JP2019035952A - Phase difference plate with optical compensation function for flexible display - Google Patents

Phase difference plate with optical compensation function for flexible display Download PDF

Info

Publication number
JP2019035952A
JP2019035952A JP2018144820A JP2018144820A JP2019035952A JP 2019035952 A JP2019035952 A JP 2019035952A JP 2018144820 A JP2018144820 A JP 2018144820A JP 2018144820 A JP2018144820 A JP 2018144820A JP 2019035952 A JP2019035952 A JP 2019035952A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
crystal cured
cured film
vertical alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018144820A
Other languages
Japanese (ja)
Inventor
辰昌 葛西
Tatsumasa Kasai
辰昌 葛西
伸行 幡中
Nobuyuki Hatanaka
伸行 幡中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JP2019035952A publication Critical patent/JP2019035952A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Abstract

To provide a method for manufacturing a phase difference plate with an optical compensation function for flexible that prevents the occurrence of troubles, such as wrinkles and cracks even when bent, and does not reflect external light in a colored state even when folded.SOLUTION: A manufacturing method of the present invention includes: forming a horizontal alignment film through application, drying, and orientation processing steps, subsequently forming a horizontal alignment liquid crystal cured film through application, drying, and ultraviolet irradiation steps, forming a vertical alignment film through application and drying steps, and forming a vertical alignment liquid crystal cured film through application, drying, and ultraviolet irradiation steps. A phase difference plate with an optical compensation function for a flexible display is manufactured by the method of forming the horizontal alignment film, horizontal alignment liquid crystal cured film, vertical alignment film, and vertical alignment liquid crystal cured film in this order.SELECTED DRAWING: None

Description

本発明は、フレキシブルディスプレイ用光学補償機能付き位相差板に関する。 The present invention relates to a retardation plate with an optical compensation function for a flexible display.

有機EL画像表示装置等のフラットパネルディスプレイは通常、平面状の画像表示面を有する。フラットパネルディスプレイの画像表示面は、画像を表示するときも、表示しないときも、そのまま平面状の状態であった。 A flat panel display such as an organic EL image display device usually has a flat image display surface. The image display surface of the flat panel display is in a flat state as it is, whether or not an image is displayed.

このようなフラットパネルディスプレイには、位相差板がしばしば用いられている。例えば有機EL画像表示装置では、画像表示装置を構成する電極での光反射を防止するために、位相差板を偏光板と組合せた円偏光板が用いられている。 A retardation plate is often used for such a flat panel display. For example, in an organic EL image display device, a circularly polarizing plate in which a retardation plate is combined with a polarizing plate is used in order to prevent light reflection at an electrode constituting the image display device.

このような位相差板には、逆波長分散性を示す位相差板が、可視光の広い波長範囲で同等の位相差性能を発揮する点で好適である。逆波長分散性を示す位相差板として、逆波長分散性を示す重合性液晶化合物を水平方向に配向させた状態で重合硬化させた水平配向液晶硬化膜からなる位相差板が知られている。 For such a phase difference plate, a phase difference plate exhibiting reverse wavelength dispersion is preferable in that it exhibits an equivalent phase difference performance in a wide wavelength range of visible light. As a retardation plate exhibiting reverse wavelength dispersion, a retardation plate made of a horizontally aligned liquid crystal cured film obtained by polymerizing and curing a polymerizable liquid crystal compound exhibiting reverse wavelength dispersion in a horizontal direction is known.

また、斜め方向から見た場合にも、正面方向から見たときと同様の光学性能を発揮させるように補償する機能を有する光学補償機能付き位相差板も求められており、このような光学補償機能付き位相差板として、水平配向液晶硬化膜と共に、垂直配向させた状態で重合性液晶化合物を重合硬化させた垂直配向液晶硬化膜をさらに備えたものが、特許文献1〔特開2015-163935号公報〕に提案されている。同文献では、水平配向液晶硬化膜と垂直配向液晶硬化膜とは、配向膜のみを介して、または保護層等を介して積層する旨も開示している。また、同文献には、同文献記載の光学補償機能付き位相差板をフラットパネルディスプレイに使用しうることのみを開示している。 There is also a need for a retardation plate with an optical compensation function that has a function of compensating for the same optical performance as seen from the front direction even when viewed from an oblique direction. As a retardation film with a function, a liquid crystal cured film obtained by polymerizing and curing a polymerizable liquid crystal compound in a vertically aligned state together with a horizontally aligned liquid crystal cured film is further disclosed in JP-A-2015-163935. No.] is proposed. This document also discloses that the horizontally aligned liquid crystal cured film and the vertically aligned liquid crystal cured film are laminated only through the alignment film or through a protective layer or the like. Further, this document only discloses that the retardation plate with an optical compensation function described in the document can be used for a flat panel display.

特開2015−163935号公報JP2015-163935A

一方、ディスプレイとして折り畳み可能な、いわゆるフレキシブルディスプレイも開発されている。フレキシブルディスプレイでは、光学補償機能付き位相差板も、ディスプレイと共に折り畳まれることとなる。 On the other hand, so-called flexible displays that can be folded as displays have also been developed. In the flexible display, the retardation plate with an optical compensation function is also folded together with the display.

しかし、折り畳んだときにシワやクラック等の不具合が生ずると、フレキシブルディスプレイを再び広げて画像を表示した際に、シワやクラック等の不具合の部分が欠陥となって、表示画像を損なってしまう。また、画像を表示したまま折り畳む際、折り畳み部分は実質的に仰角(フィルム平面と、観察者が画面を見る方向の成す角)が非常に小さくなるため、光学性能が十分に補償されず、着色した状態で外光を反射してしまうことも問題となる。 However, if a problem such as a wrinkle or a crack occurs when folded, when the flexible display is expanded again and an image is displayed, the defective part such as a wrinkle or a crack becomes a defect and the display image is damaged. In addition, when the image is folded with the image displayed, the folded angle is substantially reduced because the elevation angle (the angle formed by the film plane and the direction in which the viewer looks at the screen) becomes very small. It also becomes a problem that external light is reflected in this state.

したがって、本発明の目的は、折り曲げてもシワやクラック等の不具合を生ずることがなく、折り畳んだ際にも外光を着色した状態で反射することがないフレキシブル用の光学補償機能付き位相差板を開発することにある。 Accordingly, an object of the present invention is to provide a flexible phase difference plate with an optical compensation function that does not cause defects such as wrinkles and cracks even when folded, and does not reflect outside light in a colored state when folded. Is to develop.

本発明者は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。
すなわち、本発明には、以下のものが含まれる。
As a result of intensive studies in order to solve the above problems, the present inventors have completed the present invention.
That is, the present invention includes the following.

〔1〕塗布、乾燥、配向処理工程を経て水平配向膜を形成し、
塗布、乾燥、紫外線照射工程を経て水平配向液晶硬化膜を形成し、
さらに塗布・乾燥工程を経て垂直配向膜を形成し、
塗布、乾燥、紫外線照射工程を経て垂直配向液晶硬化膜形成することにより、
水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成する光学補償機能付き位相差板の製造方法。
[1] A horizontal alignment film is formed through coating, drying, and alignment treatment steps.
Form a horizontal alignment liquid crystal cured film through coating, drying and ultraviolet irradiation processes,
Furthermore, a vertical alignment film is formed through a coating and drying process,
By forming a vertically aligned liquid crystal cured film through coating, drying, and ultraviolet irradiation processes,
A method of manufacturing a retardation film with an optical compensation function, wherein a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film are formed in this order.

〔2〕膜厚が1.0μm以下の水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成する上記〔1〕に記載の光学補償機能付き位相差板の製造方法。 [2] The retardation film with an optical compensation function according to [1], wherein a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film having a film thickness of 1.0 μm or less are formed in this order. Production method.

〔3〕光配向膜からなる水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成する上記〔1〕〜〔2〕のいずれかに記載の光学補償機能付き位相差板の製造方法。 [3] With an optical compensation function according to any one of the above [1] to [2], wherein a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film made of a photo alignment film are formed in this order. A method of manufacturing a retardation film.

〔4〕シンナモイル基を含む光配向膜からなる水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成する上記〔1〕〜〔3〕のいずれかに記載の光学補償機能付き位相差板の製造方法。 [4] The horizontal alignment film comprising a photo-alignment film containing a cinnamoyl group, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film are formed in this order. A method of manufacturing a retardation film with an optical compensation function.

〔5〕水平配向膜、水平配向液晶硬化膜、膜厚1.0μm以下の垂直配向膜、垂直配向液晶硬化膜をこの順に形成する上記〔1〕〜〔4〕のいずれかに記載の光学補償機能付き位相差板の製造方法。 [5] The optical compensation according to any one of [1] to [4], wherein a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film having a thickness of 1.0 μm or less, and a vertical alignment liquid crystal cured film are formed in this order. A method for producing a functional retardation plate.

〔6〕水平配向膜、水平配向液晶硬化膜、Si元素を含む垂直配向膜、垂直配向液晶硬化膜をこの順に形成する上記〔1〕〜〔5〕のいずれかに記載の光学補償機能付き位相差板の製造方法。 [6] A position with an optical compensation function according to any one of [1] to [5], wherein a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film containing Si element, and a vertical alignment liquid crystal cured film are formed in this order. A method for producing a phase difference plate.

〔7〕水平配向膜、水平配向液晶硬化膜、Si/Cの元素が0.03〜1.00である垂直配向膜、垂直配向液晶硬化膜をこの順に形成する上記〔1〕〜〔6〕のいずれかに記載の光学補償機能付き位相差板の製造方法。 [7] The above [1] to [6] in which a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film having a Si / C element of 0.03 to 1.00, and a vertical alignment liquid crystal cured film are formed in this order. A method for producing a retardation plate with an optical compensation function according to any one of the above.

〔8〕水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成して光学補償機能付き位相差板を製造する方法であって、水平配向液晶硬化膜が以下の関係(1)を満たす上記〔1〕〜〔7〕のいずれかに記載の光学補償機能付き位相差板の製造方法。
ReA(450)/ReA(550)<1.00 ・・・(1)
式中、ReA(λ)は水平配向液晶硬化膜の波長λnmにおける面内位相差値を示す。面内位相差値ReA(λ)の定義は以下のとおりである。
ReA(λ)=(nxA(λ)−nyA(λ))×dA
ただし、nxA(λ)は水平配向液晶硬化膜のフィルム面内における主屈折率であって、波長λ(nm)に置ける主屈折率を、nyA(λ)はnxA(λ)と同一面内で直交する方向の屈折率であって波長λ(nm)における屈折率を、dAは水平配向液晶硬化の膜厚をそれぞれ示す。
[8] A method for producing a phase difference plate with an optical compensation function by forming a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film in this order. The method for producing a retardation plate with an optical compensation function according to any one of [1] to [7], wherein the relationship (1) is satisfied.
ReA (450) / ReA (550) <1.00 (1)
In the formula, ReA (λ) represents an in-plane retardation value at a wavelength λ nm of the horizontally aligned liquid crystal cured film. The definition of the in-plane retardation value ReA (λ) is as follows.
ReA (λ) = (nxA (λ) −nyA (λ)) × dA
However, nxA (λ) is the main refractive index in the film plane of the horizontally aligned liquid crystal cured film, and nyA (λ) is in the same plane as nxA (λ). The refractive index in the orthogonal direction and the refractive index at the wavelength λ (nm), dA indicates the film thickness of horizontal alignment liquid crystal curing.

〔9〕水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成して光学補償機能付き位相差板を製造する方法であって、垂直配向液晶硬化膜が以下の関係(2)を満たす上記〔1〕〜〔8〕のいずれかに記載の光学補償機能付き位相差板の製造方法。
RthC(450)/RthC(550)<1.00 ・・・(2)
式中、RthC(λ)は垂直配向液晶硬化膜の波長λnmにおける厚み方向の位相差値を示す。位相差値RthC(λ)の定義は以下のとおりである。
RthC(λ)=((nxC(λ)+nyC(λ))/2−nzC(λ))×dC
ただし、nxC(λ)は垂直配向液晶硬化膜のフィルム面内における主屈折率であって、波長λ(nm)における主屈折率を、
nyC(λ)はnxC(λ)と同一面内で直交する方向の屈折率であって波長λ(nm)における屈折率を、
nzC(λ)は垂直配向液晶硬化膜の厚み方向の屈折率であって波長λ(nm)における屈折率を、
dCは垂直配向液晶硬化の膜厚をそれぞれ示す。
尚、nxC(λ)=nyC(λ)の場合には、nxC(λ)はフィルム面内で任意の方向の屈折率とする事が出来る。
[9] A method for producing a phase difference plate with an optical compensation function by forming a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film in this order. The method for producing a retardation plate with an optical compensation function according to any one of [1] to [8], wherein the relationship (2) is satisfied.
RthC (450) / RthC (550) <1.00 (2)
In the formula, RthC (λ) represents a thickness direction retardation value of the vertically aligned liquid crystal cured film at a wavelength of λ nm. The definition of the phase difference value RthC (λ) is as follows.
RthC (λ) = ((nxC (λ) + nyC (λ)) / 2−nzC (λ)) × dC
However, nxC (λ) is the main refractive index in the film plane of the vertically aligned liquid crystal cured film, and the main refractive index at the wavelength λ (nm),
nyC (λ) is the refractive index in the direction orthogonal to nxC (λ) in the same plane, and the refractive index at the wavelength λ (nm),
nzC (λ) is the refractive index in the thickness direction of the vertically aligned liquid crystal cured film, and the refractive index at the wavelength λ (nm),
dC represents the film thickness of vertical alignment liquid crystal curing.
When nxC (λ) = nyC (λ), nxC (λ) can be a refractive index in an arbitrary direction within the film plane.

また、本発明は以下のものも含まれる。
〔10〕塗布・乾燥工程を経て垂直配向膜を形成し、
塗布、乾燥、紫外線照射工程を経て垂直配向液晶硬化膜形成し、
更に塗布、乾燥、配向処理工程を経て水平配向膜を形成し、
塗布、乾燥、紫外線照射工程を経て水平配向液晶硬化膜を形成することにより、
垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成する光学補償機能付き位相差板の製造方法
The present invention also includes the following.
[10] A vertical alignment film is formed through a coating / drying process,
Forming a vertically aligned liquid crystal cured film through coating, drying, and UV irradiation processes,
Furthermore, a horizontal alignment film is formed through coating, drying and alignment treatment steps,
By forming a horizontal alignment liquid crystal cured film through the application, drying, ultraviolet irradiation process,
Method of manufacturing retardation film with optical compensation function, forming vertical alignment film, vertical alignment liquid crystal cured film, horizontal alignment film, horizontal alignment liquid crystal cured film in this order

〔11〕垂直配向膜、垂直配向液晶硬化膜、膜厚が1.0μm以下の水平配向膜、水平配向液晶硬化膜をこの順に形成する上記〔10〕に記載の光学補償機能付き位相差板の製造方法。 [11] The retardation film with an optical compensation function according to [10], wherein a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film having a film thickness of 1.0 μm or less, and a horizontal alignment liquid crystal cured film are formed in this order. Production method.

〔12〕垂直配向膜、垂直配向液晶硬化膜、光配向膜からなる水平配向膜、水平配向液晶硬化膜、をこの順に形成する上記〔10〕または〔11〕に記載の光学補償機能付き位相差板の製造方法。 [12] A phase difference with an optical compensation function according to [10] or [11], wherein a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film composed of a photo alignment film, and a horizontal alignment liquid crystal cured film are formed in this order. A manufacturing method of a board.

〔13〕垂直配向膜、垂直配向液晶硬化膜、シンナモイル基を含む光配向膜からなる水平配向膜、水平配向液晶硬化膜をこの順に形成する上記〔10〕〜〔12〕のいずれかに記載の光学補償機能付き位相差板の製造方法。 [13] The vertical alignment film, the vertical alignment liquid crystal cured film, the horizontal alignment film composed of a photo alignment film containing a cinnamoyl group, and the horizontal alignment liquid crystal cured film are formed in this order, according to any one of the above [10] to [12] A method of manufacturing a retardation film with an optical compensation function.

〔14〕膜厚1.0μm以下の垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成する上記〔10〕〜〔13〕のいずれかに記載の光学補償機能付き位相差板の製造方法。 [14] The optical compensation according to any one of [10] to [13], wherein a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film, and a horizontal alignment liquid crystal cured film having a thickness of 1.0 μm or less are formed in this order. A method for producing a functional retardation plate.

〔15〕Si元素を含む垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成する上記〔10〕〜〔14〕のいずれかに記載の光学補償機能付き位相差板の製造方法。 [15] A position with an optical compensation function according to any one of the above [10] to [14], wherein a vertical alignment film containing Si element, a vertical alignment liquid crystal cured film, a horizontal alignment film, and a horizontal alignment liquid crystal cured film are formed in this order. A method for producing a phase difference plate.

〔16〕水平配向膜、水平配向液晶硬化膜、Si/Cの元素が0.03〜1.00である垂直配向膜、垂直配向液晶硬化膜をこの順に形成する上記〔10〕〜〔15〕のいずれかに記載の光学補償機能付き位相差板の製造方法。 [16] The above [10] to [15], in which a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film having a Si / C element of 0.03 to 1.00, and a vertical alignment liquid crystal cured film are formed in this order. A method for producing a retardation plate with an optical compensation function according to any one of the above.

〔17〕垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成して光学補償機能付き位相差板を製造する方法であって、水平配向液晶硬化膜が以下の関係(3)を満たす上記〔10〕〜〔16〕のいずれかに記載の光学補償機能付き位相差板の製造方法。
ReA(450)/ReA(550)<1.00 ・・・(3)
式中、ReA(λ)は水平配向液晶硬化膜の波長λnmにおける面内位相差値を示す。面内位相差値ReA(λ)の定義は以下のとおりである。
ReA(λ)=(nxA(λ)−nyA(λ))×dA
ただし、nxA(λ)は水平配向液晶硬化膜のフィルム面内における主屈折率であって波長λ(nm)に置ける主屈折率を、nyA(λ)はnxA(λ)と同一面内で直交する方向の屈折率であって波長λ(nm)における屈折率を、dAは水平配向液晶硬化の膜厚をそれぞれ示す。
[17] A method of manufacturing a retardation film with an optical compensation function by forming a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film, and a horizontal alignment liquid crystal cured film in this order. The method for producing a retardation plate with an optical compensation function according to any one of [10] to [16], wherein the relationship (3) is satisfied.
ReA (450) / ReA (550) <1.00 (3)
In the formula, ReA (λ) represents an in-plane retardation value at a wavelength λ nm of the horizontally aligned liquid crystal cured film. The definition of the in-plane retardation value ReA (λ) is as follows.
ReA (λ) = (nxA (λ) −nyA (λ)) × dA
However, nxA (λ) is the main refractive index in the film plane of the horizontally aligned liquid crystal cured film and is the main refractive index at the wavelength λ (nm), and nyA (λ) is orthogonal to nxA (λ) in the same plane. The refractive index at the wavelength λ (nm), and dA represents the film thickness of horizontal alignment liquid crystal curing.

〔18〕垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成して光学補償機能付き位相差板を製造する方法であって、垂直配向液晶硬化膜が以下の関係(4)を満たす上記〔1〕〜〔17〕に記載の光学補償機能付き位相差板の製造方法。
RthC(450)/RthC(550)<1.00 ・・・(4)
式中、RthC(λ)は垂直配向液晶硬化膜の波長λnmにおける厚み方向の位相差値を示す。位相差値RthC(λ)の定義は以下のとおりである。
RthC(λ)=((nxC(λ)+nyC(λ))/2−nzC(λ))×dC
ただし、nxC(λ)は垂直配向液晶硬化膜のフィルム面内における主屈折率であって波長λ(nm)における主屈折率を、
nyC(λ)はnxC(λ)と同一面内で直交する方向の屈折率であって波長λ(nm)における屈折率を、
nzC(λ)は垂直配向液晶硬化膜の厚み方向の屈折率であって波長λ(nm)における屈折率を、
dCは垂直配向液晶硬化の膜厚をそれぞれ示す。
尚、nxC(λ)=nyC(λ)の場合には、nxC(λ)はフィルム面内で任意の方向の屈折率とする事が出来る。
[18] A method of manufacturing a retardation film with an optical compensation function by forming a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film, and a horizontal alignment liquid crystal cured film in this order. The method for producing a retardation plate with an optical compensation function according to the above [1] to [17], which satisfies the relationship (4).
RthC (450) / RthC (550) <1.00 (4)
In the formula, RthC (λ) represents a thickness direction retardation value of the vertically aligned liquid crystal cured film at a wavelength of λ nm. The definition of the phase difference value RthC (λ) is as follows.
RthC (λ) = ((nxC (λ) + nyC (λ)) / 2−nzC (λ)) × dC
However, nxC (λ) is the main refractive index in the film plane of the vertically aligned liquid crystal cured film, and the main refractive index at the wavelength λ (nm),
nyC (λ) is the refractive index in the direction orthogonal to nxC (λ) in the same plane, and the refractive index at the wavelength λ (nm),
nzC (λ) is the refractive index in the thickness direction of the vertically aligned liquid crystal cured film, and the refractive index at the wavelength λ (nm),
dC represents the film thickness of vertical alignment liquid crystal curing.
When nxC (λ) = nyC (λ), nxC (λ) can be a refractive index in an arbitrary direction within the film plane.

本発明の製造方法により光学補償機能付き位相差板を得、これに偏光板を積層することにより、光学補償機能付き楕楕円偏光板を製造することができる。
この光学補償機能付き楕楕円偏光板は、例えば有機EL表示装置に組込んで好ましく使用される。
An elliptical polarizing plate with an optical compensation function can be manufactured by obtaining a retardation film with an optical compensation function by the manufacturing method of the present invention and laminating a polarizing plate on the retardation plate.
The elliptically polarizing plate with an optical compensation function is preferably used by being incorporated in, for example, an organic EL display device.

本発明の光学補償機能付き位相差板は、折り曲げたときに発生するシワやクラック等の不具合を抑制する事が出来る。 The retardation film with an optical compensation function of the present invention can suppress problems such as wrinkles and cracks that occur when bent.

〔水平配向液晶硬化膜〕
水平配向液晶硬化膜はフィルム平面内に屈折率異方性を有する膜であって、重合性液晶化合物を含む重合体からなる。水平配向液晶硬化膜の形成は、重合性液晶組成物を水平配向膜上に塗布し、加熱及び/又は光照射によって、配向状態の重合性液晶化合物を含む組成物を重合させる方法で行うことが、水平配向液晶硬化膜の薄膜化及び波長分散特性を任意に設計できる点で好ましい。
[Horizontal alignment liquid crystal cured film]
The horizontally aligned liquid crystal cured film is a film having refractive index anisotropy in the plane of the film, and is made of a polymer containing a polymerizable liquid crystal compound. The horizontal alignment liquid crystal cured film is formed by a method in which a polymerizable liquid crystal composition is applied onto the horizontal alignment film and a composition containing the polymerizable liquid crystal compound in an alignment state is polymerized by heating and / or light irradiation. It is preferable in that the thickness of the horizontally aligned liquid crystal cured film and wavelength dispersion characteristics can be arbitrarily designed.

水平配向液晶硬化膜が形成する3次元屈折率楕円体は2軸性を有していてもよいが、1軸性を有することが好ましい。水平配向液晶硬化膜は、水平配向液晶硬化膜の平面に対して水平方向に配向した状態の重合性液晶化合物を含む重合性液晶組成物の重合体からなる水平配向液晶硬化膜であってもよいし、ハイブリッド配向液晶硬化膜又は傾斜配向液晶硬化膜であってもよい。重合性液晶の配向により形成される屈折率楕円体における3方向の屈折率nx、ny及びnzは、nx>ny≒nz(ポジティブAプレートという)、又はnx<ny≒nz(ネガティブAプレートという)の関係を有していてもよい。nxは、水平配向液晶硬化膜が形成する屈折率楕円体において、水平配向液晶硬化膜の平面に対して平行な方向の主屈折率を表す。nyは、水平配向液晶硬化膜が形成する屈折率楕円体において、水平配向液晶硬化膜の平面に対して平行であり、且つ、該nxの方向に対して直交する方向の屈折率を表す。nzは、水平配向液晶硬化膜が形成する屈折率楕円体において、水平配向液晶硬化膜の平面に対して垂直な方向の屈折率を表す。   The three-dimensional refractive index ellipsoid formed by the horizontally aligned liquid crystal cured film may have biaxiality, but preferably has uniaxiality. The horizontally aligned liquid crystal cured film may be a horizontally aligned liquid crystal cured film made of a polymer of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound in a state of being horizontally aligned with respect to the plane of the horizontally aligned liquid crystal cured film. Further, it may be a hybrid alignment liquid crystal cured film or a tilt alignment liquid crystal cured film. Refractive indices nx, ny and nz in three directions in the refractive index ellipsoid formed by the orientation of the polymerizable liquid crystal are nx> ny≈nz (referred to as positive A plate) or nx <ny≈nz (referred to as negative A plate). It may have the relationship. nx represents a main refractive index in a direction parallel to the plane of the horizontally aligned liquid crystal cured film in the refractive index ellipsoid formed by the horizontally aligned liquid crystal cured film. ny is a refractive index ellipsoid formed by the horizontally aligned liquid crystal cured film, and represents a refractive index in a direction parallel to the plane of the horizontally aligned liquid crystal cured film and orthogonal to the nx direction. nz represents the refractive index in the direction perpendicular to the plane of the horizontally aligned liquid crystal cured film in the refractive index ellipsoid formed by the horizontally aligned liquid crystal cured film.

水平配向液晶硬化膜は、棒状の重合性液晶と円盤状の重合性液晶のどちらであっても使用可能であるが、棒状の重合性液晶であることが好ましい。棒状の重合性液晶が水平配向液晶硬化膜を形成する場合、水平配向液晶硬化膜はポジティブAプレートとなる。   The horizontally aligned liquid crystal cured film can be either a rod-like polymerizable liquid crystal or a disk-like polymerizable liquid crystal, but is preferably a rod-like polymerizable liquid crystal. When the rod-like polymerizable liquid crystal forms a horizontal alignment liquid crystal cured film, the horizontal alignment liquid crystal cured film becomes a positive A plate.

水平配向液晶硬化膜がフィルムの面内に光学異方性を有する場合、波長550nmの光に対する面内位相差値であるRe1(550)が、下記式(21)に示される光学特性を満たすことが好ましい。また、水平配向液晶硬化膜は、波長450nmの光に対する面内位相差値であるRe1(450)、波長550nmの光に対する面内位相差値であるRe1(550)及び波長650nmの光に対する面内位相差値であるRe1(650)が、式(22)及び式(23)で示される光学特性を満たすことも好ましい。水平配向液晶硬化膜は、下記式(21)、下記式(22)及び下記式(23)で示される光学特性を満たすことがより好ましい。
120nm≦ReA(550)≦170nm …(21)
[式中、ReA(550)は水平配向液晶硬化膜の波長550nmの光に対する面内位相差値(面内リタデーション)を表す。]
ReA(450)/ReA(550)≦1.0 …(22)
1.00≦ReA(650)/ReA(550) …(23)
[式中、ReA(450)は水平配向液晶硬化膜の波長450nmの光に対する面内位相差値を、ReA(550)は水平配向液晶硬化膜の波長550nmの光に対する面内位相差値を、ReA(650)は水平配向液晶硬化膜の波長650nmの光に対する面内位相差値をそれぞれ表す。]
When the horizontally aligned liquid crystal cured film has optical anisotropy in the plane of the film, Re1 (550), which is an in-plane retardation value for light having a wavelength of 550 nm, satisfies the optical characteristics represented by the following formula (21). Is preferred. The horizontally aligned liquid crystal cured film has an in-plane retardation value for light having a wavelength of 450 nm, Re1 (450) for light having a wavelength of 550 nm, an in-plane retardation value for light having a wavelength of 550 nm, and an in-plane for light having a wavelength of 650 nm. It is also preferable that Re1 (650) which is a phase difference value satisfies the optical characteristics represented by the equations (22) and (23). It is more preferable that the horizontally aligned liquid crystal cured film satisfies the optical characteristics represented by the following formula (21), the following formula (22), and the following formula (23).
120 nm ≦ ReA (550) ≦ 170 nm (21)
[In the formula, ReA (550) represents an in-plane retardation value (in-plane retardation) of the horizontally aligned liquid crystal cured film with respect to light having a wavelength of 550 nm. ]
ReA (450) / ReA (550) ≦ 1.0 (22)
1.00 ≦ ReA (650) / ReA (550) (23)
[In the formula, ReA (450) is the in-plane retardation value for light with a wavelength of 450 nm of the horizontally aligned liquid crystal cured film, ReA (550) is the in-plane retardation value for light with a wavelength of 550 nm of the horizontally aligned liquid crystal cured film, ReA (650) represents the in-plane retardation value of the horizontally aligned liquid crystal cured film with respect to light having a wavelength of 650 nm. ]

水平配向液晶硬化膜の面内位相差値ReA(550)が式(21)の範囲を超えると、光学補償機能付き位相差板を含む光学補償機能付き楕円偏光板を適用したディスプレイ正面の色相が赤くなったり青くなったりする問題を生じうる。面内位相差値のさらに好ましい範囲としては、130nm≦ReA(550)≦160nmである。水平配向液晶硬化膜の「ReA(450)/ReA(550)」が1.0を超えると、当該水平配向液晶硬化膜を備える楕円偏光板での短波長側における楕円率が悪化する。短波長側で楕円偏光板の楕円率が悪化して1.0を外れて小さくなると、短波長側で正面から見た時の楕円偏光板としての機能が損なわれる傾向にある。この「ReA(450)/ReA(550)」は、好ましくは0.75〜0.92、より好ましくは0.77〜0.87、さらに好ましくは0.79〜0.85である。   When the in-plane retardation value ReA (550) of the horizontally aligned liquid crystal cured film exceeds the range of the equation (21), the hue of the front surface of the display to which the elliptically polarizing plate with an optical compensation function including the retardation plate with an optical compensation function is applied is obtained. It can cause problems that turn red and blue. A more preferable range of the in-plane retardation value is 130 nm ≦ ReA (550) ≦ 160 nm. When “ReA (450) / ReA (550)” of the horizontally aligned liquid crystal cured film exceeds 1.0, the ellipticity on the short wavelength side of the elliptically polarizing plate provided with the horizontally aligned liquid crystal cured film deteriorates. If the ellipticity of the elliptically polarizing plate deteriorates on the short wavelength side and deviates from 1.0, the function as an elliptically polarizing plate when viewed from the front on the short wavelength side tends to be impaired. The “ReA (450) / ReA (550)” is preferably 0.75 to 0.92, more preferably 0.77 to 0.87, and still more preferably 0.79 to 0.85.

水平配向液晶硬化膜の面内位相差値は、水平配向液晶硬化膜の厚さによって調整することができる。面内位相差値は下記式(24)によって決定されることから、所望の面内位相差値(ReA(λ):波長λ(nm)における水平配向液晶硬化膜の面内位相差値)を得るには、3次元屈折率と膜厚dAとを調整すればよい。なお、3次元屈折率は、後述する重合性液晶化合物の分子構造並びに配向状態に依存する。
ReA(λ)=(nxA(λ)−nyA(λ))×dA (24)
[式中、水平配向液晶硬化膜が形成する屈折率楕円体においてnxA(λ)>nyA(λ)≒nzA(λ)の関係を有し、nxA(λ)は波長λ(nm)の光に対する水平配向液晶硬化膜平面に対して平行な方向の主屈折率を表す。nyA(λ)は波長λ(nm)の光に対する、水平配向液晶硬化膜が形成する屈折率楕円体において、水平配向液晶硬化膜平面に対して平行であり、且つ、該nxA(λ)の方向に対して直交する方向の屈折率を表す。dAは水平配向液晶硬化膜の厚みを表す。]
The in-plane retardation value of the horizontally aligned liquid crystal cured film can be adjusted by the thickness of the horizontally aligned liquid crystal cured film. Since the in-plane retardation value is determined by the following formula (24), a desired in-plane retardation value (ReA (λ): in-plane retardation value of the horizontally aligned liquid crystal cured film at the wavelength λ (nm)) is obtained. In order to obtain this, the three-dimensional refractive index and the film thickness dA may be adjusted. The three-dimensional refractive index depends on the molecular structure and orientation state of the polymerizable liquid crystal compound described later.
ReA (λ) = (nxA (λ) −nyA (λ)) × dA (24)
[In the formula, the refractive index ellipsoid formed by the horizontally aligned liquid crystal cured film has a relationship of nxA (λ)> nyA (λ) ≈nzA (λ), where nxA (λ) is for light of wavelength λ (nm). It represents the main refractive index in the direction parallel to the horizontal alignment liquid crystal cured film plane. nyA (λ) is a refractive index ellipsoid formed by the horizontally aligned liquid crystal cured film with respect to light of wavelength λ (nm), is parallel to the horizontal aligned liquid crystal cured film plane, and is in the direction of nxA (λ). Represents the refractive index in the direction orthogonal to the direction. dA represents the thickness of the horizontally aligned liquid crystal cured film. ]

水平配向液晶硬化膜は、上述のように配向状態の重合性液晶化合物を含む組成物の重合体であることが好ましい。水平配向液晶硬化膜を形成する重合性液晶化合物は、重合性官能基、特に光重合性官能基を有する液晶化合物である。光重合性官能基とは、光重合開始剤から発生した活性ラジカルや酸などによって重合反応に関与し得る基のことをいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1−クロロビニル基、イソプロペニル基、4−ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよく、相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。   The horizontally aligned liquid crystal cured film is preferably a polymer of a composition containing the polymerizable liquid crystal compound in an aligned state as described above. The polymerizable liquid crystal compound forming the horizontally aligned liquid crystal cured film is a liquid crystal compound having a polymerizable functional group, particularly a photopolymerizable functional group. The photopolymerizable functional group refers to a group that can participate in a polymerization reaction by an active radical or an acid generated from a photopolymerization initiator. Examples of the photopolymerizable functional group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable. The liquid crystalline property may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase order structure may be a nematic liquid crystal or a smectic liquid crystal.

本発明において、重合性液晶化合物は、逆波長分散性を発現させる、前記式(21)及び(22)若しくは後述する(31)及び(32)の関係を充足させる観点から、下記式(I)   In the present invention, the polymerizable liquid crystal compound has the following formula (I) from the viewpoint of satisfying the relationship of the above formulas (21) and (22) or (31) and (32) described later, which develops reverse wavelength dispersion.

Figure 2019035952
で表される化合物が好ましい。
Figure 2019035952
The compound represented by these is preferable.

式(I)中、Arは置換基を有していてもよい二価の芳香族基を表す。ここで言う芳香族基とは、平面性を有する環状構造の基であり、該環構造が有するπ電子数がヒュッケル則に従い[4n+2]個であるものをいう。ここで、nは整数を表す。−N=や−S−等のヘテロ原子を含んで環構造を形成している場合、これらヘテロ原子上の非共有結合電子対を含めてヒュッケル則を満たし、芳香族性を有する場合も含む。該二価の芳香族基中には窒素原子、酸素原子、硫黄原子のうち少なくとも1つ以上が含まれることが好ましい。   In formula (I), Ar represents a divalent aromatic group which may have a substituent. The aromatic group referred to here is a group having a planar structure having a planarity, and the number of π electrons of the ring structure is [4n + 2] according to the Hückel rule. Here, n represents an integer. In the case where a ring structure is formed by including a heteroatom such as -N = or -S-, the case where the Huckel's rule is satisfied including the non-covalent electron pair on the heteroatom and the aromatic structure is included is also included. The divalent aromatic group preferably contains at least one of a nitrogen atom, an oxygen atom and a sulfur atom.

及びGはそれぞれ独立に、二価の芳香族基又は二価の脂環式炭化水素基を表す。
ここで、該二価の芳香族基又は二価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のフルオロアルキル基、炭素数1〜4のアルコキシ基、シアノ基又はニトロ基に置換されていてもよく、該二価の芳香族基又は二価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子又は窒素原子に置換されていてもよい。
G 1 and G 2 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group.
Here, the hydrogen atom contained in the divalent aromatic group or divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or carbon. The carbon atom constituting the divalent aromatic group or divalent alicyclic hydrocarbon group which may be substituted with an alkoxy group of 1 to 4 groups, a cyano group or a nitro group is an oxygen atom or a sulfur atom Alternatively, it may be substituted with a nitrogen atom.

、L 及びBはそれぞれ独立に、単結合又は二価の連結基である。 L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.

k、lは、それぞれ独立に0〜3の整数を表し、1≦k+lの関係を満たす。ここで、2≦k+lである場合、B及びB、G及びGは、それぞれ互いに同一であってもよく、異なっていてもよい。 k and l each independently represent an integer of 0 to 3 and satisfy the relationship of 1 ≦ k + 1. Here, when 2 ≦ k + 1, B 1 and B 2 , G 1 and G 2 may be the same or different from each other.

及びEはそれぞれ独立に、炭素数1〜17のアルカンジイル基を表し、ここで、アルカンジイル基に含まれる水素原子は、ハロゲン原子で置換されていてもよく、該アルカンジイル基に含まれる−CH−は、−O−、−S−、−Si−で置換されていてもよい。P及びPは互いに独立に、重合性基又は水素原子を表し、少なくとも1つは重合性基である。 E 1 and E 2 each independently represents an alkanediyl group having 1 to 17 carbon atoms, wherein a hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom, The —CH 2 — contained may be substituted with —O—, —S—, or —Si—. P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.

及びGは、それぞれ独立に、好ましくは、ハロゲン原子及び炭素数1〜4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4−フェニレンジイル基、ハロゲン原子及び炭素数1〜4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4−シクロヘキサンジイル基であり、より好ましくはメチル基で置換された1,4−フェニレンジイル基、無置換の1,4−フェニレンジイル基、又は無置換の1,4−trans−シクロヘキサンジイル基であり、特に好ましくは無置換の1,4−フェニレンジイル基、又は無置換の1,4−trans−シクロへキサンジイル基である。また、複数存在するG及びGのうち少なくとも1つは二価の脂環式炭化水素基であることが好ましく、また、L又はLに結合するG及びGのうち少なくとも1つは二価の脂環式炭化水素基であることがより好ましい。 G 1 and G 2 are each independently preferably a 1,4-phenylenediyl group which may be substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms. 1,4-cyclohexanediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably 1 substituted with a methyl group , 4-phenylenediyl group, unsubstituted 1,4-phenylenediyl group, or unsubstituted 1,4-trans-cyclohexanediyl group, particularly preferably unsubstituted 1,4-phenylenediyl group or A substituted 1,4-trans-cyclohexanediyl group. In addition, at least one of a plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2. More preferably, it is a divalent alicyclic hydrocarbon group.

及びLはそれぞれ独立に、好ましくは、単結合、炭素数1〜4のアルキレン基、−O−、−S−、−Ra1ORa2−、−Ra3COORa4−、−Ra5OCORa6−、Ra7OC=OORa8−、−N=N−、−CR=CR−、又はC≡C−である。ここで、Ra1〜Ra8はそれぞれ独立に単結合、又は炭素数1〜4のアルキレン基を表し、R及びRは炭素数1〜4のアルキル基又は水素原子を表す。L及びLはそれぞれ独立に、より好ましくは単結合、−ORa2−1−、−CH−、−CHCH−、−COORa4−1−、又はOCORa6−1−である。ここで、Ra2−1、Ra4−1、Ra6−1はそれぞれ独立に単結合、−CH−、−CHCH−のいずれかを表す。L及びLはそれぞれ独立に、さらに好ましくは単結合、−O−、−CHCH−、−COO−、−COOCHCH−、又はOCO−である。 L 1 and L 2 are preferably each independently, preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a1 OR a2 —, —R a3 COOR a4 —, —R a5. OCOR a6 —, R a7 OC═OOR a8 —, —N═N—, —CR c = CR d —, or C≡C—. Here, R a1 to R a8 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms, and R c and R d each represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. L 1 and L 2 are each independently more preferably a single bond, —OR a2-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a4-1 —, or OCOR a6-1 —. . Here, R a2-1 , R a4-1 , and R a6-1 each independently represent a single bond, —CH 2 —, or —CH 2 CH 2 —. L 1 and L 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, or OCO—.

及びBはそれぞれ独立に、好ましくは、単結合、炭素数1〜4のアルキレン基、−O−、−S−、−Ra9ORa10−、−Ra11COORa12−、−Ra13OCORa14−、又はRa15OC=OORa16−である。ここで、Ra9〜Ra16はそれぞれ独立に単結合、又は炭素数1〜4のアルキレン基を表す。B及びBはそれぞれ独立に、より好ましくは単結合、−ORa10−1−、−CH−、−CHCH−、−COORa12−1−、又はOCORa14−1−である。ここで、Ra10−1、Ra12−1、Ra14−1はそれぞれ独立に単結合、−CH−、−CHCH−のいずれかを表す。B及びBはそれぞれ独立に、さらに好ましくは単結合、−O−、−CHCH−、−COO−、−COOCHCH−、−OCO−、又はOCOCHCH−、である。 B 1 and B 2 are preferably each independently, preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a9 OR a10 —, —R a11 COOR a12 —, —R a13. OCOR a14 − or R a15 OC═OOR a16 —. Here, R a9 to R a16 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms. B 1 and B 2 are each independently, more preferably a single bond, —OR a10-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a12-1 —, or OCOR a14-1 —. . Here, R a10-1 , R a12-1 , and R a14-1 each independently represent a single bond, —CH 2 —, or —CH 2 CH 2 —. B 1 and B 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, —OCO—, or OCOCH 2 CH 2 —. is there.

k及びlは、逆波長分散性発現の観点から2≦k+l≦6の範囲が好ましく、k+l=4であることが好ましく、k=2かつl=2であることがより好ましい。k=2かつl=2であると対称構造となるためさらに好ましい。   k and l are preferably in the range of 2 ≦ k + l ≦ 6 from the viewpoint of expression of inverse wavelength dispersion, preferably k + l = 4, and more preferably k = 2 and l = 2. It is more preferable that k = 2 and l = 2 because a symmetrical structure is obtained.

及びEはそれぞれ独立に、炭素数1〜17のアルカンジイル基が好ましく、炭素数4〜12のアルカンジイル基がより好ましい。 E 1 and E 2 are each independently preferably an alkanediyl group having 1 to 17 carbon atoms, and more preferably an alkanediyl group having 4 to 12 carbon atoms.

又はPで表される重合性基としては、例えばエポキシ基、ビニル基、ビニルオキシ基、1−クロロビニル基、イソプロペニル基、4−ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、及びオキセタニル基等が挙げられる。これらの中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。 Examples of the polymerizable group represented by P 1 or P 2 include an epoxy group, vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, and oxiranyl. Group, oxetanyl group, and the like. Among these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group, and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.

Arは置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、及び電子吸引性基から選ばれる少なくとも一つを有することが好ましい。当該芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられ、ベンゼン環、ナフタレン環が好ましい。当該芳香族複素環としては、フラン環、ベンゾフラン環、ピロール環、インドール環、チオフェン環、ベンゾチオフェン環、ピリジン環、ピラジン環、ピリミジン環、トリアゾール環、トリアジン環、ピロリン環、イミダゾール環、ピラゾール環、チアゾール環、ベンゾチアゾール環、チエノチアゾール環、オキサゾール環、ベンゾオキサゾール環、及びフェナンスロリン環等が挙げられる。これらの中でも、チアゾール環、ベンゾチアゾール環、又はベンゾフラン環を有することが好ましく、ベンゾチアゾール基を有することがさらに好ましい。また、Arに窒素原子が含まれる場合、当該窒素原子はπ電子を有することが好ましい。   Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocycle which may have a substituent, and an electron-withdrawing group. Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, and an anthracene ring, and a benzene ring and a naphthalene ring are preferable. Examples of the aromatic heterocycle include furan ring, benzofuran ring, pyrrole ring, indole ring, thiophene ring, benzothiophene ring, pyridine ring, pyrazine ring, pyrimidine ring, triazole ring, triazine ring, pyrroline ring, imidazole ring, pyrazole ring. , Thiazole ring, benzothiazole ring, thienothiazole ring, oxazole ring, benzoxazole ring, phenanthrolin ring, and the like. Among these, it is preferable to have a thiazole ring, a benzothiazole ring, or a benzofuran ring, and it is more preferable to have a benzothiazole group. In addition, when Ar includes a nitrogen atom, the nitrogen atom preferably has π electrons.

式(I)中、Arで表される2価の芳香族基に含まれるπ電子の合計数Nπは8以上が好ましく、より好ましくは10以上であり、さらに好ましくは14以上であり、特に好ましくは16以上である。また、好ましくは30以下であり、より好ましくは26以下であり、さらに好ましくは24以下である。 In formula (I), the total number N π of π electrons contained in the divalent aromatic group represented by Ar is preferably 8 or more, more preferably 10 or more, still more preferably 14 or more, particularly Preferably it is 16 or more. Moreover, Preferably it is 30 or less, More preferably, it is 26 or less, More preferably, it is 24 or less.

Arで表される芳香族基としては、例えば以下の基が挙げられる。   Examples of the aromatic group represented by Ar include the following groups.

Figure 2019035952
Figure 2019035952

式(Ar−1)〜式(Ar−22)中、*印は連結部を表し、Z、Z及びZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、シアノ基、ニトロ基、炭素数1〜12のアルキルスルフィニル基、炭素数1〜12のアルキルスルホニル基、カルボキシル基、炭素数1〜12のフルオロアルキル基、炭素数1〜6のアルコキシ基、炭素数1〜12のアルキルチオ基、炭素数1〜12のN−アルキルアミノ基、炭素数2〜12のN,N−ジアルキルアミノ基、炭素数1〜12のN−アルキルスルファモイル基又は炭素数2〜12のN,N−ジアルキルスルファモイル基を表す。 In formula (Ar-1) to formula (Ar-22), * represents a linking part, and Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom, or an alkyl having 1 to 12 carbon atoms. Group, cyano group, nitro group, alkylsulfinyl group having 1 to 12 carbon atoms, alkylsulfonyl group having 1 to 12 carbon atoms, carboxyl group, fluoroalkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 6 carbon atoms, C1-C12 alkylthio group, C1-C12 N-alkylamino group, C2-C12 N, N-dialkylamino group, C1-C12 N-alkylsulfamoyl group or carbon The N, N-dialkylsulfamoyl group represented by Formula 2 to 12 is represented.

及びQは、それぞれ独立に、−CR2’3’−、−S−、−NH−、−NR2’−、−CO−又はO−を表し、R2’及びR3’は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表す。 Q 1 and Q 2 each independently represent —CR 2 ′ R 3 ′ —, —S—, —NH—, —NR 2 ′ —, —CO— or O—, and R 2 ′ and R 3 ′. Each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.

、及びJは、それぞれ独立に、炭素原子、又は窒素原子を表す。 J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.

、Y及びYは、それぞれ独立に、置換されていてもよい芳香族炭化水素基又は芳香族複素環基を表す。 Y 1 , Y 2 and Y 3 each independently represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.

及びWは、それぞれ独立に、水素原子、シアノ基、メチル基又はハロゲン原子を表し、mは0〜6の整数を表す。 W 1 and W 2 each independently represent a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.

、Y及びYにおける芳香族炭化水素基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等の炭素数6〜20の芳香族炭化水素基が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。芳香族複素環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む炭素数4〜20の芳香族複素環基が挙げられ、フリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基が好ましい。 Examples of the aromatic hydrocarbon group for Y 1 , Y 2 and Y 3 include an aromatic hydrocarbon group having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. A naphthyl group is preferred, and a phenyl group is more preferred. The aromatic heterocyclic group has 4 to 20 carbon atoms and contains at least one hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, or a benzothiazolyl group. An aromatic heterocyclic group is mentioned, and a furyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group are preferable.

及びYは、それぞれ独立に、置換されていてもよい多環系芳香族炭化水素基又は多環系芳香族複素環基であってもよい。多環系芳香族炭化水素基は、縮合多環系芳香族炭化水素基、又は芳香環集合に由来する基をいう。多環系芳香族複素環基は、縮合多環系芳香族複素環基、又は芳香環集合に由来する基をいう。 Y 1 and Y 2 may each independently be an optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group. The polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly. The polycyclic aromatic heterocyclic group refers to a group derived from a condensed polycyclic aromatic heterocyclic group or an aggregate of aromatic rings.

、Z及びZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜12のアルキル基、シアノ基、ニトロ基、炭素数1〜12のアルコキシ基であることが好ましく、Zは、水素原子、炭素数1〜12のアルキル基、シアノ基がさらに好ましく、Z及びZは、水素原子、フッ素原子、塩素原子、メチル基、シアノ基がさらに好ましい。 Z 0 , Z 1 and Z 2 are each independently preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms. 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a cyano group, and Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, or a cyano group.

及びQは、−NH−、−S−、−NR2’−、−O−が好ましく、R2’は水素原子が好ましい。中でも−S−、−O−、−NH−が特に好ましい。 Q 1 and Q 2 are preferably —NH—, —S—, —NR 2 ′ —, and —O—, and R 2 ′ is preferably a hydrogen atom. Among them, -S-, -O-, and -NH- are particularly preferable.

式(Ar−1)〜(Ar−22)の中でも、式(Ar−6)及び式(Ar−7)が分子の安定性の観点から好ましい。   Among formulas (Ar-1) to (Ar-22), formula (Ar-6) and formula (Ar-7) are preferred from the viewpoint of molecular stability.

式(Ar−16)〜(Ar−22)において、Yは、これが結合する窒素原子及びZと共に、芳香族複素環基を形成していてもよい。芳香族複素環基としては、Arが有していてもよい芳香族複素環として前記したものが挙げられるが、例えば、ピロール環、イミダゾール環、ピロリン環、ピリジン環、ピラジン環、ピリミジン環、インドール環、キノリン環、イソキノリン環、プリン環、ピロリジン環等が挙げられる。この芳香族複素環基は、置換基を有していてもよい。また、Yは、これが結合する窒素原子及びZと共に、前述した置換されていてもよい多環系芳香族炭化水素基又は多環系芳香族複素環基であってもよい。例えば、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環等が挙げられる。なお、前記式(I)で表される化合物は、例えば、特開2010−31223号公報に記載の方法に準じて製造することができる。 In formulas (Ar-16) to (Ar-22), Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 . Examples of the aromatic heterocyclic group include those described above as the aromatic heterocyclic ring that Ar may have, for example, pyrrole ring, imidazole ring, pyrroline ring, pyridine ring, pyrazine ring, pyrimidine ring, indole Ring, quinoline ring, isoquinoline ring, purine ring, pyrrolidine ring and the like. This aromatic heterocyclic group may have a substituent. Y 1 may be the above-described polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group which may be substituted together with the nitrogen atom to which it is bonded and Z 0 . For example, a benzofuran ring, a benzothiazole ring, a benzoxazole ring, etc. are mentioned. In addition, the compound represented by the said formula (I) can be manufactured according to the method as described in Unexamined-Japanese-Patent No. 2010-31223, for example.

重合性液晶化合物は単独又は二種以上組み合わせて使用できる。二種以上併用する場合、前記式(I)で表される化合物の含有量は、重合性液晶化合物100質量部に対して、好ましくは50質量部以上、より好ましくは70質量部以上、さらに好ましくは80質量部以上である。   The polymerizable liquid crystal compounds can be used alone or in combination of two or more. When two or more kinds are used in combination, the content of the compound represented by the formula (I) is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, further preferably 100 parts by mass of the polymerizable liquid crystal compound. Is 80 parts by mass or more.

水平配向液晶硬化膜の形成に使用する水平配向液晶硬化膜形成用組成物(以下、重合性液晶組成物ともいう)は、溶媒、光重合開始剤、重合禁止剤、光増感剤、レベリング剤、密着性向上剤をさらに含むことができる。これらの添加剤は単独又は二種以上組み合わせて使用できる。   A composition for forming a horizontally aligned liquid crystal cured film used for forming a horizontally aligned liquid crystal cured film (hereinafter also referred to as a polymerizable liquid crystal composition) is a solvent, a photopolymerization initiator, a polymerization inhibitor, a photosensitizer, and a leveling agent. Further, an adhesion improver can be further included. These additives can be used alone or in combination of two or more.

重合性液晶化合物の含有量は、重合性液晶組成物の固形分100質量部に対して、例えば70〜99.5質量部であり、好ましくは80〜99質量部であり、より好ましくは90〜98質量部である。含有量が上記範囲内であれば、水平配向液晶硬化膜の配向性が高くなる傾向がある。ここで、固形分とは、組成物から溶媒を除いた成分の合計量のことをいう。   Content of a polymeric liquid crystal compound is 70-99.5 mass parts with respect to 100 mass parts of solid content of a polymeric liquid crystal composition, for example, Preferably it is 80-99 mass parts, More preferably, 90- 98 parts by mass. If content is in the said range, there exists a tendency for the orientation of a horizontal alignment liquid crystal cured film to become high. Here, solid content means the total amount of the component remove | excluding the solvent from the composition.

溶媒としては、重合性液晶化合物を溶解し得る溶媒が好ましく、また、重合性液晶化合物の重合反応に不活性な溶媒であることが好ましい。溶媒としては、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1−メトキシ−2−プロパノール、2−ブトキシエタノール及びプロピレングリコールモノメチルエーテル等のアルコール溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ−ブチロラクトン、プロピレングリコールメチルエーテルアセテート及び乳酸エチル等のエステル溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2−ヘプタノン及びメチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサン及びヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン及びキシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル溶媒;テトラヒドロフラン、アニソール及びジメトキシエタン等のエーテル溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;ジメチルアセトアミド、ジメチルホルミアミド、N−メチル−2−ピロリドン(NMP)、1,3−ジメチル−2−イミダゾリジノン等のアミド系溶媒等が挙げられる。これらの溶媒は、単独又は二種以上組み合わせて使用できる。ただし、前記式(I)で表される化合物は一般に比較的大きな共役系を有するため溶媒に対する溶解性が低く、上記に例示した溶媒の中でもアルコール溶媒、エステル溶媒、ケトン溶媒、塩素含有溶媒、エーテル系溶媒、アミド系溶媒及び芳香族炭化水素溶媒を使用する事が好ましく、エステル溶媒、ケトン溶媒、塩素含有溶媒、エーテル系溶媒、アミド系溶媒を用いることがより好ましい。   As the solvent, a solvent capable of dissolving the polymerizable liquid crystal compound is preferable, and a solvent inert to the polymerization reaction of the polymerizable liquid crystal compound is preferable. Examples of the solvent include alcohols such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol, and propylene glycol monomethyl ether. Solvent; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone, etc. Ketone solvent; aliphatic hydrocarbon solvent such as pentane, hexane and heptane; fat such as ethylcyclohexane Aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran, anisole and dimethoxyethane; chlorine-containing solvents such as chloroform and chlorobenzene; dimethylacetamide, dimethylformamide, Examples thereof include amide solvents such as N-methyl-2-pyrrolidone (NMP) and 1,3-dimethyl-2-imidazolidinone. These solvents can be used alone or in combination of two or more. However, since the compound represented by the formula (I) generally has a relatively large conjugated system, its solubility in a solvent is low. Among the solvents exemplified above, an alcohol solvent, an ester solvent, a ketone solvent, a chlorine-containing solvent, an ether It is preferable to use a system solvent, an amide solvent, and an aromatic hydrocarbon solvent, and it is more preferable to use an ester solvent, a ketone solvent, a chlorine-containing solvent, an ether solvent, or an amide solvent.

溶媒の含有量は、重合性液晶組成物100質量部に対して、好ましくは50〜98質量部、より好ましくは70〜95重量部である。従って、組成物100質量部に占める固形分は、2〜50質量部が好ましい。組成物の固形分が50質量部以下であると、組成物の粘度が低くなることから、水平配向液晶硬化膜の厚みが略均一になり、水平配向液晶硬化膜にムラが生じ難くなる傾向がある。上記固形分は、製造しようとする水平配向液晶硬化膜の厚みを考慮して適宜定めることができる。   The content of the solvent is preferably 50 to 98 parts by weight, more preferably 70 to 95 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal composition. Therefore, the solid content in 100 parts by mass of the composition is preferably 2 to 50 parts by mass. When the solid content of the composition is 50 parts by mass or less, since the viscosity of the composition becomes low, the thickness of the horizontally aligned liquid crystal cured film becomes substantially uniform, and the unevenness in the horizontally aligned liquid crystal cured film tends to hardly occur. is there. The solid content can be appropriately determined in consideration of the thickness of the horizontally aligned liquid crystal cured film to be manufactured.

重合開始剤は、熱又は光の寄与によって反応活性種を生成し、重合性液晶等の重合反応を開始し得る化合物である。反応活性種としては、ラジカル、カチオン、又はアニオン等の活性種が挙げられる。中でも反応制御が容易であるという観点から、光照射によって反応が進行する光重合開始剤が好ましい。   The polymerization initiator is a compound capable of generating a reactive species by the contribution of heat or light and initiating a polymerization reaction such as a polymerizable liquid crystal. Examples of the reactive species include active species such as radicals, cations, and anions. Among these, from the viewpoint of easy reaction control, a photopolymerization initiator in which the reaction proceeds by light irradiation is preferable.

光重合開始剤としては、光ラジカル重合開始剤、光カチオン重合開始剤等が挙げられる。光ラジカル重合開始剤としては、ベンゾイン化合物、ベンゾフェノン化合物、ベンジルケタール化合物、α−ヒドロキシケトン化合物、α−アミノケトン化合物、トリアジン化合物等が挙げられ、光カチオン重合開始剤としては、芳香族ジアゾニウム塩、芳香族ヨードニウム塩や芳香族スルホニウム塩等のオニウム塩、鉄−アレーン錯体等が挙げられる。
具体的には、イルガキュア(Irgacure、登録商標)907、イルガキュア184、イルガキュア651、イルガキュア819、イルガキュア250、イルガキュア369、イルガキュア379、イルガキュア127、イルガキュア2959、イルガキュア754、イルガキュア379EG(以上、BASFジャパン株式会社製)、セイクオールBZ、セイクオールZ、セイクオールBEE(以上、精工化学株式会社製)、カヤキュアー(Kayacure)BP100(日本化薬株式会社製)、カヤキュアーUVI−6992(ダウ社製)、アデカオプトマーSP−152、アデカオプトマーSP−170、アデカオプトマーN−1717、アデカオプトマーN−1919、アデカアークルズNCI−831、アデカアークルズNCI−930(以上、株式会社ADEKA製)、TAZ−A、TAZ−PP(以上、日本シイベルヘグナー社製)及びTAZ−104(三和ケミカル社製)、カヤラッド(登録商標)シリーズ(日本化薬株式会社製)、サイラキュア UVIシリーズ(ダウケミカル社製)、CPIシリーズ(サンアプロ株式会社製)、TAZ、BBI及びDTS(以上、みどり化学株式会社製)、RHODORSIL(登録商標)(ローディア株式会社製)等が挙げられる。光重合開始剤は単独又は二種以上組合わせて使用できる。これらの中でも反応制御が容易であるという観点から、光照射によってラジカルを発生する光ラジカル重合開始剤が好ましい。
Examples of the photopolymerization initiator include a photoradical polymerization initiator and a photocationic polymerization initiator. Examples of the photoradical polymerization initiator include benzoin compounds, benzophenone compounds, benzyl ketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, triazine compounds, and the like. Examples of photocationic polymerization initiators include aromatic diazonium salts and aromatic compounds. Onium salts such as group iodonium salts and aromatic sulfonium salts, and iron-arene complexes.
Specifically, Irgacure (registered trademark) 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369, Irgacure 379, Irgacure 127, Irgacure 2959, Irgacure 754, Irgacure 379EG (Inc. ), Sequol BZ, Sequol Z, Sequol BEE (manufactured by Seiko Chemical Co., Ltd.), Kayacure BP100 (Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (Dow), Adekaoptomer SP- 152, Adekaoptomer SP-170, Adekaoptomer N-1717, Adekaoptomer N-1919, Adeka Arcles NCI-831, Adeka Arcles NC -930 (above, manufactured by ADEKA Corporation), TAZ-A, TAZ-PP (above, manufactured by Nippon Shibel Hegner) and TAZ-104 (produced by Sanwa Chemical Co., Ltd.), Kayrad (registered trademark) series (Nippon Kayaku Co., Ltd.) ), Cyracure UVI series (manufactured by Dow Chemical Co., Ltd.), CPI series (manufactured by San Apro Co., Ltd.), TAZ, BBI and DTS (manufactured by Midori Chemical Co., Ltd.), RHODORSIL (registered trademark) (manufactured by Rhodia Co., Ltd.), etc. Can be mentioned. A photoinitiator can be used individually or in combination of 2 or more types. Among these, from the viewpoint of easy reaction control, a photo radical polymerization initiator that generates radicals by light irradiation is preferable.

光重合開始剤は、光源から発せられるエネルギーを十分に活用でき、生産性に優れるという観点から、極大吸収波長が300nm〜400nmの範囲に存在する事が好ましく、300nm〜380nmの範囲に存在する事がより好ましい。また、同様の観点からα−アセトフェノン系重合開始剤、オキシム系光重合開始剤が好ましい。   The photopolymerization initiator preferably has a maximum absorption wavelength in the range of 300 nm to 400 nm, preferably in the range of 300 nm to 380 nm, from the viewpoint that it can fully utilize the energy emitted from the light source and is excellent in productivity. Is more preferable. From the same viewpoint, α-acetophenone polymerization initiators and oxime photopolymerization initiators are preferred.

α−アセトフェノン系重合開始剤としては、例えば、2−メチル−2−モルホリノ−1−(4−メチルスルファニルフェニル)プロパン−1−オン、2−ジメチルアミノ−1−(4−モルホリノフェニル)−2−ベンジルブタン−1−オン及び2−ジメチルアミノ−1−(4−モルホリノフェニル)−2−(4−メチルフェニルメチル)ブタン−1−オン等が挙げられ、より好ましくは2−メチル−2−モルホリノ−1−(4−メチルスルファニルフェニル)プロパン−1−オン及び2−ジメチルアミノ−1−(4−モルホリノフェニル)−2−ベンジルブタン−1−オンが挙げられる。α−アセトフェノン化合物の市販品としては、イルガキュア369、379EG、907(以上、BASFジャパン(株)製)及びセイクオールBEE(精工化学社製)等が挙げられる。   Examples of the α-acetophenone polymerization initiator include 2-methyl-2-morpholino-1- (4-methylsulfanylphenyl) propan-1-one, 2-dimethylamino-1- (4-morpholinophenyl) -2. -Benzylbutan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2- (4-methylphenylmethyl) butan-1-one, and the like, more preferably 2-methyl-2- And morpholino-1- (4-methylsulfanylphenyl) propan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutan-1-one. Examples of commercially available products of α-acetophenone compounds include Irgacure 369, 379EG, 907 (above, manufactured by BASF Japan Ltd.), Sequol BEE (manufactured by Seiko Chemical Co., Ltd.), and the like.

オキシム系光重合開始剤は、光が照射されることによってラジカルを生成させる。このラジカルにより水平配向液晶硬化膜の深部における重合性液晶化合物の重合が好適に進行する。また、水平配向液晶硬化膜の深部での重合反応をより効率的に進行させるという観点から、波長350nm以上の紫外線を効率的に利用可能な光重合開始剤を使用することが好ましい。波長350nm以上の紫外線を効率的に利用可能な光重合開始剤としては、トリアジン化合物やオキシムエステル型カルバゾール化合物が好ましく、感度の観点からはオキシムエステル型カルバゾール化合物がより好ましい。オキシムエステル型カルバゾール化合物としては、例えば1,2−オクタンジオン、1−[4−(フェニルチオ)−2−(O−ベンゾイルオキシム)]、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−1−(O−アセチルオキシム)等が挙げられる。オキシムエステル型カルバゾール化合物の市販品としては、イルガキュアOXE−01、イルガキュアOXE−02、イルガキュアOXE−03(以上、BASFジャパン株式会社製)、アデカオプトマーN−1919、アデカアークルズNCI−831(以上、株式会社ADEKA製)等が挙げられる。   The oxime photopolymerization initiator generates radicals when irradiated with light. Polymerization of the polymerizable liquid crystal compound in the deep part of the horizontally aligned liquid crystal cured film suitably proceeds by this radical. Moreover, it is preferable to use the photoinitiator which can utilize the ultraviolet-ray with a wavelength of 350 nm or more efficiently from a viewpoint of making a polymerization reaction in the deep part of a horizontal alignment liquid crystal cured film progress more efficiently. As a photopolymerization initiator capable of efficiently using ultraviolet rays having a wavelength of 350 nm or more, a triazine compound or an oxime ester type carbazole compound is preferable, and an oxime ester type carbazole compound is more preferable from the viewpoint of sensitivity. Examples of the oxime ester type carbazole compound include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methyl). Benzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) and the like. Commercially available oxime ester type carbazole compounds include Irgacure OXE-01, Irgacure OXE-02, Irgacure OXE-03 (above, manufactured by BASF Japan Ltd.), Adekaoptomer N-1919, Adeka Arcles NCI-831 (or more ADEKA Co., Ltd.).

光重合開始剤の添加量は、重合性液晶化合物100質量部に対して、通常、0.1〜30質量部であり、好ましくは1〜20質量部であり、より好ましくは1〜15質量部である。上記範囲内であれば、重合性基の反応が十分に進行し、かつ、重合性液晶化合物の配向を乱し難い。   The addition amount of the photopolymerization initiator is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. It is. If it is in the said range, reaction of a polymeric group will fully advance and it will be hard to disturb the orientation of a polymeric liquid crystal compound.

重合禁止剤を配合することにより、重合性液晶化合物の重合反応をコントロールすることができる。重合禁止剤としては、ハイドロキノン及びアルキルエーテル等の置換基を有するハイドロキノン類;ブチルカテコール等のアルキルエーテル等の置換基を有するカテコール類;ピロガロール類、2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル等のラジカル補捉剤;チオフェノール類;β−ナフチルアミン類及びβ−ナフトール類が挙げられる。重合性液晶化合物の配向を乱すことなく、重合性液晶化合物を重合するためには、重合禁止剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01〜10質量部であり、好ましくは0.1〜5質量部であり、さらに好ましくは0.1〜3質量部である。重合禁止剤は単独又は二種以上組み合わせて使用できる。   By blending a polymerization inhibitor, the polymerization reaction of the polymerizable liquid crystal compound can be controlled. Polymerization inhibitors include hydroquinones having substituents such as hydroquinone and alkyl ethers; catechols having substituents such as alkyl ethers such as butylcatechol; pyrogallols, 2,2,6,6-tetramethyl-1- And radical scavengers such as piperidinyloxy radical; thiophenols; β-naphthylamines and β-naphthols. In order to polymerize the polymerizable liquid crystal compound without disturbing the alignment of the polymerizable liquid crystal compound, the content of the polymerization inhibitor is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Yes, preferably 0.1-5 parts by mass, more preferably 0.1-3 parts by mass. A polymerization inhibitor can be used individually or in combination of 2 or more types.

さらに、光増感剤を用いることにより、光重合開始剤を高感度化することができる。光増感剤としては、例えば、キサントン、チオキサントン等のキサントン類;アントラセン及びアルキルエーテル等の置換基を有するアントラセン類;フェノチアジン;ルブレンが挙げられる。光増感剤は単独又は二種以上組み合わせて使用できる。光増感剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01〜10質量部であり、好ましくは0.05〜5質量部であり、さらに好ましくは0.1〜3質量部である。   Furthermore, the sensitivity of the photopolymerization initiator can be increased by using a photosensitizer. Examples of the photosensitizer include xanthones such as xanthone and thioxanthone; anthracene having a substituent such as anthracene and alkyl ether; phenothiazine; and rubrene. A photosensitizer can be used individually or in combination of 2 or more types. Content of a photosensitizer is 0.01-10 mass parts normally with respect to 100 mass parts of polymeric liquid crystal compounds, Preferably it is 0.05-5 mass parts, More preferably, it is 0.1-10 mass parts. 3 parts by mass.

レベリング剤とは、重合性液晶組成物の流動性を調整し、組成物を塗布して得られる層をより平坦にする機能を有する添加剤であり、例えば、シランカップリング剤等のシリコーン系及びポリアクリレート系及びパーフルオロアルキル系のレベリング剤が挙げられる。具体的には、DC3PA、SH7PA、DC11PA、SH28PA、SH29PA、SH30PA、ST80PA、ST86PA、SH8400、SH8700、FZ2123(以上、全て東レ・ダウコーニング(株)製)、KP321、KP323、KP324、KP326、KP340、KP341、X22−161A、KF6001、KBM−1003、KBE−1003、KBM−303、KBM−402、KBM−403、KBE−402、KBE−403、KBM−1403、KBM−502、KBM−503、KBE−502、KBE−503、KBM−5103、KBM−602、KBM−603、KBM−903、KBE−903、KBE−9103、KBM−573、KBM−575、KBE−585、KBM−802、KBM−802、KBM−803、KBE−846、KBE−9007(以上、全て信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF−4446、TSF4452、TSF4460(以上、全てモメンティブ パフォーマンス マテリアルズ ジャパン合同会社製)、フロリナート(fluorinert)(登録商標)FC−72、同FC−40、同FC−43、同FC−3283(以上、全て住友スリーエム(株)製)、メガファック(登録商標)R−08、同R−30、同R−90、同F−410、同F−411、同F−443、同F−445、同F−470、同F−477、同F−479、同F−482、同F−483(以上、いずれもDIC(株)製)、エフトップ(商品名)EF301、同EF303、同EF351、同EF352(以上、全て三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S−381、同S−382、同S−383、同S−393、同SC−101、同SC−105、KH−40、SA−100(以上、全てAGCセイミケミカル(株)製)、商品名E1830、同E5844((株)ダイキンファインケミカル研究所製)、BM−1000、BM−1100、BYK−352、BYK−353及びBYK−361N(いずれも商品名:BM Chemie社製)等が挙げられる。レベリング剤は単独又は二種以上組み合わせて使用できる。   The leveling agent is an additive having a function of adjusting the fluidity of the polymerizable liquid crystal composition and making the layer obtained by applying the composition more flat, for example, a silicone system such as a silane coupling agent and the like. Examples include polyacrylate-based and perfluoroalkyl-based leveling agents. Specifically, DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all are manufactured by Toray Dow Corning Co., Ltd.), KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001, KBM-1003, KBE-1003, KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-1403, KBM-502, KBM-503, KBE- 502, KBE-503, KBM-5103, KBM-602, KBM-603, KBM-903, KBE-903, KBE-9103, KBM-573, KBM-575, KBE-585, KBM-80 , KBM-802, KBM-803, KBE-846, KBE-9007 (all manufactured by Shin-Etsu Chemical Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452, TSF4460 (and above) , All by Momentive Performance Materials Japan LLC), Fluorinert (registered trademark) FC-72, FC-40, FC-43, FC-3283 (all above, all made by Sumitomo 3M), Megafuck (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, F-470, F-477, F-479, F-482, F-483 (all of which are DIC ( )), Ftop (trade name) EF301, EF303, EF351, EF351, EF352 (all manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.), Surflon (registered trademark) S-381, S-382, S -383, S-393, SC-101, SC-105, KH-40, SA-100 (all are manufactured by AGC Seimi Chemical Co., Ltd.), trade names E1830, E5844 (Daikin Fine Chemical Co., Ltd.) Laboratories), BM-1000, BM-1100, BYK-352, BYK-353 and BYK-361N (all trade names: manufactured by BM Chemie). Leveling agents can be used alone or in combination of two or more.

レベリング剤の含有量は、重合性液晶化合物100質量部に対して、0.01〜5質量部が好ましく、0.05〜3質量部がさらに好ましい。レベリング剤の含有量が、上記範囲内であると、得られる水平配向液晶硬化膜がより平滑となる傾向があるため好ましい。   0.01-5 mass parts is preferable with respect to 100 mass parts of polymerizable liquid crystal compounds, and, as for content of a leveling agent, 0.05-3 mass parts is more preferable. It is preferable that the content of the leveling agent is within the above range because the obtained horizontal alignment liquid crystal cured film tends to be smoother.

重合性液晶組成物は、重合性液晶化合物と、添加剤等の重合性液晶化合物以外の成分とを所定温度で撹拌等することにより得ることができる。   The polymerizable liquid crystal composition can be obtained by stirring the polymerizable liquid crystal compound and components other than the polymerizable liquid crystal compound such as an additive at a predetermined temperature.

水平配向液晶硬化膜は、前記重合性液晶組成物を後述する水平配向膜上に塗布し、次いで溶媒を除去し、配向状態の重合性液晶化合物を含む重合性液晶組成物を加熱及び/又は活性エネルギー線によって硬化させて得ることができる。   The horizontally aligned liquid crystal cured film is formed by applying the polymerizable liquid crystal composition onto a horizontal alignment film described later, then removing the solvent, and heating and / or activating the polymerizable liquid crystal composition containing the aligned polymerizable liquid crystal compound. It can be obtained by curing with energy rays.

重合性液晶組成物を水平配向膜上に塗布する方法(以下、塗布方法Aという場合がある)としては、例えば押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、CAPコーティング法、スリットコーティング法、マイクログラビア法、ダイコーティング法、インクジェット法等が挙げられる。また、ディップコーター、バーコーター、スピンコーター等のコーターを用いて塗布する方法等も挙げられる。中でも、Roll to Roll形式で連続的に塗布する場合には、マイクログラビア法、インクジェット法、スリットコーティング法、ダイコーティング法による塗布方法が好ましい。   Examples of the method for applying the polymerizable liquid crystal composition on the horizontal alignment film (hereinafter sometimes referred to as application method A) include, for example, extrusion coating method, direct gravure coating method, reverse gravure coating method, CAP coating method, and slit coating method. , Micro gravure method, die coating method, ink jet method and the like. Moreover, the method of apply | coating using coaters, such as a dip coater, a bar coater, a spin coater, etc. are mentioned. Among these, in the case of continuous application in the Roll to Roll format, an application method by a micro gravure method, an inkjet method, a slit coating method, or a die coating method is preferable.

溶媒を除去する方法(以下、溶媒除去方法Aという場合がある)としては、例えば、自然乾燥、通風乾燥、加熱乾燥、減圧乾燥及びこれらを組み合わせた方法が挙げられる。中でも、自然乾燥又は加熱乾燥が好ましい。乾燥温度は、0〜200℃の範囲が好ましく、20〜150℃の範囲がより好ましく、50〜130℃の範囲がさらに好ましい。乾燥時間は、10秒間〜20分間が好ましく、より好ましくは30秒間〜10分間である。   Examples of the method for removing the solvent (hereinafter sometimes referred to as “solvent removal method A”) include natural drying, ventilation drying, heat drying, reduced pressure drying, and a combination thereof. Of these, natural drying or heat drying is preferable. The drying temperature is preferably in the range of 0 to 200 ° C, more preferably in the range of 20 to 150 ° C, and still more preferably in the range of 50 to 130 ° C. The drying time is preferably 10 seconds to 20 minutes, more preferably 30 seconds to 10 minutes.

照射する活性エネルギー線としては、重合性液晶化合物の種類(特に、重合性液晶化合物が有する光重合性官能基の種類)、光重合開始剤を含む場合には光重合開始剤の種類、及びそれらの量に応じて適宜選択される。具体的には、可視光、紫外光、赤外光、X線、α線、β線、及びγ線からなる群より選択される一種以上の光が挙げられる。中でも、重合反応の進行を制御し易い点、及び光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって光重合可能なように、重合性液晶化合物の種類を選択することが好ましい。   The active energy rays to be irradiated include the type of polymerizable liquid crystal compound (particularly the type of photopolymerizable functional group possessed by the polymerizable liquid crystal compound), the type of photopolymerization initiator when it contains a photopolymerization initiator, and those It is appropriately selected according to the amount of Specifically, one or more kinds of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, α-rays, β-rays, and γ-rays can be used. Among them, ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction and that a photopolymerization apparatus widely used in this field can be used. It is preferable to select the kind of the liquid crystalline compound.

前記活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380〜440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。   Examples of the light source of the active energy ray include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, and a wavelength range. Examples include LED light sources that emit light of 380 to 440 nm, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, and the like.

紫外線照射強度は、通常、10〜3,000mW/cmである。紫外線照射強度は、好ましくは光カチオン重合開始剤又は光ラジカル重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒〜10分であり、好ましくは0.1秒〜5分、より好ましくは0.1秒〜3分、さらに好ましくは0.1秒〜1分である。
このような紫外線照射強度で1回又は複数回照射すると、その積算光量は、10〜3,000mJ/cm、好ましくは50〜2,000mJ/cm、より好ましくは100〜1,000mJ/cmである。積算光量が上記の下限以下である場合には、重合性液晶化合物の硬化が不十分となり、良好な転写性が得られない場合がある。逆に、積算光量が上記の上限以上である場合には、水平配向液晶硬化膜を含む光学補償機能付き位相差板が着色する場合がある。
The ultraviolet irradiation intensity is usually 10 to 3,000 mW / cm 2 . The ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the photocationic polymerization initiator or the photoradical polymerization initiator. The time for irradiating light is usually 0.1 second to 10 minutes, preferably 0.1 second to 5 minutes, more preferably 0.1 second to 3 minutes, and further preferably 0.1 second to 1 minute. is there.
When irradiating once or a plurality of times with such ultraviolet irradiation intensity, the integrated light quantity is 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , more preferably 100 to 1,000 mJ / cm 2 . 2 . When the integrated light quantity is less than or equal to the above lower limit, curing of the polymerizable liquid crystal compound becomes insufficient, and good transferability may not be obtained. On the contrary, when the integrated light quantity is equal to or more than the above upper limit, the retardation film with an optical compensation function including the horizontally aligned liquid crystal cured film may be colored.

水平配向液晶硬化膜の膜厚は、機能性フィルムの薄膜化の観点から、好ましくは5μm以下であり、より好ましくは3μm以下、さらに好ましくは2.5μm以下である。また、水平配向液晶硬化膜の膜厚の下限は、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1.0μm以上である。水平配向液晶硬化膜の膜厚は、エリプソメータ又は接触式膜厚計を用いて測定することができる。   The thickness of the horizontally aligned liquid crystal cured film is preferably 5 μm or less, more preferably 3 μm or less, and further preferably 2.5 μm or less, from the viewpoint of thinning the functional film. Further, the lower limit of the thickness of the horizontally aligned liquid crystal cured film is preferably 0.1 μm or more, more preferably 0.5 μm or more, and further preferably 1.0 μm or more. The thickness of the horizontally aligned liquid crystal cured film can be measured using an ellipsometer or a contact-type film thickness meter.

〔水平配向膜〕
配向膜は液晶硬化膜の重合性液晶化合物を所定方向に配向させる配向規制力を有する膜である。配向規制力を発現させるために必要な配向処理としては、ラビング処理、光配向処理、光照射処理等があげられる。また、配向膜の種類やラビング条件や光照射条件によって、垂直配向、水平配向、ハイブリッド配向、及び傾斜配向等の様々な配向の制御が可能である。この中でも、水平配向膜は液晶硬化膜の重合性液晶化合物を水平方向に配向させる配向規制力を有する配向膜である。このため、水平配向膜を用いることで、水平配向液晶膜を形成することができる。
[Horizontal alignment film]
The alignment film is a film having an alignment regulating force for aligning the polymerizable liquid crystal compound of the liquid crystal cured film in a predetermined direction. Examples of the alignment treatment necessary for developing the alignment regulating force include rubbing treatment, photo-alignment treatment, and light irradiation treatment. Various orientations such as vertical orientation, horizontal orientation, hybrid orientation, and tilt orientation can be controlled depending on the type of alignment film, rubbing conditions, and light irradiation conditions. Among these, the horizontal alignment film is an alignment film having an alignment regulating force for aligning the polymerizable liquid crystal compound of the liquid crystal cured film in the horizontal direction. For this reason, a horizontal alignment liquid crystal film can be formed by using a horizontal alignment film.

配向膜としては、重合性液晶組成物の塗布等により溶解しない溶媒耐性を有し、また、溶媒の除去や重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。   The alignment film preferably has a solvent resistance that does not dissolve when the polymerizable liquid crystal composition is applied or the like, and has heat resistance in heat treatment for removing the solvent or aligning the polymerizable liquid crystal compound.

水平配向液晶硬化膜を水平方向に配向させる配向規制力を示す水平配向膜としては、ラビング配向膜、光配向膜及び、表面に凹凸パターンや複数の溝を有するグルブ配向膜等が挙げられる。例えば長尺のロール状フィルムに適用する場合には、配向方向を容易に制御できる点で、光配向膜が好ましい。   Examples of the horizontal alignment film showing the alignment regulating force for aligning the horizontally aligned liquid crystal cured film in the horizontal direction include a rubbing alignment film, a photo alignment film, and a groove alignment film having a concavo-convex pattern and a plurality of grooves on the surface. For example, when applying to a long roll-shaped film, a photo-alignment film is preferable in that the alignment direction can be easily controlled.

ラビング配向膜は、通常、配向性ポリマーと溶媒とを含む組成物(以下、ラビング配向膜形成用組成物ともいう)を基材等の上に塗布し、溶媒を除去して塗布膜を形成し、該塗布膜をラビングすることで配向規制力を付与することができる。   A rubbing alignment film is usually formed by applying a composition containing an orientation polymer and a solvent (hereinafter also referred to as a rubbing alignment film forming composition) onto a substrate, etc., and removing the solvent to form a coating film. The orientation regulating force can be applied by rubbing the coating film.

配向性ポリマーとしては、例えば、アミド結合を有するポリアミドやゼラチン類、イミド結合を有するポリイミド及びその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸及びポリアクリル酸エステル類が挙げられる。これらの配向性ポリマーは単独又は二種以上組み合わせて使用できる。   Examples of the orientation polymer include polyamides and gelatins having an amide bond, polyimides having an imide bond, and polyamic acid, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, polyoxazole, polyethyleneimine, polystyrene having imide bonds. , Polyvinyl pyrrolidone, polyacrylic acid and polyacrylic acid esters. These orientation polymers can be used alone or in combination of two or more.

ラビング配向膜形成用組成物中の配向性ポリマーの濃度は、配向性ポリマーが溶媒に完溶する範囲であればよい。配向性ポリマーの含有量は、該組成物100質量部に対して、好ましくは0.1〜20質量部であり、より好ましくは0.1〜10質量部である。   The concentration of the alignment polymer in the composition for forming a rubbing alignment film may be in a range in which the alignment polymer is completely dissolved in the solvent. The content of the orientation polymer is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the composition.

ラビング配向膜形成用組成物は、市場から入手できる。市販品としては、サンエバー(登録商標、日産化学工業(株)製)、オプトマー(登録商標、JSR(株)製)等が挙げられる。   The composition for forming a rubbing alignment film can be obtained from the market. Examples of commercially available products include San Ever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.), Optmer (registered trademark, manufactured by JSR).

溶媒は、例えば水平配向液晶硬化膜の項で例示した溶媒を使用することができる。ラビング配向膜形成用組成物を基材等に塗布する方法としては、前記塗布方法Aが挙げられ、溶媒を除去する方法としては、前記溶媒除去方法Aが挙げられる。   As the solvent, for example, the solvent exemplified in the section of the horizontally aligned liquid crystal cured film can be used. Examples of the method for applying the rubbing alignment film forming composition to a substrate or the like include the application method A, and examples of the method for removing the solvent include the solvent removal method A.

ラビング処理の方法としては、例えば、ラビング布が巻きつけられ、回転しているラビングロールに、前記塗布膜を接触させる方法が挙げられる。ラビング処理を行う時に、マスキングを行えば、配向の方向が異なる複数の領域(パターン)を配向膜に形成することもできる。   Examples of the rubbing treatment include a method in which a rubbing cloth is wound and the coating film is brought into contact with a rotating rubbing roll. If masking is performed when the rubbing treatment is performed, a plurality of regions (patterns) having different orientation directions can be formed in the alignment film.

光配向膜は、通常、光反応性基を有するポリマー又はモノマーと溶媒とを含む組成物(光配向膜形成用組成物ともいう)を基材等の上に塗布し、溶媒を除去後に偏光(好ましくは、偏光UV)を照射することで得られる。光配向膜は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御することができる。   For the photo-alignment film, a composition containing a polymer or monomer having a photoreactive group and a solvent (also referred to as a composition for forming a photo-alignment film) is usually applied on a base material, etc. Preferably, it is obtained by irradiation with polarized UV). The photo-alignment film can arbitrarily control the direction of the alignment regulating force by selecting the polarization direction of the polarized light to be irradiated.

光反応性基とは、光照射することにより配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起反応、異性化反応、光二量化反応、光架橋反応もしくは光分解反応等の配向能の起源となる光反応に関与する基が挙げられる。光反応性基としては、不飽和結合、特に二重結合を有する基が好ましく、炭素−炭素二重結合(C=C結合)、炭素−窒素二重結合(C=N結合)、窒素−窒素二重結合(N=N結合)及び炭素−酸素二重結合(C=O結合)からなる群より選ばれる少なくとも一つを有する基が特に好ましい。   The photoreactive group refers to a group that generates alignment ability when irradiated with light. Specific examples include groups that are involved in photoreactions that are the origin of alignment ability, such as alignment-induced reactions, isomerization reactions, photodimerization reactions, photocrosslinking reactions, or photodecomposition reactions of molecules generated by light irradiation. As the photoreactive group, an unsaturated bond, particularly a group having a double bond is preferable, and a carbon-carbon double bond (C = C bond), a carbon-nitrogen double bond (C = N bond), and nitrogen-nitrogen. A group having at least one selected from the group consisting of a double bond (N═N bond) and a carbon-oxygen double bond (C═O bond) is particularly preferred.

C=C結合を有する光反応性基としては、例えば、ビニル基、ポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、カルコン基及びシンナモイル基が挙げられる。C=N結合を有する光反応性基としては、例えば、芳香族シッフ塩基、芳香族ヒドラゾン等の構造を有する基が挙げられる。N=N結合を有する光反応性基としては、例えば、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、及び、アゾキシベンゼン構造を有する基が挙げられる。C=O結合を有する光反応性基としては、例えば、ベンゾフェノン基、クマリン基、アントラキノン基及びマレイミド基が挙げられる。これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基等の置換基を有していてもよい。   Examples of the photoreactive group having a C═C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group, and a cinnamoyl group. Examples of the photoreactive group having a C═N bond include groups having a structure such as an aromatic Schiff base and an aromatic hydrazone. Examples of the photoreactive group having an N = N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and a group having an azoxybenzene structure. Examples of the photoreactive group having a C═O bond include a benzophenone group, a coumarin group, an anthraquinone group, and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, and a halogenated alkyl group.

光二量化反応又は光架橋反応に関与する基が、配向性に優れる点で好ましい。中でも、光二量化反応に関与する光反応性基が好ましく、配向に必要な偏光照射量が比較的少なく、かつ熱安定性や経時安定性に優れる光配向膜が得られやすいという点で、シンナモイル基及びカルコン基が好ましい。光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造又は桂皮酸エステル構造となるようなシンナモイル基を有するものが特に好ましい。   A group involved in the photodimerization reaction or the photocrosslinking reaction is preferable in terms of excellent orientation. Among them, a photoreactive group involved in the photodimerization reaction is preferable, and a cinnamoyl group is preferable in that a photoalignment film having a relatively small amount of polarized light irradiation necessary for alignment and having excellent thermal stability and stability over time can be easily obtained. And chalcone groups are preferred. As the polymer having a photoreactive group, a polymer having a cinnamoyl group in which the terminal portion of the polymer side chain has a cinnamic acid structure or a cinnamic acid ester structure is particularly preferable.

光反応性基を有するポリマー又はモノマーの含有量は、ポリマー又はモノマーの種類や目的とする光配向膜の厚さによって調節でき、光配向膜形成用組成物100質量部に対して、少なくとも0.2質量部以上とすることが好ましく、0.3〜10質量部の範囲がより好ましい。   Content of the polymer or monomer which has a photoreactive group can be adjusted with the kind of polymer or monomer, and the thickness of the target photo-alignment film | membrane, and is at least 0.00 with respect to 100 mass parts of compositions for photo-alignment film formation. It is preferable to set it as 2 mass parts or more, and the range of 0.3-10 mass parts is more preferable.

溶媒は、例えば水平配向液晶硬化膜の項で例示した溶媒を使用することができる。光配向膜形成用組成物を基材等の上に塗布する方法としては、前記塗布方法Aが挙げられ、溶媒を除去する方法としては、前記溶媒除去方法Aが挙げられる。   As the solvent, for example, the solvent exemplified in the section of the horizontally aligned liquid crystal cured film can be used. Examples of the method for applying the composition for forming a photo-alignment film on a substrate and the like include the application method A, and examples of the method for removing the solvent include the solvent removal method A.

偏光を照射するには、例えば、基材等の上に塗布された光配向膜形成用組成物から、溶媒を除去したものに直接、偏光を照射する形式であってよい。また、当該偏光は、実質的に平行光であると好ましい。照射する偏光の波長は、光反応性基を有するポリマー又はモノマーの光反応性基が、光エネルギーを吸収し得る波長域のものがよい。具体的には、波長250〜400nmの範囲のUV(紫外線)が特に好ましい。当該偏光を照射する光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArF等の紫外光レーザー等が挙げられる。中でも、高圧水銀ランプ、超高圧水銀ランプ及びメタルハライドランプが、波長313nmの紫外線の発光強度が大きいため好ましい。前記光源からの光を、適当な偏光素子を通過して照射することにより、偏光UVを照射することができる。偏光素子としては、偏光フィルター、グラントムソン、及びグランテーラー等の偏光プリズム、ならびにワイヤーグリッドが挙げられる。中でも大面積化と熱による耐性の観点からワイヤーグリッドタイプの偏光素子が好ましい。   In order to irradiate polarized light, for example, it may be in the form of irradiating polarized light directly to a composition obtained by removing a solvent from a composition for forming a photo-alignment film applied on a substrate or the like. The polarized light is preferably substantially parallel light. The wavelength of the polarized light to be irradiated should be in a wavelength range where the photoreactive group of the polymer or monomer having the photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength in the range of 250 to 400 nm is particularly preferable. Examples of the light source for irradiating the polarized light include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet lasers such as KrF and ArF, and the like. Among these, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, and a metal halide lamp are preferable because of high emission intensity of ultraviolet rays having a wavelength of 313 nm. By irradiating light from the light source through an appropriate polarizing element, polarized UV light can be irradiated. Examples of the polarizing element include a polarizing prism such as a polarizing filter, Glan Thompson, and Grand Taylor, and a wire grid. Among these, a wire grid type polarizing element is preferable from the viewpoint of an increase in area and resistance to heat.

なお、ラビング又は偏光照射を行うときに、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。   Note that a plurality of regions (patterns) having different liquid crystal alignment directions can be formed by performing masking when performing rubbing or polarized light irradiation.

グルブ(groove)配向膜は、膜表面に凹凸パターン又は複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に重合性液晶化合物を塗布した場合、その溝に沿った方向に液晶分子が配向する。   The groove alignment film is a film having a concavo-convex pattern or a plurality of grooves (grooves) on the film surface. When a polymerizable liquid crystal compound is applied to a film having a plurality of linear grooves arranged at equal intervals, liquid crystal molecules are aligned in a direction along the groove.

グルブ配向膜を得る方法としては、感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光後、現像及びリンス処理を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、硬化前のUV硬化樹脂の層を形成し、形成された樹脂層を基材等へ移してから硬化する方法、及び、基材等の上に形成した硬化前のUV硬化樹脂の膜に、複数の溝を有するロール状の原盤を押し当てて凹凸を形成し、その後硬化する方法等が挙げられる。   As a method for obtaining a groove alignment film, a method of forming a concavo-convex pattern by performing development and rinsing after exposure through an exposure mask having a pattern-shaped slit on the photosensitive polyimide film surface, a plate having grooves on the surface A method of forming a layer of a UV curable resin before curing on a sheet-shaped master, transferring the formed resin layer to a base material, etc., and curing, and a UV curable resin before curing formed on the base material, etc. For example, a method in which a roll-shaped master having a plurality of grooves is pressed against the film to form irregularities and then cured is used.

前記ラビング配向膜形成用組成物、前記光配向膜形成用組成物等の水平配向膜形成用組成物は、溶媒の他、水平配向液晶硬化膜の項に例示の添加剤等を含むことができる。   The composition for forming a horizontal alignment film such as the composition for forming a rubbing alignment film and the composition for forming a photo-alignment film can contain additives exemplified in the section of the horizontal alignment liquid crystal cured film in addition to the solvent. .

水平配向膜の膜厚は、光学補償機能付き位相差板の薄膜化の観点から、好ましくは1μm以下、より好ましくは0.5μm以下、さらに好ましくは0.3μm以下である。また、水平配向膜の膜厚は、好ましくは1nm以上、より好ましくは5nm以上、さらに好ましくは10nm以上、特に好ましくは30nm以上である。水平配向膜の膜厚は、エリプソメータ又は接触式膜厚計を用いて測定することができる。   The thickness of the horizontal alignment film is preferably 1 μm or less, more preferably 0.5 μm or less, and still more preferably 0.3 μm or less, from the viewpoint of thinning the retardation film with an optical compensation function. The film thickness of the horizontal alignment film is preferably 1 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, and particularly preferably 30 nm or more. The film thickness of the horizontal alignment film can be measured using an ellipsometer or a contact-type film thickness meter.

[垂直配向液晶硬化膜]
水平配向液晶硬化膜はフィルム平面に対して垂直な方向に屈折率異方性を有する膜であって、重合性液晶化合物を含む重合体からなる。垂直配向液晶硬化膜の形成は、重合性液晶組成物を垂直配向膜上に塗布し、加熱及び/又は光照射によって、配向状態の重合性液晶化合物を含む重合性液晶組成物を重合させる方法で行うことが、垂直配向液晶硬化膜の薄膜化及び波長分散特性を任意に設計できる点で好ましい。
[Vertical alignment liquid crystal cured film]
The horizontally aligned liquid crystal cured film is a film having refractive index anisotropy in a direction perpendicular to the film plane, and is made of a polymer containing a polymerizable liquid crystal compound. The vertical alignment liquid crystal cured film is formed by a method in which a polymerizable liquid crystal composition is applied on the vertical alignment film, and the polymerizable liquid crystal composition containing the polymerizable liquid crystal compound in an alignment state is polymerized by heating and / or light irradiation. It is preferable to perform this because the thickness of the vertically aligned liquid crystal cured film and the wavelength dispersion characteristics can be arbitrarily designed.

垂直配向液晶硬化膜が形成する3次元屈折率楕円体は2軸性を有していてもよいが、1軸性を有することが好ましい。垂直配向液晶硬化膜は、液晶硬化膜の平面に対して垂直方向に配向した状態の重合性液晶化合物を含む重合性液晶組成物の重合体からなる垂直配向液晶硬化膜であってもよいし、ハイブリッド配向液晶硬化膜又は傾斜配向液晶硬化膜であってもよい。重合性液晶の配向により形成される屈折率楕円体における3方向の屈折率nx、ny及びnzは、nz>nx≒ny(ポジティブCプレートという)、又はnz<nx≒ny(ネガティブCプレートという)の関係を有していてもよい。nxは、垂直配向液晶硬化膜が形成する屈折率楕円体において、垂直配向液晶硬化膜の平面に対して平行な方向の主屈折率を表す。nyは、垂直配向液晶硬化膜が形成する屈折率楕円体において、垂直配向液晶硬化膜の平面に対して平行であり、且つ、該nxの方向に対して直交する方向の屈折率を表す。尚、nx=nyとなる場合には、nxは垂直配向液晶硬化膜の平面内で任意の方向をとる事ができる。nzは、垂直配向液晶硬化膜が形成する屈折率楕円体において、垂直配向液晶硬化膜の平面に対して垂直な方向の屈折率を表す。   The three-dimensional refractive index ellipsoid formed by the vertically aligned liquid crystal cured film may have biaxiality, but preferably has uniaxiality. The vertically aligned liquid crystal cured film may be a vertically aligned liquid crystal cured film made of a polymer of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound in a state of being aligned in a direction perpendicular to the plane of the liquid crystal cured film, It may be a hybrid alignment liquid crystal cured film or a tilt alignment liquid crystal cured film. Refractive indices nx, ny and nz in three directions in the refractive index ellipsoid formed by the alignment of the polymerizable liquid crystal are nz> nx≈ny (referred to as positive C plate) or nz <nx≈ny (referred to as negative C plate). It may have the relationship. nx represents a main refractive index in a direction parallel to the plane of the vertically aligned liquid crystal cured film in the refractive index ellipsoid formed by the vertically aligned liquid crystal cured film. ny represents a refractive index in a direction parallel to the plane of the vertically aligned liquid crystal cured film and perpendicular to the direction of nx in the refractive index ellipsoid formed by the vertically aligned liquid crystal cured film. When nx = ny, nx can take an arbitrary direction within the plane of the vertically aligned liquid crystal cured film. nz represents the refractive index in the direction perpendicular to the plane of the vertically aligned liquid crystal cured film in the refractive index ellipsoid formed by the vertically aligned liquid crystal cured film.

垂直配向液晶硬化膜は、棒状の重合性液晶と円盤状の重合性液晶のどちらであっても使用可能であるが、棒状の重合性液晶であることが好ましい。棒状の重合性液晶が垂直配向液晶硬化膜を形成する場合、垂直配向液晶硬化膜はポジティブCプレートとなる。   The vertically aligned liquid crystal cured film may be either a rod-like polymerizable liquid crystal or a disk-like polymerizable liquid crystal, but is preferably a rod-like polymerizable liquid crystal. When the rod-like polymerizable liquid crystal forms a vertically aligned liquid crystal cured film, the vertically aligned liquid crystal cured film becomes a positive C plate.

垂直配向液晶硬化膜がポジティブCプレートである場合、垂直配向液晶硬化膜は、波長λnmの光に対する厚み方向の位相差値であるRthC(λ)が、下記式(31)に示される光学特性を満たすことが好ましい。また、下記式(32)及び式(33)に示される光学特性を満たすことも好ましい。垂直配向液晶硬化膜は下記式(31)、下記式(32)及び下記式(33)で示される光学特性を満たすことがより好ましい。
−100nm≦RthC(550)≦−50nm …(31)
(式中、RthC(550)は波長550nmの光に対する厚み方向の位相差値を表す。

RthC(450)/RthC(550)≦1.0 …(32)
1.00≦RthC(650)/RthC(550) …(33)
(式中、RthC(450)は波長450nmの光に対する厚み方向の位相差値を、RthC(550)は波長550nmの光に対する厚み方向の位相差値を、RthC(650)は波長650nmの光に対する厚み方向の位相差値をそれぞれ表す。)
When the vertically aligned liquid crystal cured film is a positive C plate, RthC (λ), which is a retardation value in the thickness direction with respect to light having a wavelength of λ nm, exhibits an optical characteristic represented by the following formula (31). It is preferable to satisfy. Moreover, it is also preferable to satisfy | fill the optical characteristic shown by following formula (32) and Formula (33). It is more preferable that the vertically aligned liquid crystal cured film satisfies the optical characteristics represented by the following formula (31), the following formula (32), and the following formula (33).
−100 nm ≦ RthC (550) ≦ −50 nm (31)
(In the formula, RthC (550) represents a retardation value in the thickness direction with respect to light having a wavelength of 550 nm.
)
RthC (450) / RthC (550) ≦ 1.0 (32)
1.00 ≦ RthC (650) / RthC (550) (33)
(Where RthC (450) is the thickness direction retardation value for light of wavelength 450 nm, RthC (550) is the thickness direction retardation value for light of wavelength 550 nm, and RthC (650) is for light of wavelength 650 nm. Represents the retardation value in the thickness direction.)

垂直配向液晶硬化膜の厚み方向の位相差値RthC(550)が式(31)の範囲を超えると、光学補償機能付き位相差板を含む光学補償機能付き楕円偏光板を適用したディスプレイの斜方の色相が赤くなったり青くなったりする問題を生じうる。厚み方向の位相差値のより好ましい範囲としては、−95nm≦RthC(550)≦−55nm、さらに好ましい範囲としては−90nm≦RthC(550)≦−60nmである。垂直配向液晶硬化膜の「RthC(450)/RthC(550)」が1.0を超えると、当該垂直配向液晶硬化膜を備える楕楕円偏光板での短波長側での斜方から見た場合の楕円率が悪化する。短波長側で楕円偏光板の楕円率が悪化して1.0を外れて小さくなると、短波長側で楕円偏光板としての機能が損なわれる傾向にある。「RthC(450)/RthC(550)」は、好ましくは0.75〜0.92、より好ましくは0.77〜0.87、さらに好ましくは0.79〜0.85である。   When the retardation value RthC (550) in the thickness direction of the vertically aligned liquid crystal cured film exceeds the range of the formula (31), the display is obliquely applied with an elliptically polarizing plate with an optical compensation function including a retardation plate with an optical compensation function. This may cause a problem that the hue of the color becomes red or blue. A more preferable range of the retardation value in the thickness direction is −95 nm ≦ RthC (550) ≦ −55 nm, and a more preferable range is −90 nm ≦ RthC (550) ≦ −60 nm. When “RthC (450) / RthC (550)” of the vertically aligned liquid crystal cured film exceeds 1.0, when viewed from the oblique side on the short wavelength side of the elliptical polarizing plate provided with the vertically aligned liquid crystal cured film The ellipticity is worse. When the ellipticity of the elliptically polarizing plate deteriorates on the short wavelength side and becomes smaller than 1.0, the function as the elliptically polarizing plate tends to be impaired on the short wavelength side. “RthC (450) / RthC (550)” is preferably 0.75 to 0.92, more preferably 0.77 to 0.87, and still more preferably 0.79 to 0.85.

垂直配向液晶硬化膜の厚み方向の位相差値は、垂直配向液晶硬化膜の厚さによって調整することができる。厚み方向の位相差値は下記式(34)によって決定されることから、所望の厚み方向の位相差値(RthC(λ):波長λ(nm)における垂直配向液晶硬化膜の厚み方向の位相差値)を得るには、3次元屈折率と膜厚dCとを調整すればよい。なお、3次元屈折率は、後述する重合性液晶化合物の分子構造並びに配向性に依存する。
RthC(λ)=[(nxC(λ)+nyC(λ))/2−nzC(λ)]×dC (34)
(式中、垂直配向液晶硬化膜が形成する屈折率楕円体においてnzC(λ)>nxC(λ)≒nyC(λ)の関係を有し、式中、nzC(λ)は垂直配向液晶硬化膜が形成する屈折率楕円体において、波長λ(nm)の光に対する垂直配向液晶硬化膜平面に対して垂直な方向の屈折率を表す。nxC(λ)は垂直配向液晶硬化膜が形成する屈折率楕円体において、波長λ(nm)の光に対する垂直配向液晶硬化膜平面に対して平行な方向の最大屈折率を表す。nyC(λ)は垂直配向液晶硬化膜が形成する屈折率楕円体において、垂直配向液晶硬化膜平面に対して平行であり、且つ、前記nxCの方向に対して直交する方向の波長λ(nm)の光に対する屈折率を表す。ただし、nxC(λ)=nyC(λ)となる場合には、nxC(λ)は垂直配向液晶硬化膜平面に対して平行な任意の方向の屈折率を表す。ここで、dCは垂直配向液晶硬化膜の厚みを表す。)
The retardation value in the thickness direction of the vertically aligned liquid crystal cured film can be adjusted by the thickness of the vertically aligned liquid crystal cured film. Since the retardation value in the thickness direction is determined by the following equation (34), the retardation value in the thickness direction of the vertically aligned liquid crystal cured film at a desired thickness direction retardation value (RthC (λ): wavelength λ (nm)) Value) can be obtained by adjusting the three-dimensional refractive index and the film thickness dC. The three-dimensional refractive index depends on the molecular structure and orientation of the polymerizable liquid crystal compound described later.
RthC (λ) = [(nxC (λ) + nyC (λ)) / 2−nzC (λ)] × dC (34)
(In the formula, the refractive index ellipsoid formed by the vertically aligned liquid crystal cured film has a relationship of nzC (λ)> nxC (λ) ≈nyC (λ), where nzC (λ) is the vertically aligned liquid crystal cured film. Represents the refractive index in the direction perpendicular to the plane of the vertically aligned liquid crystal cured film with respect to light of wavelength λ (nm), and nxC (λ) is the refractive index formed by the vertically aligned liquid crystal cured film. In the ellipsoid, nyC (λ) represents the maximum refractive index in the direction parallel to the plane of the vertical alignment liquid crystal cured film with respect to light having a wavelength λ (nm), and nyC (λ) represents the refractive index ellipsoid formed by the vertical alignment liquid crystal cured film. The refractive index for light having a wavelength λ (nm) parallel to the plane of the vertically aligned liquid crystal cured film and perpendicular to the nxC direction is expressed as nxC (λ) = nyC (λ) NxC (λ) is vertical alignment It represents any direction of the refractive index parallel to the crystal cured film plane. Here, dC represents the thickness of the vertical alignment liquid crystal cured layer.)

垂直配向液晶硬化膜は、上述のように垂直配向状態の重合性液晶化合物を含む重合性液晶組成物の重合体であることが好ましい。垂直配向液晶硬化膜を形成する重合性液晶化合物は、重合性官能基、特に光重合性官能基を有する液晶化合物である。光重合性官能基とは、光重合開始剤から発生した活性ラジカルや酸などによって重合反応に関与し得る基のことをいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1−クロロビニル基、イソプロペニル基、4−ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよく、相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。   The vertically aligned liquid crystal cured film is preferably a polymer of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound in a vertically aligned state as described above. The polymerizable liquid crystal compound forming the vertically aligned liquid crystal cured film is a liquid crystal compound having a polymerizable functional group, particularly a photopolymerizable functional group. The photopolymerizable functional group refers to a group that can participate in a polymerization reaction by an active radical or an acid generated from a photopolymerization initiator. Examples of the photopolymerizable functional group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable. The liquid crystalline property may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase order structure may be a nematic liquid crystal or a smectic liquid crystal.

垂直配向液晶硬化膜の形成に用いられる重合性液晶化合物は、前述の式(I)で示される化合物を用いる事が好ましい。式(I)で示される化合物を用いる事により、逆波長分散性が発現し、前記(31)及び(32)の関係を充足させることができる。   As the polymerizable liquid crystal compound used for forming the vertically aligned liquid crystal cured film, the compound represented by the above formula (I) is preferably used. By using the compound represented by the formula (I), reverse wavelength dispersibility is exhibited, and the relationship of the above (31) and (32) can be satisfied.

垂直配向液晶硬化膜に用いられる重合性液晶化合物は単独又は二種以上組み合わせて使用できる。二種以上併用する場合、前記式(I)で表される化合物の含有量は、重合性液晶化合物100質量部に対して、好ましくは50質量部以上、より好ましくは70質量部以上、さらに好ましくは80質量部以上である。   The polymerizable liquid crystal compounds used in the vertically aligned liquid crystal cured film can be used alone or in combination of two or more. When two or more kinds are used in combination, the content of the compound represented by the formula (I) is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, further preferably 100 parts by mass of the polymerizable liquid crystal compound. Is 80 parts by mass or more.

垂直配向液晶硬化膜に用いられる垂直配向液晶硬化膜形成用組成物(以下、重合性液晶組成物ともいう)は、溶媒、光重合開始剤、重合禁止剤、光増感剤、レベリング剤、密着性向上剤をさらに含むことができる。これらの添加剤は単独又は二種以上組み合わせて使用できる。   The composition for forming a vertically aligned liquid crystal cured film used for the vertically aligned liquid crystal cured film (hereinafter also referred to as a polymerizable liquid crystal composition) is a solvent, a photopolymerization initiator, a polymerization inhibitor, a photosensitizer, a leveling agent, and an adhesion. A property improver may be further included. These additives can be used alone or in combination of two or more.

重合性液晶化合物の含有量は、重合性液晶組成物の固形分100質量部に対して、例えば70〜99.5質量部であり、好ましくは80〜99質量部であり、より好ましくは90〜98質量部である。含有量が上記範囲内であれば、垂直配向液晶硬化膜の配向性が高くなる傾向がある。ここで、固形分とは、組成物から溶媒を除いた成分の合計量のことをいう。   Content of a polymeric liquid crystal compound is 70-99.5 mass parts with respect to 100 mass parts of solid content of a polymeric liquid crystal composition, for example, Preferably it is 80-99 mass parts, More preferably, 90- 98 parts by mass. If content is in the said range, there exists a tendency for the orientation of a vertical alignment liquid crystal cured film to become high. Here, solid content means the total amount of the component remove | excluding the solvent from the composition.

溶媒としては、重合性液晶化合物を溶解し得る溶媒が好ましく、また、重合性液晶化合物の重合反応に不活性な溶媒であることが好ましい。溶媒としては水平配向液晶硬化膜形成用組成物に用いられるものと同様の溶媒が使用可能である。   As the solvent, a solvent capable of dissolving the polymerizable liquid crystal compound is preferable, and a solvent inert to the polymerization reaction of the polymerizable liquid crystal compound is preferable. As the solvent, the same solvents as those used for the composition for forming a horizontally aligned liquid crystal cured film can be used.

溶媒の含有量は、重合性液晶組成物100質量部に対して、好ましくは50〜98質量部、より好ましくは70〜95重量部である。従って、組成物100質量部に占める固形分は、2〜50質量部が好ましい。組成物の固形分が50質量部以下であると、組成物の粘度が低くなることから、垂直配向液晶硬化膜の厚みが略均一になり、垂直配向液晶硬化膜にムラが生じ難くなる傾向がある。上記固形分は、製造しようとする垂直配向液晶硬化膜の厚みを考慮して適宜定めることができる。   The content of the solvent is preferably 50 to 98 parts by weight, more preferably 70 to 95 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal composition. Therefore, the solid content in 100 parts by mass of the composition is preferably 2 to 50 parts by mass. When the solid content of the composition is 50 parts by mass or less, since the viscosity of the composition becomes low, the thickness of the vertically aligned liquid crystal cured film becomes substantially uniform, and unevenness tends not to occur in the vertically aligned liquid crystal cured film. is there. The solid content can be appropriately determined in consideration of the thickness of the vertically aligned liquid crystal cured film to be produced.

重合開始剤は、熱又は光の寄与によって反応活性種を生成し、重合性液晶等の重合反応を開始し得る化合物である。反応活性種としては、ラジカル、カチオン、又はアニオン等の活性種が挙げられる。中でも反応制御が容易であるという観点から、光照射によって反応が進行する光重合開始剤が好ましい。光重合開始剤は、水平配向液晶硬化膜形成用組成物に用いられるものと同様の開始剤を使用する事ができる。   The polymerization initiator is a compound capable of generating a reactive species by the contribution of heat or light and initiating a polymerization reaction such as a polymerizable liquid crystal. Examples of the reactive species include active species such as radicals, cations, and anions. Among these, from the viewpoint of easy reaction control, a photopolymerization initiator in which the reaction proceeds by light irradiation is preferable. As the photopolymerization initiator, the same initiator as that used in the composition for forming a horizontally aligned liquid crystal cured film can be used.

光重合開始剤の添加量は、重合性液晶化合物100質量部に対して、通常、0.1〜30質量部であり、好ましくは1〜20質量部であり、より好ましくは1〜15質量部である。上記範囲内であれば、重合性基の反応が十分に進行し、かつ、重合性液晶化合物の配向を乱し難い。   The addition amount of the photopolymerization initiator is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. It is. If it is in the said range, reaction of a polymeric group will fully advance and it will be hard to disturb the orientation of a polymeric liquid crystal compound.

重合禁止剤を配合することにより、重合性液晶化合物の重合反応をコントロールすることができる。重合禁止剤としては水平配向液晶硬化膜形成用組成物に用いられるものと同様のものが使用できる。重合性液晶化合物の配向を乱すことなく、重合性液晶化合物を重合するためには、重合禁止剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01〜10質量部であり、好ましくは0.1〜5質量部であり、さらに好ましくは0.1〜3質量部である。重合禁止剤は単独又は二種以上組み合わせて使用できる。   By blending a polymerization inhibitor, the polymerization reaction of the polymerizable liquid crystal compound can be controlled. As the polymerization inhibitor, those similar to those used in the composition for forming a horizontally aligned liquid crystal cured film can be used. In order to polymerize the polymerizable liquid crystal compound without disturbing the alignment of the polymerizable liquid crystal compound, the content of the polymerization inhibitor is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Yes, preferably 0.1-5 parts by mass, more preferably 0.1-3 parts by mass. A polymerization inhibitor can be used individually or in combination of 2 or more types.

さらに、光増感剤を用いることにより、光重合開始剤を高感度化することができる。光増感剤としては水平配向液晶硬化膜形成用組成物に用いられるものと同様のものが使用できる。光増感剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01〜10質量部であり、好ましくは0.05〜5質量部であり、さらに好ましくは0.1〜3質量部である。   Furthermore, the sensitivity of the photopolymerization initiator can be increased by using a photosensitizer. As the photosensitizer, those similar to those used for the composition for forming a horizontally aligned liquid crystal cured film can be used. Content of a photosensitizer is 0.01-10 mass parts normally with respect to 100 mass parts of polymeric liquid crystal compounds, Preferably it is 0.05-5 mass parts, More preferably, it is 0.1-10 mass parts. 3 parts by mass.

レベリング剤とは、重合性液晶組成物の流動性を調整し、組成物を塗布して得られる層をより平坦にする機能を有する添加剤であり、水平配向液晶硬化膜形成用組成物に用いられるものと同様のものが使用できる。   The leveling agent is an additive having a function of adjusting the fluidity of the polymerizable liquid crystal composition and flattening the layer obtained by applying the composition, and is used for a composition for forming a horizontally aligned liquid crystal cured film. Similar to those that can be used.

レベリング剤の含有量は、重合性液晶化合物100質量部に対して、0.01〜5質量部が好ましく、0.05〜3質量部がさらに好ましい。レベリング剤の含有量が、上記範囲内であると、得られる垂直配向液晶硬化膜がより平滑となる傾向があるため好ましい。   0.01-5 mass parts is preferable with respect to 100 mass parts of polymerizable liquid crystal compounds, and, as for content of a leveling agent, 0.05-3 mass parts is more preferable. It is preferable that the content of the leveling agent is within the above range because the obtained vertical alignment liquid crystal cured film tends to be smoother.

垂直配向液晶硬化膜の形成に用いられる重合性液晶組成物は、重合性液晶化合物と、添加剤等の重合性液晶化合物以外の成分とを所定温度で撹拌等することにより得ることができる。   The polymerizable liquid crystal composition used for forming the vertically aligned liquid crystal cured film can be obtained by stirring the polymerizable liquid crystal compound and components other than the polymerizable liquid crystal compound such as an additive at a predetermined temperature.

垂直配向液晶硬化膜は、前記重合性液晶組成物を後述する垂直配向膜上に塗布し、次いで溶媒を除去し、配向状態の重合性液晶化合物を含む重合性液晶組成物を加熱及び/又は活性エネルギー線によって硬化させて得ることができる。   In the vertically aligned liquid crystal cured film, the polymerizable liquid crystal composition is applied onto the vertical alignment film described later, then the solvent is removed, and the polymerizable liquid crystal composition containing the aligned polymerizable liquid crystal compound is heated and / or activated. It can be obtained by curing with energy rays.

重合性液晶組成物を垂直配向膜上に塗布する方法は、水平配向液晶硬化膜を形成する際と同じ方法を使用する事が出来る。   The method for applying the polymerizable liquid crystal composition onto the vertical alignment film can be the same as that used for forming the horizontal alignment liquid crystal cured film.

溶媒を除去する方法は、水平配向液晶硬化膜を形成する際と同じ方法を使用できる。   The method for removing the solvent can be the same as that used for forming the horizontally aligned liquid crystal cured film.

照射する活性エネルギー線としては、重合性液晶化合物の種類(特に、重合性液晶化合物が有する光重合性官能基の種類)、光重合開始剤を含む場合には光重合開始剤の種類、及びそれらの量に応じて適宜選択される。具体的には、可視光、紫外光、赤外光、X線、α線、β線、及びγ線からなる群より選択される一種以上の光が挙げられる。中でも、重合反応の進行を制御し易い点、及び光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって光重合可能なように、重合性液晶化合物の種類を選択することが好ましい。   The active energy rays to be irradiated include the type of polymerizable liquid crystal compound (particularly the type of photopolymerizable functional group possessed by the polymerizable liquid crystal compound), the type of photopolymerization initiator when it contains a photopolymerization initiator, and those It is appropriately selected according to the amount of Specifically, one or more kinds of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, α-rays, β-rays, and γ-rays can be used. Among them, ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction and that a photopolymerization apparatus widely used in this field can be used. It is preferable to select the kind of the liquid crystalline compound.

前記活性エネルギー線の光源としては、水平配向液晶硬化膜を形成する際に使用するものと同じものが使用できる。   As the light source of the active energy ray, the same light source as that used when forming a horizontally aligned liquid crystal cured film can be used.

紫外線照射強度は、通常、10〜3,000mW/cmである。紫外線照射強度は、好ましくは光カチオン重合開始剤又は光ラジカル重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒〜10分であり、好ましくは0.1秒〜5分、より好ましくは0.1秒〜3分、さらに好ましくは0.1秒〜1分である。
このような紫外線照射強度で1回又は複数回照射すると、その積算光量は、10〜3,000mJ/cm、好ましくは50〜2,000mJ/cm、より好ましくは100〜1,000mJ/cmである。積算光量が上記の下限以下である場合には、重合性液晶化合物の硬化が不十分となり、良好な転写性が得られない場合がある。逆に、積算光量が上記の上限以上である場合には、垂直配向液晶硬化膜を含む光学補償機能付き位相差板が着色する場合がある。
The ultraviolet irradiation intensity is usually 10 to 3,000 mW / cm 2 . The ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the photocationic polymerization initiator or the photoradical polymerization initiator. The time for irradiating light is usually 0.1 second to 10 minutes, preferably 0.1 second to 5 minutes, more preferably 0.1 second to 3 minutes, and further preferably 0.1 second to 1 minute. is there.
When irradiating once or a plurality of times with such ultraviolet irradiation intensity, the integrated light quantity is 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , more preferably 100 to 1,000 mJ / cm 2 . 2 . When the integrated light quantity is less than or equal to the above lower limit, curing of the polymerizable liquid crystal compound becomes insufficient, and good transferability may not be obtained. On the contrary, when the integrated light quantity is not less than the above upper limit, the retardation plate with an optical compensation function including the vertically aligned liquid crystal cured film may be colored.

垂直配向液晶硬化膜の膜厚は、機能性フィルムの薄膜化の観点から、好ましくは3μm以下であり、より好ましくは2μm以下、さらに好ましくは1.5μm以下である。また、垂直配向液晶硬化膜の膜厚の下限は、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上である。垂直配向液晶硬化膜の膜厚は、エリプソメータ又は接触式膜厚計を用いて測定することができる。
[垂直配向膜]
The thickness of the vertically aligned liquid crystal cured film is preferably 3 μm or less, more preferably 2 μm or less, and further preferably 1.5 μm or less, from the viewpoint of thinning the functional film. Further, the lower limit of the thickness of the vertically aligned liquid crystal cured film is preferably 0.1 μm or more, more preferably 0.3 μm or more, and further preferably 0.5 μm or more. The thickness of the vertically aligned liquid crystal cured film can be measured using an ellipsometer or a contact-type film thickness meter.
[Vertical alignment film]

配向膜は液晶硬化膜の重合性液晶化合物を所定方向に配向させる配向規制力を有する膜である。また、配向膜の種類やラビング条件や光照射条件によって、垂直配向、水平配向、ハイブリッド配向、及び傾斜配向等の様々な配向の制御が可能である。この中でも、垂直配向膜は液晶硬化膜の重合性液晶化合物を垂直方向に配向させる配向規制力を有する配向膜である。このため、垂直配向膜を用いることで、垂直配向液晶膜を形成することができる。   The alignment film is a film having an alignment regulating force for aligning the polymerizable liquid crystal compound of the liquid crystal cured film in a predetermined direction. Various orientations such as vertical orientation, horizontal orientation, hybrid orientation, and tilt orientation can be controlled depending on the type of alignment film, rubbing conditions, and light irradiation conditions. Among these, the vertical alignment film is an alignment film having an alignment regulating force for aligning the polymerizable liquid crystal compound of the liquid crystal cured film in the vertical direction. For this reason, a vertical alignment liquid crystal film can be formed by using a vertical alignment film.

垂直配向膜としては、基材等の表面の表面張力を下げるような材料を適用することが好ましい。このような材料としては、上述した配向性ポリマー、例えばポリイミド、ポリアミド、その加水分解物であるポリアミック酸、パーフルオロアルキル等のフッ素系ポリマー、及びシラン化合物並びにそれらの縮合反応により得られるポリシロキサン化合物が挙げられる。垂直配向膜は、このような材料と溶媒、例えば垂直配向液晶膜の項で例示した溶媒とを含む組成物(以下、垂直配向膜形成用組成物ともいう)を基材等の上に塗布し、溶媒除去後、塗布膜に加熱等施すことで得ることができる。   As the vertical alignment film, it is preferable to apply a material that lowers the surface tension of the surface of a substrate or the like. Examples of such materials include the above-mentioned orientation polymers such as polyimides, polyamides, polyamic acids that are hydrolyzed products thereof, fluorine-based polymers such as perfluoroalkyl, silane compounds, and polysiloxane compounds obtained by a condensation reaction thereof. Is mentioned. For the vertical alignment film, a composition containing such a material and a solvent, for example, the solvent exemplified in the section of the vertical alignment liquid crystal film (hereinafter also referred to as a composition for forming a vertical alignment film) is applied on a substrate or the like. After removal of the solvent, the coating film can be obtained by heating or the like.

垂直配向膜にシラン化合物を使用する場合には、表面張力を低下させやすく、垂直配向膜に隣接する層との密着性を高めやすい観点から、垂直配向膜は構成元素にSi元素とC元素とを含む化合物からなる膜が好ましく、シラン化合物を好適に使用することができる。本発明において水平配向液晶硬化膜と垂直配向液晶硬化膜の間に垂直配向膜が配置される場合、垂直配向膜と、水平配向液晶硬化膜及び垂直配向液晶硬化膜との高い密着性が発現され、光学補償機能付き位相差板において、各層間の界面における剥がれを有効に抑制又は防止することができる。   In the case of using a silane compound for the vertical alignment film, the vertical alignment film is composed of Si element and C element as constituent elements from the viewpoint of easily reducing the surface tension and improving the adhesion with the layer adjacent to the vertical alignment film. The film | membrane which consists of a compound containing is preferable, and a silane compound can be used conveniently. In the present invention, when a vertical alignment film is disposed between a horizontal alignment liquid crystal cured film and a vertical alignment liquid crystal cured film, high adhesion between the vertical alignment film, the horizontal alignment liquid crystal cured film and the vertical alignment liquid crystal cured film is expressed. In the phase difference plate with an optical compensation function, peeling at the interface between the layers can be effectively suppressed or prevented.

シラン化合物としては、上述したシランカップリング剤等のシリコーン系が好適に適用可能であるが、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メタクリロイルオキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルジメトキシメチルシラン、3−グリシドキシプロピルエトキシジメチルシランなどが挙げられる。   As the silane compound, silicones such as the above-mentioned silane coupling agents can be suitably applied. For example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3- Dimethyl-butylidene) propylamine, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-Chloropropyltrimeth Sisilane, 3-methacryloyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 3 -Glycidoxypropyl ethoxydimethylsilane etc. are mentioned.

シラン化合物は、シリコーンモノマータイプのものであってもよく、タイプシリコーンオリゴマー(ポリマー)タイプのものであってもよい。シリコーンオリゴマーを(単量体)−(単量体)コポリマーの形式で示すと、3−メルカプトプロピルトリメトキシシラン−テトラメトキシシランコポリマー、3−メルカプトプロピルトリメトキシシラン−テトラエトキシシランコポリマー、3−メルカプトプロピルトリエトキシシラン−テトラメトキシシランコポリマー、及び3−メルカプトプロピルトリエトキシシラン−テトラエトキシシランコポリマーの如き、メルカプトプロピル基含有のコポリマー;メルカプトメチルトリメトキシシラン−テトラメトキシシランコポリマー、メルカプトメチルトリメトキシシラン−テトラエトキシシランコポリマー、メルカプトメチルトリエトキシシラン−テトラメトキシシランコポリマー、及びメルカプトメチルトリエトキシシラン−テトラエトキシシランコポリマーの如き、メルカプトメチル基含有のコポリマー;3−メタクリロイルオキシプロピルトリメトキシシラン−テトラメトキシシランコポリマー、3−メタクリロイルオキシプロピルトリメトキシシラン−テトラエトキシシランコポリマー、3−メタクリロイルオキシプロピルトリエトキシシラン−テトラメトキシシランコポリマー、3−メタクリロイルオキシプロピルトリエトキシシラン−テトラエトキシシランコポリマー、3−メタクリロイルオキシプロピルメチルジメトキシシラン−テトラメトキシシランコポリマー、3−メタクリロイルオキシプロピルメチルジメトキシシラン−テトラエトキシシランコポリマー、3−メタクリロイルオキシプロピルメチルジエトキシシラン−テトラメトキシシランコポリマー、及び3−メタクリロキシイルオプロピルメチルジエトキシシラン−テトラエトキシシランコポリマーの如き、メタクリロイルオキシプロピル基含有のコポリマー;3−アクリロイルオキシプロピルトリメトキシシラン−テトラメトキシシランコポリマー、3−アクリロイルオキシプロピルトリメトキシシラン−テトラエトキシシランコポリマー、3−アクリロイルオキシプロピルトリエトキシシラン−テトラメトキシシランコポリマー、3−アクリロイルオキシプロピルトリエトキシシラン−テトラエトキシシランコポリマー、3−アクリロイルオキシプロピルメチルジメトキシシラン−テトラメトキシシランコポリマー、3−アクリロイルオキシプロピルメチルジメトキシシラン−テトラエトキシシランコポリマー、3−アクリロイルオキシプロピルメチルジエトキシシラン−テトラメトキシシランコポリマー、及び3−アクリロイルオキシプロピルメチルジエトキシシラン−テトラエトキシシランコポリマーの如き、アクリロイルオキシプロピル基含有のコポリマー;ビニルトリメトキシシラン−テトラメトキシシランコポリマー、ビニルトリメトキシシラン−テトラエトキシシランコポリマー、ビニルトリエトキシシラン−テトラメトキシシランコポリマー、ビニルトリエトキシシラン−テトラエトキシシランコポリマー、ビニルメチルジメトキシシラン−テトラメトキシシランコポリマー、ビニルメチルジメトキシシラン−テトラエトキシシランコポリマー、ビニルメチルジエトキシシラン−テトラメトキシシランコポリマー、及びビニルメチルジエトキシシラン−テトラエトキシシランコポリマーの如き、ビニル基含有のコポリマー;3−アミノプロピルトリメトキシシラン−テトラメトキシシランコポリマー、3−アミノプロピルトリメトキシシラン−テトラエトキシシランコポリマー、3−アミノプロピルトリエトキシシラン−テトラメトキシシランコポリマー、3−アミノプロピルトリエトキシシラン−テトラエトキシシランコポリマー、3−アミノプロピルメチルジメトキシシラン−テトラメトキシシランコポリマー、3−アミノプロピルメチルジメトキシシラン−テトラエトキシシランコポリマー、3−アミノプロピルメチルジエトキシシラン−テトラメトキシシランコポリマー、及び3−アミノプロピルメチルジエトキシシラン−テトラエトキシシランコポリマーの如き、アミノ基含有のコポリマー等が挙げられる。シラン化合物は単独又は二種以上組み合わせて使用できる。また、レベリング剤としても使用される場合もある、シランカップリング剤等も使用する事が出来る。   The silane compound may be of a silicone monomer type or a type silicone oligomer (polymer) type. When the silicone oligomer is shown in the form of (monomer)-(monomer) copolymer, 3-mercaptopropyltrimethoxysilane-tetramethoxysilane copolymer, 3-mercaptopropyltrimethoxysilane-tetraethoxysilane copolymer, 3-mercapto Mercaptopropyl group-containing copolymers such as propyltriethoxysilane-tetramethoxysilane copolymer and 3-mercaptopropyltriethoxysilane-tetraethoxysilane copolymer; mercaptomethyltrimethoxysilane-tetramethoxysilane copolymer, mercaptomethyltrimethoxysilane- Tetraethoxysilane copolymer, mercaptomethyltriethoxysilane-tetramethoxysilane copolymer, and mercaptomethyltriethoxysilane-tetrae A copolymer containing a mercaptomethyl group, such as a xysilane copolymer; 3-methacryloyloxypropyltrimethoxysilane-tetramethoxysilane copolymer, 3-methacryloyloxypropyltrimethoxysilane-tetraethoxysilane copolymer, 3-methacryloyloxypropyltriethoxysilane- Tetramethoxysilane copolymer, 3-methacryloyloxypropyltriethoxysilane-tetraethoxysilane copolymer, 3-methacryloyloxypropylmethyldimethoxysilane-tetramethoxysilane copolymer, 3-methacryloyloxypropylmethyldimethoxysilane-tetraethoxysilane copolymer, 3-methacryloyl Oxypropylmethyldiethoxysilane-tetramethoxysilane copolymer, And copolymers containing methacryloyloxypropyl groups, such as 3-methacryloxyyl propylmethyldiethoxysilane-tetraethoxysilane copolymer; 3-acryloyloxypropyltrimethoxysilane-tetramethoxysilane copolymer, 3-acryloyloxypropyltrimethoxysilane -Tetraethoxysilane copolymer, 3-acryloyloxypropyltriethoxysilane-tetramethoxysilane copolymer, 3-acryloyloxypropyltriethoxysilane-tetraethoxysilane copolymer, 3-acryloyloxypropylmethyldimethoxysilane-tetramethoxysilane copolymer, 3- Acryloyloxypropylmethyldimethoxysilane-tetraethoxysilane copolymer, 3-acryloyloxy Copolymers containing acryloyloxypropyl groups, such as propylmethyldiethoxysilane-tetramethoxysilane copolymer and 3-acryloyloxypropylmethyldiethoxysilane-tetraethoxysilane copolymer; vinyltrimethoxysilane-tetramethoxysilane copolymer, vinyltrimethoxy Silane-tetraethoxysilane copolymer, vinyltriethoxysilane-tetramethoxysilane copolymer, vinyltriethoxysilane-tetraethoxysilane copolymer, vinylmethyldimethoxysilane-tetramethoxysilane copolymer, vinylmethyldimethoxysilane-tetraethoxysilane copolymer, vinylmethyldi Ethoxysilane-tetramethoxysilane copolymer and vinylmethyldiethoxysilane-tetrae Vinyl group-containing copolymers such as xyloxysilane copolymers; 3-aminopropyltrimethoxysilane-tetramethoxysilane copolymers, 3-aminopropyltrimethoxysilane-tetraethoxysilane copolymers, 3-aminopropyltriethoxysilane-tetramethoxysilane copolymers 3-aminopropyltriethoxysilane-tetraethoxysilane copolymer, 3-aminopropylmethyldimethoxysilane-tetramethoxysilane copolymer, 3-aminopropylmethyldimethoxysilane-tetraethoxysilane copolymer, 3-aminopropylmethyldiethoxysilane-tetra Amino group-containing copolymers such as methoxysilane copolymer and 3-aminopropylmethyldiethoxysilane-tetraethoxysilane copolymer And the like. A silane compound can be used individually or in combination of 2 or more types. Moreover, the silane coupling agent etc. which may be used also as a leveling agent can also be used.

これらの中でも分子末端にアルキル基を有するシラン化合物が好ましく、炭素数3〜30のアルキル基を有するシラン化合物がより好ましい。   Among these, a silane compound having an alkyl group at the molecular end is preferable, and a silane compound having an alkyl group having 3 to 30 carbon atoms is more preferable.

密着性をより向上しやすい観点、及び垂直配向液晶硬化膜形成用組成物の塗布性の観点、及び後述する光学補償機能付き位相差板の製造方法において下層に配置される層が溶解しにくい観点から、垂直配向膜は、構成元素にSi元素、C元素及びO元素を含む化合物からなる膜であることが好ましい。また、垂直配向膜を形成するシラン化合物のSi原子に結合するC原子を含む置換基、好ましくはアルキル基又はアルコキシ基の炭素原子数は、好ましくは1〜30、より好ましくは2〜25、さらに好ましくは3〜20である。すなわち、Si元素とC元素との比率(Si/C、モル比)は、好ましくは0.03〜1.00、より好ましくは0.04〜0.50、さらに好ましくは0.05〜0.33である。Si/C比が上記の下限以上であると、垂直配向液晶硬化膜形成用組成物の塗布性が向上し、Si/C比が上記の上限以下であると隣接する層との密着性を向上できる。   From the viewpoint of easily improving adhesion, from the viewpoint of applicability of the composition for forming a vertically aligned liquid crystal cured film, and from the viewpoint of difficulty in dissolving a layer disposed in the lower layer in the method of producing a retardation plate with an optical compensation function described later Therefore, the vertical alignment film is preferably a film made of a compound containing Si element, C element and O element as constituent elements. Moreover, the number of carbon atoms of the substituent containing a C atom bonded to the Si atom of the silane compound forming the vertical alignment film, preferably an alkyl group or an alkoxy group, is preferably 1-30, more preferably 2-25, Preferably it is 3-20. That is, the ratio of Si element to C element (Si / C, molar ratio) is preferably 0.03 to 1.00, more preferably 0.04 to 0.50, and still more preferably 0.05 to 0.00. 33. When the Si / C ratio is not less than the above lower limit, the applicability of the composition for forming a vertically aligned liquid crystal cured film is improved, and when the Si / C ratio is not more than the above upper limit, the adhesion with an adjacent layer is improved. it can.

溶媒は、例えば水平配向液晶硬化膜の項で例示した溶媒を使用することができる。垂直配向膜形成用組成物を塗布する方法としては、前記塗布方法Aが挙げられ、溶媒を除去する方法としては、前記溶媒除去方法Aが挙げられる。   As the solvent, for example, the solvent exemplified in the section of the horizontally aligned liquid crystal cured film can be used. Examples of the method for applying the composition for forming a vertical alignment film include the application method A, and examples of the method for removing the solvent include the solvent removal method A.

垂直配向膜形成用組成物は溶媒の他、水平配向液晶硬化膜の項に例示の添加剤等を含むことができる。   In addition to the solvent, the composition for forming a vertical alignment film can contain additives exemplified in the section of the horizontally aligned liquid crystal cured film.

垂直配向膜の膜厚は、光学補償機能付き位相差板の薄膜化、及び配向規制力の発現の観点から、好ましくは1μm以下、より好ましくは0.3μm以下、さらに好ましくは0.1μm以下である。また、垂直配向膜の膜厚は、好ましくは1nm以上、より好ましくは5nm以上、さらに好ましくは10nm以上、特に好ましくは30nm以上である。垂直配向膜の膜厚は、エリプソメータ又は接触式膜厚計を用いて測定することができる。   The thickness of the vertical alignment film is preferably 1 μm or less, more preferably 0.3 μm or less, and even more preferably 0.1 μm or less, from the viewpoints of thinning the retardation plate with an optical compensation function and expressing the alignment regulating force. is there. The thickness of the vertical alignment film is preferably 1 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, and particularly preferably 30 nm or more. The film thickness of the vertical alignment film can be measured using an ellipsometer or a contact-type film thickness meter.

〔基材〕
基材は、配向膜形成用組成物や液晶硬化膜形成用組成物を塗布する際に使用するものであり、基材を剥離して基材上に塗布した膜を転写できる設計であっても、基材との密着性が付与され転写できない設計であってもどちらでも良いが、薄膜化の観点から被転写体への転写し、基材を剥離できる設計が好ましい。上述のような基材としては、ガラス基材及びフィルム基材が挙げられ、加工性の観点からフィルム基材が好ましく、連続的に製造できる点で長尺のロール状フィルムがより好ましい。フィルム基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド及びポリフェニレンオキシド等のプラスチックが挙げられる。この基材表面にシリコーン処理のような離型処理が施されたものであることができる。市販のセルロースエステル基材としては、“フジタックフィルム”(富士写真フイルム株式会社製);“KC8UX2M”、“KC8UY”及び“KC4UY”(以上、コニカミノルタオプト株式会社製)等が挙げられる。このような樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜して、基材とすることができる。
〔Base material〕
The base material is used when applying the alignment film forming composition or the liquid crystal cured film forming composition, and even if the base material is designed to peel off the base material and transfer the film applied onto the base material. Either of the designs can be applied because the adhesion to the substrate is imparted and transfer is not possible, but from the viewpoint of thinning, a design that can be transferred to the transfer target and peeled off the substrate is preferable. Examples of the substrate as described above include a glass substrate and a film substrate. From the viewpoint of workability, a film substrate is preferable, and a long roll film is more preferable in that it can be produced continuously. Examples of the resin constituting the film substrate include polyolefins such as polyethylene, polypropylene, norbornene polymers, cyclic olefin resins, polyvinyl alcohol, polyethylene terephthalate, polymethacrylates, polyacrylates, triacetylcellulose, and diacetylcellulose. And cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; and plastics such as polyphenylene sulfide and polyphenylene oxide. The surface of the base material may be subjected to a release treatment such as silicone treatment. Examples of the commercially available cellulose ester base material include “Fujitac Film” (manufactured by Fuji Photo Film Co., Ltd.); “KC8UX2M”, “KC8UY” and “KC4UY” (manufactured by Konica Minolta Opto Co., Ltd.). Such a resin can be formed into a substrate by known methods such as a solvent casting method and a melt extrusion method.

市販の環状オレフィン系樹脂としては、“Topas”(登録商標)(Ticona社(独)製)、“アートン”(登録商標)(JSR株式会社製)、“ゼオノア(ZEONOR)”(登録商標)、“ゼオネックス(ZEONEX)”(登録商標)(以上、日本ゼオン株式会社製)及び“アペル”(登録商標)(三井化学株式会社製)が挙げられる。市販されている環状オレフィン系樹脂基材を用いることもできる。市販の環状オレフィン系樹脂基材としては、“エスシーナ”(登録商標)、“SCA40”(登録商標)(以上、積水化学工業株式会社製)、“ゼオノアフィルム”(登録商標)(オプテス株式会社製)及び“アートンフィルム”(登録商標)(JSR株式会社製)が挙げられる。   Commercially available cyclic olefin-based resins include “Topas” (registered trademark) (manufactured by Ticona (Germany)), “Arton” (registered trademark) (manufactured by JSR Corporation), “ZEONOR” (registered trademark), “ZEONEX” (registered trademark) (manufactured by Nippon Zeon Co., Ltd.) and “Apel” (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be mentioned. Commercially available cyclic olefin resin base materials can also be used. Commercially available cyclic olefin-based resin base materials include “Essina” (registered trademark), “SCA40” (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), “Zeonor Film” (registered trademark) (manufactured by Optes Corporation). ) And “Arton Film” (registered trademark) (manufactured by JSR Corporation).

基材は、水平配向液晶硬化膜、水平配向膜、垂直配向液晶硬化膜や垂直配向膜を積層しやすく、かつ剥離が容易な厚みであることが好ましい。このような基材の厚みは、通常5〜300μmであり、好ましくは20〜200μmである。   The substrate preferably has a thickness that facilitates laminating a horizontal alignment liquid crystal cured film, a horizontal alignment film, a vertical alignment liquid crystal cured film, or a vertical alignment film and is easy to peel off. The thickness of such a substrate is usually 5 to 300 μm, preferably 20 to 200 μm.

〔光学補償機能付き位相差板〕
本発明の光学補償機能付き位相差板は、水平配向液晶硬化膜、水平配向膜又は垂直配向膜、垂直配向液晶硬化膜をこの順に含み、以下に記載の(1)〜(4)の要件を満たすことが好ましい。
水平配向液晶硬化膜と、垂直配向液晶硬化膜の層間距離が5μm以下であること。 ・・・(1)
水平配向液晶硬化膜と垂直配向液晶硬化膜の層間に、水平配向膜又は垂直配向膜を含むこと。 ・・・(2)
以下の関係式
ReA(450)/ReA(550)<1.00 ・・・(3)
を満たすこと。
ここで、ReA(λ)は水平配向液晶硬化膜の波長λnmにおける面内位相差値を示す。位相差値定義は以下のとおりである。
ReA(λ)=(nxA−nyA)×dA
ただし、nxAは水平配向液晶硬化膜のフィルム面内における主屈折率、nyAはnxAと同一面内で直交する方向の屈折率、dAは水平配向液晶硬化の膜厚を示す。
以下の関係式
RthC(450)/RthC(550)<1.00
を満たすこと。 ・・・(4)
ここで、RthC(λ)は垂直配向液晶硬化膜の波長λnmにおける厚み方向の位相差値を示す。位相差値定義は以下のとおりである。
RthC(λ)=((nxC+nyC)/2−nzC)×dC
ただし、nxCは垂直配向液晶硬化膜のフィルム面内における主屈折率、nyCはnxCと同一面内で直交する方向の屈折率、nzCは垂直配向液晶硬化膜の厚み方向の屈折率を、dCは垂直配向液晶硬化の膜厚を示す。
[Phase difference plate with optical compensation function]
The retardation plate with an optical compensation function of the present invention includes a horizontal alignment liquid crystal cured film, a horizontal alignment film or a vertical alignment film, and a vertical alignment liquid crystal cured film in this order, and satisfies the requirements (1) to (4) described below. It is preferable to satisfy.
The interlayer distance between the horizontally aligned liquid crystal cured film and the vertically aligned liquid crystal cured film is 5 μm or less. ... (1)
A horizontal alignment film or a vertical alignment film is included between the horizontal alignment liquid crystal cured film and the vertical alignment liquid crystal cured film. ... (2)
The following relational expression ReA (450) / ReA (550) <1.00 (3)
To meet.
Here, ReA (λ) represents the in-plane retardation value at the wavelength λ nm of the horizontally aligned liquid crystal cured film. The definition of the phase difference value is as follows.
ReA (λ) = (nxA−nyA) × dA
However, nxA is the main refractive index in the film plane of the horizontally aligned liquid crystal cured film, nyA is the refractive index in the direction orthogonal to the same plane as nxA, and dA is the thickness of the horizontally aligned liquid crystal cured film.
The following relational expression RthC (450) / RthC (550) <1.00
To meet. ... (4)
Here, RthC (λ) represents the thickness direction retardation value of the vertically aligned liquid crystal cured film at the wavelength λ nm. The definition of the phase difference value is as follows.
RthC (λ) = ((nxC + nyC) / 2−nzC) × dC
However, nxC is the main refractive index in the film plane of the vertically aligned liquid crystal cured film, nyC is the refractive index in the direction orthogonal to the same plane as nxC, nzC is the refractive index in the thickness direction of the vertically aligned liquid crystal cured film, and dC is The film thickness of vertical alignment liquid crystal curing is shown.

尚、nxC=nyCの場合には、nxCはフィルム面内で任意の方向の屈折率とする事が出来る。
また、水平配向液晶硬化膜と垂直配向液晶硬化膜の層間距離は式(1)のとおり5μm以下が好ましいが、より好ましくは1μm以下、さらに好ましくは0.5μm以下、特に好ましくは0.3μm以下である。また、水平配向膜の膜厚は、好ましくは1nm以上、より好ましくは5nm以上、さらに好ましくは10nm以上、特に好ましくは30nm以上である。
When nxC = nyC, nxC can be a refractive index in an arbitrary direction within the film plane.
Further, the interlayer distance between the horizontally aligned liquid crystal cured film and the vertically aligned liquid crystal cured film is preferably 5 μm or less, more preferably 1 μm or less, still more preferably 0.5 μm or less, particularly preferably 0.3 μm or less, as represented by the formula (1). It is. The film thickness of the horizontal alignment film is preferably 1 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, and particularly preferably 30 nm or more.

光学補償機能付き位相差板は以下の関係式(5)を満たす事が好ましい。|R0(550)−R40(550)|の値は、光学補償機能付き位相差板を用いた光学補償機能付き楕円偏光板をディスプレイに適用した場合の斜方の波長550nm付近の光抜け量が少なくなるため小さい程良い。|R0(550)−R40(550)|の値は、好ましくは10nm未満、より好ましくは5nm以下、更に好ましくは4nm以下、特に好ましくは3nm以下である。
|R0(550)−R40(550)|<10nm ・・・(5)
ここで、R0(λ)は、水平配向液晶硬化膜と垂直配向液晶硬化膜を含む光学補償機能付き位相差板の面内位相差値を示す。また、R40は、水平配向液晶硬化膜と垂直配向液晶硬化膜を含む光学補償機能付き位相差板の内、フィルム面内の主屈折率方向と同一面内で直交する方向(進相軸方向)周りで40°回転させた時のみかけの位相差値を示す。
The retardation film with an optical compensation function preferably satisfies the following relational expression (5). The value of | R0 (550) −R40 (550) | is the amount of light leakage near an oblique wavelength of 550 nm when an elliptically polarizing plate with an optical compensation function using a retardation plate with an optical compensation function is applied to a display. Smaller is better because it decreases. The value of | R0 (550) -R40 (550) | is preferably less than 10 nm, more preferably 5 nm or less, still more preferably 4 nm or less, and particularly preferably 3 nm or less.
| R0 (550) -R40 (550) | <10 nm (5)
Here, R0 (λ) represents an in-plane retardation value of a retardation plate with an optical compensation function including a horizontally aligned liquid crystal cured film and a vertically aligned liquid crystal cured film. R40 is a direction plate (phase fast axis direction) orthogonal to the main refractive index direction in the film plane in the retardation film with an optical compensation function including a horizontal alignment liquid crystal cured film and a vertical alignment liquid crystal cured film. The apparent phase difference value is shown only when rotated around 40 °.

光学補償機能付き位相差板は以下の関係式(6)を満たす事が好ましい。|R0(450)−R40(450)|の値は、光学補償機能付き位相差板を用いた光学補償機能付き楕円偏光板をディスプレイに適用した場合の斜方の波長450nm付近の光抜け量が少なくなるため小さい程良い。|R0(450)−R40(450)|の値は、好ましくは10nm未満、より好ましくは5nm以下、更に好ましくは4nm以下、特に好ましくは3nm以下である。
|R0(450)−R40(450)|<10nm ・・・(6)
ただし、R0(λ)は、水平配向液晶硬化膜と垂直配向液晶硬化膜を含む光学補償機能付き位相差板の面内位相差値を示す。また、R40は、水平配向液晶硬化膜と垂直配向液晶硬化膜を含む光学補償機能付き位相差板の内、フィルム面内の主屈折率方向と同一面内で直交する方向(進相軸方向)周りで40°回転させた時のみかけの位相差値を示す。
The retardation film with an optical compensation function preferably satisfies the following relational expression (6). The value of | R0 (450) −R40 (450) | is the amount of light leakage around an oblique wavelength of 450 nm when an elliptically polarizing plate with an optical compensation function using a retardation plate with an optical compensation function is applied to a display. Smaller is better because it decreases. The value of | R0 (450) −R40 (450) | is preferably less than 10 nm, more preferably 5 nm or less, still more preferably 4 nm or less, and particularly preferably 3 nm or less.
| R0 (450) -R40 (450) | <10 nm (6)
However, R0 (λ) represents an in-plane retardation value of a retardation plate with an optical compensation function including a horizontally aligned liquid crystal cured film and a vertically aligned liquid crystal cured film. R40 is a direction plate (phase fast axis direction) orthogonal to the main refractive index direction in the film plane in the retardation film with an optical compensation function including a horizontal alignment liquid crystal cured film and a vertical alignment liquid crystal cured film. The apparent phase difference value is shown only when rotated around 40 °.

更に、関係式(5)、及び(6)で示される値の差は、以下関係式式(7)を満たすことが好ましい。
|{R0(450)−R40(450)}−{R0(550)−R40(550)}|<3nm ・・・(7)
関係式(7)を満たす場合には光学補償機能付き位相差板を用いた光学補償機能付き楕円偏光板をディスプレイに適用した場合の正面・及び斜方の反射色相が黒に近くなるため、好ましくは(7)の値が3nm以下、より好ましくは2nm以下、更に好ましくは1nm以下である。
Furthermore, it is preferable that the difference between the values represented by the relational expressions (5) and (6) satisfies the following relational expression (7).
| {R0 (450) -R40 (450)}-{R0 (550) -R40 (550)} | <3 nm (7)
When satisfying the relational expression (7), the front and oblique reflection hues when the elliptically polarizing plate with the optical compensation function using the retardation plate with the optical compensation function is applied to the display are preferably black. The value of (7) is 3 nm or less, more preferably 2 nm or less, still more preferably 1 nm or less.

また、各層の平均屈折率差、即ち、本発明の光学補償機能付き位相差板を構成する各層の平均屈折率と、該層に隣接する他の層の平均屈折率との差が大きい場合には、層間で発生する界面反射の影響により光抜けが発生する事がある。各層の波長550nmにおける平均屈折率の差は、好ましくは0.20以下、より好ましくは0.15以下、更に好ましくは0.10以下、特に好ましくは0.05以下である。この範囲であれば、界面反射による光抜けの発生を抑制できる。   Also, when the difference in average refractive index of each layer, that is, the difference between the average refractive index of each layer constituting the retardation plate with an optical compensation function of the present invention and the average refractive index of other layers adjacent to the layer is large. In some cases, light leakage may occur due to the influence of interface reflection between layers. The difference in average refractive index of each layer at a wavelength of 550 nm is preferably 0.20 or less, more preferably 0.15 or less, still more preferably 0.10 or less, and particularly preferably 0.05 or less. Within this range, occurrence of light leakage due to interface reflection can be suppressed.

各層の平均屈折率の差として具体的には、
(1)水平配向液晶硬化膜の平均屈折率と垂直配向液晶硬化膜の平均屈折率との差、
(2)水平配向液晶硬化膜と垂直配向液晶硬化膜との間に水平配向膜を含む場合には、
(2-a)水平配向液晶硬化膜の平均屈折率と水平配向膜の平均屈折率との差、
(2-b)水平配向膜の平均屈折率と垂直配向液晶硬化膜の平均屈折率の差、
(3)水平配向液晶硬化膜と垂直配向液晶硬化膜との間に垂直配向膜が含まれる場合には、
(3-a)水平配向液晶硬化膜の平均屈折率と垂直配向膜の平均屈折率との差、
(3-b)垂直配向膜の平均屈折率と垂直配向液晶硬化膜の平均屈折率の差、
などが挙げられる。
Specifically, as the difference in average refractive index of each layer,
(1) The difference between the average refractive index of the horizontal alignment liquid crystal cured film and the average refractive index of the vertical alignment liquid crystal cured film,
(2) When a horizontal alignment film is included between the horizontal alignment liquid crystal cured film and the vertical alignment liquid crystal cured film,
(2-a) difference between the average refractive index of the horizontal alignment liquid crystal cured film and the average refractive index of the horizontal alignment film,
(2-b) difference between the average refractive index of the horizontal alignment film and the average refractive index of the vertically aligned liquid crystal cured film,
(3) When a vertical alignment film is included between the horizontal alignment liquid crystal cured film and the vertical alignment liquid crystal cured film,
(3-a) difference between the average refractive index of the horizontal alignment liquid crystal cured film and the average refractive index of the vertical alignment film,
(3-b) difference between the average refractive index of the vertical alignment film and the average refractive index of the vertical alignment liquid crystal cured film,
Etc.

本発明の光学補償機能付き位相差板は、水平配向液晶硬化膜、水平配向膜、垂直配向液晶硬化膜、及び垂直配向膜以外の層を含むことができ、その具体例としては、他の配向液晶硬化膜、他の配向膜、保護層等が挙げられる。他の配向液晶硬化膜としては、上記に例示の垂直配向液晶硬化膜、水平配向液晶硬化膜等が挙げられ、他の配向膜としては、上記に例示の配向膜等が挙げられる。   The retardation film with an optical compensation function of the present invention can include a layer other than a horizontal alignment liquid crystal cured film, a horizontal alignment film, a vertical alignment liquid crystal cured film, and a vertical alignment film. A liquid crystal cured film, another alignment film, a protective layer, etc. are mentioned. Examples of the other alignment liquid crystal cured film include the vertical alignment liquid crystal cured film and the horizontal alignment liquid crystal cured film exemplified above, and examples of the other alignment film include the alignment film exemplified above.

保護層は、通常、多官能アクリレート(メタクリレート)、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート等からなるアクリル系オリゴマーあるいはポリマー、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリビニルピロリドン、デンプン類、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム等の水溶性ポリマーと溶媒とを含有する保護層形成用組成物から形成されることが好ましい。   The protective layer is usually an acrylic oligomer or polymer composed of polyfunctional acrylate (methacrylate), urethane acrylate, polyester acrylate, epoxy acrylate, etc., polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl pyrrolidone, starches, methylcellulose, carboxy It is preferably formed from a composition for forming a protective layer containing a water-soluble polymer such as methylcellulose and sodium alginate and a solvent.

保護層形成用組成物に含有される溶媒は、上記に例示の溶媒と同様のものが挙げられ、中でも、水、アルコール溶媒およびエーテル溶媒からなる群より選ばれる少なくとも一つの溶媒が、保護層を形成する層を溶解させることがない点で、好ましい。アルコール溶媒としては、メタノール、エタノール、ブタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテルおよびプロピレングリコールモノメチルエーテルが挙げられる。エーテル溶媒としては、エチレングリコールモノメチルエーテルアセテートおよびプロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、エタノール、イソプロピルアルコール、プロピレングリコールモノメチルエーテルおよびプロピレングリコールモノメチルエーテルアセテートが好ましい。   Examples of the solvent contained in the composition for forming a protective layer include the same solvents as those exemplified above. Among them, at least one solvent selected from the group consisting of water, an alcohol solvent, and an ether solvent serves as the protective layer. It is preferable at the point which does not dissolve the layer to form. Examples of the alcohol solvent include methanol, ethanol, butanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether. Examples of the ether solvent include ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate. Of these, ethanol, isopropyl alcohol, propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate are preferable.

保護層の膜厚は、0.1μm〜10μm、より好ましくは0.1μm〜3μmである。
[光学補償機能付き位相差板の製造方法]
The thickness of the protective layer is 0.1 μm to 10 μm, more preferably 0.1 μm to 3 μm.
[Method of manufacturing retardation plate with optical compensation function]

本発明の光学補償機能付き位相差板の製造方法は、水平配向液晶硬化膜、水平配向膜又は垂直配向膜、垂直配向液晶硬化膜を、この順に積層可能な方法であれば特に限定されないが、基材上に水平配向膜を積層し、次いで水平配向液晶硬化膜を積層し、さらに垂直配向膜を積層した後、垂直配向液晶硬化膜を積層する方法(以下、製造方法Aという)か、基材上に垂直配向膜を積層し、次いで垂直配向液晶硬化膜を積層し、さらに水平配向膜を積層した後、水平配向液晶硬化膜を積層する方法(以下、製造方法B)が好ましい。水平配向液晶硬化膜、水平配向膜、垂直配向液晶硬化膜、垂直配向膜の積層方法は、上述した各層の形成方法を使用することができる。   The method for producing a retardation film with an optical compensation function of the present invention is not particularly limited as long as it is a method capable of laminating a horizontal alignment liquid crystal cured film, a horizontal alignment film or a vertical alignment film, and a vertical alignment liquid crystal cured film in this order, A method of laminating a horizontal alignment film on a substrate, then laminating a horizontal alignment liquid crystal cured film, further laminating a vertical alignment film, and then laminating a vertical alignment liquid crystal cured film (hereinafter referred to as production method A) or A method of laminating a vertical alignment film on a material, then laminating a vertical alignment liquid crystal cured film, further laminating a horizontal alignment film, and then laminating a horizontal alignment liquid crystal cured film (hereinafter referred to as production method B) is preferred. As a method of laminating the horizontal alignment liquid crystal cured film, horizontal alignment film, vertical alignment liquid crystal cured film, and vertical alignment film, the above-described method for forming each layer can be used.

製造方法A、又は製造方法Bにて光学補償機能付き位相差板を製造する際、下層に配置される液晶硬化膜の配向に起因して配向不良や配向欠陥が発生する可能性がある。すなわち、製造方法Aの場合には下層に水平配向液晶硬化膜を積層した後、垂直配向液晶硬化膜を積層するため、垂直配向液晶硬化膜を形成する際に下層の水平配向液晶硬化膜の影響を受けて配向不良や配向欠陥が発生する事があり、製造方法Bの場合には同用に下層に垂直配向液晶硬化膜を積層した後、水平配向液晶硬化膜を積層するため、水平配向液晶硬化膜を形成する際に下層の垂直配向液晶硬化膜の影響を受けて配向不良や配向欠陥が発生する事がある。このため、積層する各層を形成するために使用する組成物(水平配向膜形成用組成物、水平配向液晶硬化膜形成用組成物、垂直配向膜形成用組成物、垂直配向液晶硬化膜形成用組成物)の溶剤種によっては、下層を溶解させてしまい光学特性の変化や配向不良、配向欠陥等を発生させる場合もある。したがって、積層する各層を形成するために使用する組成物に含まれる材料・溶剤・固形分濃度・塗布方法・膜厚等を、適宜選択しなければならない。   When a retardation plate with an optical compensation function is manufactured by the manufacturing method A or the manufacturing method B, alignment defects or alignment defects may occur due to the alignment of the liquid crystal cured film disposed in the lower layer. That is, in the case of the manufacturing method A, since the horizontal alignment liquid crystal cured film is laminated on the lower layer and then the vertical alignment liquid crystal cured film is laminated, the influence of the lower horizontal alignment liquid crystal cured film is formed when forming the vertical alignment liquid crystal cured film. In the case of manufacturing method B, a vertically aligned liquid crystal cured film is laminated on the lower layer and then a horizontally aligned liquid crystal cured film is laminated. When forming a cured film, alignment defects and alignment defects may occur due to the influence of the underlying vertically aligned liquid crystal cured film. Therefore, a composition used for forming each layer to be laminated (a composition for forming a horizontal alignment film, a composition for forming a horizontal alignment liquid crystal film, a composition for forming a vertical alignment film, a composition for forming a vertical alignment liquid crystal film) Depending on the type of solvent, the lower layer may be dissolved, resulting in changes in optical characteristics, alignment defects, alignment defects, and the like. Therefore, the material, solvent, solid content concentration, coating method, film thickness, and the like contained in the composition used to form each layer to be laminated must be selected as appropriate.

〔光学補償機能付き楕円偏光板〕
本発明の光学補償機能付き位相差板は、被転写体と貼合し基材を剥離して転写されるか、又は基材付きの状態で粘着剤等を介して積層される事により、光学補償機能付き位相差板の有する機能、すなわち、その光学特性を被転写体に付与することができ、光学補償機能付き位相差板の光学特性が付与された光学積層体を製造できる。この中でも偏光板と積層した場合には光学補償機能付き楕円偏光板を作製する事が可能である。本発明の実施態様においては、水平配向液晶硬化膜の遅相軸(光軸)と偏光板の吸収軸とを実質的に45°となるように積層することが好ましい。本発明の光学フィルムの遅相軸(光軸)と偏光板の吸収軸とを実質的に45°となるように積層することによって、円偏光板としての機能を得ることができる。なお、実質的に45°とは通常45±5°の範囲である。
[Ellipse polarizing plate with optical compensation function]
The retardation plate with an optical compensation function of the present invention is optically bonded by being laminated with a substrate to be transferred and peeled off the substrate, or laminated with an adhesive or the like in a state with the substrate. The function of the retardation film with a compensation function, that is, the optical characteristics thereof can be imparted to the transferred material, and an optical laminate having the optical characteristics of the retardation film with an optical compensation function can be produced. Among these, when laminated with a polarizing plate, an elliptically polarizing plate with an optical compensation function can be produced. In the embodiment of the present invention, it is preferable to laminate so that the slow axis (optical axis) of the horizontally aligned liquid crystal cured film and the absorption axis of the polarizing plate are substantially 45 °. By laminating the slow axis (optical axis) of the optical film of the present invention and the absorption axis of the polarizing plate so as to be substantially 45 °, a function as a circularly polarizing plate can be obtained. Note that substantially 45 ° is usually in the range of 45 ± 5 °.

[被転写体]
被転写体としては、単層構造の光学フィルム、例えば偏光板、位相差板、輝度向上フィルム、防眩フィルム、反射防止フィルム、拡散フィルム、集光フィルム等、多層構造の光学フィルム、例えば位相差板、楕円偏光板が挙げられ、これらの中でも位相差板、位相差板、偏光板、楕楕円偏光板を好適に使用できる。本発明における光学積層体は、画像表示装置、例えば、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(電場放出表示装置(FED等)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置)、プラズマ表示装置、投射型表示装置(グレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置等)及び圧電セラミックディスプレイ等に利用でき、特に有機EL表示装置及びタッチパネル表示装置等に好適に利用できる。
[Transfer]
As an object to be transferred, an optical film having a single layer structure, for example, a polarizing plate, a retardation plate, a brightness enhancement film, an antiglare film, an antireflection film, a diffusion film, a condensing film, etc., an optical film having a multilayer structure, for example, a retardation A plate, an elliptically polarizing plate are mentioned, Among these, a phase difference plate, a phase difference plate, a polarizing plate, and an elliptical polarizing plate can be used conveniently. The optical laminate in the present invention is an image display device, for example, a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (an electric field emission display device ( FED etc.), surface field emission display (SED)), electronic paper (display using electronic ink or electrophoretic element), plasma display, projection display (grating light valve (GLV) display, digital micro It can be used for a display device having a mirror device (DMD), a piezoelectric ceramic display, and the like, and can be suitably used particularly for an organic EL display device, a touch panel display device, and the like.

[偏光板]
偏光板としては、偏光機能を有する偏光子からなる。偏光子としては、吸収異方性を有する色素を吸着させた延伸フィルム、又は、吸収異方性を有する色素を塗布配向した膜が挙げられる。吸収異方性を有する色素としては、二色性色素が挙げられる。
[Polarizer]
The polarizing plate is made of a polarizer having a polarizing function. Examples of the polarizer include a stretched film in which a dye having absorption anisotropy is adsorbed, or a film in which a dye having absorption anisotropy is applied and oriented. Examples of the dye having absorption anisotropy include a dichroic dye.

吸収異方性を有する色素を吸着させた延伸フィルムは、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造される。このようにして得られた偏光子と透明保護フィルムを貼り合せることで偏光板が得られる。二色性色素として、ヨウ素や二色性の有機染料が挙げられる。二色性の有機染料としては、C.I. DIRECT RED 39等のジスアゾ化合物からなる二色性直接染料及び、トリスアゾ、テトラキスアゾ等の化合物からなる二色性直接染料等が挙げられる。上述のように、ポリビニルアルコール系樹脂フィルムに、一軸延伸、二色性色素による染色、ホウ酸処理、水洗及び乾燥をして得られる偏光子の厚さは、好ましくは5μm〜40μmである。   A stretched film on which a dye having absorption anisotropy is adsorbed is usually a step of uniaxially stretching a polyvinyl alcohol resin film, and the dichroic dye is dyed by dying the polyvinyl alcohol resin film. It is manufactured through a step of adsorbing, a step of treating a polyvinyl alcohol-based resin film adsorbed with a dichroic dye with an aqueous boric acid solution, and a step of washing with water after the treatment with an aqueous boric acid solution. A polarizing plate is obtained by laminating the thus obtained polarizer and a transparent protective film. Examples of the dichroic dye include iodine and dichroic organic dyes. Examples of the dichroic organic dye include dichroic direct dyes composed of disazo compounds such as C.I. DIRECT RED 39, and dichroic direct dyes composed of compounds such as trisazo and tetrakisazo. As described above, the thickness of a polarizer obtained by subjecting a polyvinyl alcohol resin film to uniaxial stretching, dyeing with a dichroic dye, boric acid treatment, water washing and drying is preferably 5 μm to 40 μm.

[粘接着剤]
粘接着剤としては、感圧式粘着剤、乾燥固化型接着剤及び化学反応型接着剤が挙げられる。化学反応型接着剤としては、例えば、活性エネルギー線硬化型接着剤が挙げられる。
[Adhesive]
Examples of the adhesive include pressure-sensitive adhesives, dry-solidifying adhesives, and chemically reactive adhesives. Examples of the chemically reactive adhesive include an active energy ray curable adhesive.

感圧式粘着剤は、通常、ポリマーを含み、溶媒を含んでいてもよい。ポリマーとしては、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、又はポリエーテル等が挙げられる。中でも、アクリル系ポリマーを含むアクリル系の粘着剤は、光学的な透明性に優れ、適度の濡れ性や凝集力を有し、接着性に優れ、さらには耐候性や耐熱性等が高く、加熱や加湿の条件下で浮きや剥がれ等が生じ難いため好ましい。   The pressure-sensitive adhesive usually contains a polymer and may contain a solvent. Examples of the polymer include acrylic polymers, silicone polymers, polyesters, polyurethanes, and polyethers. Among them, acrylic pressure-sensitive adhesives containing acrylic polymers have excellent optical transparency, moderate wettability and cohesive strength, excellent adhesion, and high weather resistance and heat resistance. It is preferable because it does not easily float or peel off under humidifying conditions.

アクリル系ポリマーとしては、エステル部分のアルキル基がメチル基、エチル基又はブチル基等の炭素数1〜20のアルキル基である(メタ)アクリレートと、(メタ)アクリル酸やヒドロキシエチル(メタ)アクリレート等の官能基を有する(メタ)アクリル系モノマーとの共重合体が好ましい。   As the acrylic polymer, (meth) acrylates in which the alkyl group in the ester moiety is an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group or a butyl group, and (meth) acrylic acid or hydroxyethyl (meth) acrylate A copolymer with a (meth) acrylic monomer having a functional group such as is preferable.

このような共重合体を含む感圧式粘着剤は、粘着性に優れており、被転写体に貼合した後に取り除くときも、被転写体に糊残り等を生じさせることなく、比較的容易に取り除くことが可能であるので好ましい。アクリル系ポリマーのガラス転移温度は、25℃以下が好ましく、0℃以下がより好ましい。このようなアクリル系ポリマーの質量平均分子量は、10万以上であることが好ましい。   The pressure-sensitive adhesive containing such a copolymer has excellent adhesiveness, and even when removed after being bonded to the transfer object, it is relatively easy to cause no adhesive residue on the transfer object. This is preferable because it can be removed. The glass transition temperature of the acrylic polymer is preferably 25 ° C. or less, and more preferably 0 ° C. or less. The mass average molecular weight of such an acrylic polymer is preferably 100,000 or more.

溶媒としては、上記溶媒として挙げられた溶媒等が挙げられる。感圧式粘着剤は、光拡散剤を含有していてもよい。光拡散剤は、粘着剤に光拡散性を付与する添加剤であり、粘着剤が含むポリマーの屈折率と異なる屈折率を有する微粒子であればよい。光拡散剤としては、無機化合物からなる微粒子、及び有機化合物(ポリマー)からなる微粒子が挙げられる。アクリル系ポリマーを含めて、粘着剤が有効成分として含むポリマーの多くは1.4〜1.6程度の屈折率を有するため、その屈折率が1.2〜1.8である光拡散剤から適宜選択することが好ましい。粘着剤が有効成分として含むポリマーと光拡散剤との屈折率差は、通常、0.01以上であり、表示装置の明るさと表示性の観点からは、0.01〜0.2が好ましい。光拡散剤として用いる微粒子は、球形の微粒子、それも単分散に近い微粒子が好ましく、平均粒径が2〜6μmである微粒子がより好ましい。屈折率は、一般的な最小偏角法又はアッベ屈折計によって測定される。   As a solvent, the solvent etc. which were mentioned as the said solvent are mentioned. The pressure-sensitive adhesive may contain a light diffusing agent. The light diffusing agent is an additive that imparts light diffusibility to the pressure-sensitive adhesive and may be fine particles having a refractive index different from the refractive index of the polymer contained in the pressure-sensitive adhesive. Examples of the light diffusing agent include fine particles made of an inorganic compound and fine particles made of an organic compound (polymer). Since many of the polymers that the pressure-sensitive adhesive contains as an active ingredient, including acrylic polymers, have a refractive index of about 1.4 to 1.6, the light diffusing agent has a refractive index of 1.2 to 1.8. It is preferable to select appropriately. The refractive index difference between the polymer contained in the pressure-sensitive adhesive as an active ingredient and the light diffusing agent is usually 0.01 or more, and is preferably 0.01 to 0.2 from the viewpoint of the brightness and display properties of the display device. The fine particles used as the light diffusing agent are preferably spherical fine particles, or fine particles close to monodisperse, and more preferably fine particles having an average particle diameter of 2 to 6 μm. The refractive index is measured by a general minimum deviation method or Abbe refractometer.

無機化合物からなる微粒子としては、酸化アルミニウム(屈折率1.76)及び酸化ケイ素(屈折率1.45)等が挙げられる。有機化合物(ポリマー)からなる微粒子としては、メラミンビーズ(屈折率1.57)、ポリメタクリル酸メチルビーズ(屈折率1.49)、メタクリル酸メチル/スチレン共重合体樹脂ビーズ(屈折率1.50〜1.59)、ポリカーボネートビーズ(屈折率1.55)、ポリエチレンビーズ(屈折率1.53)、ポリスチレンビーズ(屈折率1.6)、ポリ塩化ビニルビーズ(屈折率1.46)、及びシリコーン樹脂ビーズ(屈折率1.46)等が挙げられる。光拡散剤の含有量は、通常、ポリマー100質量部に対して、3〜30質量部である。   Examples of the fine particles made of an inorganic compound include aluminum oxide (refractive index 1.76) and silicon oxide (refractive index 1.45). Fine particles comprising an organic compound (polymer) include melamine beads (refractive index 1.57), polymethyl methacrylate beads (refractive index 1.49), methyl methacrylate / styrene copolymer resin beads (refractive index 1.50). To 1.59), polycarbonate beads (refractive index 1.55), polyethylene beads (refractive index 1.53), polystyrene beads (refractive index 1.6), polyvinyl chloride beads (refractive index 1.46), and silicone. Examples thereof include resin beads (refractive index: 1.46). The content of the light diffusing agent is usually 3 to 30 parts by mass with respect to 100 parts by mass of the polymer.

感圧式粘着剤の厚みは、その密着力等に応じて決定されるため、特に制限されないが、通常、1μm〜40μmである。加工性や耐久性等の点から、当該厚さは3μm〜25μmが好ましく、5μm〜20μmがより好ましい。粘着剤から形成される粘接着剤層の厚さを5μm〜20μmとすることにより、表示装置を正面から見た場合や斜めから見た場合の明るさを保ち、表示像のにじみやボケを生じ難くすることができる。   The thickness of the pressure-sensitive adhesive is determined according to its adhesion and the like, and is not particularly limited, but is usually 1 μm to 40 μm. From the viewpoints of workability and durability, the thickness is preferably 3 μm to 25 μm, and more preferably 5 μm to 20 μm. By setting the thickness of the adhesive layer formed from the pressure-sensitive adhesive to 5 μm to 20 μm, the brightness of the display device when viewed from the front or obliquely is maintained, and blurring or blurring of the display image is prevented. It can be made difficult to occur.

乾燥固化型接着剤は、溶媒を含んでいてもよい。乾燥固化型接着剤としては、水酸基、カルボキシル基又はアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体、又は、ウレタンポリマーを主成分として含有し、さらに、多価アルデヒド、エポキシ化合物、エポキシ樹脂、メラミン化合物、ジルコニア化合物、及び亜鉛化合物等の架橋剤又は硬化性化合物を含有する組成物等が挙げられる。水酸基、カルボキシル基又はアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体としては、エチレン−マレイン酸共重合体、イタコン酸共重合体、アクリル酸共重合体、アクリルアミド共重合体、ポリ酢酸ビニルのケン化物、及び、ポリビニルアルコール系樹脂等が挙げられる。   The dry-solidifying adhesive may contain a solvent. The dry-solidifying adhesive contains, as a main component, a polymer of a monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group, or a urethane polymer. Examples include aldehydes, epoxy compounds, epoxy resins, melamine compounds, zirconia compounds, and compositions containing a curable compound such as a zinc compound. Examples of the polymer of a monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group include an ethylene-maleic acid copolymer, an itaconic acid copolymer, an acrylic acid copolymer, and an acrylamide. Examples include copolymers, saponified products of polyvinyl acetate, and polyvinyl alcohol resins.

ポリビニルアルコール系樹脂としては、ポリビニルアルコール、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、及び、アミノ基変性ポリビニルアルコール等が挙げられる。水系の粘接着剤におけるポリビニルアルコール系樹脂の含有量は、水100質量部に対して、通常、1〜10質量部であり、好ましくは1〜5質量部である。   Examples of the polyvinyl alcohol resin include polyvinyl alcohol, partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Can be mentioned. The content of the polyvinyl alcohol-based resin in the aqueous adhesive is usually 1 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of water.

ウレタン樹脂としては、ポリエステル系アイオノマー型ウレタン樹脂等が挙げられる。
ここでいうポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その中に少量のイオン性成分(親水成分)が導入された樹脂である。係るアイオノマー型ウレタン樹脂は、乳化剤を使用せずに、水中で乳化してエマルジョンとなるため、水系の粘接着剤とすることができる。ポリエステル系アイオノマー型ウレタン樹脂を用いる場合は、架橋剤として水溶性のエポキシ化合物を配合することが有効である。
Examples of the urethane resin include polyester ionomer type urethane resins.
The polyester ionomer type urethane resin here is a urethane resin having a polyester skeleton, and a resin in which a small amount of an ionic component (hydrophilic component) is introduced. Since such an ionomer type urethane resin is emulsified in water without using an emulsifier and becomes an emulsion, it can be an aqueous adhesive. When a polyester ionomer type urethane resin is used, it is effective to blend a water-soluble epoxy compound as a crosslinking agent.

エポキシ樹脂としては、ジエチレントリアミン又はトリエチレンテトラミン等のポリアルキレンポリアミンとアジピン酸等のジカルボン酸との反応で得られるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂等が挙げられる。係るポリアミドエポキシ樹脂の市販品としては、“スミレーズレジン(登録商標)650”及び“スミレーズレジン675”(以上、住化ケムテックス株式会社製)、“WS−525”(日本PMC株式会社製)等が挙げられる。エポキシ樹脂を配合する場合、その添加量は、ポリビニルアルコール系樹脂100質量部に対して、通常、1〜100質量部であり、好ましくは1〜50質量部である。   Examples of the epoxy resin include a polyamide epoxy resin obtained by reacting a polyalkylenepolyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid and epichlorohydrin. Commercially available products of such polyamide epoxy resins include “Smiles Resin (registered trademark) 650” and “Smiles Resin 675” (manufactured by Sumika Chemtex Co., Ltd.), “WS-525” (manufactured by Nippon PMC Co., Ltd.). Etc. When mix | blending an epoxy resin, the addition amount is 1-100 mass parts normally with respect to 100 mass parts of polyvinyl alcohol-type resin, Preferably it is 1-50 mass parts.

乾燥固化型接着剤から形成される粘接着剤層の厚さは、通常、0.001〜5μmであり、好ましくは0.01〜2μmであり、さらに好ましくは0.01〜0.5μmである。乾燥固化型接着剤から形成される粘接着剤層が厚すぎると、外観不良となり易い。   The thickness of the adhesive layer formed from the dry-solidifying adhesive is usually 0.001 to 5 μm, preferably 0.01 to 2 μm, more preferably 0.01 to 0.5 μm. is there. When the adhesive layer formed from the dry-solidifying adhesive is too thick, the appearance is liable to be poor.

活性エネルギー線硬化型接着剤は、溶媒を含んでいてもよい。活性エネルギー線硬化型接着剤とは、活性エネルギー線の照射を受けて硬化する接着剤である。活性エネルギー線硬化型接着剤としては、エポキシ化合物とカチオン重合開始剤とを含有するカチオン重合性の接着剤、アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の接着剤、エポキシ化合物等のカチオン重合性の硬化成分及びアクリル系化合物等のラジカル重合性の硬化成分の両者を含有し、さらにカチオン重合開始剤及びラジカル重合開始剤を含有する接着剤、及び、これら重合開始剤を含まずに電子ビームを照射することで硬化される接着剤等が挙げられる。   The active energy ray-curable adhesive may contain a solvent. An active energy ray-curable adhesive is an adhesive that cures upon irradiation with active energy rays. Examples of the active energy ray-curable adhesive include a cationic polymerizable adhesive containing an epoxy compound and a cationic polymerization initiator, a radical polymerizable adhesive containing an acrylic curing component and a radical polymerization initiator, and an epoxy compound. Contains both a cationic polymerizable curing component such as an acrylic compound and a radical polymerizable curing component such as an acrylic compound, and further contains an adhesive containing a cationic polymerization initiator and a radical polymerization initiator, and these polymerization initiators. For example, an adhesive that is cured by irradiating an electron beam.

中でも、アクリル系硬化成分と光ラジカル重合開始剤とを含有するラジカル重合性の活性エネルギー線硬化型接着剤、エポキシ化合物と光カチオン重合開始剤とを含有するカチオン重合性の活性エネルギー線硬化型接着剤が好ましい。アクリル系硬化成分としては、メチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリレート及び(メタ)アクリル酸等が挙げられる。エポキシ化合物を含有する活性エネルギー線硬化型接着剤は、エポキシ化合物以外の化合物をさらに含有していてもよい。エポキシ化合物以外の化合物としては、オキセタン化合物やアクリル化合物等が挙げられる。   Among them, radically polymerizable active energy ray-curable adhesives containing acrylic curing components and photoradical polymerization initiators, and cationic polymerizable active energy ray-curable adhesives containing epoxy compounds and photocationic polymerization initiators Agents are preferred. Examples of the acrylic curing component include (meth) acrylates such as methyl (meth) acrylate and hydroxyethyl (meth) acrylate, and (meth) acrylic acid. The active energy ray-curable adhesive containing an epoxy compound may further contain a compound other than the epoxy compound. Examples of compounds other than epoxy compounds include oxetane compounds and acrylic compounds.

光ラジカル重合開始剤及び光カチオン重合開始剤としては、上述の光ラジカル重合開始剤及び光カチオン重合開始剤が挙げられる。ラジカル重合開始剤並びにカチオン重合開始剤の含有量は、活性エネルギー線硬化型接着剤100質量部に対して、通常、0.5〜20質量部であり、好ましくは1〜15質量部である。   Examples of the radical photopolymerization initiator and the cationic photopolymerization initiator include the aforementioned radical photopolymerization initiator and cationic photopolymerization initiator. Content of a radical polymerization initiator and a cationic polymerization initiator is 0.5-20 mass parts normally with respect to 100 mass parts of active energy ray hardening-type adhesives, Preferably it is 1-15 mass parts.

活性エネルギー線硬化型接着剤には、さらに、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤及び消泡剤等が含有されていてもよい。   The active energy ray-curable adhesive further contains an ion trap agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow regulator, a plasticizer, an antifoaming agent, and the like. May be.

本明細書において活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線等が挙げられ、紫外線及び電子線が好ましい。好ましい紫外線の照射条件は前述した重合性液晶化合物の重合と同様である。   In this specification, an active energy ray is defined as an energy ray capable of generating an active species by decomposing a compound that generates an active species. Examples of such active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, α rays, β rays, γ rays, and electron beams, and ultraviolet rays and electron beams are preferable. Preferable ultraviolet irradiation conditions are the same as the polymerization of the polymerizable liquid crystal compound described above.

以下、実施例により本発明をより具体的に説明する。尚、例中の「%」及び「部」は、特記ない限り、質量%及び質量部を意味する。また、以下の実施例において、膜厚は日本分光株式会社製のエリプソメータ M−220、又は接触式膜厚計(Nikon社製のMH−15M、カウンタTC101、MS−5C)を用いて測定した。また、厚み方向の位相差値Rth(λ)や面内位相差値Re(λ)、40°方向から測定した場合の見かけの位相差値R40(λ)は王子計測機器株式会社 KOBRA−WPR、又は日本分光株式会社製のエリプソメータ M−220を使用して測定、算出した。また、Si/Cの比率は、垂直配向膜の元素分析、X線光電分光法を使用した表面構成元素の測定から算出するか、垂直配向膜の形成に使用した化合物の構造式が全て分かっている場合には構造式から算出できる。また、コロナ処理装置には、春日電機株式会社製のAGF−B10を用いた。コロナ処理は、基材への組成物を塗布する場合に適宜実施する事が出来る。上記コロナ処理装置を用いて、出力0.3kW、処理速度3m/分の条件で1回行った。   Hereinafter, the present invention will be described more specifically with reference to examples. In the examples, “%” and “part” mean mass% and part by mass unless otherwise specified. In the following examples, the film thickness was measured using an ellipsometer M-220 manufactured by JASCO Corporation or a contact-type film thickness meter (MH-15M manufactured by Nikon, counter TC101, MS-5C). Further, the retardation value Rth (λ) in the thickness direction, the in-plane retardation value Re (λ), and the apparent retardation value R40 (λ) when measured from the 40 ° direction are Oji Scientific Instruments KOBRA-WPR, Or it measured and calculated using the ellipsometer M-220 by JASCO Corporation. The Si / C ratio can be calculated from elemental analysis of the vertical alignment film, measurement of surface constituent elements using X-ray photoelectric spectroscopy, or the structural formula of the compound used to form the vertical alignment film can be understood. Can be calculated from the structural formula. Moreover, AGF-B10 made from Kasuga Electric Co., Ltd. was used for the corona treatment apparatus. The corona treatment can be appropriately performed when the composition is applied to the substrate. Using the above corona treatment apparatus, the treatment was performed once under the conditions of an output of 0.3 kW and a treatment speed of 3 m / min.

[実施例1]
〔水平配向膜形成用組成物の調製〕
下記構造の光配向性材料5部(重量平均分子量:30000)とシクロペンタノン(溶媒)95部とを成分として混合し、得られた混合物を80℃で1時間攪拌することにより、水平配向膜形成用組成物を得た。
[Example 1]
(Preparation of composition for forming horizontal alignment film)
A horizontal alignment film was prepared by mixing 5 parts (weight average molecular weight: 30000) and 95 parts of cyclopentanone (solvent) having the following structure as components and stirring the resulting mixture at 80 ° C. for 1 hour. A forming composition was obtained.

Figure 2019035952
Figure 2019035952

〔垂直配向膜形成用組成物の調製〕
信越化学工業株式会社製のシランカップリング剤「KBE−9103」を、エタノールと水を9:1(質量比)の割合で混合した混合溶媒に溶解させ、固形分0.5%の垂直配向膜形成用組成物を得た。
[Preparation of composition for forming vertical alignment film]
Silane coupling agent “KBE-9103” manufactured by Shin-Etsu Chemical Co., Ltd. is dissolved in a mixed solvent in which ethanol and water are mixed at a ratio of 9: 1 (mass ratio), and a vertical alignment film having a solid content of 0.5%. A forming composition was obtained.

〔水平配向液晶硬化膜形成用組成物、及び垂直配向液晶硬化膜形成用組成物の調製〕
以下に示す重合性液晶化合物A、及び重合性液晶化合物Bを90:10の質量比で混合した混合物に対して、レベリング剤(F−556;DIC社製)を1.0部、及び重合開始剤である2−ジメチルアミノ−2−ベンジル−1−(4−モルホリノフェニル)ブタン−1−オン(「イルガキュア369(Irg369)」、BASFジャパン株式会社製)を6部添加した。
[Preparation of horizontal alignment liquid crystal cured film forming composition and vertical alignment liquid crystal cured film forming composition]
1.0 parts of a leveling agent (F-556; manufactured by DIC) and polymerization start with respect to a mixture in which polymerizable liquid crystal compound A and polymerizable liquid crystal compound B shown below were mixed at a mass ratio of 90:10 6 parts of 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (“Irgacure 369 (Irg369)”, manufactured by BASF Japan Ltd.) as an agent was added.

さらに、固形分濃度が13%となるようにN−メチル−2−ピロリドン(NMP)を添加し、80℃で1時間攪拌することにより、水平配向液晶硬化膜形成用組成物、及び垂直配向液晶硬化膜形成用組成物を得た。   Further, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration was 13%, and the mixture was stirred at 80 ° C. for 1 hour, whereby a composition for forming a horizontal alignment liquid crystal cured film, and a vertical alignment liquid crystal were obtained. A composition for forming a cured film was obtained.

重合性液晶化合物Aは特開2010−31223号公報に記載の方法で製造した。また、重合性液晶化合物Bは、特開2009−173893号公報に記載の方法に準じて製造した。以下にそれぞれの分子構造を示す。   The polymerizable liquid crystal compound A was produced by the method described in JP 2010-31223 A. The polymerizable liquid crystal compound B was produced according to the method described in JP2009-173893A. Each molecular structure is shown below.

[重合性液晶化合物A] [Polymerizable liquid crystal compound A]

Figure 2019035952
Figure 2019035952

[重合性液晶化合物B] [Polymerizable liquid crystal compound B]

Figure 2019035952
Figure 2019035952

〔偏光板の製造〕
平均重合度約2,400、ケン化度99.9モル%以上、厚さ75μmのポリビニルアルコールフィルムを、30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の質量比が0.02/2/100の水溶液に30℃で浸漬してヨウ素染色を行った(ヨウ素染色工程)。ヨウ素染色工程を経たポリビニルアルコールフィルムを、ヨウ化カリウム/ホウ酸/水の質量比が12/5/100の水溶液に、56.5℃で浸漬してホウ酸処理を行った(ホウ酸処理工程)。ホウ酸処理工程を経たポリビニルアルコールフィルムを8℃の純水で洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向している偏光子(延伸後の厚さ27μm)を得た。この際、ヨウ素染色工程とホウ酸処理工程において延伸を行った。かかる延伸におけるトータル延伸倍率は5.3倍であった。得られた偏光子と、ケン化処理されたトリアセチルセルロースフィルム(コニカミノルタ製 KC4UYTAC 40μm)とを水系接着剤を介してニップロールで貼り合わせた。得られた貼合物の張力を430N/mに保ちながら、60℃で2分間乾燥して、片面に保護フィルムとしてトリアセチルセルロースフィルムを有する偏光板を得た。なお、前記水系接着剤は水100部に、カルボキシル基変性ポリビニルアルコール(クラレ製、「クラレポバール KL318」)3部と、水溶性ポリアミドエポキシ樹脂(住化ケムテックス製、「スミレーズレジン650」、固形分濃度30%の水溶液〕1.5部とを添加して調製した。
[Production of polarizing plate]
A polyvinyl alcohol film having an average degree of polymerization of about 2,400, a degree of saponification of 99.9 mol% or more, and a thickness of 75 μm is immersed in pure water at 30 ° C., and then the mass ratio of iodine / potassium iodide / water is 0. Iodine dyeing was performed by immersing in an aqueous solution of 02/2/100 at 30 ° C. (iodine dyeing step). The polyvinyl alcohol film which passed through the iodine dyeing process was immersed in an aqueous solution having a mass ratio of potassium iodide / boric acid / water of 12/5/100 at 56.5 ° C. to perform boric acid treatment (boric acid treatment process). ). The polyvinyl alcohol film that had undergone the boric acid treatment step was washed with pure water at 8 ° C. and then dried at 65 ° C. to obtain a polarizer (thickness 27 μm after stretching) in which iodine was adsorbed and oriented on polyvinyl alcohol. . Under the present circumstances, it extended | stretched in the iodine dyeing process and the boric-acid treatment process. The total draw ratio in such drawing was 5.3 times. The obtained polarizer and a saponified triacetyl cellulose film (Konica Minolta KC4UYTAC 40 μm) were bonded together with a nip roll via an aqueous adhesive. While maintaining the tension of the obtained bonded product at 430 N / m, it was dried at 60 ° C. for 2 minutes to obtain a polarizing plate having a triacetyl cellulose film as a protective film on one side. The water-based adhesive is 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray, “Kuraray Poval KL318”), water-soluble polyamide epoxy resin (Sumika Chemtex, “Smiles Resin 650”, solid An aqueous solution having a partial concentration of 30%] was added to 1.5 parts.

得られた偏光板について光学特性の測定を行った。測定は上記で得られた偏光板の偏光子面を入射面として分光光度計(「V7100」、日本分光製)にて実施した。偏光板の吸収軸はポリビニルアルコールの延伸方向と一致しており、得られた偏光板の視感度補正単体透過率は42.1%、視感度補正偏光度は99.996%、単体色相aは−1.1、単体色相bは3.7であった。   The optical characteristics of the obtained polarizing plate were measured. The measurement was carried out with a spectrophotometer (“V7100”, manufactured by JASCO Corporation) using the polarizer surface of the polarizing plate obtained above as an incident surface. The absorption axis of the polarizing plate coincides with the stretching direction of the polyvinyl alcohol, and the obtained polarizing plate has a visibility corrected single transmittance of 42.1%, a visibility corrected polarization degree of 99.996%, and a single hue a. -1.1, simple substance hue b was 3.7.

〔基材、水平配向膜、水平配向液晶硬化膜からなる積層体の製造〕
日本ゼオン株式会社製のCOPフィルム(ZF−14−50)上にコロナ処理を実施した後、水平配向膜形成用組成物をバーコーター塗布し、80℃で1分間乾燥し、偏光UV照射装置(「SPOT CURE SP−9」、ウシオ電機株式会社製)を用いて、波長313nmにおける積算光量:100mJ/cmで軸角度45°にて偏光UV露光を実施した。得られた水平配向膜の膜厚をエリプソメータで測定したところ、100nmであった。
[Manufacture of a laminate comprising a substrate, a horizontal alignment film, and a horizontally aligned liquid crystal cured film]
After performing corona treatment on a COP film (ZF-14-50) manufactured by Nippon Zeon Co., Ltd., a composition for forming a horizontal alignment film was applied with a bar coater, dried at 80 ° C. for 1 minute, and a polarized UV irradiation device ( Using “SPOT CURE SP-9” (manufactured by Ushio Inc.), polarized UV exposure was carried out at an integrated light quantity of 100 mJ / cm 2 at a wavelength of 313 nm and an axial angle of 45 °. When the film thickness of the obtained horizontal alignment film was measured with an ellipsometer, it was 100 nm.

続いて、水平配向膜に、水平配向液晶硬化膜形成用組成物を、バーコーターを用いて塗布し、120℃で1分間乾燥した後、高圧水銀ランプ(「ユニキュアVB−15201BY−A」、ウシオ電機株式会社製)を用いて、紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:500mJ/cm)することにより、水平配向液晶硬化膜を形成し、基材、水平配向膜及び水平配向液晶硬化膜からなる積層体を得た。水平配向液晶硬化膜の膜厚をエリプソメータで測定したところ、2.3μmであった。 Subsequently, the horizontal alignment liquid crystal cured film forming composition was applied to the horizontal alignment film using a bar coater, dried at 120 ° C. for 1 minute, and then subjected to a high-pressure mercury lamp (“Unicure VB-15201BY-A”, Ushio). By using UV light (accumulated light amount at a wavelength of 365 nm: 500 mJ / cm 2 ) using an electric device, a horizontal alignment liquid crystal cured film is formed, and a base material, a horizontal alignment film, and a horizontal alignment are formed. A laminate composed of a liquid crystal cured film was obtained. The thickness of the horizontally aligned liquid crystal cured film was measured with an ellipsometer and found to be 2.3 μm.

〔水平配向液晶硬化膜のRe測定〕
上記方法にて製造した水平配向液晶硬化膜の面内位相差値ReA(λ)は、粘着剤を介してガラスに貼合した後、基材であるCOPを剥離した後に、測定機(「KOBRA−WPR」、王子計測機器株式会社製)により測定した。各波長における位相差値ReA(λ)を測定結果は、ReA(450)=121nm、ReA(550)=142nm、ReA(650)=146nm、ReA(450)/ReA(550)=0.85であった。
[Re measurement of horizontally aligned liquid crystal cured film]
The in-plane retardation value ReA (λ) of the horizontally aligned liquid crystal cured film produced by the above method was bonded to glass via an adhesive, and then the COP as a substrate was peeled off, followed by a measuring machine (“KOBRA -WPR ", manufactured by Oji Scientific Instruments). The measurement results of the phase difference value ReA (λ) at each wavelength are ReA (450) = 121 nm, ReA (550) = 142 nm, ReA (650) = 146 nm, ReA (450) / ReA (550) = 0.85. there were.

〔基材、水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜からなる積層体の製造〕
前述の方法にて製造した基材、水平配向膜及び水平配向液晶硬化膜からなる積層体上にコロナ処理を実施した後、垂直配向膜形成用組成物をバーコーターで塗布し、80℃で1分間乾燥し、垂直配向膜を得た。得られた垂直配向膜の膜厚をエリプソメータで測定したところ、50nmであった。
[Manufacture of a laminate comprising a substrate, a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film]
After performing corona treatment on the laminate comprising the base material, the horizontal alignment film and the horizontal alignment liquid crystal cured film produced by the above-described method, the composition for forming the vertical alignment film was applied with a bar coater and 1 at 80 ° C. Dried for a minute to obtain a vertical alignment film. It was 50 nm when the film thickness of the obtained vertical alignment film was measured with the ellipsometer.

さらに、垂直配向膜に、垂直配向液晶硬化膜形成用組成物をバーコーターを用いて塗布し、120℃で1分間乾燥した後、高圧水銀ランプ(「ユニキュアVB−15201BY−A」、ウシオ電機株式会社製)を用いて、紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:500mJ/cm)することにより、垂直配向液晶硬化膜を形成し、基材、水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜からなる積層体を得た。垂直配向液晶硬化膜の膜厚をエリプソメータで測定したところ、1.2μmであった。また、水平配向液晶硬化膜と垂直配向液晶硬化膜の層間距離は50nmであった。また、垂直配向膜の構成元素比は、Si/C=0.33であった。 Further, a composition for forming a vertically aligned liquid crystal cured film was applied to the vertically aligned film using a bar coater and dried at 120 ° C. for 1 minute, and then a high pressure mercury lamp (“UNICURE VB-15201BY-A”, USHIO INC. By using UV light (cumulative light quantity at a wavelength of 365 nm: 500 mJ / cm 2 ) using a company), a vertically aligned liquid crystal cured film is formed, and a substrate, a horizontal aligned film, and a horizontally aligned liquid crystal cured A laminate comprising a film, a vertical alignment film, and a vertically aligned liquid crystal cured film was obtained. The thickness of the vertically aligned liquid crystal cured film was measured by an ellipsometer and found to be 1.2 μm. The interlayer distance between the horizontally aligned liquid crystal cured film and the vertically aligned liquid crystal cured film was 50 nm. The constituent element ratio of the vertical alignment film was Si / C = 0.33.

〔垂直配向液晶硬化膜のRth測定〕
垂直配向液晶硬化膜のRthを測定するために、上記と同様の手順で日本ゼオン株式会社製のCOPフィルム(ZF−14−50)上に垂直配向膜、及び垂直配向液晶硬化膜を製造し、垂直配向液晶硬化膜を粘着剤(リンテック社製感圧式粘着剤 15μm)を介してガラスと貼合し、COPに位相差がない事を確認した上で、エリプソメータによりサンプルへの光の入射角を変えて位相差値を測定した。また、450nm及び550nmの波長λにおける平均屈折率は屈折率計(株式会社アタゴ製、「多波長アッベ屈折計DR−M4」)を用いて測定した。得られた膜厚、平均屈折率、及びエリプソメータの測定結果から算出されるReCはそれぞれ、RthC(450)=−63nm、RthC(550)=−73nmであり、RthC(450)/RthC(550)=0.85であった。
〔水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜からなる積層体(光学補償機能付き位相差板)のR0、及びR40の測定〕
[Rth measurement of vertically aligned liquid crystal cured film]
In order to measure Rth of the vertically aligned liquid crystal cured film, a vertical aligned film and a vertically aligned liquid crystal cured film are manufactured on a COP film (ZF-14-50) manufactured by Nippon Zeon Co., Ltd. in the same procedure as described above. A vertical alignment liquid crystal cured film is bonded to glass via an adhesive (pressure sensitive pressure sensitive adhesive 15 μm manufactured by Lintec Corporation), and after confirming that there is no phase difference in the COP, the angle of light incident on the sample is measured by an ellipsometer. The phase difference value was measured while changing. In addition, the average refractive index at wavelengths λ of 450 nm and 550 nm was measured using a refractometer (manufactured by Atago Co., Ltd., “Multiwave Abbe Refractometer DR-M4”). ReC calculated from the obtained film thickness, average refractive index, and ellipsometer measurement results are RthC (450) = − 63 nm and RthC (550) = − 73 nm, respectively, and RthC (450) / RthC (550). = 0.85.
[Measurement of R0 and R40 of laminated body (retard plate with optical compensation function) made of horizontal alignment liquid crystal cured film, vertical alignment film, vertical alignment liquid crystal cured film]

上記方法にて製造した基材、水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜からなる積層体を粘着剤(リンテック社製感圧式粘着剤 15μm)を介してガラスと貼合し、COPを剥離して測定用サンプルを作製した後、水平配向膜、及び垂直配向膜に位相差がない事を確認した上で、光学補償機能付き位相差板の正面方向の位相差値R0(λ)、及び水平配向液晶硬化膜の進相軸を中心として40°傾斜させた時の位相差値R40(λ)をKOBRA−WPRを用いて測定した。得られたR0(λ)及びR40(λ)の値から|R0(550)−R40(550)|、|R0(450)−R40(450)|、及び|{R0(450)−R40(450)}−{R0(550)−R40(550)}|を計算した結果を表1に示す。   A laminate comprising the substrate, the horizontal alignment film, the horizontal alignment liquid crystal cured film, the vertical alignment film, and the vertical alignment liquid crystal cured film produced by the above method is bonded to glass through an adhesive (pressure sensitive adhesive 15 μm manufactured by Lintec). After laminating and peeling the COP to prepare a measurement sample, after confirming that there is no phase difference between the horizontal alignment film and the vertical alignment film, the phase difference in the front direction of the phase difference plate with an optical compensation function The value R0 (λ) and the retardation value R40 (λ) when tilted by 40 ° around the fast axis of the horizontally aligned liquid crystal cured film were measured using KOBRA-WPR. From the values of R0 (λ) and R40 (λ) obtained, | R0 (550) -R40 (550) |, | R0 (450) -R40 (450) |, and | {R0 (450) -R40 (450 )}-{R0 (550) -R40 (550)} |

〔各層の面内平均屈折率の差〕
上記方法に準じて各層をガラス上に塗布し、屈折率計(株式会社アタゴ製、「多波長アッベ屈折計DR−M4」)またはエリプソメータを使用して各層の平均屈折率を算出し、各層の面内平均屈折率の差が0.2以下である事を確認した。
[Difference in in-plane average refractive index of each layer]
According to the above method, each layer was coated on glass, and the average refractive index of each layer was calculated using a refractometer (manufactured by Atago Co., Ltd., “Multiwave Abbe Refractometer DR-M4”) or an ellipsometer. It was confirmed that the in-plane average refractive index difference was 0.2 or less.

〔屈曲性試験〕
上記方法にて作製した基材、水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜からなる積層体の塗膜面側に厚み0.7mmのガラス板を載せ、ガラス板に這わせるようにして積層体を180度曲げた後、10倍のルーペを使用して蛍光灯の光に透過させて屈曲部分を観察し、シワやクラックの有無を確認した。結果を表1に示す。
[Flexibility test]
A glass plate having a thickness of 0.7 mm is placed on the coating film side of the laminate comprising the substrate, the horizontal alignment film, the horizontal alignment liquid crystal cured film, the vertical alignment film, and the vertical alignment liquid crystal cured film prepared by the above method. The laminated body was bent 180 degrees so as to be bent, and then the bent portion was observed using a 10-fold magnifying glass through a fluorescent lamp to check for wrinkles and cracks. The results are shown in Table 1.

〔屈曲部の反射色相確認〕
上記方法にて作製した基材、水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜からなる積層体の塗膜面側にコロナ処理を実施した後、偏光板の吸収軸と水平配向膜の遅相軸との成す角度が45°となるように粘着剤を介して前述の方法にて作製した偏光板に貼合し、基材を剥離して光学補償機能付き楕円偏光板を作製した。その後、粘着剤を介してアルミホイルに貼合し、偏光板側に半径1cmとなるように180°屈曲し、屈曲部分の反射色相を目視で観察した。結果を表1に示す。
[Confirmation of reflection hue of bent part]
After performing corona treatment on the coating surface side of the laminate comprising the substrate, horizontal alignment film, horizontal alignment liquid crystal cured film, vertical alignment film, and vertical alignment liquid crystal cured film prepared by the above method, the absorption axis of the polarizing plate Is bonded to the polarizing plate produced by the above-described method through an adhesive so that the angle formed between the horizontal axis and the slow axis of the horizontal alignment film is 45 °, and the base material is peeled off and the elliptically polarized light with optical compensation function A plate was made. Then, it bonded to the aluminum foil through the adhesive, and it bent 180 degree | times so that it might become a radius of 1 cm at the polarizing plate side, and the reflective hue of the bending part was observed visually. The results are shown in Table 1.

(実施例2及び3)
垂直配向膜の膜厚を表1に記載のように変更したこと以外は、実施例1と同様に光学補償機能付き位相差板を作製し、位相差値測定、屈曲性試験及び屈曲部の反射色相確認を実施した。結果を表1に示す。
(Examples 2 and 3)
A retardation plate with an optical compensation function was prepared in the same manner as in Example 1 except that the thickness of the vertical alignment film was changed as shown in Table 1, and the retardation value measurement, the flexibility test, and the reflection of the bent portion were performed. Hue confirmation was performed. The results are shown in Table 1.

(実施例4)
0.5重量%のポリイミド(「サンエバーSE−610」、日産化学工業株式会社製)、72.3重量%のN−メチル−2−ピロリドン、18.1重量%の2−ブトキシエタノール、9.1重量%のエチルシクロヘキサン、及び0.01重量%のDPHA(新中村化学製)を混合して、垂直配向膜形成用組成物Bを作製し、この垂直配向膜形成用組成物Bを使用したこと以外は、実施例1と同様に光学補償機能付き位相差板を作製し、位相差値測定、屈曲性試験及び屈曲部の反射色相確認を実施した。結果を表1に示す。なお、垂直配向膜の膜厚をエリプソメータで測定したところ0.2μmであった。このことから、水平配向液晶硬化膜と垂直配向液晶硬化膜の層間距離は0.2μmであった。また、垂直配向液晶硬化膜形成用組成物塗布時に、垂直配向膜が溶剤で侵され、部分的に配向欠陥や配向不良が発生していることを確認した。
Example 4
0.5% by weight of polyimide (“San Ever SE-610”, manufactured by Nissan Chemical Industries, Ltd.), 72.3% by weight of N-methyl-2-pyrrolidone, 18.1% by weight of 2-butoxyethanol, 9. 1% by weight of ethylcyclohexane and 0.01% by weight of DPHA (manufactured by Shin-Nakamura Chemical Co., Ltd.) were mixed to prepare a vertical alignment film forming composition B, and this vertical alignment film forming composition B was used. Except for the above, a retardation plate with an optical compensation function was prepared in the same manner as in Example 1, and the retardation value measurement, the flexibility test, and the reflection hue confirmation of the bent portion were performed. The results are shown in Table 1. In addition, it was 0.2 micrometer when the film thickness of the vertical alignment film was measured with the ellipsometer. From this, the interlayer distance between the horizontally aligned liquid crystal cured film and the vertically aligned liquid crystal cured film was 0.2 μm. Further, it was confirmed that the vertical alignment film was attacked by the solvent during the application of the composition for forming a vertical alignment liquid crystal cured film, and alignment defects and alignment defects were partially generated.

(実施例5)
基材を離型処理が施されたポリエチレンテレフタレートフィルム(リンテック(株)製、SP−PLR382050、以下、「セパレーター」と略記する。)に変更した事、積層順序を垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜の順に変更した事以外は、実施例1と同様に光学補償機能付き位相差板を作製し、位相差値測定、屈曲性試験及び屈曲部の反射色相確認を実施した。結果を表1に示す。なお、水平配向膜の膜厚をエリプソメータで測定したところ0.2μmであった。このことから、水平配向液晶硬化膜と垂直配向液晶硬化膜の層間距離は0.2μmであった。
(Example 5)
The base material was changed to a polyethylene terephthalate film that had been subjected to a release treatment (SP-PLR382020, manufactured by Lintec Corporation, hereinafter abbreviated as “separator”), the stacking order was vertical alignment film, vertical alignment liquid crystal curing A phase difference plate with an optical compensation function is prepared in the same manner as in Example 1 except that the film, the horizontal alignment film, and the horizontal alignment liquid crystal cured film are changed in this order, and the retardation value measurement, the flexibility test, and the reflection hue of the bent portion are performed. Confirmation was carried out. The results are shown in Table 1. In addition, it was 0.2 micrometer when the film thickness of the horizontal alignment film was measured with the ellipsometer. From this, the interlayer distance between the horizontally aligned liquid crystal cured film and the vertically aligned liquid crystal cured film was 0.2 μm.

(実施例6及び7)
垂直配向液晶硬化膜の膜厚を変更する事でRthC(450)、及びRthC(550)の値を表1に記載のように変更したこと以外は、実施例1と同様に光学補償機能付き位相差板を作製し、位相差値測定、屈曲性試験及び屈曲部の反射色相確認を実施した。結果を表1に示す。
(Examples 6 and 7)
Similar to Example 1, except that the values of RthC (450) and RthC (550) were changed as shown in Table 1 by changing the thickness of the vertically aligned liquid crystal cured film. A phase difference plate was prepared, and a phase difference value measurement, a flexibility test, and a reflection hue confirmation of a bent portion were performed. The results are shown in Table 1.

(実施例8)
垂直配向液晶硬化膜形成用組成物を以下に記載の垂直配向液晶硬化膜形成用組成物(B)に変更した事、前記垂直配向液晶硬化膜形成用組成物(B)を塗布した後の乾燥温度を120℃から80℃に変更した事以外は実施例1に記載の方法と同様に光学補償機能付き位相差板を作製し、位相差値測定、屈曲性試験及び屈曲部の反射色相確認を実施した。結果を表1に示す。
(Example 8)
Changing the composition for forming a vertically aligned liquid crystal cured film to the composition for forming a vertically aligned liquid crystal cured film (B) described below, drying after applying the composition for forming a vertically aligned liquid crystal cured film (B) A phase difference plate with an optical compensation function was prepared in the same manner as in Example 1 except that the temperature was changed from 120 ° C. to 80 ° C., and the retardation value measurement, the flexibility test, and the reflection hue confirmation of the bent portion were performed. Carried out. The results are shown in Table 1.

(垂直配向液晶硬化膜形成用組成物(B)の調整)
以下に記載の液晶化合物LC242:PaliocolorLC242(BASF社登録商標)に対して、レベリング剤F−556を0.1部、及び重合開始剤Irg369を3部添加し、固形分濃度が13%となるようにシクロペンタノンを添加して、垂直配向液晶硬化膜形成用組成物(B)を得た。得られた液晶組成物の名称を“組成物V“とする。
液晶化合物LC242:PaliocolorLC242(BASF社登録商標)

Figure 2019035952
(Adjustment of composition for forming vertical alignment liquid crystal cured film (B))
To the liquid crystal compound LC242 described below: Paliocolor LC242 (registered trademark of BASF), 0.1 part of leveling agent F-556 and 3 parts of polymerization initiator Irg369 are added so that the solid content concentration becomes 13%. Cyclopentanone was added to to obtain a vertically aligned liquid crystal cured film forming composition (B). The name of the obtained liquid crystal composition is “Composition V”.
Liquid crystal compound LC242: Paliocolor LC242 (registered trademark of BASF)
Figure 2019035952

(比較例1)
実施例1に記載の方法で水平配向膜、水平配向液晶硬化膜の積層体を製造した後、別途COP上に実施例と同じ方法で垂直配向膜、垂直配向液晶硬化膜の積層体(リンテック社製)を準備した。得られた積層体同士を粘着剤(リンテック社製感圧式粘着剤 15μm)を用いて貼合し、位相差値測定、屈曲性試験及び屈曲部の反射色相確認を実施した。結果を表1に示す。
(Comparative Example 1)
After a laminate of a horizontal alignment film and a horizontal alignment liquid crystal cured film was produced by the method described in Example 1, a vertical alignment film and a vertical alignment liquid crystal cured film laminate (Lintec Corporation) were separately prepared on the COP by the same method as in the example. Prepared). The obtained laminates were bonded using a pressure-sensitive adhesive (pressure-sensitive pressure-sensitive adhesive 15 μm manufactured by Lintec Corporation), and retardation measurement, flexibility test, and reflection hue confirmation of the bent portion were performed. The results are shown in Table 1.

Figure 2019035952
Figure 2019035952

屈曲部反射色相:黒色の場合を○、明らかに着色が確認される場合を×とする。
屈曲性試験:不具合が発生しない場合を○、シワやクラック等の不具合が発生する場合を×とする。
Bending part reflection hue: ◯ for black, and x for obvious coloration.
Flexibility test: ◯ when no defect occurs, and x when defect such as wrinkles or cracks occurs.

本発明の製造方法を適用することにより、折り曲げたときに発生するシワやクラック等の不具合を抑制する事が可能な光学補償機能付き位相差板が得られた。 By applying the manufacturing method of the present invention, a retardation plate with an optical compensation function capable of suppressing defects such as wrinkles and cracks generated when bent is obtained.

Claims (18)

塗布、乾燥、配向処理工程を経て水平配向膜を形成し、
塗布、乾燥、紫外線照射工程を経て水平配向液晶硬化膜を形成し、
さらに塗布・乾燥工程を経て垂直配向膜を形成し、
塗布、乾燥、紫外線照射工程を経て垂直配向液晶硬化膜を形成することにより、
水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成する光学補償機能付き位相差板の製造方法。
A horizontal alignment film is formed through coating, drying, and alignment treatment steps.
Form a horizontal alignment liquid crystal cured film through coating, drying and ultraviolet irradiation processes,
Furthermore, a vertical alignment film is formed through a coating and drying process,
By forming a vertically aligned liquid crystal cured film through coating, drying, and ultraviolet irradiation processes,
A method of manufacturing a retardation film with an optical compensation function, wherein a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film are formed in this order.
膜厚が1.0μm以下の水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成する請求項1に記載の光学補償機能付き位相差板の製造方法。 The method for producing a retardation plate with an optical compensation function according to claim 1, wherein a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film having a film thickness of 1.0 μm or less are formed in this order. 光配向膜からなる水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成する請求項1〜2のいずれかに記載の光学補償機能付き位相差板の製造方法。 The method for producing a retardation film with an optical compensation function according to claim 1, wherein a horizontal alignment film comprising a photo-alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film are formed in this order. . シンナモイル基を含む光配向膜からなる水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成する請求項1〜3のいずれかに記載の光学補償機能付き位相差板の製造方法。 The phase difference with an optical compensation function according to claim 1, wherein a horizontal alignment film composed of a photo-alignment film containing a cinnamoyl group, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film are formed in this order. A manufacturing method of a board. 水平配向膜、水平配向液晶硬化膜、膜厚1.0μm以下の垂直配向膜、垂直配向液晶硬化膜をこの順に形成する請求項1〜4のいずれかに記載の光学補償機能付き位相差板の製造方法。 The phase difference plate with an optical compensation function according to claim 1, wherein a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film having a thickness of 1.0 μm or less, and a vertical alignment liquid crystal cured film are formed in this order. Production method. 水平配向膜、水平配向液晶硬化膜、Si元素を含む垂直配向膜、垂直配向液晶硬化膜をこの順に形成する請求項1〜5のいずれかに記載の光学補償機能付き位相差板の製造方法。 The method for producing a retardation film with an optical compensation function according to claim 1, wherein a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film containing Si element, and a vertical alignment liquid crystal cured film are formed in this order. 水平配向膜、水平配向液晶硬化膜、Si/Cの元素が0.03〜1.00である垂直配向膜、垂直配向液晶硬化膜をこの順に形成する請求項1〜6のいずれかに記載の光学補償機能付き位相差板の製造方法。 The horizontal alignment film, the horizontal alignment liquid crystal cured film, the vertical alignment film whose element of Si / C is 0.03 to 1.00, and the vertical alignment liquid crystal cured film are formed in this order. A method of manufacturing a retardation film with an optical compensation function. 水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成して光学補償機能付き位相差板を製造する方法であって、水平配向液晶硬化膜が以下の関係(1)を満たす請求項1〜7のいずれかに記載の光学補償機能付き位相差板の製造方法。
ReA(450)/ReA(550)<1.00 ・・・(1)
式中、ReA(λ)は水平配向液晶硬化膜の波長λnmにおける面内位相差値を示す。面内位相差値ReA(λ)の定義は以下のとおりである。
ReA(λ)=(nxA(λ)−nyA(λ))×dA
ただし、nxA(λ)は水平配向液晶硬化膜のフィルム面内における主屈折率であって、波長λ(nm)に置ける主屈折率を、nyA(λ)はnxA(λ)と同一面内で直交する方向の屈折率であって波長λ(nm)における屈折率を、dAは水平配向液晶硬化の膜厚をそれぞれ示す。
A method for producing a retardation film with an optical compensation function by forming a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film in this order, and the horizontal alignment liquid crystal cured film has the following relationship ( The manufacturing method of the phase difference plate with an optical compensation function in any one of Claims 1-7 which satisfy | fills 1).
ReA (450) / ReA (550) <1.00 (1)
In the formula, ReA (λ) represents an in-plane retardation value at a wavelength λ nm of the horizontally aligned liquid crystal cured film. The definition of the in-plane retardation value ReA (λ) is as follows.
ReA (λ) = (nxA (λ) −nyA (λ)) × dA
However, nxA (λ) is the main refractive index in the film plane of the horizontally aligned liquid crystal cured film, and nyA (λ) is in the same plane as nxA (λ). The refractive index in the orthogonal direction and the refractive index at the wavelength λ (nm), dA indicates the film thickness of horizontal alignment liquid crystal curing.
水平配向膜、水平配向液晶硬化膜、垂直配向膜、垂直配向液晶硬化膜をこの順に形成して光学補償機能付き位相差板を製造する方法であって、垂直配向液晶硬化膜が以下の関係(2)を満たす請求項1〜8のいずれかに記載の光学補償機能付き位相差板の製造方法。
RthC(450)/RthC(550)<1.00 ・・・(2)
式中、RthC(λ)は垂直配向液晶硬化膜の波長λnmにおける厚み方向の位相差値を示す。位相差値RthC(λ)の定義は以下のとおりである。
RthC(λ)=((nxC(λ)+nyC(λ))/2−nzC(λ))×dC
ただし、nxC(λ)は垂直配向液晶硬化膜のフィルム面内における主屈折率であって、波長λ(nm)における主屈折率を、
nyC(λ)はnxC(λ)と同一面内で直交する方向の屈折率であって波長λ(nm)における屈折率を、
nzC(λ)は垂直配向液晶硬化膜の厚み方向の屈折率であって波長λ(nm)における屈折率を、
dCは垂直配向液晶硬化の膜厚をそれぞれ示す。
A method of manufacturing a retardation film with an optical compensation function by forming a horizontal alignment film, a horizontal alignment liquid crystal cured film, a vertical alignment film, and a vertical alignment liquid crystal cured film in this order, and the vertical alignment liquid crystal cured film has the following relationship ( The method for producing a retardation plate with an optical compensation function according to any one of claims 1 to 8, which satisfies 2).
RthC (450) / RthC (550) <1.00 (2)
In the formula, RthC (λ) represents a thickness direction retardation value of the vertically aligned liquid crystal cured film at a wavelength of λ nm. The definition of the phase difference value RthC (λ) is as follows.
RthC (λ) = ((nxC (λ) + nyC (λ)) / 2−nzC (λ)) × dC
However, nxC (λ) is the main refractive index in the film plane of the vertically aligned liquid crystal cured film, and the main refractive index at the wavelength λ (nm),
nyC (λ) is the refractive index in the direction orthogonal to nxC (λ) in the same plane, and the refractive index at the wavelength λ (nm),
nzC (λ) is the refractive index in the thickness direction of the vertically aligned liquid crystal cured film, and the refractive index at the wavelength λ (nm),
dC represents the film thickness of vertical alignment liquid crystal curing.
塗布・乾燥工程を経て垂直配向膜を形成し、
塗布、乾燥、紫外線照射工程を経て垂直配向液晶硬化膜を形成し、
更に塗布、乾燥、配向処理工程を経て水平配向膜を形成し、
塗布、乾燥、紫外線照射工程を経て水平配向液晶硬化膜を形成することにより、
垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成する光学補償機能付き位相差板の製造方法
Form a vertical alignment film through the coating and drying process,
Form a vertically aligned liquid crystal cured film through coating, drying, and UV irradiation processes,
Furthermore, a horizontal alignment film is formed through coating, drying and alignment treatment steps,
By forming a horizontal alignment liquid crystal cured film through the application, drying, ultraviolet irradiation process,
Method of manufacturing retardation film with optical compensation function, forming vertical alignment film, vertical alignment liquid crystal cured film, horizontal alignment film, horizontal alignment liquid crystal cured film in this order
垂直配向膜、垂直配向液晶硬化膜、膜厚が1.0μm以下の水平配向膜、水平配向液晶硬化膜をこの順に形成する請求項10に記載の光学補償機能付き位相差板の製造方法。 The method for producing a retardation plate with an optical compensation function according to claim 10, wherein a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film having a film thickness of 1.0 μm or less, and a horizontal alignment liquid crystal cured film are formed in this order. 垂直配向膜、垂直配向液晶硬化膜、光配向膜からなる水平配向膜、水平配向液晶硬化膜、をこの順に形成する請求項10または11に記載の光学補償機能付き位相差板の製造方法。 The method for producing a retardation film with an optical compensation function according to claim 10 or 11, wherein a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film composed of a photo alignment film, and a horizontal alignment liquid crystal cured film are formed in this order. 垂直配向膜、垂直配向液晶硬化膜、シンナモイル基を含む光配向膜からなる水平配向膜、水平配向液晶硬化膜をこの順に形成する請求項10〜12のいずれかに記載の光学補償機能付き位相差板の製造方法。 The phase difference with an optical compensation function according to claim 10, wherein a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film composed of a photo alignment film containing a cinnamoyl group, and a horizontal alignment liquid crystal cured film are formed in this order. A manufacturing method of a board. 膜厚1.0μm以下の垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成する請求項10〜13のいずれかに記載の光学補償機能付き位相差板の製造方法。 The retardation film with an optical compensation function according to claim 10, wherein a vertical alignment film having a film thickness of 1.0 μm or less, a vertical alignment liquid crystal cured film, a horizontal alignment film, and a horizontal alignment liquid crystal cured film are formed in this order. Production method. Si元素を含む垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成する請求項10〜14のいずれかに記載の光学補償機能付き位相差板の製造方法。 The method for producing a retardation plate with an optical compensation function according to claim 10, wherein a vertical alignment film containing Si element, a vertical alignment liquid crystal cured film, a horizontal alignment film, and a horizontal alignment liquid crystal cured film are formed in this order. 水平配向膜、水平配向液晶硬化膜、Si/Cの元素が0.03〜1.00である垂直配向膜、垂直配向液晶硬化膜をこの順に形成する請求項10〜15のいずれかに記載の光学補償機能付き位相差板の製造方法。 The horizontal alignment film, the horizontal alignment liquid crystal cured film, the vertical alignment film whose element of Si / C is 0.03 to 1.00, and the vertical alignment liquid crystal cured film are formed in this order. A method of manufacturing a retardation film with an optical compensation function. 垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成して光学補償機能付き位相差板を製造する方法であって、水平配向液晶硬化膜が以下の関係(3)を満たす請求項10〜16のいずれかに記載の光学補償機能付き位相差板の製造方法。
ReA(450)/ReA(550)<1.00 ・・・(3)
式中、ReA(λ)は水平配向液晶硬化膜の波長λnmにおける面内位相差値を示す。面内位相差値ReA(λ)の定義は以下のとおりである。
ReA(λ)=(nxA(λ)−nyA(λ))×dA
ただし、nxA(λ)は水平配向液晶硬化膜のフィルム面内における主屈折率であって波長λ(nm)に置ける主屈折率を、nyA(λ)はnxA(λ)と同一面内で直交する方向の屈折率であって波長λ(nm)における屈折率を、dAは水平配向液晶硬化の膜厚をそれぞれ示す。
A method of producing a retardation film with an optical compensation function by forming a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film, and a horizontal alignment liquid crystal cured film in this order, and the horizontal alignment liquid crystal cured film has the following relationship ( The method for producing a retardation plate with an optical compensation function according to any one of claims 10 to 16, which satisfies 3).
ReA (450) / ReA (550) <1.00 (3)
In the formula, ReA (λ) represents an in-plane retardation value at a wavelength λ nm of the horizontally aligned liquid crystal cured film. The definition of the in-plane retardation value ReA (λ) is as follows.
ReA (λ) = (nxA (λ) −nyA (λ)) × dA
However, nxA (λ) is the main refractive index in the film plane of the horizontally aligned liquid crystal cured film and is the main refractive index at the wavelength λ (nm), and nyA (λ) is orthogonal to nxA (λ) in the same plane. The refractive index at the wavelength λ (nm), and dA represents the film thickness of horizontal alignment liquid crystal curing.
垂直配向膜、垂直配向液晶硬化膜、水平配向膜、水平配向液晶硬化膜をこの順に形成して光学補償機能付き位相差板を製造する方法であって、垂直配向液晶硬化膜が以下の関係(4)を満たす請求項10〜17のいずれかに記載の光学補償機能付き位相差板の製造方法。
RthC(450)/RthC(550)<1.00 ・・・(4)
式中、RthC(λ)は垂直配向液晶硬化膜の波長λnmにおける厚み方向の位相差値を示す。位相差値RthC(λ)の定義は以下のとおりである。
RthC(λ)=((nxC(λ)+nyC(λ))/2−nzC(λ))×dC
ただし、nxC(λ)は垂直配向液晶硬化膜のフィルム面内における主屈折率であって波長λ(nm)における主屈折率を、
nyC(λ)はnxC(λ)と同一面内で直交する方向の屈折率であって波長λ(nm)における屈折率を、
nzC(λ)は垂直配向液晶硬化膜の厚み方向の屈折率であって波長λ(nm)における屈折率を、
dCは垂直配向液晶硬化の膜厚をそれぞれ示す。
A method of manufacturing a retardation film with an optical compensation function by forming a vertical alignment film, a vertical alignment liquid crystal cured film, a horizontal alignment film, and a horizontal alignment liquid crystal cured film in this order, and the vertical alignment liquid crystal cured film has the following relationship ( The method for producing a retardation plate with an optical compensation function according to any one of claims 10 to 17, which satisfies 4).
RthC (450) / RthC (550) <1.00 (4)
In the formula, RthC (λ) represents a thickness direction retardation value of the vertically aligned liquid crystal cured film at a wavelength of λ nm. The definition of the phase difference value RthC (λ) is as follows.
RthC (λ) = ((nxC (λ) + nyC (λ)) / 2−nzC (λ)) × dC
However, nxC (λ) is the main refractive index in the film plane of the vertically aligned liquid crystal cured film, and the main refractive index at the wavelength λ (nm),
nyC (λ) is the refractive index in the direction orthogonal to nxC (λ) in the same plane, and the refractive index at the wavelength λ (nm),
nzC (λ) is the refractive index in the thickness direction of the vertically aligned liquid crystal cured film, and the refractive index at the wavelength λ (nm),
dC represents the film thickness of vertical alignment liquid crystal curing.
JP2018144820A 2017-08-21 2018-08-01 Phase difference plate with optical compensation function for flexible display Pending JP2019035952A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017158468 2017-08-21
JP2017158468 2017-08-21

Publications (1)

Publication Number Publication Date
JP2019035952A true JP2019035952A (en) 2019-03-07

Family

ID=65438707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144820A Pending JP2019035952A (en) 2017-08-21 2018-08-01 Phase difference plate with optical compensation function for flexible display

Country Status (5)

Country Link
JP (1) JP2019035952A (en)
KR (1) KR20200036928A (en)
CN (1) CN111033331B (en)
TW (1) TWI780207B (en)
WO (1) WO2019039287A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405576B2 (en) 2019-11-21 2023-12-26 住友化学株式会社 optically anisotropic film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461122B2 (en) * 2019-09-17 2024-04-03 住友化学株式会社 Laminate and elliptically polarizing plate including same

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183643A (en) * 1999-12-27 2001-07-06 Fuji Photo Film Co Ltd Liquid crystal display device
JP2004118185A (en) * 2002-09-06 2004-04-15 Dainippon Printing Co Ltd Stacked phase differential optical element, manufacturing method therefor, and liquid crystal display device
JP2006276817A (en) * 2005-03-02 2006-10-12 Fuji Photo Film Co Ltd Retardation plate, polarizing plate, and liquid crystal display apparatus
JP2006308725A (en) * 2005-04-27 2006-11-09 Sony Corp Optical compensating sheet and method for manufacturing the same, polarizing sheet, and liquid crystal display device
JP2008233814A (en) * 2007-03-23 2008-10-02 Fujifilm Corp Optical film, polarizing plate using the same, and liquid crystal display
JP2008250333A (en) * 2008-05-01 2008-10-16 Nitto Denko Corp Converging element, surface light source using the same, and liquid crystal display device
JP2008249819A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Liquid crystal display device element, manufacturing method thereof, and liquid crystal display device
JP2011185965A (en) * 2010-03-04 2011-09-22 Fujifilm Corp Va type liquid crystal display device
JP2013007809A (en) * 2011-06-23 2013-01-10 Fujifilm Corp Polymer film, retardation film, polarizer, liquid crystal display device, rth expression agent and merocyanine compound
JP2013186132A (en) * 2012-03-05 2013-09-19 Fujifilm Corp Circular polarization plate having pattern phase difference layer, and organic el display element having the circular polarization plate
JP2014063143A (en) * 2012-08-31 2014-04-10 Sumitomo Chemical Co Ltd Circularly polarizing plate and display device
WO2014188935A1 (en) * 2013-05-21 2014-11-27 コニカミノルタ株式会社 Phase difference film, polarizing plate using such phase difference film, and image display device
WO2015111474A1 (en) * 2014-01-22 2015-07-30 富士フイルム株式会社 Polarizing plate, liquid crystal display device
WO2016010026A1 (en) * 2014-07-15 2016-01-21 Dic株式会社 Liquid crystal display device
WO2016047517A1 (en) * 2014-09-26 2016-03-31 日本ゼオン株式会社 Circularly polarizing plate, method for producing same, broadband λ/4 plate, organic electroluminescent display device, and liquid crystal display device
WO2016152685A1 (en) * 2015-03-20 2016-09-29 日本ゼオン株式会社 Method for producing rubbed strip-shaped base material, and rubbing device
WO2016204020A1 (en) * 2015-06-17 2016-12-22 Dic株式会社 Polymerizable composition and optically anisotropic body using same
WO2016208574A1 (en) * 2015-06-25 2016-12-29 Dic株式会社 Polymerizable liquid crystal composition and optical isomer
JP2017062362A (en) * 2015-09-25 2017-03-30 大日本印刷株式会社 Lighting control film
JP2017141433A (en) * 2015-12-29 2017-08-17 三星電子株式会社Samsung Electronics Co.,Ltd. Polymerizable liquid crystal compound, composition for optical film, and optical film, compensation film, antireflective film and display device including the same
WO2017183682A1 (en) * 2016-04-22 2017-10-26 Dic株式会社 Polymerizable composition and film in which same is used

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982830B2 (en) * 2006-05-16 2011-07-19 Nitto Denko Corporation Liquid crystal panel, and liquid crystal display device having color filter and compensation layer
JP2010072516A (en) * 2008-09-22 2010-04-02 Fujifilm Corp Optical film, polarizing plate, and liquid crystal display device
JP2012237928A (en) * 2011-05-13 2012-12-06 Fujifilm Corp Optical film, polarizing plate, image display device and three-dimensional image display system
TWI546597B (en) * 2011-06-09 2016-08-21 林技術研究所股份有限公司 Optical film laminate, method for producing the same, and liquid crystal display panel using the same
JP2013083953A (en) * 2011-09-30 2013-05-09 Fujifilm Corp Laminated optical film, and polarizing plate and liquid crystal display device using the same
JP2014057945A (en) * 2012-09-19 2014-04-03 Kurita Water Ind Ltd Processing method of polyvalent metal ion inclusion water
JP2014081559A (en) * 2012-10-18 2014-05-08 Sony Corp Liquid crystal display device
KR101802216B1 (en) * 2013-07-08 2017-11-28 후지필름 가부시키가이샤 Optical film, polarizing plate, image display device, and optical film-manufacturing method
CN104339796B (en) * 2013-08-09 2018-03-02 住友化学株式会社 Layered product
CN104345368B (en) * 2013-08-09 2018-10-16 住友化学株式会社 Elliptical polarization plate
KR102368381B1 (en) 2013-08-09 2022-02-28 스미또모 가가꾸 가부시키가이샤 Optical film
KR20150113886A (en) * 2014-03-31 2015-10-08 후지필름 가부시키가이샤 Optical film, polarizing plate, and method of producing optical film
JP6075424B2 (en) * 2014-09-30 2017-02-08 住友化学株式会社 Polarizing plate, liquid crystal display device, and organic electroluminescence display device
KR20170105012A (en) * 2015-01-16 2017-09-18 디아이씨 가부시끼가이샤 Polymerizable composition and optically anisotropic body using same
CN105807359B (en) * 2016-05-30 2017-04-05 京东方科技集团股份有限公司 Line polarisation layer, rotatory polarization layer, flexible display apparatus and preparation method thereof

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183643A (en) * 1999-12-27 2001-07-06 Fuji Photo Film Co Ltd Liquid crystal display device
JP2004118185A (en) * 2002-09-06 2004-04-15 Dainippon Printing Co Ltd Stacked phase differential optical element, manufacturing method therefor, and liquid crystal display device
JP2006276817A (en) * 2005-03-02 2006-10-12 Fuji Photo Film Co Ltd Retardation plate, polarizing plate, and liquid crystal display apparatus
JP2006308725A (en) * 2005-04-27 2006-11-09 Sony Corp Optical compensating sheet and method for manufacturing the same, polarizing sheet, and liquid crystal display device
JP2008233814A (en) * 2007-03-23 2008-10-02 Fujifilm Corp Optical film, polarizing plate using the same, and liquid crystal display
JP2008249819A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Liquid crystal display device element, manufacturing method thereof, and liquid crystal display device
JP2008250333A (en) * 2008-05-01 2008-10-16 Nitto Denko Corp Converging element, surface light source using the same, and liquid crystal display device
JP2011185965A (en) * 2010-03-04 2011-09-22 Fujifilm Corp Va type liquid crystal display device
JP2013007809A (en) * 2011-06-23 2013-01-10 Fujifilm Corp Polymer film, retardation film, polarizer, liquid crystal display device, rth expression agent and merocyanine compound
JP2013186132A (en) * 2012-03-05 2013-09-19 Fujifilm Corp Circular polarization plate having pattern phase difference layer, and organic el display element having the circular polarization plate
JP2014063143A (en) * 2012-08-31 2014-04-10 Sumitomo Chemical Co Ltd Circularly polarizing plate and display device
WO2014188935A1 (en) * 2013-05-21 2014-11-27 コニカミノルタ株式会社 Phase difference film, polarizing plate using such phase difference film, and image display device
WO2015111474A1 (en) * 2014-01-22 2015-07-30 富士フイルム株式会社 Polarizing plate, liquid crystal display device
WO2016010026A1 (en) * 2014-07-15 2016-01-21 Dic株式会社 Liquid crystal display device
WO2016047517A1 (en) * 2014-09-26 2016-03-31 日本ゼオン株式会社 Circularly polarizing plate, method for producing same, broadband λ/4 plate, organic electroluminescent display device, and liquid crystal display device
WO2016152685A1 (en) * 2015-03-20 2016-09-29 日本ゼオン株式会社 Method for producing rubbed strip-shaped base material, and rubbing device
WO2016204020A1 (en) * 2015-06-17 2016-12-22 Dic株式会社 Polymerizable composition and optically anisotropic body using same
WO2016208574A1 (en) * 2015-06-25 2016-12-29 Dic株式会社 Polymerizable liquid crystal composition and optical isomer
JP2017062362A (en) * 2015-09-25 2017-03-30 大日本印刷株式会社 Lighting control film
JP2017141433A (en) * 2015-12-29 2017-08-17 三星電子株式会社Samsung Electronics Co.,Ltd. Polymerizable liquid crystal compound, composition for optical film, and optical film, compensation film, antireflective film and display device including the same
WO2017183682A1 (en) * 2016-04-22 2017-10-26 Dic株式会社 Polymerizable composition and film in which same is used

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405576B2 (en) 2019-11-21 2023-12-26 住友化学株式会社 optically anisotropic film

Also Published As

Publication number Publication date
CN111033331A (en) 2020-04-17
CN111033331B (en) 2022-06-24
KR20200036928A (en) 2020-04-07
TWI780207B (en) 2022-10-11
TW201921000A (en) 2019-06-01
WO2019039287A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP7356480B2 (en) Optical film and its manufacturing method
TWI723200B (en) Elliptically polarizing plate
JP7299746B2 (en) Elliptical polarizer
CN111033330B (en) Phase difference plate with optical compensation function
JP7461122B2 (en) Laminate and elliptically polarizing plate including same
CN111033331B (en) Phase difference plate with optical compensation function for flexible display
KR20220005480A (en) Composition for forming a laminate and a vertically aligned liquid crystal cured film
WO2019159887A1 (en) Vertically aligned liquid crystal cured film
WO2022050003A1 (en) Optical laminate, and ellipsoidally polarizing plate including same
JP6762336B2 (en) Optically anisotropic film
KR20210114427A (en) Laminate, elliptically polarizing plate and polymerizable liquid crystal composition
JP7001379B2 (en) Functional transferable plastic film
WO2019159886A1 (en) Composition
JP2021167867A (en) Optical laminate
US20230018608A1 (en) Horizontally oriented liquid crystal cured film and laminate including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230705

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230908