WO2019082745A1 - Polarizing film and method for manufacturing same - Google Patents

Polarizing film and method for manufacturing same

Info

Publication number
WO2019082745A1
WO2019082745A1 PCT/JP2018/038525 JP2018038525W WO2019082745A1 WO 2019082745 A1 WO2019082745 A1 WO 2019082745A1 JP 2018038525 W JP2018038525 W JP 2018038525W WO 2019082745 A1 WO2019082745 A1 WO 2019082745A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polarizing
liquid crystal
polarizing film
group
Prior art date
Application number
PCT/JP2018/038525
Other languages
French (fr)
Japanese (ja)
Inventor
伸行 幡中
耕太 村野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020207012632A priority Critical patent/KR20200080245A/en
Priority to JP2019551034A priority patent/JPWO2019082745A1/en
Priority to CN201880069704.0A priority patent/CN111279231A/en
Publication of WO2019082745A1 publication Critical patent/WO2019082745A1/en
Priority to JP2023056041A priority patent/JP2023080141A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to a polarizing film and a method for producing the same, and more particularly to a polarizing film having a layer containing a liquid crystal compound and a dichroic dye and a method for producing the same.
  • An organic EL display device using an organic light emitting diode can not only be reduced in weight and thickness as compared with a liquid crystal display device, but also has high image quality such as wide viewing angle, fast response speed, and high contrast. Because it can be realized, it is used in various fields such as smartphones, televisions, digital cameras, and the like. In the organic EL display device, it is known to improve the antireflection performance by using a circularly polarizing plate or the like in order to suppress a decrease in visibility due to the reflection of external light.
  • An object of the present invention is to provide a novel polarizing film having at least two regions in which values of the degree of visibility correction polarization are different from each other, and a method of manufacturing the same.
  • the present invention provides a polarizing film shown below and a method for producing the same.
  • a polarizing film having a liquid crystal layer which is The liquid crystal layer contains a liquid crystal compound and has at least two regions distinguished by the value of the degree of polarization correction for polarization, The polarizing film, wherein the at least two regions have different dichroic dye contents.
  • a base material layer An orientation layer laminated on at least one side of the substrate layer, The polarizing film according to [1], wherein the liquid crystal layer is laminated on the alignment layer.
  • the liquid crystal layer has a first region containing a dichroic dye, and a second region in which the content of the dichroic dye is smaller than that of the first region, The visibility correction polarization degree of the first area is 90% or more.
  • the liquid crystal layer has a first region containing a dichroic dye, and a second region containing a smaller amount of dichroic dye than the first region,
  • the visibility correction single transmittance of the first region is 35% or more
  • the polarizing film according to any one of [1] to [5], wherein the transmittance of the second region in the second region is 80% or more.
  • the second region is circular, elliptical, oval or polygonal in a plan view shape, When the second region is circular, the diameter is 5 cm or less. When the second region is elliptical or oblong, the major axis is 5 cm or less.
  • it has a base material layer, The polarizing film according to any one of [1] to [8], wherein the base material layer has a quarter wavelength plate function.
  • the liquid contacting step is A protective layer is formed on the polarizing layer of the laminated film prepared in the preparation step, by laminating a protective layer having a coated area for covering the polarizing layer and an exposed area for exposing the polarizing layer.
  • a protective layer laminating step of obtaining a laminated film By bringing the laminated film with the protective layer into contact with a liquid capable of reducing the content of the dichroic dye in the polarizing layer, the content of the dichroic dye is reduced in a partial region of the polarizing layer A decoloring process to obtain a decolorized laminated film, The peeling process of peeling the said protective layer from the said decolorized laminated film, The manufacturing method of the polarizing film as described in [12].
  • the exposed area in the protective layer is circular, elliptical, oval or polygonal in a plan view shape, When the exposed area is circular, the diameter is 5 cm or less. When the exposed area is elliptical or oval, the major axis is 5 cm or less.
  • the manufacturing method of the polarizing film as described in [13] whose diameter of the virtual circle drawn so that the said polygon may be inscribed is 5 cm or less, when the said exposure area
  • the preparation step is An alignment layer forming step of coating the composition for forming an alignment layer on one side of the base material layer to form an alignment layer;
  • the manufacturing method of the polarizing film in any one of [12]-[14].
  • the composition for forming an alignment layer contains a photoalignable polymer, The polarizing film according to [15], wherein the step of forming an alignment layer is performed by irradiating polarized light on the coating layer for an alignment layer formed by applying the composition for forming an alignment layer to form an alignment layer.
  • Production method. [17]
  • the liquid crystal compound is a polymerizable liquid crystal compound, In the polarizing layer forming step, the polarizing layer is formed by applying an active energy ray to the coating layer for a polarizing layer formed by applying the composition for forming a polarizing layer, [15] or [16] The manufacturing method of the polarizing film as described in-.
  • the polarizing film is a long polarizing film having a length of 10 m or more
  • the retardation layer is a long retardation layer having a length of 10 m or more
  • an elongated laminate is formed by laminating the elongated polarizing film and the elongated retardation layer. Furthermore, the manufacturing method of the circularly-polarizing plate as described in [19] which has a cutting process which cut
  • a polarizing film having at least two regions having mutually different values of the degree of visibility correction polarization, and a method of manufacturing the same.
  • (A) is a schematic plan view which shows an example of the polarizing film of this invention
  • (b) is XX sectional drawing of (a).
  • (A) to (c) are each a schematic cross-sectional view showing an example of the circularly polarizing plate of the present invention.
  • (A) to (d) are schematic cross-sectional views showing an example of the layer structure obtained in each step of the process for producing a polarizing film of the present invention. It is a schematic sectional drawing which shows an example of the liquid thing contact process in the manufacturing method of the polarizing film of this invention.
  • FIG. 1 (a) is a schematic plan view showing an example of the polarizing film of the present invention
  • FIG. 1 (b) is a sectional view taken along the line XX in FIG. 1 (a).
  • the polarizing film 1 of the present embodiment is a film having the function of light absorption anisotropy, and has a liquid crystal layer 11 containing a liquid crystal compound.
  • the liquid crystal layer 11 has at least two regions distinguished by the value of the degree of polarization correction (Py), and the at least two regions have mutually different dichroic dye contents.
  • the polarizing film 1 has a liquid crystal layer 11, but may further have a base layer 13, an alignment layer 12, other layers, and the like. Although the polarizing film 1 shown in FIG.
  • FIG. 1 (b) shows an example in which the alignment layer 12 and the liquid crystal layer 11 are provided on one side of the base layer 13, the alignment layer and the liquid crystal layer are provided on both sides of the base layer 13. It may be done.
  • the structures of the liquid crystal layers provided on both sides of the base layer 13 may be the same as or different from each other.
  • the polarizing film 1 may be an elongated polarizing film having a length of 10 m or more.
  • the polarizing film 1 can be a wound body wound in a roll.
  • the polarizing film can be continuously drawn out from the wound body and laminated with a retardation layer to be described later, or can be cut into pieces.
  • the length of the elongate polarizing film used as a winding body will not be specifically limited if it is 10 m or more, For example, it can be 10000 m or less.
  • the liquid crystal layer 11 contains a liquid crystal compound and has a region containing the liquid crystal compound and a dichroic dye.
  • the polarizing film 1 has the polarization characteristic of the plane of the polarizing film 1, it is preferable to have a region in which the dichroic dye and the liquid crystal compound are horizontally aligned with respect to the plane of the polarizing film 1.
  • the polarizing film 1 has polarization characteristics in the film thickness direction of the polarizing film 1, it is preferable to have a region in which the dichroic dye and the liquid crystal compound are horizontally aligned with respect to the plane of the polarizing film 1.
  • the region of the liquid crystal layer 11 which contains a dichroic dye and a liquid crystal compound and is in a state in which the dichroic dye and the liquid crystal compound are horizontally aligned relative to one plane of the polarizing film is a liquid crystal alignment horizontal direction with respect to light of wavelength ⁇ nm.
  • the above ratio is about 5 to 10.
  • the fact that the liquid crystal compound and the dichroic dye are not phase separated means, for example, surface observation with various microscopes or scattering degree measurement with a haze meter It can confirm by.
  • the liquid crystal layer 11 is distinguished by the degree of polarization correction (Py), and is distinguished by the content of the dichroic dye. It has two areas 11b.
  • the polarizing film 1 shown in FIG. 1A shows an example in which each of two regions different in the visibility correction polarization degree (Py) and the content of the dichroic dye is one each. Two or more second regions may be present, and three or more regions in which the dichroic dye content is different from one another may be provided.
  • the first region 11 a of the polarizing film 1 shown in FIG. 1A contains a liquid crystal compound and a dichroic dye.
  • the second region 11 b contains a liquid crystal compound, but may or may not contain a dichroic dye, and in the case of containing a dichroic dye, the content is the same as that contained in the first region 11 a. It is preferable that it is less than the content rate of the dichroic dye.
  • the content of the dichroic dye in the liquid crystal layer 11 can be determined, for example, by measuring the absorbance at the absorption maximum wavelength ( ⁇ MAX ) of the dichroic dye.
  • the first area 11a is preferably an area having high polarization characteristics, and for example, the visibility correction polarization degree (Py) can be 90% or more, preferably 92% or more, and 95% or more. Is more preferable, and usually 100% or less.
  • the first region 11a can have the visibility correction single transmittance (Ty) of, for example, 35% or more, preferably 40% or more, more preferably 44% or more, and usually 50%. Less than.
  • the second region 11 b is preferably a low polarization region having a visibility correction polarization degree (Py) lower than the visibility correction polarization degree (Py) of the first region 11 a.
  • the visibility correction polarization degree (Py) of the second region 11 b can be, for example, 10% or less, preferably 5% or less, more preferably 1% or less, and even 0% Good.
  • the second region 11 b has a visibility correction single transmittance (Ty) higher than the visibility correction single transmittance (Ty) of the first region 11 a.
  • the visibility correction single transmittance (Ty) can be set to, for example, 80% or more, preferably 85% or more, more preferably 88% or more, and usually 98% or less. is there.
  • the visibility correction polarization degree (Py) and the visibility correction single transmittance (Ty) in the present specification can be calculated based on the degree of polarization and the single transmittance measured using a spectrophotometer.
  • the transmittance of the transmittance of the transmission axis direction in the wavelength range of 380 nm ⁇ 780 nm is visible light (alignment vertical) (T 1) and the absorption axis direction (oriented the same direction) to (T 2)
  • the spectrophotometer It can measure by a double beam method using the apparatus which set the folder with a polarizer.
  • the degree of polarization and single transmittance at each wavelength are calculated using the following formulas (Formula 1) and (Formula 2) By performing the visibility correction with the light source), it is possible to calculate the visibility correction single transmittance (Ty) and the visibility correction polarization degree (Py).
  • the occupied area of the first area 11 a and the occupied area of the second area 11 b may be appropriately selected according to the characteristics required of the polarizing film 1.
  • the ratio of the total occupied area of the first region 11a and the second region 11b to the surface area of the polarizing film 1 is preferably 90% or more, more preferably 95% or more, and 99% or more. Is more preferred.
  • the occupied area of the first area 11a is preferably 50% or more, more preferably 70% or more, of the total area of the occupied area of the first area 11a and the occupied area of the second area 11b. Preferably, it is 80% or more. For example, as shown in FIG.
  • the area occupied by the second area 11b is smaller than the area occupied by the first area 11a, and the first area 11a may be provided so as to surround the second area 11b.
  • the polarizing film 1 shown to Fig.1 (a) although 1st area
  • the shape of the first area 11a and the shape of the second area 11b are not particularly limited.
  • the second area 11b can be formed into any shape such as a circular shape; an oval shape; a polygonal shape such as a triangle, a square, a rectangle, a rhombus, a letter shape, a combination thereof, and the like in a plan view shape.
  • the second region 11 b preferably has a circular, elliptical, oval or polygonal shape in plan view.
  • the diameter is preferably 5 cm or less, more preferably 3 cm or less, and still more preferably 2 cm or less.
  • the major axis is preferably 5 cm or less, more preferably 3 cm or less, and still more preferably 2 cm or less.
  • the diameter of the virtual circle drawn so as to be inscribed in this polygon is preferably 5 cm or less, more preferably 3 cm or less, and 2 cm or less Is more preferred.
  • the second region 11 b having the above-described shape can be suitably used as a region corresponding to the lens position of a camera provided in a smartphone, a tablet, or the like.
  • the second region 11b is a region where the visibility correction polarization degree (Py) is 10% or less and the visibility correction single transmittance (Ty) is 80% or more.
  • the performance of the camera can be improved because the coloration of the image can be reduced, and excellent transparency can be obtained.
  • first area 11a and the second area 11b may be provided such that the shape in plan view is linear, band-like, wave-like, or the like.
  • a plurality of first areas 11a and a plurality of second areas 11b may be alternately provided.
  • the widths of the first region 11a and the second region 11b are preferably independently 1 ⁇ m to 10 mm, more preferably 1 ⁇ m to 1 mm, and still more preferably 1 ⁇ m to 100 ⁇ m.
  • the long polarizing film is usually cut into a predetermined size according to the application of the polarizing film, etc. It is preferable to set the arrangement of the first area 11a and the second area 11b in the elongated polarizing film so that the first area 11a and the second area 11b are formed.
  • the polarizing film after cutting is the polarizing film 1 shown in FIG. 1A
  • a plurality of second regions at predetermined intervals in the longitudinal direction and / or the width direction of the long polarizing film It is preferable to provide 11b.
  • the thickness of the first region 11a in the liquid crystal layer 11 is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the thickness of the second region 11b in the liquid crystal layer 11 is preferably the same as that of the first region 11a, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and 5 ⁇ m or less Is preferably, and more preferably 3 ⁇ m or less.
  • the thickness of the liquid crystal layer 11 can be measured by an interference film thickness meter, a laser microscope, a stylus film thickness meter, or the like.
  • the thickness of the second area 11b may be smaller than the thickness of the first area 11a, but the difference between the thickness of the first area 11a and the thickness of the second area 11b is preferably 2 ⁇ m or less, and 1 ⁇ m or less And more preferably 0.5 ⁇ m or less.
  • a retardation layer to be described later and the like are described later.
  • liquid crystal compound As a liquid crystal compound contained in the liquid crystal layer 11, a known liquid crystal compound can be used.
  • the type of liquid crystal compound is not particularly limited, and rod-like liquid crystal compounds, discotic liquid crystal compounds, and mixtures thereof can be used.
  • the liquid crystal compound may be a polymer liquid crystal compound, a polymerizable liquid crystal compound, or a mixture of these.
  • a polymerizable liquid crystal compound As the liquid crystal compound, it is preferable to use a polymerizable liquid crystal compound as the liquid crystal compound.
  • the hue of the polarizing film can be arbitrarily controlled, and the thickness of the polarizing film can be significantly reduced.
  • a polarizing film can be manufactured without performing an extending
  • the polymerizable liquid crystal compound refers to a compound having a polymerizable group and having liquid crystallinity.
  • the polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group.
  • the photopolymerizable group means a group capable of participating in the polymerization reaction by active radicals or acids generated from a photopolymerization initiator described later.
  • Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, oxetanyl group and the like.
  • an acryloyloxy group a methacryloyloxy group, a vinyloxy group, an oxiranyl group or an oxetanyl group is preferable, and an acryloyloxy group is more preferable.
  • the liquid crystallinity may be a thermotropic liquid crystal or a lyotropic liquid crystal, but when mixed with a dichroic dye as in the liquid crystal layer of the present embodiment, it is preferable to use a thermotropic liquid crystal.
  • the polymerizable liquid crystal compound when it is a thermotropic liquid crystal, it may be a thermotropic liquid crystal compound exhibiting a nematic liquid crystal phase or a thermotropic liquid crystal compound exhibiting a smectic liquid crystal phase.
  • the liquid crystal layer 11 exhibits a polarization function as a polymer film obtained by a polymerization reaction
  • the liquid crystal state exhibited by the polymerizable liquid crystal compound is preferably a smectic phase, and from the viewpoint of performance improvement, higher order smectic More preferably, it is a phase.
  • higher-order smectic liquid crystal compounds forming a smectic B phase, a smectic D phase, a smectic E phase, a smectic F phase, a smectic G phase, a smectic H phase, a smectic I phase, a smectic J phase, a smectic K phase or a smectic L phase
  • More preferred are higher order smectic liquid crystal compounds which form smectic B phase, smectic F phase or smectic I phase.
  • regions with high polarization performance are those in which Bragg peaks derived from higher order structures such as hexatic phase and crystal phase are obtained in X-ray diffraction measurement.
  • the Bragg peak is a peak derived from the periodic structure of molecular orientation, and a film having a periodic spacing of 3 to 6 ⁇ can be obtained.
  • the liquid crystal layer 11 contains a polymer in which the polymerizable liquid crystal compound is polymerized in the smectic phase, for example, because the first region 11a can have higher polarization characteristics.
  • the polymerizable liquid crystal compound exhibits a nematic liquid crystal phase or a smectic liquid crystal phase can be confirmed, for example, as follows. After the composition for forming a polarizing film is applied to a substrate to form a coated film, the solvent contained in the coated film is removed by heat treatment under the condition that the polymerizable liquid crystal compound is not polymerized. Subsequently, the coating film formed on the substrate is heated to an isotropic phase temperature, and the liquid crystal phase developed by gradually cooling is inspected by texture observation with a polarizing microscope, X-ray diffraction measurement or differential scanning calorimetry Do.
  • X 1 , X 2 and X 3 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group, and here, the divalent aromatic group Or a hydrogen atom contained in a divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cyano group Or a nitro group may be substituted, and a carbon atom constituting the divalent aromatic group or divalent alicyclic hydrocarbon group may be substituted by an oxygen atom, a sulfur atom or a nitrogen atom .
  • X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent It is.
  • Y 1 , Y 2 , W 1 and W 2 are each independently a single bond or a divalent linking group.
  • V 1 and V 2 each independently represent an alkanediyl group having 1 to 20 carbon atoms which may have a substituent, and -CH 2- constituting the alkanediyl group is -O-,- It may be replaced by S- or NH-.
  • U 1 and U 2 independently of one another represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
  • compound (A) and the like can be mentioned.
  • X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent, or cyclohexane which may have a substituent It is a 1,4-diyl group.
  • X 1 and X 3 are preferably a cyclohexane-1,4-diyl group which may have a substituent, and the cyclohexane-1,4-diyl group is preferably a trans-cyclohexane-. More preferably, it is a 1,4-diyl group.
  • smectic liquid crystallinity tends to be easily developed.
  • substituents which the 1,4-phenylene group which may have a substituent and the cyclohexane-1,4-diyl group which may have a substituent optionally have, a methyl group, ethyl
  • substituents include alkyl groups having 1 to 4 carbon atoms such as a group or a butyl group, halogen atoms such as a cyano group, a chlorine atom or a fluorine atom. Preferably it is unsubstituted.
  • Y 1 and Y 2 are more preferably —CH 2 CH 2 —, —COO—, —OCO— or a single bond
  • X 1 , X 2 and X 3 all contain a cyclohexane-1,4-diyl group. If not, it is more preferred that Y 1 and Y 2 be different bonding systems. In the case where Y 1 and Y 2 are bonding systems different from each other, smectic liquid crystallinity tends to be easily exhibited.
  • W 1 and W 2 are preferably, independently of one another, a single bond, —O—, —S—, —COO— or OCO—, and more preferably, independently of each other, be a single bond or —O—.
  • C 1-20 alkanediyl group represented by V 1 and V 2 a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4 -Diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane There may be mentioned -1,14-diyl or icosane-1,20-diyl and the like.
  • V 1 and V 2 are preferably alkanediyl groups having 2 to 12 carbon atoms, and more preferably linear alkanediyl groups having 6 to 12 carbon atoms.
  • the crystallinity is improved, and smectic liquid crystallinity tends to be easily exhibited.
  • Examples of the substituent optionally possessed by the optionally substituted alkanediyl group having 1 to 20 carbon atoms include a cyano group and a halogen atom such as a chlorine atom or a fluorine atom, and the alkanediyl group is It is preferably unsubstituted, and more preferably an unsubstituted and linear alkanediyl group.
  • Both U 1 and U 2 are preferably polymerizable groups, and both are more preferably photopolymerizable groups.
  • a polymerizable liquid crystal compound having a photopolymerizable group can be polymerized under a lower temperature condition than a thermally polymerizable group, and is thus advantageous in that a polymer of the polymerizable liquid crystal compound can be formed in a highly ordered state.
  • the polymerizable groups represented by U 1 and U 2 may be different from each other, but are preferably the same.
  • the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, oxetanyl group and the like.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group or an oxetanyl group is preferable, and a methacryloyloxy group or an acryloyloxy group is more preferable.
  • Examples of such a polymerizable liquid crystal compound include the following.
  • the exemplified compounds (A) can be used for the liquid crystal layer 11 alone or in combination.
  • the mixing ratio when combining two kinds of polymerizable liquid crystal compounds is usually 1:99 to 50:50, preferably 5:95 to 50:50, and 10:90 to 50:50. Is more preferred.
  • the compound (A) is described, for example, in Lub et al. Recl. Trav. Chim. It can manufacture by the well-known method as described in Pays-Bas, 115, 321-328 (1996) or patent 4719156 grade
  • the content of the polymerizable liquid crystal compound in the liquid crystal layer 11 is usually 50 to 99.5 parts by mass, preferably 60 to 99 parts by mass, relative to 100 parts by mass of the solid content of the liquid crystal layer 11. Is 70 to 98 parts by mass, more preferably 80 to 97 parts by mass. If the content of the polymerizable liquid crystal compound is in the above range, the orientation tends to be high.
  • solid content means the thing of the total amount of the component except the solvent from the composition for polarizing layer formation mentioned later.
  • the dichroic dye is a dye having a property in which the absorbance in the long axis direction of the molecule and the absorbance in the short axis direction are different.
  • the dichroic dye is a dye that is oriented with the liquid crystal compound to exhibit dichroism, and the dichroic dye itself may have polymerizability or liquid crystallinity.
  • the dichroic dye preferably has a property of absorbing visible light, and more preferably one having an absorption maximum wavelength ( ⁇ MAX ) in the range of 380 to 680 nm.
  • a dichroic dye for example, an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye and the like can be mentioned, and among them, an azo dye is preferable.
  • the azo dye include monoazo dyes, bisazo dyes, trisazo dyes, tetrakisazo dyes, stilbene azo dyes and the like, with preference given to bisazo dyes or trisazo dyes.
  • the dichroic dyes may be used alone or in combination of two or more types, but in order to obtain absorption in the entire visible light range, it is preferable to combine three or more types of dichroic dyes, It is more preferable to combine a kind or more of azo dyes.
  • a 1 , A 2 and A 3 are each independently a 1,4-phenylene group which may have a substituent, a naphthalene-1,4-diyl group, or a substituent
  • T 1 and T 2 independently of each other are an electron withdrawing group or an electron emitting group, and the position is substantially 180 ° with respect to the azo bonding surface.
  • Have to. p represents an integer of 0 to 4; When p is 2 or more, each A 2 may be the same or different.
  • a compound represented by hereinafter sometimes referred to as "compound (I)").
  • the 1,4-phenylene group, the naphthalene-1,4-diyl group and the divalent heterocyclic group in A 1 , A 2 and A 3 optionally have, such as methyl group, ethyl group or butyl group
  • unsubstituted amino group is -NH 2.
  • Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group and a hexyl group.
  • Examples of the alkanediyl group having 2 to 8 carbon atoms include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group. And hexane-1,6-diyl group, heptane-1,7-diyl group, and octane-1,8-diyl group.
  • a 1 , A 2 and A 3 are each independently unsubstituted, and hydrogen is substituted with a methyl group or a methoxy group
  • a 1,4-phenylene group or a divalent heterocyclic group is preferable, and p is preferably 0 or 1.
  • p is 1 and at least two of the three structures of A 1 , A 2 and A 3 are 1,4-phenylene groups, in that they have both simplicity of molecular synthesis and high performance. More preferable.
  • divalent heterocyclic group examples include quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole and a group in which two hydrogen atoms are removed from benzoxazole.
  • a 2 is a divalent heterocyclic group, a structure having a molecular bonding angle of substantially 180 ° is preferable, and specifically, benzothiazole, benzimidazole, benzoxazole in which two 5-membered rings are condensed. The structure is more preferred.
  • T 1 and T 2 are, independently of each other, an electron withdrawing group or an electron emitting group, which are preferably different from each other, and T 1 is an electron withdrawing group and T 2 is an electron emitting group, or More preferably, T 1 is an electron-emitting group and T 2 is an electron-withdrawing group.
  • T 1 and T 2 independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, or an alkyl group having 1 to 6 carbon atoms.
  • an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cyano group An amino group having one or two alkyl groups having 1 to 6 carbon atoms, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms is preferable.
  • azo dyes examples include the following.
  • B 1 to B 20 independently of each other represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cyano group, It represents a nitro group, a substituted or unsubstituted amino group (as defined for the substituted amino group and the unsubstituted amino group as described above), a chlorine atom or a trifluoromethyl group.
  • B 2 , B 6 , B 9 , B 14 , B 18 and B 19 are preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • n1 to n4 each independently represent an integer of 0 to 3.
  • a plurality of B 2 may be identical to or different from each other
  • a plurality of B 6 may be identical to or different from each other
  • a plurality of B 9 may be identical to or different from each other
  • the plurality of B 14 may be identical to or different from each other.
  • anthraquinone dye a compound represented by Formula (2-7) is preferable.
  • R 1 to R 8 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the oxazine dye is preferably a compound represented by the formula (2-8).
  • R 9 to R 15 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the acridine dye is preferably a compound represented by formula (2-9).
  • R 16 to R 23 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by Rx in formulas (2-7), (2-8) and (2-9) include a methyl group, an ethyl group, a propyl group and a butyl group And a pentyl group or a hexyl group.
  • Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xylyl group or a naphthyl group.
  • the cyanine dye is preferably a compound represented by Formula (2-10) and a compound represented by Formula (2-11).
  • D 1 and D 2 independently represent a group represented by any one of Formula (2-10a) to Formula (2-10d).
  • n5 represents an integer of 1 to 3;
  • D 3 and D 4 each independently represent a group represented by any one of the formulas (2-11 a) to (2-11 h).
  • n6 represents an integer of 1 to 3;
  • the content of the dichroic dye (the ratio of the total amount thereof in the case of containing plural kinds) is, like the first region 11 a of the liquid crystal layer 11, In a region having a high polarization property of 90% or more of Py), it is usually preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Preferably, it is 3 to 15 parts by mass.
  • the content of the dichroic dye is less than this range, light absorption is insufficient, sufficient polarization performance can not be obtained, and when it is more than this range, the alignment of liquid crystal molecules may be inhibited.
  • the polarization characteristic with a visibility correction polarization degree (Py) of 10% or less is low, usually 0 to 20 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
  • the content is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass.
  • the polarizing film 1 may have a base layer 13.
  • the base material layer 13 can be used, for example, to support the alignment layer 12 and the polarizing layer 21 described later when producing the polarizing film 1 as described later, and the liquid crystal layer 11 of the polarizing film 1 can be used. It can be used to support.
  • the base material layer 13 may be a glass base material or a resin base material, but is preferably a resin base material. Moreover, from the point which can manufacture the polarizing film 1 continuously, it is more preferable that the base material layer 13 unrolls the elongate resin base material wound by roll shape.
  • the resin substrate is preferably a light-transmissive substrate capable of transmitting visible light.
  • the term “transparency” means that the transmittance of a single visible sensitivity correction is 80% or more for light in a wavelength range of 380 to 780 nm.
  • the thickness of the base material layer 13 is preferably thin in that it is a mass that can be practically handled, but if it is too thin, the strength tends to decrease and the processability tends to be poor.
  • the thickness of the base layer 13 is usually 5 ⁇ m to 300 ⁇ m, preferably 20 ⁇ m to 200 ⁇ m.
  • the base material layer 13 may be provided so as to be peelable. For example, after bonding the liquid crystal layer 11 of the polarizing film 1 to a member forming a display device, a retardation layer to be described later, etc. It may be removable from the Thereby, the further film thinning effect of the polarizing film 1 is acquired.
  • the resin constituting the resin base examples include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid esters; polyacrylic acid esters; Cellulose esters such as cellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyethersulfone; polyether ketone; polyphenylene sulfide and polyphenylene oxide;
  • polyolefins such as polyethylene and polypropylene
  • cyclic olefin resins such as norbornene polymers
  • polyvinyl alcohol polyethylene terephthalate
  • polymethacrylic acid esters polyacrylic acid esters
  • Cellulose esters such as cellulose and cellulose acetate propionate
  • polyethylene naphthalate polycarbonate
  • Examples of commercially available resin base materials of cellulose ester include “Fujitack film” (manufactured by Fuji Photo Film Co., Ltd.); “KC8UX2M”, “KC8UY” and “KC4UY” (all manufactured by Konica Minolta Opto Co., Ltd.), etc. .
  • cyclic olefin resins examples include “Topas” (registered trademark) (manufactured by Ticona, Germany), “Arton” (registered trademark) (manufactured by JSR Corporation), “ZEONOR” (registered trademark), Examples include “ZEONEX” (registered trademark) (manufactured by Nippon Zeon Co., Ltd.) and "APEL” (registered trademark) (manufactured by Mitsui Chemicals, Inc.).
  • Such a cyclic olefin resin can be formed into a film by a known means such as a solvent casting method and a melt extrusion method to make a resin substrate.
  • the resin base material of cyclic olefin resin marketed can also be used.
  • resin base materials of commercially available cyclic olefin-based resins "ESSINA” (registered trademark), "SCA 40” (registered trademark) (above, manufactured by Sekisui Chemical Co., Ltd.), "Zeonor Film” (registered trademark) (OPTES share) And “Arton Film” (registered trademark) (manufactured by JSR Corporation).
  • the base material layer 13 may have a single layer structure or a multilayer structure of two or more layers. When the base material layer 13 is a multilayer structure, each layer may be formed of the same material, or may be formed of different materials.
  • a circularly-polarizing plate can be obtained by laminating
  • a circularly polarizing plate can also be used by using a layer in which a layer having inverse wavelength dispersive 1/4 wavelength plate function and a layer having positive C plate function are laminated. You can get
  • the polarizing film 1 may have an alignment layer 12 on the base material layer 13, and the alignment layer 12 is disposed between the base material layer 13 and the liquid crystal layer 11.
  • the alignment layer 12 can have an alignment regulating force that causes the liquid crystal compound in the liquid crystal layer 11 stacked thereon to be aligned in a desired direction.
  • the alignment layer 12 facilitates the liquid crystal alignment of the liquid crystal compound.
  • the state of liquid crystal alignment such as horizontal alignment, vertical alignment, hybrid alignment, and tilt alignment changes depending on the properties of the alignment layer 12 and the liquid crystal compound, and the combination thereof can be arbitrarily selected.
  • the alignment layer 12 is a material that expresses horizontal alignment as alignment regulating force
  • the liquid crystal compound can form horizontal alignment or hybrid alignment
  • the alignment layer 12 is a material that expresses vertical alignment
  • liquid crystal The compounds can form a vertical orientation or a tilted orientation.
  • the expressions such as horizontal and vertical represent the direction of the major axis of the aligned liquid crystal compound when the plane of the polarizing film 1 is used as a reference.
  • the vertical alignment is to have the major axis of the aligned polymerizable liquid crystal in the direction perpendicular to the plane of the polarizing film 1.
  • perpendicular means 90 ° ⁇ 20 ° with respect to the plane of the polarizing film 1. Since it is preferable that the polarizing film 1 has the polarization
  • the alignment regulating force of the alignment layer 12 can be arbitrarily adjusted according to the surface state and the rubbing conditions, and is formed of a photoalignment polymer. Can be adjusted arbitrarily according to polarized light irradiation conditions and the like.
  • the liquid crystal alignment can also be controlled by selecting physical properties such as surface tension and liquid crystallinity of the polymerizable liquid crystal compound.
  • the thickness of the alignment layer 12 is usually 10 nm to 5000 nm, preferably 10 nm to 1000 nm, and more preferably 30 nm to 300 nm.
  • the alignment layer 12 formed between the base material layer 13 and the liquid crystal layer 11 is insoluble in the solvent used when forming the liquid crystal layer 11 on the alignment layer 12, and the removal of the solvent and the like It is preferable to have heat resistance in heat treatment for alignment of liquid crystal.
  • the alignment layer 12 examples include an alignment film made of an alignment polymer, a photo alignment film, a groove alignment film, and the like.
  • the alignment layer 12 is preferably a photoalignment film from the viewpoint of easily controlling the alignment direction.
  • an alignment film made of an alignment polymer a composition in which the alignment polymer is dissolved in a solvent (hereinafter sometimes referred to as “alignment polymer composition”) is applied to the substrate layer 13 to remove the solvent.
  • alignment polymer composition a composition in which the alignment polymer is dissolved in a solvent
  • it can be obtained by applying the oriented polymer composition to the substrate layer 13, removing the solvent, and rubbing (rubbing method).
  • solvent used for the orientable polymer composition examples include water; alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve or propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl Ester solvents such as ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate or ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone or methyl isobutyl ketone; fats such as pentane, hexane or heptane Group hydrocarbon solvents; aromatic hydrocarbon solvents such as toluene or xylene; nitrile solvents such as acetonitrile; Rofuran or
  • the content of the orienting polymer in the orientating polymer composition may be in the range in which the orienting polymer can be completely dissolved in the solvent, but is preferably 0.1 to 20% by mass in terms of solid content with respect to the solution. 0.1 to 10% by mass is more preferable.
  • a commercially available alignment film material may be used as it is as an alignment polymer composition.
  • Examples of commercially available alignment film materials include Sun Ever (registered trademark) (manufactured by Nissan Chemical Industries, Ltd.) or Optomer (registered trademark) (manufactured by JSR Corporation).
  • coating methods such as spin coating method, extrusion method, gravure coating method, die coating method, bar coating method or applicator method, flexo method, etc.
  • the printing method There are known methods such as the printing method.
  • a printing method such as a gravure coating method, a die coating method or a flexo method can be usually employed as the coating method.
  • a dry film of the orientable polymer is formed.
  • a natural drying method, a ventilation drying method, a heat drying method, a reduced pressure drying method and the like can be mentioned. Thereafter, the dried film can be brought into contact with a rotating rubbing roll on which a rubbing cloth is wound to form the alignment layer 12.
  • the photo alignment film is usually coated on the substrate layer 13 with a composition containing a polymer or monomer having a photo reactive group and a solvent (hereinafter sometimes referred to as “a composition for forming a photo alignment film”). It can obtain by irradiating polarized light (preferably polarized UV) to the coating layer for alignment layers formed.
  • a composition for forming a photo alignment film a composition containing a polymer or monomer having a photo reactive group and a solvent
  • the photo alignment film is more preferable in that the direction of the alignment control force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
  • the photoreactive group refers to a group that generates liquid crystal alignment ability by irradiating light. Specifically, it generates a light reaction that is the source of liquid crystal alignment ability, such as alignment induction or isomerization reaction of molecules generated by light irradiation, dimerization reaction, photocrosslinking reaction, or photolysis reaction. is there.
  • a light reaction that is the source of liquid crystal alignment ability, such as alignment induction or isomerization reaction of molecules generated by light irradiation, dimerization reaction, photocrosslinking reaction, or photolysis reaction. is there.
  • the photoreactive groups those capable of causing a dimerization reaction or a photocrosslinking reaction are preferable in that they are excellent in orientation.
  • These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group or a halogenated alkyl group.
  • the content of the polymer or monomer having a photoreactive group in the composition for forming a photoalignment film is appropriately adjusted depending on the type of the polymer or monomer having a photoreactive group and the thickness of the photoalignment film to be produced. Although it is possible, 0.2 mass% or more is preferable, and a range of 0.3 to 10 mass% is particularly preferable.
  • a polymer material such as polyvinyl alcohol or polyimide and a photosensitizer may be contained within the range that the characteristics of the photo alignment film are not significantly impaired.
  • the composition for photo alignment film formation As a method of applying the composition for photo alignment film formation to the base material layer 13, the method similar to the method of applying the above-mentioned orientation polymer composition to the base material layer 13 is mentioned.
  • a method of removing a solvent from the composition for photo-alignment film formation applied the same method as the method of removing a solvent from alignment polymer composition is mentioned, for example.
  • the polarized light irradiation may be performed directly from above the dried film obtained by removing the solvent from the composition for forming a light alignment film coated on the base material layer 13, and the polarized light transmitted through the base material layer 13 irradiates the dried film. You may carry out from the base material layer 13 side so that it may be carried out.
  • polarized light used for polarized light irradiation is substantially parallel light.
  • the wavelength of the polarized light to be irradiated is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength of 250 to 400 nm is particularly preferable.
  • Examples of light sources used for polarized light irradiation include xenon lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, etc., and high pressure mercury lamps, ultra high pressure mercury lamps or metal halide lamps are more preferable. . These lamps are preferable because the emission intensity of ultraviolet light with a wavelength of 313 nm is large.
  • Polarized light can be illuminated by illuminating the light from the light source through a suitable polarizer.
  • a polarizing filter, a polarizing prism such as Glan-Thomson, Glan-Taylor, or a wire grid type polarizer can be used.
  • a plurality of regions (patterns) having different liquid crystal alignment directions can also be formed by performing masking when performing rubbing or polarized light irradiation.
  • the groove alignment film is a film having a concavo-convex pattern or a plurality of grooves (grooves) on the film surface.
  • a method of forming a concavo-convex pattern by performing development and rinsing after exposure through an exposure mask having slits of a pattern shape on the surface of a photosensitive polyimide film, a plate having grooves on the surface Method of forming a layer of a UV curable resin before curing on a sheet-like master, transferring the resin layer to a substrate and then curing, a plurality of films of the UV curable resin before curing formed on a substrate, The roll-shaped original disc which has a groove
  • the methods described in JP-A-6-34976 and JP-A-2011-242743 can be mentioned.
  • the width of the convex portion of the glue alignment film is preferably 0.05 ⁇ m to 5 ⁇ m, and the width of the concave portion is preferably 0.1 ⁇ m to 5 ⁇ m.
  • the depth is preferably 2 ⁇ m or less, and more preferably 0.01 ⁇ m to 1 ⁇ m or less.
  • the polarizing film 1 may have layers other than the base material layer 13 and the alignment layer 12.
  • a surface protection layer for the purpose of protecting the surface of the liquid crystal layer 11 may be provided on the surface of the liquid crystal layer 11 opposite to the base material layer 13.
  • the surface protective layer may have a single layer structure or a multilayer structure. When the surface protective layer has a multilayer structure, each layer may be formed of the same material, or may be formed of different materials.
  • ⁇ Circularly polarizing plate> 2 (a) to 2 (c) are each a schematic cross-sectional view showing an example of the circularly polarizing plate of the present invention.
  • the polarizing film 1 shown in FIG. 1 (b) is made to be circularly polarizing plates 5a and 5b shown in FIGS. 2 (a) and 2 (b) by laminating a retardation layer 15 having a 1 ⁇ 4 wavelength plate function.
  • the retardation layer 15 may be laminated on the liquid crystal layer 11 side of the polarizing film 1 (FIG. 2 (a)) or may be laminated on the base material layer 13 side (FIG. 2 (b)).
  • FIG.2 (c) what peeled the base material layer 13 from the circularly-polarizing plate 5a shown to Fig.2 (a) can also be used as a circularly-polarizing plate 5c (FIG.2 (c)), In this case, it aligns with the base material layer 13.
  • the layer 12 may also be peeled off.
  • the circularly polarizing plate may be one in which the polarizing film 1 and a retardation layer having a multilayer structure are laminated.
  • a retardation layer of the multilayer structure a retardation layer in which a layer having a half wave plate function and a layer having a quarter wave plate function can be laminated can be used.
  • a circularly polarizing plate can also be obtained by using a retardation layer in which a layer having a function of a quarter wavelength plate with reverse wavelength dispersion and a layer having a positive C plate function are laminated as a retardation layer having a multilayer structure. be able to.
  • the base material layer 13 of the polarizing film 1 one having a function as a retardation layer may be used, and a retardation layer may be further laminated to form a circularly polarizing plate.
  • the function as the retardation layer of the base material layer 13 and the retardation layer may be selected according to the lamination position of the base material layer 13 and the retardation layer in the circularly polarizing plate.
  • the polarizing film and the retardation layer can be laminated via an adhesive layer using a known pressure-sensitive adhesive or adhesive.
  • 3 (a) to 3 (d) are schematic cross-sectional views showing the layer structure obtained in each step of the manufacturing process of the polarizing film 1 shown in FIG. 1 (b).
  • the first production method of the polarizing film 1 is Preparing a laminated film 62 (FIG. 3B) having a polarizing layer 21 containing a liquid crystal compound and a dichroic dye on at least one side of a substrate layer 13; By contacting a partial region of the polarizing layer 21 of the laminated film 62 with a liquid capable of reducing the content of the dichroic dye in the polarizing layer 21, the dichroic dye in a partial region of the polarizing layer 21 is obtained. And a liquid contacting step of reducing the content of
  • a protective layer 35 having a coated area 35 a for covering the polarizing layer 21 and an exposed area 35 b for exposing the polarizing layer 21 is laminated on the polarizing layer 21 of the laminated film 62.
  • a protective layer laminating step of obtaining a laminated film 63 with protective layer (FIG. 3 (c)); By bringing the laminated film 63 with a protective layer into contact with a liquid capable of reducing the content of the dichroic dye in the polarizing layer 21, the content of the dichroic dye is reduced in a partial region of the polarizing layer 21.
  • a decolorizing step of obtaining a colored decolorized laminated film 64 (FIG. 3 (d)); It has a peeling process which peels the protective layer 35 from this decolorized laminated film 64, and, thereby, the polarizing film 1 shown in FIG.1 (b) can be manufactured.
  • the laminated film 62 prepared in the preparation step is not particularly limited as long as it has the polarizing layer 21 on at least one side of the base layer 13, but as shown in FIG. 3 (b), it is oriented on the base layer 13. It is preferable that the layer 12 and the polarizing layer 21 be laminated in this order.
  • Such a laminated film 62 is obtained by applying the composition for forming an alignment layer on one surface of the base material layer 13 to form an alignment layer 12 and forming a base material layer 61 with an alignment layer (FIG. 3A).
  • a polarizing layer forming step of forming a polarizing layer 21 by applying a composition for forming a polarizing layer on the side of the base layer 61 with an alignment layer on which the alignment layer 12 is formed. It can be manufactured through.
  • the substrate layer 13 may be subjected to surface treatment before applying the composition for forming an alignment layer.
  • surface treatment for example, corona treatment, plasma treatment, laser treatment, ozone treatment, saponification treatment, flame treatment, coating treatment of coupling agent, primer treatment and the like can be mentioned.
  • the composition for forming an alignment layer the above-described alignment polymer composition, a composition for forming a photo alignment film, a composition containing a resin material for forming a glue alignment film, and the like can be used.
  • the method of forming the alignment layer using each composition is also as described above.
  • the coating layer for an alignment layer formed by applying the composition for forming an alignment layer is irradiated with polarized light.
  • An alignment layer having an alignment control force in a predetermined direction can be formed.
  • the composition for forming a polarizing layer is a composition containing a liquid crystal compound and a dichroic dye, and preferably contains a solvent and a polymerization initiator, and a sensitizer, a polymerization inhibitor, a leveling agent, a reactive additive, etc. May be included.
  • a solvent and a polymerization initiator e.g., a solvent and a polymerization initiator
  • a sensitizer, a polymerization inhibitor, a leveling agent, a reactive additive, etc. e.g., a polarizing agent, etc.
  • the liquid crystal compound and the dichroic dye those described above can be used, and as the solvent, the polymerization initiator, the sensitizer, the polymerization inhibitor, the leveling agent, and the reactive additive, those described later can be used. .
  • extrusion coating method As a method of applying the composition for forming a polarizing layer, extrusion coating method, direct gravure coating method, reverse gravure coating method, CAP coating method, slit coating method, microgravure method, die coating method, ink jet method, etc. may be mentioned. .
  • the method etc. of coating using coaters such as a dip coater, a bar coater, a spin coater, etc. are mentioned.
  • the coating method by microgravure method, ink jet method, slit coating method, die coating method is preferable in the case of continuous coating in the Roll to Roll format, and in the case of coating on a sheet substrate such as glass A highly uniform spin coating method is preferred.
  • a composition for forming an alignment film or the like is coated on the base material layer 13 to form an alignment layer 12, and a composition for forming a polarizing layer is further formed on the obtained alignment layer 12. It can also be applied continuously.
  • a solvent is removed from the coated polarizing layer formation composition, and the coating layer for polarizing layers is formed.
  • the method of removing the solvent the same method as the method of removing the solvent from the oriented polymer composition can be used, and for example, natural drying, air drying, heat drying, reduced pressure drying and a combination thereof are mentioned. Be Among these, natural drying or heat drying is preferred.
  • the drying temperature is preferably in the range of 0 to 200 ° C., more preferably in the range of 20 to 150 ° C., and still more preferably in the range of 50 to 130 ° C.
  • the drying time is preferably 10 seconds to 10 minutes, more preferably 30 seconds to 5 minutes.
  • the coating layer for a polarizing layer formed in the step for forming a polarizing layer is irradiated with active energy rays to photopolymerize the polymerizable liquid crystal compound.
  • the polarizing layer 21 is formed as a polymer layer of the polymerizable liquid crystal compound.
  • the type of the polymerizable liquid crystal compound (particularly, the type of the photopolymerizable functional group possessed by the polymerizable liquid crystal compound) and the photopolymerization initiator contained as the active energy ray to be irradiated, It is suitably selected according to the kind of photoinitiator and those quantities. Specifically, one or more types of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, ⁇ -rays, ⁇ -rays, and ⁇ -rays can be mentioned.
  • ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction, and in that it can be used widely as an apparatus for photopolymerization, polymerization is possible so that it can be photopolymerized by ultraviolet light. It is preferable to select the type of the liquid crystal compound.
  • a light source of active energy ray for example, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, super high pressure mercury lamp, xenon lamp, halogen lamp, carbon arc lamp, tungsten lamp, gallium lamp, excimer laser, wavelength range 380
  • Examples thereof include an LED light source emitting ⁇ 440 nm, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp and the like.
  • Irradiation intensity of the active energy rays are usually, 10mW / cm 2 ⁇ 3000mW / cm 2.
  • the irradiation intensity of the active energy ray is preferably an intensity in a wavelength range effective for activating the cationic polymerization initiator or the radical polymerization initiator.
  • the irradiation time of the active energy ray is usually 0.1 seconds to 10 minutes, preferably 0.1 seconds to 5 minutes, more preferably 0.1 seconds to 3 minutes, still more preferably 0. 1 second to 1 minute.
  • the cumulative amount of light is, 10mJ / cm 2 ⁇ 3000mJ / cm 2, preferably 50mJ / cm 2 ⁇ 2,000mJ / cm 2, more preferably It can be 100 mJ / cm 2 to 1000 mJ / cm 2 .
  • the integrated light amount is less than this range, the curing of the polymerizable liquid crystal compound may be insufficient, and good transferability may not be obtained.
  • the polarizing layer may be colored.
  • the composition for forming a polarizing layer may contain a solvent.
  • a solvent since the polymerizable liquid crystal compound has a high viscosity, when the polymerizable liquid crystal compound is used as the liquid crystal compound, coating is facilitated by using a composition for forming a polarizing layer containing a solvent, and as a result, a polarizing layer is formed. It will be easier.
  • the solvent is preferably one that can completely dissolve the polymerizable liquid crystal compound and the dichroic dye, and is preferably a solvent inert to the polymerization reaction of the polymerizable liquid crystal compound.
  • alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether or propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone Or ester solvents such as propylene glycol methyl ether acetate or ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone or methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane or heptane; toluene Or an aromatic hydrocarbon solvent such as xylene, a nitrile solvent such as acetonitrile; Ether solvents such as dimethoxyethane
  • the content of the solvent contained in the composition for forming a polarizing layer is preferably 50 to 98% by mass with respect to the total amount of the composition for forming a polarizing layer.
  • the content of solid content in the composition for forming a polarizing layer is preferably 2 to 50% by mass.
  • the viscosity of the composition for forming a polarizing layer is low, so that the thickness of the polarizing layer 21 becomes substantially uniform, and unevenness tends not to occur in the polarizing layer 21.
  • the solid content can be determined in consideration of the thickness of the polarizing layer 21 to be produced.
  • the composition for forming a polarizing layer may contain a polymerization initiator.
  • the polymerization initiator can be used when a polymerizable liquid crystal compound is used as the liquid crystal compound, and is a compound capable of initiating a polymerization reaction of the polymerizable liquid crystal compound or the like.
  • the polymerization initiator is preferably a photopolymerization initiator that generates active radicals by the action of light from the viewpoint of being independent of the phase state of the thermotropic liquid crystal.
  • polymerization initiator examples include benzoin compounds, benzophenone compounds, alkylphenone compounds, acyl phosphine oxide compounds, triazine compounds, iodonium salts and sulfonium salts.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether.
  • benzophenone compounds include benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (tert-butylperoxycarbonyl) And benzophenone and 2,4,6-trimethylbenzophenone.
  • alkylphenone compounds examples include diethoxyacetophenone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) Butan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1,2-diphenyl-2,2-dimethoxyethane-1-one, 2-hydroxy-2-methyl-1 -[4- (2-hydroxyethoxy) phenyl] propan-1-one, 1-hydroxycyclohexyl phenyl ketone or 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propane-1-propane On-oligomer etc. are mentioned.
  • acyl phosphine oxide compound examples include 2,4,6-trimethyl benzoyl diphenyl phosphine oxide or bis (2,4,6-trimethyl benzoyl) phenyl phosphine oxide.
  • triazine compounds examples include 2,4-bis (trichloromethyl) -6- (4-methoxyphenyl) -1,3,5-triazine and 2,4-bis (trichloromethyl) -6- (4-methoxy). Naphthyl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- (4-methoxystyryl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (5-Methylfuran-2-yl) ethenyl] -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (furan-2-yl) ethenyl] -1 , 3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (4-diethylamino-2-methylphenyl) ethenyl] -1,3,5-triazine or 2,4
  • polymerization initiators include Irgacure (registered trademark) 907, 184, 651, 819, 250, 369, 379, 127, 754, OXE01, OXE02, or OXE03 (manufactured by Ciba Specialty Chemicals Inc.) Seikol (registered trademark) BZ, Z, or BEE (manufactured by SEIKO CHEMICAL CO., LTD.); Kayacure (registered trademark) BP 100, or UVI-6992 (manufactured by Dow Chemical Co.); Adeka Optomer SP-152, N-1717, N-1919, SP-170, Adeka Arkles NCI-831, Adeka Arkles NCI-930 (manufactured by ADEKA Co., Ltd.); TAZ-A, or TAZ-PP (manufactured by Nihon Shiber Hegner Co., Ltd.); TAZ-A, or TAZ-PP (manufactured by Nihon Shiber
  • the content of the polymerization initiator in the composition for forming a polarizing layer can be appropriately adjusted according to the type of the polymerizable liquid crystal compound and the amount thereof, but the content is usually 0. 1 parts by mass relative to 100 parts by mass of the content of the polymerizable liquid crystal compound.
  • the amount is 1 to 30 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass.
  • the composition for forming a polarizing layer may contain a sensitizer.
  • the sensitizer can be suitably used when a polymerizable liquid crystal compound is used as a liquid crystal compound, and when a polymerizable liquid crystal compound having a photopolymerizable group is used, the sensitizer is a photosensitizer. It is preferably an agent.
  • sensitizers include xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone etc.); anthracene compounds such as anthracene and alkoxy group-containing anthracene (eg dibutoxyanthracene etc) And phenothiazine or rubrene and the like.
  • the composition for forming a polarizing layer contains a sensitizer
  • the polymerization reaction of the polymerizable liquid crystal compound contained in the composition for forming a polarizing layer can be further promoted.
  • the amount of the sensitizer used is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Parts are more preferred.
  • the composition for forming a polarizing layer may contain a polymerization inhibitor from the viewpoint of stably advancing the polymerization reaction.
  • the polymerization inhibitor can be suitably used when a polymerizable liquid crystal compound is used as the liquid crystal compound, and the degree of progress of the polymerization reaction of the polymerizable liquid crystal compound can be controlled by the polymerization inhibitor.
  • polymerization inhibitor examples include radical scavenging such as hydroquinone, alkoxy group-containing hydroquinone, alkoxy group-containing catechol (eg, butyl catechol etc.), pyrogallol, 2,2,6,6-tetramethyl-1-piperidinyloxy radical etc. Agents; thiophenols; ⁇ -naphthylamines or ⁇ -naphthols.
  • the content of the polymerization inhibitor is preferably 0.1 to 10 parts by mass, more preferably 100 parts by mass of the content of the polymerizable liquid crystal compound.
  • the amount is 0.5 to 5 parts by mass, more preferably 0.5 to 3 parts by mass.
  • the composition for forming a polarizing layer may contain a leveling agent.
  • the leveling agent is an additive having a function of adjusting the flowability of the composition and making the film obtained by applying the composition more flat, and is, for example, an organic modified silicone oil type, polyacrylate type or perfluoro type. An alkyl type leveling agent is mentioned.
  • DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all manufactured by Toray Dow Corning Co., Ltd.)
  • KP 321, KP 323, KP 324, KP 326, KP 340, KP341, X22-161A, KF6001 (all from Shin-Etsu Chemical Co., Ltd.)
  • TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4446, TSF-4446, TSF4452, TSF4460 (all, Momentive Performance Materials Japan Ltd.
  • Fluorinert (registered trademark) FC-72, FC-40, FC-43, FC-3283 (above, Sumitomo 3M Co., Ltd., Megafuck (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, F-470, F-477, F-479, F-482, F-483 (all available from DIC Corporation), F-Top (trade names) EF301, EF303, EF351, EF 352 (all manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), Surflon (registered trademark) S-381, S-382, S-383, S-393, S-101, S-105, KH -40, SA-100 (all available from AGC Seimi Chemical Co., Ltd.), under the trade names E1830 and E5844 (manufactured by Daikin Fine Chemical Laboratories), BM-1000, BM-1100, BYK-352, BY -353 or BYK-361N
  • the composition for forming a polarizing layer contains a leveling agent, it is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 5 parts by mass, and still more preferably 100 parts by mass of the liquid crystal compound. 0.1 to 3 parts by mass.
  • the content of the leveling agent is within the above range, it is easy to horizontally align the liquid crystal compound, and the obtained polarizing layer tends to be smoother.
  • the content of the leveling agent with respect to the liquid crystal compound exceeds the above range, unevenness tends to easily occur in the obtained polarizing layer.
  • the composition for polarizing layer formation may contain 2 or more types of leveling agents.
  • the composition for forming a polarizing layer may contain a reactive additive.
  • the reactive additive is preferably one having a carbon-carbon unsaturated bond and an active hydrogen reactive group in the molecule.
  • active hydrogen reactive group refers to a group having reactivity with a group having active hydrogen such as carboxyl group (-COOH), hydroxyl group (-OH), amino group (-NH 2 ) and the like.
  • glycidyl group, oxazoline group, carbodiimide group, aziridine group, imide group, isocyanate group, thioisocyanate group, maleic anhydride group and the like are representative examples.
  • the number of carbon-carbon unsaturated bonds or active hydrogen reactive groups contained in the reactive additive is usually 1 to 20, and preferably 1 to 10.
  • the active hydrogen reactive groups are preferably present, and in this case, the active hydrogen reactive groups may be the same or different.
  • the carbon-carbon unsaturated bond possessed by the reactive additive may be a carbon-carbon double bond, a carbon-carbon triple bond, or a combination thereof, but is preferably a carbon-carbon double bond.
  • the reactive additive contains a carbon-carbon unsaturated bond as a vinyl group and / or a (meth) acrylic group.
  • a reactive additive in which the active hydrogen reactive group is at least one selected from the group consisting of an epoxy group, a glycidyl group and an isocyanate group is preferable, and a reactive additive having an acrylic group and an isocyanate group is more preferable. .
  • the reactive additive include compounds having a (meth) acrylic group and an epoxy group such as methacryloxy glycidyl ether and acryloxy glycidyl ether; (meth) acrylic groups and oxetane such as oxetane acrylate and oxetane methacrylate A compound having a group; a compound having a (meth) acrylic group and a lactone group such as lactone acrylate and lactone methacrylate; a compound having a vinyl group and an oxazoline group such as vinyl oxazoline and isopropenyl oxazoline; isocyanato methyl acrylate And oligomers of compounds having a (meth) acrylic group and an isocyanate group, such as isocyanatomethyl methacrylate, 2-isocyanatoethyl acrylate or 2-isocyanatoethyl methacrylate.
  • an epoxy group such as methacryloxy glycidyl
  • compounds having a vinyl group or vinylene group and an acid anhydride such as methacrylic anhydride, acrylic anhydride, maleic anhydride or vinyl maleic anhydride, may be mentioned.
  • methacryloxy glycidyl ether, acryloxy glycidyl ether, isocyanato methyl acrylate, isocyanato methyl methacrylate, vinyl oxazoline, 2-isocyanato ethyl acrylate, 2-isocyanato ethyl methacrylate or the above-mentioned oligomers are preferable, isocyanato methyl acrylate, Particularly preferred is 2-isocyanatoethyl acrylate or the above mentioned oligomers.
  • a compound represented by the following formula (Y) is preferable.
  • n represents an integer of 1 to 10
  • R 1 ′ represents a divalent aliphatic or alicyclic hydrocarbon group having 2 to 20 carbon atoms, or 2 Represents a substituted aromatic hydrocarbon group.
  • R 3 ' represents a group having a hydroxyl group or a carbon-carbon unsaturated bond. 'Of at least one R 3' formula (Y) in R 3 is a carbon - is a group having a carbon unsaturated bond.
  • a compound represented by the following formula (YY) (hereinafter sometimes referred to as a compound (YY)) is particularly preferable (where n is the same as above). Is the meaning).
  • the content of the reactive additive is usually 0.01 to 10 parts by mass, preferably 0.1 to 100 parts by mass of the liquid crystal compound. 5 parts by mass.
  • a covering region 35a for covering the polarizing layer 21 and the polarizing layer 21 are exposed on the polarizing layer 21 of the laminated film 62 prepared in the preparation step. And a protective layer 35 having an exposed area 35b.
  • the exposed region 35 b can be, for example, an opening of the protective layer 35.
  • the coated region 35 a contacts the polarizing layer 21 when the liquid which can reduce the content of the dichroic dye in the polarizing layer 21 described later and the laminated film 63 with a protective layer are brought into contact with each other. Can be suppressed.
  • the exposed area 35 b of the protective layer 35 the liquid can be brought into contact with the polarizing layer 21.
  • the polarizing layer 21 when the polarizing layer 21 comes in contact with the liquid, the liquid penetrates into the polarizing layer 21 and loses the function of the dichroic dye as a dye. Therefore, it is preferable to form the exposed area 35b in correspondence with the area in the polarizing layer 21 in which the content of the dichroic dye is reduced.
  • region 11 b For example, if the plan view shape of the second region 11b is circular; oval; oval; polygon such as triangle, square, rectangle, rhombus, etc .; linear; It may be formed corresponding to the shape of.
  • the diameter is preferably 5 cm or less, more preferably 3 cm or less, and still more preferably 2 cm or less.
  • the major axis is preferably 5 cm or less, more preferably 3 cm or less, and still more preferably 2 cm or less.
  • the diameter of a virtual circle drawn so as to be inscribed in the polygon is preferably 5 cm or less, more preferably 3 cm or less, and 2 cm or less. More preferable.
  • the size of the exposed area 35b may be formed to be slightly smaller than the size of the second area 11b.
  • the covering region 35 a of the protective layer 35 be formed to correspond to the region in the polarizing layer 21 in which the content of the dichroic dye is not reduced.
  • region 11 a it is preferable to determine the shape according to the shape of 1st area
  • the protective layer 35 what formed the area
  • a predetermined portion of the sheet-like substrate is mechanically removed by punching, cutting plotter, water jet or the like, or a predetermined portion of the sheet-like substrate is removed by laser ablation, chemical dissolution or the like. It can be formed by a method or the like.
  • the sheet-like base material forming the protective layer 35 is insoluble in a liquid when brought into contact with a liquid that can reduce the content of the dichroic dye in the liquid crystal layer described later, and the liquid is removed
  • the material is not particularly limited as long as the material has durability in ultraviolet irradiation performed after contacting a liquid material.
  • a sheet-like base material which forms protective layer 35 it can form using the same material as base material layer 13 mentioned above, for example, and forming using resin base material especially is preferred, and protective layer 35 is preferred. It is more preferable to use a polyester resin such as polyethylene terephthalate that easily suppresses deformation of a region (for example, an opening) to be the exposed region 35b.
  • the protective layer 35 preferably has an adhesive layer for bonding to the polarizing layer 21. Since the protective layer 35 is peeled off as described later, the adhesive layer is preferably peelable relative to the polarizing layer 21.
  • the thickness of the protective layer 35 is usually 20 ⁇ m or more, preferably 30 ⁇ m or more, and usually 250 ⁇ m or less, preferably 200 ⁇ m or less.
  • the laminated film 63 with a protective layer obtained in the protective layer laminating step is brought into contact with a liquid that can reduce the content of the dichroic dye in the polarizing layer 21, thereby forming part of the polarizing layer 21.
  • a decolorized laminated film 64 can be obtained in which the content of the dichroic dye is reduced in the region (FIG. 3 (d)).
  • the protective layer 35 of the laminated film 63 with protective layer has a coated area 35 a for covering the polarizing layer 21 and an exposed area 35 b for exposing the polarizing layer 21. It can be in contact with the polarizing layer 21. Thereby, in the area
  • the contact between the protective film with a protective layer 63 and the liquid can be carried out by immersing the protective film with a protective layer 63 in the liquid, or by applying, spraying or dropping the liquid on the protective film with a protective layer 63 It is preferable to carry out by the method of immersing the laminated film 63 with a protective layer in a liquid. As a result, the liquid comes in contact with the surface of the polarizing layer 21 exposed from the exposed region 35 b of the protective layer 35 in the polarizing layer 21 and penetrates the inside of the polarizing layer 21.
  • the liquid that has penetrated the inside of the polarizing layer 21 decomposes the dichroic dye in the polarizing layer 21 or reacts with the dichroic dye or the like to form a dye of the dichroic dye. It is thought that the function of As a result, the second region 11b, which is a region having a smaller content of the dichroic dye than the other regions, is formed in a part of the polarizing layer 21, and the decolorized laminated film 64 having the liquid crystal layer 11 (FIG. d) can be obtained.
  • the polarizing layer 21 In the area of the surface of the polarizing layer 21 covered by the covering area 35 a of the protective layer 35, the polarizing layer 21 does not directly contact the liquid, so that the liquid hardly penetrates into the polarizing layer 21 and the dichroic dye It is hard to be lost. On the other hand, in the area of the polarizing layer 21 exposed from the exposed area 35 b of the protective layer 35, the polarizing layer 21 is in direct contact with the liquid, so the liquid easily penetrates into the polarizing layer 21. Are easily lost. Therefore, in the decolorized laminated film 64 shown in FIG.
  • the second polarization region is a low polarization region in which the content of the dichroic dye is smaller than the other regions in the region corresponding to the exposed region 35b of the polarization layer 21.
  • the liquid crystal layer 11 having the region 11 b can be formed.
  • the desired position of the polarizing layer 21 is obtained.
  • the liquid crystal layer 11 can be formed in which the content of the dichroic dye is reduced.
  • the liquid penetrates the inside of the polarizing layer 21 and loses the function of the dichroic dye, the liquid penetrates to a region where it is not necessary to reduce the content of the dichroic dye and the dichroism occurs.
  • the liquid that can reduce the content of the dichroic dye in the polarizing layer 21 is not particularly limited as long as the content of the dichroic dye can be reduced, but, for example, peroxide (hydrogen peroxide, sodium percarbonate, etc.) or Chlorine compounds (sodium hypochlorite etc.), acids (sulfuric acid, nitric acid, hexafluorophosphoric acid), alkalis (sodium hydroxide, potassium hydroxide) etc. can be used as appropriate. Among these, acids such as sulfuric acid, nitric acid and hexafluorophosphoric acid are preferable. These liquids may be used alone or in combination.
  • the contact conditions for contacting the protective film with the protective layer 63 and the liquid may be appropriately selected according to the thickness of the polarizing layer 21 and the range in which the content of the dichroic dye is reduced.
  • the concentration of the liquid is, for example, preferably 20 to 80% by mass, and more preferably 30 to 70% by mass.
  • the temperature of the liquid is preferably 50 to 150 ° C., and more preferably 80 to 120 ° C.
  • the protective film-provided laminated film 63 is brought into contact with the liquid to form a region in which the dichroic dye content is lower than that of the other regions in a part of the polarizing layer 21. It is preferable to provide a first washing step to wash away.
  • the first washing step can be performed using an organic solvent such as water or alcohol.
  • the protective layer 35 is peeled from the decolorized laminated film 64 obtained in the decoloring step.
  • the polarizing film 1 (FIGS. 1A and 1B) in which the second region 11b having a smaller percentage of the dichroic dye content than the other regions is formed in a part of the liquid crystal layer 11. You can get
  • the polarizing film 1 shown in FIG. 1 (b) can also be used by peeling off the base material layer 13.
  • the alignment layer 12 may be peeled off together with the base layer 13.
  • peeling of the base material layer 13 can also be performed after bonding the liquid-crystal layer 11 of the polarizing film 1 to the member, retardation layer, etc. which make a display apparatus.
  • the manufacturing method of the polarizing film 1 can preferably be continuously manufactured by a Roll to Roll type
  • the laminated film wound in a roll may be prepared in the preparation step, and the laminated film may be conveyed while being unwound and the protective layer laminating step, the decoloring step, and the peeling step may be continuously performed.
  • the protective layer laminating step the protective layer wound in a roll may be conveyed while being unwound, and the protective layer may be bonded to the laminated film to obtain a laminated film with a protective layer.
  • the laminated film with the protective layer is continuously transported, and is passed through a liquid bath filled with the liquid, or the liquid is coated, sprayed or continuously transported while the laminated film with the protective layer is continuously transported. It may be dropped to obtain a decolorized laminated film.
  • the protective layer may be continuously peeled from the decolorized laminated film, and the polarizing film may be wound into a roll to form a wound body.
  • the polarizing film manufactured continuously as mentioned above can have a length of 10 m or more, for example.
  • the preparation step has an alignment layer forming step
  • the base layer wound in a roll is conveyed while being unwound, and the base layer is continuously coated with the composition for forming an alignment layer by a coating device.
  • the orientation layer may be formed by processing.
  • the preparation step has a polarizing layer forming step
  • the polarizing layer forming composition is provided on the side on which the alignment layer of the alignment layer-provided base layer is formed while continuously conveying the alignment layer-containing base layer. It may be coated to form a polarizing layer.
  • the difference in thickness between the first region 11 a and the second region 11 b can be reduced to, for example, 2 ⁇ m or less. You can get Thereby, even if it bonds another film on the polarizing layer 21 with an adhesive etc., another film can be laminated
  • FIG. 4 is a schematic sectional drawing which shows an example of the liquid thing contact process in the manufacturing method of the polarizing film 1 shown in FIG.1 (b).
  • the second production method of the polarizing film 1 is Preparing a laminated film 62 (FIG.
  • the preparation steps in this second manufacturing method are the same as the preparation steps in the first manufacturing method described based on FIGS. 3 (a) and 3 (b).
  • the laminated film 62 having the polarizing layer 21 is prepared.
  • a partial region of the polarizing layer 21 on the laminated film 62 is brought into contact with the liquid (FIG. 4).
  • the liquid used at this time can reduce the content of the dichroic dye in a partial region of the polarizing layer 21 and is the same as the liquid used in the decoloring step in the first manufacturing method described above.
  • the following liquid can be used.
  • a so-called ink jet method etc. in which the liquid material is dropped and applied to this partial region can be mentioned. .
  • the liquid penetrates into a partial region of the polarizing layer 21, and the content of the dichroic dye can be reduced to form a low polarization region.
  • the second manufacturing method preferably includes a second cleaning step of washing the liquid on the polarizing layer 21 after the polarizing layer 21 and the liquid are brought into contact with each other.
  • the second washing step can be performed using an organic solvent such as water or alcohol used in the first washing step in the first production method. Thereby, the polarizing film 1 shown in FIG.1 (b) can be obtained.
  • the polarizing film 1 can be continuously produced, for example, by the Roll to Roll method.
  • the laminated film wound in a roll shape may be prepared in the preparation step, and the laminated film may be conveyed while being unwound and the liquid contacting step may be continuously performed.
  • the liquid contact step while continuously conveying the laminated film, the liquid may be dropped and applied to obtain a polarizing film, and the obtained polarizing film may be wound into a roll to form a wound body.
  • the polarizing film manufactured continuously as mentioned above can have a length of 10 m or more, for example.
  • the preparation step has an alignment layer forming step
  • the base layer wound in a roll is conveyed while being unwound, and the base layer is continuously coated with the composition for forming an alignment layer by a coating device.
  • the orientation layer may be formed by processing.
  • the preparation step has a polarizing layer forming step
  • the polarizing layer forming composition is provided on the side on which the alignment layer of the alignment layer-provided base layer is formed while continuously conveying the alignment layer-containing base layer. It may be coated to form a polarizing layer.
  • the difference in thickness between the first region 11a and the second region 11b can be reduced to, for example, 2 ⁇ m or less, and the polarizing film 1 having no step can be obtained. Thereby, even if it bonds another film on the polarizing layer 21 with an adhesive etc., another film can be laminated
  • the circularly polarizing plate can be manufactured by laminating the polarizing film 1 and the retardation layer.
  • the polarizing film is a continuously produced long polarizing film having a length of 10 m or more
  • a long retardation layer having a length of 10 m or more is used as the retardation layer, and both are continuously produced.
  • the manufacturing method of a circularly polarizing plate is a sheet of a predetermined size in order to attach the polarizing film to a display device of a predetermined size, etc., by attaching a long laminate obtained by laminating a long polarizing film and a long retardation layer to a display of a predetermined size. It may have a process of cutting into In the cutting step, the long laminate is preferably cut in at least one of the length direction and the width direction of the long laminate. In this case, it is preferable to determine the cutting position in the long laminate so that the second region 11b of the liquid crystal layer 11 is disposed at a predetermined position in the cut sheet.
  • the luminosity correction single transmittance (Ty) and the luminosity correction polarization degree (Py) were calculated in the following procedure.
  • the apparatus was used to measure by the double beam method.
  • a mesh was provided to cut the light amount by 50% on the reference side.
  • the transmittance and polarization degree at each wavelength are calculated using the following (Equation 1) and (Equation 2), and the visibility is corrected with a 2-degree field of view (C light source) of JIS Z 8701, and the visibility correction transmittance (Ty) and the visibility correction polarization degree (Py) were calculated.
  • Degree of polarization [%] ⁇ (T 1 ⁇ T 2 ) / (T 1 + T 2 ) ⁇ ⁇ 100
  • Single transmittance [%] (T 1 + T 2 ) / 2 (equation 2)
  • Example 1 (Production of Composition for Forming Alignment Layer) The following components were mixed, and the obtained mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming an alignment layer which is a composition for forming a photo alignment film.
  • ⁇ 2 parts of polymer having photoreactive group shown below Solvent: 98 parts of o-xylene
  • composition for forming polarizing layer (Production of composition for forming polarizing layer) The following components were mixed and stirred at 80 ° C. for 1 hour to obtain a composition for forming a polarizing layer.
  • the dichroic dye the azo dye described in the example of JP-A-2013-101328 was used.
  • the alignment layer is irradiated with polarized UV light at an integrated light quantity of 50 mJ / cm 2 (based on 313 nm) using a polarized UV irradiation device (SPOT CURE SP-7; manufactured by Ushio Inc.) on the coating layer for alignment layer. It formed. After applying the composition for polarizing layer formation using the bar coater on the obtained orientation layer, it dried for 1 minute with the drying oven set to 110 degreeC.
  • SPOT CURE SP-7 polarized UV irradiation device
  • the liquid crystal is irradiated with ultraviolet light (in nitrogen atmosphere, wavelength: 365 nm, integrated light amount at wavelength 365 nm: 1000 mJ / cm 2 ) using a high pressure mercury lamp (UNIQUEUR VB-15201BY-A, manufactured by USHIO INC.)
  • a high pressure mercury lamp (UNIQUEUR VB-15201BY-A, manufactured by USHIO INC.)
  • the polarizing layer in which the compound and the dichroic dye were oriented was obtained.
  • a protective layer (AY-638 manufactured by Fujimori Kogyo Co., Ltd., having an opening formed on the polarizing layer by a hole-piercing punch (AY-638 with a 15 ⁇ m thick adhesive layer provided on a 38 ⁇ m thick polyester film) ) was immersed in a 50 wt% solution of propylene carbonate in diphenyl 4-thiophenoxyphenylsulfonium hexafluorophosphate (CPI-100P manufactured by San-Apro Co., Ltd.) at 120 ° C. for 60 seconds. Thereafter, the protective layer was peeled off to obtain a polarizing film.
  • CPI-100P diphenyl 4-thiophenoxyphenylsulfonium hexafluorophosphate
  • Example 2 instead of using a triacetyl cellulose film as a base material layer, the surface of a quarter wave plate (Zeonor film, Nippon Zeon Co., in-plane retardation value Ro: 138 nm) which is a uniaxially stretched film of a cyclic olefin resin A polarizing film was obtained in the same manner as in Example 1 except that the hard-coated film was used and laminated so that the slow axis and the absorption axis of the polarizing layer were 45 °.
  • a quarter wave plate Zeonor film, Nippon Zeon Co., in-plane retardation value Ro: 138 nm
  • Example 3 Instead of bonding a protective layer in which an opening is formed by using a punching punch, a diphenyl 4-thiophenoxyphenylsulfonium hexafluorophosphate (San-Apro stock) is partially formed on a polarizing layer using a dropper instead of using a syringe.
  • a polarizing film was obtained in the same manner as in Example 1 except that a 50 wt% solution of propylene carbonate in a company's CPI-100P) was dropped.
  • Comparative Example Example 6 was carried out in the same manner as Example 1, except that methanol was used at normal temperature instead of a 50 wt% solution of propylene carbonate in diphenyl 4-thiophenoxyphenyl sulfonium hexafluorophosphate (CPI-100P manufactured by San-Apro Co., Ltd.). A polarizing film was obtained. When the appearance of the obtained polarizing film was visually observed, it was found that the region where the polarizing layer was not present could not be confirmed, and that a polarizing film having a polarizing region and a low polarizing region was not obtained.
  • methanol was used at normal temperature instead of a 50 wt% solution of propylene carbonate in diphenyl 4-thiophenoxyphenyl sulfonium hexafluorophosphate (CPI-100P manufactured by San-Apro Co., Ltd.).
  • CPI-100P diphenyl 4-thiophenoxyphenyl sulfonium
  • a polarizing film was obtained in the same manner as Example 1, except that a 50 wt% solution of propylene carbonate in diphenyl 4-thiophenoxyphenylsulfonium hexafluorophosphate (CPI-100P, manufactured by San-Apro Co., Ltd.) was not used.
  • CPI-100P diphenyl 4-thiophenoxyphenylsulfonium hexafluorophosphate
  • the values of the visibility correction transmittance (Ty) and the visibility correction polarization degree (Py) measured in each example, comparative example and reference example shown in Table 1 are the visibility correction transmittance of the base material layer ( Ty) and the visibility correction polarization degree (Py) value, the visibility correction transmittance (Ty) of the base material layer alone is 92%, and the visibility correction polarization degree of the base material layer (Ty) Since the value of Py) is 0%, when the base material layer is removed in each of the examples, comparative examples and reference examples shown in Table 1, the value of the visibility correction transmittance (Ty) is the value shown in Table 1 The value of the degree of visibility correction polarization (Py) is considered to be the same as the value shown in Table 1.

Abstract

This polarizing film comprises a liquid crystal layer. The liquid crystal layer contains a liquid crystal compound, and comprises at least two regions that are distinguished by color correction polarization value. The at least two regions have different dichroic pigment contents.

Description

偏光フィルム及びその製造方法Polarized film and method of manufacturing the same
 本発明は、偏光フィルム及びその製造方法に関し、特に液晶化合物と二色性色素とを含む層を有する偏光フィルム及びその製造方法に関する。 The present invention relates to a polarizing film and a method for producing the same, and more particularly to a polarizing film having a layer containing a liquid crystal compound and a dichroic dye and a method for producing the same.
 有機発光ダイオード(OLED)を用いた有機EL表示装置は、液晶表示装置等に比べて軽量化や薄型化が可能であるだけでなく、幅広い視野角、速い応答速度、高いコントラスト等の高画質を実現できるため、スマートフォンやテレビ、デジタルカメラ等、様々な分野で用いられている。有機EL表示装置では、外光の反射による視認性の低下を抑制するために、円偏光板等を用いて反射防止性能を向上させることが知られている。 An organic EL display device using an organic light emitting diode (OLED) can not only be reduced in weight and thickness as compared with a liquid crystal display device, but also has high image quality such as wide viewing angle, fast response speed, and high contrast. Because it can be realized, it is used in various fields such as smartphones, televisions, digital cameras, and the like. In the organic EL display device, it is known to improve the antireflection performance by using a circularly polarizing plate or the like in order to suppress a decrease in visibility due to the reflection of external light.
 このような円偏光板に用いられる偏光フィルムとして、特開2015-206852号公報(特許文献1)及び特開2015-212823号公報(特許文献2)には、基材上にパターン化した液晶硬化膜を積層したパターン偏光フィルムが記載されている。 As a polarizing film used for such a circularly polarizing plate, in JP-A-2015-206852 (patent document 1) and JP-A-2015-212823 (patent document 2), liquid crystal cured on a substrate is cured. A patterned polarizing film having a laminated film is described.
特開2015-206852号公報JP, 2015-206852, A 特開2015-212823号公報JP, 2015-212823, A
 本発明は、視感度補正偏光度の値が互いに異なる少なくとも2つの領域を有する新規な偏光フィルム及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a novel polarizing film having at least two regions in which values of the degree of visibility correction polarization are different from each other, and a method of manufacturing the same.
 本発明は、以下に示す偏光フィルム及びその製造方法を提供する。
 〔1〕 液晶層を有する偏光フィルムであって、
 前記液晶層は、液晶化合物を含むとともに、視感度補正偏光度の値によって区別される少なくとも2つの領域を有し、
 前記少なくとも2つの領域は、二色性色素の含有率が互いに異なっている、偏光フィルム。
 〔2〕 さらに、基材層と、
 前記基材層の少なくとも片面側に積層された配向層と、を有し、
 前記液晶層は、前記配向層上に積層されている、〔1〕に記載の偏光フィルム。
 〔3〕 前記配向層は、光配向性ポリマーを含む、〔2〕に記載の偏光フィルム。
 〔4〕 前記液晶化合物は、重合性液晶化合物を含む、〔1〕~〔3〕のいずれかに記載の偏光フィルム。
 〔5〕 前記液晶層は、二色性色素を含有する第1領域と、二色性色素の含有率が前記第1領域よりも少ない第2領域とを有し、
 前記第1領域の視感度補正偏光度は、90%以上であり、
 前記第2領域の視感度補正偏光度は、10%以下である、〔1〕~〔4〕のいずれかに記載の偏光フィルム。
 〔6〕 前記液晶層は、二色性色素を含有する第1領域と、二色性色素の含有率が前記第1領域よりも少ない第2領域とを有し、
 前記第1領域の視感度補正単体透過率は、35%以上であり、
 前記第2領域の視感度補正単体透過率は、80%以上である、〔1〕~〔5〕のいずれかに記載の偏光フィルム。
 〔7〕 前記第2領域は、平面視形状が円形、楕円形、長円形又は多角形であり、
 前記第2領域が円形である場合の直径は、5cm以下であり、
 前記第2領域が楕円形又は長円形である場合の長径は、5cm以下であり、
 前記第2領域が多角形である場合、前記多角形が内接されるように描いた仮想円の直径は、5cm以下である、〔5〕又は〔6〕のいずれかに記載の偏光フィルム。
 〔8〕 前記第1領域は、X線回折測定においてブラッグピークを示す、〔5〕~〔7〕のいずれかに記載の偏光フィルム。
 〔9〕 さらに、基材層を有し、
 前記基材層は、1/4波長板機能を有する、〔1〕~〔8〕のいずれかに記載の偏光フィルム。
 〔10〕 前記偏光フィルムの長さは10m以上である、〔1〕~〔9〕のいずれかに記載の偏光フィルム。
 〔11〕 〔1〕~〔8〕及び〔10〕のいずれかに記載の偏光フィルムと、1/4波長板機能を有する位相差層とを積層してなる、円偏光板。
 〔12〕 基材層の少なくとも片面側に、液晶化合物及び二色性色素を含む偏光層を有する積層フィルムを準備する準備工程と、
 前記積層フィルムの前記偏光層の一部の領域に、前記偏光層における二色性色素の含有率を低減し得る液状物を接触させることにより、前記偏光層の一部の領域において二色性色素の含有率を低下させる液状物接触工程と、を有する、偏光フィルムの製造方法。
 〔13〕 前記液状物接触工程は、
  前記準備工程で準備した前記積層フィルムの前記偏光層上に、前記偏光層を被覆するための被覆領域と前記偏光層を露出させるための露出領域とを有する保護層を積層することにより、保護層付き積層フィルムを得る保護層積層工程と、
  前記保護層付き積層フィルムを、前記偏光層における二色性色素の含有率を低減し得る液状物に接触させることにより、前記偏光層の一部の領域において二色性色素の含有率を低下させた脱色積層フィルムを得る脱色工程と、
  前記脱色積層フィルムから前記保護層を剥離する剥離工程と、を有する、〔12〕に記載の偏光フィルムの製造方法。
 〔14〕 前記保護層における前記露出領域は、平面視形状が円形、楕円形、長円形又は多角形であり、
 前記露出領域が円形である場合の直径は、5cm以下であり、
 前記露出領域が楕円形又は長円形である場合の長径は、5cm以下であり、
 前記露出領域が多角形である場合、前記多角形が内接されるように描いた仮想円の直径は、5cm以下である、〔13〕に記載の偏光フィルムの製造方法。
 〔15〕 前記準備工程は、
 前記基材層の片面側に配向層形成用組成物を塗工して配向層を形成する配向層形成工程と、
 前記基材層の前記配向層が形成された側の面に、前記液晶化合物及び前記二色性色素を含む偏光層形成用組成物を塗工して前記偏光層を形成する偏光層形成工程と、を有する、〔12〕~〔14〕のいずれかに記載の偏光フィルムの製造方法。
 〔16〕 前記配向層形成用組成物は、光配向性ポリマーを含み、
 前記配向層形成工程は、前記配向層形成用組成物を塗工して形成された配向層用塗工層に偏光照射を行って前記配向層を形成する、〔15〕に記載の偏光フィルムの製造方法。
 〔17〕 前記液晶化合物は、重合性液晶化合物であり、
 前記偏光層形成工程は、前記偏光層形成用組成物を塗工して形成された偏光層用塗工層に活性エネルギー線照射を行って前記偏光層を形成する、〔15〕又は〔16〕に記載の偏光フィルムの製造方法。
 〔18〕 前記偏光フィルムは、長さが10m以上である、〔12〕~〔17〕のいずれかに記載の偏光フィルムの製造方法。
 〔19〕 〔12〕~〔18〕のいずれかに記載の偏光フィルムの製造方法で製造された偏光フィルムと、1/4波長板機能を有する位相差層とを積層する位相差層積層工程を有する、円偏光板の製造方法。
 〔20〕 前記偏光フィルムは、長さが10m以上の長尺偏光フィルムであり、
 前記位相差層は、長さが10m以上の長尺位相差層であり、
 前記位相差層積層工程は、前記長尺偏光フィルムと前記長尺位相差層とを積層することにより長尺積層体を形成し、
 さらに、前記長尺積層体を枚葉に裁断する裁断工程を有する、〔19〕に記載の円偏光板の製造方法。
The present invention provides a polarizing film shown below and a method for producing the same.
[1] A polarizing film having a liquid crystal layer, which is
The liquid crystal layer contains a liquid crystal compound and has at least two regions distinguished by the value of the degree of polarization correction for polarization,
The polarizing film, wherein the at least two regions have different dichroic dye contents.
[2] Furthermore, a base material layer,
An orientation layer laminated on at least one side of the substrate layer,
The polarizing film according to [1], wherein the liquid crystal layer is laminated on the alignment layer.
[3] The polarizing film according to [2], wherein the alignment layer contains a photoalignable polymer.
[4] The polarizing film according to any one of [1] to [3], wherein the liquid crystal compound comprises a polymerizable liquid crystal compound.
[5] The liquid crystal layer has a first region containing a dichroic dye, and a second region in which the content of the dichroic dye is smaller than that of the first region,
The visibility correction polarization degree of the first area is 90% or more.
The polarizing film according to any one of [1] to [4], wherein the visibility correction polarization degree of the second region is 10% or less.
[6] The liquid crystal layer has a first region containing a dichroic dye, and a second region containing a smaller amount of dichroic dye than the first region,
The visibility correction single transmittance of the first region is 35% or more,
The polarizing film according to any one of [1] to [5], wherein the transmittance of the second region in the second region is 80% or more.
[7] The second region is circular, elliptical, oval or polygonal in a plan view shape,
When the second region is circular, the diameter is 5 cm or less.
When the second region is elliptical or oblong, the major axis is 5 cm or less.
The polarizing film according to any one of [5] or [6], wherein a diameter of a virtual circle drawn so that the polygon is inscribed is 5 cm or less when the second region is a polygon.
[8] The polarizing film according to any one of [5] to [7], wherein the first region exhibits a Bragg peak in X-ray diffraction measurement.
[9] Furthermore, it has a base material layer,
The polarizing film according to any one of [1] to [8], wherein the base material layer has a quarter wavelength plate function.
[10] The polarizing film according to any one of [1] to [9], wherein the length of the polarizing film is 10 m or more.
[11] A circularly polarizing plate formed by laminating the polarizing film as described in any one of [1] to [8] and [10] and a retardation layer having a 1⁄4 wavelength plate function.
[12] A preparing step of preparing a laminated film having a polarizing layer containing a liquid crystal compound and a dichroic dye on at least one side of a substrate layer.
A dichroic dye in a partial region of the polarizing layer is brought into contact with a partial region of the polarizing layer of the laminated film by bringing a liquid capable of reducing the content of the dichroic dye in the polarizing layer into contact. And D. a liquid contacting step of reducing the content of.
[13] The liquid contacting step is
A protective layer is formed on the polarizing layer of the laminated film prepared in the preparation step, by laminating a protective layer having a coated area for covering the polarizing layer and an exposed area for exposing the polarizing layer. A protective layer laminating step of obtaining a laminated film
By bringing the laminated film with the protective layer into contact with a liquid capable of reducing the content of the dichroic dye in the polarizing layer, the content of the dichroic dye is reduced in a partial region of the polarizing layer A decoloring process to obtain a decolorized laminated film,
The peeling process of peeling the said protective layer from the said decolorized laminated film, The manufacturing method of the polarizing film as described in [12].
[14] The exposed area in the protective layer is circular, elliptical, oval or polygonal in a plan view shape,
When the exposed area is circular, the diameter is 5 cm or less.
When the exposed area is elliptical or oval, the major axis is 5 cm or less.
The manufacturing method of the polarizing film as described in [13] whose diameter of the virtual circle drawn so that the said polygon may be inscribed is 5 cm or less, when the said exposure area | region is a polygon.
[15] The preparation step is
An alignment layer forming step of coating the composition for forming an alignment layer on one side of the base material layer to form an alignment layer;
A polarizing layer forming step of applying the composition for forming a polarizing layer containing the liquid crystal compound and the dichroic dye on the surface of the base layer on which the alignment layer is formed, thereby forming the polarizing layer; , The manufacturing method of the polarizing film in any one of [12]-[14].
[16] The composition for forming an alignment layer contains a photoalignable polymer,
The polarizing film according to [15], wherein the step of forming an alignment layer is performed by irradiating polarized light on the coating layer for an alignment layer formed by applying the composition for forming an alignment layer to form an alignment layer. Production method.
[17] The liquid crystal compound is a polymerizable liquid crystal compound,
In the polarizing layer forming step, the polarizing layer is formed by applying an active energy ray to the coating layer for a polarizing layer formed by applying the composition for forming a polarizing layer, [15] or [16] The manufacturing method of the polarizing film as described in-.
[18] The method for producing a polarizing film according to any one of [12] to [17], wherein the polarizing film has a length of 10 m or more.
[19] A retardation layer laminating step of laminating a polarizing film produced by the method for producing a polarizing film according to any one of [12] to [18] and a retardation layer having a quarter wave plate function The manufacturing method of the circularly-polarizing plate to have.
[20] The polarizing film is a long polarizing film having a length of 10 m or more,
The retardation layer is a long retardation layer having a length of 10 m or more,
In the retardation layer laminating step, an elongated laminate is formed by laminating the elongated polarizing film and the elongated retardation layer.
Furthermore, the manufacturing method of the circularly-polarizing plate as described in [19] which has a cutting process which cut | judges the said elongate laminated body to a sheet.
 本発明によれば、視感度補正偏光度の値が互いに異なる少なくとも2つの領域を有する偏光フィルム及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a polarizing film having at least two regions having mutually different values of the degree of visibility correction polarization, and a method of manufacturing the same.
(a)は本発明の偏光フィルムの一例を示す概略平面図であり、(b)は(a)のX-X断面図である。(A) is a schematic plan view which shows an example of the polarizing film of this invention, (b) is XX sectional drawing of (a). (a)~(c)は、それぞれ本発明の円偏光板の一例を示す概略断面図である。(A) to (c) are each a schematic cross-sectional view showing an example of the circularly polarizing plate of the present invention. (a)~(d)は、本発明の偏光フィルムの製造工程の各工程で得られる層構造の一例を示す概略断面図である。(A) to (d) are schematic cross-sectional views showing an example of the layer structure obtained in each step of the process for producing a polarizing film of the present invention. 本発明の偏光フィルムの製造方法における液状物接触工程の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the liquid thing contact process in the manufacturing method of the polarizing film of this invention.
 以下、図面を参照して、本発明の偏光フィルム及びその製造方法の好ましい実施形態について説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the polarizing film of the present invention and the method for producing the same will be described below with reference to the drawings. The scope of the present invention is not limited to the embodiments described herein, and various modifications can be made without departing from the spirit of the present invention.
 <偏光フィルム>
 図1(a)は、本発明の偏光フィルムの一例を示す概略平面図であり、図1(b)は、図1(a)のX-X断面図である。本実施の形態の偏光フィルム1は、光吸収異方性の機能を有するフィルムであって、液晶化合物を含む液晶層11を有する。液晶層11は、視感度補正偏光度(Py)の値によって区別される少なくとも2つの領域を有し、この少なくとも2つの領域は、二色性色素の含有率が互いに異なっている。偏光フィルム1は液晶層11を有するものであるが、さらに基材層13、配向層12、その他の層等を有していてもよい。図1(b)に示す偏光フィルム1では、基材層13の片面側に配向層12及び液晶層11を有する例を示しているが、基材層13の両面に配向層及び液晶層を有していてもよい。基材層13の両面に設けられる液晶層の構造は、互いに同じであってもよく、互いに異なっていてもよい。
<Polarizing film>
FIG. 1 (a) is a schematic plan view showing an example of the polarizing film of the present invention, and FIG. 1 (b) is a sectional view taken along the line XX in FIG. 1 (a). The polarizing film 1 of the present embodiment is a film having the function of light absorption anisotropy, and has a liquid crystal layer 11 containing a liquid crystal compound. The liquid crystal layer 11 has at least two regions distinguished by the value of the degree of polarization correction (Py), and the at least two regions have mutually different dichroic dye contents. The polarizing film 1 has a liquid crystal layer 11, but may further have a base layer 13, an alignment layer 12, other layers, and the like. Although the polarizing film 1 shown in FIG. 1 (b) shows an example in which the alignment layer 12 and the liquid crystal layer 11 are provided on one side of the base layer 13, the alignment layer and the liquid crystal layer are provided on both sides of the base layer 13. It may be done. The structures of the liquid crystal layers provided on both sides of the base layer 13 may be the same as or different from each other.
 偏光フィルム1は、長さが10m以上の長尺状の偏光フィルムであってもよく、この場合、偏光フィルム1はロール状に巻回された巻回体とすることができる。この巻回体から偏光フィルムを連続的に繰り出して、後述する位相差層と積層する、枚葉に切断する等の工程を行うことができる。巻回体とする長尺状の偏光フィルムの長さは10m以上であれば特に限定されないが、例えば10000m以下とすることができる。 The polarizing film 1 may be an elongated polarizing film having a length of 10 m or more. In this case, the polarizing film 1 can be a wound body wound in a roll. The polarizing film can be continuously drawn out from the wound body and laminated with a retardation layer to be described later, or can be cut into pieces. Although the length of the elongate polarizing film used as a winding body will not be specifically limited if it is 10 m or more, For example, it can be 10000 m or less.
 (液晶層)
 液晶層11は液晶化合物を含み、液晶化合物と二色性色素とを含有する領域を有する。偏光フィルム1が偏光フィルム1平面の偏光特性を有する場合、二色性色素と液晶化合物が偏光フィルム1平面に対して水平配向した状態にある領域を有することが好ましい。また、偏光フィルム1が偏光フィルム1の膜厚方向の偏光特性を有する場合、二色性色素と液晶化合物が偏光フィルム1平面に対して水平配向した状態にある領域を有することが好ましい。
(Liquid crystal layer)
The liquid crystal layer 11 contains a liquid crystal compound and has a region containing the liquid crystal compound and a dichroic dye. When the polarizing film 1 has the polarization characteristic of the plane of the polarizing film 1, it is preferable to have a region in which the dichroic dye and the liquid crystal compound are horizontally aligned with respect to the plane of the polarizing film 1. When the polarizing film 1 has polarization characteristics in the film thickness direction of the polarizing film 1, it is preferable to have a region in which the dichroic dye and the liquid crystal compound are horizontally aligned with respect to the plane of the polarizing film 1.
 液晶層11のうち、二色性色素及び液晶化合物を含み、この二色性色素及び液晶化合物が偏光フィルム1面に対して水平配向した状態である領域は、波長λnmの光に対する液晶配向水平方向の吸光度A1(λ)と液晶配向面内垂直方向の吸光度A2(λ)の比である二色比(=A1(λ)/A2(λ))が7以上であれば好ましく、20以上であればより好ましく、さらに好ましくは30以上である。この値が高ければ高い程、吸収選択性に優れる偏光特性を有することを示す。二色性色素の種類にもよるが、液晶層11がネマチック液晶相である場合には、上記比は5~10程度である。なお、液晶層11がネマチック液晶相及び後述するスメクチック液晶相である場合、液晶化合物と二色性色素とが相分離していないことは、例えば、各種顕微鏡による表面観察やヘイズメーターによる散乱度測定により確認できる。 The region of the liquid crystal layer 11 which contains a dichroic dye and a liquid crystal compound and is in a state in which the dichroic dye and the liquid crystal compound are horizontally aligned relative to one plane of the polarizing film is a liquid crystal alignment horizontal direction with respect to light of wavelength λ nm. It is preferable that the dichroic ratio (= A1 (λ) / A2 (λ)) which is the ratio of the absorbance A1 (λ) of the liquid crystal to the absorbance A2 (λ) in the vertical direction in the liquid crystal alignment plane is 7 or more. Is more preferably 30 or more. The higher the value, the better the polarization characteristics of the absorption selectivity. Depending on the type of dichroic dye, when the liquid crystal layer 11 is a nematic liquid crystal phase, the above ratio is about 5 to 10. When the liquid crystal layer 11 is a nematic liquid crystal phase and a smectic liquid crystal phase to be described later, the fact that the liquid crystal compound and the dichroic dye are not phase separated means, for example, surface observation with various microscopes or scattering degree measurement with a haze meter It can confirm by.
 液晶層11は、図1(a)及び(b)に示すように、視感度補正偏光度(Py)によって区別され、かつ、二色性色素の含有率によって区別される第1領域11a及び第2領域11bを有している。図1(a)に示す偏光フィルム1では、視感度補正偏光度(Py)及び二色性色素の含有率が異なる2つの領域をそれぞれ1つずつ有する例を示しているが、第1領域及び第2領域がそれぞれ2以上あってもよく、また、二色性色素の含有率が互いに異なる3以上の領域を有していてもよい。 As shown in FIGS. 1 (a) and 1 (b), the liquid crystal layer 11 is distinguished by the degree of polarization correction (Py), and is distinguished by the content of the dichroic dye. It has two areas 11b. The polarizing film 1 shown in FIG. 1A shows an example in which each of two regions different in the visibility correction polarization degree (Py) and the content of the dichroic dye is one each. Two or more second regions may be present, and three or more regions in which the dichroic dye content is different from one another may be provided.
 図1(a)に示す偏光フィルム1の第1領域11aは液晶化合物と二色性色素とを含有する。第2領域11bは液晶化合物を含有するが、二色性色素は含有していても含有していなくてもよく、二色性色素を含有する場合、その含有率は、第1領域11aが含有する二色性色素の含有率よりも少ないことが好ましい。 The first region 11 a of the polarizing film 1 shown in FIG. 1A contains a liquid crystal compound and a dichroic dye. The second region 11 b contains a liquid crystal compound, but may or may not contain a dichroic dye, and in the case of containing a dichroic dye, the content is the same as that contained in the first region 11 a. It is preferable that it is less than the content rate of the dichroic dye.
 液晶層11における二色性色素の含有率は、例えば、二色性色素が有する吸収極大波長(λMAX)における吸光度を測定することによって決定することができる。 The content of the dichroic dye in the liquid crystal layer 11 can be determined, for example, by measuring the absorbance at the absorption maximum wavelength (λ MAX ) of the dichroic dye.
 第1領域11aは高い偏光特性を有する領域であることが好ましく、例えば視感度補正偏光度(Py)を90%以上とすることができ、92%以上であることが好ましく、95%以上であることがより好ましく、通常100%以下である。また、第1領域11aは、視感度補正単体透過率(Ty)を例えば35%以上とすることができ、40%以上であることが好ましく、44%以上であることがより好ましく、通常50%未満である。 The first area 11a is preferably an area having high polarization characteristics, and for example, the visibility correction polarization degree (Py) can be 90% or more, preferably 92% or more, and 95% or more. Is more preferable, and usually 100% or less. In addition, the first region 11a can have the visibility correction single transmittance (Ty) of, for example, 35% or more, preferably 40% or more, more preferably 44% or more, and usually 50%. Less than.
 第2領域11bは、第1領域11aの視感度補正偏光度(Py)よりも低い視感度補正偏光度(Py)を有する低偏光領域であることが好ましい。第2領域11bの視感度補正偏光度(Py)は、例えば10%以下とすることができ、5%以下であることが好ましく、1%以下であることがより好ましく、0%であってもよい。また、第2領域11bは、第1領域11aの視感度補正単体透過率(Ty)よりも高い視感度補正単体透過率(Ty)を有することが好ましい。第2領域11bは、視感度補正単体透過率(Ty)を例えば80%以上とすることができ、85%以上であることが好ましく、88%以上であることがより好ましく、通常98%以下である。 The second region 11 b is preferably a low polarization region having a visibility correction polarization degree (Py) lower than the visibility correction polarization degree (Py) of the first region 11 a. The visibility correction polarization degree (Py) of the second region 11 b can be, for example, 10% or less, preferably 5% or less, more preferably 1% or less, and even 0% Good. In addition, it is preferable that the second region 11 b has a visibility correction single transmittance (Ty) higher than the visibility correction single transmittance (Ty) of the first region 11 a. In the second region 11b, the visibility correction single transmittance (Ty) can be set to, for example, 80% or more, preferably 85% or more, more preferably 88% or more, and usually 98% or less. is there.
 本明細書における視感度補正偏光度(Py)及び視感度補正単体透過率(Ty)は、分光光度計を用いて測定した偏光度及び単体透過率に基づいて算出することができる。例えば、可視光である波長380nm~780nmの範囲で透過軸方向(配向垂直方向)の透過率(T)及び吸収軸方向(配向同一方向)の透過率(T)を、分光光度計に偏光子付フォルダーをセットした装置を用いてダブルビーム法で測定することができる。可視光範囲での偏光度及び単体透過率は、下記式(式1)及び(式2)を用いて各波長における偏光度及び単体透過率を算出し、さらにJIS Z 8701の2度視野(C光源)により視感度補正を行うことで、視感度補正単体透過率(Ty)及び視感度補正偏光度(Py)で算出することができる。 The visibility correction polarization degree (Py) and the visibility correction single transmittance (Ty) in the present specification can be calculated based on the degree of polarization and the single transmittance measured using a spectrophotometer. For example, the transmittance of the transmittance of the transmission axis direction in the wavelength range of 380 nm ~ 780 nm is visible light (alignment vertical) (T 1) and the absorption axis direction (oriented the same direction) to (T 2), the spectrophotometer It can measure by a double beam method using the apparatus which set the folder with a polarizer. For the degree of polarization and single transmittance in the visible light range, the degree of polarization and single transmittance at each wavelength are calculated using the following formulas (Formula 1) and (Formula 2) By performing the visibility correction with the light source), it is possible to calculate the visibility correction single transmittance (Ty) and the visibility correction polarization degree (Py).
  偏光度[%]={(T-T)/(T+T)}×100   (式1)
  単体透過率[%]=(T+T)/2   (式2)
Degree of polarization [%] = {(T 1 −T 2 ) / (T 1 + T 2 )} × 100 (Equation 1)
Single transmittance [%] = (T 1 + T 2 ) / 2 (equation 2)
 第1領域11aの占有面積及び第2領域11bの占有面積は、偏光フィルム1に要求される特性に応じて適宜選択すればよい。偏光フィルム1の表面積に対する、第1領域11a及び第2領域11bの占有面積の合計の割合は、90%以上であることが好ましく、95%以上であることがより好ましく、99%以上であることがさらに好ましい。また、第1領域11aの占有面積と第2領域11bの占有面積の合計面積に対して、第1領域11aの占有面積は、50%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。例えば、図1(a)に示すように、第2領域11bの占有面積が第1領域11aの占有面積よりも小さく、第2領域11bを取り囲むように第1領域11aを設けてもよい。図1(a)に示す偏光フィルム1では、1つの円形の第2領域11bを取り囲むように第1領域11aを設けているが、第2領域11bはそれぞれ独立に複数設けられていてもよい。 The occupied area of the first area 11 a and the occupied area of the second area 11 b may be appropriately selected according to the characteristics required of the polarizing film 1. The ratio of the total occupied area of the first region 11a and the second region 11b to the surface area of the polarizing film 1 is preferably 90% or more, more preferably 95% or more, and 99% or more. Is more preferred. In addition, the occupied area of the first area 11a is preferably 50% or more, more preferably 70% or more, of the total area of the occupied area of the first area 11a and the occupied area of the second area 11b. Preferably, it is 80% or more. For example, as shown in FIG. 1A, the area occupied by the second area 11b is smaller than the area occupied by the first area 11a, and the first area 11a may be provided so as to surround the second area 11b. In the polarizing film 1 shown to Fig.1 (a), although 1st area | region 11a is provided so that one circular 2nd area | region 11b may be surrounded, two or more 2nd area | regions 11b may be provided independently, respectively.
 第1領域11aの形状及び第2領域11bの形状は特に限定されないが、例えば、図1(a)に示すように、第2領域11bを取り囲むように第1領域11aを設ける場合、第2領域11bは、平面視形状が、円形;楕円形;長円形;三角形、正方形、矩形、菱形等の多角形;文字形状;これらの組み合わせ等、任意の形状に形成することができる。 The shape of the first area 11a and the shape of the second area 11b are not particularly limited. For example, as shown in FIG. 1A, when the first area 11a is provided to surround the second area 11b, the second area 11b can be formed into any shape such as a circular shape; an oval shape; a polygonal shape such as a triangle, a square, a rectangle, a rhombus, a letter shape, a combination thereof, and the like in a plan view shape.
 第2領域11bは、平面視形状が円形、楕円形、長円形、又は多角形であることが好ましい。第2領域11bが円形である場合、その直径は5cm以下であることが好ましく、3cm以下であることがより好ましく、2cm以下であることがさらに好ましい。第2領域11bが楕円形又は長円形である場合、その長軸は5cm以下であることが好ましく、3cm以下であることがより好ましく、2cm以下であることがさらに好ましい。第2領域11bが多角形である場合、この多角形が内接されるように描いた仮想円の直径は5cm以下であることが好ましく、3cm以下であることがより好ましく、2cm以下であることがさらに好ましい。上記した形状の第2領域11bは、スマートフォンやタブレット等に設けられたカメラのレンズ位置に対応させる領域として好適に用いることができる。また、この際、第2領域11bを、視感度補正偏光度(Py)が10%以下であり、視感度補正単体透過率(Ty)が80%以上の領域とすることにより、第2領域11bの着色を低減し、優れた透明性を得ることができるため、カメラの性能を向上させることができる。 The second region 11 b preferably has a circular, elliptical, oval or polygonal shape in plan view. When the second region 11 b is circular, the diameter is preferably 5 cm or less, more preferably 3 cm or less, and still more preferably 2 cm or less. When the second region 11 b is elliptical or oblong, the major axis is preferably 5 cm or less, more preferably 3 cm or less, and still more preferably 2 cm or less. When the second region 11b is a polygon, the diameter of the virtual circle drawn so as to be inscribed in this polygon is preferably 5 cm or less, more preferably 3 cm or less, and 2 cm or less Is more preferred. The second region 11 b having the above-described shape can be suitably used as a region corresponding to the lens position of a camera provided in a smartphone, a tablet, or the like. At this time, the second region 11b is a region where the visibility correction polarization degree (Py) is 10% or less and the visibility correction single transmittance (Ty) is 80% or more. The performance of the camera can be improved because the coloration of the image can be reduced, and excellent transparency can be obtained.
 さらに、第1領域11aと第2領域11bとを、それぞれ平面視形状が線状、帯状、波形状等の形状となるように設けてもよい。この場合、第1領域11aと第2領域11bとはそれぞれ交互に複数設けられていてもよい。この場合、第1領域11a及び第2領域11bの幅は、それぞれ独立して、1μm~10mmであることが好ましく、1μm~1mmであることがより好ましく、1μm~100μmであることがさらに好ましい。 Furthermore, the first area 11a and the second area 11b may be provided such that the shape in plan view is linear, band-like, wave-like, or the like. In this case, a plurality of first areas 11a and a plurality of second areas 11b may be alternately provided. In this case, the widths of the first region 11a and the second region 11b are preferably independently 1 μm to 10 mm, more preferably 1 μm to 1 mm, and still more preferably 1 μm to 100 μm.
 なお、偏光フィルムが長尺状の偏光フィルムである場合、長尺状の偏光フィルムは通常、偏光フィルムの用途等に応じて所定サイズに裁断されるため、裁断後の偏光フィルムの所定の位置に第1領域11aや第2領域11bが形成されるように、長尺状の偏光フィルムにおける第1領域11aや第2領域11bの配置を設定することが好ましい。例えば、裁断後の偏光フィルムが図1(a)に示す偏光フィルム1である場合には、長尺状の偏光フィルムの長さ方向及び/又は幅方向に、所定の間隔で複数の第2領域11bを設けることが好ましい。 In the case where the polarizing film is a long polarizing film, the long polarizing film is usually cut into a predetermined size according to the application of the polarizing film, etc. It is preferable to set the arrangement of the first area 11a and the second area 11b in the elongated polarizing film so that the first area 11a and the second area 11b are formed. For example, in the case where the polarizing film after cutting is the polarizing film 1 shown in FIG. 1A, a plurality of second regions at predetermined intervals in the longitudinal direction and / or the width direction of the long polarizing film It is preferable to provide 11b.
 液晶層11における第1領域11aの厚みは、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、また、5μm以下であることが好ましく、3μm以下であることがより好ましい。また、液晶層11における第2領域11bの厚みは、第1領域11aと同じ厚みであることが好ましく、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、また、5μm以下であることが好ましく、3μm以下であることがより好ましい。液晶層11の厚みは、干渉膜厚計、レーザー顕微鏡、又は触針式膜厚計等で測定することができる。 The thickness of the first region 11a in the liquid crystal layer 11 is preferably 0.5 μm or more, more preferably 1 μm or more, and preferably 5 μm or less, more preferably 3 μm or less. The thickness of the second region 11b in the liquid crystal layer 11 is preferably the same as that of the first region 11a, preferably 0.5 μm or more, more preferably 1 μm or more, and 5 μm or less Is preferably, and more preferably 3 μm or less. The thickness of the liquid crystal layer 11 can be measured by an interference film thickness meter, a laser microscope, a stylus film thickness meter, or the like.
 第2領域11bの厚みは、第1領域11aの厚みよりも小さくてもよいが、第1領域11aの厚みと第2領域11bの厚みとの差は2μm以下であることが好ましく、1μm以下であることがより好ましく、0.5μm以下であることがさらに好ましい。液晶層11の第1領域11a及び第2領域11bの厚みを同程度とし、第1領域11aと第2領域11bとの段差を小さくすることにより、液晶層11に、後述する位相差層や他の層(表面保護層等)を積層した場合に、気泡の噛込みや皺の発生等の不具合を抑制することができる。また、液晶層11を有する偏光フィルム1をロール状に巻き取った場合に、巻き痕が形成される等の不具合も抑制することができる。 The thickness of the second area 11b may be smaller than the thickness of the first area 11a, but the difference between the thickness of the first area 11a and the thickness of the second area 11b is preferably 2 μm or less, and 1 μm or less And more preferably 0.5 μm or less. By making the thickness of the first region 11a and the second region 11b of the liquid crystal layer 11 approximately the same and reducing the difference between the first region 11a and the second region 11b, a retardation layer to be described later and the like are described later. When the layers (surface protective layer etc.) are laminated, defects such as biting of air bubbles and generation of wrinkles can be suppressed. Moreover, when the polarizing film 1 having the liquid crystal layer 11 is wound into a roll, it is possible to suppress a defect such as formation of a winding mark.
 (液晶化合物)
 液晶層11に含まれる液晶化合物としては、公知の液晶化合物を用いることができる。液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及びこれらの混合物を用いることができる。また、液晶化合物は、高分子液晶化合物であってもよく、重合性液晶化合物であってもよく、これらの混合物であってもよい。
(Liquid crystal compound)
As a liquid crystal compound contained in the liquid crystal layer 11, a known liquid crystal compound can be used. The type of liquid crystal compound is not particularly limited, and rod-like liquid crystal compounds, discotic liquid crystal compounds, and mixtures thereof can be used. The liquid crystal compound may be a polymer liquid crystal compound, a polymerizable liquid crystal compound, or a mixture of these.
 液晶化合物としては、重合性液晶化合物を用いることが好ましい。重合性液晶化合物を用いることにより、偏光フィルムの色相を任意に制御することができるとともに、偏光フィルムを大幅に薄型化できる。また、延伸処理を行うことなく偏光フィルムを製造することができるので、熱による延伸緩和のない非伸縮性の偏光フィルムとすることができる。 It is preferable to use a polymerizable liquid crystal compound as the liquid crystal compound. By using the polymerizable liquid crystal compound, the hue of the polarizing film can be arbitrarily controlled, and the thickness of the polarizing film can be significantly reduced. Moreover, since a polarizing film can be manufactured without performing an extending | stretching process, it can be set as the non-stretchable polarizing film without the extending | stretching relaxation by heat.
 重合性液晶化合物とは、重合性基を有し、かつ、液晶性を有する化合物をいう。重合性基は、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、光重合性基とは、後述する光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基又はオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性は、サーモトロピック液晶でもリオトロピック液晶でもよいが、本実施の形態の液晶層のように二色性色素と混合する場合には、サーモトロピック液晶を用いることが好ましい。 The polymerizable liquid crystal compound refers to a compound having a polymerizable group and having liquid crystallinity. The polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group. Here, the photopolymerizable group means a group capable of participating in the polymerization reaction by active radicals or acids generated from a photopolymerization initiator described later. Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, oxetanyl group and the like. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group or an oxetanyl group is preferable, and an acryloyloxy group is more preferable. The liquid crystallinity may be a thermotropic liquid crystal or a lyotropic liquid crystal, but when mixed with a dichroic dye as in the liquid crystal layer of the present embodiment, it is preferable to use a thermotropic liquid crystal.
 重合性液晶化合物がサーモトロピック液晶である場合は、ネマチック液晶相を示すサーモトロピック性液晶化合物であってもよいし、スメクチック液晶相を示すサーモトロピック性液晶化合物であってもよい。液晶層11が重合反応によって得られた重合体膜として偏光機能を発現する際には、重合性液晶化合物が示す液晶状態は、スメクチック相であることが好ましく、高性能化の観点から高次スメクチック相であることがより好ましい。中でも、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相又はスメクチックL相を形成する高次スメクチック液晶化合物がより好ましく、スメクチックB相、スメクチックF相又はスメクチックI相を形成する高次スメクチック液晶化合物がさらに好ましい。重合性液晶化合物が形成する液晶層11がこれらの高次スメクチック相であると、液晶層11に偏光性能のより高い領域を形成することができる。また、このように偏光性能の高い領域は、X線回折測定においてヘキサチック相やクリスタル相といった高次構造由来のブラッグピークが得られるものである。当該ブラッグピークは分子配向の周期構造に由来するピークであり、その周期間隔が3~6Åである膜を得ることができる。本実施の形態の偏光フィルム1では、液晶層11が重合性液晶化合物がスメクチック相の状態で重合された重合体を含むことにより、例えば第1領域11aにより高い偏光特性を付与できるため好ましい。 When the polymerizable liquid crystal compound is a thermotropic liquid crystal, it may be a thermotropic liquid crystal compound exhibiting a nematic liquid crystal phase or a thermotropic liquid crystal compound exhibiting a smectic liquid crystal phase. When the liquid crystal layer 11 exhibits a polarization function as a polymer film obtained by a polymerization reaction, the liquid crystal state exhibited by the polymerizable liquid crystal compound is preferably a smectic phase, and from the viewpoint of performance improvement, higher order smectic More preferably, it is a phase. Among them, higher-order smectic liquid crystal compounds forming a smectic B phase, a smectic D phase, a smectic E phase, a smectic F phase, a smectic G phase, a smectic H phase, a smectic I phase, a smectic J phase, a smectic K phase or a smectic L phase More preferred are higher order smectic liquid crystal compounds which form smectic B phase, smectic F phase or smectic I phase. When the liquid crystal layer 11 formed by the polymerizable liquid crystal compound is a high-order smectic phase, a region with higher polarization performance can be formed in the liquid crystal layer 11. In addition, regions with high polarization performance as described above are those in which Bragg peaks derived from higher order structures such as hexatic phase and crystal phase are obtained in X-ray diffraction measurement. The Bragg peak is a peak derived from the periodic structure of molecular orientation, and a film having a periodic spacing of 3 to 6 Å can be obtained. In the polarizing film 1 of the present embodiment, it is preferable that the liquid crystal layer 11 contains a polymer in which the polymerizable liquid crystal compound is polymerized in the smectic phase, for example, because the first region 11a can have higher polarization characteristics.
 重合性液晶化合物が、ネマチック液晶相やスメクチック液晶相を示すか否かは、例えば、以下のようにして確認できる。基材に偏光膜形成用組成物を塗布して塗布膜を形成した後、重合性液晶化合物が重合しない条件で加熱処理することで塗布膜に含有される溶剤を除去する。続いて、基材上に形成された塗布膜を等方相温度まで加熱し、徐々に冷却することで発現する液晶相を、偏光顕微鏡によるテクスチャー観察、X線回折測定又は示差走査熱量測定により検査する。 Whether or not the polymerizable liquid crystal compound exhibits a nematic liquid crystal phase or a smectic liquid crystal phase can be confirmed, for example, as follows. After the composition for forming a polarizing film is applied to a substrate to form a coated film, the solvent contained in the coated film is removed by heat treatment under the condition that the polymerizable liquid crystal compound is not polymerized. Subsequently, the coating film formed on the substrate is heated to an isotropic phase temperature, and the liquid crystal phase developed by gradually cooling is inspected by texture observation with a polarizing microscope, X-ray diffraction measurement or differential scanning calorimetry Do.
 このような重合性液晶化合物としては、具体的には、下記式(A)
  U-V-W-X-Y-X-Y-X-W-V-U   (A)
[式(A)中、X、X及びXは、それぞれ独立に、2価の芳香族基又は2価の脂環式炭化水素基を表し、ここで、該2価の芳香族基又は2価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基又はニトロ基に置換されていてもよく、該2価の芳香族基又は2価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子又は窒素原子に置換されていてもよい。ただし、X、X及びXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基又は置換基を有していてもよいシクロヘキサン-1,4-ジイル基である。
 Y、Y、W及びWは、互いに独立に、単結合又は二価の連結基である。
 V及びVは、互いに独立に、置換基を有していてもよい炭素数1~20のアルカンジイル基を表し、該アルカンジイル基を構成する-CH-は、-O-、-S-又はNH-に置き換わっていてもよい。
 U及びUは、互いに独立に、重合性基又は水素原子を表し、少なくとも1つは重合性基である。]
で表される化合物(以下、化合物(A)ということがある。)等が挙げられる。
Specifically as such a polymerizable liquid crystal compound, the following formula (A)
U 1 -V 1 -W 1 -X 1 -Y 1 -X 2 -Y 2 -X 3 -W 2 -V 2 -U 2 (A)
[In the formula (A), X 1 , X 2 and X 3 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group, and here, the divalent aromatic group Or a hydrogen atom contained in a divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cyano group Or a nitro group may be substituted, and a carbon atom constituting the divalent aromatic group or divalent alicyclic hydrocarbon group may be substituted by an oxygen atom, a sulfur atom or a nitrogen atom . Provided that at least one of X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent It is.
Y 1 , Y 2 , W 1 and W 2 are each independently a single bond or a divalent linking group.
V 1 and V 2 each independently represent an alkanediyl group having 1 to 20 carbon atoms which may have a substituent, and -CH 2- constituting the alkanediyl group is -O-,- It may be replaced by S- or NH-.
U 1 and U 2 independently of one another represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group. ]
And the like (hereinafter sometimes referred to as compound (A)) and the like can be mentioned.
 化合物(A)において、X、X及びXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基、又は、置換基を有していてもよいシクロヘキサン-1,4-ジイル基である。特に、X及びXは置換基を有していてもよいシクロヘキサン-1,4-ジイル基であることが好ましく、該シクロへキサン-1,4-ジイル基は、トランス-シクロへキサン-1,4-ジイル基であることがさらに好ましい。トランス-シクロへキサン-1,4-ジイル基の構造を含む場合、スメクチック液晶性が発現しやすい傾向にある。また、置換基を有していてもよい1,4-フェニレン基及び置換基を有していてもよいシクロへキサン-1,4-ジイル基が任意に有する置換基としては、メチル基、エチル基又はブチル基等の炭素数1~4のアルキル基、シアノ基、塩素原子又はフッ素原子等のハロゲン原子が挙げられる。好ましくは無置換である。 In the compound (A), at least one of X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent, or cyclohexane which may have a substituent It is a 1,4-diyl group. In particular, X 1 and X 3 are preferably a cyclohexane-1,4-diyl group which may have a substituent, and the cyclohexane-1,4-diyl group is preferably a trans-cyclohexane-. More preferably, it is a 1,4-diyl group. When the structure of trans-cyclohexane-1,4-diyl group is included, smectic liquid crystallinity tends to be easily developed. Moreover, as a substituent which the 1,4-phenylene group which may have a substituent and the cyclohexane-1,4-diyl group which may have a substituent optionally have, a methyl group, ethyl Examples thereof include alkyl groups having 1 to 4 carbon atoms such as a group or a butyl group, halogen atoms such as a cyano group, a chlorine atom or a fluorine atom. Preferably it is unsubstituted.
 Y及びYは、互いに独立に、単結合、-CHCH-、-CHO-、-COO-、-OCO-、-N=N-、-CR=CR-、-C≡C-又はCR=N-が好ましく、R及びRは、互いに独立に、水素原子又は炭素数1~4のアルキル基を表す。Y及びYは、-CHCH-、-COO-、-OCO-又は単結合であるとより好ましく、X、X及びXが全てシクロヘキサン-1,4-ジイル基を含まない場合、Y及びYが互いに異なる結合方式であることがより好ましい。Y及びYが互いに異なる結合方式である場合には、スメクチック液晶性が発現しやすい傾向にある。 Y 1 and Y 2, independently of one another, a single bond, -CH 2 CH 2 -, - CH 2 O -, - COO -, - OCO -, - N = N -, - CR a = CR b -, - C≡C— or CR a NN— is preferable, and R a and R b independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Y 1 and Y 2 are more preferably —CH 2 CH 2 —, —COO—, —OCO— or a single bond, and X 1 , X 2 and X 3 all contain a cyclohexane-1,4-diyl group. If not, it is more preferred that Y 1 and Y 2 be different bonding systems. In the case where Y 1 and Y 2 are bonding systems different from each other, smectic liquid crystallinity tends to be easily exhibited.
 W及びWは、互いに独立に、単結合、-O-、-S-、-COO-又はOCO-が好ましく、互いに独立に単結合又は-O-であることがより好ましい。 W 1 and W 2 are preferably, independently of one another, a single bond, —O—, —S—, —COO— or OCO—, and more preferably, independently of each other, be a single bond or —O—.
 V及びVで表される炭素数1~20のアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、テトラデカン-1,14-ジイル基又はイコサン-1,20-ジイル基等を挙げることができる。V及びVは、好ましくは炭素数2~12のアルカンジイル基であり、より好ましくは直鎖状の炭素数6~12のアルカンジイル基である。直鎖状の炭素数6~12のアルカンジイル基とすることで結晶性が向上し、スメクチック液晶性を発現しやすい傾向にある。 As the C 1-20 alkanediyl group represented by V 1 and V 2 , a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,3-diyl group, a butane-1,4 -Diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane There may be mentioned -1,14-diyl or icosane-1,20-diyl and the like. V 1 and V 2 are preferably alkanediyl groups having 2 to 12 carbon atoms, and more preferably linear alkanediyl groups having 6 to 12 carbon atoms. By the linear alkanediyl group having 6 to 12 carbon atoms, the crystallinity is improved, and smectic liquid crystallinity tends to be easily exhibited.
 置換基を有していてもよい炭素数1~20のアルカンジイル基が任意に有する置換基としては、シアノ基及び塩素原子、フッ素原子等のハロゲン原子等が挙げられるが、該アルカンジイル基は、無置換であることが好ましく、無置換かつ直鎖状のアルカンジイル基であることがより好ましい。 Examples of the substituent optionally possessed by the optionally substituted alkanediyl group having 1 to 20 carbon atoms include a cyano group and a halogen atom such as a chlorine atom or a fluorine atom, and the alkanediyl group is It is preferably unsubstituted, and more preferably an unsubstituted and linear alkanediyl group.
 U及びUは、ともに重合性基であることが好ましく、ともに光重合性基であることがより好ましい。光重合性基を有する重合性液晶化合物は、熱重合性基よりも低温条件下で重合できるため、秩序度の高い状態で重合性液晶化合物の重合体を形成できる点で有利である。 Both U 1 and U 2 are preferably polymerizable groups, and both are more preferably photopolymerizable groups. A polymerizable liquid crystal compound having a photopolymerizable group can be polymerized under a lower temperature condition than a thermally polymerizable group, and is thus advantageous in that a polymer of the polymerizable liquid crystal compound can be formed in a highly ordered state.
 U及びUで表される重合性基は互いに異なっていてもよいが、同一であることが好ましい。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基又はオキセタニル基が好ましく、メタクリロイルオキシ基、あるいは、アクリロイルオキシ基がより好ましい。 The polymerizable groups represented by U 1 and U 2 may be different from each other, but are preferably the same. Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, oxetanyl group and the like. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group or an oxetanyl group is preferable, and a methacryloyloxy group or an acryloyloxy group is more preferable.
 このような重合性液晶化合物としては、例えば、以下のようなものが挙げられる。 Examples of such a polymerizable liquid crystal compound include the following.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 例示した前記化合物の中でも、式(1-2)、式(1-3)、式(1-4)、式(1-6)、式(1-7)、式(1-8)、式(1-13)、式(1-14)及び式(1-15)で表される化合物からなる群より選ばれる少なくとも1種が好ましい。 Among the exemplified compounds, Formula (1-2), Formula (1-3), Formula (1-4), Formula (1-6), Formula (1-7), Formula (1-8), Formula At least one selected from the group consisting of compounds represented by (1-13), formula (1-14) and formula (1-15) is preferable.
 例示した化合物(A)は、単独又は組み合わせて、液晶層11に用いることができる。また、2種以上の重合性液晶化合物を組み合わせる場合には、少なくとも1種が化合物(A)であることが好ましく、2種以上が化合物(A)であることがより好ましい。2種以上の重合性液晶化合物を組み合わせることにより、液晶-結晶相転移温度以下の温度でも一時的に液晶性を保持することができる場合がある。2種類の重合性液晶化合物を組み合わせる場合の混合比としては、通常、1:99~50:50であり、5:95~50:50であることが好ましく、10:90~50:50であることがさらに好ましい。 The exemplified compounds (A) can be used for the liquid crystal layer 11 alone or in combination. When two or more polymerizable liquid crystal compounds are combined, it is preferable that at least one be a compound (A), and it is more preferable that two or more be a compound (A). By combining two or more polymerizable liquid crystal compounds, it may be possible to temporarily maintain liquid crystallinity even at a temperature below the liquid crystal-crystal phase transition temperature. The mixing ratio when combining two kinds of polymerizable liquid crystal compounds is usually 1:99 to 50:50, preferably 5:95 to 50:50, and 10:90 to 50:50. Is more preferred.
 化合物(A)は、例えば、Lub et al. Recl.Trav.Chim.Pays-Bas,115, 321-328(1996)、又は特許第4719156号等に記載の公知方法で製造することができる。 The compound (A) is described, for example, in Lub et al. Recl. Trav. Chim. It can manufacture by the well-known method as described in Pays-Bas, 115, 321-328 (1996) or patent 4719156 grade | etc.,.
 液晶層11中における重合性液晶化合物の含有率は、液晶層11の固形分100質量部に対して、通常50~99.5質量部であり、好ましくは60~99質量部であり、より好ましくは70~98質量部であり、さらに好ましくは80~97質量部である。重合性液晶化合物の含有率が上記範囲内であれば、配向性が高くなる傾向がある。ここで、固形分とは、後述する偏光層形成用組成物から溶剤を除いた成分の合計量のことをいう。 The content of the polymerizable liquid crystal compound in the liquid crystal layer 11 is usually 50 to 99.5 parts by mass, preferably 60 to 99 parts by mass, relative to 100 parts by mass of the solid content of the liquid crystal layer 11. Is 70 to 98 parts by mass, more preferably 80 to 97 parts by mass. If the content of the polymerizable liquid crystal compound is in the above range, the orientation tends to be high. Here, solid content means the thing of the total amount of the component except the solvent from the composition for polarizing layer formation mentioned later.
 (二色性色素)
 二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素をいう。二色性色素は、液晶化合物とともに配向して二色性を示す色素であり、二色性色素自身が重合性を有していてもよいし、液晶性を有していてもよい。二色性色素としては、可視光を吸収する特性を有する特性を有することが好ましく、380~680nmの範囲に吸収極大波長(λMAX)を有するものがより好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素又はアントラキノン色素等が挙げられるが、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素又はスチルベンアゾ色素等が挙げられ、好ましくはビスアゾ色素又はトリスアゾ色素である。二色性色素は単独で用いてもよく、2種以上を組み合わせて用いてもよいが、可視光全域で吸収を得るためには、3種類以上の二色性色素を組み合わせることが好ましく、3種類以上のアゾ色素を組み合わせることがより好ましい。
(Dichroic dye)
The dichroic dye is a dye having a property in which the absorbance in the long axis direction of the molecule and the absorbance in the short axis direction are different. The dichroic dye is a dye that is oriented with the liquid crystal compound to exhibit dichroism, and the dichroic dye itself may have polymerizability or liquid crystallinity. The dichroic dye preferably has a property of absorbing visible light, and more preferably one having an absorption maximum wavelength (λ MAX ) in the range of 380 to 680 nm. As such a dichroic dye, for example, an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye and the like can be mentioned, and among them, an azo dye is preferable. Examples of the azo dye include monoazo dyes, bisazo dyes, trisazo dyes, tetrakisazo dyes, stilbene azo dyes and the like, with preference given to bisazo dyes or trisazo dyes. The dichroic dyes may be used alone or in combination of two or more types, but in order to obtain absorption in the entire visible light range, it is preferable to combine three or more types of dichroic dyes, It is more preferable to combine a kind or more of azo dyes.
 アゾ色素としては、例えば、式(I)
 T-A(-N=N-A-N=N-A -T   (I)
[式(I)中、A、A及びAは、互いに独立に、置換基を有していてもよい1,4-フェニレン基、ナフタレン-1,4-ジイル基、又は、置換基を有していてもよい2価の複素環基を表し、T及びTは、互いに独立に電子吸引基又は電子放出基であり、アゾ結合面内に対して実質的に180°の位置に有する。pは0~4の整数を表す。pが2以上である場合、各々のAは互いに同一でも異なっていてもよい。可視域に吸収を示す範囲で-N=N-結合が-C=C-、-COO-、-NHCO-又は-N=CH-結合に置き換わっていてもよい。]
で表される化合物(以下、「化合物(I)」ということもある)が挙げられる。
As an azo dye, for example, a compound of the formula (I)
T 1 -A 1 (-N = N-A 2 ) p -N = N-A 3 -T 2 (I)
[In the formula (I), A 1 , A 2 and A 3 are each independently a 1,4-phenylene group which may have a substituent, a naphthalene-1,4-diyl group, or a substituent And T 1 and T 2 independently of each other are an electron withdrawing group or an electron emitting group, and the position is substantially 180 ° with respect to the azo bonding surface. Have to. p represents an integer of 0 to 4; When p is 2 or more, each A 2 may be the same or different. The -N = N- bond may be replaced by -C = C-, -COO-, -NHCO- or -N = CH- bond within the range showing absorption in the visible region. ]
And a compound represented by (hereinafter sometimes referred to as "compound (I)").
 A、A及びAにおける1,4-フェニレン基、ナフタレン-1,4-ジイル基及び2価の複素環基が任意に有する置換基としては、メチル基、エチル基又はブチル基等の炭素数1~4のアルキル基;メトキシ基、エトキシ基又はブトキシ基等の炭素数1~4のアルコキシ基;トリフルオロメチル基等の炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;塩素原子、フッ素原子等のハロゲン原子;アミノ基、ジエチルアミノ基及びピロリジノ基等の置換又は無置換アミノ基(置換アミノ基とは、炭素数1~6のアルキル基を1つ又は2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NHである。)が挙げられる。なお、炭素数1~6のアルキル基としては、メチル基、エチル基又はヘキシル基等が挙げられる。炭素数2~8のアルカンジイル基としては、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、又は、オクタン-1,8-ジイル基等が挙げられる。スメクチック液晶のような高秩序液晶構造中に化合物(I)を包摂するためには、A、A及びAは、互いに独立に、無置換、水素がメチル基又はメトキシ基で置換された1,4-フェニレン基、若しくは2価の複素環基が好ましく、pは0又は1であることが好ましい。中でもpが1であり、かつ、A、A及びAの3つの構造のうち少なくとも2つが1,4-フェニレン基であることが分子合成の簡便さと高い性能の両方を有するという点でより好ましい。 As a substituent which the 1,4-phenylene group, the naphthalene-1,4-diyl group and the divalent heterocyclic group in A 1 , A 2 and A 3 optionally have, such as methyl group, ethyl group or butyl group An alkyl group having 1 to 4 carbon atoms; an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group or a butoxy group; a fluorinated alkyl group having 1 to 4 carbon atoms such as a trifluoromethyl group; a cyano group; Halogen atoms such as chlorine atom and fluorine atom; substituted or unsubstituted amino groups such as amino group, diethylamino group and pyrrolidino group (amino group having one or two alkyl groups having 1 to 6 carbon atoms) group, or two of the substituted alkyl group is meant bonded to the amino group which forms an alkanediyl group having 2 to 8 carbon atoms with each other. unsubstituted amino group is -NH 2.) can be mentioned . Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group and a hexyl group. Examples of the alkanediyl group having 2 to 8 carbon atoms include ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group. And hexane-1,6-diyl group, heptane-1,7-diyl group, and octane-1,8-diyl group. In order to include the compound (I) in a highly ordered liquid crystal structure such as a smectic liquid crystal, A 1 , A 2 and A 3 are each independently unsubstituted, and hydrogen is substituted with a methyl group or a methoxy group A 1,4-phenylene group or a divalent heterocyclic group is preferable, and p is preferably 0 or 1. Among them, p is 1 and at least two of the three structures of A 1 , A 2 and A 3 are 1,4-phenylene groups, in that they have both simplicity of molecular synthesis and high performance. More preferable.
 2価の複素環基としては、キノリン、チアゾール、ベンゾチアゾール、チエノチアゾール、イミダゾール、ベンゾイミダゾール、オキサゾール及びベンゾオキサゾールから2個の水素原子を除いた基が挙げられる。Aが2価の複素環基の場合には、分子結合角度が実質的に180°となる構造が好ましく、具体的には、二つの5員環が縮合したベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール構造がより好ましい。 Examples of the divalent heterocyclic group include quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole and a group in which two hydrogen atoms are removed from benzoxazole. When A 2 is a divalent heterocyclic group, a structure having a molecular bonding angle of substantially 180 ° is preferable, and specifically, benzothiazole, benzimidazole, benzoxazole in which two 5-membered rings are condensed. The structure is more preferred.
 T及びTは、互いに独立に電子吸引基又は電子放出基であって、互いに異なる構造であることが好ましく、Tが電子吸引基であってTが電子放出基である、あるいは、Tが電子放出基であってTが電子吸引基であることがさらに好ましい。具体的には、T及びTは、互いに独立に炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、シアノ基、ニトロ基、炭素数1~6のアルキル基を1つ又は2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基、又はトリフルオロメチル基であることが好ましく、中でもスメクチック液晶のような高秩序液晶構造中に包摂するためには、分子の排除体積がより小さい構造体である必要があるため、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基、炭素数1~6のアルキル基を1つ又は2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基が好ましい。 T 1 and T 2 are, independently of each other, an electron withdrawing group or an electron emitting group, which are preferably different from each other, and T 1 is an electron withdrawing group and T 2 is an electron emitting group, or More preferably, T 1 is an electron-emitting group and T 2 is an electron-withdrawing group. Specifically, T 1 and T 2 independently represent an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, or an alkyl group having 1 to 6 carbon atoms. Or an amino group having two or two substituted alkyl groups bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms, or a trifluoromethyl group, preferably a smectic liquid crystal. In order to be included in such a highly ordered liquid crystal structure, it is necessary to have a structure with a smaller excluded volume of the molecule, so an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cyano group An amino group having one or two alkyl groups having 1 to 6 carbon atoms, or an amino group in which two substituted alkyl groups are bonded to each other to form an alkanediyl group having 2 to 8 carbon atoms is preferable.
 このようなアゾ色素としては、例えば、以下のようなものが挙げられる。 Examples of such azo dyes include the following.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式(2-1)~(2-6)中、B~B20は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基、ニトロ基、置換又は無置換のアミノ基(置換アミノ基及び無置換アミノ基の定義は前記のとおり)、塩素原子又はトリフルオロメチル基を表す。また、高い偏光性能が得られる観点から、B、B、B、B14、B18、B19は水素原子又はメチル基であることが好ましく、水素原子であることがさらに好ましい。
 n1~n4は、それぞれ独立に0~3の整数を表す。
 n1が2以上である場合、複数のBはそれぞれ同一であってもよいし、異なっていてもよく、
 n2が2以上である場合、複数のBはそれぞれ同一であってもよいし、異なっていてもよく、
 n3が2以上である場合、複数のBはそれぞれ同一であってもよいし、異なっていてもよく、
 n4が2以上である場合、複数のB14はそれぞれ同一であってもよいし、異なっていてもよい。
In formulas (2-1) to (2-6), B 1 to B 20 independently of each other represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a cyano group, It represents a nitro group, a substituted or unsubstituted amino group (as defined for the substituted amino group and the unsubstituted amino group as described above), a chlorine atom or a trifluoromethyl group. Further, from the viewpoint of obtaining high polarization performance, B 2 , B 6 , B 9 , B 14 , B 18 and B 19 are preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
n1 to n4 each independently represent an integer of 0 to 3.
When n1 is 2 or more, a plurality of B 2 may be identical to or different from each other,
When n2 is 2 or more, a plurality of B 6 may be identical to or different from each other,
When n3 is 2 or more, a plurality of B 9 may be identical to or different from each other,
When n4 is 2 or more, the plurality of B 14 may be identical to or different from each other.
 前記アントラキノン色素としては、式(2-7)で表される化合物が好ましい。 As the anthraquinone dye, a compound represented by Formula (2-7) is preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式(2-7)中、R~Rは、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SR又はハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基又は炭素数6~12のアリール基を表す。]
[In Formula (2-7), R 1 to R 8 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
 前記オキサジン色素としては、式(2-8)で表される化合物が好ましい。 The oxazine dye is preferably a compound represented by the formula (2-8).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式(2-8)中、R~R15は、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SR又はハロゲン原子を表す。]
 Rは、炭素数1~4のアルキル基又は炭素数6~12のアリール基を表す。]
[In the formula (2-8), R 9 to R 15 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom. ]
R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
 前記アクリジン色素としては、式(2-9)で表される化合物が好ましい。 The acridine dye is preferably a compound represented by formula (2-9).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式(2-9)中、R16~R23は、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SR又はハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基又は炭素数6~12のアリール基を表す。]
[In the formula (2-9), R 16 to R 23 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
 式(2-7)、式(2-8)及び式(2-9)における、Rで表される炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基又はヘキシル基等が挙げられ、炭素数6~12のアリール基としては、フェニル基、トルイル基、キシリル基又はナフチル基等が挙げられる。 Examples of the alkyl group having 1 to 4 carbon atoms represented by Rx in formulas (2-7), (2-8) and (2-9) include a methyl group, an ethyl group, a propyl group and a butyl group And a pentyl group or a hexyl group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xylyl group or a naphthyl group.
 前記シアニン色素としては、式(2-10)で表される化合物及び式(2-11)で表される化合物が好ましい。 The cyanine dye is preferably a compound represented by Formula (2-10) and a compound represented by Formula (2-11).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式(2-10)中、D及びDは、互いに独立に、式(2-10a)~式(2-10d)のいずれかで表される基を表す。 [In Formula (2-10), D 1 and D 2 independently represent a group represented by any one of Formula (2-10a) to Formula (2-10d).
Figure JPOXMLDOC01-appb-C000011

 n5は1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000011

n5 represents an integer of 1 to 3; ]
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(2-11)中、D及びDは、互いに独立に、式(2-11a)~式(2-11h)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-C000013

 n6は1~3の整数を表す。]
[In the formula (2-11), D 3 and D 4 each independently represent a group represented by any one of the formulas (2-11 a) to (2-11 h).
Figure JPOXMLDOC01-appb-C000013

n6 represents an integer of 1 to 3; ]
 二色性色素の含有率(複数種含む場合にはその合計量の割合)は、良好な光吸収特性を得る観点から、液晶層11の第1領域11aのように、視感度補正偏光度(Py)が90%以上という高い偏光特性を有する領域では、重合性液晶化合物100質量部に対して、通常0.1~30質量部であることが好ましく、1~20質量部であることがより好ましく、3~15質量部であることがさらに好ましい。二色性色素の含有率がこの範囲より少ないと光吸収が不十分となり、十分な偏光性能が得られず、この範囲よりも多いと液晶分子の配向を阻害する場合がある。液晶層11の第2領域11bのように、視感度補正偏光度(Py)が10%以下という偏光特性が低い領域では、重合性液晶化合物100質量部に対して、通常0~20質量部であることが好ましく、0~10質量部であることがより好ましく、0~5質量部であることがさらに好ましい。 As in the case of the first region 11 a of the liquid crystal layer 11, the content of the dichroic dye (the ratio of the total amount thereof in the case of containing plural kinds) is, like the first region 11 a of the liquid crystal layer 11, In a region having a high polarization property of 90% or more of Py), it is usually preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Preferably, it is 3 to 15 parts by mass. When the content of the dichroic dye is less than this range, light absorption is insufficient, sufficient polarization performance can not be obtained, and when it is more than this range, the alignment of liquid crystal molecules may be inhibited. As in the second region 11b of the liquid crystal layer 11, in a region where the polarization characteristic with a visibility correction polarization degree (Py) of 10% or less is low, usually 0 to 20 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. The content is preferably 0 to 10 parts by mass, more preferably 0 to 5 parts by mass.
 (基材層)
 偏光フィルム1は、基材層13を有していてもよい。基材層13は、例えば後述するように、偏光フィルム1を製造する際に、配向層12や後述する偏光層21を支持するために用いることができ、また、偏光フィルム1の液晶層11を支持するために用いることができる。
(Base material layer)
The polarizing film 1 may have a base layer 13. The base material layer 13 can be used, for example, to support the alignment layer 12 and the polarizing layer 21 described later when producing the polarizing film 1 as described later, and the liquid crystal layer 11 of the polarizing film 1 can be used. It can be used to support.
 基材層13は、ガラス基材であっても樹脂基材であってもよいが、樹脂基材であることが好ましい。また、偏光フィルム1を連続的に製造できる点から、基材層13は、ロール状に巻回した長尺の樹脂基材を巻き出したものであることがより好ましい。樹脂基材は、可視光を透過し得る透光性を有する基材であることが好ましい。ここで、透光性とは、波長380~780nmの波長域の光に対して視感度補正単体透過率が80%以上であることをいう。 The base material layer 13 may be a glass base material or a resin base material, but is preferably a resin base material. Moreover, from the point which can manufacture the polarizing film 1 continuously, it is more preferable that the base material layer 13 unrolls the elongate resin base material wound by roll shape. The resin substrate is preferably a light-transmissive substrate capable of transmitting visible light. Here, the term “transparency” means that the transmittance of a single visible sensitivity correction is 80% or more for light in a wavelength range of 380 to 780 nm.
 基材層13の厚みは、実用的な取り扱いができる程度の質量である点では、薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。基材層13の厚みは、通常、5μm~300μmであり、好ましくは20μm~200μmである。また、基材層13は、剥離可能に設けられていてもよく、例えば、偏光フィルム1の液晶層11を、表示装置をなす部材や後述する位相差層等に貼合した後、偏光フィルム1から剥離できるものであってもよい。これにより、偏光フィルム1のさらなる薄膜化効果が得られる。 The thickness of the base material layer 13 is preferably thin in that it is a mass that can be practically handled, but if it is too thin, the strength tends to decrease and the processability tends to be poor. The thickness of the base layer 13 is usually 5 μm to 300 μm, preferably 20 μm to 200 μm. The base material layer 13 may be provided so as to be peelable. For example, after bonding the liquid crystal layer 11 of the polarizing film 1 to a member forming a display device, a retardation layer to be described later, etc. It may be removable from the Thereby, the further film thinning effect of the polarizing film 1 is acquired.
 樹脂基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ノルボルネン系ポリマー等の環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド及びポリフェニレンオキシド;等を挙げることができる。 Examples of the resin constituting the resin base include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid esters; polyacrylic acid esters; Cellulose esters such as cellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyethersulfone; polyether ketone; polyphenylene sulfide and polyphenylene oxide;
 市販のセルロースエステルの樹脂基材としては、“フジタックフィルム”(富士写真フイルム株式会社製);“KC8UX2M”、“KC8UY”及び“KC4UY”(以上、コニカミノルタオプト株式会社製)等が挙げられる。 Examples of commercially available resin base materials of cellulose ester include “Fujitack film” (manufactured by Fuji Photo Film Co., Ltd.); “KC8UX2M”, “KC8UY” and “KC4UY” (all manufactured by Konica Minolta Opto Co., Ltd.), etc. .
 市販の環状オレフィン系樹脂としては、“Topas”(登録商標)(Ticona社(独)製)、“アートン”(登録商標)(JSR株式会社製)、“ゼオノア(ZEONOR)”(登録商標)、“ゼオネックス(ZEONEX)”(登録商標)(以上、日本ゼオン株式会社製)及び“アペル”(登録商標)(三井化学株式会社製)が挙げられる。このような環状オレフィン系樹脂を、溶剤キャスト法、溶融押出法等の公知の手段により製膜して、樹脂基材とすることができる。市販されている環状オレフィン系樹脂の樹脂基材を用いることもできる。市販の環状オレフィン系樹脂の樹脂基材としては、“エスシーナ”(登録商標)、“SCA40”(登録商標)(以上、積水化学工業株式会社製)、“ゼオノアフィルム”(登録商標)(オプテス株式会社製)及び“アートンフィルム”(登録商標)(JSR株式会社製)が挙げられる。 Examples of commercially available cyclic olefin resins include “Topas” (registered trademark) (manufactured by Ticona, Germany), “Arton” (registered trademark) (manufactured by JSR Corporation), “ZEONOR” (registered trademark), Examples include "ZEONEX" (registered trademark) (manufactured by Nippon Zeon Co., Ltd.) and "APEL" (registered trademark) (manufactured by Mitsui Chemicals, Inc.). Such a cyclic olefin resin can be formed into a film by a known means such as a solvent casting method and a melt extrusion method to make a resin substrate. The resin base material of cyclic olefin resin marketed can also be used. As resin base materials of commercially available cyclic olefin-based resins, "ESSINA" (registered trademark), "SCA 40" (registered trademark) (above, manufactured by Sekisui Chemical Co., Ltd.), "Zeonor Film" (registered trademark) (OPTES share) And “Arton Film” (registered trademark) (manufactured by JSR Corporation).
 基材層13は、1層構造であってもよく2層以上の多層構造であってもよい。基材層13が多層構造である場合、各層は同じ材料から形成されていてもよく、互いに異なる材料から形成されていてもよい。 The base material layer 13 may have a single layer structure or a multilayer structure of two or more layers. When the base material layer 13 is a multilayer structure, each layer may be formed of the same material, or may be formed of different materials.
 また、基材層13は1/4波長板機能を有していてもよい。基材層13が1/4波長板機能を有することにより、基材層13と液晶層11との組み合わせにより、円偏光板の機能を有する偏光フィルムを得ることができる。これにより、偏光フィルム1に、基材層13とは別に1/4波長板機能を有する位相差層を貼合しなくても、円偏光板を得ることができる。また、基材層13が多層構造である場合、1/2波長板機能を有する層と1/4波長板機能を有する層とが積層されたものを用い、液晶層11を1/2波長板機能を有する層側に積層することにより、円偏光板を得ることができる。あるいは、基材層13が多層構造である場合、逆波長分散性の1/4波長板機能を有する層とポジティブCプレート機能を有する層とが積層されたものを用いることによっても、円偏光板を得ることができる。 Moreover, the base material layer 13 may have a 1⁄4 wavelength plate function. When the base material layer 13 has a 1⁄4 wavelength plate function, a combination of the base material layer 13 and the liquid crystal layer 11 can provide a polarizing film having the function of a circularly polarizing plate. Thereby, a circularly-polarizing plate can be obtained even if it does not bond the retardation film which has a 1⁄4 wavelength plate function separately from the base material layer 13 to the polarizing film 1. When the base material layer 13 has a multilayer structure, the liquid crystal layer 11 may be a half-wave plate using a laminate of a layer having the half-wave plate function and a layer having the quarter-wave plate function. A circularly-polarizing plate can be obtained by laminating | stacking on the layer side which has a function. Alternatively, in the case where the base material layer 13 has a multilayer structure, a circularly polarizing plate can also be used by using a layer in which a layer having inverse wavelength dispersive 1/4 wavelength plate function and a layer having positive C plate function are laminated. You can get
 (配向層)
 偏光フィルム1は、基材層13上に配向層12を有していてもよく、配向層12は、基材層13と液晶層11との間に配置される。配向層12は、その上に積層される液晶層11中の液晶化合物を、所望の方向に液晶配向させる配向規制力を有することができる。
(Alignment layer)
The polarizing film 1 may have an alignment layer 12 on the base material layer 13, and the alignment layer 12 is disposed between the base material layer 13 and the liquid crystal layer 11. The alignment layer 12 can have an alignment regulating force that causes the liquid crystal compound in the liquid crystal layer 11 stacked thereon to be aligned in a desired direction.
 配向層12は、液晶化合物の液晶配向を容易にする。水平配向、垂直配向、ハイブリッド配向、傾斜配向等の液晶配向の状態は、配向層12及び液晶化合物の性質によって変化し、その組み合わせは任意に選択することができる。例えば、配向層12が配向規制力として水平配向を発現させる材料であれば、液晶化合物は水平配向又はハイブリッド配向を形成することができ、配向層12が垂直配向を発現させる材料であれば、液晶化合物は垂直配向又は傾斜配向を形成することができる。水平、垂直等の表現は、偏光フィルム1平面を基準とした場合の、配向した液晶化合物の長軸の方向を表す。例えば、垂直配向とは偏光フィルム1平面に対して垂直な方向に、配向した重合性液晶の長軸を有することである。ここでいう垂直とは、偏光フィルム1平面に対して90°±20°のことを意味する。偏光フィルム1は、偏光フィルム1平面の偏光特性を有することが好ましいため、配向層12は水平配向を発現させる材料を用いて形成することが好ましい。 The alignment layer 12 facilitates the liquid crystal alignment of the liquid crystal compound. The state of liquid crystal alignment such as horizontal alignment, vertical alignment, hybrid alignment, and tilt alignment changes depending on the properties of the alignment layer 12 and the liquid crystal compound, and the combination thereof can be arbitrarily selected. For example, if the alignment layer 12 is a material that expresses horizontal alignment as alignment regulating force, the liquid crystal compound can form horizontal alignment or hybrid alignment, and if the alignment layer 12 is a material that expresses vertical alignment, liquid crystal The compounds can form a vertical orientation or a tilted orientation. The expressions such as horizontal and vertical represent the direction of the major axis of the aligned liquid crystal compound when the plane of the polarizing film 1 is used as a reference. For example, the vertical alignment is to have the major axis of the aligned polymerizable liquid crystal in the direction perpendicular to the plane of the polarizing film 1. As used herein, perpendicular means 90 ° ± 20 ° with respect to the plane of the polarizing film 1. Since it is preferable that the polarizing film 1 has the polarization | polarized-light characteristic of the polarizing film 1 flat surface, it is preferable to form the orientation layer 12 using the material which expresses horizontal orientation.
 配向層12の配向規制力は、配向層12が配向性ポリマーから形成されている場合は、表面状態やラビング条件によって任意に調整することが可能であり、光配向性ポリマーから形成されている場合は、偏光照射条件等によって任意に調整することが可能である。また、重合性液晶化合物の表面張力や液晶性等の物性を選択することにより、液晶配向を制御することもできる。 When the alignment layer 12 is formed of an alignment polymer, the alignment regulating force of the alignment layer 12 can be arbitrarily adjusted according to the surface state and the rubbing conditions, and is formed of a photoalignment polymer. Can be adjusted arbitrarily according to polarized light irradiation conditions and the like. The liquid crystal alignment can also be controlled by selecting physical properties such as surface tension and liquid crystallinity of the polymerizable liquid crystal compound.
 配向層12の厚みは、通常10nm~5000nmであり、10nm~1000nmであることが好ましく、30nm~300nmであることがより好ましい。また、基材層13と液晶層11との間に形成される配向層12は、配向層12上に液晶層11を形成する際に使用される溶剤に不溶であり、また、溶剤の除去や液晶の配向のための加熱処理における耐熱性を有するものが好ましい。 The thickness of the alignment layer 12 is usually 10 nm to 5000 nm, preferably 10 nm to 1000 nm, and more preferably 30 nm to 300 nm. In addition, the alignment layer 12 formed between the base material layer 13 and the liquid crystal layer 11 is insoluble in the solvent used when forming the liquid crystal layer 11 on the alignment layer 12, and the removal of the solvent and the like It is preferable to have heat resistance in heat treatment for alignment of liquid crystal.
 配向層12としては、配向性ポリマーからなる配向膜、光配向膜、又は、グルブ(groove)配向膜等が挙げられる。基材層13がロール状の長尺の樹脂基材から巻き出されたものである場合には、配向層12は、その配向方向を容易に制御できる点から光配向膜であることが好ましい。 Examples of the alignment layer 12 include an alignment film made of an alignment polymer, a photo alignment film, a groove alignment film, and the like. In the case where the base material layer 13 is unrolled from a roll-shaped long resin base material, the alignment layer 12 is preferably a photoalignment film from the viewpoint of easily controlling the alignment direction.
 配向性ポリマーとしては、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミド、その加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸、又は、ポリアクリル酸エステル類等が挙げられる。中でも、ポリビニルアルコールが好ましい。これらの配向性ポリマーは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of orientation polymers include polyamides and gelatins having an amide bond in the molecule, polyimides having an imide bond in the molecule, polyamic acid which is a hydrolyzate thereof, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, polyoxazole, Examples thereof include polyethylene imine, polystyrene, polyvinyl pyrrolidone, polyacrylic acid, and polyacrylic acid esters. Among them, polyvinyl alcohol is preferred. These orientable polymers may be used alone or in combination of two or more.
 配向性ポリマーからなる配向膜は、通常、配向性ポリマーを溶剤に溶解させた組成物(以下、「配向性ポリマー組成物」ということがある。)を基材層13に塗布し、溶剤を除去する、又は、配向性ポリマー組成物を基材層13に塗布し、溶剤を除去し、ラビングすること(ラビング法)によって得ることができる。 In an alignment film made of an alignment polymer, a composition in which the alignment polymer is dissolved in a solvent (hereinafter sometimes referred to as “alignment polymer composition”) is applied to the substrate layer 13 to remove the solvent. Alternatively, it can be obtained by applying the oriented polymer composition to the substrate layer 13, removing the solvent, and rubbing (rubbing method).
 配向性ポリマー組成物に用いられる溶剤としては、水;メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブ又はプロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート又は乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルアミルケトン又はメチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン又はヘプタン等の脂肪族炭化水素溶剤;トルエン又はキシレン等の芳香族炭化水素溶剤、アセトニトリル等のニトリル溶剤;テトラヒドロフラン又はジメトキシエタン等のエーテル溶剤;クロロホルム又はクロロベンゼン等の塩素置換炭化水素溶剤;等が挙げられる。これら溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the solvent used for the orientable polymer composition include water; alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve or propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl Ester solvents such as ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate or ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone or methyl isobutyl ketone; fats such as pentane, hexane or heptane Group hydrocarbon solvents; aromatic hydrocarbon solvents such as toluene or xylene; nitrile solvents such as acetonitrile; Rofuran or ether solvents such as dimethoxyethane; chloroform or chlorinated hydrocarbon solvents such as chlorobenzene; and the like. These solvents may be used alone or in combination of two or more.
 配向性ポリマー組成物中の配向性ポリマーの含有量は、配向性ポリマーが、溶剤に完溶できる範囲であればよいが、溶液に対して固形分換算で0.1~20質量%が好ましく、0.1~10質量%がより好ましい。 The content of the orienting polymer in the orientating polymer composition may be in the range in which the orienting polymer can be completely dissolved in the solvent, but is preferably 0.1 to 20% by mass in terms of solid content with respect to the solution. 0.1 to 10% by mass is more preferable.
 配向性ポリマー組成物としては、市販の配向膜材料をそのまま使用してもよい。市販の配向膜材料としては、サンエバー(登録商標)(日産化学工業株式会社製)又はオプトマー(登録商標)(JSR株式会社製)等が挙げられる。 A commercially available alignment film material may be used as it is as an alignment polymer composition. Examples of commercially available alignment film materials include Sun Ever (registered trademark) (manufactured by Nissan Chemical Industries, Ltd.) or Optomer (registered trademark) (manufactured by JSR Corporation).
 配向性ポリマー組成物を基材層13に塗布する方法としては、スピンコーティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、バーコーティング法又はアプリケータ法等の塗布方法や、フレキソ法等の印刷法等の公知の方法が挙げられる。偏光フィルム1を、Roll-to-Roll形式の連続的製造方法により製造する場合、当該塗布方法には通常、グラビアコーティング法、ダイコーティング法又はフレキソ法等の印刷法を採用することができる。 As a method of applying the oriented polymer composition to the substrate layer 13, coating methods such as spin coating method, extrusion method, gravure coating method, die coating method, bar coating method or applicator method, flexo method, etc. There are known methods such as the printing method. When the polarizing film 1 is produced by a roll-to-roll type continuous production method, a printing method such as a gravure coating method, a die coating method or a flexo method can be usually employed as the coating method.
 配向性ポリマー組成物に含まれる溶剤を除去することにより、配向性ポリマーの乾燥被膜が形成される。溶剤の除去方法としては、自然乾燥法、通風乾燥法、加熱乾燥法及び減圧乾燥法等が挙げられる。その後、上記乾燥被膜を、ラビング布が巻きつけられた回転しているラビングロールに接触させて、配向層12を形成することができる。 By removing the solvent contained in the orientable polymer composition, a dry film of the orientable polymer is formed. As a method of removing the solvent, a natural drying method, a ventilation drying method, a heat drying method, a reduced pressure drying method and the like can be mentioned. Thereafter, the dried film can be brought into contact with a rotating rubbing roll on which a rubbing cloth is wound to form the alignment layer 12.
 光配向膜は、通常、光反応性基を有するポリマー又はモノマーと、溶剤とを含む組成物(以下、「光配向膜形成用組成物」ということがある。)を基材層13に塗工して形成された配向層用塗工層に、偏光(好ましくは、偏光UV)を照射することによって得ることができる。光配向膜は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御できる点でより好ましい。 The photo alignment film is usually coated on the substrate layer 13 with a composition containing a polymer or monomer having a photo reactive group and a solvent (hereinafter sometimes referred to as “a composition for forming a photo alignment film”). It can obtain by irradiating polarized light (preferably polarized UV) to the coating layer for alignment layers formed. The photo alignment film is more preferable in that the direction of the alignment control force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
 光反応性基とは、光を照射することにより液晶配向能を生じる基をいう。具体的には、光を照射することで生じる分子の配向誘起又は異性化反応、二量化反応、光架橋反応、又は光分解反応のような、液晶配向能の起源となる光反応を生じるものである。当該光反応性基の中でも、二量化反応又は光架橋反応を起こすものが、配向性に優れる点で好ましい。以上のような反応を生じうる光反応性基としては、不飽和結合、特に二重結合を有するものが好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)、及び炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも一つを有する基がより好ましい。 The photoreactive group refers to a group that generates liquid crystal alignment ability by irradiating light. Specifically, it generates a light reaction that is the source of liquid crystal alignment ability, such as alignment induction or isomerization reaction of molecules generated by light irradiation, dimerization reaction, photocrosslinking reaction, or photolysis reaction. is there. Among the photoreactive groups, those capable of causing a dimerization reaction or a photocrosslinking reaction are preferable in that they are excellent in orientation. The photoreactive group capable of causing the above reaction is preferably one having an unsaturated bond, particularly a double bond, preferably a carbon-carbon double bond (CCC bond), a carbon-nitrogen double bond (C A group having at least one selected from the group consisting of NN bond), nitrogen-nitrogen double bond (N = N bond), and carbon-oxygen double bond (C = O bond) is more preferable.
 C=C結合を有する光反応性基としては例えば、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基又はシンナモイル基等が挙げられる。反応性の制御が容易であるという点や光配向時の配向規制力発現の観点から、カルコン基又はシンナモイル基であることが好ましい。C=N結合を有する光反応性基としては、芳香族シッフ塩基又は芳香族ヒドラゾン等の構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基又はホルマザン基等や、アゾキシベンゼンを基本構造とするものが挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基又はマレイミド基等を挙げることができる。これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基又はハロゲン化アルキル基等の置換基を有していてもよい。 Examples of the photoreactive group having a C = C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group or a cinnamoyl group. From the viewpoint of easy control of reactivity and from the viewpoint of expression of alignment control force at the time of light alignment, a chalcone group or a cinnamoyl group is preferable. Examples of photoreactive groups having a C = N bond include groups having a structure such as aromatic Schiff base or aromatic hydrazone. Examples of the photoreactive group having an N = N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group or a formazan group, and a group having an azoxybenzene as a basic structure. Examples of the photoreactive group having a C = O bond include benzophenone group, coumarin group, anthraquinone group, maleimide group and the like. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group or a halogenated alkyl group.
 光配向膜形成用組成物の溶剤としては、光反応性基を有するポリマー及びモノマーを溶解するものが好ましく、該溶剤としては、例えば、前記の配向性ポリマー組成物の溶剤として挙げられた溶剤等が挙げられる。 As a solvent of the composition for forming a photo alignment film, those capable of dissolving a polymer having a photo reactive group and a monomer are preferable. As the solvent, for example, the solvents mentioned as the solvent of the alignment polymer composition described above, etc. Can be mentioned.
 光配向膜形成用組成物中の、光反応性基を有するポリマー又はモノマーの含有量は、当該光反応性基を有するポリマー又はモノマーの種類や製造しようとする光配向膜の厚さによって適宜調節できるが、0.2質量%以上とすることが好ましく、0.3~10質量%の範囲が特に好ましい。また、光配向膜の特性が著しく損なわれない範囲で、ポリビニルアルコールやポリイミド等の高分子材料や光増感剤が含まれていてもよい。 The content of the polymer or monomer having a photoreactive group in the composition for forming a photoalignment film is appropriately adjusted depending on the type of the polymer or monomer having a photoreactive group and the thickness of the photoalignment film to be produced. Although it is possible, 0.2 mass% or more is preferable, and a range of 0.3 to 10 mass% is particularly preferable. In addition, a polymer material such as polyvinyl alcohol or polyimide and a photosensitizer may be contained within the range that the characteristics of the photo alignment film are not significantly impaired.
 光配向膜形成用組成物を基材層13に塗工する方法としては、上記した配向性ポリマー組成物を基材層13に塗工する方法と同様の方法が挙げられる。塗工された光配向膜形成用組成物から、溶剤を除去する方法としては、例えば、配向性ポリマー組成物から溶剤を除去する方法と同じ方法が挙げられる。 As a method of applying the composition for photo alignment film formation to the base material layer 13, the method similar to the method of applying the above-mentioned orientation polymer composition to the base material layer 13 is mentioned. As a method of removing a solvent from the composition for photo-alignment film formation applied, the same method as the method of removing a solvent from alignment polymer composition is mentioned, for example.
 偏光照射は、基材層13の上に塗工された光配向膜形成用組成物から溶剤を除去した乾燥被膜上から直接行ってもよく、基材層13を透過した偏光が乾燥被膜に照射されるように基材層13側から行ってもよい。また、偏光照射に用いられる偏光は、実質的に平行光であることが特に好ましい。照射する偏光の波長は、光反応性基を有するポリマー又はモノマーの光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250~400nmの範囲のUV(紫外光)が特に好ましい。偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArF等の紫外光レーザー等が挙げられ、高圧水銀ランプ、超高圧水銀ランプ又はメタルハライドランプがより好ましい。これらのランプは、波長313nmの紫外光の発光強度が大きいため好ましい。光源からの光を、適当な偏光子を通過して照射することにより、偏光を照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテーラー等の偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。 The polarized light irradiation may be performed directly from above the dried film obtained by removing the solvent from the composition for forming a light alignment film coated on the base material layer 13, and the polarized light transmitted through the base material layer 13 irradiates the dried film. You may carry out from the base material layer 13 side so that it may be carried out. In addition, it is particularly preferable that polarized light used for polarized light irradiation is substantially parallel light. The wavelength of the polarized light to be irradiated is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength of 250 to 400 nm is particularly preferable. Examples of light sources used for polarized light irradiation include xenon lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, etc., and high pressure mercury lamps, ultra high pressure mercury lamps or metal halide lamps are more preferable. . These lamps are preferable because the emission intensity of ultraviolet light with a wavelength of 313 nm is large. Polarized light can be illuminated by illuminating the light from the light source through a suitable polarizer. As such a polarizer, a polarizing filter, a polarizing prism such as Glan-Thomson, Glan-Taylor, or a wire grid type polarizer can be used.
 なお、ラビングや偏光照射を行う時に、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。 A plurality of regions (patterns) having different liquid crystal alignment directions can also be formed by performing masking when performing rubbing or polarized light irradiation.
 グルブ(groove)配向膜は、膜表面に凹凸パターン又は複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に液晶分子を置いた場合、その溝に沿った方向に液晶分子が配向する。 The groove alignment film is a film having a concavo-convex pattern or a plurality of grooves (grooves) on the film surface. When liquid crystal molecules are placed on a film having a plurality of straight grooves aligned at equal intervals, the liquid crystal molecules are aligned in the direction along the groove.
 グルブ配向膜を得る方法としては、感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光後、現像及びリンス処理を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、硬化前のUV硬化性樹脂の層を形成し、樹脂層を基材へ移してから硬化する方法、基材上に形成した硬化前のUV硬化性樹脂の膜に、複数の溝を有するロール状の原盤を押し当てて凹凸を形成し、その後硬化する方法等が挙げられる。具体的には、特開平6-34976号公報及び特開2011-242743号公報記載の方法等が挙げられる。 As a method of obtaining a globular alignment film, a method of forming a concavo-convex pattern by performing development and rinsing after exposure through an exposure mask having slits of a pattern shape on the surface of a photosensitive polyimide film, a plate having grooves on the surface Method of forming a layer of a UV curable resin before curing on a sheet-like master, transferring the resin layer to a substrate and then curing, a plurality of films of the UV curable resin before curing formed on a substrate, The roll-shaped original disc which has a groove | channel is pressed, an unevenness | corrugation is formed, and the method etc. which harden | cure are mentioned. Specifically, the methods described in JP-A-6-34976 and JP-A-2011-242743 can be mentioned.
 配向乱れの小さな配向を得るためには、グルブ配向膜の凸部の幅は0.05μm~5μmであることが好ましく、凹部の幅は0.1μm~5μmであることが好ましく、凹凸の段差の深さは2μm以下であることが好ましく、0.01μm~1μm以下であることが好ましい。 In order to obtain an alignment with a small alignment disorder, the width of the convex portion of the glue alignment film is preferably 0.05 μm to 5 μm, and the width of the concave portion is preferably 0.1 μm to 5 μm. The depth is preferably 2 μm or less, and more preferably 0.01 μm to 1 μm or less.
 (その他の層)
 偏光フィルム1は、基材層13及び配向層12以外の層を有していてもよい。例えば、液晶層11の基材層13とは反対側の面に、液晶層11の表面を保護する等の目的の表面保護層を設けてもよい。また、基材層13を剥離して用いる場合には、液晶層11の基材層13を剥離した側の面に表面保護層を設けてもよい。表面保護層は1層構造であってもよく、多層構造であってもよい。表面保護層が多層構造である場合、各層は同じ材料から形成されていてもよく、互いに異なる材料から形成されていてもよい。
(Other layers)
The polarizing film 1 may have layers other than the base material layer 13 and the alignment layer 12. For example, a surface protection layer for the purpose of protecting the surface of the liquid crystal layer 11 may be provided on the surface of the liquid crystal layer 11 opposite to the base material layer 13. Moreover, when peeling and using the base material layer 13, you may provide a surface protective layer in the surface at the side which peeled the base material layer 13 of the liquid-crystal layer 11. As shown in FIG. The surface protective layer may have a single layer structure or a multilayer structure. When the surface protective layer has a multilayer structure, each layer may be formed of the same material, or may be formed of different materials.
 <円偏光板>
 図2(a)~(c)は、それぞれ本発明の円偏光板の一例を示す概略断面図である。図1(b)に示す偏光フィルム1は、1/4波長板機能を有する位相差層15を積層することにより、図2(a)及び(b)に示す円偏光板5a、5bとすることができる。位相差層15は、偏光フィルム1の液晶層11側に積層してもよく(図2(a))、基材層13側に積層してもよい(図2(b))。また、図2(a)に示す円偏光板5aから、基材層13を剥離したものを円偏光板5c(図2(c))として用いることもでき、この場合、基材層13とともに配向層12も剥離してもよい。
<Circularly polarizing plate>
2 (a) to 2 (c) are each a schematic cross-sectional view showing an example of the circularly polarizing plate of the present invention. The polarizing film 1 shown in FIG. 1 (b) is made to be circularly polarizing plates 5a and 5b shown in FIGS. 2 (a) and 2 (b) by laminating a retardation layer 15 having a 1⁄4 wavelength plate function. Can. The retardation layer 15 may be laminated on the liquid crystal layer 11 side of the polarizing film 1 (FIG. 2 (a)) or may be laminated on the base material layer 13 side (FIG. 2 (b)). Moreover, what peeled the base material layer 13 from the circularly-polarizing plate 5a shown to Fig.2 (a) can also be used as a circularly-polarizing plate 5c (FIG.2 (c)), In this case, it aligns with the base material layer 13. The layer 12 may also be peeled off.
 また、円偏光板は、偏光フィルム1と多層構造の位相差層とを積層したものであってもよい。この場合、多層構造の位相差層として、1/2波長板機能を有する層と1/4波長板機能を有する層とを積層した位相差層を用いることができ、多層構造の位相差層の1/2波長板機能を有する層側と偏光フィルム1とを積層することにより、円偏光板とすることができる。あるいは、多層構造の位相差層として、逆波長分散性の1/4波長板機能を有する層とポジティブCプレート機能を有する層とを積層した位相差層を用いることによっても、円偏光板を得ることができる。 In addition, the circularly polarizing plate may be one in which the polarizing film 1 and a retardation layer having a multilayer structure are laminated. In this case, as the retardation layer of the multilayer structure, a retardation layer in which a layer having a half wave plate function and a layer having a quarter wave plate function can be laminated can be used. By laminating the layer side having the half wavelength plate function and the polarizing film 1, a circularly polarizing plate can be obtained. Alternatively, a circularly polarizing plate can also be obtained by using a retardation layer in which a layer having a function of a quarter wavelength plate with reverse wavelength dispersion and a layer having a positive C plate function are laminated as a retardation layer having a multilayer structure. be able to.
 また、偏光フィルム1の基材層13として位相差層としての機能を有するものを用い、さらに位相差層を積層して円偏光板としてもよい。この場合、円偏光板における基材層13及び位相差層の積層位置に応じて、基材層13及び位相差層が有する、位相差層としての機能を選択すればよい。 In addition, as the base material layer 13 of the polarizing film 1, one having a function as a retardation layer may be used, and a retardation layer may be further laminated to form a circularly polarizing plate. In this case, the function as the retardation layer of the base material layer 13 and the retardation layer may be selected according to the lamination position of the base material layer 13 and the retardation layer in the circularly polarizing plate.
 偏光フィルムと位相差層とは、公知の粘着剤又は接着剤を用いた接着層を介して積層することができる。 The polarizing film and the retardation layer can be laminated via an adhesive layer using a known pressure-sensitive adhesive or adhesive.
 <偏光フィルムの製造方法(第1の製造方法)>
 図3(a)~(d)は、図1(b)に示す偏光フィルム1の製造工程の各工程で得られる層構造を示す概略断面図である。偏光フィルム1の第1の製造方法は、
 基材層13の少なくとも片面側に、液晶化合物及び二色性色素を含む偏光層21を有する積層フィルム62(図3(b))を準備する準備工程と、
 積層フィルム62の偏光層21の一部の領域に、偏光層21における二色性色素の含有率を低減し得る液状物を接触させることにより、偏光層21の一部の領域において二色性色素の含有率を低下させる液状物接触工程と、を有する。
<Method of Producing Polarizing Film (First Production Method)>
3 (a) to 3 (d) are schematic cross-sectional views showing the layer structure obtained in each step of the manufacturing process of the polarizing film 1 shown in FIG. 1 (b). The first production method of the polarizing film 1 is
Preparing a laminated film 62 (FIG. 3B) having a polarizing layer 21 containing a liquid crystal compound and a dichroic dye on at least one side of a substrate layer 13;
By contacting a partial region of the polarizing layer 21 of the laminated film 62 with a liquid capable of reducing the content of the dichroic dye in the polarizing layer 21, the dichroic dye in a partial region of the polarizing layer 21 is obtained. And a liquid contacting step of reducing the content of
 液状物接触工程は、積層フィルム62の偏光層21上に、偏光層21を被覆するための被覆領域35aと偏光層21を露出させるための露出領域35bとを有する保護層35を積層することにより保護層付き積層フィルム63(図3(c))を得る保護層積層工程と、
 保護層付き積層フィルム63を、偏光層21における二色性色素の含有率を低減し得る液状物に接触させることにより、偏光層21の一部の領域において二色性色素の含有率を低下させた脱色積層フィルム64(図3(d))を得る脱色工程と、
 この脱色積層フィルム64から保護層35を剥離する剥離工程を有し、これにより、図1(b)に示す偏光フィルム1を製造することができる。
In the liquid contact process, a protective layer 35 having a coated area 35 a for covering the polarizing layer 21 and an exposed area 35 b for exposing the polarizing layer 21 is laminated on the polarizing layer 21 of the laminated film 62. A protective layer laminating step of obtaining a laminated film 63 with protective layer (FIG. 3 (c));
By bringing the laminated film 63 with a protective layer into contact with a liquid capable of reducing the content of the dichroic dye in the polarizing layer 21, the content of the dichroic dye is reduced in a partial region of the polarizing layer 21. A decolorizing step of obtaining a colored decolorized laminated film 64 (FIG. 3 (d));
It has a peeling process which peels the protective layer 35 from this decolorized laminated film 64, and, thereby, the polarizing film 1 shown in FIG.1 (b) can be manufactured.
 (準備工程)
 準備工程で準備する積層フィルム62は、基材層13の少なくとも片面側に偏光層21を有するものであれば特に限定されないが、図3(b)に示すように、基材層13上に配向層12、偏光層21がこの順に積層されたものであることが好ましい。このような積層フィルム62は、基材層13の一方の面に配向層形成用組成物を塗工して配向層12を形成して配向層付き基材層61(図3(a))を得る配向層形成工程と、配向層付き基材層61の配向層12が形成された側の面に、偏光層形成用組成物を塗工して偏光層21を形成する偏光層形成工程とを経て製造することができる。
(Preparation process)
The laminated film 62 prepared in the preparation step is not particularly limited as long as it has the polarizing layer 21 on at least one side of the base layer 13, but as shown in FIG. 3 (b), it is oriented on the base layer 13. It is preferable that the layer 12 and the polarizing layer 21 be laminated in this order. Such a laminated film 62 is obtained by applying the composition for forming an alignment layer on one surface of the base material layer 13 to form an alignment layer 12 and forming a base material layer 61 with an alignment layer (FIG. 3A). And a polarizing layer forming step of forming a polarizing layer 21 by applying a composition for forming a polarizing layer on the side of the base layer 61 with an alignment layer on which the alignment layer 12 is formed. It can be manufactured through.
 配向層形成工程では、配向層形成用組成物を塗工する前に、基材層13に表面処理を施してもよい。表面処理の方法としては、例えば、コロナ処理、プラズマ処理、レーザー処理、オゾン処理、ケン化処理、火炎処理、カップリング剤の塗布処理、プライマー処理等を挙げることができる。配向層形成用組成物としては、上記した配向性ポリマー組成物、光配向膜形成用組成物、グルブ配向膜を形成するための樹脂材料を含む組成物等を用いることができる。各組成物を用いて配向層を形成する方法についても上記したとおりである。例えば、配向層形成用組成物が光配向性ポリマーを含む場合、配向層形成工程は、配向層形成用組成物を塗工して形成された配向層用塗工層に偏光照射を行うことにより、所定の方向に配向規制力を有する配向層を形成することができる。 In the alignment layer forming step, the substrate layer 13 may be subjected to surface treatment before applying the composition for forming an alignment layer. As a method of surface treatment, for example, corona treatment, plasma treatment, laser treatment, ozone treatment, saponification treatment, flame treatment, coating treatment of coupling agent, primer treatment and the like can be mentioned. As the composition for forming an alignment layer, the above-described alignment polymer composition, a composition for forming a photo alignment film, a composition containing a resin material for forming a glue alignment film, and the like can be used. The method of forming the alignment layer using each composition is also as described above. For example, in the case where the composition for forming an alignment layer contains a photoalignable polymer, in the alignment layer forming step, the coating layer for an alignment layer formed by applying the composition for forming an alignment layer is irradiated with polarized light. An alignment layer having an alignment control force in a predetermined direction can be formed.
 偏光層形成用組成物は、液晶化合物及び二色性色素を含む組成物であって、溶剤及び重合開始剤を含むことが好ましく、増感剤、重合禁止剤、レベリング剤、反応性添加剤等を含んでいてもよい。液晶化合物及び二色性色素としては、上記したものを用いることができ、溶剤、重合開始剤、増感剤、重合禁止剤、レベリング剤、反応性添加剤としては後述するものを用いることができる。 The composition for forming a polarizing layer is a composition containing a liquid crystal compound and a dichroic dye, and preferably contains a solvent and a polymerization initiator, and a sensitizer, a polymerization inhibitor, a leveling agent, a reactive additive, etc. May be included. As the liquid crystal compound and the dichroic dye, those described above can be used, and as the solvent, the polymerization initiator, the sensitizer, the polymerization inhibitor, the leveling agent, and the reactive additive, those described later can be used. .
 偏光層形成用組成物を塗工する方法としては、押出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、CAPコーティング法、スリットコーティング法、マイクログラビア法、ダイコーティング法、インクジェット法等が挙げられる。また、ディップコーター、バーコーター、スピンコーター等のコーターを用いて塗工する方法等も挙げられる。中でも、Roll to Roll形式で連続的に塗工する場合には、マイクログラビア法、インクジェット法、スリットコーティング法、ダイコーティング法による塗工方法が好ましく、ガラス等の枚葉基材に塗工する場合には、均一性の高いスピンコーティング法が好ましい。Roll to Roll形式で塗工する場合、基材層13に配向膜形成用組成物等を塗工して配向層12を形成し、さらに得られた配向層12上に偏光層形成用組成物を連続的に塗工することもできる。 As a method of applying the composition for forming a polarizing layer, extrusion coating method, direct gravure coating method, reverse gravure coating method, CAP coating method, slit coating method, microgravure method, die coating method, ink jet method, etc. may be mentioned. . Moreover, the method etc. of coating using coaters, such as a dip coater, a bar coater, a spin coater, etc. are mentioned. Among them, the coating method by microgravure method, ink jet method, slit coating method, die coating method is preferable in the case of continuous coating in the Roll to Roll format, and in the case of coating on a sheet substrate such as glass A highly uniform spin coating method is preferred. When coating is performed by a roll to roll method, a composition for forming an alignment film or the like is coated on the base material layer 13 to form an alignment layer 12, and a composition for forming a polarizing layer is further formed on the obtained alignment layer 12. It can also be applied continuously.
 偏光層形成用組成物を塗工して偏光層21を形成する際には、塗工された偏光層形成組成物から溶剤を除去して偏光層用塗工層を形成する。溶剤を除去する方法としては、配向性ポリマー組成物から溶剤を除去する方法と同じ方法を用いることができるが、例えば、自然乾燥、通風乾燥、加熱乾燥、減圧乾燥及びこれらを組み合わせた方法が挙げられる。中でも、自然乾燥又は加熱乾燥が好ましい。乾燥温度は、0~200℃の範囲が好ましく、20~150℃の範囲がより好ましく、50~130℃の範囲がさらに好ましい。乾燥時間は、10秒間~10分間が好ましく、より好ましくは30秒間~5分間である。 When coating the composition for polarizing layer formation and forming the polarizing layer 21, a solvent is removed from the coated polarizing layer formation composition, and the coating layer for polarizing layers is formed. As the method of removing the solvent, the same method as the method of removing the solvent from the oriented polymer composition can be used, and for example, natural drying, air drying, heat drying, reduced pressure drying and a combination thereof are mentioned. Be Among these, natural drying or heat drying is preferred. The drying temperature is preferably in the range of 0 to 200 ° C., more preferably in the range of 20 to 150 ° C., and still more preferably in the range of 50 to 130 ° C. The drying time is preferably 10 seconds to 10 minutes, more preferably 30 seconds to 5 minutes.
 偏光層形成用組成物に含まれる液晶化合物が重合性液晶化合物である場合、偏光層形成工程で形成された偏光層用塗工層に活性エネルギー線照射を行い、重合性液晶化合物を光重合させて、重合性液晶化合物の重合体層としての偏光層21を形成することが好ましい。照射する活性エネルギー線としては、偏光層用塗工層に含まれる重合性液晶化合物の種類(特に、重合性液晶化合物が有する光重合性官能基の種類)、光重合開始剤を含む場合には光重合開始剤の種類、及びそれらの量に応じて適宜選択される。具体的には、可視光、紫外光、赤外光、X線、α線、β線、及びγ線からなる群より選択される一種以上の光が挙げられる。中でも、重合反応の進行を制御しやすい点、及び光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって光重合可能なように、重合性液晶化合物の種類を選択することが好ましい。 When the liquid crystal compound contained in the composition for forming a polarizing layer is a polymerizable liquid crystal compound, the coating layer for a polarizing layer formed in the step for forming a polarizing layer is irradiated with active energy rays to photopolymerize the polymerizable liquid crystal compound. Preferably, the polarizing layer 21 is formed as a polymer layer of the polymerizable liquid crystal compound. In the case of containing the type of the polymerizable liquid crystal compound (particularly, the type of the photopolymerizable functional group possessed by the polymerizable liquid crystal compound) and the photopolymerization initiator contained as the active energy ray to be irradiated, It is suitably selected according to the kind of photoinitiator and those quantities. Specifically, one or more types of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, α-rays, β-rays, and γ-rays can be mentioned. Among them, ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction, and in that it can be used widely as an apparatus for photopolymerization, polymerization is possible so that it can be photopolymerized by ultraviolet light. It is preferable to select the type of the liquid crystal compound.
 活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 As a light source of active energy ray, for example, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, super high pressure mercury lamp, xenon lamp, halogen lamp, carbon arc lamp, tungsten lamp, gallium lamp, excimer laser, wavelength range 380 Examples thereof include an LED light source emitting ~ 440 nm, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp and the like.
 活性エネルギー線の照射強度は、通常、10mW/cm~3000mW/cmである。活性エネルギー線の照射強度は、好ましくはカチオン重合開始剤又はラジカル重合開始剤の活性化に有効な波長領域における強度である。活性エネルギー線を照射する時間は、通常0.1秒~10分であり、好ましくは0.1秒~5分であり、より好ましくは0.1秒~3分であり、さらに好ましくは0.1秒~1分である。このような活性エネルギー線の照射強度で1回又は複数回照射すると、その積算光量は、10mJ/cm~3000mJ/cm、好ましくは50mJ/cm~2,000mJ/cm、より好ましくは100mJ/cm~1000mJ/cmとすることができる。積算光量がこの範囲以下である場合には、重合性液晶化合物の硬化が不十分となり、良好な転写性が得られない場合がある。逆に、積算光量がこの範囲以上である場合には、偏光層が着色する場合がある。 Irradiation intensity of the active energy rays are usually, 10mW / cm 2 ~ 3000mW / cm 2. The irradiation intensity of the active energy ray is preferably an intensity in a wavelength range effective for activating the cationic polymerization initiator or the radical polymerization initiator. The irradiation time of the active energy ray is usually 0.1 seconds to 10 minutes, preferably 0.1 seconds to 5 minutes, more preferably 0.1 seconds to 3 minutes, still more preferably 0. 1 second to 1 minute. When such irradiation once or several times with the irradiation intensity of the active energy ray, the cumulative amount of light is, 10mJ / cm 2 ~ 3000mJ / cm 2, preferably 50mJ / cm 2 ~ 2,000mJ / cm 2, more preferably It can be 100 mJ / cm 2 to 1000 mJ / cm 2 . When the integrated light amount is less than this range, the curing of the polymerizable liquid crystal compound may be insufficient, and good transferability may not be obtained. On the contrary, when the integrated light amount is above this range, the polarizing layer may be colored.
 (溶剤)
 偏光層形成用組成物は溶剤を含有していてもよい。一般に重合性液晶化合物は粘度が高いため、液晶化合物として重合性液晶化合物を用いる場合は、溶剤を含む偏光層形成用組成物を用いることで塗工が容易になり、結果として偏光層を形成しやすくなる。溶剤としては、重合性液晶化合物及び二色性色素を完全に溶解し得るものが好ましく、また、重合性液晶化合物の重合反応に不活性な溶剤であることが好ましい。
(solvent)
The composition for forming a polarizing layer may contain a solvent. Generally, since the polymerizable liquid crystal compound has a high viscosity, when the polymerizable liquid crystal compound is used as the liquid crystal compound, coating is facilitated by using a composition for forming a polarizing layer containing a solvent, and as a result, a polarizing layer is formed. It will be easier. The solvent is preferably one that can completely dissolve the polymerizable liquid crystal compound and the dichroic dye, and is preferably a solvent inert to the polymerization reaction of the polymerizable liquid crystal compound.
 溶剤としては、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル又はプロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン又はプロピレングリコールメチルエーテルアセテート又は乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン又はメチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン又はヘプタン等の脂肪族炭化水素溶剤;トルエン又はキシレン等の芳香族炭化水素溶剤、アセトニトリル等のニトリル溶剤;テトラヒドロフラン又はジメトキシエタン等のエーテル溶剤;クロロホルム又はクロロベンゼン等の塩素含有溶剤;ジメチルアセトアミド、ジメチルホルミアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶剤等が挙げられる。これら溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the solvent, alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether or propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone Or ester solvents such as propylene glycol methyl ether acetate or ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone or methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane or heptane; toluene Or an aromatic hydrocarbon solvent such as xylene, a nitrile solvent such as acetonitrile; Ether solvents such as dimethoxyethane or dimethoxyethane; chlorine-containing solvents such as chloroform or chlorobenzene; amide solvents such as dimethylacetamide, dimethylformiamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone Etc. These solvents may be used alone or in combination of two or more.
 偏光層形成用組成物に含まれる溶剤の含有量は、偏光層形成用組成物の総量に対して50~98質量%が好ましい。換言すると、偏光層形成用組成物における固形分の含有量は、2~50質量%が好ましい。固形分の含有量が50質量%以下であると、偏光層形成用組成物の粘度が低くなることから、偏光層21の厚さが略均一になり、偏光層21にムラが生じにくくなる傾向がある。また、かかる固形分の含有量は、製造しようとする偏光層21の厚みを考慮して定めることができる。 The content of the solvent contained in the composition for forming a polarizing layer is preferably 50 to 98% by mass with respect to the total amount of the composition for forming a polarizing layer. In other words, the content of solid content in the composition for forming a polarizing layer is preferably 2 to 50% by mass. When the content of the solid content is 50% by mass or less, the viscosity of the composition for forming a polarizing layer is low, so that the thickness of the polarizing layer 21 becomes substantially uniform, and unevenness tends not to occur in the polarizing layer 21. There is. The solid content can be determined in consideration of the thickness of the polarizing layer 21 to be produced.
 (重合開始剤)
 偏光層形成用組成物は重合開始剤を含有していてもよい。重合開始剤は、液晶化合物として重合性液晶化合物を用いている場合に用いることができ、重合性液晶化合物等の重合反応を開始し得る化合物である。重合開始剤としては、サーモトロピック液晶の相状態に依存しないという観点から、光の作用により活性ラジカルを発生する光重合開始剤が好ましい。
(Polymerization initiator)
The composition for forming a polarizing layer may contain a polymerization initiator. The polymerization initiator can be used when a polymerizable liquid crystal compound is used as the liquid crystal compound, and is a compound capable of initiating a polymerization reaction of the polymerizable liquid crystal compound or the like. The polymerization initiator is preferably a photopolymerization initiator that generates active radicals by the action of light from the viewpoint of being independent of the phase state of the thermotropic liquid crystal.
 重合開始剤としては、例えばベンゾイン化合物、ベンゾフェノン化合物、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、トリアジン化合物、ヨードニウム塩又はスルホニウム塩等が挙げられる。 Examples of the polymerization initiator include benzoin compounds, benzophenone compounds, alkylphenone compounds, acyl phosphine oxide compounds, triazine compounds, iodonium salts and sulfonium salts.
 ベンゾイン化合物としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル又はベンゾインイソブチルエーテル等が挙げられる。 Examples of the benzoin compound include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether.
 ベンゾフェノン化合物としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノン及び2,4,6-トリメチルベンゾフェノン等が挙げられる。 Examples of benzophenone compounds include benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (tert-butylperoxycarbonyl) And benzophenone and 2,4,6-trimethylbenzophenone.
 アルキルフェノン化合物としては、例えば、ジエトキシアセトフェノン、2-メチル-2-モルホリノ-1-(4-メチルチオフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1,2-ジフェニル-2,2-ジメトキシエタン-1-オン、2-ヒドロキシ-2-メチル-1-〔4-(2-ヒドロキシエトキシ)フェニル〕プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン又は2-ヒドロキシ-2-メチル-1-〔4-(1-メチルビニル)フェニル〕プロパン-1-オンのオリゴマー等が挙げられる。 Examples of the alkylphenone compounds include diethoxyacetophenone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) Butan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1,2-diphenyl-2,2-dimethoxyethane-1-one, 2-hydroxy-2-methyl-1 -[4- (2-hydroxyethoxy) phenyl] propan-1-one, 1-hydroxycyclohexyl phenyl ketone or 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propane-1-propane On-oligomer etc. are mentioned.
 アシルホスフィンオキサイド化合物としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド又はビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等が挙げられる。 Examples of the acyl phosphine oxide compound include 2,4,6-trimethyl benzoyl diphenyl phosphine oxide or bis (2,4,6-trimethyl benzoyl) phenyl phosphine oxide.
 トリアジン化合物としては、例えば、2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジン又は2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジン等が挙げられる。 Examples of triazine compounds include 2,4-bis (trichloromethyl) -6- (4-methoxyphenyl) -1,3,5-triazine and 2,4-bis (trichloromethyl) -6- (4-methoxy). Naphthyl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- (4-methoxystyryl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (5-Methylfuran-2-yl) ethenyl] -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (furan-2-yl) ethenyl] -1 , 3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (4-diethylamino-2-methylphenyl) ethenyl] -1,3,5-triazine or 2,4-bis (trichloro) Methyl) 6- [2- (3,4-dimethoxyphenyl) ethenyl] -1,3,5-triazine.
 重合開始剤は市販のものを用いることもできる。市販の重合開始剤としては、イルガキュア(Irgacure)(登録商標)907、184、651、819、250、369、379、127、754、OXE01、OXE02、又はOXE03(チバ・スペシャルティ・ケミカルズ株式会社製);セイクオール(登録商標)BZ、Z、又はBEE(精工化学株式会社製);カヤキュアー(kayacure)(登録商標)BP100、又はUVI-6992(ダウ・ケミカル株式会社製);アデカオプトマーSP-152、N-1717、N-1919、SP-170、アデカアークルズNCI-831、アデカアークルズNCI-930(株式会社ADEKA製);TAZ-A、又はTAZ-PP(日本シイベルヘグナー株式会社製);TAZ-104(株式会社三和ケミカル製);等が挙げられる。偏光層形成用組成物中の重合開始剤は、1種類を用いてもよく、光の光源に合わせて2種類以上の複数の重合開始剤を混合して用いてもよい。 A commercially available thing can also be used for a polymerization initiator. Commercially available polymerization initiators include Irgacure (registered trademark) 907, 184, 651, 819, 250, 369, 379, 127, 754, OXE01, OXE02, or OXE03 (manufactured by Ciba Specialty Chemicals Inc.) Seikol (registered trademark) BZ, Z, or BEE (manufactured by SEIKO CHEMICAL CO., LTD.); Kayacure (registered trademark) BP 100, or UVI-6992 (manufactured by Dow Chemical Co.); Adeka Optomer SP-152, N-1717, N-1919, SP-170, Adeka Arkles NCI-831, Adeka Arkles NCI-930 (manufactured by ADEKA Co., Ltd.); TAZ-A, or TAZ-PP (manufactured by Nihon Shiber Hegner Co., Ltd.); TAZ- 104 (made by Sanwa Chemical Co., Ltd.) Etc. The. One type of polymerization initiator in the composition for forming a polarizing layer may be used, or two or more types of a plurality of polymerization initiators may be mixed and used according to the light source.
 偏光層形成用組成物中の重合開始剤の含有量は、重合性液晶化合物の種類やその量に応じて適宜調節できるが、重合性液晶化合物の含有量100質量部に対して、通常0.1~30質量部、好ましくは0.5~10質量部、より好ましくは0.5~8質量部である。重合開始剤の含有量が上記範囲内であると、重合性液晶化合物の配向を乱すことなく重合を行うことができる。 The content of the polymerization initiator in the composition for forming a polarizing layer can be appropriately adjusted according to the type of the polymerizable liquid crystal compound and the amount thereof, but the content is usually 0. 1 parts by mass relative to 100 parts by mass of the content of the polymerizable liquid crystal compound. The amount is 1 to 30 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass. When the content of the polymerization initiator is in the above range, the polymerization can be performed without disturbing the alignment of the polymerizable liquid crystal compound.
 (増感剤)
 偏光層形成用組成物は増感剤を含有してもよい。増感剤は、液晶化合物として重合性液晶化合物を用いている場合に好適に用いることができ、光重合性基を有する重合性液晶化合物を用いている場合には、増感剤は光増感剤であることが好ましい。増感剤としては、例えば、キサントン及びチオキサントン等のキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン等);アントラセン及びアルコキシ基含有アントラセン(例えば、ジブトキシアントラセン等)等のアントラセン化合物;フェノチアジン又はルブレン等が挙げられる。
(Sensitizer)
The composition for forming a polarizing layer may contain a sensitizer. The sensitizer can be suitably used when a polymerizable liquid crystal compound is used as a liquid crystal compound, and when a polymerizable liquid crystal compound having a photopolymerizable group is used, the sensitizer is a photosensitizer. It is preferably an agent. Examples of sensitizers include xanthone compounds such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone etc.); anthracene compounds such as anthracene and alkoxy group-containing anthracene (eg dibutoxyanthracene etc) And phenothiazine or rubrene and the like.
 偏光層形成用組成物が増感剤を含有する場合、偏光層形成用組成物に含有される重合性液晶化合物の重合反応をより促進することができる。かかる増感剤の使用量は、重合性液晶化合物の含有量100質量部に対して、0.1~10質量部が好ましく、0.5~5質量部がより好ましく、0.5~3質量部がさらに好ましい。 When the composition for forming a polarizing layer contains a sensitizer, the polymerization reaction of the polymerizable liquid crystal compound contained in the composition for forming a polarizing layer can be further promoted. The amount of the sensitizer used is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, and more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Parts are more preferred.
 (重合禁止剤)
 偏光層形成用組成物は、重合反応を安定的に進行させる観点から重合禁止剤を含有してもよい。重合禁止剤は、液晶化合物として重合性液晶化合物を用いている場合に好適に用いることができ、重合禁止剤により、重合性液晶化合物の重合反応の進行度合いをコントロールすることができる。
(Polymerization inhibitor)
The composition for forming a polarizing layer may contain a polymerization inhibitor from the viewpoint of stably advancing the polymerization reaction. The polymerization inhibitor can be suitably used when a polymerizable liquid crystal compound is used as the liquid crystal compound, and the degree of progress of the polymerization reaction of the polymerizable liquid crystal compound can be controlled by the polymerization inhibitor.
 重合禁止剤としては、例えばハイドロキノン、アルコキシ基含有ハイドロキノン、アルコキシ基含有カテコール(例えば、ブチルカテコール等)、ピロガロール、2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル等のラジカル捕捉剤;チオフェノール類;β-ナフチルアミン類又はβ-ナフトール類等が挙げられる。 Examples of the polymerization inhibitor include radical scavenging such as hydroquinone, alkoxy group-containing hydroquinone, alkoxy group-containing catechol (eg, butyl catechol etc.), pyrogallol, 2,2,6,6-tetramethyl-1-piperidinyloxy radical etc. Agents; thiophenols; β-naphthylamines or β-naphthols.
 偏光層形成用組成物が重合禁止剤を含有する場合、重合禁止剤の含有量は、重合性液晶化合物の含有量100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~5質量部、さらに好ましくは0.5~3質量部である。重合禁止剤の含有量が、上記範囲内であると、重合性液晶化合物の配向を乱すことなく重合を行うことができる。 When the composition for forming a polarizing layer contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.1 to 10 parts by mass, more preferably 100 parts by mass of the content of the polymerizable liquid crystal compound. The amount is 0.5 to 5 parts by mass, more preferably 0.5 to 3 parts by mass. When the content of the polymerization inhibitor is in the above range, the polymerization can be performed without disturbing the alignment of the polymerizable liquid crystal compound.
 (レベリング剤)
 偏光層形成用組成物はレベリング剤を含有してもよい。レベリング剤とは、組成物の流動性を調整し、組成物を塗布して得られる膜をより平坦にする機能を有する添加剤であり、例えば、有機変性シリコーンオイル系、ポリアクリレート系又はパーフルオロアルキル系のレベリング剤が挙げられる。具体的には、DC3PA、SH7PA、DC11PA、SH28PA、SH29PA、SH30PA、ST80PA、ST86PA、SH8400、SH8700、FZ2123(以上、全て東レ・ダウコーニング(株)製)、KP321、KP323、KP324、KP326、KP340、KP341、X22-161A、KF6001(以上、全て信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF-4446、TSF4452、TSF4460(以上、全てモメンティブ パフォーマンス マテリアルズ ジャパン合同会社製)、フロリナート(fluorinert)(登録商標)FC-72、同FC-40、同FC-43、同FC-3283(以上、全て住友スリーエム(株)製)、メガファック(登録商標)R-08、同R-30、同R-90、同F-410、同F-411、同F-443、同F-445、同F-470、同F-477、同F-479、同F-482、同F-483(以上、いずれもDIC(株)製)、エフトップ(商品名)EF301、同EF303、同EF351、同EF352(以上、全て三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S-381、同S-382、同S-383、同S-393、同SC-101、同SC-105、KH-40、SA-100(以上、全てAGCセイミケミカル(株)製)、商品名E1830、同E5844((株)ダイキンファインケミカル研究所製)、BM-1000、BM-1100、BYK-352、BYK-353又はBYK-361N(いずれも商品名:BM Chemie社製)等が挙げられる。中でも、ポリアクリレート系レベリング剤又はパーフルオロアルキル系レベリング剤が好ましい。
(Leveling agent)
The composition for forming a polarizing layer may contain a leveling agent. The leveling agent is an additive having a function of adjusting the flowability of the composition and making the film obtained by applying the composition more flat, and is, for example, an organic modified silicone oil type, polyacrylate type or perfluoro type. An alkyl type leveling agent is mentioned. Specifically, DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all manufactured by Toray Dow Corning Co., Ltd.), KP 321, KP 323, KP 324, KP 326, KP 340, KP341, X22-161A, KF6001 (all from Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4446, TSF-4446, TSF4452, TSF4460 (all, Momentive Performance Materials Japan Ltd. Fluorinert (registered trademark) FC-72, FC-40, FC-43, FC-3283 (above, Sumitomo 3M Co., Ltd., Megafuck (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, F-470, F-477, F-479, F-482, F-483 (all available from DIC Corporation), F-Top (trade names) EF301, EF303, EF351, EF 352 (all manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), Surflon (registered trademark) S-381, S-382, S-383, S-393, S-101, S-105, KH -40, SA-100 (all available from AGC Seimi Chemical Co., Ltd.), under the trade names E1830 and E5844 (manufactured by Daikin Fine Chemical Laboratories), BM-1000, BM-1100, BYK-352, BY -353 or BYK-361N (both trade name: BM Chemie Co., Ltd.), and the like. Among them, polyacrylate leveling agents or perfluoroalkyl leveling agents are preferable.
 偏光層形成用組成物がレベリング剤を含有する場合、液晶化合物の含有量100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.1~5質量部、さらに好ましくは0.1~3質量部である。レベリング剤の含有量が上記範囲内であると、液晶化合物を水平配向させることが容易であり、かつ得られる偏光層がより平滑となる傾向がある。液晶化合物に対するレベリング剤の含有量が上記範囲を超えると、得られる偏光層にムラが生じやすい傾向がある。なお、偏光層形成用組成物は、レベリング剤を2種以上含有していてもよい。 When the composition for forming a polarizing layer contains a leveling agent, it is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 5 parts by mass, and still more preferably 100 parts by mass of the liquid crystal compound. 0.1 to 3 parts by mass. When the content of the leveling agent is within the above range, it is easy to horizontally align the liquid crystal compound, and the obtained polarizing layer tends to be smoother. When the content of the leveling agent with respect to the liquid crystal compound exceeds the above range, unevenness tends to easily occur in the obtained polarizing layer. In addition, the composition for polarizing layer formation may contain 2 or more types of leveling agents.
 (反応性添加剤)
 偏光層形成用組成物は反応性添加剤を含んでもよい。反応性添加剤としては、その分子内に炭素-炭素不飽和結合と活性水素反応性基とを有するものが好ましい。なお、ここでいう「活性水素反応性基」とは、カルボキシル基(-COOH)、水酸基(-OH)、アミノ基(-NH)等の活性水素を有する基に対して反応性を有する基を意味し、グリシジル基、オキサゾリン基、カルボジイミド基、アジリジン基、イミド基、イソシアネート基、チオイソシアネート基、無水マレイン酸基等がその代表例である。反応性添加剤が有する、炭素-炭素不飽和結合又は活性水素反応性基の個数は、通常、それぞれ1~20個であり、好ましくはそれぞれ1~10個である。
(Reactive additive)
The composition for forming a polarizing layer may contain a reactive additive. The reactive additive is preferably one having a carbon-carbon unsaturated bond and an active hydrogen reactive group in the molecule. The term "active hydrogen reactive group" as used herein refers to a group having reactivity with a group having active hydrogen such as carboxyl group (-COOH), hydroxyl group (-OH), amino group (-NH 2 ) and the like. And glycidyl group, oxazoline group, carbodiimide group, aziridine group, imide group, isocyanate group, thioisocyanate group, maleic anhydride group and the like are representative examples. The number of carbon-carbon unsaturated bonds or active hydrogen reactive groups contained in the reactive additive is usually 1 to 20, and preferably 1 to 10.
 反応性添加剤において、活性水素反応性基が少なくとも2つ存在することが好ましく、この場合、複数存在する活性水素反応性基は同一でも、異なるものであってもよい。 In the reactive additive, at least two active hydrogen reactive groups are preferably present, and in this case, the active hydrogen reactive groups may be the same or different.
 反応性添加剤が有する炭素-炭素不飽和結合とは、炭素-炭素二重結合、炭素-炭素三重結合、又はそれらの組み合わせであってよいが、炭素-炭素二重結合であることが好ましい。中でも、反応性添加剤としては、ビニル基及び/又は(メタ)アクリル基として炭素-炭素不飽和結合を含むことが好ましい。さらに、活性水素反応性基が、エポキシ基、グリシジル基及びイソシアネート基からなる群から選ばれる少なくとも1種である反応性添加剤が好ましく、アクリル基とイソシアネート基とを有する反応性添加剤がより好ましい。 The carbon-carbon unsaturated bond possessed by the reactive additive may be a carbon-carbon double bond, a carbon-carbon triple bond, or a combination thereof, but is preferably a carbon-carbon double bond. Among them, it is preferable that the reactive additive contains a carbon-carbon unsaturated bond as a vinyl group and / or a (meth) acrylic group. Furthermore, a reactive additive in which the active hydrogen reactive group is at least one selected from the group consisting of an epoxy group, a glycidyl group and an isocyanate group is preferable, and a reactive additive having an acrylic group and an isocyanate group is more preferable. .
 反応性添加剤の具体例としては、メタクリロキシグリシジルエーテルやアクリロキシグリシジルエーテル等の、(メタ)アクリル基とエポキシ基とを有する化合物;オキセタンアクリレートやオキセタンメタクリレート等の、(メタ)アクリル基とオキセタン基とを有する化合物;ラクトンアクリレートやラクトンメタクリレート等の、(メタ)アクリル基とラクトン基とを有する化合物;ビニルオキサゾリンやイソプロペニルオキサゾリン等の、ビニル基とオキサゾリン基とを有する化合物;イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、2-イソシアナトエチルアクリレート又は2-イソシアナトエチルメタクリレート等の、(メタ)アクリル基とイソシアネート基とを有する化合物のオリゴマー等が挙げられる。また、メタクリル酸無水物、アクリル酸無水物、無水マレイン酸又はビニル無水マレイン酸等の、ビニル基やビニレン基と酸無水物とを有する化合物等が挙げられる。中でも、メタクリロキシグリシジルエーテル、アクリロキシグリシジルエーテル、イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、ビニルオキサゾリン、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレート又は上記のオリゴマーが好ましく、イソシアナトメチルアクリレート、2-イソシアナトエチルアクリレート又は上記のオリゴマーが特に好ましい。 Specific examples of the reactive additive include compounds having a (meth) acrylic group and an epoxy group such as methacryloxy glycidyl ether and acryloxy glycidyl ether; (meth) acrylic groups and oxetane such as oxetane acrylate and oxetane methacrylate A compound having a group; a compound having a (meth) acrylic group and a lactone group such as lactone acrylate and lactone methacrylate; a compound having a vinyl group and an oxazoline group such as vinyl oxazoline and isopropenyl oxazoline; isocyanato methyl acrylate And oligomers of compounds having a (meth) acrylic group and an isocyanate group, such as isocyanatomethyl methacrylate, 2-isocyanatoethyl acrylate or 2-isocyanatoethyl methacrylate. That. In addition, compounds having a vinyl group or vinylene group and an acid anhydride, such as methacrylic anhydride, acrylic anhydride, maleic anhydride or vinyl maleic anhydride, may be mentioned. Among them, methacryloxy glycidyl ether, acryloxy glycidyl ether, isocyanato methyl acrylate, isocyanato methyl methacrylate, vinyl oxazoline, 2-isocyanato ethyl acrylate, 2-isocyanato ethyl methacrylate or the above-mentioned oligomers are preferable, isocyanato methyl acrylate, Particularly preferred is 2-isocyanatoethyl acrylate or the above mentioned oligomers.
 具体的には、下記式(Y)で表される化合物が好ましい。 Specifically, a compound represented by the following formula (Y) is preferable.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(Y)中、nは1~10までの整数を表わし、R1’は、炭素数2~20の2価の脂肪族又は脂環式炭化水素基、或いは炭素数5~20の2価の芳香族炭化水素基を表わす。各繰返し単位にある2つのR2’は、一方が-NH-であり、他方が>N-C(=O)-R3’で示される基である。R3’は、水酸基又は炭素-炭素不飽和結合を有する基を表す。
 式(Y)中のR3’のうち、少なくとも1つのR3’は炭素-炭素不飽和結合を有する基である。]
[Wherein, in the formula (Y), n represents an integer of 1 to 10, R 1 ′ represents a divalent aliphatic or alicyclic hydrocarbon group having 2 to 20 carbon atoms, or 2 Represents a substituted aromatic hydrocarbon group. Two R 2 ′ in each repeating unit is a group in which one is —NH— and the other is> N—C (= O) —R 3 ′ . R 3 ' represents a group having a hydroxyl group or a carbon-carbon unsaturated bond.
'Of at least one R 3' formula (Y) in R 3 is a carbon - is a group having a carbon unsaturated bond. ]
 前記式(Y)で表される反応性添加剤の中でも、下記式(YY)で表される化合物(以下、化合物(YY)ということがある。)が特に好ましい(なお、nは前記と同じ意味である)。 Among the reactive additives represented by the formula (Y), a compound represented by the following formula (YY) (hereinafter sometimes referred to as a compound (YY)) is particularly preferable (where n is the same as above). Is the meaning).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 化合物(YY)には、市販品をそのまま又は必要に応じて精製して用いることができる。市販品としては、例えば、Laromer(登録商標)LR-9000(BASF社製)が挙げられる。 For the compound (YY), commercially available products can be used as they are or purified as needed. As a commercial item, for example, Laromer (registered trademark) LR-9000 (manufactured by BASF Corporation) may be mentioned.
 偏光層形成用組成物が反応性添加剤を含有する場合、反応性添加剤の含有量は、液晶化合物100質量部に対して、通常0.01~10質量部であり、好ましくは0.1~5質量部である。 When the composition for forming a polarizing layer contains a reactive additive, the content of the reactive additive is usually 0.01 to 10 parts by mass, preferably 0.1 to 100 parts by mass of the liquid crystal compound. 5 parts by mass.
 (保護層積層工程)
 保護層積層工程では、図3(c)に示すように、準備工程で準備した積層フィルム62の偏光層21上に、偏光層21を被覆するための被覆領域35aと、偏光層21を露出させるための露出領域35bとを有する保護層35を積層する。これにより保護層付き積層フィルム63を得ることができる。露出領域35bは、例えば保護層35の開口部とすることができる。被覆領域35aは、後述する偏光層21中の二色性色素の含有率を低減し得る液状物と、保護層付き積層フィルム63とを接触させたときに、液状物が偏光層21と接触することを抑制することができる。一方、保護層35の露出領域35bでは、液状物を偏光層21に接触させることができる。
(Protective layer lamination process)
In the protective layer laminating step, as shown in FIG. 3C, a covering region 35a for covering the polarizing layer 21 and the polarizing layer 21 are exposed on the polarizing layer 21 of the laminated film 62 prepared in the preparation step. And a protective layer 35 having an exposed area 35b. Thereby, the laminated film 63 with a protective layer can be obtained. The exposed region 35 b can be, for example, an opening of the protective layer 35. The coated region 35 a contacts the polarizing layer 21 when the liquid which can reduce the content of the dichroic dye in the polarizing layer 21 described later and the laminated film 63 with a protective layer are brought into contact with each other. Can be suppressed. On the other hand, in the exposed area 35 b of the protective layer 35, the liquid can be brought into contact with the polarizing layer 21.
 後述するように、偏光層21が液状物と接触すると、液状物が偏光層21内に浸透して二色性色素の色素としての機能を消失させる。そのため、露出領域35bは、偏光層21において二色性色素の含有率を低減せる領域に対応させて形成することが好ましい。例えば、図1(a)及び(b)に示す偏光フィルム1を製造する場合には、第2領域11bの形状に合わせてその形状を決定することが好ましい。例えば、第2領域11bの平面視形状が、円形;楕円形;長円形;三角形、正方形、矩形、菱形等の多角形;線状;帯状;波形状等であれば、露出領域35bは、これらの形状に対応して形成すればよい。 As described later, when the polarizing layer 21 comes in contact with the liquid, the liquid penetrates into the polarizing layer 21 and loses the function of the dichroic dye as a dye. Therefore, it is preferable to form the exposed area 35b in correspondence with the area in the polarizing layer 21 in which the content of the dichroic dye is reduced. For example, when manufacturing the polarizing film 1 shown to FIG. 1 (a) and (b), it is preferable to determine the shape according to the shape of 2nd area | region 11 b. For example, if the plan view shape of the second region 11b is circular; oval; oval; polygon such as triangle, square, rectangle, rhombus, etc .; linear; It may be formed corresponding to the shape of.
 例えば、露出領域35bが円形である場合、その直径は5cm以下であることが好ましく、3cm以下であることがより好ましく、2cm以下であることがさらに好ましい。露出領域35bが楕円形又は長円形である場合、その長軸は5cm以下であることが好ましく、3cm以下であることがより好ましく、2cm以下であることがさらに好ましい。露出領域35bが多角形である場合、この多角形が内接されるように描いた仮想円の直径は5cm以下であることが好ましく、3cm以下であることがより好ましく、2cm以下であることがさらに好ましい。後述するように、液状物は、液晶層中に浸透するため、露出領域35bの大きさは、第2領域11bと同じ大きさではなく、少し小さくなるように形成してもよい。 For example, when the exposed area 35b is circular, the diameter is preferably 5 cm or less, more preferably 3 cm or less, and still more preferably 2 cm or less. When the exposed area 35b is elliptical or oval, the major axis is preferably 5 cm or less, more preferably 3 cm or less, and still more preferably 2 cm or less. When the exposed area 35b is a polygon, the diameter of a virtual circle drawn so as to be inscribed in the polygon is preferably 5 cm or less, more preferably 3 cm or less, and 2 cm or less. More preferable. As described later, since the liquid penetrates into the liquid crystal layer, the size of the exposed area 35b may be formed to be slightly smaller than the size of the second area 11b.
 また、保護層35の被覆領域35aは、偏光層21において二色性色素の含有率を低減させない領域に対応させて形成することが好ましい。例えば、図1(a)及び(b)に示す偏光フィルム1を製造する場合には、第1領域11aの形状に合わせてその形状を決定することが好ましい。 Further, it is preferable that the covering region 35 a of the protective layer 35 be formed to correspond to the region in the polarizing layer 21 in which the content of the dichroic dye is not reduced. For example, when manufacturing the polarizing film 1 shown to FIG. 1 (a) and (b), it is preferable to determine the shape according to the shape of 1st area | region 11 a.
 保護層35としては、シート状基材に露出領域35bとなる領域を形成したものを用いることができる。露出領域35bとなる領域は、シート状基材の所定部分を、パンチング、カッティングプロッタ、ウォータージェット等によって機械的に打ち抜く方法、シート状基材の所定部分をレーザーアブレーション、化学的溶解等によって除去する方法等によって形成することができる。 As the protective layer 35, what formed the area | region used as the exposed area | region 35b in a sheet-like base material can be used. In the area to be the exposed area 35b, a predetermined portion of the sheet-like substrate is mechanically removed by punching, cutting plotter, water jet or the like, or a predetermined portion of the sheet-like substrate is removed by laser ablation, chemical dissolution or the like. It can be formed by a method or the like.
 保護層35を形成するシート状基材としては、後述する液晶層における二色性色素の含有率を低減し得る液状物に接触させたときに液状物に不溶であり、また、液状物の除去や、液状物を接触させた後に行う紫外線照射における耐久性を有するものであれば、その材料は特に限定されない。保護層35を形成するシート状基材としては、例えば、上記した基材層13と同じ材料を用いて形成することができ、特に樹脂基材を用いて形成されることが好ましく、保護層35の露出領域35bとなる領域(例えば、開口部)の変形を抑制しやすいポリエチレンテレフタレート等のポリエステル樹脂を用いることがより好ましい。 The sheet-like base material forming the protective layer 35 is insoluble in a liquid when brought into contact with a liquid that can reduce the content of the dichroic dye in the liquid crystal layer described later, and the liquid is removed The material is not particularly limited as long as the material has durability in ultraviolet irradiation performed after contacting a liquid material. As a sheet-like base material which forms protective layer 35, it can form using the same material as base material layer 13 mentioned above, for example, and forming using resin base material especially is preferred, and protective layer 35 is preferred. It is more preferable to use a polyester resin such as polyethylene terephthalate that easily suppresses deformation of a region (for example, an opening) to be the exposed region 35b.
 保護層35は、偏光層21に貼合するための粘着層を有していることが好ましい。保護層35は、後述するように剥離されるため、粘着層は、偏光層21に対して剥離可能であることが好ましい。また、保護層35の厚みは、通常20μm以上であり、30μm以上であることが好ましく、また、通常250μm以下であり、200μm以下であることが好ましい。 The protective layer 35 preferably has an adhesive layer for bonding to the polarizing layer 21. Since the protective layer 35 is peeled off as described later, the adhesive layer is preferably peelable relative to the polarizing layer 21. The thickness of the protective layer 35 is usually 20 μm or more, preferably 30 μm or more, and usually 250 μm or less, preferably 200 μm or less.
 (脱色工程)
 脱色工程では、保護層積層工程で得られた保護層付き積層フィルム63を、偏光層21における二色性色素の含有率を低減し得る液状物に接触させることにより、偏光層21の一部の領域において二色性色素の含有率を低下させた脱色積層フィルム64を得ることができる(図3(d))。保護層付き積層フィルム63の保護層35は、偏光層21を被覆するための被覆領域35aと偏光層21を露出させるための露出領域35bとを有しているため、露出領域35bにおいて液状物と偏光層21とを接触させることができる。これにより、偏光層21のうち液状物と接触した領域において二色性色素の含有率を低下させることができる。
(Decoloring process)
In the decoloring step, the laminated film 63 with a protective layer obtained in the protective layer laminating step is brought into contact with a liquid that can reduce the content of the dichroic dye in the polarizing layer 21, thereby forming part of the polarizing layer 21. A decolorized laminated film 64 can be obtained in which the content of the dichroic dye is reduced in the region (FIG. 3 (d)). The protective layer 35 of the laminated film 63 with protective layer has a coated area 35 a for covering the polarizing layer 21 and an exposed area 35 b for exposing the polarizing layer 21. It can be in contact with the polarizing layer 21. Thereby, in the area | region which contacted the liquid among the polarizing layers 21, the content rate of a dichroic dye can be reduced.
 保護層付き積層フィルム63と液状物との接触は、保護層付き積層フィルム63を液状物中に浸漬する、保護層付き積層フィルム63に液状物を塗布、噴霧、滴下する等によって行うことができ、保護層付き積層フィルム63を液状物中に浸漬する方法によって行うことが好ましい。これにより、偏光層21のうち、保護層35の露出領域35bから露出する偏光層21表面に液状物が接触し、偏光層21の内部に浸透する。詳細は明らかではないが、偏光層21の内部に浸透した液状物は、偏光層21中の二色性色素を分解する又は二色性色素と反応等することにより、二色性色素の色素としての機能を消失させると考えられる。これにより、偏光層21の一部に、他の領域よりも二色性色素の含有率が少ない領域である第2領域11bが形成されて、液晶層11を有する脱色積層フィルム64(図3(d))を得ることができる。 The contact between the protective film with a protective layer 63 and the liquid can be carried out by immersing the protective film with a protective layer 63 in the liquid, or by applying, spraying or dropping the liquid on the protective film with a protective layer 63 It is preferable to carry out by the method of immersing the laminated film 63 with a protective layer in a liquid. As a result, the liquid comes in contact with the surface of the polarizing layer 21 exposed from the exposed region 35 b of the protective layer 35 in the polarizing layer 21 and penetrates the inside of the polarizing layer 21. Although the details are not clear, the liquid that has penetrated the inside of the polarizing layer 21 decomposes the dichroic dye in the polarizing layer 21 or reacts with the dichroic dye or the like to form a dye of the dichroic dye. It is thought that the function of As a result, the second region 11b, which is a region having a smaller content of the dichroic dye than the other regions, is formed in a part of the polarizing layer 21, and the decolorized laminated film 64 having the liquid crystal layer 11 (FIG. d) can be obtained.
 偏光層21の表面のうち、保護層35の被覆領域35aに被覆された領域は、偏光層21が液状物と直接接触しないため、偏光層21内に液状物が浸透しにくく二色性色素は消失されにくい。これに対し、偏光層21のうち、保護層35の露出領域35bから露出する領域では、偏光層21が液状物と直接接触するため、偏光層21内に液状物が浸透しやすく二色性色素が消失されやすい。そのため、図3(d)に示す脱色積層フィルム64では、偏光層21のうち露出領域35bに対応する領域に、他の領域よりも二色性色素の含有率が小さい低偏光領域である第2領域11bを有する液晶層11を形成することができる。 In the area of the surface of the polarizing layer 21 covered by the covering area 35 a of the protective layer 35, the polarizing layer 21 does not directly contact the liquid, so that the liquid hardly penetrates into the polarizing layer 21 and the dichroic dye It is hard to be lost. On the other hand, in the area of the polarizing layer 21 exposed from the exposed area 35 b of the protective layer 35, the polarizing layer 21 is in direct contact with the liquid, so the liquid easily penetrates into the polarizing layer 21. Are easily lost. Therefore, in the decolorized laminated film 64 shown in FIG. 3D, the second polarization region is a low polarization region in which the content of the dichroic dye is smaller than the other regions in the region corresponding to the exposed region 35b of the polarization layer 21. The liquid crystal layer 11 having the region 11 b can be formed.
 このように、偏光層21のうち二色性色素の含有率を低減したい領域に保護層35の露出領域35bが配置された保護層付き積層フィルム63を用いることにより、偏光層21の所望の位置において二色性色素の含有率が低減された液晶層11を形成することができる。しかし、液状物は偏光層21の内部に浸透して二色性色素の機能を消失させるため、二色性色素の含有率を低下させる必要のない領域にまで液状物が浸透して二色性色素の含有率を低下させることがないように、保護層35の厚み、露出領域35bの大きさ、液状物の濃度、液状物への保護層付き積層フィルムの浸漬時間、保護層付き積層フィルム63への液状物の塗布量、噴霧量又は滴下量等を調整することが好ましい。 As described above, by using the laminated film 63 with the protective layer in which the exposed area 35 b of the protective layer 35 is disposed in the area where the content of the dichroic dye is to be reduced in the polarizing layer 21, the desired position of the polarizing layer 21 is obtained. The liquid crystal layer 11 can be formed in which the content of the dichroic dye is reduced. However, since the liquid penetrates the inside of the polarizing layer 21 and loses the function of the dichroic dye, the liquid penetrates to a region where it is not necessary to reduce the content of the dichroic dye and the dichroism occurs. The thickness of the protective layer 35, the size of the exposed area 35b, the concentration of the liquid, the immersion time of the laminated film with the protective layer in the liquid, the laminated film with the protective layer 63 so as not to reduce the pigment content. It is preferable to adjust the application amount, the spray amount, the dripping amount, and the like of the liquid to the surface.
 偏光層21における二色性色素の含有率を低減し得る液状物としては、二色性色素の含有率を低減できれば特に限定されないが、例えば過酸化物(過酸化水素、過炭酸ナトリウム等)や塩素化合物(次亜塩素酸ナトリウム等)、酸(硫酸、硝酸、ヘキサフルオロリン酸)、アルカリ(水酸化ナトリウム、水酸化カリウム)等を適宜用いることができる。その中でも硫酸、硝酸、ヘキサフルオロリン酸等の酸が好ましい。これらの液状物は単独で用いても良いし、組み合わせてもよい。 The liquid that can reduce the content of the dichroic dye in the polarizing layer 21 is not particularly limited as long as the content of the dichroic dye can be reduced, but, for example, peroxide (hydrogen peroxide, sodium percarbonate, etc.) or Chlorine compounds (sodium hypochlorite etc.), acids (sulfuric acid, nitric acid, hexafluorophosphoric acid), alkalis (sodium hydroxide, potassium hydroxide) etc. can be used as appropriate. Among these, acids such as sulfuric acid, nitric acid and hexafluorophosphoric acid are preferable. These liquids may be used alone or in combination.
 保護層付き積層フィルム63と液状物とを接触させる接触条件は、偏光層21の厚みや、二色性色素の含有率を低下させる範囲に応じて適宜選定すればよい。液状物の濃度は、例えば20~80質量%であることが好ましく、30~70質量%であることがより好ましい。また、液状物の温度は、50~150℃であることが好ましく、80~120℃であることがより好ましい。 The contact conditions for contacting the protective film with the protective layer 63 and the liquid may be appropriately selected according to the thickness of the polarizing layer 21 and the range in which the content of the dichroic dye is reduced. The concentration of the liquid is, for example, preferably 20 to 80% by mass, and more preferably 30 to 70% by mass. Further, the temperature of the liquid is preferably 50 to 150 ° C., and more preferably 80 to 120 ° C.
 脱色工程は、保護層付き積層フィルム63と液状物とを接触させて、偏光層21の一部に、他の領域よりも二色性色素の含有率が少ない領域を形成した後、液状物を洗い流す第1の洗浄工程を設けることが好ましい。第1の洗浄工程は、水やアルコール等の有機溶媒を用いて行うことができる。 In the decoloring step, the protective film-provided laminated film 63 is brought into contact with the liquid to form a region in which the dichroic dye content is lower than that of the other regions in a part of the polarizing layer 21. It is preferable to provide a first washing step to wash away. The first washing step can be performed using an organic solvent such as water or alcohol.
 (剥離工程)
 剥離工程では、脱色工程で得られた脱色積層フィルム64から保護層35を剥離する。これにより、液晶層11の一部に、他の領域よりも二色性色素の含有率が少ない領域である第2領域11bが形成された偏光フィルム1(図1(a)及び(b))を得ることができる。
(Peeling process)
In the peeling step, the protective layer 35 is peeled from the decolorized laminated film 64 obtained in the decoloring step. Thereby, the polarizing film 1 (FIGS. 1A and 1B) in which the second region 11b having a smaller percentage of the dichroic dye content than the other regions is formed in a part of the liquid crystal layer 11. You can get
 図1(b)に示す偏光フィルム1は、さらに、基材層13を剥離して用いることもできる。この場合、基材層13とともに配向層12も剥離してもよい。例えば、基材層13の剥離は、偏光フィルム1の液晶層11を、表示装置をなす部材や位相差層等に貼合した後に行うこともできる。 The polarizing film 1 shown in FIG. 1 (b) can also be used by peeling off the base material layer 13. In this case, the alignment layer 12 may be peeled off together with the base layer 13. For example, peeling of the base material layer 13 can also be performed after bonding the liquid-crystal layer 11 of the polarizing film 1 to the member, retardation layer, etc. which make a display apparatus.
 (偏光フィルムを連続的に製造する方法)
 偏光フィルム1の製造方法は、好ましくは、Roll to Roll形式により連続的に製造することができる。この場合、準備工程においてロール状に巻回された積層フィルムを準備し、この積層フィルムを巻出しながら搬送して、保護層積層工程、脱色工程、剥離工程を連続的に行えばよい。保護層積層工程では、ロール状に巻回された保護層を巻出しながら搬送して、積層フィルムに保護層を貼合して保護層付き積層フィルムを得ればよい。脱色工程では、保護層付き積層フィルムを連続的に搬送しながら液状物で満たされた液状物浴を通過させる、又は、保護層付き積層フィルムを連続的に搬送しながら液状物を塗布、噴霧又は滴下して、脱色積層フィルムを得ればよい。剥離工程では、脱色積層フィルムから連続的に保護層を剥離して、偏光フィルムをロール状に巻取って巻回体とすればよい。上記のように連続的に製造された偏光フィルムは、例えば10m以上の長さを有することができる。
(Method to manufacture polarizing film continuously)
The manufacturing method of the polarizing film 1 can preferably be continuously manufactured by a Roll to Roll type | mold. In this case, the laminated film wound in a roll may be prepared in the preparation step, and the laminated film may be conveyed while being unwound and the protective layer laminating step, the decoloring step, and the peeling step may be continuously performed. In the protective layer laminating step, the protective layer wound in a roll may be conveyed while being unwound, and the protective layer may be bonded to the laminated film to obtain a laminated film with a protective layer. In the decoloring step, the laminated film with the protective layer is continuously transported, and is passed through a liquid bath filled with the liquid, or the liquid is coated, sprayed or continuously transported while the laminated film with the protective layer is continuously transported. It may be dropped to obtain a decolorized laminated film. In the peeling step, the protective layer may be continuously peeled from the decolorized laminated film, and the polarizing film may be wound into a roll to form a wound body. The polarizing film manufactured continuously as mentioned above can have a length of 10 m or more, for example.
 また、準備工程が配向層形成工程を有する場合、ロール状に巻回された基材層を巻出しながら搬送し、この基材層に、塗布装置により連続的に配向層形成用組成物を塗工して配向層を形成すればよい。準備工程が偏光層形成工程を有する場合は、配向層付き基材層を連続的に搬送しながら、配向層付き基材層の配向層が形成された側の面に、偏光層形成組成物を塗工して偏光層を形成すればよい。 When the preparation step has an alignment layer forming step, the base layer wound in a roll is conveyed while being unwound, and the base layer is continuously coated with the composition for forming an alignment layer by a coating device. The orientation layer may be formed by processing. In the case where the preparation step has a polarizing layer forming step, the polarizing layer forming composition is provided on the side on which the alignment layer of the alignment layer-provided base layer is formed while continuously conveying the alignment layer-containing base layer. It may be coated to form a polarizing layer.
 この第1の製造方法で製造される偏光フィルム1では、第1領域11aと第2領域11bとの厚みの差を、例えば2μm以下というように小さくすることができるため、段差のない偏光フィルム1を得ることができる。これにより、偏光層21の上に他のフィルムを粘着剤などにより貼合しても、気泡を噛み込むことなく、他のフィルムを積層することができる。 In the polarizing film 1 manufactured by the first manufacturing method, the difference in thickness between the first region 11 a and the second region 11 b can be reduced to, for example, 2 μm or less. You can get Thereby, even if it bonds another film on the polarizing layer 21 with an adhesive etc., another film can be laminated | stacked, without biting in air bubbles.
 <偏光フィルムの製造方法(第2の製造方法)>
 偏光フィルム1は、上記した第1の製造方法のほか、下記に示す第2の製造方法によって製造することもできる。図4は、図1(b)に示す偏光フィルム1の製造方法における液状物接触工程の一例を示す概略断面図である。偏光フィルム1の第2の製造方法は、
 基材層13の少なくとも片面側に、液晶化合物及び二色性色素を含む偏光層21を有する積層フィルム62(図3(b))を準備する準備工程と、
 積層フィルム62の偏光層21の一部の領域を、偏光層21における二色性色素の含有率を低減し得る液状物に接触させることにより、前記一部の領域において二色性色素の含有率を低下させる液状物接触工程(図4)と、を有し、これにより、図1(a)及び(b)に示す偏光フィルム1を製造することができる。
<Method of producing polarizing film (second method of production)>
The polarizing film 1 can also be manufactured by the 2nd manufacturing method shown below other than the above-mentioned 1st manufacturing method. FIG. 4: is a schematic sectional drawing which shows an example of the liquid thing contact process in the manufacturing method of the polarizing film 1 shown in FIG.1 (b). The second production method of the polarizing film 1 is
Preparing a laminated film 62 (FIG. 3B) having a polarizing layer 21 containing a liquid crystal compound and a dichroic dye on at least one side of a substrate layer 13;
By bringing a partial region of the polarizing layer 21 of the laminated film 62 into contact with a liquid capable of reducing the dichroic dye content in the polarizing layer 21, the dichroic dye content in the partial region The liquid contact process (FIG. 4) which reduces the, and, thereby, the polarizing film 1 shown in FIG. 1 (a) and (b) can be manufactured.
 この第2の製造方法における準備工程は、図3(a)及び(b)に基づいて説明した上記第1の製造方法における準備工程と同様である。この準備工程により、偏光層21を有する積層フィルム62を準備する。 The preparation steps in this second manufacturing method are the same as the preparation steps in the first manufacturing method described based on FIGS. 3 (a) and 3 (b). By this preparation process, the laminated film 62 having the polarizing layer 21 is prepared.
 この第2の製造方法では、積層フィルム62上の偏光層21の一部の領域を、液状物と接触させる(図4)。このとき用いる液状物は、偏光層21の一部の領域において二色性色素の含有率を低減することができるものであり、上記した第1の製造方法における脱色工程において使用する液状物と同様の液状物を用いることができる。偏光層21の一部の領域に液状物を接触させる方法としては、例えば図4に示すように、この一部の領域に液状物を滴下して塗布する、いわゆるインクジェット法等を挙げることができる。偏光層21を液状物と接触させることにより、偏光層21の一部の領域に液状物が浸透し、二色性色素の含有率を低下させて低偏光領域を形成することができる。 In this second manufacturing method, a partial region of the polarizing layer 21 on the laminated film 62 is brought into contact with the liquid (FIG. 4). The liquid used at this time can reduce the content of the dichroic dye in a partial region of the polarizing layer 21 and is the same as the liquid used in the decoloring step in the first manufacturing method described above. The following liquid can be used. As a method of bringing a liquid material into contact with a partial region of the polarizing layer 21, for example, as shown in FIG. 4, a so-called ink jet method etc. in which the liquid material is dropped and applied to this partial region can be mentioned. . By bringing the polarizing layer 21 into contact with the liquid, the liquid penetrates into a partial region of the polarizing layer 21, and the content of the dichroic dye can be reduced to form a low polarization region.
 第2の製造方法は、偏光層21と液状物とを接触させた後、偏光層21上の液状物を洗い流す第2の洗浄工程を有することが好ましい。第2の洗浄工程は、第1の製造方法における第1の洗浄工程で用いた水やアルコール等の有機溶媒を用いて行うことができる。これにより、図1(b)に示す偏光フィルム1を得ることができる。 The second manufacturing method preferably includes a second cleaning step of washing the liquid on the polarizing layer 21 after the polarizing layer 21 and the liquid are brought into contact with each other. The second washing step can be performed using an organic solvent such as water or alcohol used in the first washing step in the first production method. Thereby, the polarizing film 1 shown in FIG.1 (b) can be obtained.
 第2の製造方法についても、第1の製造方法と同様に、例えばRoll to Roll形式により偏光フィルム1を連続的に製造することができる。この場合、準備工程においてロール状に巻回された積層フィルムを準備し、この積層フィルムを巻出しながら搬送して、液状物接触工程を連続的に行えばよい。液状物接触工程では、積層フィルムを連続的に搬送しながら、液状物を滴下塗布して偏光フィルムを得、得られた偏光フィルムをロール状に巻取って巻回体とすればよい。上記のように連続的に製造された偏光フィルムは、例えば10m以上の長さを有することができる。 In the second production method, as in the first production method, the polarizing film 1 can be continuously produced, for example, by the Roll to Roll method. In this case, the laminated film wound in a roll shape may be prepared in the preparation step, and the laminated film may be conveyed while being unwound and the liquid contacting step may be continuously performed. In the liquid contact step, while continuously conveying the laminated film, the liquid may be dropped and applied to obtain a polarizing film, and the obtained polarizing film may be wound into a roll to form a wound body. The polarizing film manufactured continuously as mentioned above can have a length of 10 m or more, for example.
 また、準備工程が配向層形成工程を有する場合、ロール状に巻回された基材層を巻出しながら搬送し、この基材層に、塗布装置により連続的に配向層形成用組成物を塗工して配向層を形成すればよい。準備工程が偏光層形成工程を有する場合は、配向層付き基材層を連続的に搬送しながら、配向層付き基材層の配向層が形成された側の面に、偏光層形成組成物を塗工して偏光層を形成すればよい。 When the preparation step has an alignment layer forming step, the base layer wound in a roll is conveyed while being unwound, and the base layer is continuously coated with the composition for forming an alignment layer by a coating device. The orientation layer may be formed by processing. In the case where the preparation step has a polarizing layer forming step, the polarizing layer forming composition is provided on the side on which the alignment layer of the alignment layer-provided base layer is formed while continuously conveying the alignment layer-containing base layer. It may be coated to form a polarizing layer.
 この第2の製造方法によっても、第1領域11aと第2領域11bとの厚みの差を、例えば2μm以下というように小さくすることができ、段差のない偏光フィルム1を得ることができる。これにより、偏光層21の上に他のフィルムを粘着剤などにより貼合しても、気泡を噛み込むことなく、他のフィルムを積層することができる。 Also by this second manufacturing method, the difference in thickness between the first region 11a and the second region 11b can be reduced to, for example, 2 μm or less, and the polarizing film 1 having no step can be obtained. Thereby, even if it bonds another film on the polarizing layer 21 with an adhesive etc., another film can be laminated | stacked, without biting in air bubbles.
 <円偏光板の製造方法>
 円偏光板は、偏光フィルム1と位相差層とを積層することによって製造することができる。上記したように、偏光フィルムが連続的に製造された長さ10m以上の長尺偏光フィルムである場合、上記位相差層として、長さ10m以上の長尺位相差層を用い、両者を連続的に搬送しながら長尺偏光フィルムと長尺位相差層とを積層することにより、長尺積層体を形成することが好ましい。このとき、長尺偏光フィルム及び長尺位相差層の少なくとも一方に、粘着剤又は接着剤を塗工して両者を積層することが好ましい。
<Method of manufacturing circularly polarizing plate>
The circularly polarizing plate can be manufactured by laminating the polarizing film 1 and the retardation layer. As described above, in the case where the polarizing film is a continuously produced long polarizing film having a length of 10 m or more, a long retardation layer having a length of 10 m or more is used as the retardation layer, and both are continuously produced. It is preferable to form a long laminated body by laminating | stacking a long polarizing film and a long retardation layer, conveying to. At this time, it is preferable to apply a pressure-sensitive adhesive or an adhesive to at least one of the long polarizing film and the long retardation layer to laminate the both.
 円偏光板の製造方法は、長尺偏光フィルムと長尺位相差層とを積層して得られた長尺積層体を、偏光フィルムを所定サイズの表示装置等に取付けるために所定サイズの枚葉に裁断する工程を有していてもよい。裁断工程では、長尺積層体の長さ方向及び幅方向の少なくとも一方において、長尺積層体を裁断することが好ましい。この場合、裁断された枚葉において液晶層11の第2領域11bが所定の位置に配置されるように、長尺積層体における裁断位置を決定することが好ましい。 The manufacturing method of a circularly polarizing plate is a sheet of a predetermined size in order to attach the polarizing film to a display device of a predetermined size, etc., by attaching a long laminate obtained by laminating a long polarizing film and a long retardation layer to a display of a predetermined size. It may have a process of cutting into In the cutting step, the long laminate is preferably cut in at least one of the length direction and the width direction of the long laminate. In this case, it is preferable to determine the cutting position in the long laminate so that the second region 11b of the liquid crystal layer 11 is disposed at a predetermined position in the cut sheet.
 本発明を実施例に基づいてさらに具体的に説明する。ただし、本発明は、これらの実施例により限定されるものではない。 The present invention will be more specifically described based on examples. However, the present invention is not limited by these examples.
 [視感度補正偏光度(Py)及び視感度補正透過率(Ty)]
 (評価用サンプルの作製)
 各実施例、比較例及び参考例で用いた配向層形成用組成物及び偏光層形成用組成物を準備した。また、各実施例、比較例及び参考例で基材層として用いたものと同じフィルムを40mm×40mmに切り出したものを評価用サンプルの基材層として準備した。これらを用い、実施例1、2、比較例及び参考例では保護層を用いず、実施例3では偏光層上に部分的に溶液を滴下することに代えて偏光層全面を溶液と接触させたこと以外は、各実施例、比較例及び参考例の偏光フィルムの製造と同様の手順を行い評価用サンプルを得た。
[Visual sensitivity correction polarization degree (Py) and visual sensitivity correction transmittance (Ty)]
(Preparation of sample for evaluation)
The composition for forming an alignment layer and the composition for forming a polarizing layer used in each example, comparative example and reference example were prepared. Moreover, what cut out the same film as what was used as a base material layer in each Example, a comparative example, and a reference example in 40 mm x 40 mm was prepared as a base material layer of the sample for evaluation. Using these, in Examples 1 and 2 and Comparative Examples and Reference Examples, the protective layer is not used, and in Example 3, the entire surface of the polarizing layer is brought into contact with the solution instead of dropping the solution partially on the polarizing layer. Except for the above, procedures similar to the production of the polarizing films of the respective examples, comparative examples and reference examples were carried out to obtain samples for evaluation.
 (視感度補正偏光度(Py)及び視感度補正透過率(Ty))
 評価用サンプルについて、以下の手順で視感度補正単体透過率(Ty)及び視感度補正偏光度(Py)を算出した。波長380nm~780nmの範囲で透過軸方向の透過率(T)及び吸収軸方向の透過率(T)を、分光光度計(島津製作所株式会社製 UV-3150)に偏光子付フォルダーをセットした装置を用いてダブルビーム法で測定した。該フォルダーは、リファレンス側は光量を50%カットするメッシュを設置した。下記(式1)及び(式2)を用いて、各波長における透過率、偏光度を算出し、さらにJIS Z 8701の2度視野(C光源)により視感度補正を行い、視感度補正透過率(Ty)及び視感度補正偏光度(Py)を算出した。
  偏光度[%]={(T-T)/(T+T)}×100   (式1)
  単体透過率[%]=(T+T)/2   (式2)
(Visual sensitivity correction degree of polarization (Py) and visual sensitivity correction transmittance (Ty))
For the sample for evaluation, the luminosity correction single transmittance (Ty) and the luminosity correction polarization degree (Py) were calculated in the following procedure. Set the folder with polarizer to the spectrophotometer (UV-3150 manufactured by Shimadzu Corporation) in the transmittance axis direction (T 1 ) and the transmittance (T 2 ) in the absorption axis direction in the wavelength range of 380 nm to 780 nm. The apparatus was used to measure by the double beam method. In the folder, a mesh was provided to cut the light amount by 50% on the reference side. The transmittance and polarization degree at each wavelength are calculated using the following (Equation 1) and (Equation 2), and the visibility is corrected with a 2-degree field of view (C light source) of JIS Z 8701, and the visibility correction transmittance (Ty) and the visibility correction polarization degree (Py) were calculated.
Degree of polarization [%] = {(T 1 −T 2 ) / (T 1 + T 2 )} × 100 (Equation 1)
Single transmittance [%] = (T 1 + T 2 ) / 2 (equation 2)
 〔実施例1〕
 (配向層形成用組成物の製造)
 下記成分を混合し、得られた混合物を80℃で1時間攪拌することにより、光配向膜形成用組成物である配向層形成用組成物を得た。
・下記に示す光反応性基を有するポリマー 2部
Figure JPOXMLDOC01-appb-C000016

・溶剤:o-キシレン 98部
Example 1
(Production of Composition for Forming Alignment Layer)
The following components were mixed, and the obtained mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming an alignment layer which is a composition for forming a photo alignment film.
・ 2 parts of polymer having photoreactive group shown below
Figure JPOXMLDOC01-appb-C000016

Solvent: 98 parts of o-xylene
 (偏光層形成用組成物の製造)
 下記の成分を混合し、80℃で1時間攪拌することで、偏光層形成用組成物を得た。二色性色素には、特開2013-101328号公報の実施例に記載のアゾ系色素を用いた。
・式(1-6)で表される重合性液晶化合物 75部
Figure JPOXMLDOC01-appb-C000017

・式(1-7)で表される重合性液晶化合物 25部
Figure JPOXMLDOC01-appb-C000018

・下記に示す二色性色素(1) 2.8部
Figure JPOXMLDOC01-appb-C000019

・下記に示す二色性色素(2) 2.8部
Figure JPOXMLDOC01-appb-C000020

・下記に示す二色性色素(3) 2.8部
Figure JPOXMLDOC01-appb-C000021

・下記に示す重合開始剤 6部
 2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369;チバスペシャルティケミカルズ社製)
・下記に示すレベリング剤 1.2部
 ポリアクリレート化合物(BYK-361N;BYK-Chemie社製)
・下記に示す溶剤 250部
 シクロペンタノン
(Production of composition for forming polarizing layer)
The following components were mixed and stirred at 80 ° C. for 1 hour to obtain a composition for forming a polarizing layer. As the dichroic dye, the azo dye described in the example of JP-A-2013-101328 was used.
-75 parts of a polymerizable liquid crystal compound represented by the formula (1-6)
Figure JPOXMLDOC01-appb-C000017

-25 parts of a polymerizable liquid crystal compound represented by the formula (1-7)
Figure JPOXMLDOC01-appb-C000018

-2.8 parts of the dichroic dye (1) shown below
Figure JPOXMLDOC01-appb-C000019

-2.8 parts of the dichroic dye (2) shown below
Figure JPOXMLDOC01-appb-C000020

-2.8 parts of the dichroic dye (3) shown below
Figure JPOXMLDOC01-appb-C000021

· Polymerization initiator shown below 6 parts 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (IRGACURE 369; manufactured by Ciba Specialty Chemicals)
-Leveling agent shown below 1.2 parts Polyacrylate compound (BYK-361N; manufactured by BYK-Chemie)
・ 250 parts of solvents shown below Cyclopentanone
 (偏光フィルムの製造)
 基材層としてのトリアセチルセルロースフィルム(コニカミノルタ社製KC4UY-TAC、厚さ40μm)を20×20mmに切り出し、その表面にコロナ処理(AGF-B10、春日電機株式会社製)を施した。コロナ処理が施されたフィルム表面に、バーコーターを用いて配向層形成用組成物を塗布した後、120℃に設定した乾燥オーブンで1分間乾燥し、配向層用塗工層を得た。配向層用塗工層上に偏光UV照射装置(SPOT CURE SP-7;ウシオ電機株式会社製)を用いて、偏光UVを、50mJ/cm2(313nm基準)の積算光量で照射し配向層を形成した。得られた配向層上に、バーコーターを用いて偏光層形成用組成物を塗布した後、110℃に設定した乾燥オーブンで1分間乾燥した。その後高圧水銀ランプ(ユニキュアVB-15201BY-A、ウシオ電機株式会社製)を用いて、紫外線を照射(窒素雰囲気下、波長:365nm、波長365nmにおける積算光量:1000mJ/cm)することにより、液晶化合物及び二色性色素が配向した偏光層を得た。偏光層上に、穴あけパンチにて穴をあけて開口部を形成した保護層(藤森工業株式会社製のAY-638。厚みが38μmのポリエステルフィルム上に厚みが15μmの粘着剤層が設けられている。)を貼合した後、ジフェニル4-チオフェノキシフェニルスルホニウムヘキサフルオロホスフェート(サンアプロ株式会社製、CPI-100P)のプロピレンカーボネートの50wt%溶液に120℃で60秒浸漬させた。その後、保護層を剥離して偏光フィルムを得た。
(Manufacture of polarizing film)
A triacetyl cellulose film (KC4UY-TAC manufactured by Konica Minolta, thickness 40 μm) as a base material layer was cut out to 20 × 20 mm, and the surface was subjected to corona treatment (AGF-B10, manufactured by Kasuga Denki Co., Ltd.). After applying the composition for alignment layer formation using the bar coater on the film surface to which the corona treatment was given, it dried for 1 minute with the drying oven set to 120 degreeC, and obtained the coating layer for alignment layers. The alignment layer is irradiated with polarized UV light at an integrated light quantity of 50 mJ / cm 2 (based on 313 nm) using a polarized UV irradiation device (SPOT CURE SP-7; manufactured by Ushio Inc.) on the coating layer for alignment layer. It formed. After applying the composition for polarizing layer formation using the bar coater on the obtained orientation layer, it dried for 1 minute with the drying oven set to 110 degreeC. After that, the liquid crystal is irradiated with ultraviolet light (in nitrogen atmosphere, wavelength: 365 nm, integrated light amount at wavelength 365 nm: 1000 mJ / cm 2 ) using a high pressure mercury lamp (UNIQUEUR VB-15201BY-A, manufactured by USHIO INC.) The polarizing layer in which the compound and the dichroic dye were oriented was obtained. A protective layer (AY-638 manufactured by Fujimori Kogyo Co., Ltd., having an opening formed on the polarizing layer by a hole-piercing punch (AY-638 with a 15 μm thick adhesive layer provided on a 38 μm thick polyester film) ) Was immersed in a 50 wt% solution of propylene carbonate in diphenyl 4-thiophenoxyphenylsulfonium hexafluorophosphate (CPI-100P manufactured by San-Apro Co., Ltd.) at 120 ° C. for 60 seconds. Thereafter, the protective layer was peeled off to obtain a polarizing film.
 得られた偏光フィルムの外観を目視で観察したところ、偏光層の存在しない円形の領域(低偏光領域)を明確に確認でき、偏光領域と低偏光領域とを有する偏光フィルムが得られたことがわかった。また、上記した手順で評価用サンプルを作製し、その視感度補正透過率(Ty)及び視感度補正偏光度(Py)を算出した。その結果を表1に示す。 When the appearance of the obtained polarizing film was visually observed, it was possible to clearly confirm the circular area (low polarization area) where the polarizing layer was not present, and it was possible to obtain a polarizing film having a polarization area and a low polarization area. all right. Moreover, the sample for evaluation was produced in the above-mentioned procedure, and the visual sensitivity correction | amendment transmittance | permeability (Ty) and the visual sensitivity correction polarization degree (Py) were computed. The results are shown in Table 1.
 〔実施例2〕
 基材層としてトリアセチルセルロースフィルムを用いることに代えて、環状オレフィン系樹脂の一軸延伸フィルムである1/4波長板(ゼオノアフィルム、日本ゼオン株式会社、面内位相差値Ro:138nm)の表面にハードコート処理したフィルムを用い、遅相軸と偏光層の吸収軸が45°となるように積層させたこと以外は、実施例1と同様にして偏光フィルムを得た。また、上記した手順で評価用サンプルを作製し、その視感度補正透過率(Ty)及び視感度補正偏光度(Py)を算出した。その結果を表1に示す。
Example 2
Instead of using a triacetyl cellulose film as a base material layer, the surface of a quarter wave plate (Zeonor film, Nippon Zeon Co., in-plane retardation value Ro: 138 nm) which is a uniaxially stretched film of a cyclic olefin resin A polarizing film was obtained in the same manner as in Example 1 except that the hard-coated film was used and laminated so that the slow axis and the absorption axis of the polarizing layer were 45 °. Moreover, the sample for evaluation was produced in the above-mentioned procedure, and the visual sensitivity correction | amendment transmittance | permeability (Ty) and the visual sensitivity correction | amendment degree of polarization (Py) were computed. The results are shown in Table 1.
 〔実施例3〕
 穴あけパンチにて穴をあけて開口部を形成した保護層を貼合することに代えて、スポイトを用いて、偏光層上に部分的に、ジフェニル4-チオフェノキシフェニルスルホニウムヘキサフルオロホスフェート(サンアプロ株式会社製、CPI-100P)のプロピレンカーボネートの50wt%溶液を滴下した以外は、実施例1と同様に偏光フィルムを得た。また、上記した手順で評価用サンプルを作製し、その視感度補正透過率(Ty)及び視感度補正偏光度(Py)を算出した。その結果を表1に示す。
[Example 3]
Instead of bonding a protective layer in which an opening is formed by using a punching punch, a diphenyl 4-thiophenoxyphenylsulfonium hexafluorophosphate (San-Apro stock) is partially formed on a polarizing layer using a dropper instead of using a syringe. A polarizing film was obtained in the same manner as in Example 1 except that a 50 wt% solution of propylene carbonate in a company's CPI-100P) was dropped. Moreover, the sample for evaluation was produced in the above-mentioned procedure, and the visual sensitivity correction | amendment transmittance | permeability (Ty) and the visual sensitivity correction | amendment degree of polarization (Py) were computed. The results are shown in Table 1.
 〔比較例〕
 ジフェニル4-チオフェノキシフェニルスルホニウムヘキサフルオロホスフェート(サンアプロ株式会社製、CPI-100P)のプロピレンカーボネートの50wt%溶液のに代えて、メタノールを常温にて用いたこと以外は、実施例1と同様にして偏光フィルムを得た。得られた偏光フィルムの外観を目視で観察したところ、偏光層の存在しない領域を確認できず、偏光領域と低偏光領域とを有する偏光フィルムが得られていないことがわかった。また、上記した手順で評価用サンプルを作製し、その視感度補正透過率(Ty)及び視感度補正偏光度(Py)を算出した。その結果を表1に示す。
Comparative Example
Example 6 was carried out in the same manner as Example 1, except that methanol was used at normal temperature instead of a 50 wt% solution of propylene carbonate in diphenyl 4-thiophenoxyphenyl sulfonium hexafluorophosphate (CPI-100P manufactured by San-Apro Co., Ltd.). A polarizing film was obtained. When the appearance of the obtained polarizing film was visually observed, it was found that the region where the polarizing layer was not present could not be confirmed, and that a polarizing film having a polarizing region and a low polarizing region was not obtained. Moreover, the sample for evaluation was produced in the above-mentioned procedure, and the visual sensitivity correction | amendment transmittance | permeability (Ty) and the visual sensitivity correction | amendment degree of polarization (Py) were computed. The results are shown in Table 1.
 〔参考例〕
 ジフェニル4-チオフェノキシフェニルスルホニウムヘキサフルオロホスフェート(サンアプロ株式会社製、CPI-100P)のプロピレンカーボネートの50wt%溶液を用いないこと以外は、実施例1と同様にして偏光フィルムを得た。得られた偏光フィルムの外観を目視で観察したところ、偏光層の存在しない領域を確認することができず、偏光領域と低偏光領域とを有する偏光フィルムが得られていないことがわかった。また、上記した手順で評価用サンプルを作製し、その視感度補正透過率(Ty)及び視感度補正偏光度(Py)を算出した。その結果を表1に示す。
[Reference example]
A polarizing film was obtained in the same manner as Example 1, except that a 50 wt% solution of propylene carbonate in diphenyl 4-thiophenoxyphenylsulfonium hexafluorophosphate (CPI-100P, manufactured by San-Apro Co., Ltd.) was not used. When the appearance of the obtained polarizing film was visually observed, it was found that the region where the polarizing layer was not present could not be confirmed, and that a polarizing film having a polarizing region and a low polarizing region was not obtained. Moreover, the sample for evaluation was produced in the above-mentioned procedure, and the visual sensitivity correction | amendment transmittance | permeability (Ty) and the visual sensitivity correction | amendment degree of polarization (Py) were computed. The results are shown in Table 1.
 なお、表1中に示す各実施例、比較例及び参考例で測定した視感度補正透過率(Ty)及び視感度補正偏光度(Py)の値は、基材層の視感度補正透過率(Ty)及び視感度補正偏光度(Py)の値を含めた値であるが、基材層単体の視感度補正透過率(Ty)は92%であり、基材層の視感度補正偏光度(Py)の値は0%であるため、表1中に示す各実施例、比較例及び参考例において基材層を除いた場合、視感度補正透過率(Ty)の値は表1に示す値よりも大きくなり、視感度補正偏光度(Py)の値は表1に示す値と同じになると考えられる。 In addition, the values of the visibility correction transmittance (Ty) and the visibility correction polarization degree (Py) measured in each example, comparative example and reference example shown in Table 1 are the visibility correction transmittance of the base material layer ( Ty) and the visibility correction polarization degree (Py) value, the visibility correction transmittance (Ty) of the base material layer alone is 92%, and the visibility correction polarization degree of the base material layer (Ty) Since the value of Py) is 0%, when the base material layer is removed in each of the examples, comparative examples and reference examples shown in Table 1, the value of the visibility correction transmittance (Ty) is the value shown in Table 1 The value of the degree of visibility correction polarization (Py) is considered to be the same as the value shown in Table 1.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 1 偏光フィルム、5a~5c 円偏光板、11 液晶層、11a 第1領域、11b 第2領域、12 配向層、13 基材層、15 位相差層、21 偏光層、35 保護層、35a 被覆領域、35b 露出領域、61 配向層付き基材層、62 積層フィルム、63 保護層付き積層フィルム、64 脱色積層フィルム。 DESCRIPTION OF SYMBOLS 1 Polarizing film, 5a-5c circularly polarizing plate, 11 liquid crystal layer, 11a 1st area | region, 11b 2nd area | region, 12 orientation layer, 13 base material layer, 15 retardation layer, 21 polarization layer, 35 protective layer, 35a coating area | region , 35b exposed area, 61 base layer with alignment layer, 62 laminated film, 63 laminated film with protective layer, 64 decolorized laminated film.

Claims (20)

  1.  液晶層を有する偏光フィルムであって、
     前記液晶層は、液晶化合物を含むとともに、視感度補正偏光度の値によって区別される少なくとも2つの領域を有し、
     前記少なくとも2つの領域は、二色性色素の含有率が互いに異なっている、偏光フィルム。
    A polarizing film having a liquid crystal layer,
    The liquid crystal layer contains a liquid crystal compound and has at least two regions distinguished by the value of the degree of polarization correction for polarization,
    The polarizing film, wherein the at least two regions have different dichroic dye contents.
  2.  さらに、基材層と、
     前記基材層の少なくとも片面側に積層された配向層と、を有し、
     前記液晶層は、前記配向層上に積層されている、請求項1に記載の偏光フィルム。
    Furthermore, a base material layer,
    An orientation layer laminated on at least one side of the substrate layer,
    The polarizing film according to claim 1, wherein the liquid crystal layer is laminated on the alignment layer.
  3.  前記配向層は、光配向性ポリマーを含む、請求項2に記載の偏光フィルム。 The polarizing film according to claim 2, wherein the alignment layer comprises a photoalignable polymer.
  4.  前記液晶化合物は、重合性液晶化合物を含む、請求項1~3のいずれか1項に記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 3, wherein the liquid crystal compound comprises a polymerizable liquid crystal compound.
  5.  前記液晶層は、二色性色素を含有する第1領域と、二色性色素の含有率が前記第1領域よりも少ない第2領域とを有し、
     前記第1領域の視感度補正偏光度は、90%以上であり、
     前記第2領域の視感度補正偏光度は、10%以下である、請求項1~4のいずれか1項に記載の偏光フィルム。
    The liquid crystal layer has a first region containing a dichroic dye, and a second region containing a smaller amount of dichroic dye than the first region.
    The visibility correction polarization degree of the first area is 90% or more.
    The polarizing film according to any one of claims 1 to 4, wherein the visibility correction polarization degree of the second region is 10% or less.
  6.  前記液晶層は、二色性色素を含有する第1領域と、二色性色素の含有率が前記第1領域よりも少ない第2領域とを有し、
     前記第1領域の視感度補正単体透過率は、35%以上であり、
     前記第2領域の視感度補正単体透過率は、80%以上である、請求項1~5のいずれか1項に記載の偏光フィルム。
    The liquid crystal layer has a first region containing a dichroic dye, and a second region containing a smaller amount of dichroic dye than the first region.
    The visibility correction single transmittance of the first region is 35% or more,
    The polarizing film according to any one of claims 1 to 5, wherein the transmittance of the second region in the luminosity correction alone is 80% or more.
  7.  前記第2領域は、平面視形状が円形、楕円形、長円形又は多角形であり、
     前記第2領域が円形である場合の直径は、5cm以下であり、
     前記第2領域が楕円形又は長円形である場合の長径は、5cm以下であり、
     前記第2領域が多角形である場合、前記多角形が内接されるように描いた仮想円の直径は、5cm以下である、請求項5又は6に記載の偏光フィルム。
    The second region is circular, elliptical, oval or polygonal in plan view shape,
    When the second region is circular, the diameter is 5 cm or less.
    When the second region is elliptical or oblong, the major axis is 5 cm or less.
    The polarizing film according to claim 5 or 6, wherein when the second region is a polygon, a diameter of an imaginary circle drawn so that the polygon is inscribed is 5 cm or less.
  8.  前記第1領域は、X線回折測定においてブラッグピークを示す、請求項5~7のいずれか1項に記載の偏光フィルム。 The polarizing film according to any one of claims 5 to 7, wherein the first region exhibits a Bragg peak in X-ray diffraction measurement.
  9.  さらに、基材層を有し、
     前記基材層は、1/4波長板機能を有する、請求項1~8のいずれか1項に記載の偏光フィルム。
    Furthermore, it has a substrate layer,
    The polarizing film according to any one of claims 1 to 8, wherein the base material layer has a quarter wave plate function.
  10.  前記偏光フィルムの長さは10m以上である、請求項1~9のいずれか1項に記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 9, wherein the length of the polarizing film is 10 m or more.
  11.  請求項1~8及び10のいずれか1項に記載の偏光フィルムと、1/4波長板機能を有する位相差層とを積層してなる、円偏光板。 A circularly polarizing plate formed by laminating the polarizing film according to any one of claims 1 to 8 and 10 and a retardation layer having a 1⁄4 wavelength plate function.
  12.  基材層の少なくとも片面側に、液晶化合物及び二色性色素を含む偏光層を有する積層フィルムを準備する準備工程と、
     前記積層フィルムの前記偏光層の一部の領域に、前記偏光層における二色性色素の含有率を低減し得る液状物を接触させることにより、前記偏光層の一部の領域において二色性色素の含有率を低下させる液状物接触工程と、を有する、偏光フィルムの製造方法。
    Preparing a laminated film having a polarizing layer containing a liquid crystal compound and a dichroic dye on at least one side of the substrate layer;
    A dichroic dye in a partial region of the polarizing layer is brought into contact with a partial region of the polarizing layer of the laminated film by bringing a liquid capable of reducing the content of the dichroic dye in the polarizing layer into contact. And D. a liquid contacting step of reducing the content of.
  13.  前記液状物接触工程は、
      前記準備工程で準備した前記積層フィルムの前記偏光層上に、前記偏光層を被覆するための被覆領域と前記偏光層を露出させるための露出領域とを有する保護層を積層することにより、保護層付き積層フィルムを得る保護層積層工程と、
      前記保護層付き積層フィルムを、前記偏光層における二色性色素の含有率を低減し得る液状物に接触させることにより、前記偏光層の一部の領域において二色性色素の含有率を低下させた脱色積層フィルムを得る脱色工程と、
      前記脱色積層フィルムから前記保護層を剥離する剥離工程と、を有する、請求項12に記載の偏光フィルムの製造方法。
    The liquid contacting step is
    A protective layer is formed on the polarizing layer of the laminated film prepared in the preparation step, by laminating a protective layer having a coated area for covering the polarizing layer and an exposed area for exposing the polarizing layer. A protective layer laminating step of obtaining a laminated film
    By bringing the laminated film with the protective layer into contact with a liquid capable of reducing the content of the dichroic dye in the polarizing layer, the content of the dichroic dye is reduced in a partial region of the polarizing layer A decoloring process to obtain a decolorized laminated film,
    The manufacturing method of the polarizing film of Claim 12 which has the peeling process which peels the said protective layer from the said decolorization laminated | multilayer film.
  14.  前記保護層における前記露出領域は、平面視形状が円形、楕円形、長円形又は多角形であり、
     前記露出領域が円形である場合の直径は、5cm以下であり、
     前記露出領域が楕円形又は長円形である場合の長径は、5cm以下であり、
     前記露出領域が多角形である場合、前記多角形が内接されるように描いた仮想円の直径は、5cm以下である、請求項13に記載の偏光フィルムの製造方法。
    The exposed area in the protective layer is circular, elliptical, oval or polygonal in plan view shape,
    When the exposed area is circular, the diameter is 5 cm or less.
    When the exposed area is elliptical or oval, the major axis is 5 cm or less.
    The method for producing a polarizing film according to claim 13, wherein when the exposed area is a polygon, a diameter of a virtual circle drawn so that the polygon is inscribed is 5 cm or less.
  15.  前記準備工程は、
     前記基材層の片面側に配向層形成用組成物を塗工して配向層を形成する配向層形成工程と、
     前記基材層の前記配向層が形成された側の面に、前記液晶化合物及び前記二色性色素を含む偏光層形成用組成物を塗工して前記偏光層を形成する偏光層形成工程と、を有する、請求項12~14のいずれか1項に記載の偏光フィルムの製造方法。
    The preparation process is
    An alignment layer forming step of coating the composition for forming an alignment layer on one side of the base material layer to form an alignment layer;
    A polarizing layer forming step of applying the composition for forming a polarizing layer containing the liquid crystal compound and the dichroic dye on the surface of the base layer on which the alignment layer is formed, thereby forming the polarizing layer; The method for producing a polarizing film according to any one of claims 12 to 14, wherein
  16.  前記配向層形成用組成物は、光配向性ポリマーを含み、
     前記配向層形成工程は、前記配向層形成用組成物を塗工して形成された配向層用塗工層に偏光照射を行って前記配向層を形成する、請求項15に記載の偏光フィルムの製造方法。
    The composition for forming an alignment layer contains a photoalignable polymer,
    The polarizing film according to claim 15, wherein the alignment layer forming step forms the alignment layer by irradiating polarized light on the coating layer for an alignment layer formed by applying the composition for forming an alignment layer. Production method.
  17.  前記液晶化合物は、重合性液晶化合物であり、
     前記偏光層形成工程は、前記偏光層形成用組成物を塗工して形成された偏光層用塗工層に活性エネルギー線照射を行って前記偏光層を形成する、請求項15又は16に記載の偏光フィルムの製造方法。
    The liquid crystal compound is a polymerizable liquid crystal compound,
    17. The polarizing layer-forming step according to claim 15 or 16, wherein the polarizing layer is formed by applying an active energy ray to the coating layer for a polarizing layer formed by applying the composition for forming a polarizing layer. Of producing a polarizing film.
  18.  前記偏光フィルムは、長さが10m以上である、請求項12~17のいずれか1項に記載の偏光フィルムの製造方法。 The method for producing a polarizing film according to any one of claims 12 to 17, wherein the polarizing film has a length of 10 m or more.
  19.  請求項12~18のいずれか1項に記載の偏光フィルムの製造方法で製造された偏光フィルムと、1/4波長板機能を有する位相差層とを積層する位相差層積層工程を有する、円偏光板の製造方法。 A circle having a retardation layer laminating step of laminating a polarizing film produced by the method for producing a polarizing film according to any one of claims 12 to 18 and a retardation layer having a quarter wave plate function. The manufacturing method of a polarizing plate.
  20.  前記偏光フィルムは、長さが10m以上の長尺偏光フィルムであり、
     前記位相差層は、長さが10m以上の長尺位相差層であり、
     前記位相差層積層工程は、前記長尺偏光フィルムと前記長尺位相差層とを積層することにより長尺積層体を形成し、
     さらに、前記長尺積層体を枚葉に裁断する裁断工程を有する、請求項19に記載の円偏光板の製造方法。
    The polarizing film is a long polarizing film having a length of 10 m or more,
    The retardation layer is a long retardation layer having a length of 10 m or more,
    In the retardation layer laminating step, an elongated laminate is formed by laminating the elongated polarizing film and the elongated retardation layer.
    Furthermore, the manufacturing method of the circularly-polarizing plate of Claim 19 which has a cutting process which cut | judges the said elongate laminated body to a sheet.
PCT/JP2018/038525 2017-10-27 2018-10-16 Polarizing film and method for manufacturing same WO2019082745A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207012632A KR20200080245A (en) 2017-10-27 2018-10-16 Polarizing film and its manufacturing method
JP2019551034A JPWO2019082745A1 (en) 2017-10-27 2018-10-16 Polarizing film and its manufacturing method
CN201880069704.0A CN111279231A (en) 2017-10-27 2018-10-16 Polarizing film and method for producing same
JP2023056041A JP2023080141A (en) 2017-10-27 2023-03-30 Polarizing film and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017208092 2017-10-27
JP2017-208092 2017-10-27
JP2017-253953 2017-12-28
JP2017253953 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019082745A1 true WO2019082745A1 (en) 2019-05-02

Family

ID=66246429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038525 WO2019082745A1 (en) 2017-10-27 2018-10-16 Polarizing film and method for manufacturing same

Country Status (5)

Country Link
JP (2) JPWO2019082745A1 (en)
KR (1) KR20200080245A (en)
CN (1) CN111279231A (en)
TW (1) TW201923393A (en)
WO (1) WO2019082745A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045103A1 (en) * 2020-08-31 2022-03-03 住友化学株式会社 Two-part composition for formation of polarizing film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111897041A (en) * 2020-07-29 2020-11-06 明基材料有限公司 Polarizing plate and electronic device comprising same
CN111999791A (en) * 2020-08-14 2020-11-27 武汉华星光电半导体显示技术有限公司 Polaroid, display module and display device
KR20220135120A (en) * 2021-03-29 2022-10-06 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212823A (en) * 2014-04-18 2015-11-26 住友化学株式会社 Patterned polarizing film
JP2016151603A (en) * 2015-02-16 2016-08-22 日東電工株式会社 Polarizer, polarizing plate, and image display apparatus
JP2017500606A (en) * 2014-03-26 2017-01-05 エルジー・ケム・リミテッド Polarizing member including local decoloring region, polarizing member roll, and method for producing single-wafer type polarizing member

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504498B2 (en) * 2000-03-10 2010-07-14 大日本印刷株式会社 Security product, article with security information, authentication method, and security product manufacturing method
JP4394431B2 (en) * 2003-12-11 2010-01-06 住友化学株式会社 Manufacturing method of polarizing film and manufacturing method of polarizing plate
JP3999206B2 (en) * 2004-02-05 2007-10-31 シャープ株式会社 Viewing angle control element and video display device using the same
KR100881982B1 (en) * 2006-09-08 2009-02-05 주식회사 엘지화학 Dichroic Dye for Polarization Film, Composition Comprising the Same for Polarization Film, Method for Forming Polarization Plate and Polarization Plate Prepared Thereby
JP5451516B2 (en) * 2010-05-07 2014-03-26 株式会社ジャパンディスプレイ Liquid crystal panel and liquid crystal display device
CN101921525A (en) * 2010-08-30 2010-12-22 深圳市盛波光电科技有限公司 Colored pressure-sensitive adhesive for polarizer
KR101941440B1 (en) * 2011-10-05 2019-01-23 엘지디스플레이 주식회사 Cotalable polarizer and method of fabricating thereof
JP6001874B2 (en) * 2012-02-17 2016-10-05 日東電工株式会社 OPTICAL LAMINATE AND METHOD FOR PRODUCING OPTICAL LAMINATE
JP6299367B2 (en) 2014-04-18 2018-03-28 住友化学株式会社 Pattern polarizing film manufacturing method
JP6412476B2 (en) * 2015-09-28 2018-10-24 日東電工株式会社 Polarizer, polarizing plate and image display device
JP6422415B2 (en) * 2015-09-28 2018-11-14 日東電工株式会社 Polarizer, polarizing plate and image display device
JP6351559B2 (en) * 2015-09-28 2018-07-04 日東電工株式会社 Polarizer, polarizing plate and image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500606A (en) * 2014-03-26 2017-01-05 エルジー・ケム・リミテッド Polarizing member including local decoloring region, polarizing member roll, and method for producing single-wafer type polarizing member
JP2015212823A (en) * 2014-04-18 2015-11-26 住友化学株式会社 Patterned polarizing film
JP2016151603A (en) * 2015-02-16 2016-08-22 日東電工株式会社 Polarizer, polarizing plate, and image display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045103A1 (en) * 2020-08-31 2022-03-03 住友化学株式会社 Two-part composition for formation of polarizing film

Also Published As

Publication number Publication date
KR20200080245A (en) 2020-07-06
JPWO2019082745A1 (en) 2020-11-19
CN111279231A (en) 2020-06-12
JP2023080141A (en) 2023-06-08
TW201923393A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
JP7166049B2 (en) Elliptical polarizer
JP2023080141A (en) Polarizing film and manufacturing method therefor
JP7281953B2 (en) laminate
JP7198683B2 (en) laminate
JP2024036561A (en) Polarizing film and its manufacturing method
JP7287896B2 (en) Polarizing film manufacturing method and polarizing film
JP7272957B2 (en) Polarizing film manufacturing method and polarizing film
WO2020121907A1 (en) Polarizing film and method for manufacturing same
KR20230062548A (en) Optical laminate and elliptically polarizing plate including the same
JP2021182144A (en) Composite polarizing plate and liquid crystal display device
WO2020022009A1 (en) Laminate
WO2020022010A1 (en) Laminated body
WO2021256199A1 (en) Polarizing film, polarizing plate, optical layered product, elliptical polarizing plate, organic el display device, and flexible image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870592

Country of ref document: EP

Kind code of ref document: A1