の良好な有機溶媒が用いられる。 The solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even when alkoxysilane does not melt | dissolve, what melt | dissolves as the polycondensation reaction of alkoxysilane progresses is sufficient. In general, since an alcohol is generated by a polycondensation reaction of alkoxysilane, an alcohol, a glycol, a glycol ether, or an organic solvent having good compatibility with the alcohol is used.
 このような重合溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール,ジアセトンアルコール等のアルコール類、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、2,3-ペンタンジオール、1,6-ヘキサンジオール等のグリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のグリコールエーテル類、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド、m-クレゾール等が挙げられる。
 本発明においては、上記の重合溶媒を複数種混合して用いてもよい。
Specific examples of such a polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1 , 5-pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol and other glycols, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether , Ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , Diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, Glycol ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone Dimethyl sulfoxide, tetramethylurea, hexamethylphosphotriamide, m-cresol and the like.
In the present invention, a plurality of the above polymerization solvents may be mixed and used.
 上記の方法で得られたポリシロキサンの重合溶液(以下、重合溶液ともいう。)は、原料として仕込んだ全アルコキシシランのケイ素原子をSiOに換算した濃度(以下、SiO換算濃度と称す。)で、好ましくは20質量%以下、さらには5~15質量%とすることがより好ましい。この濃度範囲において任意の濃度を選択することにより、ゲルの生成を抑え、均質な溶液を得ることができる。 The polysiloxane polymerization solution (hereinafter also referred to as polymerization solution) obtained by the above method is a concentration obtained by converting silicon atoms of all alkoxysilanes charged as raw materials into SiO 2 (hereinafter referred to as SiO 2 conversion concentration). ), Preferably 20% by mass or less, more preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained.
<ポリシロキサンの溶液>
 本発明においては、上記の方法で得られたポリシロキサンの重合溶液をそのまま重合体成分として用いても良く、必要に応じて、上記の方法で得られた溶液を、濃縮したり、溶媒を加えて希釈したり、又は他の溶媒に置換して、重合体成分として用いても良い。
 その際、用いる溶媒(以下、添加溶媒ともいう)は、重合溶媒と同じでもよいし、別の溶媒でもよい。この添加溶媒は、ポリシロキサンが均一に溶解している限りにおいて特に限定されず、一種でも複数種でも任意に選択して用いることができる。
<Polysiloxane solution>
In the present invention, the polysiloxane polymerization solution obtained by the above method may be used as a polymer component as it is. If necessary, the solution obtained by the above method is concentrated or a solvent is added. The polymer component may be diluted with another solvent or substituted with another solvent.
In that case, the solvent to be used (hereinafter also referred to as additive solvent) may be the same as the polymerization solvent, or may be another solvent. The additive solvent is not particularly limited as long as the polysiloxane is uniformly dissolved, and one kind or plural kinds can be arbitrarily selected and used.
 かかる添加溶媒の具体例としては、上記の重合溶媒の例として挙げた溶媒のほかに、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸メチル、酢酸エチル、乳酸エチル等のエステル類等が挙げられる。これらの溶媒は、液晶配向剤の粘度の調整、更には、スピンコート、フレキソ印刷、インクジェット等で液晶配向剤を基板上に塗布する際の塗布性を向上できる。 Specific examples of the additive solvent include, in addition to the solvents mentioned as examples of the polymerization solvent, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and esters such as methyl acetate, ethyl acetate, and ethyl lactate. It is done. These solvents can adjust the viscosity of the liquid crystal aligning agent, and further improve the coating property when the liquid crystal aligning agent is applied on the substrate by spin coating, flexographic printing, ink jetting or the like.
<その他の成分>
 本発明においては、本発明の効果を損なわない限りにおいて、ポリシロキサン以外のその他の成分、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、更には、界面活性剤等の成分が含まれていてもよい。
 無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、又はフッ化マグネシウム微粒子等の微粒子が好ましく、特にコロイド溶液の状態であるものが好ましい。このコロイド溶液は、無機微粒子を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。無機微粒子としては、その平均粒子径が0.001~0.2μmであることが好ましく、更に好ましくは0.001~0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液を用いて形成される硬化被膜の透明性が低下する場合がある。
<Other ingredients>
In the present invention, as long as the effects of the present invention are not impaired, other components other than polysiloxane, for example, inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, and further components such as surfactants are included. It may be.
As the inorganic fine particles, fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and those in the state of a colloidal solution are particularly preferable. This colloidal solution may be a dispersion of inorganic fine particles in a dispersion medium, or a commercially available colloidal solution. The inorganic fine particles preferably have an average particle size of 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm. When the average particle diameter of the inorganic fine particles exceeds 0.2 μm, the transparency of the cured film formed using the prepared coating liquid may be lowered.
 無機微粒子の分散媒としては、水若しくは有機溶剤を挙げることができる。コロイド溶液としては、被膜形成用塗布液の安定性の観点から、pH又はpKaが1~10に調整されていることが好ましい。より好ましくは2~7である。
 コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキシレングリコール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類;を挙げることができる。これらの中で、アルコール類又はケトン類が好ましい。これら有機溶剤は、単独で又は2種以上を混合して分散媒として使用することができる。
Examples of the dispersion medium of the inorganic fine particles include water or an organic solvent. As the colloidal solution, it is preferable that the pH or pKa is adjusted to 1 to 10 from the viewpoint of the stability of the coating solution for film formation. More preferably, it is 2-7.
Examples of the organic solvent used for the dispersion medium of the colloidal solution include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and γ-butyrolactone; And ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols or ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
 メタロキサンオリゴマー、又はメタロキサンポリマーとしては、ケイ素、チタン、アルミニウム、タンタル、アンチモン、ビスマス、錫、インジウム、亜鉛等の単独又は複合酸化物前駆体が用いられる。メタロキサンオリゴマー、又はメタロキサンポリマーとしては、市販品であっても、金属アルコキシド、硝酸塩、塩酸塩、カルボン酸塩等のモノマーから、加水分解等の常法により得られたものであってもよい。 As the metalloxane oligomer or metalloxane polymer, single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used. The metalloxane oligomer or metalloxane polymer may be a commercially available product or may be obtained from a monomer such as a metal alkoxide, nitrate, hydrochloride, carboxylate or the like by a conventional method such as hydrolysis. .
 市販品のメタロキサンオリゴマー、又はメタロキサンポリマーの具体例としては、コルコート社製の、メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48、EMS-485、SS-101等のシロキサンオリゴマー又はシロキサンポリマー、関東化学社製のチタニウム-n-ブトキシドテトラマー等のチタノキサンオリゴマーが挙げられる。これらは単独又は2種以上混合して使用してもよい。
 また、レベリング剤及び界面活性剤等は、公知のものを用いることができ、特に市販品は入手が容易なので好ましい。
 また、ポリシロキサンに、上記したその他の成分を混合する方法は、ポリシロキサンと同時であっても、後であってもよく、特に限定されない。
Specific examples of commercially available metalloxane oligomers or metalloxane polymers include siloxane oligomers such as methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48, EMS-485, and SS-101 manufactured by Colcoat. Examples thereof include siloxane polymers and titanoxane oligomers such as titanium-n-butoxide tetramer manufactured by Kanto Chemical Co., Inc. You may use these individually or in mixture of 2 or more types.
Moreover, a leveling agent, surfactant, etc. can use a well-known thing, and since a commercial item is easy to acquire especially, it is preferable.
Moreover, the method of mixing the above-mentioned other components with the polysiloxane may be simultaneous with or after the polysiloxane, and is not particularly limited.
<液晶配向剤>
 本発明の液晶配向剤は、上述したポリシロキサン及び必要に応じてその他の成分を含有する溶液である。その際、溶媒としては、上述したポリシロキサンの重合溶媒及び添加溶媒からなる群から選ばれる溶媒が用いられる。液晶配向剤におけるポリシロキサンの含有量は、SiO換算濃度が好ましくは0.5~15質量%、より好ましくは1~6質量%である。このようなSiO換算濃度の範囲であれば、一回の塗布で所望の膜厚を得やすく、充分な溶液のポットライフが得られ易い。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is a solution containing the polysiloxane mentioned above and other components as needed. In this case, as the solvent, a solvent selected from the group consisting of the above-mentioned polysiloxane polymerization solvent and additive solvent is used. The content of polysiloxane in the liquid crystal aligning agent is preferably 0.5 to 15% by mass, more preferably 1 to 6% by mass in terms of SiO 2 equivalent concentration. Be in the range of such terms of SiO 2 concentration, easy to obtain a desired film thickness by a single coating, easy pot life sufficient solution is obtained.
 本発明の液晶配向剤を調製する方法は特に限定されない。本発明に用いるポリシロキサン、必要に応じて加えられるその他の成分が均一に混合した状態であればよい。通常、ポリシロキサンは、溶媒中で重縮合されるので、ポリシロキサンの溶液をそのまま用いるか、ポリシロキサンの溶液に必要に応じてその他の成分を添加することが簡便である。更に、ポリシロキサンの重合溶液をそのまま用いる方法が最も簡便である。
 また、液晶配向剤中におけるポリシロキサンの含有量を調整する際には、上述したポリシロキサンの重合溶媒及び添加溶媒からなる群から選ばれる溶媒を用いることができる。
The method for preparing the liquid crystal aligning agent of the present invention is not particularly limited. The polysiloxane used in the present invention may be in a state where other components added as necessary are uniformly mixed. Since polysiloxane is usually polycondensed in a solvent, it is convenient to use the polysiloxane solution as it is or to add other components to the polysiloxane solution as necessary. Furthermore, the most convenient method is to use the polysiloxane polymerization solution as it is.
Moreover, when adjusting content of polysiloxane in a liquid crystal aligning agent, the solvent chosen from the group which consists of the polymerization solvent and addition solvent of the polysiloxane mentioned above can be used.
 本発明の液晶配向剤が含有する有機溶媒の含有量は、塗布により均一な薄膜を形成するという観点から、液晶配向剤中、90~99質量%が好ましく、92~97質量%がより好ましい。これらの含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。 The content of the organic solvent contained in the liquid crystal aligning agent of the present invention is preferably 90 to 99% by mass and more preferably 92 to 97% by mass in the liquid crystal aligning agent from the viewpoint of forming a uniform thin film by coating. These contents can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
 また、有機溶媒中には、塗膜の均一性を向上させる目的で、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールモノへキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、2-(2-エトキシプロポキシ)プロパノール、ジアセトンアルコール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒を含有することが好ましい。 Also, in organic solvents, for the purpose of improving the uniformity of the coating film, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol mono Hexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy- 2-propanol, 1- Toxi-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, di Propylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, 4-hydroxy-4-methyl-2-pentanone, 2- (2-ethoxypropoxy) propanol, diacetone alcohol, methyl lactate, ethyl lactate, It is preferable to contain a solvent having a low surface tension such as lactic acid n-propyl ester, lactic acid n-butyl ester, and lactyl isoamyl ester.
<液晶配向膜>
 本発明の液晶配向膜は、上述した液晶配向剤を用いて得られる。該液晶配向剤を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのまま液晶配向膜として用いるか、ラビング処理や光照射などで配向処理をしてから液晶配向膜として用いることができる。
<Liquid crystal alignment film>
The liquid crystal aligning film of this invention is obtained using the liquid crystal aligning agent mentioned above. After applying the liquid crystal aligning agent to the substrate, the cured film obtained by drying and baking is used as it is as the liquid crystal alignment film, or after being subjected to the alignment treatment by rubbing treatment or light irradiation, the liquid crystal alignment film is used. Can be used.
 この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板;アクリル基板やポリカーボネート基板などのプラスチック基板;などを用いることができる。さらに、液晶駆動のためのITOやIZO(Indium Zinc Oxide)電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極は金属アルミニウム等の光を反射する材料も使用できる。 In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate; a plastic substrate such as an acrylic substrate or a polycarbonate substrate; Furthermore, it is preferable from the viewpoint of simplification of the process to use a substrate on which an ITO for driving a liquid crystal or an IZO (Indium Zinc Oxide) electrode is formed. In the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as metal aluminum can be used as the electrode.
 具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。 Specific examples include glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, tri Examples thereof include a substrate in which a transparent electrode is formed on a plastic plate such as acetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose.
 液晶配向剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. From the standpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
 液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃~150℃、好ましくは60℃~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。 The drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, a drying process is included. Is preferred. The drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C., for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
 液晶配向剤を塗布した後の焼成は、焼成温度は、100℃~350℃の任意の温度で行うことができるが、好ましくは140℃~300℃であり、より好ましくは150℃~230℃、更に好ましくは160℃~220℃である。焼成時間は5~240分の任意の時間で焼成を行うことができ、好ましくは10~90分であり、より好ましくは20~80分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環オーブン、IRオーブン、ベルト炉などを用いることができる。 Firing after applying the liquid crystal aligning agent can be performed at an arbitrary temperature of 100 ° C. to 350 ° C., preferably 140 ° C. to 300 ° C., more preferably 150 ° C. to 230 ° C., More preferably, it is 160 ° C to 220 ° C. The firing time can be any time of 5 to 240 minutes, preferably 10 to 90 minutes, more preferably 20 to 80 minutes. For the heating, a generally known method such as a hot plate, a hot air circulation oven, an IR oven, a belt furnace or the like can be used.
 液晶配向膜中のポリシロキサンは、焼成工程において、重縮合が進行する。しかし、本発明においては、本発明の効果を損なわない限り、完全に重縮合させる必要はない。但し、液晶セルの製造行程で必要とされる、シール剤硬化などの熱処理温度より、10℃以上高い温度で焼成することが好ましい。
 この硬化膜の厚みは、必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が得られ易いので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。
The polysiloxane in the liquid crystal alignment film undergoes polycondensation in the firing step. However, in the present invention, it is not necessary to completely polycondense unless the effects of the present invention are impaired. However, firing is preferably performed at a temperature that is 10 ° C. or more higher than the heat treatment temperature required for the manufacturing process of the liquid crystal cell, such as sealing agent curing.
The thickness of the cured film can be selected as necessary, but is preferably 5 nm or more, more preferably 10 nm or more, since the reliability of the liquid crystal display element can be easily obtained. Moreover, when the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is suitable.
<液晶表示素子>
 本発明の液晶表示素子は、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ、本発明の液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する液晶表示素子である。具体的には、本発明の液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することで作製される液晶セルを具備する液晶表示素子である。
<Liquid crystal display element>
The liquid crystal display element of the present invention is formed of two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal aligning agent provided between the substrate and the liquid crystal layer. A liquid crystal display element comprising a liquid crystal cell having the above-described liquid crystal alignment film. Specifically, the liquid crystal aligning agent of the present invention is applied onto two substrates and baked to form a liquid crystal aligning film, and the two substrates are arranged so that the liquid crystal aligning films face each other. A liquid crystal display element including a liquid crystal cell manufactured by sandwiching a liquid crystal layer composed of liquid crystal between two substrates and irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer.
 この液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにして、もう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにして、もう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製することができる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
 液晶を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶を注入する真空法、液晶を滴下した後に封止を行う滴下法などを挙げることができる。
As a method of sandwiching the liquid crystal layer between two substrates, a known method can be exemplified. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and the liquid crystal is injected under reduced pressure to seal. Also, a pair of substrates on which a liquid crystal alignment film is formed are prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate, and then liquid crystal is dropped, and then the surface on which the liquid crystal alignment film is formed The liquid crystal cell can also be manufactured by a method in which the other substrate is attached and sealed so that the inner side is on the inside. The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
The method for injecting the liquid crystal is not particularly limited, and examples thereof include a vacuum method for injecting liquid crystal after the inside of the manufactured liquid crystal cell is decompressed, and a dropping method for sealing after dropping the liquid crystal.
 液晶が導入された液晶セルの、両側基板の電極間に電圧を印加した状態で紫外線を照射することにより、液晶配向膜中のアクリル基やメタクリル基などの架橋性基がその場で重合し架橋されることで、液晶ディスプレイの応答速度が速くなる。
 液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する工程は、例えば基板上に設置されている電極間に電圧をかけることで、液晶配向膜及び液晶層に電圧を印加し、この電圧を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては、例えば5~80Vp-p、好ましくは5~60Vp-pである。紫外線の照射量は、例えば1~60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。
By irradiating ultraviolet rays with a voltage applied between the electrodes on both sides of the liquid crystal cell in which liquid crystal is introduced, crosslinkable groups such as acrylic and methacrylic groups in the liquid crystal alignment film are polymerized in situ and crosslinked. As a result, the response speed of the liquid crystal display is increased.
The step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying a voltage between the electrodes installed on the substrate to thereby apply the voltage to the liquid crystal alignment film and the liquid crystal layer. There is a method of applying a voltage and irradiating ultraviolet rays while maintaining this voltage. Here, the voltage applied between the electrodes is, for example, 5 to 80 Vp-p, preferably 5 to 60 Vp-p. The irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is improved.
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記<液晶配向膜>で記載した基板と同様のものを挙げることができる。従来の電極パターンや突起パターンが設けられた基板を用いてもよいが、本発明の液晶表示素子においては、液晶配向膜を形成する液晶配向剤として、上記本発明の液晶配向剤を用いているため、片側基板に1~10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても動作可能であり、この構造の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。 The substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed. Specific examples thereof include the same substrates as those described in the above <Liquid crystal alignment film>. A substrate provided with a conventional electrode pattern or protrusion pattern may be used, but in the liquid crystal display element of the present invention, the liquid crystal aligning agent of the present invention is used as the liquid crystal aligning agent for forming the liquid crystal aligning film. Therefore, operation is possible even in a structure in which a line / slit electrode pattern of 1 to 10 μm is formed on one side substrate, and a slit pattern or projection pattern is not formed on the opposite substrate. This process can be simplified and high transmittance can be obtained.
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
As a high-performance element such as a TFT type element, an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
In the case of a transmissive liquid crystal display element, it is common to use a substrate as described above. However, in a reflective liquid crystal display element, if only one substrate is used, an opaque substrate such as a silicon wafer may be used. Is possible. At that time, a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
 本発明の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の垂直配向方式で使用される液晶材料、例えばメルク社製のMLC-6608、MLC-6609などのネガ型の液晶や、MLC-2041などを用いることができる。 The liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and a liquid crystal material used in a conventional vertical alignment method, for example, a negative type liquid crystal such as MLC-6608 or MLC-6609 manufactured by Merck Alternatively, MLC-2041 or the like can be used.
 以下、実施例を掲げて本発明を詳しく説明するが、本発明はこれらの実施例に限定して解釈されるものではない。
 以下に、合成例1~3で合成した化合物の同定に用いた、1H-NMR分析の条件を示した。
 装置:Varian NMR System 400 NB (400 MHz)
 測定溶媒:CDCl
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)
EXAMPLES Hereinafter, although an Example is hung up and this invention is demonstrated in detail, this invention is limited to these Examples and is not interpreted.
The conditions for 1 H-NMR analysis used for identification of the compounds synthesized in Synthesis Examples 1 to 3 are shown below.
Apparatus: Varian NMR System 400 NB (400 MHz)
Measuring solvent: CDCl 3
Reference substance: Tetramethylsilane (TMS) (δ0.0 ppm for 1 H)
<合成例1>
Figure JPOXMLDOC01-appb-C000032
<Synthesis Example 1>
Figure JPOXMLDOC01-appb-C000032
化合物[1]の合成
 マグネチックスターラーを備えた300ml四口フラスコに、4-(トランス-4-ヘプチルシクロヘキシル)安息香酸を30.00g(0.0992mol)、塩化チオニルを120g(1.0087mol)、及びN、N-ジメチルホルムアミドを0.07g(0.0010mol)仕込み、内温50℃にて2時間攪拌した。その後、減圧下、反応液から塩化チオニルを留去し、化合物[1]を31.80g(0.0991mol)得た(収率:100%、性状:黄色オイル)。
1H-NMR(400MHz) in CDCl3: 0.89ppm(t, J = 7.0 Hz, 3H), 0.98-1.12ppm(m, 2H), 1.18-1.39ppm(m, 13H), 1.40-1.53ppm(m, 2H), 1.83-1.93ppm(m, 4H), 2.51-2.62ppm(m, 1H), 7.32ppm(d, J = 8.2 Hz, 2H), 8.03ppm(d, J = 8.2 Hz, 2H)
Synthesis of Compound [1] A 300 ml four-necked flask equipped with a magnetic stirrer was charged with 30.00 g (0.0992 mol) of 4- (trans-4-heptylcyclohexyl) benzoic acid and 120 g (1.00087 mol) of thionyl chloride. Then, 0.07 g (0.0010 mol) of N, N-dimethylformamide was charged and stirred at an internal temperature of 50 ° C. for 2 hours. Thereafter, thionyl chloride was distilled off from the reaction solution under reduced pressure to obtain 31.80 g (0.0991 mol) of compound [1] (yield: 100%, property: yellow oil).
1 H-NMR (400 MHz) in CDCl 3 : 0.89 ppm (t, J = 7.0 Hz, 3H), 0.98-1.12 ppm (m, 2H), 1.18-1.39 ppm (m, 13H), 1.40-1.53 ppm (m , 2H), 1.83-1.93ppm (m, 4H), 2.51-2.62ppm (m, 1H), 7.32ppm (d, J = 8.2 Hz, 2H), 8.03ppm (d, J = 8.2 Hz, 2H)
化合物[2]の合成
 マグネチックスターラーを備えた1L四口フラスコに、化合物[1]を31.80g(0.0991mol)、及びトルエンを190.8g仕込み、氷浴下(内温5℃)で攪拌しながら、18.12g(0.1011mol)の3-アミノプロピルトリメトキシシランと11.03g(0.1090mol)のトリエチルアミンとを127.2gのトルエンに溶解させた溶液を、30分掛けて滴下した後、室温にて更に17時間攪拌した。その後、反応液中に析出したトリエチルアミン塩酸塩をろ過し、ろ液を192gの酢酸エチルで希釈した。次に、このろ液を200gの純水で3回洗浄した後、有機相に硫酸ナトリウムを5g加え脱水処理した。続いて、これをろ過した後、減圧下、ろ液から溶媒を完全に留去し、化合物[2]を44.49g(0.0959mol)得た(収率:97%、性状:白色結晶)。
1H-NMR(400MHz) in CDCl3: 0.70-0.75ppm(m, 2H), 0.89ppm(t, J = 7.0 Hz, 3H), 0.99-1.10ppm(m, 2H), 1.18-1.39ppm(m, 13H), 1.40-1.52ppm(m, 2H), 1.74ppm(m, 2H), 1.84-1.92ppm(m, 4H), 2.45-2.55ppm(m, 1H), 3.45ppm(q, J = 6.9 Hz, 2H), 3.57ppm(s, 9H), 6.39-6.44ppm(m, 1H), 7.25ppm(d, J = 8.2 Hz, 2H), 7.68ppm(d, J = 8.2 Hz, 2H)
Synthesis of Compound [2] In a 1 L four-necked flask equipped with a magnetic stirrer, 31.80 g (0.0991 mol) of compound [1] and 190.8 g of toluene were charged, and in an ice bath (internal temperature 5 ° C.). While stirring, a solution prepared by dissolving 18.12 g (0.0111 mol) of 3-aminopropyltrimethoxysilane and 11.03 g (0.1090 mol) of triethylamine in 127.2 g of toluene was added dropwise over 30 minutes. Then, the mixture was further stirred at room temperature for 17 hours. Thereafter, triethylamine hydrochloride precipitated in the reaction solution was filtered, and the filtrate was diluted with 192 g of ethyl acetate. Next, this filtrate was washed with 200 g of pure water three times, and then 5 g of sodium sulfate was added to the organic phase for dehydration treatment. Subsequently, after filtering this, the solvent was completely distilled off from the filtrate under reduced pressure to obtain 44.49 g (0.0959 mol) of Compound [2] (yield: 97%, property: white crystals). .
1 H-NMR (400 MHz) in CDCl 3 : 0.70-0.75 ppm (m, 2H), 0.89 ppm (t, J = 7.0 Hz, 3H), 0.99-1.10 ppm (m, 2H), 1.18-1.39 ppm (m , 13H), 1.40-1.52ppm (m, 2H), 1.74ppm (m, 2H), 1.84-1.92ppm (m, 4H), 2.45-2.55ppm (m, 1H), 3.45ppm (q, J = 6.9 Hz, 2H), 3.57ppm (s, 9H), 6.39-6.44ppm (m, 1H), 7.25ppm (d, J = 8.2 Hz, 2H), 7.68ppm (d, J = 8.2 Hz, 2H)
<合成例2>
Figure JPOXMLDOC01-appb-C000033
<Synthesis Example 2>
Figure JPOXMLDOC01-appb-C000033
化合物[3]の合成
 マグネチックスターラーを備えた500ml四口フラスコに、4-ヘプチル安息香酸を40.00g(0.1816mol)、塩化チオニルを160g(1.3449mol)、及びN、N-ジメチルホルムアミドを0.13g(0.0018mol)を仕込み、内温50℃にて2時間攪拌した。その後、減圧下、反応液から塩化チオニルを留去し、化合物[3]を43.23g(0.1811mol)を得た(収率:100%、性状:橙色オイル)。
1H-NMR(400MHz) in CDCl3: 0.88ppm(t, J = 6.9 Hz, 3H), 1.21-1.39ppm(m, 8H), 1.57-1.69ppm(m, 2H), 2.69ppm(t, J = 7.8 Hz, 2H), 7.30ppm(d, J = 8.5 Hz, 2H), 8.01ppm(d, J = 8.5 Hz, 2H)
Synthesis of Compound [3] In a 500 ml four-necked flask equipped with a magnetic stirrer, 4-heptylbenzoic acid (40.00 g, 0.1816 mol), thionyl chloride (160 g, 1.3449 mol), and N, N-dimethylformamide 0.13 g (0.0019 mol) was charged and stirred at an internal temperature of 50 ° C. for 2 hours. Thereafter, thionyl chloride was distilled off from the reaction solution under reduced pressure to obtain 43.23 g (0.1811 mol) of Compound [3] (yield: 100%, property: orange oil).
1 H-NMR (400 MHz) in CDCl 3 : 0.88 ppm (t, J = 6.9 Hz, 3H), 1.21-1.39 ppm (m, 8H), 1.57-1.69 ppm (m, 2H), 2.69 ppm (t, J = 7.8 Hz, 2H), 7.30 ppm (d, J = 8.5 Hz, 2H), 8.01 ppm (d, J = 8.5 Hz, 2H)
化合物[4]の合成
 マグネチックスターラーを備えた500ml四口フラスコに、化合物[3]を15.00g(0.0628mol)、及びトルエンを90g仕込み、氷浴下(内温5℃)、攪拌しながら、11.49g(0.0641mol)の3-アミノプロピルトリメトキシシランと6.99g(0.0690mol)のトリエチルアミンとを60gのトルエンに溶解させた溶液を、30分掛けて滴下した後、室温にて1時間攪拌した。その後、反応液中に析出したトリエチルアミン塩酸塩をろ過し、ろ液を90gの酢酸エチルで希釈した。次に、このろ液を90gの純水で3回洗浄した後、有機相に硫酸ナトリウムを2.3g加え脱水処理した。続いて、これをろ過した後、減圧下、ろ液から溶媒を完全に留去し、化合物[4]を22.32g(0.0585mol)得た(収率:93%、性状:淡黄色オイル)。
1H-NMR(400MHz) in CDCl3: 0.69-0.78ppm(m, 2H), 0.89ppm(t, J = 6.9 Hz, 3H), 1.20-1.37ppm(m, 8H), 1.54-1.66ppm(m, 2H), 1.69-1.80ppm(m, 2H), 2.64ppm(t, J = 7.7 Hz, 2H), 3.45ppm(q, J = 6.8 Hz, 2H), 3.58ppm(s, 9H), 6.38-6.48ppm(m, 1H), 7.22ppm(d, J = 8.3 Hz, 2H), 7.68ppm(d, J = 8.3 Hz, 2H)
Synthesis of Compound [4] A 500 ml four-necked flask equipped with a magnetic stirrer was charged with 15.00 g (0.0628 mol) of compound [3] and 90 g of toluene and stirred in an ice bath (internal temperature 5 ° C.). However, a solution prepared by dissolving 11.49 g (0.0641 mol) of 3-aminopropyltrimethoxysilane and 6.99 g (0.0690 mol) of triethylamine in 60 g of toluene was added dropwise over 30 minutes, and then at room temperature. For 1 hour. Thereafter, triethylamine hydrochloride precipitated in the reaction solution was filtered, and the filtrate was diluted with 90 g of ethyl acetate. Next, this filtrate was washed with 90 g of pure water three times, and then 2.3 g of sodium sulfate was added to the organic phase for dehydration treatment. Subsequently, after filtration, the solvent was completely distilled off from the filtrate under reduced pressure to obtain 22.32 g (0.0585 mol) of compound [4] (yield: 93%, property: pale yellow oil). ).
1 H-NMR (400 MHz) in CDCl 3 : 0.69-0.78 ppm (m, 2H), 0.89 ppm (t, J = 6.9 Hz, 3H), 1.20-1.37 ppm (m, 8H), 1.54-1.66 ppm (m , 2H), 1.69-1.80ppm (m, 2H), 2.64ppm (t, J = 7.7Hz, 2H), 3.45ppm (q, J = 6.8Hz, 2H), 3.58ppm (s, 9H), 6.38- 6.48ppm (m, 1H), 7.22ppm (d, J = 8.3 Hz, 2H), 7.68ppm (d, J = 8.3 Hz, 2H)
<合成例3>
Figure JPOXMLDOC01-appb-C000034
<Synthesis Example 3>
Figure JPOXMLDOC01-appb-C000034
化合物[5]の合成
 マグネチックスターラーを備えた500ml四口フラスコに、化合物[3]を15.00g(0.0628mol)、及びトルエンを90g仕込み、氷浴下(内温5℃)、攪拌しながら、16.37g(0.0641mol)のN-フェニル-3-アミノプロピルトリメトキシシランと6.97g(0.0689mol)のトリエチルアミンとを60gのトルエンに溶解させた溶液を、30分掛けて滴下した後、室温にて1時間攪拌した。その後、反応液中に析出したトリエチルアミン塩酸塩をろ過し、ろ液を90gの酢酸エチルで希釈した。次に、このろ液を90gの純水で3回洗浄した後、有機相に硫酸ナトリウムを2.5g加え脱水処理した。続いて、これをろ過した後、減圧下、ろ液から溶媒を完全に留去し、化合物[5]を28.39g(0.0620mol)得た(収率:99%、性状:淡黄色オイル)。
1H-NMR(400MHz) in CDCl3: 0.64-0.71ppm(m, 2H), 0.86ppm(t, J = 7.1 Hz, 3H), 1.15-1.34ppm(m, 8H), 1.45-1.54ppm(m, 2H), 1.69-1.80ppm(m, 2H), 2.49ppm(t, J = 7.8 Hz, 2H), 3.53ppm(s, 9H), 3.90ppm(t, J = 8.0 Hz, 2H), 6.93ppm(d, J = 8.2 Hz, 2H), 7.02ppm(d, J = 8.2 Hz, 2H), 7.10-7.28ppm(m, 5H)
Synthesis of Compound [5] A 500 ml four-necked flask equipped with a magnetic stirrer was charged with 15.00 g (0.0628 mol) of compound [3] and 90 g of toluene and stirred in an ice bath (internal temperature 5 ° C.). However, a solution prepared by dissolving 16.37 g (0.0641 mol) of N-phenyl-3-aminopropyltrimethoxysilane and 6.97 g (0.0689 mol) of triethylamine in 60 g of toluene was added dropwise over 30 minutes. And stirred at room temperature for 1 hour. Thereafter, triethylamine hydrochloride precipitated in the reaction solution was filtered, and the filtrate was diluted with 90 g of ethyl acetate. Next, this filtrate was washed with 90 g of pure water three times, and 2.5 g of sodium sulfate was added to the organic phase for dehydration treatment. Subsequently, after filtration, the solvent was completely distilled off from the filtrate under reduced pressure to obtain 28.39 g (0.0620 mol) of compound [5] (yield: 99%, property: pale yellow oil). ).
1 H-NMR (400 MHz) in CDCl 3 : 0.64-0.71 ppm (m, 2H), 0.86 ppm (t, J = 7.1 Hz, 3H), 1.15-1.34 ppm (m, 8H), 1.45-1.54 ppm (m , 2H), 1.69-1.80ppm (m, 2H), 2.49ppm (t, J = 7.8 Hz, 2H), 3.53ppm (s, 9H), 3.90ppm (t, J = 8.0 Hz, 2H), 6.93ppm (d, J = 8.2 Hz, 2H), 7.02 ppm (d, J = 8.2 Hz, 2H), 7.10-7.28 ppm (m, 5H)
「ポリシロキサンの合成」
 下記合成例4~9において略称で記載された化合物名は以下のとおりである。
TEOS:テトラエトキシシラン
C18:オクタデシルトリエトキシシラン
ACPS:3-アクリロキシプロピルトリメトキシシラン
MPMS:3-メタクリロキシプロピルトリメトキシシラン
M8MS:3-メタクリロキシオクチルトリメトキシシラン
MTES:メチルトリエトキシシラン
HG:2-メチル-2,4-ペンタンジオール(別名:ヘキシレングリコール)
BCS:2-ブトキシエタノール
UPS:3-ウレイドプロピルトリエトキシシラン
XS-18:1-(トランス-4-n-ペンチルシクロヘキシル)-4-(3-トリメトキシシリルプロパノキシ)ベンゼン
XS-91:2-メトキシ-4-[3-トリエトキシシリル)プロピル]フェニルメタクリレート
"Synthesis of polysiloxane"
The names of the compounds described in abbreviated names in Synthesis Examples 4 to 9 below are as follows.
TEOS: tetraethoxysilane C18: octadecyltriethoxysilane ACPS: 3-acryloxypropyltrimethoxysilane MPMS: 3-methacryloxypropyltrimethoxysilane M8MS: 3-methacryloxyoctyltrimethoxysilane MTES: methyltriethoxysilane HG: 2 -Methyl-2,4-pentanediol (also known as hexylene glycol)
BCS: 2-butoxyethanol UPS: 3-ureidopropyltriethoxysilane XS-18: 1- (trans-4-n-pentylcyclohexyl) -4- (3-trimethoxysilylpropanoxy) benzene XS-91: 2 -Methoxy-4- [3-triethoxysilyl) propyl] phenyl methacrylate
<合成例4>
 温度計、及び還流管を備え付けた200mLの四口反応フラスコ中で、HGを9.9g、BCSを3.3g、TEOSを17.6g、及び合成例1で得られた化合物[2]を2.1g混合してアルコキシシランモノマーの溶液を調製した。この溶液に、予めHGを4.8g、BCSを1.6g、水を4.9g及び触媒として蓚酸0.2gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予め準備しておいたUPS含有量92質量%のメタノール溶液0.3g、0.1gのHG及び0.1gのBCSの混合液を加えた。更に30分間還流させてから放冷して、SiO換算濃度が12質量%のポリシロキサン溶液(A)を得た。
 得られたポリシロキサン溶液(A)10.0g、及びBCS20.0gを混合し、SiO換算濃度が4質量%の液晶配向剤(K1)を得た。
<Synthesis Example 4>
In a 200 mL four-neck reaction flask equipped with a thermometer and a reflux tube, 9.9 g of HG, 3.3 g of BCS, 17.6 g of TEOS, and 2 of the compound [2] obtained in Synthesis Example 1 were used. 0.1 g was mixed to prepare an alkoxysilane monomer solution. To this solution, 4.8 g of HG, 1.6 g of BCS, 4.9 g of water, and 0.2 g of oxalic acid as a catalyst were added dropwise over 30 minutes at room temperature, and further 30 minutes at room temperature. Stir. After heating using an oil bath and refluxing for 30 minutes, a prepared mixture of 0.3 g of a UPS content 92 mass% methanol solution, 0.1 g HG and 0.1 g BCS was prepared. added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (A) having a SiO 2 equivalent concentration of 12% by mass.
10.0 g of the obtained polysiloxane solution (A) and 20.0 g of BCS were mixed to obtain a liquid crystal aligning agent (K1) having a SiO 2 equivalent concentration of 4% by mass.
<合成例5>
 温度計、及び還流管を備え付けた200mLの四口反応フラスコ中で、HGを9.9g、BCSを3.3g、TEOSを17.6g、及びXS-18を1.8g混合してアルコキシシランモノマーの溶液を調製した。この溶液に、予めHGを5.0g、BCSを1.7g、水を4.9g及び触媒として蓚酸0.2gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予め準備しておいたUPS含有量92質量%のメタノール溶液0.3g、0.1gのHG及び0.1gのBCSの混合液を加えた。更に30分間還流させてから放冷して、SiO換算濃度が12質量%のポリシロキサン溶液(B)を得た。
 得られたポリシロキサン溶液(B)10.0g、及びBCS20.0gを混合し、SiO換算濃度が4質量%の液晶配向剤(L1)を得た。
<Synthesis Example 5>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 9.9 g of HG, 3.3 g of BCS, 17.6 g of TEOS, and 1.8 g of XS-18 were mixed to obtain an alkoxysilane monomer. A solution of was prepared. A solution in which 5.0 g of HG, 1.7 g of BCS, 4.9 g of water, and 0.2 g of oxalic acid as a catalyst were mixed dropwise into this solution over 30 minutes at room temperature, and further 30 minutes at room temperature. Stir. After heating using an oil bath and refluxing for 30 minutes, a prepared mixture of 0.3 g of a UPS content 92 mass% methanol solution, 0.1 g HG and 0.1 g BCS was prepared. added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (B) having a SiO 2 equivalent concentration of 12% by mass.
10.0 g of the obtained polysiloxane solution (B) and 20.0 g of BCS were mixed to obtain a liquid crystal aligning agent (L1) having a SiO 2 equivalent concentration of 4% by mass.
<合成例6>
 温度計、及び還流管を備え付けた200mLの四つ口反応フラスコ中で、HGを7.7g、BCSを2.6g、TEOSを5.8g、MPMSを7.8g、XS-91を5.35g、合成例1で得られた化合物[2]を3.3g、及びVTMS1.3gを混合してアルコキシシランモノマーの溶液を調製した。この溶液に、予めHG3.8g、BCS1.3g、水4.9g及び触媒として蓚酸0.8gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予め準備しておいたUPS含有量92質量%のメタノール溶液0.1g、0.1gのHG及び0.2gのBCSの混合液を加えた。更に30分間還流させてから放冷して、SiO換算濃度が12質量%のポリシロキサン溶液(C)を得た。
 得られたポリシロキサン溶液(C)10.0g、及びBCS20.0gを混合し、SiO換算濃度が4質量%の液晶配向剤中間体(S1)を得た。
<Synthesis Example 6>
In a 200 mL four-necked reaction flask equipped with a thermometer and reflux tube, 7.7 g of HG, 2.6 g of BCS, 5.8 g of TEOS, 7.8 g of MPMS, and 5.35 g of XS-91 Then, 3.3 g of compound [2] obtained in Synthesis Example 1 and 1.3 g of VTMS were mixed to prepare an alkoxysilane monomer solution. To this solution, a solution prepared by mixing 3.8 g of HG, 1.3 g of BCS, 4.9 g of water and 0.8 g of oxalic acid as a catalyst in advance was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 30 minutes, and a prepared mixed solution of 0.1 g of a methanol solution with a UPS content of 92% by mass, 0.1 g of HG and 0.2 g of BCS was prepared. added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (C) having a SiO 2 equivalent concentration of 12% by mass.
10.0 g of the obtained polysiloxane solution (C) and 20.0 g of BCS were mixed to obtain a liquid crystal aligning agent intermediate (S1) having a SiO 2 equivalent concentration of 4% by mass.
 温度計、及び還流管を備え付けた200mLの四口反応フラスコ中で、HGを8.6g、BCSを2.9g、TEOSを14.4g、XS-18を0.7g、及びXS-91を7.1g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めHG4.3g、BCS1.4g、水4.9g及び触媒として蓚酸0.3gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予め準備しておいたUPS含有量92質量%のメタノール溶液0.3g、HG0.1g及びBCS0.1gの混合液を加えた。更に30分間還流させてから放冷して、SiO換算濃度が12質量%のポリシロキサン溶液(D)を得た。
 得られたポリシロキサン溶液(D)10.0g、及びBCS20.0gを混合し、SiO換算濃度が4質量%の液晶配向剤中間体(U1)を得た。
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 8.6 g of HG, 2.9 g of BCS, 14.4 g of TEOS, 0.7 g of XS-18, and 7 of XS-91 0.1 g was mixed to prepare an alkoxysilane monomer solution. A solution prepared by previously mixing 4.3 g of HG, 1.4 g of BCS, 4.9 g of water, and 0.3 g of oxalic acid as a catalyst was added dropwise to this solution over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 30 minutes, and a prepared mixed solution of 0.3 g of a methanol solution having a UPS content of 92% by mass, 0.1 g of HG, and 0.1 g of BCS was added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (D) having a SiO 2 equivalent concentration of 12% by mass.
The resulting polysiloxane solution (D) 10.0 g, and were mixed BCS20.0G, give in terms of SiO 2 concentration of the liquid crystal aligning agent intermediates 4% by weight of (U1).
 その後、液晶配向剤中間体(S1)と液晶配向剤中間体(U1)を、質量比で3:7の比率で混合し、SiO換算濃度が4質量%の液晶配向剤[K2]を得た。 Thereafter, the liquid crystal aligning agent intermediate (S1) and the liquid crystal aligning agent intermediate (U1) are mixed at a mass ratio of 3: 7 to obtain a liquid crystal aligning agent [K2] having a SiO 2 equivalent concentration of 4% by mass. It was.
<合成例7>
 温度計、及び還流管を備え付けた200mLの四つ口反応フラスコ中で、HGを7.7g、BCSを2.6g、TEOSを5.8g、MPMSを7.8g、XS-91を5.4g、合成例1で得られた化合物[2]を3.3g、及びVTMS1.3gを混合してアルコキシシランモノマーの溶液を調製した。この溶液に、予めHG3.8g、BCS1.3g、水4.9g及び触媒として蓚酸0.8gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予め準備しておいたUPS含有量92質量%のメタノール溶液0.3g、0.1gのHG及び0.1gのBCSの混合液を加えた。更に30分間還流させてから放冷して、SiO換算濃度が12質量%のポリシロキサン溶液(E)を得た。
 得られたポリシロキサン溶液(E)10.0g、及びBCS20.0gを混合し、SiO換算濃度が4質量%の液晶配向剤中間体(S2)を得た。
<Synthesis Example 7>
In a 200 mL four-necked reaction flask equipped with a thermometer and reflux tube, 7.7 g of HG, 2.6 g of BCS, 5.8 g of TEOS, 7.8 g of MPMS, 5.4 g of XS-91 Then, 3.3 g of compound [2] obtained in Synthesis Example 1 and 1.3 g of VTMS were mixed to prepare an alkoxysilane monomer solution. To this solution, a solution prepared by mixing 3.8 g of HG, 1.3 g of BCS, 4.9 g of water and 0.8 g of oxalic acid as a catalyst in advance was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. After heating using an oil bath and refluxing for 30 minutes, a prepared mixture of 0.3 g of a UPS content 92 mass% methanol solution, 0.1 g HG and 0.1 g BCS was prepared. added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (E) having a SiO 2 equivalent concentration of 12% by mass.
10.0 g of the obtained polysiloxane solution (E) and 20.0 g of BCS were mixed to obtain a liquid crystal aligning agent intermediate (S2) having a SiO 2 equivalent concentration of 4% by mass.
 その後、液晶配向剤中間体(S2)と液晶配向剤中間体(U1)を、質量比で3:7の比率で混合し、SiO換算濃度が4質量%の液晶配向剤[K3]を得た。 Thereafter, the liquid crystal aligning agent intermediate (S2) and the liquid crystal aligning agent intermediate (U1) are mixed at a mass ratio of 3: 7 to obtain a liquid crystal aligning agent [K3] having a SiO 2 conversion concentration of 4% by mass. It was.
<合成例8>
 温度計、及び還流管を備え付けた200mLの四つ口反応フラスコ中で、HGを8.2g、BCSを2.7g、TEOSを5.8g、MPMSを7.8g、XS-91を5.4g、合成例1で得られた化合物[2]を2.5g、及びVTMS1.3gを混合してアルコキシシランモノマーの溶液を調製した。この溶液に、予めHG4.1g、BCS1.4g、水4.8g及び触媒として蓚酸0.8gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予め準備しておいたUPS含有量92質量%のメタノール溶液0.3g、0.1gのHG及び0.1gのBCSの混合液を加えた。更に30分間還流させてから放冷して、SiO換算濃度が12質量%のポリシロキサン溶液(F)を得た。
 得られたポリシロキサン溶液(F)10.0g、及びBCS20.0gを混合し、SiO換算濃度が4質量%の液晶配向剤中間体(S3)を得た。
<Synthesis Example 8>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, HG 8.2 g, BCS 2.7 g, TEOS 5.8 g, MPMS 7.8 g, and XS-91 5.4 g. Then, 2.5 g of compound [2] obtained in Synthesis Example 1 and 1.3 g of VTMS were mixed to prepare an alkoxysilane monomer solution. To this solution, a solution prepared by previously mixing 4.1 g of HG, 1.4 g of BCS, 4.8 g of water, and 0.8 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. After heating using an oil bath and refluxing for 30 minutes, a prepared mixture of 0.3 g of a UPS content 92 mass% methanol solution, 0.1 g HG and 0.1 g BCS was prepared. added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (F) having a SiO 2 equivalent concentration of 12% by mass.
10.0 g of the obtained polysiloxane solution (F) and 20.0 g of BCS were mixed to obtain a liquid crystal aligning agent intermediate (S3) having a SiO 2 equivalent concentration of 4% by mass.
 その後、液晶配向剤中間体(S3)と液晶配向剤中間体(U1)を、質量比で3:7の比率で混合し、SiO換算濃度が4質量%の液晶配向剤[K4]を得た。 Thereafter, the liquid crystal aligning agent intermediate (S3) and the liquid crystal aligning agent intermediate (U1) are mixed at a mass ratio of 3: 7 to obtain a liquid crystal aligning agent [K4] having a SiO 2 equivalent concentration of 4% by mass. It was.
<合成例9>
 温度計、及び還流管を備え付けた200mLの四つ口反応フラスコ中で、HGを9.9g、BCSを2.5g、TEOSを5.1g、MPMSを7.8g、XS-91を5.4g、XS-18を4.4g、及びVTMS1.3gを混合してアルコキシシランモノマーの溶液を調製した。この溶液に、予めHG3.8g、BCS1.3g、水4.9g及び触媒として蓚酸0.8gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後オイルバスを用いて加熱して30分間還流させた後、予め準備しておいたUPS含有量92質量%のメタノール溶液0.3g、0.1gのHG及び0.2gのBCSの混合液を加えた。更に30分間還流させてから放冷して、SiO換算濃度が12質量%のポリシロキサン溶液(G)を得た。
 得られたポリシロキサン溶液(G)10.0g、及びBCS20.0gを混合し、SiO換算濃度が4質量%の液晶配向剤中間体(S4)を得た。
<Synthesis Example 9>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 9.9 g of HG, 2.5 g of BCS, 5.1 g of TEOS, 7.8 g of MPMS, 5.4 g of XS-91 Then, 4.4 g of XS-18 and 1.3 g of VTMS were mixed to prepare an alkoxysilane monomer solution. To this solution, a solution prepared by mixing 3.8 g of HG, 1.3 g of BCS, 4.9 g of water and 0.8 g of oxalic acid as a catalyst in advance was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. After heating using an oil bath and refluxing for 30 minutes, a prepared mixture of 0.3 g of a methanol solution with a UPS content of 92% by mass, 0.1 g of HG and 0.2 g of BCS was prepared. added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution (G) having a SiO 2 equivalent concentration of 12% by mass.
10.0 g of the obtained polysiloxane solution (G) and 20.0 g of BCS were mixed to obtain a liquid crystal aligning agent intermediate (S4) having a SiO 2 equivalent concentration of 4% by mass.
 その後、液晶配向剤中間体(S4)と液晶配向剤中間体(U1)を、質量比で3:7の比率で混合し、SiO換算濃度が4質量%の液晶配向剤[L2]を得た。 Thereafter, the liquid crystal aligning agent intermediate (S4) and the liquid crystal aligning agent intermediate (U1) are mixed at a mass ratio of 3: 7 to obtain a liquid crystal aligning agent [L2] having a SiO 2 equivalent concentration of 4% by mass. It was.
・液晶セルの評価
<実施例1>
 合成例4で得られた液晶配向剤[K1]を、電極パターンが形成されていないITO面にスピンコートした。80℃のホットプレートで2分間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に4μmのビーズスペーサーを散布した後、その上からシール剤を印刷した。他方の基板の液晶配向膜面を内側にし、張り合わせた後、シール剤を硬化させて空セルを作製した。液晶MLC-6608(メルク社製商品名)を、空セルに減圧注入法によって、前記液晶を注入した液晶セル1を作製した。この液晶セル1の垂直配向性を後述する方法により評価した。
-Evaluation of liquid crystal cell <Example 1>
The liquid crystal aligning agent [K1] obtained in Synthesis Example 4 was spin-coated on the ITO surface on which no electrode pattern was formed. After drying for 2 minutes on a hot plate at 80 ° C., baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm. Two substrates thus obtained were prepared, and 4 μm bead spacers were sprayed on the liquid crystal alignment film surface of one of the substrates, and a sealant was printed thereon. The liquid crystal alignment film surface of the other substrate was placed inside and bonded together, and then the sealing agent was cured to produce an empty cell. A liquid crystal cell 1 was prepared by injecting liquid crystal MLC-6608 (trade name, manufactured by Merck) into the empty cell by vacuum injection. The vertical alignment property of the liquid crystal cell 1 was evaluated by the method described later.
 上記の液晶セル1を100℃の循環式オーブンで30分のアニールを行った。取り出した液晶セルを、偏光板をクロスニコルにした状態で、顕微鏡観察を行い、液晶の配向乱れであるドメインの状態を観察した。この時、ドメインが観測されない場合は、垂直配向性が良好であると評価し、ドメインが多く観察される場合は、垂直配向性が良好でないと評価した(結果を表1に記載)。 The above liquid crystal cell 1 was annealed in a circulation oven at 100 ° C. for 30 minutes. The extracted liquid crystal cell was observed with a microscope in a state where the polarizing plate was in a crossed Nicol state, and the state of the domain, which was an alignment disorder of the liquid crystal, was observed. At this time, when no domain was observed, it was evaluated that the vertical alignment was good, and when many domains were observed, it was evaluated that the vertical alignment was not good (the results are shown in Table 1).
<比較例1>
 液晶配向剤[K1]を合成例5で得られた液晶配向剤[L1]に変更した以外は、実施例1と同様にして液晶セルを作製し、アニール後のドメインの状態を観察した(結果を表1に記載)。
<Comparative Example 1>
A liquid crystal cell was prepared in the same manner as in Example 1 except that the liquid crystal aligning agent [K1] was changed to the liquid crystal aligning agent [L1] obtained in Synthesis Example 5, and the state of the domain after annealing was observed (results) In Table 1).
<実施例2>
 合成例6で得られた液晶配向剤[K2]を、画素サイズが100×300μmで、ライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートした。80℃のホットプレートで2分間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。また、実施例2で得られた液晶配向剤[K2]を、電極パターンが形成されていないITO面にスピンコートし、80℃のホットプレートで2分間乾燥した後、上記基板同様に200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
<Example 2>
The liquid crystal aligning agent [K2] obtained in Synthesis Example 6 was spin-coated on the ITO surface of the ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 × 300 μm and a line / space of 5 μm was formed. After drying for 2 minutes on a hot plate at 80 ° C., baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm. In addition, the liquid crystal aligning agent [K2] obtained in Example 2 was spin-coated on the ITO surface on which no electrode pattern was formed, dried on an 80 ° C. hot plate for 2 minutes, and then heated at 200 ° C. in the same manner as the above substrate. Firing was performed in a hot air circulation oven for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
 これらの2枚の基板を用意し、一方の基板の液晶配向膜面上に4μmのビーズスペーサーを散布した後、その上からシール剤を印刷した。他方の基板の液晶配向膜面を内側にし、張り合わせた後、シール剤を硬化させて空セルを作製した。液晶MLC-6608(メルク社製商品名)を、空セルに減圧注入法によって、前記液晶を注入した液晶セル2を作製した。この液晶セル2の応答速度を、後述する方法により測定した。 These two substrates were prepared, 4 μm bead spacers were sprayed on the liquid crystal alignment film surface of one substrate, and a sealant was printed thereon. The liquid crystal alignment film surface of the other substrate was placed inside and bonded together, and then the sealing agent was cured to produce an empty cell. Liquid crystal cell 2 was prepared by injecting liquid crystal MLC-6608 (trade name, manufactured by Merck) into the empty cell by vacuum injection. The response speed of the liquid crystal cell 2 was measured by the method described later.
(応答速度の測定)
 バックライト、クロスニコルの状態にした一組の偏光版、光量検出器の順で構成される測定装置において、一組の偏光版の間に上記で作製した液晶セルを配置した。このときライン/スペースが形成されているITO電極のパターンがクロスニコルに対して45°の角度になるようにした。そして、上記の液晶セルに電圧±4V、周波数1kHzの矩形波を印加し、光量検出器によって観測される輝度が飽和するまでの変化をオシロスコープにて取り込み、電圧を印加していない時の輝度を0%、±4Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%から90%まで変化するのにかかる時間を応答速度とした。
(Response speed measurement)
In the measurement apparatus configured in the order of a backlight, a set of polarizing plates in a crossed Nicol state, and a light amount detector, the liquid crystal cell produced as described above was placed between the pair of polarizing plates. At this time, the ITO electrode pattern in which the line / space was formed was at an angle of 45 ° with respect to the crossed Nicols. Then, a rectangular wave with a voltage of ± 4 V and a frequency of 1 kHz is applied to the liquid crystal cell, and the change until the luminance observed by the light amount detector is saturated is captured by an oscilloscope, and the luminance when no voltage is applied is obtained. A voltage of 0% and ± 4 V was applied, the saturated luminance value was set to 100%, and the time taken for the luminance to change from 10% to 90% was defined as the response speed.
 次に、この液晶セル2に20VのDC電圧を印加した状態で、この液晶セルの外側から紫外線を5J照射した。その後、再び応答速度を測定した(結果を表2に記載)。 Next, in a state where a DC voltage of 20 V was applied to the liquid crystal cell 2, ultraviolet rays were irradiated from the outside of the liquid crystal cell by 5J. Thereafter, the response speed was measured again (results are listed in Table 2).
 一方で、液晶セル2(すなわち、20VのDC電圧を印加した状態で液晶セルの外側から紫外線を5J照射していない液晶セル)を、100℃の循環式オーブンで30分のアニールを行った。取り出した液晶セルを、偏光板をクロスニコルにした状態で、顕微鏡観察を行い、液晶の配向乱れであるドメインの状態を観察した。この時、ドメインが観測されない場合は、垂直配向性が良好であると評価し、ドメインが多く観察される場合は、垂直配向性が良好でないと評価した(結果を表2に記載)。 On the other hand, the liquid crystal cell 2 (that is, a liquid crystal cell not irradiated with 5 J of ultraviolet rays from the outside of the liquid crystal cell in a state where a DC voltage of 20 V was applied) was annealed in a circulation oven at 100 ° C. for 30 minutes. The extracted liquid crystal cell was observed with a microscope in a state where the polarizing plate was in a crossed Nicol state, and the state of the domain, which was an alignment disorder of the liquid crystal, was observed. At this time, when no domain was observed, it was evaluated that the vertical alignment was good, and when many domains were observed, it was evaluated that the vertical alignment was not good (the results are shown in Table 2).
<実施例3>
 液晶配向剤[K2]を合成例7で得られた液晶配向剤[K3]に変更した以外は、実施例2と同様にして液晶セルを作製し、アニール後のドメインの状態を観察した。また、応答速度を測定した(結果を表2に記載)。
<Example 3>
A liquid crystal cell was produced in the same manner as in Example 2 except that the liquid crystal aligning agent [K2] was changed to the liquid crystal aligning agent [K3] obtained in Synthesis Example 7, and the state of the domain after annealing was observed. Moreover, the response speed was measured (the result is described in Table 2).
<実施例4>
 液晶配向剤[K2]を合成例8で得られた液晶配向剤[K4]に変更した以外は、実施例2と同様にして液晶セルを作製し、アニール後のドメインの状態を観察した。また、応答速度を測定した(結果を表2に記載)。
<Example 4>
A liquid crystal cell was prepared in the same manner as in Example 2 except that the liquid crystal aligning agent [K2] was changed to the liquid crystal aligning agent [K4] obtained in Synthesis Example 8, and the state of the domain after annealing was observed. Moreover, the response speed was measured (the result is described in Table 2).
<比較例2>
 液晶配向剤[K2]を合成例9で得られた液晶配向剤[L2]に変更した以外は、実施例2と同様にして液晶セルを作製し、アニール後のドメインの状態を観察した。また、応答速度を測定した(結果を表2に記載)。
<Comparative example 2>
A liquid crystal cell was prepared in the same manner as in Example 2 except that the liquid crystal aligning agent [K2] was changed to the liquid crystal aligning agent [L2] obtained in Synthesis Example 9, and the state of the domain after annealing was observed. Moreover, the response speed was measured (the result is described in Table 2).
Figure JPOXMLDOC01-appb-T000035
 アニール後のドメイン観察結果
  △:ドメインが多数観察される、
  ○:ドメインが1~3個程度観察される(良好)、
  ◎:ドメインが全く観察されない(非常に良好)。
Figure JPOXMLDOC01-appb-T000035
Domain observation result after annealing △: Many domains are observed,
○: About 1 to 3 domains are observed (good),
A: No domain is observed at all (very good).
 表1からわかるように、実施例1及び比較例1の液晶セルはともに、アニール後に液晶の配向乱れであるドメインが全く観察されなかった。 As can be seen from Table 1, in the liquid crystal cells of Example 1 and Comparative Example 1, no domain that is a disorder of alignment of the liquid crystal was observed after annealing.
Figure JPOXMLDOC01-appb-T000036
 応答速度の判定;◎:非常に速い(非常に良好)、○:速い(良好)、×:遅い(悪い)。
 アニール後のドメイン観察結果
  △:ドメインが多数観察される、
  ○:ドメインが1~3個程度観察される(良好)、
  ◎:ドメインが全く観察されない(非常に良好)。
Figure JPOXMLDOC01-appb-T000036
Judgment of response speed; ◎: very fast (very good), ○: fast (good), x: slow (bad).
Domain observation result after annealing △: Many domains are observed,
○: About 1 to 3 domains are observed (good),
A: No domain is observed at all (very good).
 表2からわかるように、実施例3、及び4の液晶セルは、紫外線照射後の応答速度が30ms程度と速く、特に実施例3においては、アニール後のドメインの状態も良好であった。これは、垂直配向性と応答速度の性能に関して、比較例2の液晶セルと同等であることを意味する。 As can be seen from Table 2, in the liquid crystal cells of Examples 3 and 4, the response speed after ultraviolet irradiation was as fast as about 30 ms, and in Example 3, the state of the domain after annealing was also good. This means that the vertical alignment property and the response speed are equivalent to those of the liquid crystal cell of Comparative Example 2.
 以上に示した通り、本発明のアルコキシシラン化合物を構成成分とする液晶配向剤を用いて作製した液晶セルは、XS-18のような従来用いられてきた類似化合物の場合と比較して、垂直配向性が同等であることが確認された。また、紫外線照射後の応答速度も同等であることが確認された。 As described above, the liquid crystal cell produced using the liquid crystal aligning agent comprising the alkoxysilane compound of the present invention as a constituent component is perpendicular to the case of a similar compound conventionally used such as XS-18. It was confirmed that the orientation was equivalent. Moreover, it was confirmed that the response speed after ultraviolet irradiation is also equivalent.
 本発明のアルコキシシラン化合物は、蒸留等の精製操作を行うことなく、高収率、高純度で合成可能であり、該アルコキシシラン化合物を構成成分とする液晶配向剤を用いて作製した液晶配向膜は、プレチルト角の安定性に優れた液晶表示素子を提供することができ、垂直配向型の液晶表示素子に有用である。
 なお、2013年6月6日に出願された日本特許出願2013-120053号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The alkoxysilane compound of the present invention can be synthesized in a high yield and high purity without performing a purification operation such as distillation, and a liquid crystal alignment film produced using a liquid crystal alignment agent comprising the alkoxysilane compound as a constituent component Can provide a liquid crystal display element having excellent pretilt angle stability, and is useful for a vertical alignment type liquid crystal display element.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2013-120053 filed on June 6, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (14)

  1.  下記の式[1]で表され、環構造がアミド結合で連結されたアルコキシシラン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、Z1、Z2及びZ3は、それぞれ独立して、R、OR又はOCOR(Rは、炭素数1~4の直鎖状若しくは分岐状の炭化水素基)である。但し、Z1、Z2及びZ3が全てRである場合を除く。aは1~18の整数である。mは、1又は2である。Z4は、H、メチル基又はフェニル基である。Yは、単結合、-RO-、-ROCO-、-RCOO-、-CH=CH-、-C(CH)=CH-又は-C≡C-(Rは、炭素数1~3の直鎖状若しくは分岐状の炭化水素基)である。Cy1は、フェニレン基、ナフチレン基及びシクロヘキシレン基から選ばれる2価の環状基又はステロイド骨格を有する炭素数12~40の有機基である。Cy2は、フェニレン基、ナフチレン基及びシクロヘキシレン基から選ばれる2価の環状基〔Cy1及びCy2の環上にある任意の水素原子は、F、CN、OH、R及びOR(Rは、炭素数1~4の直鎖状若しくは分岐状の炭化水素基又は炭素数1~4の直鎖若しくは分岐状のフッ素含有炭化水素基)から選ばれる基で置き換えられていてもよい。〕である。nは、0、1又は2である。Zは、H、CN、R又はOR(Rは、炭素数1~18の直鎖若しくは分岐状の炭化水素基又は炭素数1~18の直鎖若しくは分岐状のフッ素含有炭化水素基)である。但し、Cy1がステロイド骨格を有する炭素数12~40の有機基である場合、nは0であり、Zは無置換である。)
    An alkoxysilane compound represented by the following formula [1] and having a ring structure linked by an amide bond.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [1], Z 1 , Z 2 and Z 3 are each independently R 1 , OR 1 or OCOR 1 (R 1 is a linear or branched hydrocarbon having 1 to 4 carbon atoms) Group except that Z 1 , Z 2 and Z 3 are all R 1. a is an integer of 1 to 18. m is 1 or 2. Z 4 is H, .Y 1 is a methyl group or a phenyl group, a single bond, -R 2 O -, - R 2 OCO -, - R 2 COO -, - CH = CH -, - C (CH 3) = CH- or - C≡C— (R 2 is a linear or branched hydrocarbon group having 1 to 3 carbon atoms) Cy 1 is a divalent cyclic group selected from a phenylene group, a naphthylene group, and a cyclohexylene group. or .Cy 2 is an organic group having a carbon number of 12-40 with a steroid skeleton, a phenylene group, a naphthylene group and a cyclohexylene group Divalent any hydrogen atom present on the cyclic group [Cy 1 and Cy 2 in the selected La, F, CN, OH, R 3 and OR 3 (R 3 is a straight-chain having 1 to 4 carbon atoms Or may be substituted with a group selected from a branched hydrocarbon group or a linear or branched fluorine-containing hydrocarbon group having 1 to 4 carbon atoms.] N is 0, 1 or 2 Z 5 is H, CN, R 4 or OR 4 (R 4 is a linear or branched hydrocarbon group having 1 to 18 carbon atoms, or a linear or branched fluorine atom having 1 to 18 carbon atoms. (However, when Cy 1 is a C 12-40 organic group having a steroid skeleton, n is 0 and Z 5 is unsubstituted.)
  2.  aが3、mが1である請求項1に記載のアルコキシシラン化合物。 The alkoxysilane compound according to claim 1, wherein a is 3 and m is 1.
  3.  aが3、mが1、Z4がH、Yが単結合である請求項1に記載のアルコキシシラン化合物。 a is 3, m is 1, Z 4 is H, alkoxy silane compound according to claim 1 Y 1 is a single bond.
  4.  下記の式[2]で表されるカルボン酸を塩素化剤で処理することによって、下記の式[3]で表される酸クロリドを得た後、該酸クロリドと下記の式[4] で表わされるアルコキシシラン化合物とを、塩基存在下で反応させることを特徴とする、請求項1に記載のアルコキシシラン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式[2]中、Y、Cy1、Cy2、Z及びnは、前記と同じ意味を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式[3]中、Y、Cy1、Cy2、Z及びnは、前記と同じ意味を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式[4]中、Z1、Z2、Z3、Z4、a及びmは、前記と同じ意味を表す。)
    By treating the carboxylic acid represented by the following formula [2] with a chlorinating agent to obtain an acid chloride represented by the following formula [3], the acid chloride and the following formula [4] are used. The method for producing an alkoxysilane compound according to claim 1, wherein the alkoxysilane compound represented is reacted in the presence of a base.
    Figure JPOXMLDOC01-appb-C000002
    (In formula [2], Y 1 , Cy 1 , Cy 2 , Z 5 and n have the same meaning as described above.)
    Figure JPOXMLDOC01-appb-C000003
    (In formula [3], Y 1 , Cy 1 , Cy 2 , Z 5 and n represent the same meaning as described above.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula [4], Z 1 , Z 2 , Z 3 , Z 4 , a and m have the same meaning as described above.)
  5.  aが3、mが1である請求項4に記載の製造方法。 The production method according to claim 4, wherein a is 3 and m is 1.
  6.  aが3、mが1、Z4がH、Yが単結合である請求項4に記載の製造方法。 The production method according to claim 4, wherein a is 3, m is 1, Z 4 is H, and Y 1 is a single bond.
  7.  請求項1に記載のアルコキシシラン化合物を構成成分として含むポリシロキサン。 Polysiloxane containing the alkoxysilane compound according to claim 1 as a constituent component.
  8.  請求項1に記載のアルコキシシランの含有量が、全アルコキシシラン中、1~30モル%である請求項7に記載のポリシロキサン。 The polysiloxane according to claim 7, wherein the content of the alkoxysilane according to claim 1 is 1 to 30 mol% in the total alkoxysilane.
  9.  請求項7又は8に記載のポリシロキサンを含有する液晶配向剤。 A liquid crystal aligning agent containing the polysiloxane according to claim 7 or 8.
  10.  ポリシロキサンの含有量が、SiO換算濃度で、0.5~15質量%である請求項9に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 9, wherein the polysiloxane content is 0.5 to 15% by mass in terms of SiO 2 concentration.
  11.  請求項9又は10に記載の液晶配向剤を基板に塗布し、乾燥、焼成して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to claim 9 or 10 to a substrate, drying and baking.
  12.  請求項11に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 11.
  13.  請求項9又は10に記載の液晶配向剤が塗布され、焼成された2枚の基板で液晶が挟持された液晶セルに、電圧を印加した状態で紫外線を照射してなる液晶表示素子。 A liquid crystal display element obtained by irradiating an ultraviolet ray in a state where a voltage is applied to a liquid crystal cell in which the liquid crystal is sandwiched between two substrates that are coated with the liquid crystal aligning agent according to claim 9 and baked.
  14.  請求項9又は10に記載の液晶配向剤を塗布し、焼成した2枚の基板で液晶を挟持し、電圧を印加した状態で紫外線を照射する液晶表示素子の製造方法。 A method for producing a liquid crystal display element, wherein the liquid crystal aligning agent according to claim 9 or 10 is applied, the liquid crystal is sandwiched between two baked substrates, and ultraviolet rays are irradiated with a voltage applied.
PCT/JP2014/064767 2013-06-06 2014-06-03 Alkoxysilane compound, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element WO2014196540A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015521458A JP6398973B2 (en) 2013-06-06 2014-06-03 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR1020157037095A KR102344233B1 (en) 2013-06-06 2014-06-03 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN201480044879.8A CN105452262A (en) 2013-06-06 2014-06-03 Alkoxysilane compound, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013120053 2013-06-06
JP2013-120053 2013-06-06

Publications (1)

Publication Number Publication Date
WO2014196540A1 true WO2014196540A1 (en) 2014-12-11

Family

ID=52008178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064767 WO2014196540A1 (en) 2013-06-06 2014-06-03 Alkoxysilane compound, liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6398973B2 (en)
KR (1) KR102344233B1 (en)
CN (1) CN105452262A (en)
TW (1) TWI620753B (en)
WO (1) WO2014196540A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183683A1 (en) * 2016-04-22 2017-10-26 Dic株式会社 Liquid crystal display element and method for producing same
KR20180011456A (en) * 2015-06-18 2018-02-01 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Liquid crystal vertical alignment agent, liquid crystal display element and manufacturing method thereof
KR20180041722A (en) * 2015-08-25 2018-04-24 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Organic Silicon Substrate and Manufacturing Method of Liquid Crystal Panel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299557B2 (en) * 2016-09-13 2023-06-28 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN107417518A (en) * 2017-07-21 2017-12-01 淄博飞源化工有限公司 To trifluoromethylbenzoic acid synthetic method between a kind of neighbour
CN110109293A (en) * 2019-04-04 2019-08-09 深圳市华星光电技术有限公司 The manufacturing method of the inorganic orientation film of liquid crystal

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507297B1 (en) * 1970-12-02 1975-03-24
DE3521201A1 (en) 1985-06-13 1986-12-18 Merck Patent Gmbh, 6100 Darmstadt Organosilicon compounds
JP3757514B2 (en) 1996-02-16 2006-03-22 日産化学工業株式会社 Method for forming liquid crystal vertical alignment film
JP4175826B2 (en) 2002-04-16 2008-11-05 シャープ株式会社 Liquid crystal display
CN1465653A (en) * 2002-06-25 2004-01-07 中国科学院化学研究所 Liquid crystal oriented film, and preparation and use thereof
JP4504626B2 (en) 2003-03-31 2010-07-14 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
JP4513950B2 (en) 2004-03-05 2010-07-28 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US20080063720A1 (en) * 2004-04-29 2008-03-13 Gounko Iouri K Delivery System
KR100596740B1 (en) * 2004-04-30 2006-07-12 주식회사 사임당화장품 Polysilsesquioxane spherical particle containing ultraviolet light-absorbing group and manufacturing method thereof
JP5007297B2 (en) 2006-03-22 2012-08-22 シャープ株式会社 Liquid crystal composition and liquid crystal display element
EP1908472A1 (en) * 2006-10-02 2008-04-09 Bayer Schering Pharma Aktiengesellschaft Silicon derivatives for PET imaging
KR20090085599A (en) * 2006-10-02 2009-08-07 바이엘 쉐링 파마 악티엔게젤샤프트 Silicon derivatives for pet imaging
WO2008124797A1 (en) * 2007-04-09 2008-10-16 Designer Molecules, Inc. Curatives for epoxy compositions
KR101551513B1 (en) * 2008-06-04 2015-09-08 닛산 가가쿠 고교 가부시키 가이샤 Silicon-based liquid crystal orientating agent, liquid crystal orientated film and liquid crystal display element
KR101656541B1 (en) 2008-12-26 2016-09-09 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN101530782B (en) * 2009-03-04 2011-10-05 北京迪马欧泰科技发展中心 Liquid phase chromatogram filler and method for synthesizing same
PL2506972T3 (en) * 2009-12-03 2019-09-30 Umicore Ag & Co. Kg Supported olefin metathesis catalysts
JP5761180B2 (en) * 2010-04-06 2015-08-12 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5927859B2 (en) 2011-01-11 2016-06-01 Jsr株式会社 Manufacturing method of liquid crystal display element
TWI553040B (en) 2011-05-27 2016-10-11 Nissan Chemical Ind Ltd Silicon liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display components
JP5803635B2 (en) * 2011-12-07 2015-11-04 Jsr株式会社 Positive radiation-sensitive composition, cured film, and method for forming cured film

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOOGBOOM, JOHAN: "NONCONTACT LIQUID CRYSTAL ALIGNMENT BY SUPRAMOLECULAR AMPLIFICATION OF NANOGROOVES", ANGEWANDTE CHEMIE, vol. 42, no. 16, 2003, pages 1812 - 1815, XP001197465, DOI: doi:10.1002/anie.200250394 *
NACIRI ET AL: "PHOTOSENSITIVE TRIETHOXYSILANE DRIVATIVES FOR ALIGNMENT OF LIQUID CRYSTALS", CHEMISTRY OF MATERIALS, vol. 12, no. 11, 2000, pages 3288 - 3295 *
YING-JYH LIAO ET AL: "DIPPING AND PHOTO INDUCED LIQUID CRYSTAL ALIGNMENTS USING SILANE SURFACTANTS", JAPANESE JOURNAL OF APPLIED PHYSICS PART 2, vol. 39, no. 2A, 2000 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180011456A (en) * 2015-06-18 2018-02-01 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Liquid crystal vertical alignment agent, liquid crystal display element and manufacturing method thereof
JP2018505447A (en) * 2015-06-18 2018-02-22 深▲セン▼市華星光電技術有限公司 Liquid crystal vertical alignment film, liquid crystal display element, and method for preparing liquid crystal display element
KR102015202B1 (en) * 2015-06-18 2019-08-27 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Liquid crystal vertical alignment agent, liquid crystal display element, and their manufacturing method
KR20180041722A (en) * 2015-08-25 2018-04-24 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Organic Silicon Substrate and Manufacturing Method of Liquid Crystal Panel
JP2018532697A (en) * 2015-08-25 2018-11-08 深▲セン▼市華星光電技術有限公司 Branched organic silicon material and liquid crystal panel manufacturing method
KR102154414B1 (en) * 2015-08-25 2020-09-09 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Branch-type organosilicon material and manufacturing method of liquid crystal panel
WO2017183683A1 (en) * 2016-04-22 2017-10-26 Dic株式会社 Liquid crystal display element and method for producing same

Also Published As

Publication number Publication date
KR102344233B1 (en) 2021-12-27
CN105452262A (en) 2016-03-30
TWI620753B (en) 2018-04-11
TW201509952A (en) 2015-03-16
JP6398973B2 (en) 2018-10-03
JPWO2014196540A1 (en) 2017-02-23
KR20160018597A (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP6398973B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6079626B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6387957B2 (en) Liquid crystal aligning agent containing crosslinkable compound having photoreactive group
TWI619734B (en) Liquid crystal alignment agent and liquid crystal alignment film for psa-mode liquid crystal display device, liquid crystal display device and method for manufacturing the same
JP2011118358A (en) Method of manufacturing liquid crystal display device
JP6107661B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018173648A1 (en) Method for manufacturing liquid crystal alignment film and liquid crystal element
JP6459513B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6459393B2 (en) Liquid crystal aligning agent, liquid crystal display element manufacturing method, liquid crystal alignment film, and liquid crystal display element
JP6264053B2 (en) Liquid crystal aligning agent for PSA mode liquid crystal display element, liquid crystal aligning film for PSA mode liquid crystal display element, PSA mode liquid crystal display element and manufacturing method thereof
JP2022173076A (en) Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method for the same, liquid crystal device, liquid crystal display, and polymer
JP5999084B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014021174A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element and method for manufacturing liquid crystal display element
JP3858808B2 (en) Liquid crystal alignment treatment agent
JP2016095478A (en) Liquid crystal alignment agent and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044879.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157037095

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14808239

Country of ref document: EP

Kind code of ref document: A1