WO2020004303A1 - Polarizer and image display device - Google Patents

Polarizer and image display device Download PDF

Info

Publication number
WO2020004303A1
WO2020004303A1 PCT/JP2019/024891 JP2019024891W WO2020004303A1 WO 2020004303 A1 WO2020004303 A1 WO 2020004303A1 JP 2019024891 W JP2019024891 W JP 2019024891W WO 2020004303 A1 WO2020004303 A1 WO 2020004303A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
group
aggregates
liquid crystal
present
Prior art date
Application number
PCT/JP2019/024891
Other languages
French (fr)
Japanese (ja)
Inventor
渉 星野
達也 山下
志保 多田
直毅 林
健裕 笠原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020527496A priority Critical patent/JP7169352B2/en
Publication of WO2020004303A1 publication Critical patent/WO2020004303A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a polarizer and an image display device.
  • Patent Literature 1 discloses a light absorption anisotropic film containing a polymer liquid crystalline compound and a dichroic substance.
  • the present inventors prepared a polarizer with reference to the example of Patent Document 1 and evaluated the degree of orientation. As a result, it has been clarified that it is desirable to further improve the degree of orientation in view of the expected performance improvement of the image display device and the like.
  • an object of the present invention is to provide a polarizer having a high degree of orientation and an image display device having the polarizer.
  • the present invention has the following configuration.
  • a polarizer in which the number of needle-like aggregates satisfying L ⁇ 500 nm among the needle-like aggregates is 80% or more.
  • FIG. 1 is a diagram conceptually showing the surface of an example of the polarizer of the present invention.
  • FIG. 2 is a diagram of a micrograph of an example of the polarizer of the present invention, which is output after image processing.
  • FIG. 3 is a diagram of a micrograph of a comparative example of the polarizer of the present invention, which is output after image processing.
  • FIG. 4 is a diagram of a micrograph of a comparative example of the polarizer of the present invention, which is output after image processing.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • each component one kind of a substance corresponding to each component may be used alone, or two or more kinds may be used in combination.
  • the content of that component refers to the total content of the substances used in combination, unless otherwise specified.
  • (meth) acrylate is a notation representing “acrylate” or “methacrylate”
  • (meth) acryl is a notation representing “acryl” or “methacryl”
  • “(Meth) acryloyl” is a notation representing “acryloyl” or “methacryloyl”.
  • FIG. 1 conceptually shows an image obtained by observing the surface of an example of the polarizer of the present invention with a scanning electron microscope.
  • the polarizer of the present invention is a polarizer formed from a polarizer-forming composition containing a liquid crystal compound and a dichroic substance, The liquid crystal compound and the dichroic substance are horizontally aligned, On the surface observed with a scanning electron microscope, an aggregate is observed, and when the length of the long axis of the aggregate is L and the length of the short axis is D, L ⁇ 300 nm and, the needle-like aggregate is an aggregate satisfying L / D> 2, is, 40 [mu] m 2 per (observation field 40 [mu] m 2 per) 15 or more, is observed, further, A polarizer in which the number of needle-like aggregates satisfying L ⁇ 500 nm among the needle-like aggregates is 80% or more.
  • the present invention realizes a polarizer having a high degree of orientation by having such a configuration.
  • the portions shown in white in the figure are aggregates.
  • the needle according to the present invention in which the aggregate denoted by the symbol N is such that the major axis length L and the minor axis length D satisfy L ⁇ 300 nm and L / D> 2.
  • Agglomerates As will be shown later in the examples, even in an image obtained by actually observing the surface of the polarizer of the present invention with a scanning microscope, the aggregates have higher brightness than the other regions.
  • the observation of the surface with a scanning electron microscope (SEM) is specifically performed as follows. That is, first, a polarizer is set in a hydrophilic treatment apparatus (for example, HDT-400 manufactured by JEOL Ltd.) and subjected to a hydrophilic treatment for 10 minutes in a GRID mode. Next, the polarizer is set in a vacuum deposition machine (for example, JEE-400 manufactured by JEOL Ltd.), and carbon having a thickness of about 10 nm is deposited on the surface subjected to the hydrophilic treatment.
  • a hydrophilic treatment apparatus for example, HDT-400 manufactured by JEOL Ltd.
  • a vacuum deposition machine for example, JEE-400 manufactured by JEOL Ltd.
  • the alignment axis (liquid crystal alignment axis) was set on a scanning electron microscope (for example, SU8030 type FE-SEM manufactured by Hitachi High-Technologies Corporation) from a state where the polarizer was placed on a horizontal plane.
  • the rotation axis is set at an inclination of 30 °, and the surface of the polarizer is observed under the conditions of an electron beam acceleration voltage of 2 kV and secondary electron detection such that the orientation axis is in the lateral direction of the SEM image.
  • the direction of the arrow x is the direction of the alignment axis.
  • the direction of the alignment axis is a direction in which the liquid crystal compound and the dichroic substance are aligned in the major axis direction.
  • the alignment axis coincides with the alignment direction in the alignment film.
  • the length L and the length D of the long axis of the aggregate are specifically measured as follows. First, an image obtained by observing and photographing the surface of the polarizer with the SEM as described above is analyzed, a luminance histogram is created, and luminance having the maximum frequency is extracted. Next, a luminance that is 1.2 times the extracted luminance is set as a threshold. Next, an image in which the luminance is binarized using this threshold value is created, and a portion having an area equal to or more than the area (1963 nm 2 ) corresponding to a circle having a diameter of 50 nm in the binarized high luminance region is defined as an aggregate.
  • each extracted aggregate is approximated by an ellipse
  • the length of the major axis of the approximated ellipse is defined as the major axis length L
  • the minor axis length of the approximated ellipse is defined by the minor axis length of the aggregate.
  • D The angle formed by the orientation axis and the long axis of the approximated ellipse is defined as the angle formed by the long axis of the acicular aggregate and the orientation axis.
  • the measurement of the length L of the long axis and the length D of the short axis of such an aggregate may be performed using known image processing software.
  • the image processing software for example, the image processing software “ImageJ” is exemplified.
  • the length of the major axis of the aggregate is L and the length of the minor axis is D
  • the needle-like aggregate that satisfies L ⁇ 300 nm and L / D> 2 is 40 ⁇ m 2.
  • the ratio of needle-like aggregates satisfying L ⁇ 500 nm among the needle-like aggregates is not less than 80%.
  • at least 15 needle-like aggregates, which are aggregates satisfying L ⁇ 300 nm and L / D> 2 are observed per observation field of 40 ⁇ m 2 , and among the needle-like aggregates, , L ⁇ 500 nm is 80% or more.
  • L / D which is the ratio of the major axis length L of the aggregate to the minor axis length D, is also referred to as “aspect ratio”.
  • the polarizer of the present invention has such a configuration to realize a polarizer having a high degree of orientation.
  • the reason why the orientation of the polarizer is improved by the presence of the acicular aggregates is not clear, but is presumed as follows.
  • This aggregate is considered to be one or more of an aggregate of a liquid crystal compound, an aggregate of a dichroic substance, and an aggregate of a liquid crystal compound and a dichroic substance.
  • Such an aggregate has a high degree of orientation. Therefore, having a sufficient length, and a large number of sufficiently thin needle-like aggregates, the presence, and the number of too long needle-like aggregates is not too large, the orientation degree of the polarizer is improved It seems to do.
  • the number of needle-like aggregates per 40 ⁇ m 2 may be 15 or more, preferably 20 or more, and more preferably 30 or more. Setting the number of needle-like aggregates per 40 ⁇ m 2 to 20 or more is preferable in that the degree of orientation of the polarizer can be increased and the light resistance can be improved.
  • the upper limit of the number of needle-like aggregates per 40 ⁇ m 2 is not limited. However, the polarizer of the present invention has less needle-like aggregates per 40 ⁇ m 2 in terms of haze and the like. In consideration of this point, the number of needle-like aggregates per 40 ⁇ m 2 is preferably 200 or less, and more preferably 150 or less.
  • the length L of the needle-shaped aggregates having a length of 500 nm or less is less than 80%, disadvantages such as the inability to obtain a polarizer having a sufficient degree of orientation and poor light resistance are caused.
  • the proportion of the needle-shaped aggregate having a length L of 500 nm or less is preferably 85% or more, and more preferably 90% or more.
  • the aspect ratio of the acicular aggregates may be more than 2, but is preferably 2 to 12, more preferably 2 to 8.5.
  • the degree of polarization of the polarizer can be increased, and a polarizer having a small haze can be obtained.
  • the length L of the needle-like aggregate may be 300 nm or more, and preferably 300 to 500 ⁇ m. Setting the length L of the acicular aggregate to 300 to 500 ⁇ m is preferable in that the degree of polarization of the polarizer can be increased and a polarizer with a small haze can be obtained.
  • the needle-like aggregate in which the angle between the orientation axis (the direction of the arrow x in FIG. 1) and the major axis direction is 5 ° or more is 90% or more of the needle-like aggregate. , 92% or more.
  • the needle-like aggregate in which the angle between the orientation axis and the major axis direction is 5 ° or more is preferable because the degree of orientation of the polarizer can be increased when the needle-like aggregate is 90% or more of the needle-like aggregate.
  • the major axis direction of the needle-shaped aggregate is set to the direction of the major axis of the ellipse set when the aspect ratio of the aggregate is determined as described above.
  • the ratio of the needle-shaped agglomerates angle between the orientation axis and the long axis direction is 5 ° or more even, as well as the number of needle-like aggregates, such as, arbitrarily selected, the region of 13.58Myuemu 2 do not overlap each other
  • the calculation may be performed at three places (a total of 40 ⁇ m 2 ).
  • the area ratio of the needle-like aggregates described later, the number of aggregates having a large length D in the minor axis direction, the number of aggregates having a long length L, and the area ratio of the aggregates are the same. It is.
  • the angle between the orientation axis and the major axis direction of the acicular aggregate is preferably 10 ° or less.
  • the ratio of the needle-like aggregates in which the angle between the orientation axis and the major axis direction is 10 ° or less is preferably 15% or more, and more preferably 20% or more.
  • the longitudinal direction is preferable in that the degree of orientation of the polarizer can be increased by setting the number of needle-like aggregates whose angle in the major axis direction to the orientation axis is 10 ° or less to 15% or more.
  • the area ratio of the acicular aggregates is preferably from 0.9 to 7.3%, more preferably from 1.0 to 7.0%.
  • the degree of orientation of the polarizer can be increased, and a polarizer having a low haze can be obtained.
  • the acicular aggregate has a certain distance in the minor axis direction.
  • the distance between the needle-shaped aggregate and the needle-shaped aggregate closest to the shortest axis direction of the needle-shaped aggregate is preferably 100 nm or more, and more preferably 200 nm or more.
  • the distance in the direction perpendicular to the orientation direction of the adjacent needle-like aggregates it is preferable in that a polarizer with low haze can be obtained.
  • acicular aggregate is similarly observed on both surfaces of the polarizer of the present invention.
  • the polarizer of the present invention is usually a laminate described below. Therefore, in the polarizer of the present invention, acicular aggregates are similarly confirmed on the surface of the polarizer (the surface on the interface side with the barrier layer) and the interface on the interface side between the polarizer and the alignment film. Further, such an acicular aggregate is similarly observed in a cross section in a direction orthogonal to the main surface of the polarizer of the present invention.
  • the main surface is the largest surface of a sheet (film, plate).
  • the polarizer of the present invention is not limited to the needle-shaped aggregate, and the ratio of the aggregate having a length D of 400 nm or more in the minor axis direction is preferably 40% or less, and more preferably 30% or less of the total aggregate. Is more preferred.
  • the proportion of the aggregate having a length D in the short axis direction of 400 nm or more it is preferable in that a polarizer with low haze can be obtained.
  • the polarizer of the present invention is not limited to the needle-shaped aggregate, and the area ratio of the aggregate is preferably 5 to 35%, more preferably 10 to 30%. Setting the area ratio of the aggregates to 5 to 35% is preferable in that a polarizer having a low haze can be obtained.
  • Such a polarizer of the present invention can be formed using the following polarizer-forming composition.
  • the composition for forming a polarizer used in the polarizer of the present invention contains a liquid crystal compound and a dichroic substance.
  • the polarizer-forming composition used for the polarizer of the present invention is also referred to as “the present composition”.
  • this composition may contain components, such as a polymerization initiator, a solvent, and an interface improver, other than a liquid crystal compound and a dichroic substance.
  • a polymerization initiator such as a solvent, and an interface improver, other than a liquid crystal compound and a dichroic substance.
  • the present composition has a liquid crystal compound.
  • the liquid crystal compound either a low-molecular liquid crystal compound or a high-molecular liquid crystal compound can be used.
  • the “low-molecular liquid crystal compound” refers to a liquid crystal compound having no repeating unit in the chemical structure.
  • a polymer liquid crystal compound refers to a liquid crystal compound having a repeating unit in a chemical structure. Examples of the low-molecular liquid crystal compound include compounds described in JP-A-2013-228706. Further, examples of the polymer liquid crystalline compound include compounds described in JP-A-2011-237513.
  • the liquid crystal compound is a thermotropic liquid crystal and may show any of a nematic phase and a smectic phase, but preferably shows at least a nematic phase.
  • the temperature range showing the nematic phase is preferably from room temperature (23 ° C.) to 450 ° C., and is preferably from 50 ° C. to 400 ° C. from the viewpoint of handling and production suitability.
  • examples of the polymer liquid crystal compound include the following thermotropic liquid crystals and a polymer liquid crystal compound that is a crystalline polymer. In the following description, the thermotropic liquid crystal and the crystalline polymer are also referred to as “specific compounds”.
  • thermotropic liquid crystal is a liquid crystal that exhibits a transition to a liquid crystal phase due to a change in temperature.
  • the specific compound is a thermotropic liquid crystal and may show any of a nematic phase and a smectic phase. However, the specific compound preferably exhibits at least a nematic phase because the degree of orientation of the polarizer is higher and haze is more difficult to be observed (haze is better). In the following description, "the degree of orientation of the polarizer is higher and haze is more difficult to be observed” is also referred to as "the effect of the present invention is more excellent”.
  • a crystalline polymer is a polymer that exhibits a transition to a crystal layer due to a change in temperature.
  • the crystalline polymer may exhibit a glass transition in addition to the transition to the crystal layer.
  • the specific compound is a polymer liquid crystalline compound having a transition from a crystalline phase to a liquid crystal phase when heated (there may be a glass transition in the middle) or a liquid crystalline state due to heating because the effect of the present invention is more excellent. It is preferable that the compound be a high-molecular liquid crystalline compound having a transition to a crystal phase (there may be a glass transition in the middle) when the temperature is lowered after the above.
  • the presence or absence of crystallinity of the high-molecular liquid crystalline compound is evaluated as follows. Two polarizers of an optical microscope (ECLIPSE E600 POL manufactured by Nikon) are arranged so as to be orthogonal to each other, and a sample table is set between the two polarizers. Then, a small amount of the high-molecular liquid crystal compound is placed on a slide glass, and the slide glass is set on a hot stage placed on a sample table. While observing the state of the sample, the temperature of the hot stage is raised to a temperature at which the polymer liquid crystal compound exhibits liquid crystallinity, and the polymer liquid crystal compound is brought into a liquid crystal state.
  • the behavior of the liquid crystal phase transition is observed while gradually lowering the temperature of the hot stage, and the temperature of the liquid crystal phase transition is recorded.
  • the polymer liquid crystalline compound shows a plurality of liquid crystal phases (for example, a nematic phase and a smectic phase)
  • all the transition temperatures are also recorded.
  • DSC differential scanning calorimeter
  • the calorific value is measured while lowering the temperature at a rate of 10 ° C./min.
  • An exothermic peak is confirmed from the obtained calorific value spectrum.
  • the exothermic peak is a peak due to crystallization, and it can be said that the polymer liquid crystalline compound has crystallinity.
  • no exothermic peak is observed at a temperature other than the liquid crystal phase transition temperature, it can be said that the polymer liquid crystal compound does not have crystallinity.
  • the method for obtaining the crystalline polymer is not particularly limited, but as a specific example, a method using a high-molecular liquid crystalline compound containing a repeating unit (1) described below is preferable. A method using a preferred embodiment among the polymer liquid crystalline compounds is more preferable.
  • the specific compound is a crystallized polymer.
  • the crystallization temperature of the specific compound is preferably from 0 ° C. to less than 150 ° C., more preferably 120 ° C. or less, still more preferably 15 ° C. to less than 120 ° C., particularly preferably 95 ° C., because the effect of the present invention is more excellent. The following are particularly preferred.
  • the crystallization temperature of the polymer liquid crystalline compound is preferably less than 150 ° C. from the viewpoint of reducing haze.
  • the crystallization temperature is a temperature of an exothermic peak due to crystallization in DSC described above.
  • the specific compound is preferably a liquid crystalline polymer compound containing a repeating unit represented by the following formula (1), because the effect of the present invention is more excellent.
  • the repeating unit represented by the following formula (1) is also referred to as “repeating unit (1)”.
  • P1 represents a main chain of a repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • M1 represents a mesogen group
  • T1 represents a terminal group.
  • the main chain of the repeating unit represented by P1 specifically includes, for example, groups represented by the following formulas (P1-A) to (P1-D). From the viewpoint of versatility and easy handling, a group represented by the following formula (P1-A) is preferable.
  • “*” represents a bonding position to L1 in the formula (1).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents an alkyl group.
  • the group represented by the formula (P1-A) is a unit of the partial structure of the poly (meth) acrylate obtained by polymerization of the (meth) acrylate because the effect of the present invention is more excellent. Is preferred.
  • the group represented by the formula (P1-B) is preferably an ethylene glycol unit in polyethylene glycol obtained by polymerizing ethylene glycol, because the effect of the present invention is more excellent.
  • the group represented by the formula (P1-C) is preferably a propylene glycol unit obtained by polymerizing propylene glycol, because the effect of the present invention is more excellent.
  • the group represented by the formula (P1-D) is preferably a siloxane unit of a polysiloxane obtained by polycondensation of silanol, because the effect of the present invention is more excellent.
  • L1 is a single bond or a divalent linking group.
  • the divalent linking group represented by L1 include —C (O) O—, —OC (O) —, —O—, —S—, —C (O) NR 3 —, and —NR 3 C (O) —, —SO 2 —, and —NR 3 R 4 —.
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent (for example, a substituent W described below).
  • P1 is a group represented by the formula (P1-A)
  • L1 is preferably a group represented by —C (O) O— because the effect of the present invention is more excellent.
  • P1 is a group represented by any one of formulas (P1-B) to (P1-D)
  • L1 is preferably a single bond because the effect of the present invention is more excellent.
  • the spacer group represented by SP1 is selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and an alkylene fluoride structure because of easy development of liquid crystallinity and availability of raw materials. Preferably, it contains at least one structure.
  • the oxyethylene structure represented by SP1 is preferably a group represented by *-(CH 2 -CH 2 O) n1- *.
  • n1 represents an integer of 1 to 20, and * represents a bonding position to L1 or M1 in the above formula (1).
  • n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and most preferably 3, because the effect of the present invention is more excellent.
  • the oxypropylene structure represented by SP1 is preferably a group represented by *-(CH (CH 3 ) —CH 2 O) n2- * because the effect of the present invention is more excellent.
  • n2 represents an integer of 1 to 3
  • * represents a bonding position to L1 or M1.
  • the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si (CH 3 ) 2 -O) n3- * because the effect of the present invention is more excellent.
  • n3 represents an integer of 6 to 10
  • * represents a bonding position to L1 or M1.
  • alkylene fluoride structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4- * because the effect of the present invention is more excellent.
  • n4 represents an integer of 6 to 10
  • * represents a bonding position to L1 or M1.
  • the mesogen group represented by M1 is a group indicating a main skeleton of a liquid crystal molecule that contributes to liquid crystal formation.
  • Liquid crystal molecules exhibit liquid crystallinity, which is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state.
  • mesogen group There is no particular limitation on the mesogen group.
  • “FlussigeKristallle in Tabellen II” VEB Deutsche Verlag fur Grundstoff Industrie, Leipzig, ed., Ed., Pp. 7-16
  • the mesogen group for example, a group having at least one cyclic structure selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group is preferable.
  • the mesogen group preferably has an aromatic hydrocarbon group, more preferably has 2 to 4 aromatic hydrocarbon groups, and more preferably has 3 aromatic hydrocarbon groups, because the effect of the present invention is more excellent. It is more preferred to have
  • the mesogen group the following formula (M1-A) or the following formula (M1-A) from the viewpoint of the development of liquid crystallinity, the adjustment of the liquid crystal phase transition temperature, the availability of raw materials and the suitability for synthesis, and the viewpoint that the effects of the present invention are more excellent.
  • a group represented by M1-B) is preferable, and a group represented by formula (M1-B) is more preferable.
  • A1 is a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group. These groups may be substituted with a substituent such as an alkyl group, a fluorinated alkyl group, an alkoxy group, or a substituent W described below.
  • the divalent group represented by A1 is preferably a 4- to 6-membered ring. Further, the divalent group represented by A1 may be a single ring or a condensed ring. * Represents a binding position to SP1 or T1.
  • Examples of the divalent aromatic hydrocarbon group represented by A1 include a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group, a tetracene-diyl group, and the like. In light of the availability of the compound, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
  • the divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but is preferably a divalent aromatic heterocyclic group from the viewpoint of further improving the degree of orientation.
  • the atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • divalent aromatic heterocyclic group examples include, for example, a pyridylene group (pyridine-diyl group), a pyridazine-diyl group, an imidazole-diyl group, a thienylene (thiophene-diyl group), a quinolylene group (quinoline-diyl group) ), Isoquinolylene group (isoquinolin-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimido-diyl group, thienothiazole-diyl group Thiazolothiazole-diyl group, thienothiophene-diyl group, and thienooxazole-diyl group.
  • divalent alicyclic group represented by A1 examples include a cyclopentylene group and a cyclohexylene group.
  • a1 represents an integer of 1 to 10.
  • a plurality of A1s may be the same or different.
  • A2 and A3 are each independently a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. Specific examples and preferred embodiments of A2 and A3 are the same as those of A1 in Formula (M1-A), and thus description thereof will be omitted.
  • a2 represents an integer of 1 to 10. When a2 is 2 or more, a plurality of A2s may be the same or different, and a plurality of A3s may be the same or different. A plurality of LA1s may be the same or different.
  • a2 is preferably an integer of 2 or more, more preferably 2, because the effect of the present invention is more excellent.
  • LA1 is a divalent linking group.
  • the plurality of LA1s are each independently a single bond or a divalent linking group, and at least one of the LA1s is a divalent linking group.
  • a2 is 2, it is preferable that one of the two LA1s is a divalent linking group and the other is a single bond because the effect of the present invention is more excellent.
  • M1 include, for example, the following structures.
  • Ac represents an acetyl group.
  • Examples of the terminal group represented by T1 include a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, An alkoxycarbonyloxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms (ROC (O)-: R is an alkyl group), an acyloxy group having 1 to 10 carbon atoms, an acylamino group having 1 to 10 carbon atoms An alkoxycarbonylamino group having 1 to 10 carbon atoms, a sulfonylamino group having 1 to 10 carbon atoms, a sulfamoyl group having 1 to 10 carbon atoms, a carbamoyl group having 1 to 10 carbon atoms, a sulfinyl group having
  • Examples of the (meth) acryloyloxy group-containing group include, for example, -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as L1 and SP1 described above.
  • A is (meth) (Representing an acryloyloxy group).
  • T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and even more preferably a methoxy group, because the effect of the present invention is more excellent.
  • These terminal groups may be further substituted by these groups or a polymerizable group described in JP-A-2010-244038.
  • the number of atoms in the main chain of T1 is preferably 1 to 20, more preferably 1 to 15, still more preferably 1 to 10, and particularly preferably 1 to 7, because the effect of the present invention is more excellent.
  • the number of atoms in the main chain of T1 is 20 or less, the degree of orientation of the polarizer is further improved.
  • the "main chain" in T1 means the longest molecular chain bonded to M1, and hydrogen atoms are not counted in the number of atoms in the main chain of T1.
  • T1 is an n-butyl group
  • the number of atoms in the main chain is 4
  • T1 is a sec-butyl group
  • the number of atoms in the main chain is 3.
  • the content of the repeating unit (1) is preferably from 20 to 100% by mass, more preferably from 30 to 99.9% by mass, based on 100% by mass of all the repeating units of the specific compound, because the effect of the present invention is more excellent. More preferably, it is 40 to 99.0% by mass.
  • the content of each repeating unit contained in the high-molecular liquid crystalline compound is calculated based on the charged amount (mass) of each monomer used to obtain each repeating unit.
  • the repeating unit (1) may be contained alone in the specific compound, or two or more kinds thereof may be contained. Among them, it is preferable that two types of the repeating unit (1) are contained in the specific compound because the effect of the present invention is more excellent.
  • the terminal group represented by T1 in one (repeating unit A) is an alkoxy group, and Is preferably a group other than an alkoxy group.
  • the terminal group represented by T1 is preferably an alkoxycarbonyl group, a cyano group, or a (meth) acryloyloxy group-containing group, and more preferably an alkoxycarbonyl group or a cyano group, because the effect of the present invention is more excellent. Is more preferred.
  • the ratio (A / B) between the content of the repeating unit A in the specific compound and the content of the repeating unit B in the specific compound is from 50/50 to 95/5 because the effect of the present invention is more excellent. , Preferably 60/40 to 93/7, and more preferably 70/30 to 90/10.
  • the weight average molecular weight (Mw) is preferably from 1,000 to 500,000, more preferably from 2,000 to 300,000, because the effect of the present invention is more excellent.
  • Mw of the polymer liquid crystal compound is within the above range, handling of the polymer liquid crystal compound becomes easy.
  • the weight-average molecular weight (Mw) is preferably 10,000 to 300,000 from the viewpoint of suppressing cracks during coating.
  • the weight average molecular weight (Mw) is preferably from 2,000 to 10,000.
  • the weight average molecular weight and the number average molecular weight in the present invention are values measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the following conditions are exemplified as examples.
  • Flow rate 0.35 mL / min ⁇
  • the dichroic substance is not particularly limited, and a visible light absorbing substance (dichroic dye), a luminescent substance (fluorescent substance, phosphorescent substance), an ultraviolet absorbing substance, an infrared absorbing substance, a nonlinear optical substance, a carbon nanotube, and Inorganic substances (for example, quantum rods) can be used, and conventionally known dichroic substances (dichroic dyes) can be used.
  • Paragraphs [0009] to [0017] paragraphs [0051] to [0065] of JP-A-2013-37353, paragraphs [0049] to [0073] of JP-A-2012-63387, and JP-A-11-305036.
  • two or more dichroic substances may be used in combination.
  • two or more dichroic substances for example, from the viewpoint of bringing the polarizer closer to black, at least one dichroic substance having a maximum absorption wavelength in the range of 370 to 550 nm and a wavelength of 500 It is preferable to use together with at least one type of dichroic substance having a maximum absorption wavelength in the range of up to 700 nm.
  • the dichroic substance may have a crosslinkable group.
  • the crosslinkable group include a (meth) acryloyl group, an epoxy group, an oxetanyl group, and a styryl group. Among them, a (meth) acryloyl group is preferable.
  • the content of the dichroic substance is preferably 1 to 400 parts by mass, more preferably 2 to 100 parts by mass with respect to 100 parts by mass of the liquid crystal compound, because the effect of the present invention is more excellent. And more preferably 5 to 30 parts by mass.
  • the composition contains two types of dichroic substances, a first dichroic substance and a second dichroic substance
  • the first dichroic substance is compatible with the liquid crystal compound.
  • the second dichroic substance is not compatible with the liquid crystal compound.
  • the compatibility between the liquid crystal compound and the first dichroic substance and the compatibility between the liquid crystal compound and the second dichroic substance can be confirmed by the following methods.
  • Two polarizers of an optical microscope (ECLIPSE E600 POL manufactured by Nikon) are arranged so as to be orthogonal to each other, and a sample table is set between the two polarizers.
  • a composition in which the mixture ratio of the liquid crystal compound and the dichroic substance is changed is cast on a glass, and the glass is set on a hot stage placed on a sample table. The temperature of the hot stage is raised and lowered within the range from the melting point of the liquid crystal compound and the dichroic substance to the isotropic phase, and the phase separation state of the sample is observed.
  • a case where phase separation is not observed at an arbitrary mixing ratio of the liquid crystalline compound and the dichroic substance is defined as compatible
  • a mixing ratio at which phase separation is observed is defined as incompatible.
  • the present composition preferably contains a solvent from the viewpoint of workability and the like.
  • the solvent include ketones (eg, acetone, 2-butanone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone), ethers (eg, dioxane, tetrahydrofuran, and cyclopentyl methyl ether), aliphatics Hydrocarbons (eg, hexane, etc.), alicyclic hydrocarbons (eg, cyclohexane, etc.), aromatic hydrocarbons (eg, benzene, toluene, xylene, and trimethylbenzene, etc.), and halogenated carbons (eg, , Dichloromethane, trichloromethane (chloroform), dichloroethane, dichlorobenzene, and chlorotoluene), esters (eg, methyl acetate, ethyl
  • solvents may be used alone or in combination of two or more.
  • an organic solvent is preferably used, and more preferably a halogenated carbon or ketone is used, because the effect of the present invention is more excellent.
  • the content of the solvent is preferably from 70 to 99.5% by mass, more preferably from 80 to 99% by mass, based on the total mass of the composition, because the effect of the present invention is more excellent.
  • % More preferably 85 to 97% by mass.
  • the present composition preferably contains an interface improver because the effect of the present invention is more excellent.
  • the smoothness of the coated surface is improved, the degree of orientation is improved, and repelling and unevenness are suppressed, so that the in-plane uniformity is expected to be improved.
  • the interface improver a compound that horizontally aligns a polymer liquid crystalline compound is preferable, and compounds (horizontal aligning agents) described in paragraphs [0253] to [0293] of JP-A-2011-237513 can be used. Further, a fluorine (meth) acrylate polymer described in paragraphs [0018] to [0043] of JP-A-2007-272185 can also be used.
  • the present composition contains an interface improver
  • the content of the interface improver is preferably based on 100 parts by weight of the total of the liquid crystal compound and the dichroic substance in the composition because the effect of the present invention is more excellent. , 0.001 to 5 parts by mass, preferably 0.01 to 3 parts by mass.
  • the present composition preferably contains a polymerization initiator because the effect of the present invention is more excellent.
  • the polymerization initiator is not particularly limited, but is preferably a compound having photosensitivity, that is, a photopolymerization initiator.
  • a photopolymerization initiator various compounds can be used without any particular limitation. Examples of photopolymerization initiators include ⁇ -carbonyl compounds (see US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (see US Pat. No. 2,448,828), and ⁇ -hydrocarbon-substituted aromatic compounds. Group acyloin compounds (see US Pat. No.
  • photopolymerization initiators include Irgacure 184, Irgacure 907, Irgacure 369, Irgacure 651, Irgacure 819, and Irgacure OXE-01 manufactured by BASF.
  • the content of the polymerization initiator is based on the total of 100 parts by mass of the liquid crystal compound and the dichroic substance in the composition because the effect of the present invention is more excellent. , 0.01 to 30 parts by mass, more preferably 0.1 to 15 parts by mass.
  • the content of the polymerization initiator is at least 0.01 part by mass, the durability of the polarizer will be good, and when it is at most 30 parts by mass, the orientation of the polarizer will be better.
  • the crystallization temperature of the present composition is preferably from 0 to 100 ° C, more preferably from 1 to 85 ° C, because the effect of the present invention is more excellent.
  • the crystallization temperature of the present composition is lower than 0 ° C., a low-temperature apparatus is required to crystallize the present composition, and when the crystallization temperature of the present composition exceeds 100 ° C., haze is easily generated. Become.
  • the crystallization temperature of the present composition is measured according to the same procedure as the above-mentioned crystallization temperature of the polymer liquid crystal compound, except that the composition is used instead of the polymer liquid crystal compound.
  • the crystallization temperature of the above composition is considered to be the crystallization temperature of a mixed crystal of a liquid crystalline polymer compound and a dichroic substance.
  • substituent W in the present specification will be described.
  • substituent W include a halogen atom, an alkyl group (including a tert-butyl group, a cycloalkyl group, a bicycloalkyl group and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), and alkynyl.
  • aryl group, heterocyclic group may be referred to as heterocyclic group
  • cyano group hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group
  • acyloxy group carbamoyl Oxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group (including anilino group), ammonium group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group , Alkyl or arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl or arylsulfinyl group, alkyl or arylsulfonyl group, mercap
  • the liquid crystal compound and the dichroic substance are horizontally aligned.
  • the horizontal orientation refers to being parallel to the main surface of the polarizer, but does not require strictly parallel, and the average inclination angle with the horizontal plane is less than ⁇ 10 °.
  • Means The inclination angle can be measured using AxoScan OPMF-1 (manufactured by OptoScience). Specifically, using AxoScan OPMF-1 (manufactured by OptoScience), the polarizer's Mueller matrix at a wavelength ⁇ was measured every 10 ° from -50 to 50 ° at 10 ° at room temperature, and the surface reflection was measured.
  • the extinction coefficient ko [ ⁇ ] (in-plane direction) and ke [ ⁇ ] (thickness direction) are calculated by fitting to the following theoretical formula in consideration of Snell's formula and Fresnel's formula. .
  • the wavelength ⁇ is 550 nm.
  • k -log (T) ⁇ ⁇ / (4 ⁇ d)
  • T represents the transmittance
  • d represents the thickness of the polarizer.
  • the thickness of the polarizer of the present invention is preferably 0.1 to 5.0 ⁇ m, more preferably 0.3 to 1.5 ⁇ m, because the effect of the present invention is more excellent. Although it depends on the concentration of the dichroic substance in the composition, when the film thickness is 0.1 ⁇ m or more, a polarizer having better absorbance is obtained, and when the film thickness is 5.0 ⁇ m or less, more excellent. Is obtained.
  • the method for producing the polarizer of the present invention is not particularly limited, but the degree of orientation of the obtained polarizer is higher, and because the haze is hardly observed, the composition described above is coated on an alignment film. It is preferable to provide a method in which a step of forming a coating film by heating, a step of orienting the dichroic substance contained in the coating film, and a step of forming the above-mentioned needle-like aggregates are provided in this order.
  • the step of forming the coating film by applying the above-described composition on the alignment film is also referred to as a “coating film forming step”.
  • the step of aligning the dichroic substance contained in the coating film is also referred to as an “alignment step”.
  • the step of forming the needle-like aggregates is also referred to as an “aging step”. That is, the method for producing the polarizer of the present invention preferably includes a “coating film forming step”, an orientation step, and an “aging step” in this order. In the following description, “the degree of orientation of the obtained polarizer is higher and haze is less likely to be observed” is also referred to as "the effect of the present invention is more excellent”. Hereinafter, each step will be described.
  • the coating film forming step is a step of forming the coating film by applying the composition described above on the alignment film.
  • the liquid crystal compound in the coating film is horizontally aligned by the action of the alignment film.
  • the present composition contains an interface improver
  • the liquid crystalline compound in the coating film is horizontally aligned by the interaction between the alignment film and the interface improver.
  • the coating method of the present composition includes roll coating, gravure printing, spin coating, wire bar coating, extrusion coating, direct gravure coating, reverse gravure coating, die coating, spraying, and inkjet. Publicly known methods, such as a method.
  • the alignment film may be any film as long as it is a film that horizontally aligns the liquid crystalline compound contained in the present composition. Rubbing treatment of organic compound (preferably polymer) on the film surface, oblique deposition of inorganic compound, formation of layer having microgrooves, or organic compound (eg, ⁇ -tricosanoic acid, It can be provided by such means as accumulation of dioctadecylmethyl ammonium chloride (methyl stearylate). Further, there is known an alignment film in which an alignment function is generated by application of an electric field, a magnetic field, or light irradiation. Among them, in the present invention, an alignment film formed by rubbing treatment is preferable from the viewpoint of easy control of the pretilt angle of the alignment film, and an optical alignment film formed by light irradiation is also preferable from the viewpoint of uniformity of alignment.
  • the thickness of the alignment film is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • Photo-Alignment Film Photo-alignment materials used for the alignment film formed by light irradiation are described in many documents and the like.
  • JP-A-2006-285197 JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, and JP-A-2007-121721.
  • the photo-alignment film formed from the above materials is irradiated with linearly polarized light or non-polarized light to produce a photo-alignment film.
  • “irradiation of linearly polarized light” and “irradiation of non-polarized light” are operations for causing a photoreaction to occur in a photo-alignment material.
  • the wavelength of the light used depends on the photo-alignment material used, and is not particularly limited as long as it is necessary for the photoreaction.
  • the peak wavelength of light used for light irradiation is preferably from 200 to 700 nm, more preferably ultraviolet light having a peak wavelength of light of 400 nm or less.
  • the light source used for light irradiation may be a commonly used light source, for example, a lamp such as a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp, and a carbon arc lamp, and various lasers (for example, a semiconductor laser, a helium lamp).
  • a lamp such as a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp, and a carbon arc lamp
  • various lasers for example, a semiconductor laser, a helium lamp.
  • Examples include a neon laser, an argon ion laser, a helium cadmium laser, a YAG (yttrium aluminum garnet) laser, a light emitting diode, and a cathode ray tube.
  • a method using a polarizing plate for example, an iodine polarizing plate, a dichroic substance polarizing plate, and a wire grid polarizing plate
  • a prism element for example, a Glan-Thompson prism
  • a Brewster angle is used.
  • a method using a reflective polarizer used, a method using light emitted from a laser light source having polarized light, and the like can be adopted.
  • only light having a required wavelength may be selectively irradiated using a filter or a wavelength conversion element.
  • a method of irradiating light from the upper surface or the back surface of the alignment film to the surface of the alignment film perpendicularly or obliquely is employed.
  • the incident angle of light varies depending on the photo-alignment material, but is preferably 0 to 90 ° (vertical), and more preferably 40 to 90 °.
  • the alignment film is irradiated with non-polarized light obliquely.
  • the incident angle is preferably from 10 to 80 °, more preferably from 20 to 60 °, even more preferably from 30 to 50 °.
  • the irradiation time is preferably 1 to 60 minutes, more preferably 1 to 10 minutes.
  • a method of performing light irradiation using a photomask as many times as necessary for pattern formation, or a method of writing a pattern by laser light scanning can be employed.
  • the alignment step is a step of aligning the dichroic substance contained in the coating film.
  • the orientation step may include a drying process.
  • the drying treatment may be performed by a method of leaving the coating film at room temperature for a predetermined time (for example, natural drying), or may be performed by a method of heating and / or blowing.
  • the dichroic substance contained in the present composition may be oriented by the above-mentioned coating film forming step or drying treatment.
  • the dichroic substance contained in the coating film is oriented by drying the coating film and removing the solvent from the coating film.
  • the polarizer of the present invention can be obtained.
  • the orientation step preferably includes a heat treatment.
  • the heat treatment is preferably performed at 10 to 250 ° C., more preferably 25 to 190 ° C., from the viewpoint of production suitability.
  • the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
  • the orientation step may include a cooling treatment performed after the heat treatment.
  • the cooling process is a process of cooling the coated film after heating to about room temperature (20 to 25 ° C.). Thereby, the orientation of the dichroic substance contained in the coating film is fixed more, and the degree of orientation of the obtained polarizer is further increased.
  • the cooling means is not particularly limited, and can be implemented by a known method.
  • the aging step is a step for forming the above-mentioned acicular aggregate by performing a heat treatment again after performing the orientation step, and obtaining the polarizer of the present invention.
  • a large number of small dot-like (island-like) aggregates are formed after the orientation step is performed (see FIG. 3).
  • the small point-like aggregates are further aggregated to produce needle-like aggregates having the aspect ratio as described above, and the present invention having a high degree of orientation Can be obtained.
  • the temperature of the heat treatment in the aging step may be appropriately set at a temperature at which an acicular aggregate can be formed depending on the liquid crystalline compound and the dichroic substance used. If the temperature of the aging treatment is too low, the needle-like aggregates cannot be formed sufficiently. If the temperature of the aging treatment is too high, the aggregation proceeds too much, the aspect ratio of the aggregates becomes small, and the needle-like aggregates are sufficiently formed. And the length of the aggregate becomes long (see FIG. 4).
  • the temperature of the heat treatment in the aging step is preferably from 40 to 130 ° C, more preferably from 60 to 110 ° C.
  • the time of the heat treatment in the aging step may be appropriately set according to the liquid crystal compound and the dichroic substance used. If the aging time is too short, the needle-like aggregates cannot be formed sufficiently, and if the aging time is too long, the aggregation proceeds too much, the aspect ratio of the aggregates becomes small, and the needle-like aggregates become And the length of the aggregate becomes long.
  • the time of the heat treatment in the aging step is preferably 0.5 to 120 seconds, more preferably 1 to 100 seconds.
  • a cooling treatment may be provided after the heat treatment.
  • the cooling treatment may be performed in the same manner as the cooling treatment in the orientation step.
  • This manufacturing method may include a step of curing the polarizer after the aging step.
  • the step of curing the polarizer is also referred to as a “curing step”.
  • the curing step is performed by, for example, heating and / or light irradiation (exposure).
  • the curing step is preferably performed by light irradiation.
  • Various light sources such as infrared light, visible light, and ultraviolet light can be used as the light source for curing, but ultraviolet light is preferable.
  • ultraviolet rays may be irradiated while heating at the time of curing, or ultraviolet rays may be irradiated through a filter that transmits only a specific wavelength.
  • the exposure may be performed under a nitrogen atmosphere. In the case where the curing of the polarizer proceeds by radical polymerization, inhibition of polymerization by oxygen is reduced, so that exposure is preferably performed in a nitrogen atmosphere.
  • the polarizer of the present invention is usually a laminated body laminated with another member (sheet-like material).
  • the laminate including the polarizer of the present invention has a base material, an alignment film provided on the base material, and the polarizer of the present invention provided on the alignment film.
  • the laminate may have a ⁇ / 4 plate on the polarizer of the present invention.
  • the laminate may have a barrier layer on the polarizer of the present invention. Therefore, when the laminate has a ⁇ / 4 plate, the barrier layer is provided between the polarizer of the present invention and the ⁇ / 4 plate.
  • each layer constituting the laminate including the polarizer of the present invention will be described.
  • the substrate can be appropriately selected and includes, for example, glass and a polymer film.
  • the light transmittance of the substrate is preferably 80% or more.
  • a polymer film is used as the substrate, it is preferable to use an optically isotropic polymer film.
  • the description in paragraph [0013] of JP-A-2002-22942 can be applied.
  • a polymer whose expression is reduced by modifying the molecule described in WO2000 / 26705 should be used. You can also.
  • the “ ⁇ / 4 plate” is a plate having a ⁇ / 4 function, specifically, a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light). It is.
  • specific embodiments of the ⁇ / 4 plate having a single-layer structure include a stretched polymer film and a retardation film having an optically anisotropic layer having a ⁇ / 4 function on a support. No.
  • the ⁇ / 4 plate has a multilayer structure
  • a broadband ⁇ / 4 plate obtained by laminating a ⁇ / 4 plate and a ⁇ / 2 plate.
  • the ⁇ / 4 plate and the polarizer of the present invention may be provided in contact with each other, or another layer may be provided between the ⁇ / 4 plate and the polarizer of the present invention. Examples of such a layer include an adhesive layer or an adhesive layer for ensuring adhesion, and a barrier layer.
  • the barrier layer is provided on the polarizer of the present invention. Therefore, when the laminate has a ⁇ / 4 plate, the barrier layer is provided between the polarizer of the present invention and the ⁇ / 4 plate.
  • the barrier layer is formed of, for example, the polarizer of the present invention.
  • the barrier layer is a layer that functions as a protective layer for protecting the polarizer of the present invention in the laminate. Examples of such a barrier layer include various transparent resin layers.
  • the barrier layer may have a gas barrier property (oxygen barrier property) in order to protect the polarizer of the present invention from a gas such as oxygen in the atmosphere, moisture, or a compound contained in an adjacent layer.
  • gas barrier property oxygen barrier property
  • the barrier layer having gas barrier properties is described in, for example, paragraphs [0014] to [0054] of JP-A-2014-159124, paragraphs [0042] to [0075] of JP-A-2017-121721, and JP-A-2017-127.
  • the description can be referred to.
  • the laminate of the present invention can be used, for example, as a polarizing element (polarizing plate), for example, as a linear polarizing plate or a circular polarizing plate.
  • polarizing plate for example, as a linear polarizing plate or a circular polarizing plate.
  • the laminate of the present invention does not have an optically anisotropic layer such as the ⁇ / 4 plate, the laminate can be used as a linear polarizing plate.
  • the laminate of the present invention has the ⁇ / 4 plate, the laminate can be used as a circularly polarizing plate.
  • the image display device of the present invention is an image display device having the above-described polarizer of the present invention.
  • the display element used in the image display device of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence display panel, and a plasma display panel.
  • electroluminescence is abbreviated as “EL”.
  • EL electroluminescence
  • a liquid crystal cell or an organic EL display panel is preferable, and a liquid crystal cell is more preferable.
  • the image display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display element, an organic EL display device using an organic EL display panel as a display element, and a liquid crystal display device is preferred. More preferred.
  • the present invention is a liquid crystal display device including the above-described laminate of the present invention (not including a ⁇ / 4 plate) and a liquid crystal cell.
  • the laminate of the present invention it is preferable to use the laminate of the present invention as a front-side polarizing element, and to use the laminate of the present invention as a front-side and rear-side polarizing element. It is more preferable to use
  • a liquid crystal cell included in the liquid crystal display device will be described in detail.
  • the liquid crystal cell used in the liquid crystal display device is preferably a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, or a TN (Twisted Nematic) mode.
  • VA Vertical Alignment
  • OCB Optically Compensated Bend
  • IPS In-Plane-Switching
  • TN Transmission Nematic
  • the present invention is not limited to these.
  • the TN mode liquid crystal cell rod-like liquid crystalline molecules are substantially horizontally aligned when no voltage is applied, and further twist-aligned at 60 to 120 °.
  • the TN mode liquid crystal cell is most frequently used as a color TFT (Thin Film Transistor) liquid crystal display device, and is described in many documents.
  • VA mode liquid crystal cells In a VA mode liquid crystal cell, rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied.
  • VA mode liquid crystal cells include: (1) In addition to a narrowly defined VA mode liquid crystal cell (described in JP-A-2-176625) in which rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied and are aligned substantially horizontally when voltage is applied. , (2) A liquid crystal cell in which the VA mode is multi-domain (in the MVA mode) for expanding the viewing angle (described in SID97, Digest of Tech.
  • the VA mode liquid crystal cell may be any of a PVA (Patterned Vertical Alignment) type, a photo alignment type (Optical Alignment), and a PSA (Polymer-Sustained Alignment). Details of these modes are described in JP-A-2006-215326 and JP-T-2008-538819.
  • IPS mode liquid crystal cell rod-like liquid crystal molecules are oriented substantially parallel to the substrate, and the liquid crystal molecules respond planarly when an electric field parallel to the substrate surface is applied.
  • black display is performed when no electric field is applied, and the absorption axes of a pair of upper and lower polarizing plates are orthogonal to each other.
  • Japanese Patent Application Laid-Open Nos. 10-54982 and 11-202323 disclose a method of using an optical compensation sheet to reduce leakage light at the time of black display in an oblique direction and improve the viewing angle. It is disclosed in JP-A-9-292522, JP-A-11-133408, JP-A-11-305217, and JP-A-10-307291.
  • Organic EL display As an organic EL display device as an example of the image display device of the present invention, for example, an embodiment having the polarizer of the present invention described above, a ⁇ / 4 plate, and an organic EL display panel in this order from the viewing side. are preferred. More preferably, the laminated body of the present invention having the ⁇ / 4 plate and the organic EL display panel are arranged in this order from the viewing side. In this case, the laminated body is arranged from the viewer side in the order of the base material, the alignment film, the polarizer of the present invention, the barrier layer provided as necessary, and the ⁇ / 4 plate.
  • the organic EL display panel is a display panel configured using an organic EL element having an organic light emitting layer (organic EL layer) sandwiched between electrodes (between a cathode and an anode).
  • organic EL layer organic light emitting layer
  • the configuration of the organic EL display panel is not particularly limited, and a known configuration is employed.
  • dichroic substance C1 was synthesized.
  • Acrylic acid chloride (18.1 g) was added dropwise while maintaining the temperature of the reaction system at 15 ° C. or lower, and the mixture was stirred at room temperature for 1 hour after being appropriately cooled. Thereafter, ethyl acetate and a 10% aqueous ammonium chloride solution were added to carry out liquid separation and washing. After drying over magnesium sulfate, the mixture was concentrated to obtain a yellow solid C1-1. Separately, Fe powder (89.4 g, 1.6 mol), ammonium chloride (8.9 g, 166 mmol), 2-propanol (210 mL), and pure water (88 mL) were mixed and refluxed at 105 ° C. externally.
  • 2-Aminothiophene was synthesized from 2-nitrothiophene according to the method described in the literature (Journal of Medicinal Chemistry, 2005, Vol. 48, p. 5794).
  • Compound C1-2 (5.5 g) obtained above was added to a mixture of 12 mol / L (liter) hydrochloric acid (15 mL), pure water (30 mL), and THF (tetrahydrofuran) (30 mL). Thereafter, the mixture was cooled to an internal temperature of 5 ° C. or lower, and sodium nitrite (1.4 g) was dissolved in pure water (9 mL) and added dropwise. Further, the mixture was stirred at an internal temperature of 5 ° C. or lower for 1 hour to prepare a diazonium solution.
  • 2-aminothiophene hydrochloride (2.4 g) was dissolved in pure water (12 mL) and hydrochloric acid (6 mL), and the diazonium solution prepared above was added dropwise at an internal temperature of 0 ° C. The reaction was warmed to room temperature and stirred for 2 hours. The precipitated solid was separated by filtration and dried to obtain 6.1 g of a red-orange solid C1-3.
  • the red-orange solid C1-3 (5.6 g) obtained above was suspended and dissolved in acetic acid (100 mL), and sodium thiocyanate (1.5 g) was added at room temperature. While cooling with water and maintaining the internal temperature at 20 ° C. or lower, bromine (2.0 g, 24.8 mmol) was added dropwise. After stirring at room temperature for 2 hours, pure water (100 mL) was added, and the obtained solid was separated by filtration and dried to obtain 5.5 g of a black solid C1-4.
  • the black solid C1-4 (4.7 g) obtained above is added to hydrochloric acid (6 mL) and acetic acid (6 mL). After stirring for 1 hour, amidosulfuric acid (0.52 mg) was added to obtain a diazonium solution. A diazonium solution was added dropwise while maintaining a 10 mL methanol solution of N-ethyl-N- (2-acryloyloxyethyl) aniline (2.3 g) at 0 ° C. or lower. After heating to room temperature and stirring for 1 hour, pure water (30 mL) was added, and the obtained solid was separated by filtration.
  • dichroic substance C1 a compound represented by the formula C1.
  • the 1 H-NMR (Nuclear Magnetic Resonance) data of the obtained dichroic substance C1 is shown below.
  • N-ethyl-N- (2-acryloyloxyethyl) aniline was synthesized from N-ethylaniline as a raw material by US Pat. No. 7,601,849 and a known method.
  • the liquid crystal compound L1 was synthesized by the following procedure.
  • N-methylpyrrolidone (824 g) was added to the obtained organic layer, and the mixture was concentrated at 70 ° C. for 4 hours to obtain 1.13 kg of an N-methylpyrrolidone solution containing compound L1-1.
  • the next step was performed using 1085 g of the obtained N-methylpyrrolidone solution containing the compound L1-1.
  • N, N-dimethylaniline (189 g) and 2,2,6,6-tetramethylpiperazine (1.5 g) were added.
  • acrylic acid chloride 122 g was added dropwise so that the internal temperature did not exceed 10 ° C. After stirring at an internal temperature of 10 ° C.
  • BHT Dibutylhydroxytoluene (200 mg) was added to a THF solution (70 mL) of methanesulfonyl chloride (MsCl) (73.4 mmol, 5.7 mL), and the internal temperature was cooled to ⁇ 5 ° C. Thereto, a THF solution of compound L1-2 (66.7 mmol, 21.6 g) and diisopropylethylamine (DIPEA) (75.6 mmol, 13.0 mL) was added dropwise so that the internal temperature did not rise to 0 ° C. or higher. . After stirring at ⁇ 5 ° C.
  • DIPEA diisopropylethylamine
  • N, N-dimethyl-4-aminopyridine (200 mg) was added, and diisopropylethylamine (75.6 mmol, 13.0 mL) and 4-hydroxy-4′-methoxy were added.
  • the impurities include the following compounds L1-b.
  • the impurities include the following compounds L1-b2.
  • the residue was washed with acetonitrile to obtain 100 g of a white solid, liquid crystal compound L1 (yield). 95%).
  • the weight average molecular weight (Mw) of the obtained polymer was 13,300.
  • the molecular weight was calculated by gel permeation chromatography (GPC) in terms of polystyrene.
  • the column used was connected to three TOSOH TSKgelSuperAWM-H (manufactured by Tosoh Corporation), and the solvent used was N-methylpyrrolidone.
  • Example 1 ⁇ Preparation of transparent support> A polyvinyl alcohol (PVA) coating solution having the following composition was continuously applied to a 40 ⁇ m-thick TAC substrate (TG40, manufactured by FUJIFILM Corporation) using a # 8 wire bar. Thereafter, by drying with hot air at 100 ° C. for 2 minutes, a transparent support having a 0.8 ⁇ m-thick PVA film made of modified polyvinyl alcohol (PVA-1) formed on a TAC substrate was obtained.
  • PVA polyvinyl alcohol
  • the obtained coating film was irradiated with linearly polarized ultraviolet light (illuminance: 4.5 mW, irradiation amount: 500 mJ / cm 2 ) using a polarized ultraviolet light exposure device to prepare an alignment film.
  • ⁇ Preparation of Polarizer 1> The following polarizer-forming composition was continuously applied on the prepared alignment film using a # 7 wire bar to form a coating film. Next, the coating film was heated at 140 ° C. for 90 seconds, and cooled to room temperature (23 ° C.). Next, as a ripening step, the coating film was heated at 90 ° C. for 60 seconds and cooled again to room temperature. Thereafter, the polarizer 1 was formed on the alignment film by irradiating the film with an irradiance of 28 mW / cm 2 for 60 seconds using a high-pressure mercury lamp.
  • the polarizer 1 was set in a hydrophilic treatment apparatus (manufactured by JEOL Ltd., HDT-400), and subjected to a hydrophilic treatment for 10 minutes in a GRID mode. Next, the hydrophilic polarizer 1 was set in a vacuum evaporation machine (JEE-400, manufactured by JEOL Ltd.), and carbon having a thickness of about 10 nm was evaporated.
  • a hydrophilic treatment apparatus manufactured by JEOL Ltd., HDT-400
  • JEE-400 manufactured by JEOL Ltd.
  • the polarizer 1 on which carbon was deposited was set on an SEM (SU8030 type FE-SEM, manufactured by Hitachi High-Technologies Corporation) while being tilted by 30 ° with the orientation axis as a rotation axis from a state where the polarizer was placed on a horizontal surface, and the electron beam acceleration voltage was 2 kV. Under the conditions of secondary electron detection, an SEM observation image of the surface of the polarizer 1 was obtained such that the orientation axis was in the lateral direction of the SEM image.
  • FIG. 2 shows an SEM observation image of the surface of the polarizer 1.
  • an image was created in which the brightness of the acquired SEM observation image of the surface of the polarizer 1 was binarized.
  • those having an area equal to or more than an area equivalent to a circle having a diameter of 50 nm (1963 nm 2 ) were extracted as aggregates.
  • the binarization of the brightness of the surface SEM observation image is performed by creating a brightness histogram of the SEM observation image, extracting the brightness having the highest frequency from the created brightness histogram, and obtaining a brightness 1.2 times the extracted brightness. was performed as a threshold value.
  • each extracted aggregate is approximated by an ellipse
  • the length of the major axis of the approximated ellipse is set to the length L of the major axis of the aggregate
  • the length of the minor axis of the approximated ellipse is defined by the aggregate. Is the length D of the short axis.
  • the needle-like aggregates of the present invention were extracted, counted, and totaled. Further, the ratio of the needle-like aggregates having a length L of 500 nm or less (L ⁇ 500 nm) in the needle-like aggregates thus extracted was calculated.
  • the counting of such needle-like aggregates and the calculation of the ratio of needle-like aggregates satisfying L ⁇ 500 nm were arbitrarily selected in a region of 40 ⁇ m 2 (13.58 ⁇ m 2 ⁇ 3) that does not overlap each other, and 10 places.
  • the average was defined as the number of needle-like aggregates per 40 ⁇ m 2 in the polarizer 1 and the ratio of needle-like aggregates satisfying L ⁇ 500 nm.
  • the number of needle-like aggregates per 40 ⁇ m 2 was 65, and the ratio of needle-like aggregates having a length L of 500 nm or less was 95.4%.
  • ⁇ Formation of transparent resin layer (barrier layer)> The following curable composition was continuously applied onto the polarizer 1 with a # 2 wire bar, and dried at 60 ° C. for 5 minutes. Thereafter, irradiation was performed for 60 seconds using a high-pressure mercury lamp under an irradiation condition of an illuminance of 28 mW / cm 2 to cure the following curable composition, and a laminate in which a transparent resin layer (barrier layer) was formed on the polarizer 1 was formed. Produced. Thus, a laminate 1 of Example 1 was obtained.
  • FIG. 3 shows an SEM observation image of the surface of the polarizer 2.
  • FIG. 4 shows an SEM observation image of the surface of the polarizer 3.
  • Example 1 (laminate 1) has a degree of orientation of 0.95; Comparative Example 1 (laminate 2) had an orientation degree of 0.92, The degree of orientation of Comparative Example 2 (Laminate 3) was 0.89.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention addresses the problem of providing a polarizer having a high degree of orientation, and an image display device using the polarizer. The problem is solved by a polarizer formed from a polarizer-forming composition containing a liquid crystalline compound and a dichroic material, wherein the liquid crystalline compound and the dichroic material are horizontally oriented, aggregates are observed on a surface observed by a scanning electron microscope, and when the length of the long axis of the aggregates is L and the length of the short axis thereof is D, the number of needle-shaped aggregates satisfying L ≥ 300 nm and L/D > 2 is 15 or more per 40 μm2, and the number of needle-shaped aggregates satisfying L ≤ 500 nm is 80% or more.

Description

偏光子、および、画像表示装置Polarizer and image display device
 本発明は、偏光子、および、画像表示装置に関する。 The present invention relates to a polarizer and an image display device.
 従来、レーザー光または自然光を含む照射光の減衰機能、偏光機能、散乱機能、または、遮光機能等が必要となった際には、それぞれの機能ごとに異なった原理によって作動する装置を利用していた。そのため、上記の機能に対応する製品も、それぞれの機能別に異なった製造工程によって製造されていた。
 例えば、画像表示装置(例えば、液晶表示装置)では、表示における旋光性または複屈折性を制御するために直線偏光子または円偏光子が用いられている。また、有機発光ダイオード(Organic Light Emitting Diode:OLED)においても、外光の反射防止のために円偏光子が使用されている。
Conventionally, when an attenuating function, a polarizing function, a scattering function, or a light shielding function of irradiation light including laser light or natural light is required, a device that operates according to a different principle for each function is used. Was. Therefore, products corresponding to the above functions are also manufactured by different manufacturing processes for each function.
For example, in an image display device (for example, a liquid crystal display device), a linear polarizer or a circular polarizer is used to control optical rotation or birefringence in display. In addition, in an organic light emitting diode (Organic Light Emitting Diode: OLED), a circular polarizer is used to prevent reflection of external light.
 従来、これらの偏光子には、ヨウ素が二色性物質として広く使用されてきた。しかしながら、近年では、ヨウ素の代わりに有機色素を二色性物質として使用する偏光子についても検討されている。
 例えば、特許文献1には、高分子液晶性化合物と二色性物質とを含有する光吸収異方性膜が開示されている。
Conventionally, iodine has been widely used as a dichroic substance in these polarizers. However, in recent years, a polarizer using an organic dye as a dichroic substance instead of iodine has been studied.
For example, Patent Literature 1 discloses a light absorption anisotropic film containing a polymer liquid crystalline compound and a dichroic substance.
特開2011-237513号JP 2011-237513 A
 このようななか、本発明者らが特許文献1の実施例を参考に偏光子を作製し、その配向度を評価した。その結果、今後予想される画像表示装置等の性能向上を鑑みると、配向度をさらに向上させることが望ましいことが明らかになった。 な In such a situation, the present inventors prepared a polarizer with reference to the example of Patent Document 1 and evaluated the degree of orientation. As a result, it has been clarified that it is desirable to further improve the degree of orientation in view of the expected performance improvement of the image display device and the like.
 そこで、本発明は、上記実情を鑑みて、配向度の高い偏光子、および、上記偏光子を有する画像表示装置を提供することを目的とする。 Therefore, in view of the above circumstances, an object of the present invention is to provide a polarizer having a high degree of orientation and an image display device having the polarizer.
 この課題を解決するために、本発明は、以下の構成を有する。 た め In order to solve this problem, the present invention has the following configuration.
 [1] 液晶性化合物と二色性物質とを含有する偏光子形成用組成物から形成される偏光子であって、
 液晶性化合物および二色性物質が、水平配向しており、
 走査型電子顕微鏡で観察した表面において、凝集体が観察され、凝集体の長軸の長さをL、短軸の長さをDとした際に、
 L≧300nm、および、L/D>2、を満たす凝集体である針状凝集体が、40μm2当たり15個以上、観察され、さらに、
 針状凝集体のうち、L≦500nmを満たす針状凝集体の数が80%以上である、偏光子。
 [2] 針状凝集体の90%以上が、液晶性化合物の配向軸と長軸とが成す角度が5°以上である、[1]に記載の偏光子。
 [3] [1]または[2]に記載の偏光子を有する、画像表示装置。
[1] A polarizer formed from a polarizer-forming composition containing a liquid crystal compound and a dichroic substance,
The liquid crystal compound and the dichroic substance are horizontally aligned,
On the surface observed with a scanning electron microscope, an aggregate is observed, and when the length of the long axis of the aggregate is L and the length of the short axis is D,
More than 15 needle-like aggregates, which are aggregates satisfying L ≧ 300 nm and L / D> 2, are observed per 40 μm 2 .
A polarizer in which the number of needle-like aggregates satisfying L ≦ 500 nm among the needle-like aggregates is 80% or more.
[2] The polarizer according to [1], wherein 90% or more of the needle-like aggregates form an angle between the alignment axis and the long axis of the liquid crystalline compound of 5 ° or more.
[3] An image display device having the polarizer according to [1] or [2].
 以下に示すように、本発明によれば、配向度の高い偏光子、および、上記偏光子を有する画像表示装置を提供することができる。 As described below, according to the present invention, it is possible to provide a polarizer having a high degree of orientation and an image display device having the polarizer.
図1は、本発明の偏光子の一例の表面を概念的に示す図である。FIG. 1 is a diagram conceptually showing the surface of an example of the polarizer of the present invention. 図2は、本発明の偏光子の実施例の顕微鏡写真を画像処理して出力した図である。FIG. 2 is a diagram of a micrograph of an example of the polarizer of the present invention, which is output after image processing. 図3は、本発明の偏光子の比較例の顕微鏡写真を画像処理して出力した図である。FIG. 3 is a diagram of a micrograph of a comparative example of the polarizer of the present invention, which is output after image processing. 図4は、本発明の偏光子の比較例の顕微鏡写真を画像処理して出力した図である。FIG. 4 is a diagram of a micrograph of a comparative example of the polarizer of the present invention, which is output after image processing.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
Hereinafter, the present invention will be described in detail.
The description of the components described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
Further, as each component, one kind of a substance corresponding to each component may be used alone, or two or more kinds may be used in combination. Here, when two or more substances are used in combination for each component, the content of that component refers to the total content of the substances used in combination, unless otherwise specified.
In the present specification, “(meth) acrylate” is a notation representing “acrylate” or “methacrylate”, “(meth) acryl” is a notation representing “acryl” or “methacryl”, and “ “(Meth) acryloyl” is a notation representing “acryloyl” or “methacryloyl”.
[偏光子]
 図1に、本発明の偏光子の一例の表面を走査型電子顕微鏡で観察した画像を概念的に示す。
[Polarizer]
FIG. 1 conceptually shows an image obtained by observing the surface of an example of the polarizer of the present invention with a scanning electron microscope.
 本発明の偏光子は、液晶性化合物と二色性物質とを含有する偏光子形成用組成物から形成される偏光子であって、
 液晶性化合物および二色性物質が、水平配向しており、
 走査型電子顕微鏡で観察した表面において、凝集体が観察され、凝集体の長軸の長さをL、短軸の長さをDとした際に、
 L≧300nm、および、L/D>2、を満たす凝集体である針状凝集体が、40μm2当たり(観察視野40μm2当たり)15個以上、観察され、さらに、
 針状凝集体のうち、L≦500nmを満たす針状凝集体の数が80%以上である、偏光子である。
 本発明は、このような構成を有することにより、配向度が高い偏光子を実現している。
The polarizer of the present invention is a polarizer formed from a polarizer-forming composition containing a liquid crystal compound and a dichroic substance,
The liquid crystal compound and the dichroic substance are horizontally aligned,
On the surface observed with a scanning electron microscope, an aggregate is observed, and when the length of the long axis of the aggregate is L and the length of the short axis is D,
L ≧ 300 nm and, the needle-like aggregate is an aggregate satisfying L / D> 2, is, 40 [mu] m 2 per (observation field 40 [mu] m 2 per) 15 or more, is observed, further,
A polarizer in which the number of needle-like aggregates satisfying L ≦ 500 nm among the needle-like aggregates is 80% or more.
The present invention realizes a polarizer having a high degree of orientation by having such a configuration.
 図1においては、図中に白抜きで示す部分が凝集体である。図1に示す例では、一例として、符号Nを付した凝集体が、長軸の長さLおよび短軸の長さDが、L≧300nmおよびL/D>2を満たす、本発明における針状凝集体である。
 後に実施例でも示すが、実際に本発明の偏光子の表面を走査型顕微鏡で観察した画像でも、凝集体は、それ以外の領域に比して、高輝度になる。
In FIG. 1, the portions shown in white in the figure are aggregates. In the example shown in FIG. 1, as an example, the needle according to the present invention in which the aggregate denoted by the symbol N is such that the major axis length L and the minor axis length D satisfy L ≧ 300 nm and L / D> 2. Agglomerates.
As will be shown later in the examples, even in an image obtained by actually observing the surface of the polarizer of the present invention with a scanning microscope, the aggregates have higher brightness than the other regions.
 本発明の偏光子において、走査型電子顕微鏡(SEM(Scanning Electron Microscope)による表面の観察は、具体的には、以下のようにして行う。
 すなわち、まず、親水化処理装置(例えば、日本電子社製のHDT-400)に偏光子をセットして、GRIDモードによって、10分間親水化処理を施す。次いで、真空蒸着機(例えば、日本電子社製のJEE-400)に偏光子をセットし、親水化処理を施した面に、約10nm厚みのカーボンを蒸着する。
 その後、カーボンを蒸着した面を観察面として、走査型電子顕微鏡(例えば、日立ハイテクノロジーズ社製のSU8030型FE-SEM)に、偏光子を水平面に設置した状態から配向軸(液晶配向軸)を回転軸として30°傾斜させてセットし、電子線加速電圧2kVおよび二次電子検出の条件で、配向軸がSEM画像の横方向となるようにして、偏光子の表面を観察する。
 図1では、矢印x方向が配向軸の方向である。配向軸の方向とは、液晶性化合物および二色性物質が、長軸方向で配向した方向である。本発明の実施形態の一例において、偏光子を配向膜の上に形成する場合には、配向軸は、配向膜における配向方向と一致する。
In the polarizer of the present invention, the observation of the surface with a scanning electron microscope (SEM) is specifically performed as follows.
That is, first, a polarizer is set in a hydrophilic treatment apparatus (for example, HDT-400 manufactured by JEOL Ltd.) and subjected to a hydrophilic treatment for 10 minutes in a GRID mode. Next, the polarizer is set in a vacuum deposition machine (for example, JEE-400 manufactured by JEOL Ltd.), and carbon having a thickness of about 10 nm is deposited on the surface subjected to the hydrophilic treatment.
Thereafter, using the surface on which carbon was deposited as an observation surface, the alignment axis (liquid crystal alignment axis) was set on a scanning electron microscope (for example, SU8030 type FE-SEM manufactured by Hitachi High-Technologies Corporation) from a state where the polarizer was placed on a horizontal plane. The rotation axis is set at an inclination of 30 °, and the surface of the polarizer is observed under the conditions of an electron beam acceleration voltage of 2 kV and secondary electron detection such that the orientation axis is in the lateral direction of the SEM image.
In FIG. 1, the direction of the arrow x is the direction of the alignment axis. The direction of the alignment axis is a direction in which the liquid crystal compound and the dichroic substance are aligned in the major axis direction. In one example of the embodiment of the present invention, when the polarizer is formed on the alignment film, the alignment axis coincides with the alignment direction in the alignment film.
 また、凝集体の長軸の長さLおよび短軸の長さDは、具体的には、以下のようにして測定する。
 まず、上述のように偏光子の表面をSEMで観察、撮影した画像を解析して、輝度ヒストグラムを作成し、頻度が最大となる輝度を抽出する。次いで、抽出した輝度の1.2倍の輝度を、閾値として設定する。次いで、この閾値を用いて輝度を二値化した画像を作成し、二値化した高輝度領域のうち、直径50nmの円に相当する面積(1963nm2)以上の面積を有する部分を、凝集体として抽出する。
 さらに、抽出した各凝集体を楕円近似し、近似した楕円の長軸の長さを凝集体の長軸の長さLとし、近似した楕円の短軸の長さを凝集体の短軸の長さDとする。また、配向軸と、近似した楕円の長軸とが成す角度を、針状凝集体の長軸と配向軸とが成す角度とする。
 このような凝集体の長軸の長さLおよび短軸の長さDの測定は、公知の画像処理ソフトウエアを用いて行えばよい。画像処理ソフトウエアとしては、例えば、画像処理ソフトウェア「ImageJ」が例示される。
The length L and the length D of the long axis of the aggregate are specifically measured as follows.
First, an image obtained by observing and photographing the surface of the polarizer with the SEM as described above is analyzed, a luminance histogram is created, and luminance having the maximum frequency is extracted. Next, a luminance that is 1.2 times the extracted luminance is set as a threshold. Next, an image in which the luminance is binarized using this threshold value is created, and a portion having an area equal to or more than the area (1963 nm 2 ) corresponding to a circle having a diameter of 50 nm in the binarized high luminance region is defined as an aggregate. Extract as
Furthermore, each extracted aggregate is approximated by an ellipse, the length of the major axis of the approximated ellipse is defined as the major axis length L, and the minor axis length of the approximated ellipse is defined by the minor axis length of the aggregate. D. The angle formed by the orientation axis and the long axis of the approximated ellipse is defined as the angle formed by the long axis of the acicular aggregate and the orientation axis.
The measurement of the length L of the long axis and the length D of the short axis of such an aggregate may be performed using known image processing software. As the image processing software, for example, the image processing software “ImageJ” is exemplified.
 本発明の偏光子は、凝集体の長軸の長さをL、短軸の長さをDとして、L≧300nmおよびL/D>2を満たす凝集体である針状凝集体を、40μm2当たり15個以上有し、かつ、針状凝集体のうち、L≦500nmを満たす針状凝集体の割合が80%以上である。言い換えれば、本発明の偏光子は、L≧300nmおよびL/D>2を満たす凝集体である針状凝集体が、観察視野40μm2当たり15個以上観察され、かつ、針状凝集体のうち、L≦500nmを満たす針状凝集体の割合が80%以上である。
 具体的には、上述したような画像解析を行って、任意に選択した、互いに重複しない13.58μm2の領域、3箇所(合計40μm2)において、L≧300nmおよびL/D>2を満たす凝集体である針状凝集体の抽出および計数を行って、合計し、さらに、抽出した針状凝集体のうち、L≦500nmを満たす針状凝集体の割合(数の割合)を算出する。
 このような針状凝集体の計数、および、L≦500nmを満たす針状凝集体の割合を算出を、任意に選択した、互いに重複しない40μm2(13.58μm2×3)の領域、10箇所において、行う。
 その上で、測定を行った10箇所における針状凝集体の数、および、L≦500nmを満たす針状凝集体の割合の平均値を算出し、この平均値を、偏光子における、40μm2当たりの針状凝集体の数、および、L≦500nmを満たす針状凝集体の割合とすればよい。
 なお、測定を行うのは、実際には、13.58μm2×3=40.74μm2の領域であるが、本発明においては、端数を切り捨てて、便宜的に『40μm2当たり』と称している。
In the polarizer of the present invention, the length of the major axis of the aggregate is L and the length of the minor axis is D, and the needle-like aggregate that satisfies L ≧ 300 nm and L / D> 2 is 40 μm 2. The ratio of needle-like aggregates satisfying L ≦ 500 nm among the needle-like aggregates is not less than 80%. In other words, in the polarizer of the present invention, at least 15 needle-like aggregates, which are aggregates satisfying L ≧ 300 nm and L / D> 2, are observed per observation field of 40 μm 2 , and among the needle-like aggregates, , L ≦ 500 nm is 80% or more.
Specifically, by performing the image analysis as described above, optionally selected, 13.58Myuemu 2 areas that do not overlap with each other, in three places (a total of 40 [mu] m 2), satisfy L ≧ 300 nm and L / D> 2 Extraction and counting of the needle-like aggregates, which are aggregates, are performed, the sum is calculated, and the ratio (the ratio of the number) of the needle-like aggregates satisfying L ≦ 500 nm among the extracted needle-like aggregates is calculated.
The counting of such needle-like aggregates and the calculation of the ratio of needle-like aggregates satisfying L ≦ 500 nm were arbitrarily selected in a region of 40 μm 2 (13.58 μm 2 × 3) that does not overlap each other, and 10 places. Perform in.
Then, the number of the needle-like aggregates at the 10 points where the measurement was performed and the average value of the ratio of the needle-like aggregates satisfying L ≦ 500 nm were calculated, and this average value was calculated as 40 μm 2 per polarizer. And the ratio of needle-like aggregates satisfying L ≦ 500 nm.
Note that the measurement is actually performed in a region of 13.58 μm 2 × 3 = 40.74 μm 2 , but in the present invention, the fraction is rounded down and referred to as “per 40 μm 2 ” for convenience. I have.
 なお、以下の説明では、凝集体の長軸の長さLと、短軸の長さDとの比であるL/Dを「アスペクト比」とも言う。 In the following description, L / D, which is the ratio of the major axis length L of the aggregate to the minor axis length D, is also referred to as “aspect ratio”.
 本発明の偏光子は、このような構成を有することにより、配向度の高い偏光子を実現している。
 針状凝集体が存在することで、偏光子の配向性が向上する理由は、定かではないが、以下のように推測される。
 図1に示すように、偏光子の表面には、多数の点状(島状)の凝集体、本発明における針状凝集体、および、長尺な凝集体が観察される。この凝集体は、液晶性化合物の凝集体、二色性物質の凝集体、および、液晶化合物と二色性物質との凝集体の1種以上であると考えられる。
 このような凝集体は配向度が高い。そのため、十分な長さを有し、かつ、十分に細い針状凝集体が、多数、存在し、かつ、長すぎる針状凝集体の数が多過ぎないことにより、偏光子の配向度が向上するものと思われる。
The polarizer of the present invention has such a configuration to realize a polarizer having a high degree of orientation.
The reason why the orientation of the polarizer is improved by the presence of the acicular aggregates is not clear, but is presumed as follows.
As shown in FIG. 1, a large number of dot-like (island-like) aggregates, needle-like aggregates, and long aggregates in the present invention are observed on the surface of the polarizer. This aggregate is considered to be one or more of an aggregate of a liquid crystal compound, an aggregate of a dichroic substance, and an aggregate of a liquid crystal compound and a dichroic substance.
Such an aggregate has a high degree of orientation. Therefore, having a sufficient length, and a large number of sufficiently thin needle-like aggregates, the presence, and the number of too long needle-like aggregates is not too large, the orientation degree of the polarizer is improved It seems to do.
 40μm2当たりの針状凝集体の数が15個未満では、十分な配向度を有する偏光子を得られない。
 本発明の偏光子において、40μm2当たりの針状凝集体の数は、15個以上であればよいが、20個以上が好ましく、30個以上がより好ましい。
 40μm2当たりの針状凝集体の数を20個以上とすることにより、偏光子の配向度を高くできる、耐光性を向上できる等の点で好ましい。
If the number of needle-like aggregates per 40 μm 2 is less than 15, a polarizer having a sufficient degree of orientation cannot be obtained.
In the polarizer of the present invention, the number of needle-like aggregates per 40 μm 2 may be 15 or more, preferably 20 or more, and more preferably 30 or more.
Setting the number of needle-like aggregates per 40 μm 2 to 20 or more is preferable in that the degree of orientation of the polarizer can be increased and the light resistance can be improved.
 本発明の偏光子において、40μm2当たりの針状凝集体の数の上限には制限はない。しかしながら、本発明の偏光子は、40μm2当たりの針状凝集体が少ない方が、ヘイズ等の点で有利である。
 この点を考慮すると、40μm2当たりの針状凝集体の数は200以下が好ましく、150以下がより好ましい。
In the polarizer of the present invention, the upper limit of the number of needle-like aggregates per 40 μm 2 is not limited. However, the polarizer of the present invention has less needle-like aggregates per 40 μm 2 in terms of haze and the like.
In consideration of this point, the number of needle-like aggregates per 40 μm 2 is preferably 200 or less, and more preferably 150 or less.
 また、長さLが500nm以下の針状凝集体が80%未満では、十分な配向度を有する偏光子を得られない、耐光性に劣る等の不都合を生じる。
 長さLが500nm以下の針状凝集体の割合は、85%以上が好ましく、90%以上がより好ましい。
On the other hand, if the length L of the needle-shaped aggregates having a length of 500 nm or less is less than 80%, disadvantages such as the inability to obtain a polarizer having a sufficient degree of orientation and poor light resistance are caused.
The proportion of the needle-shaped aggregate having a length L of 500 nm or less is preferably 85% or more, and more preferably 90% or more.
 また、針状凝集体のアスペクト比は、2超であればよいが、2~12が好ましく、2~8.5がより好ましい。
 針状凝集体のアスペクト比を2~12とすることにより、偏光子の偏光度を高くできる、ヘイズの小さい偏光子が得られる等の点で好ましい。
Further, the aspect ratio of the acicular aggregates may be more than 2, but is preferably 2 to 12, more preferably 2 to 8.5.
By setting the aspect ratio of the acicular aggregates to 2 to 12, the degree of polarization of the polarizer can be increased, and a polarizer having a small haze can be obtained.
 針状凝集体の長さLは、300nm以上であればよいが、300~500μmが好ましい。
 針状凝集体の長さLを300~500μmとすることにより、偏光子の偏光度を高くできる、ヘイズの小さい偏光子が得られる等の点で好ましい。
The length L of the needle-like aggregate may be 300 nm or more, and preferably 300 to 500 μm.
Setting the length L of the acicular aggregate to 300 to 500 μm is preferable in that the degree of polarization of the polarizer can be increased and a polarizer with a small haze can be obtained.
 本発明の偏光子においては、配向軸(図1矢印x方向)と長軸方向とが成す角度が5°以上である針状凝集体が、針状凝集体の90%以上であるのが好ましく、92%以上であるのがより好ましい。
 配向軸と長軸方向とが成す角度が5°以上である針状凝集体が、針状凝集体の90%以上であることにより、偏光子の配向度を高くできる等の点で好ましい。
 なお、針状凝集体の長軸方向は、上述した凝集体のアスペクト比を決める際に設定した楕円の長軸の方向とするのは、上述のとおりである。
In the polarizer of the present invention, it is preferable that the needle-like aggregate in which the angle between the orientation axis (the direction of the arrow x in FIG. 1) and the major axis direction is 5 ° or more is 90% or more of the needle-like aggregate. , 92% or more.
The needle-like aggregate in which the angle between the orientation axis and the major axis direction is 5 ° or more is preferable because the degree of orientation of the polarizer can be increased when the needle-like aggregate is 90% or more of the needle-like aggregate.
The major axis direction of the needle-shaped aggregate is set to the direction of the major axis of the ellipse set when the aspect ratio of the aggregate is determined as described above.
 なお、配向軸と長軸方向とが成す角度が5°以上である針状凝集体の割合も、針状凝集体の数等と同様、任意に選択した、互いに重複しない13.58μm2の領域、3箇所(合計40μm2)で算出を行えばよい。
 この点に関しては、後述する針状凝集体の面積率、短軸方向の長さDが大きい凝集体の数、長さLが長い凝集体の数、および、凝集体の面積率に関しても、同様である。
The ratio of the needle-shaped agglomerates angle between the orientation axis and the long axis direction is 5 ° or more even, as well as the number of needle-like aggregates, such as, arbitrarily selected, the region of 13.58Myuemu 2 do not overlap each other The calculation may be performed at three places (a total of 40 μm 2 ).
In this regard, the area ratio of the needle-like aggregates described later, the number of aggregates having a large length D in the minor axis direction, the number of aggregates having a long length L, and the area ratio of the aggregates are the same. It is.
 また、本発明の偏光子においては、針状凝集体は、配向軸と長軸方向とが成す角度が、10°以下であるのが好ましい。
 具体的には、配向軸と長軸方向とが成す角度が10°以下である針状凝集体の割合が、15%以上であるのが好ましく、20%以上であるのがより好ましい。
 長手方向が、配向軸に対する長軸方向の角度が10°以下の針状凝集体の数が15%以上であることにより、偏光子の配向度を高くできる等の点で好ましい。
In the polarizer of the present invention, the angle between the orientation axis and the major axis direction of the acicular aggregate is preferably 10 ° or less.
Specifically, the ratio of the needle-like aggregates in which the angle between the orientation axis and the major axis direction is 10 ° or less is preferably 15% or more, and more preferably 20% or more.
The longitudinal direction is preferable in that the degree of orientation of the polarizer can be increased by setting the number of needle-like aggregates whose angle in the major axis direction to the orientation axis is 10 ° or less to 15% or more.
 本発明の偏光子においては、針状凝集体の面積率が0.9~7.3%であるのが好ましく、1.0~7.0%であるのがより好ましい。
 針状凝集体の面積率を0.9~7.3%とすることにより、偏光子の配向度を高くできる、ヘイズの低い偏光子が得られる等の点で好ましい。
In the polarizer of the present invention, the area ratio of the acicular aggregates is preferably from 0.9 to 7.3%, more preferably from 1.0 to 7.0%.
By setting the area ratio of the acicular aggregates to 0.9 to 7.3%, the degree of orientation of the polarizer can be increased, and a polarizer having a low haze can be obtained.
 本発明の偏光子において、針状凝集体は、短軸方向に、ある程度の距離を有するのが好ましい。
 具体的には、針状凝集体は、自身の短軸方向に最も隣接する針状凝集体との距離が100nm以上であるのが好ましく、200nm以上であるのがより好ましい。隣接する針状凝集体の配向方向と直交する方向の距離を100nm以上とすることにより、ヘイズの低い偏光子が得られる等の点で好ましい。
In the polarizer of the present invention, it is preferable that the acicular aggregate has a certain distance in the minor axis direction.
Specifically, the distance between the needle-shaped aggregate and the needle-shaped aggregate closest to the shortest axis direction of the needle-shaped aggregate is preferably 100 nm or more, and more preferably 200 nm or more. By setting the distance in the direction perpendicular to the orientation direction of the adjacent needle-like aggregates to 100 nm or more, it is preferable in that a polarizer with low haze can be obtained.
 なお、このような針状凝集体は、本発明の偏光子の両方の表面で同様に観察される。本発明の偏光子は、通常、後述する積層体とされる。そのため、本発明の偏光子において、針状凝集体は、偏光子の表面(バリア層との界面側の面)および偏光子と配向膜との界面側の面で、同様に確認される。
 さらに、このような針状凝集体は、本発明の偏光子の主面と直交する方向の断面でも、同様に観察される。なお、主面とは、シート状物(フィルム、板状物)の最大面である。
In addition, such an acicular aggregate is similarly observed on both surfaces of the polarizer of the present invention. The polarizer of the present invention is usually a laminate described below. Therefore, in the polarizer of the present invention, acicular aggregates are similarly confirmed on the surface of the polarizer (the surface on the interface side with the barrier layer) and the interface on the interface side between the polarizer and the alignment film.
Further, such an acicular aggregate is similarly observed in a cross section in a direction orthogonal to the main surface of the polarizer of the present invention. The main surface is the largest surface of a sheet (film, plate).
 本発明の偏光子は、針状凝集体に限らず、短軸方向の長さDが400nm以上の凝集体の割合が、全凝集体の40%以下であるのが好ましく、30%以下であるのがより好ましい。
 短軸方向の長さDが400nm以上の凝集体の割合を40%以下とすることにより、ヘイズが低い偏光子が得られる等の点で好ましい。
The polarizer of the present invention is not limited to the needle-shaped aggregate, and the ratio of the aggregate having a length D of 400 nm or more in the minor axis direction is preferably 40% or less, and more preferably 30% or less of the total aggregate. Is more preferred.
By setting the proportion of the aggregate having a length D in the short axis direction of 400 nm or more to 40% or less, it is preferable in that a polarizer with low haze can be obtained.
 さらに、本発明の偏光子は、針状凝集体に限らず、凝集体の面積率が5~35%であるのが好ましく、10~30%であるのがより好ましい。
 凝集体の面積率を5~35%とすることにより、ヘイズが低い偏光子が得られる等の点で好ましい。
Further, the polarizer of the present invention is not limited to the needle-shaped aggregate, and the area ratio of the aggregate is preferably 5 to 35%, more preferably 10 to 30%.
Setting the area ratio of the aggregates to 5 to 35% is preferable in that a polarizer having a low haze can be obtained.
 このような本発明の偏光子は、以下に示す偏光子形成用組成物を用いて形成できる。 Such a polarizer of the present invention can be formed using the following polarizer-forming composition.
〔偏光子形成用組成物〕
 本発明の偏光子に用いられる偏光子形成用組成物は、液晶性化合物と二色性物質とを含有する。以下の説明では、本発明の偏光子に用いられる偏光子形成用組成物を「本組成物」とも言う。
 なお、本組成物は、液晶性化合物および二色性物質以外に、重合開始剤、溶剤、および、界面改良剤等の成分を含有していてもよい。
 以下、各成分について説明する。
(Polarizer forming composition)
The composition for forming a polarizer used in the polarizer of the present invention contains a liquid crystal compound and a dichroic substance. In the following description, the polarizer-forming composition used for the polarizer of the present invention is also referred to as “the present composition”.
In addition, this composition may contain components, such as a polymerization initiator, a solvent, and an interface improver, other than a liquid crystal compound and a dichroic substance.
Hereinafter, each component will be described.
<液晶性化合物>
 上述のとおり、本組成物には、液晶性化合物を有する。液晶性化合物としては、低分子液晶性化合物および高分子液晶性化合物のいずれも用いることができる。ここで「低分子液晶性化合物」とは、化学構造中に繰り返し単位を有さない液晶性化合物のことをいう。また、高分子液晶性化合物とは、化学構造中に繰り返し単位を有する液晶性化合物のことをいう。低分子液晶性化合物としては、例えば、特開2013-228706号公報に記載されている化合物が挙げられる。また、高分子液晶性化合物としては、例えば、特開2011-237513号公報に記載されている化合物が挙げられる。液晶性化合物は、サーモトロピック液晶であり、ネマチック相およびスメクチック相のいずれを示してもよいが、少なくともネマチック相を示すことが好ましい。ネマチック相を示す温度範囲は、室温(23℃)~450℃が好ましく、取り扱いや製造適性の観点から、50℃~400℃が好ましい。
 また、高分子液晶性化合物としては、以下に示すサーモトロピック性液晶、および、結晶性高分子である高分子液晶性化合物が挙げられる。以下の説明では、サーモトロピック性液晶および結晶性高分子を「特定化合物」とも言う。
<Liquid crystal compound>
As described above, the present composition has a liquid crystal compound. As the liquid crystal compound, either a low-molecular liquid crystal compound or a high-molecular liquid crystal compound can be used. Here, the “low-molecular liquid crystal compound” refers to a liquid crystal compound having no repeating unit in the chemical structure. In addition, a polymer liquid crystal compound refers to a liquid crystal compound having a repeating unit in a chemical structure. Examples of the low-molecular liquid crystal compound include compounds described in JP-A-2013-228706. Further, examples of the polymer liquid crystalline compound include compounds described in JP-A-2011-237513. The liquid crystal compound is a thermotropic liquid crystal and may show any of a nematic phase and a smectic phase, but preferably shows at least a nematic phase. The temperature range showing the nematic phase is preferably from room temperature (23 ° C.) to 450 ° C., and is preferably from 50 ° C. to 400 ° C. from the viewpoint of handling and production suitability.
In addition, examples of the polymer liquid crystal compound include the following thermotropic liquid crystals and a polymer liquid crystal compound that is a crystalline polymer. In the following description, the thermotropic liquid crystal and the crystalline polymer are also referred to as “specific compounds”.
(サーモトロピック液晶)
 サーモトロピック液晶とは、温度変化によって液晶相への転移を示す液晶である。
 特定化合物は、サーモトロピック液晶であり、ネマチック相およびスメクチック相のいずれを示してもよい。しかしながら、特定化合物は、偏光子の配向度がより高くなり、且つ、ヘイズがより観察され難くなる(ヘイズがより良好になる)理由から、少なくともネマチック相を示すことが好ましい。なお、以下の説明では、「偏光子の配向度がより高くなり、且つ、ヘイズがより観察され難くなる」ことを「本発明の効果がより優れる」とも言う。
(Thermotropic liquid crystal)
A thermotropic liquid crystal is a liquid crystal that exhibits a transition to a liquid crystal phase due to a change in temperature.
The specific compound is a thermotropic liquid crystal and may show any of a nematic phase and a smectic phase. However, the specific compound preferably exhibits at least a nematic phase because the degree of orientation of the polarizer is higher and haze is more difficult to be observed (haze is better). In the following description, "the degree of orientation of the polarizer is higher and haze is more difficult to be observed" is also referred to as "the effect of the present invention is more excellent".
(結晶性高分子)
 結晶性高分子とは、温度変化によって結晶層への転移を示す高分子である。結晶性高分子は結晶層への転移の他にガラス転移を示すものであってもよい。
 特定化合物は、本発明の効果がより優れる理由から、加熱した時に結晶相から液晶相への転移を持つ(途中にガラス転移があってもよい)高分子液晶性化合物、または、加熱により液晶状態とした後で温度を下降させた時に結晶相への転移(途中にガラス転移があってもよい)を持つ高分子液晶性化合物であることが好ましい。
(Crystalline polymer)
A crystalline polymer is a polymer that exhibits a transition to a crystal layer due to a change in temperature. The crystalline polymer may exhibit a glass transition in addition to the transition to the crystal layer.
The specific compound is a polymer liquid crystalline compound having a transition from a crystalline phase to a liquid crystal phase when heated (there may be a glass transition in the middle) or a liquid crystalline state due to heating because the effect of the present invention is more excellent. It is preferable that the compound be a high-molecular liquid crystalline compound having a transition to a crystal phase (there may be a glass transition in the middle) when the temperature is lowered after the above.
 なお、高分子液晶性化合物の結晶性の有無は以下のように評価する。
 光学顕微鏡(Nikon社製ECLIPSE E600 POL)の二枚の偏光子を互いに直交するように配置し、二枚の偏光子の間にサンプル台をセットする。そして、高分子液晶性化合物をスライドガラスに少量乗せ、サンプル台上に置いたホットステージ上にスライドガラスをセットする。サンプルの状態を観察しながら、高分子液晶性化合物が液晶性を示す温度までホットステージの温度を上げ、高分子液晶性化合物を液晶状態にする。高分子液晶性化合物が液晶状態になった後、ホットステージの温度を徐々に降下させながら液晶相転移の挙動を観察し、液晶相転移の温度を記録する。なお、高分子液晶性化合物が複数の液晶相(例えばネマチック相とスメクチック相)を示す場合、その転移温度も全て記録する。
 次に、高分子液晶性化合物のサンプル約5mgをアルミパンに入れて蓋をし、示差走査熱量計(DSC)にセットする(リファレンスとして空のアルミパンを使用)。上記で測定した高分子液晶性化合物が液晶相を示す温度まで加熱し、その後、温度を1分保持した。その後、10℃/分の速度で降温させながら、熱量測定を行う。得られた熱量のスペクトルから発熱ピークを確認する。
 その結果、液晶相転移の温度以外の温度で発熱ピークが観測された場合は、その発熱ピークが結晶化によるピークであり、高分子液晶性化合物は結晶性を有すると言える。
 一方、液晶相転移の温度以外の温度で発熱ピークが観測されなかった場合は、高分子液晶性化合物は結晶性を有さないと言える。
The presence or absence of crystallinity of the high-molecular liquid crystalline compound is evaluated as follows.
Two polarizers of an optical microscope (ECLIPSE E600 POL manufactured by Nikon) are arranged so as to be orthogonal to each other, and a sample table is set between the two polarizers. Then, a small amount of the high-molecular liquid crystal compound is placed on a slide glass, and the slide glass is set on a hot stage placed on a sample table. While observing the state of the sample, the temperature of the hot stage is raised to a temperature at which the polymer liquid crystal compound exhibits liquid crystallinity, and the polymer liquid crystal compound is brought into a liquid crystal state. After the high-molecular liquid crystalline compound is in a liquid crystal state, the behavior of the liquid crystal phase transition is observed while gradually lowering the temperature of the hot stage, and the temperature of the liquid crystal phase transition is recorded. When the polymer liquid crystalline compound shows a plurality of liquid crystal phases (for example, a nematic phase and a smectic phase), all the transition temperatures are also recorded.
Next, about 5 mg of a sample of the polymer liquid crystalline compound is put in an aluminum pan, covered, and set on a differential scanning calorimeter (DSC) (an empty aluminum pan is used as a reference). The polymer liquid crystal compound measured above was heated to a temperature at which the compound exhibited a liquid crystal phase, and then the temperature was maintained for 1 minute. Thereafter, the calorific value is measured while lowering the temperature at a rate of 10 ° C./min. An exothermic peak is confirmed from the obtained calorific value spectrum.
As a result, when an exothermic peak is observed at a temperature other than the liquid crystal phase transition temperature, the exothermic peak is a peak due to crystallization, and it can be said that the polymer liquid crystalline compound has crystallinity.
On the other hand, when no exothermic peak is observed at a temperature other than the liquid crystal phase transition temperature, it can be said that the polymer liquid crystal compound does not have crystallinity.
 結晶性高分子を得る方法は特に制限されないが、具体例としては、後述する繰り返し単位(1)を含む高分子液晶性化合物を用いる方法が好ましく、なかでも、後述する繰り返し単位(1)を含む高分子液晶性化合物の中の好適な態様を用いる方法がより好ましい。 The method for obtaining the crystalline polymer is not particularly limited, but as a specific example, a method using a high-molecular liquid crystalline compound containing a repeating unit (1) described below is preferable. A method using a preferred embodiment among the polymer liquid crystalline compounds is more preferable.
(結晶化温度)
 上述のとおり、特定化合物は、結晶化高分子である。
 特定化合物の結晶化温度は、本発明の効果がより優れる理由から、0℃以上150℃未満が好ましく、なかでも120℃以下がより好ましく、15℃以上120℃未満がさらに好ましく、なかでも95℃以下が特に好ましい。上記高分子液晶性化合物の結晶化温度は、ヘイズを減らす観点から、150℃未満が好ましい。
 なお、結晶化温度は、上述したDSCにおける結晶化による発熱ピークの温度である。
(Crystallization temperature)
As described above, the specific compound is a crystallized polymer.
The crystallization temperature of the specific compound is preferably from 0 ° C. to less than 150 ° C., more preferably 120 ° C. or less, still more preferably 15 ° C. to less than 120 ° C., particularly preferably 95 ° C., because the effect of the present invention is more excellent. The following are particularly preferred. The crystallization temperature of the polymer liquid crystalline compound is preferably less than 150 ° C. from the viewpoint of reducing haze.
The crystallization temperature is a temperature of an exothermic peak due to crystallization in DSC described above.
(好適な態様)
 特定化合物は、本発明の効果がより優れる理由から、下記式(1)で表される繰り返し単位を含む高分子液晶性化合物であることが好ましい。以下の説明では、下記式(1)で表される繰り返し単位を「繰り返し単位(1)」とも言う。
(Preferred embodiment)
The specific compound is preferably a liquid crystalline polymer compound containing a repeating unit represented by the following formula (1), because the effect of the present invention is more excellent. In the following description, the repeating unit represented by the following formula (1) is also referred to as “repeating unit (1)”.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。 In the above formula (1), P1 represents a main chain of a repeating unit, L1 represents a single bond or a divalent linking group, SP1 represents a spacer group, M1 represents a mesogen group, and T1 represents a terminal group. .
 P1が表す繰り返し単位の主鎖としては、具体的には、例えば、下記式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。 The main chain of the repeating unit represented by P1 specifically includes, for example, groups represented by the following formulas (P1-A) to (P1-D). From the viewpoint of versatility and easy handling, a group represented by the following formula (P1-A) is preferable.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(P1-A)~(P1-D)において、「*」は、式(1)におけるL1との結合位置を表す。式(P1-A)において、Rは水素原子またはメチル基を表す。式(P1-D)において、R2はアルキル基を表す。
 式(P1-A)で表される基は、本発明の効果がより優れる理由から、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
 式(P1-B)で表される基は、本発明の効果がより優れる理由から、エチレングリコールを重合して得られるポリエチレングリコールにおけるエチレングリコール単位であることが好ましい。
 式(P1-C)で表される基は、本発明の効果がより優れる理由から、プロピレングリコールを重合して得られるプロピレングリコール単位であることが好ましい。
 式(P1-D)で表される基は、本発明の効果がより優れる理由から、シラノールの縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。
In the formulas (P1-A) to (P1-D), “*” represents a bonding position to L1 in the formula (1). In the formula (P1-A), R 1 represents a hydrogen atom or a methyl group. In the formula (P1-D), R 2 represents an alkyl group.
The group represented by the formula (P1-A) is a unit of the partial structure of the poly (meth) acrylate obtained by polymerization of the (meth) acrylate because the effect of the present invention is more excellent. Is preferred.
The group represented by the formula (P1-B) is preferably an ethylene glycol unit in polyethylene glycol obtained by polymerizing ethylene glycol, because the effect of the present invention is more excellent.
The group represented by the formula (P1-C) is preferably a propylene glycol unit obtained by polymerizing propylene glycol, because the effect of the present invention is more excellent.
The group represented by the formula (P1-D) is preferably a siloxane unit of a polysiloxane obtained by polycondensation of silanol, because the effect of the present invention is more excellent.
 L1は、単結合または2価の連結基である。
 L1が表す2価の連結基としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR3-、-NR3C(O)-、-SO2-、および、-NR34-などが挙げられる。式中、R3およびR4はそれぞれ独立に、水素原子、置換基(例えば、後述する置換基W)を有していてもよい炭素数1~6のアルキル基を表わす。
 P1が式(P1-A)で表される基である場合には、本発明の効果がより優れる理由から、L1は-C(O)O-で表される基が好ましい。
 P1が式(P1-B)~(P1-D)で表される基である場合には、本発明の効果がより優れる理由から、L1は単結合が好ましい。
L1 is a single bond or a divalent linking group.
Examples of the divalent linking group represented by L1 include —C (O) O—, —OC (O) —, —O—, —S—, —C (O) NR 3 —, and —NR 3 C (O) —, —SO 2 —, and —NR 3 R 4 —. In the formula, R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent (for example, a substituent W described below).
When P1 is a group represented by the formula (P1-A), L1 is preferably a group represented by —C (O) O— because the effect of the present invention is more excellent.
When P1 is a group represented by any one of formulas (P1-B) to (P1-D), L1 is preferably a single bond because the effect of the present invention is more excellent.
 SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造、および、フッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
 ここで、SP1が表すオキシエチレン構造は、*-(CH2-CH2O)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*は、上記式(1)中のL1またはM1との結合位置を表す。n1は、本発明の効果がより優れる理由から、2~10の整数であることが好ましく、2~4の整数であることがより好ましく、3であることが最も好ましい。
 また、SP1が表すオキシプロピレン構造は、本発明の効果がより優れる理由から、*-(CH(CH3)-CH2O)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すポリシロキサン構造は、本発明の効果がより優れる理由から、*-(Si(CH32-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すフッ化アルキレン構造は、本発明の効果がより優れる理由から、*-(CF2-CF2n4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1またはM1との結合位置を表す。
The spacer group represented by SP1 is selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure, and an alkylene fluoride structure because of easy development of liquid crystallinity and availability of raw materials. Preferably, it contains at least one structure.
Here, the oxyethylene structure represented by SP1 is preferably a group represented by *-(CH 2 -CH 2 O) n1- *. In the formula, n1 represents an integer of 1 to 20, and * represents a bonding position to L1 or M1 in the above formula (1). n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and most preferably 3, because the effect of the present invention is more excellent.
The oxypropylene structure represented by SP1 is preferably a group represented by *-(CH (CH 3 ) —CH 2 O) n2- * because the effect of the present invention is more excellent. In the formula, n2 represents an integer of 1 to 3, and * represents a bonding position to L1 or M1.
Further, the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si (CH 3 ) 2 -O) n3- * because the effect of the present invention is more excellent. In the formula, n3 represents an integer of 6 to 10, and * represents a bonding position to L1 or M1.
Further, the alkylene fluoride structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4- * because the effect of the present invention is more excellent. In the formula, n4 represents an integer of 6 to 10, and * represents a bonding position to L1 or M1.
 M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「FlussigeKristalle in Tabellen II」(VEB DeutscheVerlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
 メソゲン基としては、例えば、芳香族炭化水素基、複素環基、および脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
 メソゲン基は、本発明の効果がより優れる理由から、芳香族炭化水素基を有するのが好ましく、2~4個の芳香族炭化水素基を有するのがより好ましく、3個の芳香族炭化水素基を有するのがさらに好ましい。
The mesogen group represented by M1 is a group indicating a main skeleton of a liquid crystal molecule that contributes to liquid crystal formation. Liquid crystal molecules exhibit liquid crystallinity, which is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state. There is no particular limitation on the mesogen group. For example, "FlussigeKristallle in Tabellen II" (VEB Deutsche Verlag fur Grundstoff Industrie, Leipzig, ed., Ed., Pp. 7-16) Reference can be made to the liquid crystal handbook (Maruzen, 2000), especially the description in Chapter 3.
As the mesogen group, for example, a group having at least one cyclic structure selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group is preferable.
The mesogen group preferably has an aromatic hydrocarbon group, more preferably has 2 to 4 aromatic hydrocarbon groups, and more preferably has 3 aromatic hydrocarbon groups, because the effect of the present invention is more excellent. It is more preferred to have
 メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点、ならびに、本発明の効果がより優れるという観点から、下記式(M1-A)または下記式(M1-B)で表される基が好ましく、式(M1-B)で表される基がより好ましい。 As the mesogen group, the following formula (M1-A) or the following formula (M1-A) from the viewpoint of the development of liquid crystallinity, the adjustment of the liquid crystal phase transition temperature, the availability of raw materials and the suitability for synthesis, and the viewpoint that the effects of the present invention are more excellent. A group represented by M1-B) is preferable, and a group represented by formula (M1-B) is more preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(M1-A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基、アルコキシ基または後述する置換基Wなどの置換基で置換されていてもよい。
 A1で表される2価の基は、4~6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
 *は、SP1またはT1との結合位置を表す。
In the formula (M1-A), A1 is a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic group. These groups may be substituted with a substituent such as an alkyl group, a fluorinated alkyl group, an alkoxy group, or a substituent W described below.
The divalent group represented by A1 is preferably a 4- to 6-membered ring. Further, the divalent group represented by A1 may be a single ring or a condensed ring.
* Represents a binding position to SP1 or T1.
 A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基、および、テトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。 Examples of the divalent aromatic hydrocarbon group represented by A1 include a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group, a tetracene-diyl group, and the like. In light of the availability of the compound, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
 A1が表す2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
 2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
The divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but is preferably a divalent aromatic heterocyclic group from the viewpoint of further improving the degree of orientation. .
The atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
Specific examples of the divalent aromatic heterocyclic group include, for example, a pyridylene group (pyridine-diyl group), a pyridazine-diyl group, an imidazole-diyl group, a thienylene (thiophene-diyl group), a quinolylene group (quinoline-diyl group) ), Isoquinolylene group (isoquinolin-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimido-diyl group, thienothiazole-diyl group Thiazolothiazole-diyl group, thienothiophene-diyl group, and thienooxazole-diyl group.
 A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられる。 Specific examples of the divalent alicyclic group represented by A1 include a cyclopentylene group and a cyclohexylene group.
 式(M1-A)中、a1は1~10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。 A In the formula (M1-A), a1 represents an integer of 1 to 10. When a1 is 2 or more, a plurality of A1s may be the same or different.
 式(M1-B)中、A2およびA3はそれぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(M1-A)のA1と同様であるので、その説明を省略する。
 式(M1-B)中、a2は1~10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、本発明の効果がより優れる理由から、2以上の整数であることが好ましく、2であることがより好ましい。
 式(M1-B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合または2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。a2が2である場合、本発明の効果がより優れる理由から、2つのLA1のうち、一方が2価の連結基であり、他方が単結合であることが好ましい。
In the formula (M1-B), A2 and A3 are each independently a divalent group selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group and an alicyclic group. Specific examples and preferred embodiments of A2 and A3 are the same as those of A1 in Formula (M1-A), and thus description thereof will be omitted.
In the formula (M1-B), a2 represents an integer of 1 to 10. When a2 is 2 or more, a plurality of A2s may be the same or different, and a plurality of A3s may be the same or different. A plurality of LA1s may be the same or different. a2 is preferably an integer of 2 or more, more preferably 2, because the effect of the present invention is more excellent.
In the formula (M1-B), when a2 is 1, LA1 is a divalent linking group. When a2 is 2 or more, the plurality of LA1s are each independently a single bond or a divalent linking group, and at least one of the LA1s is a divalent linking group. When a2 is 2, it is preferable that one of the two LA1s is a divalent linking group and the other is a single bond because the effect of the present invention is more excellent.
 式(M1-B)中、LA1が表す2価の連結基としては、-O-、-(CH2g-、-(CF2g-、-Si(CH32-、-(Si(CH32O)g-、-(OSi(CH32g-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)2-C(Z’)2-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は独立に、水素、C1~C4アルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、および、-C(O)S-などが挙げられる。なかでも、本発明の効果がより優れる理由から、-C(O)O-が好ましい。LA1は、これらの基を2つ以上組み合わせた基であってもよい。 In the formula (M1-B), the divalent linking group represented by LA1 includes -O-,-(CH 2 ) g -,-(CF 2 ) g- , -Si (CH 3 ) 2 -,-( Si (CH 3 ) 2 O) g -,-(OSi (CH 3 ) 2 ) g- (g represents an integer of 1 to 10), -N (Z)-, -C (Z) = C ( Z ')-, -C (Z) = N-, -N = C (Z)-, -C (Z) 2 -C (Z') 2- , -C (O)-, -OC (O) -, -C (O) O-, -OC (O) O-, -N (Z) C (O)-, -C (O) N (Z)-, -C (Z) = C ( Z ')-C (O) O-, -OC (O) -C (Z) = C (Z')-, -C (Z) = N-, -N = C (Z)-,- C (Z) = C (Z ')-C (O) N (Z ")-, -N (Z")-C (O) -C (Z) = C (Z')-, -C (Z ) = C (Z ')-C (O) -S-,-S —C (O) —C (Z) = C (Z ′) —, —C (Z) = NN = C (Z ′) — (Z, Z ′, Z ″ independently represent hydrogen, C1 to Represents a C4 alkyl group, a cycloalkyl group, an aryl group, a cyano group, or a halogen atom.), -C≡C-, -N = N-, -S-, -S (O)-, -S (O ) (O)-,-(O) S (O) O-, -O (O) S (O) O-, -SC (O)-, and -C (O) S-. Among them, -C (O) O- is preferable because the effect of the present invention is more excellent, and LA1 may be a group obtained by combining two or more of these groups.
 M1の具体例としては、例えば以下の構造が挙げられる。なお、下記具体例において、「Ac」は、アセチル基を表す。 Specific examples of M1 include, for example, the following structures. In the following specific examples, “Ac” represents an acetyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアルコキシカルボニル基(ROC(O)-:Rはアルキル基)、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、および、炭素数1~10のウレイド基、(メタ)アクリロイルオキシ基含有基などが挙げられる。上記(メタ)アクリロイルオキシ基含有基としては、例えば、-L-A(Lは単結合または連結基を表す。連結基の具体例は上述したL1およびSP1と同じである。Aは(メタ)アクリロイルオキシ基を表す)で表される基が挙げられる。
 T1は、本発明の効果がより優れる理由から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシがより好ましく、メトキシ基がさらに好ましい。これらの末端基は、これらの基、または、特開2010-244038号公報に記載の重合性基によって、さらに置換されていてもよい。
 T1の主鎖の原子数は、本発明の効果がより優れる理由から、1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、偏光子の配向度がより向上する。ここで、T1おける「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
Examples of the terminal group represented by T1 include a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, An alkoxycarbonyloxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms (ROC (O)-: R is an alkyl group), an acyloxy group having 1 to 10 carbon atoms, an acylamino group having 1 to 10 carbon atoms An alkoxycarbonylamino group having 1 to 10 carbon atoms, a sulfonylamino group having 1 to 10 carbon atoms, a sulfamoyl group having 1 to 10 carbon atoms, a carbamoyl group having 1 to 10 carbon atoms, a sulfinyl group having 1 to 10 carbon atoms, and And a ureido group having 1 to 10 carbon atoms, and a (meth) acryloyloxy group-containing group. Examples of the (meth) acryloyloxy group-containing group include, for example, -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as L1 and SP1 described above. A is (meth) (Representing an acryloyloxy group).
T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and even more preferably a methoxy group, because the effect of the present invention is more excellent. These terminal groups may be further substituted by these groups or a polymerizable group described in JP-A-2010-244038.
The number of atoms in the main chain of T1 is preferably 1 to 20, more preferably 1 to 15, still more preferably 1 to 10, and particularly preferably 1 to 7, because the effect of the present invention is more excellent. When the number of atoms in the main chain of T1 is 20 or less, the degree of orientation of the polarizer is further improved. Here, the "main chain" in T1 means the longest molecular chain bonded to M1, and hydrogen atoms are not counted in the number of atoms in the main chain of T1. For example, when T1 is an n-butyl group, the number of atoms in the main chain is 4, and when T1 is a sec-butyl group, the number of atoms in the main chain is 3.
 繰り返し単位(1)の含有量は、本発明の効果がより優れる理由から、特定化合物が有する全繰り返し単位100質量%に対して、20~100質量%が好ましく、30~99.9質量%がより好ましく、40~99.0質量%がさらに好ましい。
 本発明において、高分子液晶性化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
 繰り返し単位(1)は、特定化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。なかでも、本発明の効果がより優れる理由から、繰り返し単位(1)が特定化合物中に2種含まれているのがよい。
The content of the repeating unit (1) is preferably from 20 to 100% by mass, more preferably from 30 to 99.9% by mass, based on 100% by mass of all the repeating units of the specific compound, because the effect of the present invention is more excellent. More preferably, it is 40 to 99.0% by mass.
In the present invention, the content of each repeating unit contained in the high-molecular liquid crystalline compound is calculated based on the charged amount (mass) of each monomer used to obtain each repeating unit.
The repeating unit (1) may be contained alone in the specific compound, or two or more kinds thereof may be contained. Among them, it is preferable that two types of the repeating unit (1) are contained in the specific compound because the effect of the present invention is more excellent.
 特定化合物が繰り返し単位(1)を2種含む場合、本発明の効果がより優れる理由から、一方(繰り返し単位A)においてT1が表す末端基がアルコキシ基であり、他方(繰り返し単位B)においてT1が表す末端基がアルコキシ基以外の基であることが好ましい。
 上記繰り返し単位BにおいてT1が表す末端基は、本発明の効果がより優れる理由から、アルコキシカルボニル基、シアノ基、または、(メタ)アクリロイルオキシ基含有基が好ましく、アルコキシカルボニル基、または、シアノ基がより好ましい。
 特定化合物中の上記繰り返し単位Aの含有量と特定化合物中の上記繰り返し単位Bの含有量との割合(A/B)は、本発明の効果がより優れる理由から、50/50~95/5が好ましく、60/40~93/7がより好ましく、70/30~90/10がさらに好ましい。
When the specific compound contains two types of repeating units (1), the terminal group represented by T1 in one (repeating unit A) is an alkoxy group, and Is preferably a group other than an alkoxy group.
In the repeating unit B, the terminal group represented by T1 is preferably an alkoxycarbonyl group, a cyano group, or a (meth) acryloyloxy group-containing group, and more preferably an alkoxycarbonyl group or a cyano group, because the effect of the present invention is more excellent. Is more preferred.
The ratio (A / B) between the content of the repeating unit A in the specific compound and the content of the repeating unit B in the specific compound is from 50/50 to 95/5 because the effect of the present invention is more excellent. , Preferably 60/40 to 93/7, and more preferably 70/30 to 90/10.
(重量平均分子量)
 液晶性化合物が高分子液晶性化合物の場合、重量平均分子量(Mw)は、本発明の効果がより優れる理由から、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶性化合物のMwが上記範囲内にあれば、高分子液晶性化合物の取り扱いが容易になる。
 特に、塗布時のクラック抑制の観点から、重量平均分子量(Mw)は、10000~300000が好ましい。
 また、配向度の温度ラチチュードの観点から、重量平均分子量(Mw)は、2000~10000が好ましい。
 ここで、本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。測定条件としては、一例として、以下の条件が例示される。
 ・溶媒(溶離液):N-メチルピロリドン
 ・装置名:TOSOH HLC-8220GPC
 ・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
 ・カラム温度:25℃
 ・試料濃度:0.1質量%
 ・流速:0.35mL/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
(Weight average molecular weight)
When the liquid crystal compound is a polymer liquid crystal compound, the weight average molecular weight (Mw) is preferably from 1,000 to 500,000, more preferably from 2,000 to 300,000, because the effect of the present invention is more excellent. When the Mw of the polymer liquid crystal compound is within the above range, handling of the polymer liquid crystal compound becomes easy.
In particular, the weight-average molecular weight (Mw) is preferably 10,000 to 300,000 from the viewpoint of suppressing cracks during coating.
Further, from the viewpoint of the temperature latitude of the degree of orientation, the weight average molecular weight (Mw) is preferably from 2,000 to 10,000.
Here, the weight average molecular weight and the number average molecular weight in the present invention are values measured by gel permeation chromatography (GPC). As the measurement conditions, the following conditions are exemplified as examples.
-Solvent (eluent): N-methylpyrrolidone-Equipment name: TOSOH HLC-8220GPC
・ Column: Connect and use three TOSOH TSKgelSuperAWM-H (6mm × 15cm) ・ Column temperature: 25 ° C
-Sample concentration: 0.1% by mass
・ Flow rate: 0.35 mL / min
・ Calibration curve: TOSOH TSK standard polystyrene Mw = 2800000 to 1050 (Mw / Mn = 1.03 to 1.06) Calibration curve using 7 samples
<二色性物質>
 上記二色性物質は、特に限定されず、可視光吸収物質(二色性色素)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、および、無機物質(例えば量子ロッド)、などが挙げられ、従来公知の二色性物質(二色性色素)を使用することができる。
 具体的には、例えば、特開2013-228706号公報の[0067]~[0071]段落、特開2013-227532号公報の[0008]~[0026]段落、特開2013-209367号公報の[0008]~[0015]段落、特開2013-14883号公報の[0045]~[0058]段落、特開2013-109090号公報の[0012]~[0029]段落、特開2013-101328号公報の[0009]~[0017]段落、特開2013-37353号公報の[0051]~[0065]段落、特開2012-63387号公報の[0049]~[0073]段落、特開平11-305036号公報の[0016]~[0018]段落、特開2001-133630号公報の[0009]~[0011]段落、特開2011-215337号公報の[0030]~[0169]、特開2010-106242号公報の[0021]~[0075]段落、特開2010-215846号公報の[0011]~[0025]段落、特開2011-048311号公報の[0017]~[0069]段落、特開2011-213610号公報の[0013]~[0133]段落、特開2011-237513号公報の[0074]~[0246]段落、特願2015-001425号公報の[0022]~[0080]段落、特願2016-006502号公報の[0005]~[0051段落]、WO2016/060173号公報の[0005]~[0041]段落、WO2016/136561号公報の[0008]~[0062]段落、特願2016-044909号公報の[0014]~[0033]段落、特願2016-044910号公報の[0014]~[0033]段落、特願2016-095907号公報の[0013]~[0037]段落、および、特願2017-045296号公報の[0014]~[0034]段落などに記載されたものが挙げられる。
<Dichroic substance>
The dichroic substance is not particularly limited, and a visible light absorbing substance (dichroic dye), a luminescent substance (fluorescent substance, phosphorescent substance), an ultraviolet absorbing substance, an infrared absorbing substance, a nonlinear optical substance, a carbon nanotube, and Inorganic substances (for example, quantum rods) can be used, and conventionally known dichroic substances (dichroic dyes) can be used.
Specifically, for example, paragraphs [0067] to [0071] of JP-A-2013-228706, paragraphs [0008] to [0026] of JP-A-2013-227532, and [ 0008] to [0015], paragraphs [0045] to [0058] of JP 2013-14883, paragraphs [0012] to [0029] of JP 2013-109090, and JP 2013-101328. Paragraphs [0009] to [0017], paragraphs [0051] to [0065] of JP-A-2013-37353, paragraphs [0049] to [0073] of JP-A-2012-63387, and JP-A-11-305036. Paragraphs [0016] to [0018], JP-A-2001-133630, [0009] to [0011] Raku, paragraphs [0030] to [0169] of JP-A-2011-215337, paragraphs [0021] to [0075] of JP-A-2010-106242, and [0011] to [0025] of JP-A-2010-215846. Paragraphs, paragraphs [0017] to [0069] of JP-A-2011-048311, paragraphs [0013] to [0133] of JP-A-2011-213610, and paragraphs [0074] to [0246] of JP-A-2011-237513. Paragraphs, paragraphs [0022] to [0080] of Japanese Patent Application No. 2015-001425, paragraphs [0005] to [0051] of Japanese Patent Application No. 2016-0065502, and [0005] to [0041] of WO 2016/060173. Paragraph, [0008] to [0062] paragraphs of WO2016 / 136561, Japanese Patent Application Paragraphs [0014] to [0033] of JP-A-16-04909, paragraphs [0014] to [0033] of Japanese Patent Application No. 2016-044910, paragraphs [0013] to [0037] of Japanese Patent Application No. 2016-095907, and And the paragraphs [0014] to [0034] of Japanese Patent Application No. 2017-045296.
 本発明においては、2種以上の二色性物質を併用してもよい。2種以上の二色性物質を併用する場合には、例えば、偏光子を黒色に近づける観点から、波長370~550nmの範囲に極大吸収波長を有する少なくとも1種の二色性物質と、波長500~700nmの範囲に極大吸収波長を有する少なくとも1種の二色性物質とを併用することが好ましい。 に お い て In the present invention, two or more dichroic substances may be used in combination. When two or more dichroic substances are used in combination, for example, from the viewpoint of bringing the polarizer closer to black, at least one dichroic substance having a maximum absorption wavelength in the range of 370 to 550 nm and a wavelength of 500 It is preferable to use together with at least one type of dichroic substance having a maximum absorption wavelength in the range of up to 700 nm.
 上記二色性物質は、架橋性基を有していてもよい。
 上記架橋性基としては、具体的には、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、および、スチリル基などが挙げられ、中でも、(メタ)アクリロイル基が好ましい。
The dichroic substance may have a crosslinkable group.
Specific examples of the crosslinkable group include a (meth) acryloyl group, an epoxy group, an oxetanyl group, and a styryl group. Among them, a (meth) acryloyl group is preferable.
 本組成物において、二色性物質の含有量は、本発明の効果がより優れる理由から、上記液晶性化合物100質量部に対して1~400質量部が好ましく、2~100質量部がより好ましく、5~30質量部がさらに好ましい。 In the present composition, the content of the dichroic substance is preferably 1 to 400 parts by mass, more preferably 2 to 100 parts by mass with respect to 100 parts by mass of the liquid crystal compound, because the effect of the present invention is more excellent. And more preferably 5 to 30 parts by mass.
 本組成物において、第1の二色性物質および第2の二色性物質の2種の二色性物質を含有する場合には、第1の二色性物質は、液晶性化合物と相溶し、第2の二色性物質は液晶性化合物と相溶しないことが好ましい。このように第1の二色性物質と第2の二色性物質との液晶性化合物に対する相溶性を制御することで、第1の二色性物質と第2の二色性物質との配向を同時に高くすることが可能になる。 When the composition contains two types of dichroic substances, a first dichroic substance and a second dichroic substance, the first dichroic substance is compatible with the liquid crystal compound. However, it is preferable that the second dichroic substance is not compatible with the liquid crystal compound. By controlling the compatibility of the first dichroic substance and the second dichroic substance with the liquid crystal compound in this manner, the orientation of the first dichroic substance and the second dichroic substance is adjusted. Can be simultaneously increased.
 液晶性化合物と第1の二色性物質との相溶性、および、液晶性化合物と第2の二色性物質との相溶性は次の方法で確かめることができる。
 光学顕微鏡(Nikon社製ECLIPSE E600 POL)の二枚の偏光子を互いに直交するように配置し、二枚の偏光子の間にサンプル台をセットする。液晶性化合物と二色性物質との混合比を変化させた組成物をガラス上にキャストし、サンプル台上に置いたホットステージ上にこのガラスをセットする。ホットステージの温度を液晶性化合物と二色性物質の融点以上、等方相以下の範囲で上下させて、サンプルの相分離状態を観察する。この操作において、液晶性化合物と二色性物質とが任意の混合比において相分離が観察されない場合を相溶、相分離が観察される混合比が存在する場合を非相溶、と定義する。
The compatibility between the liquid crystal compound and the first dichroic substance and the compatibility between the liquid crystal compound and the second dichroic substance can be confirmed by the following methods.
Two polarizers of an optical microscope (ECLIPSE E600 POL manufactured by Nikon) are arranged so as to be orthogonal to each other, and a sample table is set between the two polarizers. A composition in which the mixture ratio of the liquid crystal compound and the dichroic substance is changed is cast on a glass, and the glass is set on a hot stage placed on a sample table. The temperature of the hot stage is raised and lowered within the range from the melting point of the liquid crystal compound and the dichroic substance to the isotropic phase, and the phase separation state of the sample is observed. In this operation, a case where phase separation is not observed at an arbitrary mixing ratio of the liquid crystalline compound and the dichroic substance is defined as compatible, and a case where a mixing ratio at which phase separation is observed is defined as incompatible.
<溶媒>
 本組成物は、作業性等の観点から、溶媒を含有するのが好ましい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、および、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、および、シクロペンチルメチルエーテルなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、および、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン(クロロホルム)、ジクロロエタン、ジクロロベンゼン、および、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、および、酢酸ブチルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、および、シクロヘキサノールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、および、1,2-ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、および、ジメチルアセトアミドなど)、および、ヘテロ環化合物(例えば、ピリジンなど)などの有機溶媒、ならびに、水が挙げられる。これの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
 これらの溶媒のうち、本発明の効果がより優れる理由から、有機溶媒を用いることが好ましく、ハロゲン化炭素類またはケトン類を用いることがより好ましい。
 本組成物が溶媒を含有する場合、溶媒の含有量は、本発明の効果がより優れる理由から、本組成物の全質量に対して、70~99.5質量%が好ましく、80~99質量%がより好ましく、85~97質量%がさらに好ましい。
<Solvent>
The present composition preferably contains a solvent from the viewpoint of workability and the like.
Examples of the solvent include ketones (eg, acetone, 2-butanone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone), ethers (eg, dioxane, tetrahydrofuran, and cyclopentyl methyl ether), aliphatics Hydrocarbons (eg, hexane, etc.), alicyclic hydrocarbons (eg, cyclohexane, etc.), aromatic hydrocarbons (eg, benzene, toluene, xylene, and trimethylbenzene, etc.), and halogenated carbons (eg, , Dichloromethane, trichloromethane (chloroform), dichloroethane, dichlorobenzene, and chlorotoluene), esters (eg, methyl acetate, ethyl acetate, and butyl acetate), alcohols (eg, ethanol, , Butanol, cyclohexanol, etc.), cellosolves (eg, methyl cellosolve, ethyl cellosolve, 1,2-dimethoxyethane, etc.), cellosolve acetates, sulfoxides (eg, dimethyl sulfoxide, etc.), amides ( For example, organic solvents such as dimethylformamide and dimethylacetamide) and heterocyclic compounds (for example, pyridine) and water. These solvents may be used alone or in combination of two or more.
Of these solvents, an organic solvent is preferably used, and more preferably a halogenated carbon or ketone is used, because the effect of the present invention is more excellent.
When the composition contains a solvent, the content of the solvent is preferably from 70 to 99.5% by mass, more preferably from 80 to 99% by mass, based on the total mass of the composition, because the effect of the present invention is more excellent. %, More preferably 85 to 97% by mass.
<界面改良剤>
 本組成物は、本発明の効果がより優れる理由から、界面改良剤を含むことが好ましい。界面改良剤を含むことにより、塗布表面の平滑性が向上し、配向度が向上したり、ハジキおよびムラを抑制して、面内の均一性の向上が見込まれる。
 界面改良剤としては、高分子液晶性化合物を水平配向させるものが好ましく、特開2011-237513号公報の[0253]~[0293]段落に記載の化合物(水平配向剤)を用いることができる。また、特開2007-272185号公報の[0018]~[0043]段落等に記載のフッ素(メタ)アクリレート系ポリマーも用いることができる。界面改良剤としては、これら以外の化合物を用いてもよい。
 本組成物が界面改良剤を含有する場合、界面改良剤の含有量は、本発明の効果がより優れる理由から、組成物中の液晶性化合物と二色性物質との合計100質量部に対し、0.001~5質量部が好ましく、0.01~3質量部が好ましい。
<Interface improver>
The present composition preferably contains an interface improver because the effect of the present invention is more excellent. By including the interface improver, the smoothness of the coated surface is improved, the degree of orientation is improved, and repelling and unevenness are suppressed, so that the in-plane uniformity is expected to be improved.
As the interface improver, a compound that horizontally aligns a polymer liquid crystalline compound is preferable, and compounds (horizontal aligning agents) described in paragraphs [0253] to [0293] of JP-A-2011-237513 can be used. Further, a fluorine (meth) acrylate polymer described in paragraphs [0018] to [0043] of JP-A-2007-272185 can also be used. Compounds other than these may be used as the interface improver.
When the present composition contains an interface improver, the content of the interface improver is preferably based on 100 parts by weight of the total of the liquid crystal compound and the dichroic substance in the composition because the effect of the present invention is more excellent. , 0.001 to 5 parts by mass, preferably 0.01 to 3 parts by mass.
<重合開始剤>
 本組成物は、本発明の効果がより優れる理由から、重合開始剤を含有することが好ましい。
 重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
 光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書参照)、アシロインエーテル(米国特許第2448828号明細書参照)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書参照)、多核キノン化合物(米国特許第3046127号および同2951758号の各明細書の各明細書参照)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書参照)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報および米国特許第4239850号明細書等参照)、オキサジアゾール化合物(米国特許第4212970号明細書参照)、ならびに、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報および特開平10-29997号公報等参照)等が挙げられる。
 このような光重合開始剤としては、市販品も用いることができる。光重合開始剤の市販品としては、BASF社製のイルガキュア184、イルガキュア907、イルガキュア369、イルガキュア651、イルガキュア819、および、イルガキュアOXE-01等が挙げられる。
 本組成物が重合開始剤を含有する場合、重合開始剤の含有量は、本発明の効果がより優れる理由から、組成物中の液晶性化合物と二色性物質との合計100質量部に対し、0.01~30質量部が好ましく、0.1~15質量部がより好ましい。重合開始剤の含有量が0.01質量部以上であることで、偏光子の耐久性が良好となり、30質量部以下であることで、偏光子の配向がより良好となる。
<Polymerization initiator>
The present composition preferably contains a polymerization initiator because the effect of the present invention is more excellent.
The polymerization initiator is not particularly limited, but is preferably a compound having photosensitivity, that is, a photopolymerization initiator.
As the photopolymerization initiator, various compounds can be used without any particular limitation. Examples of photopolymerization initiators include α-carbonyl compounds (see US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (see US Pat. No. 2,448,828), and α-hydrocarbon-substituted aromatic compounds. Group acyloin compounds (see US Pat. No. 2,722,512), polynuclear quinone compounds (see US Pat. Nos. 3,046,127 and 2,951,758), triaryl imidazole dimer and p-aminophenyl ketone Combinations (see US Pat. No. 3,549,367), acridine and phenazine compounds (see JP-A-60-105667 and US Pat. No. 4,239,850), oxadiazole compounds (see US Pat. No. 4,221,970). ) And acylphosphineoxy (See JP-B-63-40799, JP-B-5-29234, JP-A-10-95788 and JP-A-10-29997).
Commercial products can also be used as such a photopolymerization initiator. Commercially available photopolymerization initiators include Irgacure 184, Irgacure 907, Irgacure 369, Irgacure 651, Irgacure 819, and Irgacure OXE-01 manufactured by BASF.
When the present composition contains a polymerization initiator, the content of the polymerization initiator is based on the total of 100 parts by mass of the liquid crystal compound and the dichroic substance in the composition because the effect of the present invention is more excellent. , 0.01 to 30 parts by mass, more preferably 0.1 to 15 parts by mass. When the content of the polymerization initiator is at least 0.01 part by mass, the durability of the polarizer will be good, and when it is at most 30 parts by mass, the orientation of the polarizer will be better.
<結晶化温度>
 本組成物の結晶化温度は、本発明の効果がより優れる理由から、0~100℃が好ましく、1~85℃がより好ましい。本組成物の結晶化温度が0℃未満であると、本組成物を結晶化するために低温装置が必要になり、本組成物の結晶化温度が100℃を超えると、ヘイズが発生し易くなる。
<Crystallization temperature>
The crystallization temperature of the present composition is preferably from 0 to 100 ° C, more preferably from 1 to 85 ° C, because the effect of the present invention is more excellent. When the crystallization temperature of the present composition is lower than 0 ° C., a low-temperature apparatus is required to crystallize the present composition, and when the crystallization temperature of the present composition exceeds 100 ° C., haze is easily generated. Become.
 なお、本組成物の結晶化温度は、高分子液晶性化合物の代わりに本組成物を用いる以外は、上述した高分子液晶性化合物の結晶化温度と同様の手順に従って測定する。上記組成物の結晶化温度とは、高分子液晶性化合物と二色性物質との混晶の結晶化温度と考えられる。 The crystallization temperature of the present composition is measured according to the same procedure as the above-mentioned crystallization temperature of the polymer liquid crystal compound, except that the composition is used instead of the polymer liquid crystal compound. The crystallization temperature of the above composition is considered to be the crystallization temperature of a mixed crystal of a liquid crystalline polymer compound and a dichroic substance.
<置換基W>
 本明細書における置換基Wについて記載する。
 置換基Wとしては、例えば、ハロゲン原子、アルキル基(tert-ブチル基、シクロアルキル基、ビシクロアルキル基およびトリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基およびビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、スルファト基(-OSO3H)、ならびに、その他の公知の置換基などが挙げられる。
 なお、置換基の詳細については、特開2007-234651号公報の段落[0023]に記載される。
<Substituent W>
The substituent W in the present specification will be described.
Examples of the substituent W include a halogen atom, an alkyl group (including a tert-butyl group, a cycloalkyl group, a bicycloalkyl group and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), and alkynyl. Group, aryl group, heterocyclic group (may be referred to as heterocyclic group), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyl Oxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group (including anilino group), ammonium group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group , Alkyl or arylsulfonylamino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl or arylsulfinyl group, alkyl or arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group Carbamoyl, aryl or heterocyclic azo, imide, phosphino, phosphinyl, phosphinyloxy, phosphinylamino, phosphono, silyl, hydrazino, ureido, boronic acid (-B (OH) 2 ), a phosphato group (—OPO (OH) 2 ), a sulfato group (—OSO 3 H), and other known substituents.
The details of the substituent are described in paragraph [0023] of JP-A-2007-246551.
〔水平配向〕
 上述のとおり、本発明の偏光子において、液晶性化合物および二色性物質は水平配向している。
 ここで水平配向とは、偏光子の主面に対して平行であることをいうが、厳密に平行であることを要求するものではなく、水平面となす平均傾斜角が±10°未満であることを意味する。また、上記傾斜角は、AxoScan OPMF-1(オプトサイエンス社製)を用いて測定することができる。
 具体的には、AxoScan OPMF-1(オプトサイエンス社製)を用いて、室温において、波長λにおける偏光子のミューラーマトリックスを極角を-50~50°まで10°毎に計測し、表面反射の影響を除去した後、スネルの式およびフレネルの式を考慮した下記理論式にフィッティングすることにより、消衰係数ko[λ](面内方向)およびke[λ](厚さ方向)を算出する。特に記載がないときは、波長λは、550nmとする。
 k=-log(T)×λ/(4πd)
 ここで、Tは透過率、dは偏光子の厚みを表す。
 算出したko[λ]、ke[λ]より、面内方向および厚さ方向の吸光度、二色比を算出することで水平配向しているか否かを確認することができる。
(Horizontal orientation)
As described above, in the polarizer of the present invention, the liquid crystal compound and the dichroic substance are horizontally aligned.
Here, the horizontal orientation refers to being parallel to the main surface of the polarizer, but does not require strictly parallel, and the average inclination angle with the horizontal plane is less than ± 10 °. Means The inclination angle can be measured using AxoScan OPMF-1 (manufactured by OptoScience).
Specifically, using AxoScan OPMF-1 (manufactured by OptoScience), the polarizer's Mueller matrix at a wavelength λ was measured every 10 ° from -50 to 50 ° at 10 ° at room temperature, and the surface reflection was measured. After removing the influence, the extinction coefficient ko [λ] (in-plane direction) and ke [λ] (thickness direction) are calculated by fitting to the following theoretical formula in consideration of Snell's formula and Fresnel's formula. . Unless otherwise specified, the wavelength λ is 550 nm.
k = -log (T) × λ / (4πd)
Here, T represents the transmittance, and d represents the thickness of the polarizer.
By calculating the absorbance in the in-plane direction and the thickness direction and the dichroic ratio from the calculated ko [λ] and ke [λ], it can be confirmed whether or not the liquid crystal molecules are horizontally aligned.
〔膜厚〕
 本発明の偏光子の膜厚は、本発明の効果がより優れる理由から、0.1~5.0μmが好ましく、0.3~1.5μmがより好ましい。組成物中の二色性物質の濃度にもよるが、膜厚が0.1μm以上であると、より優れた吸光度の偏光子が得られ、膜厚が5.0μm以下であると、より優れた透過率の偏光子が得られる。
[Thickness]
The thickness of the polarizer of the present invention is preferably 0.1 to 5.0 μm, more preferably 0.3 to 1.5 μm, because the effect of the present invention is more excellent. Although it depends on the concentration of the dichroic substance in the composition, when the film thickness is 0.1 μm or more, a polarizer having better absorbance is obtained, and when the film thickness is 5.0 μm or less, more excellent. Is obtained.
〔偏光子の製造方法〕
 本発明の偏光子を製造する方法は特に制限されないが、得られる偏光子の配向度がより高くなり、且つ、ヘイズが観察され難くなる理由から、配向膜上に上述した本組成物を塗布して塗布膜を形成する工程と、上記塗布膜に含まれる二色性物質を配向させる工程と、上述した針状凝集体を形成する工程とを、この順に備える方法が好ましい。
 以下の説明では、配向膜上に上述した本組成物を塗布して塗布膜を形成する工程を「塗布膜形成工程」とも言う。また、上記塗布膜に含まれる二色性物質を配向させる工程を「配向工程」とも言う。さらに、上述した針状凝集体を形成する工程を「熟成工程」とも言う。すなわち、本発明の偏光子を製造する方法は、「塗布膜形成工程」と、配向工程」と、「熟成工程」とを、この順に備える方法が好ましい。
 また、以下の説明では、「得られる偏光子の配向度がより高くなり、且つ、ヘイズが観察され難くなる」ことを「本発明の効果がより優れる」とも言う。
 以下、各工程について説明する。
(Production method of polarizer)
The method for producing the polarizer of the present invention is not particularly limited, but the degree of orientation of the obtained polarizer is higher, and because the haze is hardly observed, the composition described above is coated on an alignment film. It is preferable to provide a method in which a step of forming a coating film by heating, a step of orienting the dichroic substance contained in the coating film, and a step of forming the above-mentioned needle-like aggregates are provided in this order.
In the following description, the step of forming the coating film by applying the above-described composition on the alignment film is also referred to as a “coating film forming step”. Further, the step of aligning the dichroic substance contained in the coating film is also referred to as an “alignment step”. Further, the step of forming the needle-like aggregates is also referred to as an “aging step”. That is, the method for producing the polarizer of the present invention preferably includes a “coating film forming step”, an orientation step, and an “aging step” in this order.
In the following description, "the degree of orientation of the obtained polarizer is higher and haze is less likely to be observed" is also referred to as "the effect of the present invention is more excellent".
Hereinafter, each step will be described.
<塗布膜形成工程>
 塗布膜形成工程は、配向膜上に上述した本組成物を塗布して塗布膜を形成する工程である。塗布膜中の液晶性化合物は、配向膜の作用により水平配向する。本組成物が界面改良剤を含有する場合には、塗布膜中の液晶性化合物は、配向膜と界面改良剤との相互作用により水平配向する。
 上述した溶媒を含有する本組成物を用いたり、本組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、配向膜上に本組成物を塗布することが容易になる。
 本組成物の塗布方法としては、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
<Coating film forming step>
The coating film forming step is a step of forming the coating film by applying the composition described above on the alignment film. The liquid crystal compound in the coating film is horizontally aligned by the action of the alignment film. When the present composition contains an interface improver, the liquid crystalline compound in the coating film is horizontally aligned by the interaction between the alignment film and the interface improver.
By using the present composition containing the solvent described above, or by using the present composition in the form of a liquid such as a melt by heating or the like, it is easy to apply the present composition on the alignment film. Become.
The coating method of the present composition includes roll coating, gravure printing, spin coating, wire bar coating, extrusion coating, direct gravure coating, reverse gravure coating, die coating, spraying, and inkjet. Publicly known methods, such as a method.
(配向膜)
 配向膜は、本組成物に含有される液晶性化合物を水平配向させる膜であれば、どのような膜でもよい。
 有機化合物(好ましくはポリマー)の膜表面へのラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュアブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。なかでも、本発明では、配向膜のプレチルト角の制御し易さの点からはラビング処理により形成する配向膜が好ましく、配向の均一性の点からは光照射により形成する光配向膜も好ましい。
(Alignment film)
The alignment film may be any film as long as it is a film that horizontally aligns the liquid crystalline compound contained in the present composition.
Rubbing treatment of organic compound (preferably polymer) on the film surface, oblique deposition of inorganic compound, formation of layer having microgrooves, or organic compound (eg, ω-tricosanoic acid, It can be provided by such means as accumulation of dioctadecylmethyl ammonium chloride (methyl stearylate). Further, there is known an alignment film in which an alignment function is generated by application of an electric field, a magnetic field, or light irradiation. Among them, in the present invention, an alignment film formed by rubbing treatment is preferable from the viewpoint of easy control of the pretilt angle of the alignment film, and an optical alignment film formed by light irradiation is also preferable from the viewpoint of uniformity of alignment.
(1)ラビング処理配向膜
 ラビング処理により形成される配向膜に用いられるポリマー材料としては、多数の文献に記載があり、多数の市販品を入手することができる。本発明においては、ポリビニルアルコールまたはポリイミド、および、その誘導体が好ましく用いられる。配向膜については国際公開第2001/88574A1号公報の43頁24行~49頁8行の記載を参照することができる。配向膜の厚さは、0.01~10μmが好ましく、0.01~1μmがさらに好ましい。
(1) Rubbing Treatment Orientation Film As the polymer material used for the orientation film formed by the rubbing treatment, there are many publications, and many commercial products can be obtained. In the present invention, polyvinyl alcohol or polyimide, and derivatives thereof are preferably used. For the alignment film, reference can be made to the description from page 43, line 24 to page 49, line 8 of WO 2001/88574 A1. The thickness of the alignment film is preferably 0.01 to 10 μm, more preferably 0.01 to 1 μm.
(2)光配向膜
 光照射により形成される配向膜に用いられる光配向材料としては、多数の文献などに記載がある。本発明において、光配向材料は、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報、特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報、ならびに、特許第4162850号公報に記載の光架橋性ポリイミド、ポリアミドもしくはエステル等が好ましい例として挙げられる。光配向材料としては、より好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド、および、エステル等が挙げられる。
(2) Photo-Alignment Film Photo-alignment materials used for the alignment film formed by light irradiation are described in many documents and the like. In the present invention, for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, and JP-A-2007-121721. Azo compounds described in JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, JP-A-3883848, and JP-A-4151746. Aromatic ester compounds described in 2002-229039, maleimide and / or alkenyl-substituted nadimide compounds having a photo-alignable unit described in JP-A-2002-265541 and JP-A-2002-317013, Patent No. 4205195 Patent No. 4205198 Photocrosslinkable silane derivative of the mounting, Kohyo 2003-520878, JP-T-2004-529220 and JP-well, and a photocrosslinkable polyimide, polyamide or ester are preferable examples described in Japanese Patent No. 4162850. More preferably, the photo-alignment material includes an azo compound, a photo-crosslinkable polyimide, a polyamide, an ester, and the like.
 上記材料から形成した光配向膜に、直線偏光または非偏光照射を施し、光配向膜を製造する。
 本明細書において、「直線偏光照射」および「非偏光照射」とは、光配向材料に光反応を生じせしめるための操作である。用いる光の波長は、用いる光配向材料により異なり、その光反応に必要な波長であれば特に限定されるものではない。光照射に用いる光のピーク波長は、200~700nmが好ましく、光のピーク波長が400nm以下の紫外光がより好ましい。
The photo-alignment film formed from the above materials is irradiated with linearly polarized light or non-polarized light to produce a photo-alignment film.
In this specification, “irradiation of linearly polarized light” and “irradiation of non-polarized light” are operations for causing a photoreaction to occur in a photo-alignment material. The wavelength of the light used depends on the photo-alignment material used, and is not particularly limited as long as it is necessary for the photoreaction. The peak wavelength of light used for light irradiation is preferably from 200 to 700 nm, more preferably ultraviolet light having a peak wavelength of light of 400 nm or less.
 光照射に用いる光源は、通常使われる光源、例えばタングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプおよびカーボンアークランプなどのランプ、各種のレーザー(例えば、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザーおよびYAG(イットリウム・アルミニウム・ガーネット)レーザー等)、発光ダイオード、ならびに、陰極線管などを挙げることができる。 The light source used for light irradiation may be a commonly used light source, for example, a lamp such as a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp, and a carbon arc lamp, and various lasers (for example, a semiconductor laser, a helium lamp). Examples include a neon laser, an argon ion laser, a helium cadmium laser, a YAG (yttrium aluminum garnet) laser, a light emitting diode, and a cathode ray tube.
 直線偏光を得る手段としては、偏光板(例えば、ヨウ素偏光板、二色性物質偏光板、および、ワイヤーグリッド偏光板)を用いる方法、プリズム系素子(例えば、グラントムソンプリズム)もしくはブリュースター角を利用した反射型偏光子を用いる方法、および、偏光を有するレーザー光源から出射される光を用いる方法等が採用できる。また、フィルタまたは波長変換素子などを用いて必要とする波長の光のみを選択的に照射してもよい。 As means for obtaining linearly polarized light, a method using a polarizing plate (for example, an iodine polarizing plate, a dichroic substance polarizing plate, and a wire grid polarizing plate), a prism element (for example, a Glan-Thompson prism) or a Brewster angle is used. A method using a reflective polarizer used, a method using light emitted from a laser light source having polarized light, and the like can be adopted. Alternatively, only light having a required wavelength may be selectively irradiated using a filter or a wavelength conversion element.
 照射する光は、直線偏光の場合には、配向膜に対して上面、または裏面から配向膜表面に対して垂直、または斜めから光を照射する方法が採用される。光の入射角度は、光配向材料によって異なるが、0~90°(垂直)が好ましく、40~90°が好ましい。
 非偏光の場合には、配向膜に対して、斜めから非偏光を照射する。その入射角度は、10~80°が好ましく、20~60°がより好ましく、30~50°がさらに好ましい。
 照射時間は、1~60分が好ましく、1~10分がより好ましい。
In the case of linearly polarized light, a method of irradiating light from the upper surface or the back surface of the alignment film to the surface of the alignment film perpendicularly or obliquely is employed. The incident angle of light varies depending on the photo-alignment material, but is preferably 0 to 90 ° (vertical), and more preferably 40 to 90 °.
In the case of non-polarized light, the alignment film is irradiated with non-polarized light obliquely. The incident angle is preferably from 10 to 80 °, more preferably from 20 to 60 °, even more preferably from 30 to 50 °.
The irradiation time is preferably 1 to 60 minutes, more preferably 1 to 10 minutes.
 パターン化が必要な場合には、フォトマスクを用いた光照射をパターン作製に必要な回数施す方法、または、レーザー光走査によるパターンの書き込みによる方法を採用できる。 When patterning is required, a method of performing light irradiation using a photomask as many times as necessary for pattern formation, or a method of writing a pattern by laser light scanning can be employed.
<配向工程>
 配向工程は、塗布膜に含有される二色性物質を配向させる工程である。
 配向工程では、配向膜によって配向した液晶性化合物に沿って、二色性物質が配向するものと考えられる。
 配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去することができる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
 ここで、本組成物に含有される二色性物質は、上述した塗布膜形成工程または乾燥処理によって、配向する場合がある。例えば、本組成物が溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥して、塗布膜から溶媒を除去することで、塗布膜に含有される二色性物質が配向して、本発明の偏光子が得られる場合がある。
<Orientation process>
The alignment step is a step of aligning the dichroic substance contained in the coating film.
In the alignment step, it is considered that the dichroic substance is aligned along the liquid crystal compound aligned by the alignment film.
The orientation step may include a drying process. By the drying treatment, components such as a solvent can be removed from the coating film. The drying treatment may be performed by a method of leaving the coating film at room temperature for a predetermined time (for example, natural drying), or may be performed by a method of heating and / or blowing.
Here, the dichroic substance contained in the present composition may be oriented by the above-mentioned coating film forming step or drying treatment. For example, in an embodiment in which the composition is prepared as a coating solution containing a solvent, the dichroic substance contained in the coating film is oriented by drying the coating film and removing the solvent from the coating film. In some cases, the polarizer of the present invention can be obtained.
 配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる二色性物質がより配向し、得られる偏光子の配向度がより高くなる。
 加熱処理は、製造適性などの面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
The orientation step preferably includes a heat treatment. Thereby, the dichroic substance contained in the coating film is more oriented, and the degree of orientation of the obtained polarizer is higher.
The heat treatment is preferably performed at 10 to 250 ° C., more preferably 25 to 190 ° C., from the viewpoint of production suitability. Further, the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
 配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗布膜に含有される二色性物質の配向がより固定され、得られる偏光子の配向度がより高くなる。冷却手段としては、特に限定されず、公知の方法により実施できる。 The orientation step may include a cooling treatment performed after the heat treatment. The cooling process is a process of cooling the coated film after heating to about room temperature (20 to 25 ° C.). Thereby, the orientation of the dichroic substance contained in the coating film is fixed more, and the degree of orientation of the obtained polarizer is further increased. The cooling means is not particularly limited, and can be implemented by a known method.
<熟成工程>
 熟成工程は、配向工程を行った後、再度、加熱処理を行うことにより、上述した針状凝集体を形成し、本発明の偏光子を得るための工程である。
 後に実施例(比較例1)でも示すが、配向工程を行った後には、小さい点状(島状)の凝集体が、多数、形成された状態となっている(図3参照)。配向工程を行った後、熟成工程を行うことで、小さな点状の凝集体を、さらに凝集して、上述したようなアスペクト比を有する針状凝集体を生成して、配向度の高い本発明の偏光子を得ることができる。
<Aging process>
The aging step is a step for forming the above-mentioned acicular aggregate by performing a heat treatment again after performing the orientation step, and obtaining the polarizer of the present invention.
As will be described later in Examples (Comparative Example 1), a large number of small dot-like (island-like) aggregates are formed after the orientation step is performed (see FIG. 3). After performing the orientation step, by performing the aging step, the small point-like aggregates are further aggregated to produce needle-like aggregates having the aspect ratio as described above, and the present invention having a high degree of orientation Can be obtained.
 針状凝集体の形成状態は、液晶性化合物および二色性物質の種類によって変動する。
 従って、熟成工程における加熱処理の温度は、用いる液晶性化合物および二色性物質に応じて、針状凝集体を形成できる温度を、適宜、設定すればよい。熟成処理の温度が低すぎると、針状凝集体を十分に形成できず、熟成処理の温度が高すぎると、凝集が進み過ぎて、凝集体のアスペクト比が小さくなり、針状凝集体を十分に形成できず、また、凝集体の長さも長くなってしまう(図4参照)。
 熟成工程における加熱処理の温度は、40~130℃が好ましく、60~110℃がより好ましい。
The state of formation of the acicular aggregates varies depending on the types of the liquid crystal compound and the dichroic substance.
Therefore, the temperature of the heat treatment in the aging step may be appropriately set at a temperature at which an acicular aggregate can be formed depending on the liquid crystalline compound and the dichroic substance used. If the temperature of the aging treatment is too low, the needle-like aggregates cannot be formed sufficiently.If the temperature of the aging treatment is too high, the aggregation proceeds too much, the aspect ratio of the aggregates becomes small, and the needle-like aggregates are sufficiently formed. And the length of the aggregate becomes long (see FIG. 4).
The temperature of the heat treatment in the aging step is preferably from 40 to 130 ° C, more preferably from 60 to 110 ° C.
 同様に、熟成工程における加熱処理の時間も、用いる液晶性化合物および二色性物質に応じて、針状凝集体を形成できる時間を、適宜、設定すればよい。熟成処理の時間が短すぎると、針状凝集体を十分に形成できず、熟成処理の時間が長すぎると、凝集が進み過ぎて、凝集体のアスペクト比が小さくなり、針状凝集体を十分に形成できず、また、凝集体の長さも長くなってしまう。
 熟成工程における加熱処理の時間は、0.5~120秒が好ましく、1~100秒がより好ましい。
Similarly, as for the time of the heat treatment in the aging step, the time during which the needle-like aggregate can be formed may be appropriately set according to the liquid crystal compound and the dichroic substance used. If the aging time is too short, the needle-like aggregates cannot be formed sufficiently, and if the aging time is too long, the aggregation proceeds too much, the aspect ratio of the aggregates becomes small, and the needle-like aggregates become And the length of the aggregate becomes long.
The time of the heat treatment in the aging step is preferably 0.5 to 120 seconds, more preferably 1 to 100 seconds.
 熟成工程においては、上述した配向工程と同様、加熱処理の後に冷却処理を有してもよい。冷却処理は、配向工程における冷却処理と、同様に行えばよい。 In the aging step, similarly to the above-described orientation step, a cooling treatment may be provided after the heat treatment. The cooling treatment may be performed in the same manner as the cooling treatment in the orientation step.
<他の工程>
 この製造方法では、熟成工程の後に、偏光子を硬化させる工程を有していてもよい。以下の説明では、偏光子を硬化させる工程を「硬化工程」とも言う。
 硬化工程は、例えば、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
 硬化に用いる光源は、赤外線、可視光または紫外線など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルタを介して紫外線を照射してもよい。
 また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって偏光子の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
<Other steps>
This manufacturing method may include a step of curing the polarizer after the aging step. In the following description, the step of curing the polarizer is also referred to as a “curing step”.
The curing step is performed by, for example, heating and / or light irradiation (exposure). Among these, the curing step is preferably performed by light irradiation.
Various light sources such as infrared light, visible light, and ultraviolet light can be used as the light source for curing, but ultraviolet light is preferable. In addition, ultraviolet rays may be irradiated while heating at the time of curing, or ultraviolet rays may be irradiated through a filter that transmits only a specific wavelength.
Further, the exposure may be performed under a nitrogen atmosphere. In the case where the curing of the polarizer proceeds by radical polymerization, inhibition of polymerization by oxygen is reduced, so that exposure is preferably performed in a nitrogen atmosphere.
[積層体]
 本発明の偏光子は、通常、他の部材(シート状物)と積層された、積層体とされる。
 本発明の偏光子を含む積層体は、一例として、基材と、上記基材上に設けられた配向膜と、上記配向膜上に設けられた本発明の偏光子とを有する。
 また、積層体は、本発明の偏光子上に、λ/4板を有していてもよい。さらに、積層体は、本発明の偏光子の上に、バリア層を有してもよい。したがって、積層体がλ/4板を有する場合には、バリア層は、本発明の偏光子とλ/4板との間に設けられる。
 以下、本発明の偏光子を含む積層体を構成する各層について説明する。
[Laminate]
The polarizer of the present invention is usually a laminated body laminated with another member (sheet-like material).
As an example, the laminate including the polarizer of the present invention has a base material, an alignment film provided on the base material, and the polarizer of the present invention provided on the alignment film.
Further, the laminate may have a λ / 4 plate on the polarizer of the present invention. Further, the laminate may have a barrier layer on the polarizer of the present invention. Therefore, when the laminate has a λ / 4 plate, the barrier layer is provided between the polarizer of the present invention and the λ / 4 plate.
Hereinafter, each layer constituting the laminate including the polarizer of the present invention will be described.
〔基材〕
 基材としては、適宜選択することができ、例えば、ガラスおよびポリマーフィルムが挙げられる。基材の光透過率は、80%以上であるのが好ましい。
 基材としてポリマーフィルムを用いる場合には、光学的等方性のポリマーフィルムを用いるのが好ましい。ポリマーの具体例および好ましい態様は、特開2002-22942号公報の[0013]段落の記載を適用できる。また、従来知られているポリカーボネートやポリスルホンのような複屈折の発現しやすいポリマーであっても国際公開第2000/26705号に記載の分子を修飾することで発現性を低下させたものを用いることもできる。
〔Base material〕
The substrate can be appropriately selected and includes, for example, glass and a polymer film. The light transmittance of the substrate is preferably 80% or more.
When a polymer film is used as the substrate, it is preferable to use an optically isotropic polymer film. For specific examples and preferred embodiments of the polymer, the description in paragraph [0013] of JP-A-2002-22942 can be applied. In addition, even if it is a conventionally known polymer such as polycarbonate or polysulfone which easily develops birefringence, a polymer whose expression is reduced by modifying the molecule described in WO2000 / 26705 should be used. You can also.
〔配向膜〕
 配向膜については、上述したとおりであるので、その説明を省略する。
(Alignment film)
Since the orientation film is as described above, its description is omitted.
〔偏光子〕
 本発明の偏光子については、上述したとおりであるので、その説明を省略する。
(Polarizer)
Since the polarizer of the present invention is as described above, the description thereof will be omitted.
〔λ/4板〕
 「λ/4板」とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板である。
 例えば、λ/4板が単層構造である態様としては、具体的には、延伸ポリマーフィルム、および、支持体上にλ/4機能を有する光学異方性層を設けた位相差フィルムなどが挙げられる。また、λ/4板が複層構造である態様としては、具体的には、λ/4板とλ/2板とを積層してなる広帯域λ/4板が挙げられる。
 λ/4板と本発明の偏光子とは、接して設けられていてもよいし、λ/4板と本発明の偏光子との間に、他の層が設けられていてもよい。このような層としては、密着性担保のための粘着層または接着層、および、バリア層が挙げられる。
[Λ / 4 plate]
The “λ / 4 plate” is a plate having a λ / 4 function, specifically, a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light). It is.
For example, specific embodiments of the λ / 4 plate having a single-layer structure include a stretched polymer film and a retardation film having an optically anisotropic layer having a λ / 4 function on a support. No. Further, as a mode in which the λ / 4 plate has a multilayer structure, specifically, there is a broadband λ / 4 plate obtained by laminating a λ / 4 plate and a λ / 2 plate.
The λ / 4 plate and the polarizer of the present invention may be provided in contact with each other, or another layer may be provided between the λ / 4 plate and the polarizer of the present invention. Examples of such a layer include an adhesive layer or an adhesive layer for ensuring adhesion, and a barrier layer.
〔バリア層〕
 積層体がバリア層を備える場合、バリア層は、本発明の偏光子の上に設けられる。従って、積層体が、λ/4板を有する場合には、バリア層は、本発明の偏光子とλ/4板との間に設けられる。なお、本発明の偏光子とλ/4板との間に、バリア層以外の他の層(例えば、粘着層または接着層)を備える場合には、バリア層は、例えば、本発明の偏光子と他の層との間に設けることができる。
 バリア層は、積層体において、本発明の偏光子を保護するための保護層として作用する層である。このようなバリア層としては、各種の透明な樹脂層が例示される。
 バリア層は、大気中の酸素等のガス、水分、または、隣接する層に含まれる化合物等から本発明の偏光子を保護するために、ガス遮断性(酸素遮断性)を有してもよい。
 ガス遮断性を有するバリア層については、例えば、特開2014-159124号公報の[0014]~[0054]段落、特開2017-121721号公報の[0042]~[0075]段落、特開2017-115076号公報の[0045]~[0054]段落、特開2012-213938号公報の[0010]~[0061]段落、および、特開2005-169994号公報の[0021]~[0031]段落等の記載を参照できる。
[Barrier layer]
When the laminate includes a barrier layer, the barrier layer is provided on the polarizer of the present invention. Therefore, when the laminate has a λ / 4 plate, the barrier layer is provided between the polarizer of the present invention and the λ / 4 plate. When a layer other than the barrier layer (for example, an adhesive layer or an adhesive layer) is provided between the polarizer of the present invention and the λ / 4 plate, the barrier layer is formed of, for example, the polarizer of the present invention. And another layer.
The barrier layer is a layer that functions as a protective layer for protecting the polarizer of the present invention in the laminate. Examples of such a barrier layer include various transparent resin layers.
The barrier layer may have a gas barrier property (oxygen barrier property) in order to protect the polarizer of the present invention from a gas such as oxygen in the atmosphere, moisture, or a compound contained in an adjacent layer. .
The barrier layer having gas barrier properties is described in, for example, paragraphs [0014] to [0054] of JP-A-2014-159124, paragraphs [0042] to [0075] of JP-A-2017-121721, and JP-A-2017-127. JP-A-115076, paragraphs [0045] to [0054], JP-A-2012-213938, paragraphs [0010] to [0061], and JP-A-2005-169994, paragraphs [0021] to [0031]. The description can be referred to.
〔用途〕
 本発明の積層体は、例えば、偏光素子(偏光板)として使用でき、例えば、直線偏光板または円偏光板として使用できる。
 本発明の積層体が上記λ/4板などの光学異方性層を有さない場合には、積層体は直線偏光板として使用できる。
 一方、本発明の積層体が上記λ/4板を有する場合には、積層体は円偏光板として使用できる。
[Application]
The laminate of the present invention can be used, for example, as a polarizing element (polarizing plate), for example, as a linear polarizing plate or a circular polarizing plate.
When the laminate of the present invention does not have an optically anisotropic layer such as the λ / 4 plate, the laminate can be used as a linear polarizing plate.
On the other hand, when the laminate of the present invention has the λ / 4 plate, the laminate can be used as a circularly polarizing plate.
[画像表示装置]
 本発明の画像表示装置は、上述した本発明の偏光子を有する画像表示装置である。
 本発明の画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス表示パネル、および、プラズマディスプレイパネルなどが挙げられる。以下の説明では、エレクトロルミネッセンスを「EL」と略す。
 これらのうち、液晶セルまたは有機EL表示パネルであるのが好ましく、液晶セルであるのがより好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましく、液晶表示装置であるのがより好ましい。
[Image display device]
The image display device of the present invention is an image display device having the above-described polarizer of the present invention.
The display element used in the image display device of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence display panel, and a plasma display panel. In the following description, electroluminescence is abbreviated as “EL”.
Among these, a liquid crystal cell or an organic EL display panel is preferable, and a liquid crystal cell is more preferable. That is, the image display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display element, an organic EL display device using an organic EL display panel as a display element, and a liquid crystal display device is preferred. More preferred.
〔液晶表示装置〕
 本発明の画像表示装置の一例である液晶表示装置としては、上述した本発明の偏光子と、液晶セルと、を有する態様が好ましく挙げられる。より好適には、上述した本発明の積層体(ただし、λ/4板を含まない)と、液晶セルと、を有する液晶表示装置である。
 なお、本発明においては、液晶セルの両側に設けられる偏光素子のうち、フロント側の偏光素子として本発明の積層体を用いるのが好ましく、フロント側およびリア側の偏光素子として本発明の積層体を用いるのがより好ましい。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
(Liquid crystal display)
As a liquid crystal display device which is an example of the image display device of the present invention, an embodiment having the above-described polarizer of the present invention and a liquid crystal cell is preferably exemplified. More preferably, the present invention is a liquid crystal display device including the above-described laminate of the present invention (not including a λ / 4 plate) and a liquid crystal cell.
In the present invention, of the polarizing elements provided on both sides of the liquid crystal cell, it is preferable to use the laminate of the present invention as a front-side polarizing element, and to use the laminate of the present invention as a front-side and rear-side polarizing element. It is more preferable to use
Hereinafter, a liquid crystal cell included in the liquid crystal display device will be described in detail.
<液晶セル>
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、または、TN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT(Thin Film Transistor)液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、
 (1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、
 (2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、
 (3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)、および、
 (4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
 また、VAモードの液晶セルは、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、および、PSA(Polymer-Sustained Alignment)のいずれであってもよい。
 これらのモードの詳細については、特開2006-215326号公報、および、特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。IPSモードに関しては、光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、および、特開平10-307291号公報などに開示されている。
<Liquid crystal cell>
The liquid crystal cell used in the liquid crystal display device is preferably a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, or a TN (Twisted Nematic) mode. However, the present invention is not limited to these.
In the TN mode liquid crystal cell, rod-like liquid crystalline molecules are substantially horizontally aligned when no voltage is applied, and further twist-aligned at 60 to 120 °. The TN mode liquid crystal cell is most frequently used as a color TFT (Thin Film Transistor) liquid crystal display device, and is described in many documents.
In a VA mode liquid crystal cell, rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied. VA mode liquid crystal cells include:
(1) In addition to a narrowly defined VA mode liquid crystal cell (described in JP-A-2-176625) in which rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied and are aligned substantially horizontally when voltage is applied. ,
(2) A liquid crystal cell in which the VA mode is multi-domain (in the MVA mode) for expanding the viewing angle (described in SID97, Digest of Tech. Papers (Preliminary Collection) 28 (1997) 845),
(3) A liquid crystal cell (n-ASM mode) in which rod-like liquid crystal molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is performed when a voltage is applied (Preprints 58-59 (1998) ) Described), and
(4) Includes SURVIVAL mode liquid crystal cell (presented at LCD International 98).
Further, the VA mode liquid crystal cell may be any of a PVA (Patterned Vertical Alignment) type, a photo alignment type (Optical Alignment), and a PSA (Polymer-Sustained Alignment).
Details of these modes are described in JP-A-2006-215326 and JP-T-2008-538819.
In the IPS mode liquid crystal cell, rod-like liquid crystal molecules are oriented substantially parallel to the substrate, and the liquid crystal molecules respond planarly when an electric field parallel to the substrate surface is applied. In the IPS mode, black display is performed when no electric field is applied, and the absorption axes of a pair of upper and lower polarizing plates are orthogonal to each other. Regarding the IPS mode, Japanese Patent Application Laid-Open Nos. 10-54982 and 11-202323 disclose a method of using an optical compensation sheet to reduce leakage light at the time of black display in an oblique direction and improve the viewing angle. It is disclosed in JP-A-9-292522, JP-A-11-133408, JP-A-11-305217, and JP-A-10-307291.
〔有機EL表示装置〕
 本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、上述した本発明の偏光子と、λ/4板と、有機EL表示パネルと、をこの順で有する態様が好適に挙げられる。
 より好適には、視認側から、λ/4板を有する上述した本発明の積層体と、有機EL表示パネルと、をこの順に有する態様である。この場合には、積層体は、視認側から、基材、配向膜、本発明の偏光子、必要に応じて設けられるバリア層、および、λ/4板の順に配置されている。
 また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機EL層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
[Organic EL display]
As an organic EL display device as an example of the image display device of the present invention, for example, an embodiment having the polarizer of the present invention described above, a λ / 4 plate, and an organic EL display panel in this order from the viewing side. Are preferred.
More preferably, the laminated body of the present invention having the λ / 4 plate and the organic EL display panel are arranged in this order from the viewing side. In this case, the laminated body is arranged from the viewer side in the order of the base material, the alignment film, the polarizer of the present invention, the barrier layer provided as necessary, and the λ / 4 plate.
The organic EL display panel is a display panel configured using an organic EL element having an organic light emitting layer (organic EL layer) sandwiched between electrodes (between a cathode and an anode). The configuration of the organic EL display panel is not particularly limited, and a known configuration is employed.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容および処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 本 Hereinafter, the present invention will be described in more detail with reference to Examples. Materials, used amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
[合成例1] [Synthesis Example 1]
 下記のルートに従い、二色性物質C1を合成した。 二 According to the following route, dichroic substance C1 was synthesized.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 4-ニトロフェノール(27.8g)、11-ブロモウンデカノール(44.6g)、および、炭酸カリウム(30.4g)をN,N-ジメチルアセトアミド(DMAc)(150mL(ミリリットル))に溶解させ、外設105℃で2時間攪拌した。室温まで降温し、酢酸エチル・10%塩化アンモニウム水溶液で分液洗浄した。有機層を硫酸マグネシウムで乾燥した後、濃縮し白色固体を得た。
 次に、この白色固体にDMAc(150mL)を添加し、氷浴下で攪拌した。反応系の温度を15℃以下に維持してアクリル酸クロライド(18.1g)を滴下し、適下後に室温で1時間攪拌した。その後、酢酸エチルと10%塩化アンモニウム水溶液を添加して分液洗浄した。硫酸マグネシウムで乾燥後、濃縮し黄色固体C1-1を得た。
 別途、Fe粉末(89.4g、1.6mol)、塩化アンモニウム(8.9g、166mmol)、2-プロパノール(210mL)、および、純水(88mL)を混ぜ、外設105℃で還流させた。この還流させた系内へ、2-プロパノール(88mL)に加熱溶解させた黄色固体C1-1を滴下した。滴下終了後、還流下、30分反応させた。室温まで降温後、セライトろ過により鉄粉を除去し、ろ液を酢酸エチルと水を添加して分液し、有機層を水で3回洗浄した。
 有機層を硫酸ナトリウムで乾燥させた後、濃縮した。カラムで精製し、8.0gの化合物C1-2を得た。
4-Nitrophenol (27.8 g), 11-bromoundecanol (44.6 g), and potassium carbonate (30.4 g) are dissolved in N, N-dimethylacetamide (DMAc) (150 mL (milliliter)). The mixture was stirred at 105 ° C. for 2 hours. The temperature was lowered to room temperature, and the mixture was separated and washed with ethyl acetate / 10% ammonium chloride aqueous solution. The organic layer was dried over magnesium sulfate and concentrated to obtain a white solid.
Next, DMAc (150 mL) was added to the white solid, and the mixture was stirred in an ice bath. Acrylic acid chloride (18.1 g) was added dropwise while maintaining the temperature of the reaction system at 15 ° C. or lower, and the mixture was stirred at room temperature for 1 hour after being appropriately cooled. Thereafter, ethyl acetate and a 10% aqueous ammonium chloride solution were added to carry out liquid separation and washing. After drying over magnesium sulfate, the mixture was concentrated to obtain a yellow solid C1-1.
Separately, Fe powder (89.4 g, 1.6 mol), ammonium chloride (8.9 g, 166 mmol), 2-propanol (210 mL), and pure water (88 mL) were mixed and refluxed at 105 ° C. externally. Yellow solid C1-1 dissolved in 2-propanol (88 mL) by heating was dropped into the refluxed system. After the completion of the dropwise addition, the reaction was carried out for 30 minutes under reflux. After cooling to room temperature, iron powder was removed by celite filtration, the filtrate was separated by adding ethyl acetate and water, and the organic layer was washed three times with water.
The organic layer was dried over sodium sulfate and concentrated. Purification by a column gave 8.0 g of compound C1-2.
 2-アミノチオフェンは、文献記載(Journal of Medicinal Chemistry、2005年、第48巻、5794ページ)の方法に従い、2-ニトロチオフェンから合成した。
 上記で得られた化合物C1-2(5.5g)を、12mol/L(リットル)塩酸(15mL)、純水(30mL)、および、THF(テトラヒドロフラン)(30mL)の混合液に添加した。その後、内温が5℃以下となるよう冷却し、亜硝酸ナトリウム(1.4g)を純水(9mL)に溶解させ滴下した。さらに、内温5℃以下で1時間攪拌し、ジアゾニウム溶液を調製した。
 次に、2-アミノチオフェン塩酸塩(2.4g)を純水(12mL)および塩酸(6mL)に溶解させ、上記で調製したジアゾニウム溶液を、内温0℃にて滴下した。反応液を室温にまで上昇させて、2時間攪拌した。
 析出した固体をろ別、乾燥させて、6.1gの赤橙色固体C1-3を得た。
2-Aminothiophene was synthesized from 2-nitrothiophene according to the method described in the literature (Journal of Medicinal Chemistry, 2005, Vol. 48, p. 5794).
Compound C1-2 (5.5 g) obtained above was added to a mixture of 12 mol / L (liter) hydrochloric acid (15 mL), pure water (30 mL), and THF (tetrahydrofuran) (30 mL). Thereafter, the mixture was cooled to an internal temperature of 5 ° C. or lower, and sodium nitrite (1.4 g) was dissolved in pure water (9 mL) and added dropwise. Further, the mixture was stirred at an internal temperature of 5 ° C. or lower for 1 hour to prepare a diazonium solution.
Next, 2-aminothiophene hydrochloride (2.4 g) was dissolved in pure water (12 mL) and hydrochloric acid (6 mL), and the diazonium solution prepared above was added dropwise at an internal temperature of 0 ° C. The reaction was warmed to room temperature and stirred for 2 hours.
The precipitated solid was separated by filtration and dried to obtain 6.1 g of a red-orange solid C1-3.
 上記で得られた赤橙色固体C1-3(5.6g)を酢酸(100mL)に懸濁溶解させ、室温下でチオシアン酸ナトリウム(1.5g)加えた。水冷し内温を20℃以下に維持しながら臭素(2.0g、24.8mmol)を滴下した。
 室温で2時間攪拌後、純水(100mL)を加え、得られた固体をろ別、乾燥させて、5.5gの黒色固体C1-4を得た。
The red-orange solid C1-3 (5.6 g) obtained above was suspended and dissolved in acetic acid (100 mL), and sodium thiocyanate (1.5 g) was added at room temperature. While cooling with water and maintaining the internal temperature at 20 ° C. or lower, bromine (2.0 g, 24.8 mmol) was added dropwise.
After stirring at room temperature for 2 hours, pure water (100 mL) was added, and the obtained solid was separated by filtration and dried to obtain 5.5 g of a black solid C1-4.
 上記で得られた黒色固体C1-4(4.7g)を塩酸(6mL)と酢酸(6mL)に添加し、氷冷下、亜硝酸ナトリウム(0.72g)の水溶液(5mL)を0℃以下で滴下し、1時間攪拌後にアミド硫酸(0.52mg)を添加しジアゾニウム溶液を得た。
 N-エチル-N-(2-アクリロイルオキシエチル)アニリン(2.3g)の10mLメタノール溶液を0℃以下に維持しながら、ジアゾニウム溶液を滴下した。室温まで昇温させ、1時間攪拌後、純水(30mL)を添加し、得られた固体をろ別した。
 カラムにより精製し、式C1で表される黒紫色固体の化合物(二色性物質C1)を0.51g、得た。得られた二色性物質C1のH-NMR(Nuclear Magnetic Resonance)データを以下に示す。
 なお、N-エチル-N-(2-アクリロイルオキシエチル)アニリンは、N-エチルアニリンを原料にして、米国特許第7601849号および公知の方法により合成した。
 H-NMRデータ(CDCl)δ:1.20-1.50(m、17H)、1.60-1.90(m、8H)3.40(t、2H)、3.50(t、2H)、4.05(t、2H)、4.10(t、2H)、4.20(t、2H)、5.80-5.85(d、2H)、6.10-6.15(dd、2H)、6.38―6.43(d×2、2H)、6.70(d、2H)、7.00(d、2H)、7.82(s、1H)7.88(d、2H)、7.95(d、2H)
The black solid C1-4 (4.7 g) obtained above is added to hydrochloric acid (6 mL) and acetic acid (6 mL). After stirring for 1 hour, amidosulfuric acid (0.52 mg) was added to obtain a diazonium solution.
A diazonium solution was added dropwise while maintaining a 10 mL methanol solution of N-ethyl-N- (2-acryloyloxyethyl) aniline (2.3 g) at 0 ° C. or lower. After heating to room temperature and stirring for 1 hour, pure water (30 mL) was added, and the obtained solid was separated by filtration.
Purification by a column yielded 0.51 g of a compound (dichroic substance C1) as a black-purple solid represented by the formula C1. The 1 H-NMR (Nuclear Magnetic Resonance) data of the obtained dichroic substance C1 is shown below.
In addition, N-ethyl-N- (2-acryloyloxyethyl) aniline was synthesized from N-ethylaniline as a raw material by US Pat. No. 7,601,849 and a known method.
1 H-NMR data (CDCl 3 ) δ: 1.20-1.50 (m, 17H), 1.60-1.90 (m, 8H) 3.40 (t, 2H), 3.50 (t) , 2H), 4.05 (t, 2H), 4.10 (t, 2H), 4.20 (t, 2H), 5.80-5.85 (d, 2H), 6.10-6. 15 (dd, 2H), 6.38-6.43 (d × 2, 2H), 6.70 (d, 2H), 7.00 (d, 2H), 7.82 (s, 1H) 88 (d, 2H), 7.95 (d, 2H)
[合成例2]
 下記のルートに従い、二色性物質Y1を合成した。
[Synthesis Example 2]
According to the following route, a dichroic substance Y1 was synthesized.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 まず、文献(Chem.Eur.J.2004.10.2011)にしたがって、化合物Y1-1を10g、合成した。
 化合物Y1-1(10g)を、純水(300mL)および塩酸(17mL)に溶解させて、氷浴で冷却し、亜硝酸ナトリウム(3.3g)を添加して30分撹拌した。さらにアミド硫酸(0.5g)を添加後、m-トルイジン(5.1g)を加え室温で1時間撹拌した。撹拌後、塩酸で中和し得られた固体を吸引ろ過で回収し、3.2gの化合物Y1-2を得た。
 化合物Y1-2(1.0g)を、THF(30mL)、水(10mL)、および、塩酸(1.6mL)からなるTHF溶液に溶解させ、氷浴で冷却し、亜硝酸ナトリウム(0.3g)を添加して30分間撹拌した後、さらにアミド硫酸(0.5g)を添加した。別途、フェノール(0.4g)を炭酸カリウム(2.76g)および純水(50mL)に溶解させて、氷浴で冷却した後、上記のTHF溶液を滴下し室温で1時間撹拌した。撹拌後、水(200mL)を添加し、析出した個体を吸引ろ過によりろ別し、1.7gの化合物Y1-3を得た。
 化合物Y1-3(0.6g)、上記ルートに示す化合物y1(0.8g)および炭酸カリウム(0.95g)をDMAc(30mL、ジメチルアセトアミド)に溶解させ、90℃で3.5時間撹拌した。撹拌後、純水(300mL)を添加し、析出した個体を吸引ろ過によりろ別し、式Y1で表される黄橙色固体の化合物(二色性物質Y1)を0.3g、得た。得られた二色性物質Y1のH-NMRデータを以下に示す。
 H-NMRデータ(CDCl)δ:1.93(m、8H)、4.11(m、4H)、4.29(m。4H)、5.83-5.87(d、2H)、6.10-6.18(dd、2H)、6.39―6.45(d、2H)、7.02(d、2H)、7.77-8.13(m、15H)
First, 10 g of compound Y1-1 was synthesized according to the literature (Chem. Eur. J. 2004.10.2011).
Compound Y1-1 (10 g) was dissolved in pure water (300 mL) and hydrochloric acid (17 mL), cooled in an ice bath, sodium nitrite (3.3 g) was added, and the mixture was stirred for 30 minutes. After addition of amidosulfuric acid (0.5 g), m-toluidine (5.1 g) was added and the mixture was stirred at room temperature for 1 hour. After stirring, the solid obtained by neutralization with hydrochloric acid was collected by suction filtration to obtain 3.2 g of compound Y1-2.
Compound Y1-2 (1.0 g) was dissolved in a THF solution consisting of THF (30 mL), water (10 mL), and hydrochloric acid (1.6 mL), cooled in an ice bath, and treated with sodium nitrite (0.3 g). ) Was added and the mixture was stirred for 30 minutes, and then amidosulfuric acid (0.5 g) was added. Separately, phenol (0.4 g) was dissolved in potassium carbonate (2.76 g) and pure water (50 mL), and after cooling in an ice bath, the above THF solution was added dropwise and stirred at room temperature for 1 hour. After stirring, water (200 mL) was added, and the precipitated solid was separated by suction filtration to obtain 1.7 g of a compound Y1-3.
Compound Y1-3 (0.6 g), compound y1 (0.8 g) shown in the above route and potassium carbonate (0.95 g) were dissolved in DMAc (30 mL, dimethylacetamide) and stirred at 90 ° C. for 3.5 hours. . After stirring, pure water (300 mL) was added, and the precipitated solid was filtered off by suction filtration to obtain 0.3 g of a yellow-orange solid compound (dichroic substance Y1) represented by the formula Y1. The 1 H-NMR data of the obtained dichroic substance Y1 is shown below.
1 H-NMR data (CDCl 3 ) δ: 1.93 (m, 8H), 4.11 (m, 4H), 4.29 (m, 4H), 5.83-5.87 (d, 2H) , 6.10-6.18 (dd, 2H), 6.39-6.45 (d, 2H), 7.02 (d, 2H), 7.77-8.13 (m, 15H)
[合成例3] [Synthesis Example 3]
 下記の手順によって、液晶化合物L1を合成した。 液晶 The liquid crystal compound L1 was synthesized by the following procedure.
(化合物L1-2の合成) (Synthesis of Compound L1-2)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 ブチルパラベン(201g)のN,N-ジメチルホルムアミド溶液(300mL)に2-クロロエトキシエトキシエタノール(244g)、および、炭酸カリウム(200g)を添加した。95℃で9時間攪拌した後、トルエン(262mL)と純水(660mL)とを添加して、濃塩酸(147g)を滴下した。10分撹拌した後に、静置し、分液操作により反応液を洗浄した。得られた有機層に、28質量%ナトリウムメトキシドメタノール溶液(500g)と純水(402mL)とを加え、50℃で2時間撹拌した。
 その後、濃縮により有機溶剤を留去し、純水(402mL)を加え、重量が1.13kgになるまで50℃で再び濃縮を行った。得られた溶液に純水(478mL)を添加し、濃塩酸(278g)を滴下した。そこに、酢酸エチル(1.45kg)を加え、30℃で10分撹拌し、分液操作により水層を除去した。次に、20質量%食塩水溶液(960mL)を加え、30℃で10分撹拌し、分液操作により水層を除去した。得られた有機層にN-メチルピロリドン(824g)を添加し、70℃で4時間濃縮操作を行い、化合物L1-1を含有する1.13kgのN-メチルピロリドン溶液を得た。
 得られた化合物L1-1を含有するN-メチルピロリドン溶液のうち、1085gを用いて次工程を実施した。得られた化合物L1-1を含有するN-メチルピロリドン溶液(1085g)に、N,N-ジメチルアニリン(189g)と2,2,6,6-テトラメチルピペラジン(1.5g)とを加え、冷却した後に、内温が10℃を超えないように、アクリル酸クロリド(122g)を滴下した。
 内温10℃にて2時間撹拌した後に、メタノール(81g)を滴下し、30分攪拌した。そこに酢酸エチル(1.66kg)と、10wt%食塩水(700mL)と、1N塩酸水(840mL)とを加え、分液操作により水層を除去した。次に、10wt%食塩水溶液(800mL)を加え、30℃で10分撹拌し、分液操作により水層を除去した。次に、20wt%食塩水溶液(800mL)を加え、30℃で10分撹拌し、分液操作により水層を除去した。
 得られた有機層にヘキサン/イソプロピルアルコール(1780mL/900mL)の混合溶媒を添加し、5℃まで冷却して30分撹拌した後に、ろ過を行う事で、白色固体である209gの化合物L1-2を得た(3工程収率65%)。
To a solution of butylparaben (201 g) in N, N-dimethylformamide (300 mL) were added 2-chloroethoxyethoxyethanol (244 g) and potassium carbonate (200 g). After stirring at 95 ° C. for 9 hours, toluene (262 mL) and pure water (660 mL) were added, and concentrated hydrochloric acid (147 g) was added dropwise. After stirring for 10 minutes, the mixture was allowed to stand, and the reaction solution was washed by a liquid separation operation. To the obtained organic layer, a 28% by mass sodium methoxide methanol solution (500 g) and pure water (402 mL) were added, and the mixture was stirred at 50 ° C. for 2 hours.
Thereafter, the organic solvent was distilled off by concentration, pure water (402 mL) was added, and the mixture was concentrated again at 50 ° C. until the weight became 1.13 kg. Pure water (478 mL) was added to the resulting solution, and concentrated hydrochloric acid (278 g) was added dropwise. Ethyl acetate (1.45 kg) was added thereto, and the mixture was stirred at 30 ° C for 10 minutes, and the aqueous layer was removed by a liquid separation operation. Next, a 20% by mass aqueous sodium chloride solution (960 mL) was added, the mixture was stirred at 30 ° C. for 10 minutes, and the aqueous layer was removed by a liquid separation operation. N-methylpyrrolidone (824 g) was added to the obtained organic layer, and the mixture was concentrated at 70 ° C. for 4 hours to obtain 1.13 kg of an N-methylpyrrolidone solution containing compound L1-1.
The next step was performed using 1085 g of the obtained N-methylpyrrolidone solution containing the compound L1-1. To an N-methylpyrrolidone solution (1085 g) containing the obtained compound L1-1, N, N-dimethylaniline (189 g) and 2,2,6,6-tetramethylpiperazine (1.5 g) were added. After cooling, acrylic acid chloride (122 g) was added dropwise so that the internal temperature did not exceed 10 ° C.
After stirring at an internal temperature of 10 ° C. for 2 hours, methanol (81 g) was added dropwise and stirred for 30 minutes. Ethyl acetate (1.66 kg), 10 wt% saline (700 mL), and 1N aqueous hydrochloric acid (840 mL) were added thereto, and the aqueous layer was removed by liquid separation. Next, a 10 wt% saline solution (800 mL) was added, the mixture was stirred at 30 ° C. for 10 minutes, and the aqueous layer was removed by a liquid separation operation. Next, a 20 wt% saline solution (800 mL) was added, the mixture was stirred at 30 ° C. for 10 minutes, and the aqueous layer was removed by a liquid separation operation.
A mixed solvent of hexane / isopropyl alcohol (1780 mL / 900 mL) was added to the obtained organic layer, the mixture was cooled to 5 ° C., stirred for 30 minutes, and then filtered to obtain 209 g of a white solid compound L1-2. Was obtained (3 step yield: 65%).
 得られた化合物L1-2のH-NMRデータを以下に示す。
 H-NMR(溶媒:CDCl)δ(ppm):3.67-3.78(m,6H),3.87-3.92(m,2H),4.18-4.23(m,2H),4.31-4.35(m,2H),5.80-5.85(m,1H),6.11-6.19(m,1H),6.40-6.46(m,1H),6.93-6.98(m,2H),8.02-8.07(m,2H)
The 1 H-NMR data of the obtained compound L1-2 are shown below.
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 3.67-3.78 (m, 6H), 3.87-3.92 (m, 2H), 4.18-4.23 (m , 2H), 4.31-4.35 (m, 2H), 5.80-5.85 (m, 1H), 6.11-6.19 (m, 1H), 6.40-6.46. (M, 1H), 6.93-6.98 (m, 2H), 8.02-8.07 (m, 2H)
(化合物L1-3の合成) (Synthesis of Compound L1-3)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 メタンスルホニルクロリド(MsCl)(73.4mmol、5.7mL)のTHF溶液(70mL)にジブチルヒドロキシトルエン(BHT)(200mg)を加え、内温を-5℃まで冷却した。
 そこに、化合物L1-2(66.7mmol、21.6g)とジイソプロピルエチルアミン(DIPEA)(75.6mmol、13.0mL)のTHF溶液とを、内温が0℃以上に上昇しないように滴下した。-5℃で30分撹拌した後、N,N-ジメチル-4-アミノピリジン(DMAP)(200mg)を加え、ジイソプロピルエチルアミン(75.6mmol、13.0mL)と、4-ヒドロキシ-4’-メトキシビフェニル(60.6mmol、12.1g)のテトラヒドロフラン(THF)と、ジメチルアセトアミド(DMAc)溶液とを、内温が0℃以上に上昇しないように滴下した。その後、室温で4時間撹拌した。
 メタノール(5mL)を加えて反応を停止した後に、水と酢酸エチルとを加えた。酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、酢酸エチルおよびヘキサンを用いたカラムクロマトグラフィーによる精製を行い、白色固体である18.7gの化合物L1-3を得た(収率61%)。構造式中、Meはメチル基を表す。
Dibutylhydroxytoluene (BHT) (200 mg) was added to a THF solution (70 mL) of methanesulfonyl chloride (MsCl) (73.4 mmol, 5.7 mL), and the internal temperature was cooled to −5 ° C.
Thereto, a THF solution of compound L1-2 (66.7 mmol, 21.6 g) and diisopropylethylamine (DIPEA) (75.6 mmol, 13.0 mL) was added dropwise so that the internal temperature did not rise to 0 ° C. or higher. . After stirring at −5 ° C. for 30 minutes, N, N-dimethyl-4-aminopyridine (DMAP) (200 mg) was added, and diisopropylethylamine (75.6 mmol, 13.0 mL) and 4-hydroxy-4′-methoxy were added. A solution of biphenyl (60.6 mmol, 12.1 g) in tetrahydrofuran (THF) and dimethylacetamide (DMAc) was added dropwise so that the internal temperature did not rise to 0 ° C. or higher. Thereafter, the mixture was stirred at room temperature for 4 hours.
After stopping the reaction by adding methanol (5 mL), water and ethyl acetate were added. The solvent was removed from the organic layer extracted with ethyl acetate using a rotary evaporator, and purification was performed by column chromatography using ethyl acetate and hexane to obtain 18.7 g of a compound L1-3 as a white solid (yield). 61%). In the structural formula, Me represents a methyl group.
 得られた化合物L1-3のH-NMRデータを以下に示す。
 H-NMR(溶媒:CDCl)δ(ppm):3.65-3.82(m,6H),3.85(s,3H),3.85-3.95(m,2H),4.18-4.28(m,2H),4.28-4.40(m,2H),5.82(dd,1H),6.15(dd,1H),6.43(dd,1H),6.90-7.05(m,4H),7.20-7.30(m,2H),7.45-7.65(m,4H),8.10-8.20(m,2H)
The 1 H-NMR data of the obtained compound L1-3 are shown below.
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 3.65-3.82 (m, 6H), 3.85 (s, 3H), 3.85-3.95 (m, 2H), 4.18-4.28 (m, 2H), 4.28-4.40 (m, 2H), 5.82 (dd, 1H), 6.15 (dd, 1H), 6.43 (dd, 1H), 6.90-7.05 (m, 4H), 7.20-7.30 (m, 2H), 7.45-7.65 (m, 4H), 8.10-8.20 ( m, 2H)
 不純物としては、下記の化合物L1-bが含まれる。 The impurities include the following compounds L1-b.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(化合物L1-23の合成) (Synthesis of Compound L1-23)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 Jornal of Polymer Science,Part A:PolymerChemistry,2012,vol.50,p.3936-3943に記載の方法で、4-(4-ヒドロキシフェニル)安息香酸メチルの合成を行った。 {Journal of Polymer Polymer Science, Part A: Polymer Chemistry, 2012, vol. 50, p. According to the method described in 3936-3943, methyl 4- (4-hydroxyphenyl) benzoate was synthesized.
 メタンスルホニルクロリド(MsCl)(54.8mmol、6.27g)の酢酸エチル溶液(44mL)に2,2,6,6-テトラメチルピペリジン1-オキシル(68mg)を加え、内温を-5℃まで冷却した。
 そこに、上述のとおり合成した化合物L1-2(52.6mmol、17.1g)とジイソプロピルエチルアミン(DIPEA)(57.0mol、7.36g)のTHF溶液とを、内温が0℃以上に上昇しないように滴下した。-5℃で30分撹拌した後、4-(4-ヒドロキシフェニル)安息香酸メチル(43.8mmol、10.0g)のDMAc溶液、N-メチル-イミダゾール(NMI)(1.8g)を加え、ジイソプロピルエチルアミン(75.6mmol、13.0mL)を内温が0℃以上に上昇しないように滴下した。その後、室温で4時間撹拌して、水と酢酸エチルを加えて反応を停止した。
 得られた反応液の分液を行い、酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、酢酸エチルおよびヘキサンを用いたカラムクロマトグラフィーによる精製を行い、白色固体である20.4gの化合物L1-23を得た(収率87%)。
To a solution of methanesulfonyl chloride (MsCl) (54.8 mmol, 6.27 g) in ethyl acetate (44 mL) was added 2,2,6,6-tetramethylpiperidine 1-oxyl (68 mg), and the internal temperature was lowered to −5 ° C. Cool.
The compound L1-2 (52.6 mmol, 17.1 g) synthesized as described above and a THF solution of diisopropylethylamine (DIPEA) (57.0 mol, 7.36 g) were heated to an internal temperature of 0 ° C. or higher. Drip so as not to. After stirring at −5 ° C. for 30 minutes, a DMAc solution of methyl 4- (4-hydroxyphenyl) benzoate (43.8 mmol, 10.0 g) and N-methyl-imidazole (NMI) (1.8 g) were added. Diisopropylethylamine (75.6 mmol, 13.0 mL) was added dropwise so that the internal temperature did not rise above 0 ° C. Thereafter, the mixture was stirred at room temperature for 4 hours, and water and ethyl acetate were added to stop the reaction.
The obtained reaction solution was separated, and the organic layer extracted with ethyl acetate was purified by column chromatography using ethyl acetate and hexane after removing the solvent with a rotary evaporator to obtain 20.4 g of a white solid. Was obtained (yield 87%).
 得られた化合物L1-23のH-NMRデータを以下に示す。
 H-NMR(溶媒:CDCl)δ(ppm):3.68-3.80(m,6H),3.87-3.95(m,2H),3.95(s,3H),4.20-4.27(m,2H),4.31-4.37(m,2H),5.83(dd,1H),6.16(dd,1H),6.43(dd,1H),6.97-7.05(m,2H),7.28-7.35(m,2H),7.64-7.72(m,4H),8.08-8.20(m,4H)
The 1 H-NMR data of the obtained compound L1-23 are shown below.
1 H-NMR (solvent: CDCl 3 ) δ (ppm): 3.68-3.80 (m, 6H), 3.87-3.95 (m, 2H), 3.95 (s, 3H), 4.20-4.27 (m, 2H), 4.31-4.37 (m, 2H), 5.83 (dd, 1H), 6.16 (dd, 1H), 6.43 (dd, 1H), 6.97-7.05 (m, 2H), 7.28-7.35 (m, 2H), 7.64-7.72 (m, 4H), 8.08-8.20 ( m, 4H)
 不純物としては、下記の化合物L1-b2が含まれる。 The impurities include the following compounds L1-b2.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(液晶化合物L1の合成) (Synthesis of Liquid Crystal Compound L1)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 化合物L1-3(84g)、化合物L1-23(21g)、および、ジブチルヒドロキシトルエン(BHT)(158mg)を、アニソール(337g)に溶解させた。そこに、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル(1660mg)(富士フイルム和光純薬社製、V-601)を室温で加え、撹拌した。
 得られたアニソール溶液を、窒素雰囲気化で80℃に加熱しておいたアニソール(84g)へと2時間かけて滴下し、滴下終了後、80℃で4時間撹拌した。
 得られた反応液を、メタノール(1080mL)へと滴下し、沈殿を濾過操作により集めた後に、アセトニトリルを用いて残渣の洗浄を行い、白色固体である100gの液晶化合物L1を得た(収率95%)。得られたポリマーの重量平均分子量(Mw)は13300であった。
 なお、分子量はゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で算出した。カラムはTOSOH TSKgelSuperAWM-H(東ソー社製)を3本接続して使用、溶媒はN-メチルピロリドンを使用した。
Compound L1-3 (84 g), compound L1-23 (21 g), and dibutylhydroxytoluene (BHT) (158 mg) were dissolved in anisole (337 g). Thereto, 2,2'-azobis (2-methylpropionic acid) dimethyl (1660 mg) (V-601, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added at room temperature and stirred.
The obtained anisole solution was dropped into anisole (84 g) heated to 80 ° C. in a nitrogen atmosphere over 2 hours, and after completion of the dropping, stirred at 80 ° C. for 4 hours.
The obtained reaction solution was added dropwise to methanol (1080 mL), and the precipitate was collected by filtration. The residue was washed with acetonitrile to obtain 100 g of a white solid, liquid crystal compound L1 (yield). 95%). The weight average molecular weight (Mw) of the obtained polymer was 13,300.
The molecular weight was calculated by gel permeation chromatography (GPC) in terms of polystyrene. The column used was connected to three TOSOH TSKgelSuperAWM-H (manufactured by Tosoh Corporation), and the solvent used was N-methylpyrrolidone.
〔実施例1〕
<透明支持体の作製>
 厚み40μmのTAC基材(富士フイルム社製、TG40)上に、下記の組成のポリビニルアルコール(PVA)塗布液を#8のワイヤーバーで連続的に塗布した。その後、100℃の温風で2分間乾燥することにより、TAC基材上に厚み0.8μmの変性ポリビニルアルコール(PVA-1)からなるPVA膜が形成された透明支持体を得た。
―――――――――――――――――――――――――――――――――
PVA塗布液の組成
―――――――――――――――――――――――――――――――――
・変性ポリビニルアルコール(PVA-1)      2.00質量部
・水                       74.08質量部
・メタノール                   23.86質量部
・光重合開始剤(IRGACURE2959、BASF社製)
                          0.06質量部
―――――――――――――――――――――――――――――――――
[Example 1]
<Preparation of transparent support>
A polyvinyl alcohol (PVA) coating solution having the following composition was continuously applied to a 40 μm-thick TAC substrate (TG40, manufactured by FUJIFILM Corporation) using a # 8 wire bar. Thereafter, by drying with hot air at 100 ° C. for 2 minutes, a transparent support having a 0.8 μm-thick PVA film made of modified polyvinyl alcohol (PVA-1) formed on a TAC substrate was obtained.
―――――――――――――――――――――――――――――――――
Composition of PVA coating liquid ――――――――――――――――――――――――――――――――
-2.00 parts by mass of modified polyvinyl alcohol (PVA-1)-74.08 parts by mass of water-23.86 parts by mass of methanol-Photopolymerization initiator (IRGACURE 2959, manufactured by BASF)
0.06 parts by mass ――――――――――――――――――――――――――――――――――
 変性ポリビニルアルコールPVA-1 Modified polyvinyl alcohol PVA-1
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
<配向膜の作製>
 下記構造の光配向材料E-1(1質量部)に、ブトキシエタノール(41.6質量部)、ジプロピレングリコールモノメチル(41.6質量部)、および、純水(15.8質量部)を加え、得られた溶液を0.45μmメンブレンフィルターで加圧ろ過することで配向膜形成用組成物を調製した。
 次いで、得られた配向膜形成用組成物を透明支持体上に塗布し、60℃で1分間乾燥した。その後、得られた塗布膜に、偏光紫外線露光装置を用いて直線偏光紫外線(照度4.5mW、照射量500mJ/cm2)を照射し、配向膜を作製した。
<Preparation of alignment film>
Butoxyethanol (41.6 parts by mass), dipropylene glycol monomethyl (41.6 parts by mass), and pure water (15.8 parts by mass) were added to the photo-alignment material E-1 (1 part by mass) having the following structure. In addition, the obtained solution was subjected to pressure filtration with a 0.45 μm membrane filter to prepare a composition for forming an alignment film.
Next, the obtained composition for forming an alignment film was applied on a transparent support, and dried at 60 ° C. for 1 minute. Thereafter, the obtained coating film was irradiated with linearly polarized ultraviolet light (illuminance: 4.5 mW, irradiation amount: 500 mJ / cm 2 ) using a polarized ultraviolet light exposure device to prepare an alignment film.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
<偏光子1の作製>
 作製した配向膜上に、下記の偏光子形成用組成物を#7のワイヤーバーで連続的に塗布し、塗布膜を形成した。
 次いで、塗布膜を140℃で90秒間加熱し、塗布膜を室温(23℃)になるまで冷却した。
 次いで、熟成工程として、塗布膜を90℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、高圧水銀灯を用いて照度28mW/cm2の照射条件で60秒間照射することにより、配向膜上に偏光子1を作製した。
―――――――――――――――――――――――――――――――――
偏光子形成用組成物の組成
―――――――――――――――――――――――――――――――――
・液晶化合物L1                 7.207質量部
・二色性物質Y1                 0.943質量部
・二色性物質C1                 0.216質量部
・下記の界面改良剤F1              0.061質量部
・重合開始剤(BASF社製、IRGACURE819)
                         0.073質量部
・シクロペンタノン               45.750質量部
・テトラヒドロフラン              45.750質量部
―――――――――――――――――――――――――――――――――
<Preparation of Polarizer 1>
The following polarizer-forming composition was continuously applied on the prepared alignment film using a # 7 wire bar to form a coating film.
Next, the coating film was heated at 140 ° C. for 90 seconds, and cooled to room temperature (23 ° C.).
Next, as a ripening step, the coating film was heated at 90 ° C. for 60 seconds and cooled again to room temperature.
Thereafter, the polarizer 1 was formed on the alignment film by irradiating the film with an irradiance of 28 mW / cm 2 for 60 seconds using a high-pressure mercury lamp.
―――――――――――――――――――――――――――――――――
Composition of composition for forming polarizer ――――――――――――――――――――――――――――――――
-7.207 parts by mass of liquid crystal compound L1-0.943 parts by mass of dichroic substance Y1-0.216 parts by mass of dichroic substance C1-0.061 parts by mass of the following interface modifier F1-Polymerization initiator (BASF) Manufactured by IRGACURE 819)
0.073 parts by mass, cyclopentanone 45.750 parts by mass, tetrahydrofuran 45.750 parts by mass ――――――――――――――――――――――――――――― ――――
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 親水化処理装置(日本電子社製、HDT-400)に偏光子1をセットし、GRIDモードで、10分間、親水化処理を施した。次いで、真空蒸着機(日本電子社製、JEE-400)に親水化処理を施した偏光子1をセットし、約10nm厚みのカーボンを蒸着した。
 カーボンを蒸着した偏光子1を、SEM(日立ハイテクノロジーズ社製、SU8030型FE-SEM)に、水平面に設置した状態から配向軸を回転軸として30°傾斜させてセットし、電子線加速電圧2kVおよび二次電子検出の条件で、配向軸がSEM画像の横方向となるようにして、偏光子1の表面のSEM観察画像を取得した。図2に、偏光子1の表面のSEM観察画像を示す。
The polarizer 1 was set in a hydrophilic treatment apparatus (manufactured by JEOL Ltd., HDT-400), and subjected to a hydrophilic treatment for 10 minutes in a GRID mode. Next, the hydrophilic polarizer 1 was set in a vacuum evaporation machine (JEE-400, manufactured by JEOL Ltd.), and carbon having a thickness of about 10 nm was evaporated.
The polarizer 1 on which carbon was deposited was set on an SEM (SU8030 type FE-SEM, manufactured by Hitachi High-Technologies Corporation) while being tilted by 30 ° with the orientation axis as a rotation axis from a state where the polarizer was placed on a horizontal surface, and the electron beam acceleration voltage was 2 kV. Under the conditions of secondary electron detection, an SEM observation image of the surface of the polarizer 1 was obtained such that the orientation axis was in the lateral direction of the SEM image. FIG. 2 shows an SEM observation image of the surface of the polarizer 1.
 画像処理ソフトウェア「ImageJ」を用いて、取得した偏光子1の表面のSEM観察画像の輝度を二値化した画像を作成した。作成した、二値化画像の複数の高輝度領域のうち、直径50nmの円相当の面積(1963nm2)以上の面積を持つものを凝集体として抽出した。なお、表面SEM観察画像の輝度の二値化は、SEM観察画像の輝度ヒストグラムを作成し、作成した輝度ヒストグラムにおいて、頻度が最大となる輝度を抽出し、抽出した輝度の1.2倍の輝度を、閾値として行った。
 次いで、同じソフトウェアを用いて、抽出した各凝集体を楕円近似し、近似した楕円の長軸の長さを凝集体の長軸の長さL、近似した楕円の短軸の長さを凝集体の短軸の長さDとした。
 このようにして、各凝集体の長軸の長さL、および、短軸の長さDを測定した後、任意に選択した、互いに重複しない13.58μm2の領域、3箇所において、アスペクト比が2超(L/D>2)、および、長さLが300nm以上(L≧300nm)を満たす、本発明における針状凝集体を抽出し、計数して、合計した。さらに、このように抽出した針状凝集体における、長さLが500nm以下(L≦500nm)の針状凝集体の割合を算出した。
 このような針状凝集体の計数、および、L≦500nmを満たす針状凝集体の割合を算出を、任意に選択した、互いに重複しない40μm2(13.58μm2×3)の領域、10箇所で行い、その平均値を、偏光子1における40μm2当たりの針状凝集体の数、および、L≦500nmを満たす針状凝集体の割合とした。
 その結果、40μm2当たりの針状凝集体の数は65個、長さLが500nm以下の針状凝集体の割合は95.4%であった。
Using the image processing software “ImageJ”, an image was created in which the brightness of the acquired SEM observation image of the surface of the polarizer 1 was binarized. Among the plurality of high brightness regions of the created binarized image, those having an area equal to or more than an area equivalent to a circle having a diameter of 50 nm (1963 nm 2 ) were extracted as aggregates. The binarization of the brightness of the surface SEM observation image is performed by creating a brightness histogram of the SEM observation image, extracting the brightness having the highest frequency from the created brightness histogram, and obtaining a brightness 1.2 times the extracted brightness. Was performed as a threshold value.
Then, using the same software, each extracted aggregate is approximated by an ellipse, the length of the major axis of the approximated ellipse is set to the length L of the major axis of the aggregate, and the length of the minor axis of the approximated ellipse is defined by the aggregate. Is the length D of the short axis.
After measuring the length L of the major axis and the length D of the minor axis of each aggregate in this manner, the aspect ratio was determined in three arbitrarily selected 13.58 μm 2 non-overlapping regions. Was greater than 2 (L / D> 2) and the length L satisfies 300 nm or more (L ≧ 300 nm). The needle-like aggregates of the present invention were extracted, counted, and totaled. Further, the ratio of the needle-like aggregates having a length L of 500 nm or less (L ≦ 500 nm) in the needle-like aggregates thus extracted was calculated.
The counting of such needle-like aggregates and the calculation of the ratio of needle-like aggregates satisfying L ≦ 500 nm were arbitrarily selected in a region of 40 μm 2 (13.58 μm 2 × 3) that does not overlap each other, and 10 places. The average was defined as the number of needle-like aggregates per 40 μm 2 in the polarizer 1 and the ratio of needle-like aggregates satisfying L ≦ 500 nm.
As a result, the number of needle-like aggregates per 40 μm 2 was 65, and the ratio of needle-like aggregates having a length L of 500 nm or less was 95.4%.
<透明樹脂層(バリア層)の形成>
 偏光子1上に、下記の硬化性組成物を#2のワイヤーバーで連続的に塗布し、60℃で5分間乾燥を行った。
 その後、高圧水銀灯を用いて照度28mW/cm2の照射条件で60秒間照射し、下記の硬化性組成物を硬化させ、偏光子1上に透明樹脂層(バリア層)が形成された積層体を作製した。このようにして、実施例1の積層体1を得た。
<Formation of transparent resin layer (barrier layer)>
The following curable composition was continuously applied onto the polarizer 1 with a # 2 wire bar, and dried at 60 ° C. for 5 minutes.
Thereafter, irradiation was performed for 60 seconds using a high-pressure mercury lamp under an irradiation condition of an illuminance of 28 mW / cm 2 to cure the following curable composition, and a laminate in which a transparent resin layer (barrier layer) was formed on the polarizer 1 was formed. Produced. Thus, a laminate 1 of Example 1 was obtained.
―――――――――――――――――――――――――――――――――
硬化性組成物
―――――――――――――――――――――――――――――――――
・重合性化合物 KAYARAD PET-30(日本化薬社製)
                            29質量部
・重合開始剤 IRGACURE819(BASF社製)   1質量部
・アルミナエタノールゾルA2K5-10(川研ファインケミカル社製、
柱状のアルミナ水和物粒子が液中に分散したコロイド液)  70質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
Curable composition ――――――――――――――――――――――――――――――――
・ Polymerizable compound KAYARAD PET-30 (Nippon Kayaku Co., Ltd.)
29 parts by weight, polymerization initiator IRGACURE 819 (manufactured by BASF) 1 part by mass, alumina ethanol sol A2K5-10 (manufactured by Kawaken Fine Chemical Co., Ltd.)
Colloidal liquid in which columnar alumina hydrate particles are dispersed in the liquid) 70 parts by mass ―――――――――――――――――――――――――――――― -
 KAYARAD PET-30 KAYARAD PET-30
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
〔比較例1〕
<偏光子2の作製>
 上記偏光子1と同様に、配向膜上に偏光子形成用組成物を#7のワイヤーバーで連続的に塗布し、塗布膜を形成した。次いで塗布膜を140℃で90秒間加熱し、塗布膜を室温(23℃)になるまで冷却した。
 その後、熟成工程を行わず、高圧水銀灯を用いて照度28mW/cm2の照射条件で60秒間照射することにより、配向膜上に偏光子2を作製した。
 作製した偏光子2について、偏光子1と同様に、40μm2当たりの針状凝集体の数、および、長さLが500nm以下の針状凝集体の割合を測定した。その結果、40μm2当たりの針状凝集体の数は13個、長さLが500nm以下の針状凝集体の割合は92.3%であった。図3に、偏光子2の表面のSEM観察画像を示す。
[Comparative Example 1]
<Preparation of Polarizer 2>
As in the case of the polarizer 1, the composition for forming a polarizer was continuously applied onto the alignment film with a # 7 wire bar to form a coating film. Next, the coating film was heated at 140 ° C. for 90 seconds, and the coating film was cooled to room temperature (23 ° C.).
Thereafter, the polarizer 2 was formed on the alignment film by irradiating for 60 seconds under an irradiation condition of an illuminance of 28 mW / cm 2 using a high-pressure mercury lamp without performing the aging step.
About the produced polarizer 2, similarly to the polarizer 1, the number of needle-like aggregates per 40 μm 2 and the ratio of the needle-like aggregates having a length L of 500 nm or less were measured. As a result, the number of needle-like aggregates per 40 μm 2 was 13, and the ratio of needle-like aggregates having a length L of 500 nm or less was 92.3%. FIG. 3 shows an SEM observation image of the surface of the polarizer 2.
<透明樹脂層(バリア層)の形成>
 作製した偏光子2を用い、積層体1と同様の方法で透明樹脂層(バリア層)を形成し、比較例1の積層体2を作製した。
<Formation of transparent resin layer (barrier layer)>
Using the produced polarizer 2, a transparent resin layer (barrier layer) was formed in the same manner as in the laminate 1, and a laminate 2 of Comparative Example 1 was produced.
〔比較例2〕
<偏光子3の作製>
 上記偏光子1と同様に、配向膜上に偏光子形成用組成物1を#7のワイヤーバーで連続的に塗布し、塗布膜を形成した。次いで、塗布膜を140℃で90秒間加熱し、塗布膜を室温(23℃)になるまで冷却した。次いで、熟成工程として、塗布膜を100℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、高圧水銀灯を用いて照度28mW/cm2の照射条件で60秒間照射することにより、配向膜上に偏光子3を作製した。
 作製した偏光子3について、偏光子1と同様に、40μm2当たりの針状凝集体の数、および、長さLが500nm以下の針状凝集体の割合を測定した。その結果、40μm2当たりの針状凝集体の数は72個、長さLが500nm以下の針状凝集体の割合は79.2%であった。図4に、偏光子3の表面のSEM観察画像を示す。
[Comparative Example 2]
<Preparation of Polarizer 3>
As in the case of the polarizer 1, the composition 1 for forming a polarizer was continuously applied to the alignment film with a # 7 wire bar to form a coating film. Next, the coating film was heated at 140 ° C. for 90 seconds, and cooled to room temperature (23 ° C.). Next, as a maturing step, the coating film was heated at 100 ° C. for 60 seconds and cooled again to room temperature.
Thereafter, the polarizer 3 was formed on the alignment film by irradiating with a high-pressure mercury lamp under irradiation conditions of an illuminance of 28 mW / cm 2 for 60 seconds.
About the produced polarizer 3, similarly to the polarizer 1, the number of needle-like aggregates per 40 μm 2 and the ratio of the needle-like aggregates having a length L of 500 nm or less were measured. As a result, the number of needle-like aggregates per 40 μm 2 was 72, and the ratio of needle-like aggregates having a length L of 500 nm or less was 79.2%. FIG. 4 shows an SEM observation image of the surface of the polarizer 3.
<透明樹脂層(バリア層)の形成>
 作製した偏光子3を用い、積層体1と同様の方法で透明樹脂層(バリア層)を形成し、比較例2の積層体3を作製した。
<Formation of transparent resin layer (barrier layer)>
Using the produced polarizer 3, a transparent resin layer (barrier layer) was formed in the same manner as in the laminate 1, and a laminate 3 of Comparative Example 2 was produced.
[評価]
 以下のとおり、偏光子を有する積層体について配向度を評価した。
[Evaluation]
As described below, the orientation degree of the laminate having the polarizer was evaluated.
〔配向度〕
 光学顕微鏡(ニコン社製、ECLIPSE E600 POL)の光源側に直線偏光子を挿入した状態で、サンプル台に実施例および比較例の各積層体をセットし、マルチチャンネル分光器(OceanOptics社製、QE65000)を用いて、380~780nmの波長域における光吸収異方性膜の吸光度を1nmピッチで測定し、以下の式により400~700nmにおける配向度を算出した。
配向度:S=((Az0/Ay0)-1)/((Az0/Ay0)+2)
 上記式において、「Az0」は光吸収異方性膜の吸収軸方向の偏光に対する吸光度を表し、「Ay0」は光吸収異方性膜の偏光軸方向の偏光に対する吸光度を表す。
(Degree of orientation)
With the linear polarizer inserted on the light source side of an optical microscope (manufactured by Nikon, ECLIPSE E600 POL), the laminates of the examples and comparative examples were set on a sample stand, and a multi-channel spectrometer (QE65000, manufactured by Ocean Optics) was used. ), The absorbance of the light-absorbing anisotropic film in the wavelength range of 380 to 780 nm was measured at a pitch of 1 nm, and the degree of orientation at 400 to 700 nm was calculated by the following equation.
Degree of orientation: S = ((Az0 / Ay0) -1) / ((Az0 / Ay0) +2)
In the above formula, “Az0” represents the absorbance of the light absorption anisotropic film for polarized light in the direction of the absorption axis, and “Ay0” represents the absorbance of the light absorption anisotropic film for polarized light in the direction of the polarization axis.
 その結果、
 実施例1(積層体1)の配向度は0.95、
 比較例1(積層体2)の配向度は0.92、
 比較例2(積層体3)の配向度は0.89、であった。
as a result,
Example 1 (laminate 1) has a degree of orientation of 0.95;
Comparative Example 1 (laminate 2) had an orientation degree of 0.92,
The degree of orientation of Comparative Example 2 (Laminate 3) was 0.89.

Claims (3)

  1.  液晶性化合物と二色性物質とを含有する偏光子形成用組成物から形成される偏光子であって、
     前記液晶性化合物および前記二色性物質が、水平配向しており、
     走査型電子顕微鏡で観察した表面において、凝集体が観察され、前記凝集体の長軸の長さをL、短軸の長さをDとした際に、
     L≧300nm、および、L/D>2、を満たす凝集体である針状凝集体が、40μm2当たり15個以上、観察され、さらに、
     前記針状凝集体のうち、L≦500nmを満たす前記針状凝集体の数が80%以上である、偏光子。
    A polarizer formed from a polarizer-forming composition containing a liquid crystal compound and a dichroic substance,
    The liquid crystal compound and the dichroic substance are horizontally aligned,
    Aggregates are observed on the surface observed with a scanning electron microscope, and when the length of the major axis of the aggregate is L and the length of the minor axis is D,
    More than 15 needle-like aggregates, which are aggregates satisfying L ≧ 300 nm and L / D> 2, are observed per 40 μm 2 .
    The polarizer, wherein the number of the acicular aggregates satisfying L ≦ 500 nm among the acicular aggregates is 80% or more.
  2.  前記針状凝集体の90%以上が、前記液晶性化合物の配向軸と長軸とが成す角度が5°以上である、請求項1に記載の偏光子。 The polarizer according to claim 1, wherein 90% or more of the needle-like aggregates have an angle formed by the alignment axis and the long axis of the liquid crystalline compound of 5 ° or more.
  3.  請求項1または2に記載の偏光子を有する、画像表示装置。 画像 An image display device comprising the polarizer according to claim 1.
PCT/JP2019/024891 2018-06-27 2019-06-24 Polarizer and image display device WO2020004303A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527496A JP7169352B2 (en) 2018-06-27 2019-06-24 Polarizer and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122449 2018-06-27
JP2018122449 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004303A1 true WO2020004303A1 (en) 2020-01-02

Family

ID=68986973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024891 WO2020004303A1 (en) 2018-06-27 2019-06-24 Polarizer and image display device

Country Status (2)

Country Link
JP (1) JP7169352B2 (en)
WO (1) WO2020004303A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176803A1 (en) * 2021-02-16 2022-08-25 富士フイルム株式会社 Optically anisoropic film, optical film and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090668A1 (en) * 2015-11-24 2017-06-01 富士フイルム株式会社 Dichroic dye compound, dichroic dye composition, light-absorbing anisotropic film, polarizing element, and image display device
WO2017170036A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Colored composition, light-absorbing anisotropic film, layered product, and image display device
WO2017195833A1 (en) * 2016-05-12 2017-11-16 富士フイルム株式会社 Colored composition, dichroic dye compound, light absorption anisotropy film, layered product, and image display device
JP2018045210A (en) * 2016-09-16 2018-03-22 富士フイルム株式会社 Vehicle projection image display system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6123563B2 (en) * 2012-08-31 2017-05-10 住友化学株式会社 Circularly polarizing plate and display device
CN109477925B (en) * 2016-07-21 2022-10-25 住友化学株式会社 Elliptical polarizing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090668A1 (en) * 2015-11-24 2017-06-01 富士フイルム株式会社 Dichroic dye compound, dichroic dye composition, light-absorbing anisotropic film, polarizing element, and image display device
WO2017170036A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Colored composition, light-absorbing anisotropic film, layered product, and image display device
WO2017195833A1 (en) * 2016-05-12 2017-11-16 富士フイルム株式会社 Colored composition, dichroic dye compound, light absorption anisotropy film, layered product, and image display device
JP2018045210A (en) * 2016-09-16 2018-03-22 富士フイルム株式会社 Vehicle projection image display system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176803A1 (en) * 2021-02-16 2022-08-25 富士フイルム株式会社 Optically anisoropic film, optical film and display device
US20230384498A1 (en) * 2021-02-16 2023-11-30 Fujifilm Corporation Optically anisotropic film, optical film, and display device
US12032188B2 (en) 2021-02-16 2024-07-09 Fujifilm Corporation Optically anisotropic film, optical film, and display device

Also Published As

Publication number Publication date
JPWO2020004303A1 (en) 2021-06-24
JP7169352B2 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP7125463B2 (en) Liquid crystalline composition, polymer liquid crystal compound, light absorption anisotropic film, laminate and image display device
JP6932184B2 (en) Liquid crystal composition, light absorption anisotropic film, laminate and image display device
JP7492062B2 (en) Polarizer and image display device
JP7402951B2 (en) Polarizer and image display device
JP6976336B2 (en) Liquid crystal composition, light absorption anisotropic film, laminate and image display device
US11543697B2 (en) Polarizer and image display device
JPWO2019225468A1 (en) Polarizer and image display device
WO2021060021A1 (en) Polarizer and image display device
JP7169352B2 (en) Polarizer and image display device
JP6741743B2 (en) Liquid crystal composition, light absorption anisotropic film, laminate and image display device
JP7108051B2 (en) Liquid crystal composition, method for producing polymer liquid crystalline compound, light absorption anisotropic film, laminate and image display device
WO2021153510A1 (en) Liquid crystal composition, light-absorbing anisotropic film, laminate, and image display device
JP7011004B2 (en) Liquid crystal composition, light absorption anisotropic film, laminate and image display device
JP7231716B2 (en) Polarizer and image display device
JP6987892B2 (en) Liquid crystal composition, side chain type polymer liquid crystal compound, light absorption anisotropic film, laminate and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827567

Country of ref document: EP

Kind code of ref document: A1