WO2018015657A1 - Produit d'isolation thermique et/ou phonique non cuit et garniture d'isolation obtenue a partir de ce produit - Google Patents

Produit d'isolation thermique et/ou phonique non cuit et garniture d'isolation obtenue a partir de ce produit Download PDF

Info

Publication number
WO2018015657A1
WO2018015657A1 PCT/FR2017/051963 FR2017051963W WO2018015657A1 WO 2018015657 A1 WO2018015657 A1 WO 2018015657A1 FR 2017051963 W FR2017051963 W FR 2017051963W WO 2018015657 A1 WO2018015657 A1 WO 2018015657A1
Authority
WO
WIPO (PCT)
Prior art keywords
equal
product
mineral wool
fibers
binder
Prior art date
Application number
PCT/FR2017/051963
Other languages
English (en)
Inventor
Julien THIERRY
Original Assignee
Saint-Gobain Isover
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Isover filed Critical Saint-Gobain Isover
Priority to KR1020197004090A priority Critical patent/KR102405001B1/ko
Priority to JP2019500797A priority patent/JP7071326B2/ja
Priority to US16/316,700 priority patent/US11299418B2/en
Priority to CA3031011A priority patent/CA3031011A1/fr
Priority to EP17748546.3A priority patent/EP3488038A1/fr
Publication of WO2018015657A1 publication Critical patent/WO2018015657A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/02Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica the layer of fibres or particles being impregnated or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/06Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0815Acoustic or thermal insulation of passenger compartments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/34Condensation polymers of aldehydes, e.g. with phenols, ureas, melamines, amides or amines
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/36Epoxy resins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/88Insulating elements for both heat and sound
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2581/00Seals; Sealing equipment; Gaskets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/04Material constitution of slabs, sheets or the like of plastics, fibrous material or wood

Definitions

  • the invention relates to a thermal and / or sound insulating product, based on mineral wool, such as glass wool, intended to be used in particular for the manufacture of insulating gaskets. These fittings allow acoustic and / or thermal insulation of the engine, or of the passenger compartment, of a vehicle.
  • the invention also relates to the method of manufacturing such a product and the method of manufacturing such a liner.
  • Phonic insulators made from foam-type materials, such as polyurethane or melamine foams, which attenuate sound through viscous losses, are known.
  • foams derived from petroleum products, are unecological and highly toxic in case of fire. They emit, in fact, volatile organic compounds commonly called VOCs. In addition, they have an auto-lift that is not satisfactory because of their low rigidity.
  • Glass Wool Automotive Green Mat which is in the form of a layer or layer of glass wool impregnated with a thermosetting binder at about 200 Formophenolic resin, having a basis weight between 400 and 1800 g / m 2 , in particular 425 g / m 2 .
  • This glass wool layer or batt is coated with polyester or polypropylene, and is fire-resistant or water and oil resistant. This type of product, uncooked, is used to manufacture insulating gaskets of vehicles, molded by thermo-compression.
  • the fiberglass web is produced in a forming line where the formed fibers are sprayed with phenol formaldehyde resin binder in a proportion of 10 to 26% by weight based on the weight of the final fiber product.
  • the fibers thus treated then fall at random and gather in the form of a tablecloth.
  • the dimensions of the glass fibers produced may vary within wide limits and have a diameter of less than 0.009 mm.
  • a 50 mm thick blank with a density of 16 g / dm 3 (ie 800 g / m 2 ) is cut from a sheet of glass fibers containing uncooked binder, and placed in a mold to be compressed to to reach a thickness of 6.4 mm after cooking. Blank densities are disclosed ranging from 8 to 32 g / dm 3 (ie between 400 and 1600 g / m 2 ), or more.
  • the invention proposes an uncured thermal and / or acoustic insulation product, based on mineral wool, advantageously glass wool, comprising a layer of mineral wool seamed with at least one binder, said layer having:
  • - a mass per unit area, or basis weight of less than or equal to 350 g / m 2, preferably less than or equal to 300g / m 2, or even less than or equal to 250g / m 2, and, optionally greater than or equal to 200g / m 2 , and
  • micronaire of at most 3 at 5 grams, preferably at most 15 l / min, more preferably at most 12 l / min, and at least 9 l / min.
  • the micronaire "under 5 grams" is measured according to DIN 53941 or ASTM D144.
  • the micronaire in l / min is measured according to the process described in the patent application WO2003 / 098209, which amounts to adding a flowmeter to the apparatus of the standard DIN 53941.
  • the thermal insulation and / or sound insulation product according to the invention is lighter than the known products, with a grammage less than or equal to 350 g / m 2 , which makes it possible to limit the quantity of material used, as well as to limit the weight of the vehicle on which the product, processed into a lining, will be installed.
  • This product also has surprisingly high thermal and / or phonic properties, as we will see later.
  • the product comprises between 8% and 14% by weight of binder, preferably between 9% and 13% by weight of binder, relative to total weight of the mineral wool and binder mixture, and is selected from thermosetting binders.
  • the binder is chosen from thermosetting binders based on (i) formaldehyde resin, (ii) polyepoxides, or (iii) carbohydrates.
  • the mineral wool fibers are coated on a web, woven or non-woven, hydrophobic and / or oleophobic.
  • the veil has, in addition, fire-retardant and / or fungicidal properties thanks to a compound attached to said veil by impregnation, coating or heat-setting.
  • the web is a polyester woven web or nonwoven web, needle punched, based on (i) polyester and / or viscose fibers, (ii) polypropylene fibers, or (iii) carbon fiber, or a polyester reinforced glass veil.
  • the product is a sheet having a thickness greater than or equal to 10 mm, even greater than or equal to 15 mm, or even greater than or equal to 25 mm and / or having a recovery in thickness greater than or equal to 10 mm , even greater than or equal to 15 mm, or even greater than or equal to 25 mm following roll conditioning of at least 6 weeks.
  • the invention also relates to a lining obtained from a thermal and / or sound insulating product according to the invention by molding in a form at a binder polymerization temperature, the liner, optionally non-flat conforming to the contours of the invention. the support surface on which it is intended to be mounted.
  • the liner has a thermal conductivity of less than or equal to 40 mW / (m ⁇ K), preferably less than or equal to 38 mW / (m ⁇ K), and / or has:
  • the lining has an acoustic absorption greater than or equal to 0.8 between 1300 and 9000 Hz, advantageously between 1800 and 9000 Hz, measured according to the standard DA 49 1997.
  • the invention also relates to a process for producing an uncooked thermal and / or phonic insulation product, based on mineral wool, advantageously glass wool, as described above, with the aid of a installation comprising an internal centrifugation device which comprises at least one centrifuge capable of rotating about an axis X, in particular vertical, and the peripheral band of which is pierced with a plurality of orifices for delivering filaments of a molten material, a high temperature gas stretching means in the form of an annular burner which stretches the fiber filaments, and a receiving mat associated with suction means for receiving the fibers, comprising adjusting a combination of parameters who are at least:
  • the burner pressure which is between 250 and 750 mm CE, preferably between 280 and 440 mm CE,
  • the temperature of the burner which is between 1350 ° C and 1450 ° C
  • the fiber flow per day and per centrifuge orifice which is not more than
  • the speed of rotation of the centrifuge is between 1500 to 3000 revolutions / minute, and / or the diameter of the centrifuge is between 200 and 800 mm, preferably 400 mm and / or in which the mineral wool fibers are received on the reception mat in the form of wicks having a length of between 10 and 50 cm.
  • the speed of travel of the receiving mat is between 30 m / min and 50 m / min and wherein the width of the receiving belt is between 700 mm and 1800 mm.
  • the invention also relates to a method of manufacturing a packing described above, comprising the method of manufacturing a thermal and / or sound insulation product, also described above, followed by a step of thermocompression, simultaneously implementing (i) a heating process of said product at a temperature sufficient to soften or polymerize the binder included in said product and (ii) a deformation process of said product which thus conforms to the desired shape of the filling .
  • the invention also relates to a use of a lining described above as a thermal and / or acoustic insulation in a vehicle, in particular for the thermal and / or sound insulation of an engine or passenger compartment.
  • vehicle on a ceiling, a wall or a wall, under a roof or in a piece of household appliances.
  • the term "packing” means any finished article ready to be used or marketed resulting from the processing of the insulating product according to the invention. It can be a panel, a partition, a door panel, a roof liner, a hood liner, a battery liner or an external dashboard , among others. It can also be a lining of household appliances such as a washing machine liner or dishwasher.
  • wick is meant, in the sense of the invention, a grouping of several hundred mineral fibers.
  • wick or “felt” is meant, in the sense of the invention, the arrangement of several wicks as defined above and optionally comprising a resistive veil to any flow of air on and / or under which rest said wicks. We can then speak of tablecloth, or felt, surfaced (e).
  • the "thermal conductivity” characterizes, in the sense of the invention, the behavior of the materials during the heat transfer by conduction and represents the energy (amount of heat) transferred per unit area and time under a temperature gradient of 1 Kelvin per meter. It is denoted ⁇ (or k in English). It is measured according to ISO 8301 at 10 ° C.
  • grammage is intended to mean a quantity characterizing the surface mass, that is to say the mass per unit area of said mineral wool.
  • the unit is typically the gram per square meter (g / m 2 ).
  • a layer of mineral wool is all the more flexible as its grammage is low and all the more robust that its weight is high.
  • the basis weight is defined from EN 822 standards.
  • the "resistivity to the passage of air" whose unit is Ns / m 4 , characterizes, in the sense of the invention, the resistance of a given product or medium to the passage of air. This resistance is intrinsic to said product or medium.
  • those skilled in the art use a well-known procedure according to the ISO 9053 standard.
  • the "acoustic absorption” is measured, in the sense of the invention, by using the sound absorption coefficient alpha (a), whose value is between 0 and 1.00. Zero represents the absence of absorption (total reflection), and 1, 00 represents the total absorption of the sound.
  • an alpha-cabin or alpha sabine is used, according to the manufacturer's standard DA 49 1997 of the diffuse field meter. Diffuse field absorption in the alpha cabin is usually used by the automotive industry.
  • FIG. 1 represents a graph of the absorption coefficient as a function of the frequency in Hz, measured according to the manufacturer's procedure D 49 1977, for a glass felt according to the invention of grammage 300 g / m 2 , and a glass felt according to the prior art of grammage 425 g / m 2 .
  • Felt pens are all 30 mm thick.
  • the products based on mineral wool, in particular glass wool, are obtained by a known internal centrifugation process associated with drawing by a gas stream at high temperature.
  • an aqueous sizing composition also called binder, is vaporized on the still hot fibers, which then undergoes, during the processing of the product as a filling, a reaction. thermosetting at temperatures of about 200 ° C.
  • the manufacture of insulating products based on mineral wool generally comprises a step of manufacturing the glass fibers by a centrifugation process.
  • the method for forming mineral fibers consists in introducing a stream of molten glass, via a basket pierced at the periphery, in a centrifuge, rotating at high speed and having a fiber-forming plate pierced at its periphery. by a very large number of orifices through which the glass is released in the form of filaments under the effect of the centrifugal force.
  • filaments are then subjected to the action of an annular drawing current at high temperature and speed, produced by a burner, and which runs along the wall of the centrifuge. Said stream thins the filaments and transforms them into fibers.
  • the fiber output orifice is adapted to the diameter of the fibering plate, the centrifuge may have a diameter of between 200 and 800 mm, preferably 400 mm.
  • the total output of the molten material arriving in the centrifuge (s) is less than 26 tons / day and greater than 15 tons / day. It is preferably between 18 and 24 tons / day.
  • the speed of rotation of the centrifuge it is between 1500 to 3000 revolutions / min, advantageously greater than or equal to 2000 revolutions / minute.
  • This process of transforming glass into fibers requires the balancing of a number of variable parameters.
  • the pressure and temperature of the burner, as well as the speed of the drawing gas play an important role in the optimization of the fiber refining.
  • the burner pressure is between 250 and 750 mm CE, preferably between 280 and 440 mm CE, which reduces turbulence.
  • the pressure of the burner is between 280 and 440 mm CE, the space between the centrifuge (s) and the receiving carpet of the mineral fibers is less loaded with gas. This makes it possible to reduce the suction under the receiving mat, and thus to have a thicker layer of mineral fibers, in particular of at least 10 mm, even greater than or equal to 15 mm, or even greater than or equal to 25 mm. mm.
  • the lining obtained by thermocompression of this layer of mineral fibers has a satisfactory thickness to allow good sound absorption.
  • the temperature of the burner is advantageously 1450 ° C.
  • the fiber output per day and orifice of the centrifuge (s) is at most 1 kg, preferably at most 0.8 kg and at least 0.5 kg.
  • the fibers formed, naturally grouped together in the form of strands consisting of a set of fibers, are entrained by this stretching gas stream towards a reception device or receiving mat, which is moving and generally constituted by a gas permeable band associated with suction means.
  • the fibers are chemically bonded by the application of at least one uncured binder of the thermosetting type, sprayed onto said fibers at the outlet of the fiberizing plate and which coats said fibers.
  • the fibers freshly sized or coated with binder, are deposited or projected on the receiving device or moving carpet, thus forming a web.
  • the speed of travel of the fiber receiving carpet, associated in the form of locks, is between 30 and 50 m / min.
  • the accumulation of fibers on the receiving device under the effect of suction provides a sheet of fibers whose thickness may vary according to the final basis weight of the product to be manufactured.
  • the mineral wool fibers can be received on the conveyor belt over a width of 700 mm to 1800 mm, preferably between 850 mm and 1500 mm.
  • the mineral wool fibers are received on the receiving carpet in the form of wicks having a length of between 10 and 50 cm, and more particularly of 15 to 20 cm.
  • This size of locks is advantageous for obtaining a good distribution of said locks in terms of grammage both in the length and in the width of said product.
  • the method allows a good distribution of the fibers in the width of the insulation product, namely the width of the passing conveyor belt.
  • an essential parameter of the invention is the product P of the speed of the conveyor belt by the width of said belt.
  • This product P is between 38 and 90 m 2 / min, preferably between 40 and 60 m 2 / min, or between 40 and 50 m 2 / min. It represents the equivalent of a surface flow. This size is essential for defining the product's weight characteristics.
  • a web, woven or non-woven can be implemented before the reception of the fibers: it is then disposed on the conveyor belt upstream of receiving the locks on said carpet.
  • the fiber locks therefore come to the output of the fibering plate to lie on said veil.
  • a web, lying on the conveyor having from the bottom upwards, a web and a layer of strands of mineral fibers.
  • this second sail "sandwiching" the mineral fibers with the first web described above.
  • the sheet, lying on the conveyor is then composed, starting from the bottom upward, of a first web, in the lower position, a layer of strands of mineral fibers and a second web in the upper position.
  • the sheet can then be cut in width or even in length, rolled up and stored. At the time of use, it can be unwound, cut, moved, manipulated, placed and / or deformed in the mold in the most satisfactory manner.
  • the fineness of the fibers is determined by the value of their micronaire.
  • the measurement of the micronaire also called “fineness index” accounts for the specific surface area by measuring the aerodynamic pressure drop when a given amount of fiber extracted from a non-sized mattress is subjected to a given pressure of a gas, usually air or nitrogen.
  • This measurement is usual in the mineral fiber production units, and is carried out according to DIN 53941 or ASTM D 1448 and uses a so-called "micronaire apparatus” device. This device gives a value in "under 5g".
  • the micronaire is influenced by the average diameter of the fibers. A weak micronaire generally corresponds to fibers of small average diameter. At equivalent density, the reduction of the micronaire leads to an increase in the resistivity at the passage of the air.
  • micronaire For very fine fibers, a fineness (“micronaire”) can be measured in l / min by a known technique and described in the patent application WO2003 / 098209.
  • This patent application relates to a device for determining the fineness index of fibers
  • a device for measuring the fineness index comprising a device for measuring the fineness index, said device for measuring the fineness index being provided on the one hand with at least a first orifice connected to a measuring cell adapted to receive a sample consisting of a plurality of fibers and secondly, a second orifice connected to a device for measuring a differential pressure located on either side of said sample, said differential pressure measuring device being intended to be connected to a fluid flow generating device, characterized in that the fineness index measuring device comprises at least one volumetric flow meter of the fluid passing through said cell.
  • This device gives correspondences between "micronaire” values under 5g and "micronaire" values in liters per minute (l / min).
  • a correspondence relation between the micronaire values and the value of the average diameter of the fiber sample a micron value of about 12 l / min corresponds to an average diameter of about 2.5 to 3 micrometers, a value of about 13.5 l / min corresponds substantially to an average diameter of 3 to 3.5 micrometers, and finally a value of about 18 l / min corresponds to about an average diameter of about 4 to 5 micrometers.
  • the insulation product according to the invention which can be obtained by the process described above, can accumulate a certain number of characteristics, namely:
  • the weight per unit area of the mineral wool layer may preferably be less than or equal to 300 g / m 2 , or even less than or equal to 250 g / m 2 , and, optionally, greater than or equal to 200 g / m 2 ; and or
  • the micronaire of the mineral wool layer may preferably be at most 15 l / min, more preferably at most 12 l / min, and at least 9 l / min.
  • the product according to the invention based on mineral wool, advantageously glass wool, and which forms the web described above, further comprises at least one binder, which may advantageously be chosen from thermosetting binders.
  • thermosetting binder involves an irreversible polymerization which leads to a solid, generally rigid finished product. It is prepared by crosslinking a resin and a crosslinking agent, which react under the action of heat in the presence of reagents, namely catalyst and polymerization accelerator.
  • thermosetting binders based on (i) formaldehyde resin, (ii) polyepoxides or (iii) carbohydrates.
  • Formo-phenolic resins are preferably chosen from resins with low levels of free formaldehyde, in particular those described in applications WO-2008/043960 and WO-2008/043961.
  • liquid resins consisting essentially of phenol-formaldehyde and phenol-formaldehyde-amine condensates with a free formaldehyde content of less than or equal to 0.1% can be mentioned for the application WO-2008/043960 and with a free formaldehyde content of less than or equal to 0.3% and a free phenol content of less than or equal to 0.5% for the application WO-2008/043961, the levels being expressed as total weight of liquid.
  • carbohydrates refers to products derived from renewable sources. They include, in the present application not only carbohydrates in a strict sense, that is to say reducing sugars or carbohydrates of the formula C n (H 2 O) p having at least one aldehyde or ketone group (group reducing agent), but also the hydrogenation products of these carbohydrates where the aldehyde or ketone group has been reduced. Mention may thus be made of reducing sugars, non-reducing sugars, sugar alcohols or hydrogenated sugars comprising all the products resulting from the reduction of a saccharide chosen from monosaccharides, disaccharides, oligosaccharides and polysaccharides and mixtures of these products.
  • Polyepoxides also called epoxy or improperly "epoxy" polymers, are manufactured by polymerization of epoxy monomers with a hardener which is a crosslinking agent which may be based on acid anhydride, phenol or most often amine (polyamine, aminoamide). Epoxy (or epoxy) resins harden irreversibly in the presence of a hardener under the effect of heat.
  • the binder content in the product according to the invention can range from 8% to 14% by weight, preferably from 9% to 13% by weight, relative to the total weight of the mineral wool and binder mixture.
  • the mineral wool fibers are advantageously coated on a web, woven or non-woven, which may be hydrophobic and / or oleophobic.
  • the veil may also have been treated beforehand in order to have, in addition, fireproof and / or fungicidal properties following a compound attached to said veil by impregnation, coating or heat-setting.
  • a polyester woven web or nonwoven web needle-punched, based on (i) polyester and / or viscose fibers, (ii) polypropylene fibers, or (iii) carbon fiber, or a polyester reinforced glass veil.
  • the product according to the invention can thus be in the form of a sheet having a thickness greater than or equal to 10 mm, even greater than or equal to 15 mm, or even greater than or equal to 25 mm and / or having a recovery in thickness greater than or equal to 10 mm, even greater than or equal to 15 mm, or even greater than or equal to 25 mm following a roll conditioning of at least 6 weeks.
  • the webs can then be used to make composite products by molding, such as toppings.
  • molding such as toppings.
  • the formation of the linings is effected by thermo-compression molding.
  • the thermocompression molding makes it possible to obtain parts by deformation and distribution of the material between a die and a punch (mold and against-mold) mounted on a vertical press.
  • This process is based on the principle of the mold and against-mold.
  • the molding materials are arranged on the lower part of the mold.
  • the upper part of said movable mold compresses these materials to fill the cavity and form the part.
  • the closing time is a function of the time required for the binder to act, in particular the time required for its polymerization.
  • thermo-compression process therefore comprises successively in order:
  • a stage of opening of the mold and demolding of the product or of the molded sheet (e) thus obtained a step of trimming to the exact dimensions or deburring in the case of use of preform in order to obtain a lining according to the invention.
  • a stage of opening of the mold and demolding of the product or of the molded sheet (e) thus obtained a step of trimming to the exact dimensions or deburring in the case of use of preform in order to obtain a lining according to the invention.
  • the veil can be an aluminum film or any other woven or nonwoven veil chosen according to the target liner and the targeted application.
  • the step of depositing the product which is advantageously a surfaced web, that is to say a web comprising at least one web, woven or non-woven, is accompanied by a positioning of said product vis-à-vis -vis walls of a mold, namely external walls of said mold in the case of a male mold or internal walls of said mold in the case of a female mold.
  • the method may comprise a step of evacuating the air located between said product, or web, and the mold, this step following said positioning step, said air evacuation taking place either (i) by spraying pressurized air on said product, displacing air between said product and the mold or (ii) sucking said air or (iii) applying a mechanical compressive force to said product, the process terminating by a demolding step with recovery of said liner.
  • the heat treatment during the heating step which consists in heating the mold and therefore the product or the sheet makes it possible to cause the polymerization of the thermosetting binder.
  • the binder is formed by crosslinking: two ingredients, one of which is typically a "resin”, react under the action of heat in the presence of reagents such as catalyst and polymerization accelerator.
  • the formed three-dimensional structure is stable, exhibits thermomechanical and chemical resistance.
  • solid bridging was created by the binder between the fibers.
  • the lining resulting from the molded web thus has good cohesion and is made easy to handle.
  • the lining according to the invention is manufactured from a thermal and / or sound insulation product as defined above. This lining is derived from a molding of said insulating product. A liner is thus molded into an optionally non-flat shape conforming to the contours of the support surface on which it is intended to be mounted.
  • the packing according to the invention may furthermore have (i) a thermal conductivity of less than or equal to 42 mW / (mK), preferably less than or equal to 40 mW / (mK), and / or (ii) can present:
  • the liner may also have an acoustic absorption greater than or equal to 0.8 between 1300 and 9000Hz, advantageously between 1800 and 9000Hz, measured according to the standard DA 49 1997.
  • the linings according to the invention may be intended to be implemented in a vehicle, on a ceiling, under a roof or on a wall or a wall, or in household appliances such as a washing machine or a washing machine. dishwasher.
  • the vehicle is selected from an automobile, a bus, a truck, an agricultural vehicle, a boat, an aircraft and a train.
  • it is a car.
  • the invention has the advantage of not requiring the use of several combinations of materials such as foams, cotton webs Indeed, only a suitable sheet, resistive to the passage of air, is sufficient. The implementation time is reduced, which generates productivity gains.
  • This sheet may, in addition, also have other functions, possibly cumulative such as a hydrophobic and / or oleophobic function, and may also have an aesthetic appearance.
  • the amount of resin to be cooked also decreases, and therefore, in turn, the molding / cooking cycle time is also reduced allowing, again, a significant productivity gain.
  • a sheet of glass wool is obtained from two fiber plates, arranged in series, said plates having 300 mm in diameter and 13150 holes, each, and with a manufacturing method having the following characteristics:
  • o Fired glass is 10 tonnes / day and the centrifuge hole is 0.76 kg / day.
  • the rotation speed of the centrifuge is 2500 rpm.
  • the burner pressure is 290 mm wc.
  • the burner temperature is 1450 ° C.
  • the width of the reception mat is 1250 mm.
  • the speed of the reception mat is 39 m / min.
  • the binder used is a phormophenolic resin at a content of 10% by weight relative to the total weight of fibers + binder.
  • the thickness of the sheet obtained is about 30 mm.
  • the average length of the locks is about 200 mm.
  • the grammage is 300 g / m 2 .
  • To measure the grammage take a test piece of 300mm x 1000 mm of the product according to EN822, cut in the direction of the length of the matted glass fiber mat. Calculating the surface area in m 2 of said test piece, namely 0.3 m 2. The weight in grams of this test piece is then measured. Then, we calculate the grammage in g / m 2 by dividing the weight measured in gram by the surface calculated in m 2 .
  • the micronaire or fiber fineness index is 2.9 / 5g, measured according to DIN 53941.
  • the web then undergoes a cooking process of compressing said web between two plates heated at 210 ° C for 90 seconds.
  • the packing, according to the invention, obtained here, has the following characteristics:
  • the thermal conductivity is 40 mW / m.K measured at 10 ° C according to ISO 8301.
  • the resistivity at the passage of the air is 8000 Nsnr 4 , measured according to the standard EN29053 (ISO9053).
  • the sound absorption coefficient is 0.94 to 3150Hz, measured according to standard DA 49 1997.
  • This product can be compared with a sheet of glass wool obtained in a standard manner and not in accordance with the invention.
  • COMPARATIVE 1 Manufacture of a sheet of glass wool not in accordance with the invention
  • a sheet of glass wool is obtained from two fiber plates, arranged in series, said plates having 300 mm in diameter and 13150 holes, each, and with a manufacturing method having the following characteristics:
  • the glass fired is 1 1, 5 tons / day and the centrifuge hole drawn is 0.87 kg / day.
  • the rotation speed of the centrifuge is 2500 rpm.
  • the burner pressure is 330 mm wc.
  • the burner temperature is 1430 ° C.
  • the width of the reception mat is 1000 mm.
  • the speed of the reception mat is 35 m / min.
  • the binder used is a formophenolic resin at a content of 10% by weight relative to the total weight of fibers + binder.
  • the thickness of the sheet obtained is about 30 mm.
  • the average length of the locks is about 350 mm.
  • the uncured product, not according to the invention, obtained here has the following characteristics:
  • the micronaire or fineness index of the fibers is 3.3 / 5g, measured according to DIN 53941.
  • the web then undergoes a cooking process of compressing said web between two plates heated at 210 ° C for 90 seconds.
  • the packing not according to the invention, obtained here, has the following characteristics:
  • the thermal conductivity is 38 mW / m.K measured at 10 ° C according to ISO 8301.
  • the resistivity to the passage of air is 5000 Nsnr 4 measured according to EN29053 (ISO9053).
  • the sound absorption coefficient is 0.96 to 3150Hz, measured according to standard DA 49 1997.
  • the fiber drawing process according to the invention has thus made it possible, in a non-obvious manner, to provide a thermal and acoustic insulation product which until now did not exist, thanks to several technical characteristics essentially related to the speed of rotation. the fiberizing plate, the temperature and pressure of the burner, the drawing of fibers, and the speed of the conveyor belt.
  • the product has an acoustic impedance comparable to the products on the market as well as a low thermal conductivity despite a sharp decrease in grammage, allowing to achieve a high level of thermal resistance and an acoustic impedance almost identical with a thickness of web reduced significantly.
  • the product according to the invention by its relatively low basis weight is in the form of thin plates, flexible and light which can be stored in the form of rolls. These plates then make it possible to produce rigid gaskets, molded by thermo-compression, and of various shapes.
  • the Applicant has succeeded in reducing the grammage of an insulation product, the latter thus being less heavy, while degrading very little thermal insulation properties and maintaining the sound insulation properties of said product.

Abstract

L'invention concerne un produit d'isolation thermique et/ou phonique non cuit, à base de laine minérale, avantageusement de laine de verre, se présentant sous forme d'une nappe comprenant une couche de laine minérale ensimée par au moins un liant, ladite couche ensimée ayant : - une masse surfacique, ou grammage, inférieure ou égale à 350 g/m2, de préférence inférieure ou égale à 300g/m2, voire inférieure ou égale à 250g/m2, et, de façon optionnelle, supérieure ou égale à 200g/m2, - un micronaire d'au plus 3 sous 5 grammes, de préférence d'au plus 15 l/min, mieux encore d'au plus 12 l/min, et d'au moins 9 l/min, et la nappe présentant une épaisseur supérieure ou égale à 10 mm, voire supérieure ou égale à 15 mm, voire même supérieure ou égale à 25 mm. L'invention permet de proposer un produit d'isolation thermique et/ou phonique qui soit plus léger tout en conservant des propriétés d'isolation thermique et/ou phonique satisfaisantes et une bonne tenue mécanique.

Description

PRODUIT D'ISOLATION THERMIQUE ET/OU PHONIQUE NON CUIT ET GARNITURE D'ISOLATION OBTENUE A PARTIR DE CE PRODUIT
L'invention concerne un produit d'isolation thermique et/ou phonique, à base de laine minérale, telle que de la laine de verre, destiné à être utilisé notamment pour la fabrication de garnitures pour l'isolation. Ces garnitures permettent l'isolation acoustique et/ou thermique du moteur, ou encore de l'habitacle, d'un véhicule. L'invention concerne également le procédé de fabrication d'un tel produit ainsi que le procédé de fabrication d'une telle garniture.
Il est connu des isolants phoniques réalisés à partir de matériaux de type mousse, telles que des mousses de polyuréthane ou de mélamine qui atténuent le son à travers les pertes visqueuses. Cependant, ces mousses, issues de produits pétroliers, s'avèrent peu écologiques et fortement toxiques en cas d'incendie. Elles émettent, en effet, des composés organiques volatils communément appelés des COV. En outre, elles présentent une auto-portance qui n'est pas satisfaisante du fait de leur faible rigidité.
Actuellement, il existe une gamme de produits commercialisés par Saint- Gobain Isover® sous la dénomination anglaise « Glass Wool Automotive Green Mat » qui se présente sous la forme d'une couche ou nappe de laine de verre imprégnée par un liant thermodurcissable à environ 200°C de type résine formo- phénolique, ayant un grammage entre 400 et 1800 g/m2, en particulier de 425 g/m2. Cette couche ou nappe de laine de verre est revêtue de polyester ou de polypropylène, et est traitée contre le feu ou pour résister à l'eau et à l'huile. Ce type de produit, non cuit, est utilisé pour fabriquer des garnitures isolantes de véhicules, moulées par thermo-compression.
Il est également connu par le document FR1429543 un revêtement intérieur de toit de véhicule automobile comprenant un élément moulé, confectionné à partir d'une nappe de fibres de verre, couchée sur une feuille de revêtement de surface.
La nappe de fibres de verre est produite dans une chaîne de formage où les fibres formées sont pulvérisées de liant de type résine de phénol formaldéhyde, dans une proportion de 10 à 26% en poids par rapport au poids du produit fibreux final. Les fibres ainsi traitées tombent ensuite au hasard et se rassemblent sous la forme d'une nappe. Les dimensions des fibres de verre produites peuvent varier dans de grandes limites et ont un diamètre inférieur à 0,009 mm. Une ébauche d'une épaisseur de 50 mm avec une densité de 16 g/dm3 (soit 800 g/m2) est découpée dans une nappe de fibres de verre contenant du liant non cuit, et placée dans un moule pour être comprimée afin d'atteindre une épaisseur de 6,4 mm après cuisson. Des densités d'ébauches sont divulguées allant de 8 à 32 g/dm3 (soit entre 400 et 1600 g/m2), ou plus.
Toutefois, ces produits sont lourds, alors que l'industrie automobile impose de réduire toujours plus le poids des véhicules afin de diminuer les consommations en carburant.
Il y a donc un besoin pour un produit d'isolation thermique et/ou phonique qui soit plus léger tout en conservant des propriétés d'isolation thermique et/ou phonique satisfaisantes et une bonne tenue mécanique.
Pour cela, l'invention propose un produit d'isolation thermique et/ou phonique non cuit, à base de laine minérale, avantageusement de laine de verre, comprenant une couche de laine minérale ensimée par au moins un liant, ladite couche ensimée ayant :
- une masse surfacique, ou grammage, inférieure ou égale à 350 g/m2, de préférence inférieure ou égale à 300g/m2, voire inférieure ou égale à 250g/m2, et, de façon optionnelle, supérieure ou égale à 200g/m2, et
- un micronaire d'au plus 3 sous 5 grammes, de préférence d'au plus 15 l/min, mieux encore d'au plus 12 l/min, et d'au moins 9 l/min. Le micronaire en « sous 5 grammes » est mesuré selon la norme DIN 53941 ou ASTM D144. Pour des fibres très fines, le micronaire en l/min est mesuré selon le procédé décrit dans la demande de brevet WO2003/098209, qui est revient à ajouter un débitmètre sur l'appareil de la norme DIN 53941 .
Ainsi, le produit d'isolation thermique et/ou phonique selon l'invention est plus léger que les produits connus, avec un grammage inférieur ou égal à 350 g/m2, ce qui permet de limiter la quantité de matière utilisée, ainsi que de limiter le poids du véhicule sur lequel le produit, transformé en garniture, sera installé. Ce produit présente de plus des propriétés thermiques et/ou phoniques étonnamment performantes, comme nous le verrons plus loin.
Selon une autre particularité, le produit comprend entre 8% et 14% en poids de liant, de préférence entre 9% et 13% en poids de liant, par rapport au poids total du mélange laine minérale et liant, et est choisi parmi les liants thermodurcissables.
Selon une autre particularité, le liant est choisi parmi les liants thermodurcissables à base (i) de résine formo-phénolique, (ii) de polyépoxydes, ou (iii) de glucides.
Selon une autre particularité, les fibres de laine minérale sont couchées sur un voile, tissé ou non tissé, hydrophobe et/ou oléophobe.
Selon une autre particularité, le voile a, en outre, des propriétés ignifuges et/ou fongicides grâce à un composé fixé audit voile par imprégnation, enduction ou thermofixation.
Selon une autre particularité, le voile est un voile tissé à base de polyester ou un voile non tissé, aiguilleté, à base de fibres (i) de polyester et/ou de viscose, (ii) de fibres de polypropylène, ou (iii) de fibres de carbone, ou un voile de verre renforcé de polyester.
Selon une autre particularité, le produit est une nappe présentant une épaisseur supérieure ou égale à 10 mm, voire supérieure ou égale à 15 mm, voire même supérieure ou égale à 25 mm et/ou présentant une reprise en épaisseur supérieure ou égale à 10 mm, voire supérieure ou égale à 15 mm, voire même supérieure ou égale à 25 mm suite à un conditionnement en rouleau d'au moins 6 semaines.
L'invention concerne également une garniture obtenue à partir d'un produit d'isolation thermique et/ou phonique selon l'invention par moulage dans une forme à une température de polymérisation du liant, la garniture, éventuellement non plane se conformant aux contours de la surface support sur laquelle elle est destinée à être montée.
Selon une autre particularité, la garniture présente une conductivité thermique inférieure ou égale à 40 mW/(m.K), de préférence inférieure ou égale à 38 mW/(m.K), et/ou présente :
une résistivité au passage de l'air supérieure ou égale à 28000 N.s/m4 lorsque ladite couche de laine minérale a une épaisseur supérieure ou égale à 10 mm, ou
une résistivité au passage de l'air supérieure ou égale à 13500 N.s/m4 lorsque ladite couche de laine minérale a une épaisseur supérieure ou égale à 15 mm, ou une résistivité au passage de l'air supérieure ou égale à 8000 N.s/m4 lorsque ladite couche de laine minérale a une épaisseur supérieure ou égale à 25 mm.
Selon une autre particularité, la garniture présente une absorption acoustique supérieure ou égale à 0,8 entre 1300 et 9000 Hz, avantageusement entre 1800 et 9000 Hz, mesurée selon la norme DA 49 1997.
L'invention concerne également un procédé de fabrication d'un produit d'isolation thermique et/ou phonique non cuit, à base de laine minérale, avantageusement de laine de verre, tel que décrit ci-dessus, à l'aide d'une installation comportant un dispositif par centrifugation interne qui comprend au moins un centrifugeur apte à tourner autour d'un axe X, notamment vertical, et dont la bande périphérique est percée d'une pluralité d'orifices pour délivrer des filaments d'un matériau fondu, un moyen d'étirage gazeux à haute température sous forme d'un brûleur annulaire qui assure l'étirage des filaments en fibres, et un tapis de réception associé à des moyens d'aspiration pour réceptionner les fibres, consistant à régler une combinaison de paramètres qui sont au moins :
- la pression du brûleur, qui est comprise entre 250 et 750 mm CE, de préférence entre 280 et 440 mm CE,
- la température du brûleur, qui est comprise entre 1350°C à 1450°C, - la tirée de fibres par jour et par orifice du centrifugeur, qui est d'au plus
1 kg, la tirée totale étant d'au plus 26 kg/jour, et
- le produit (P) de la vitesse de défilement du tapis de réception par la largeur dudit tapis, qui est compris entre 38 et 90m2/min.
Selon une autre particularité, la vitesse de rotation du centrifugeur est comprise entre 1500 à 3000 tours/minute, et/ou le diamètre du centrifugeur est compris entre 200 et 800 mm, de préférence 400 mm et/ou dans lequel les fibres de laine minérale sont réceptionnées sur le tapis de réception sous forme de mèches ayant une longueur comprise entre 10 et 50 cm.
Selon une autre particularité, la vitesse de défilement du tapis de réception est comprise entre 30 m/min et 50 m/min et dans lequel la largeur du tapis de réception est comprise entre 700 mm et 1800 mm.
L'invention concerne également un procédé de fabrication d'une garniture décrite ci-dessus, comprenant le procédé de fabrication d'un produit d'isolation thermique et/ou phonique, décrit également ci-dessus, suivi par une étape de thermocompression, mettant en œuvre simultanément (i) un processus de chauffe dudit produit à une température suffisante pour ramollir ou polymériser le liant compris dans ledit produit et (ii) un processus de déformation dudit produit qui se conforme ainsi à la forme désirée de la garniture.
L'invention concerne également une utilisation d'une garniture décrite ci- dessus en tant qu'isolant thermique et/ou phonique dans un véhicule, en particulier pour l'isolation thermique et/ou phonique d'un moteur ou d'un habitacle de véhicule, sur un plafond, un mur ou une paroi, sous une toiture ou encore dans un équipement d'électroménager.
Par « garniture », on entend, au sens de l'invention, tout article fini, prêt à être mis en œuvre ou commercialisé et issu de la transformation du produit isolant selon l'invention. Il peut s'agir d'un panneau, d'une cloison, d'un panneau de porte, d'une doublure de toit, d'une doublure de capot, d'une doublure de batterie ou d'un tableau de bord externe, entre autres. Il peut également s'agir d'une doublure d'équipement d'électroménager comme par exemple une doublure de lave-linge ou de lave-vaisselle.
Par « mèche », on entend, au sens de l'invention, un regroupement de plusieurs centaines de fibres minérales.
Par « nappe » ou « feutre », on entend, au sens de l'invention, l'agencement de plusieurs mèches telles que définies précédemment et comprenant, éventuellement, un voile résistif à tout flux d'air sur et/ou sous lequel reposent lesdites mèches. On peut alors parler de nappe, ou feutre, surfacé(e).
La « conductivité thermique » caractérise, au sens de l'invention, le comportement des matériaux lors du transfert thermique par conduction et représente l'énergie (quantité de chaleur) transférée par unité de surface et de temps sous un gradient de température de 1 kelvin par mètre. Elle est notée λ (ou k en anglais). Elle est mesurée selon la norme ISO 8301 à 10°C.
Par « grammage », on entend, au sens de l'invention, une grandeur caractérisant la masse surfacique, c'est-à-dire , la masse par unité de surface de ladite laine minérale. L'unité est typiquement le gramme par mètre carré (g/m2). Une couche de laine minérale est d'autant plus souple que son grammage est faible et d'autant plus robuste que son grammage est élevé. Le grammage est défini à partir des normes EN 822. La «résistivité au passage de l'air», dont l'unité est N.s/m4, caractérise, au sens de l'invention, la résistance d'un produit ou milieu donné au passage de l'air. Cette résistance est intrinsèque audit produit ou milieu. Concernant sa mesure, l'homme du métier utilise une procédure bien connue selon la norme ISO 9053.
L'« absorption acoustique », est mesurée, au sens de l'invention, en utilisant le coefficient d'absorption acoustique alpha (a), dont une valeur est comprise entre 0 et 1 ,00. Zéro représente l'absence d'absorption (réflexion totale), et 1 ,00 représente l'absorption totale du son.
Selon le cas, on utilise pour la mesure du coefficient d'absorption acoustique un alpha cabine ou alpha sabine, selon la norme du constructeur DA 49 1997 de l'appareil de mesure en champs diffus. L'absorption en champs diffus en cabine alpha est habituellement utilisée par l'industrie automobile.
Le terme « moyenne » signifie « moyenne arithmétique ».
D'autres caractéristiques, détails, avantages de l'invention apparaîtront mieux à la lecture de la description qui va suivre, faite à titre illustratif et nullement limitatif en référence aux dessins annexés sur lesquels :
La figure 1 représente un graphique du coefficient d'absorption en fonction de la fréquence en Hz, mesuré selon la procédure constructeur D 49 1977, pour un feutre de verre selon l'invention de grammage 300 g/m2, et un feutre de verre selon l'art antérieur de grammage 425 g/m2. Les feutres ont tous une épaisseur de 30 mm.
Les produits à base de laine minérale, en particulier de laine de verre, sont obtenus par un procédé connu de centrifugation interne associée à un étirage par un courant gazeux à haute température. Sur leur trajet, entre le dispositif de centrifugation et le tapis de collecte des fibres, on vaporise sur les fibres encore chaudes une composition aqueuse d'encollage, également appelée liant, qui subit ensuite, lors de la transformation du produit en garniture, une réaction de thermodurcissement à des températures d'environ 200°C.
Ainsi, la fabrication de produits d'isolation à base de laine minérale comprend généralement une étape de fabrication des fibres de verre par un procédé de centrifugation.
Le procédé de formation des fibres minérales consiste à introduire un filet de verre fondu, via un panier percé en périphérie, dans un centrifugeur, tournant à grande vitesse et disposant d'une assiette de fibrage, percée à sa périphérie par un très grand nombre d'orifices par lesquels le verre est libéré sous forme de filaments sous l'effet de la force centrifuge.
Ces filaments sont alors soumis à l'action d'un courant annulaire d'étirage à température et vitesse élevées, produit par un brûleur, et qui longe la paroi du centrifugeur. Ledit courant amincit ainsi les filaments et les transforme en fibres.
La tirée de fibres par orifice est adaptée au diamètre de l'assiette de fibrage, le centrifugeur pouvant présenter un diamètre compris entre 200 et 800 mm, de préférence de 400 mm.
La tirée totale du matériau fondu arrivant dans le ou les centrifugeur(s) est inférieure à 26 tonnes/jour et supérieure à 15 tonnes/jour. Elle est de préférence comprise entre 18 et 24 tonnes/jour.
Quant à la vitesse de rotation du centrifugeur, elle est comprise entre 1500 à 3000 tours/min, avantageusement supérieure ou égale à 2000 tours/minute.
Ce procédé de transformation du verre en fibres requiert l'équilibrage d'un certain nombre de paramètres variables. En particulier, la pression et la température du brûleur, ainsi que la vitesse du gaz d'étirage, jouent un rôle important dans l'optimisation de l'affinage de fibres.
Ainsi, la pression du brûleur est comprise entre 250 et 750 mm CE, de préférence entre 280 et 440 mm CE, ce qui permet de diminuer les turbulences. Lorsque la pression du brûleur est comprise entre 280 et 440 mm CE, l'espace entre le ou les centrifugeur(s) et le tapis de réception des fibres minérales est moins chargé en gaz. Cela permet de diminuer l'aspiration sous le tapis de réception, et ainsi d'avoir une couche de fibres minérales plus épaisse, en particulier d'au moins 10 mm, voire supérieure ou égale à 15 mm, voire même supérieure ou égale à 25 mm. Ainsi, la garniture obtenue par thermo-compression de cette couche de fibres minérales a une épaisseur satisfaisante pour permettre une bonne absorption acoustique.
La température du brûleur, comprise entre 1350°C et 1500°C, est avantageusement de 1450°C.
La tirée de fibres par jour et par orifice du ou des centrifugeur(s) est d'au plus 1 kg, de préférence d'au plus 0,8 kg et d'au moins 0,5 kg.
Les fibres formées, regroupées naturellement sous forme de mèches constituées d'un ensemble de fibres, sont entraînées par ce courant gazeux d'étirage vers un dispositif de réception ou tapis de réception, qui est défilant et généralement constitué par une bande perméable aux gaz associée à des moyens d'aspiration.
Simultanément, du liant est pulvérisé sur les fibres pendant qu'elles tombent vers le dispositif de réception. Ainsi, les fibres sont liées chimiquement par l'application d'au moins un liant, non cuit, de type thermodurcissable, projeté sur lesdites fibres en sortie de l'assiette de fibrage et qui enduit lesdites fibres.
A ce stade les fibres, fraîchement ensimées ou enduites par du liant, sont déposées ou projetées sur le dispositif de réception ou tapis défilant, formant ainsi une nappe. La vitesse de défilement du tapis de réception des fibres, associées sous formes de mèches, est comprise entre 30 et 50 m/min.
L'accumulation de fibres sur le dispositif de réception sous l'effet de l'aspiration fournit une nappe de fibres dont l'épaisseur peut varier selon le grammage final visé du produit à fabriquer.
En outre, au cours du procédé de fabrication, les fibres de laine minérale peuvent être réceptionnées sur le tapis de réception sur une largeur de 700 mm à 1800 mm, de préférence entre 850 mm et 1500 mm.
Avantageusement, les fibres de laine minérale sont réceptionnées sur le tapis de réception sous forme de mèches ayant une longueur comprise entre 10 et 50 cm, et plus particulièrement de 15 à 20 cm. Cette taille de mèches est avantageuse pour obtenir une bonne distribution desdites mèches en termes de grammage aussi bien dans la longueur que dans la largeur dudit produit.
Le procédé permet une bonne répartition des fibres dans la largeur du produit d'isolation, à savoir la largeur du tapis de réception défilant.
En outre, un paramètre essentiel de l'invention est le produit P de la vitesse du tapis de réception par la largeur dudit tapis. Ce produit P est compris entre 38 et 90 m2/min, de préférence entre 40 et 60 m2/min, voire entre 40 et 50 m2/min. Il représente l'équivalent d'un débit surfacique. Cette grandeur est essentielle pour la définition des caractéristiques de grammage du produit.
Selon un mode de réalisation, un voile, tissé ou non tissé, peut être mis en œuvre avant la réception des fibres : il est alors disposé sur le tapis de défilement en amont de la réception des mèches sur ledit tapis. Les mèches de fibres viennent donc à la sortie de l'assiette de fibrage se coucher sur ledit voile. On dispose alors d'une nappe, couchée sur le convoyeur, présentant en partant du bas vers le haut, un voile et une couche de mèches de fibres minérales. Enfin, il est envisageable de disposer un second voile en cours de convoyage, ce second voile venant « prendre en sandwich » les fibres minérales avec le premier voile décrit précédemment. La nappe, couchée sur le convoyeur, se compose alors, en partant du bas vers le haut, d'un premier voile, en position inférieure, d'une couche de mèches de fibres minérales et d'un second voile en position supérieure.
En sortie du dispositif de réception, on obtient une nappe, ayant une épaisseur supérieure à 10 mm, avantageusement allant de 15 à 50 mm, et plus généralement allant de 20 à 30 mm avec une masse surfacique allant de 200 à 350 g/m2.
La nappe peut ensuite être coupée en largeur voire en longueur, enroulée et stockée. Au moment de son utilisation, elle peut être déroulée, découpée, déplacée, manipulée, placée et/ou déformée dans le moule de la façon la plus satisfaisante.
On rappelle que la finesse des fibres est déterminée par la valeur de leur micronaire. La mesure du micronaire appelée aussi " indice de finesse " rend compte de la surface spécifique grâce à la mesure de la perte de charge aérodynamique lorsqu'une quantité donnée de fibres extraites d'un matelas non ensimé est soumise à une pression donnée d'un gaz, en général de l'air ou de l'azote. Cette mesure est usuelle dans les unités de production de fibres minérales, et est réalisée selon la norme DIN 53941 ou ASTM D 1448 et utilise un appareil dit " appareil micronaire ". Cet appareil donne une valeur en « sous 5g ». Le micronaire est influencé par le diamètre moyen des fibres. Un micronaire faible correspond généralement à des fibres de faible diamètre moyen. A densité équivalente, la réduction du micronaire entraine une augmentation de la résistivité au passage de l'air.
Toutefois, un tel appareil présente une limite de mesure quant à une certaine finesse des fibres. Pour des fibres très fines, une finesse (« le micronaire ») peut être mesurée en l/min grâce à une technique connue et décrite dans la demande de brevet WO2003/098209. Cette demande de brevet concerne en effet un dispositif de détermination de l'indice de finesse de fibres comportant un dispositif de mesurage de l'indice de finesse, ledit dispositif de mesurage de l'indice de finesse étant pourvu d'une part, d'au moins un premier orifice relié à une cellule de mesure adaptée pour recevoir un échantillon constitué d'une pluralité de fibres et d'autre part, d'un second orifice relié à un dispositif de mesurage d'une pression différentielle située de part et d'autre dudit échantillon, ledit dispositif de mesurage de la pression différentielle étant destiné à être relié à un dispositif de production d'écoulement de fluide, caractérisé en ce que le dispositif de mesurage de l'indice de finesse comporte au moins un débitmètre volumétrique du fluide traversant ladite cellule. Ce dispositif donne des correspondances entre des valeurs « micronaire » en sous 5g et des valeurs « micronaire » en litres par minute (l/min).
A titre indicatif, on peut noter selon ce document WO2003/098209, une relation de correspondance entre les valeurs micronaire et la valeur du diamètre moyen de l'échantillon de fibres. Globalement, une valeur micronaire d'environ 12 l/min correspond à un diamètre moyen d'environ 2,5 à 3 micromètres, une valeur d'environ 13,5 l/min correspond sensiblement à un diamètre moyen de 3 à 3,5 micromètres, et enfin une valeur d'environ18 l/min correspond à environ un diamètre moyen d'environ 4 à 5 micromètres.
Le produit d'isolation selon l'invention, qui peut être obtenu par le procédé décrit précédemment, peut cumuler un certain nombre de caractéristiques, à savoir :
la masse surfacique de la couche de laine minérale peut être de préférence inférieure ou égale à 300g/m2, voire inférieure ou égale à 250g/m2, et, de façon optionnelle, supérieure ou égale à 200g/m2 ; et/ou
le micronaire de la couche de laine minérale peut être de préférence d'au plus 15 l/min, mieux encore d'au plus 12 l/min, et d'au moins 9 l/min.
Le produit selon l'invention à base de laine minérale, avantageusement la laine de verre, et qui forme la nappe décrite précédemment, comprend, en outre, au moins un liant, qui peut être choisi avantageusement parmi les liants thermodurcissables.
Un liant thermodurcissable fait intervenir une polymérisation irréversible qui conduit à un produit fini solide, généralement rigide. Il est préparé par réticulation d'une résine et d'un agent réticulant, qui réagissent sous l'action de la chaleur en présence de réactifs, à savoir catalyseur et accélérateur de polymérisation.
On peut citer comme liants thermodurcissables, les liants à base (i) de résine formo-phénolique, (ii) de polyépoxydes ou (iii) de glucides. Les résines formo-phénoliques sont de préférence choisies parmi les résines à faibles taux de formaldéhyde libre, notamment celles décrites dans les demandes WO-2008/043960 et WO-2008/043961 . On peut ainsi, par exemple, citer les résines liquides constituées essentiellement de condensais de phénol- formaldéhyde et de phénol-formaldéhyde-amine avec un taux de formaldéhyde libre inférieur ou égal à 0,1 % pour la demande WO-2008/043960 et avec un taux de formaldéhyde libre inférieur ou égal à 0,3 % et un taux de phénol libre inférieur ou égal à 0,5 % pour la demande WO-2008/043961 , les taux étant exprimés en poids total de liquide.
On entend dans la présente demande par « glucides » des produits issus de sources renouvelables. Ils regroupent, dans la présente demande, non seulement les glucides au sens strict, c'est-à-dire les sucres réducteurs ou hydrates de carbone de formule Cn(H2O)p présentant au moins un groupe aldéhyde ou cétone (groupe réducteur), mais également les produits d'hydrogénation de ces hydrates de carbone où le groupe aldéhyde ou cétone a été réduit. On peut ainsi citer les sucres réducteurs, les sucres non réducteurs, les alcools de sucres ou encore les sucres hydrogénés qui regroupent l'ensemble des produits résultant de la réduction d'un saccharide choisi parmi les monosaccharides, disaccharides, oligosaccharides et polysaccharides et des mélanges de ces produits.
Les polyépoxydes, encore appelés polymères époxyde ou improprement « époxy », sont fabriqués par polymérisation de monomères époxyde avec un durcisseur qui est un agent de réticulation qui peut être à base d'anhydride d'acide, de phénol ou le plus souvent d'amine (polyamine, aminoamide). Les résines époxyde (ou époxydiques) durcissent de façon irréversible en présence d'un durcisseur, sous l'effet de la chaleur.
La teneur en liant dans le produit selon l'invention peut aller de 8% à 14% en poids, de préférence de 9% à 13% en poids, par rapport au poids total du mélange laine minérale et liant.
Les fibres de laine minérale sont avantageusement couchées sur un voile, tissé ou non tissé, qui peut être hydrophobe et/ou oléophobe. Le voile peut aussi avoir été traité préalablement afin de disposer, en outre, de propriétés ignifuge et/ou fongicide suite à un composé fixé audit voile par imprégnation, enduction ou thermofixation. On peut par exemple citer comme voile particulièrement avantageux, conforme à l'invention, un voile tissé à base de polyester ou un voile non tissé, aiguilleté, à base de fibres (i) de polyester et/ou de viscose, (ii) de fibres de polypropylène, ou (iii) de fibres de carbone, ou un voile de verre renforcé de polyester.
Le produit selon l'invention peut ainsi se présenter sous la forme d'une nappe présentant une épaisseur supérieure ou égale à 10 mm, voire supérieure ou égale à 15 mm, voire même supérieure ou égale à 25 mm et/ou présentant une reprise en épaisseur supérieure ou égale à 10 mm, voire supérieure ou égale à 15 mm, voire même supérieure ou égale à 25 mm suite à un conditionnement en rouleau d'au moins 6 semaines.
Les nappes peuvent ensuite être utilisées pour réaliser des produits composites par moulage, telles que des garnitures. La formation des garnitures s'opère par moulage par thermo-compression. Le moulage par thermocompression, permet d'obtenir des pièces par déformation et répartition du matériau entre une matrice et un poinçon (moule et contre-moule) montés sur une presse verticale.
Ce procédé repose sur le principe du moule et contre-moule. Les matériaux de moulage sont disposés sur la partie inférieure du moule. La partie supérieure dudit moule, mobile, vient comprimer ces matériaux pour remplir l'empreinte et former la pièce. Le temps de fermeture est fonction du temps nécessaire au liant pour agir, en particulier le temps nécessaire à sa polymérisation.
Le procédé de thermo-compression comprend donc successivement dans l'ordre :
- une étape de dépose du produit ou nappe à mouler sur le moule,
- une étape de fermeture de la presse avec rassemblement du moule et du contre-moule en vis-à-vis, ledit produit ou ladite nappe étant pris en sandwich entre ces derniers,
- une étape de mise en pression et de chauffe du moule et contre-moule à une température, adaptée au liant choisi et pouvant s'étendre sur une place de 180 à 230°C, bornes incluses, afin de polymériser le liant,
- une étape d'ouverture du moule et de démoulage du produit ou de la nappe moulé(e) ainsi obtenu, - une étape de détourage aux dimensions exactes ou d'ébarbage dans le cas d'utilisation de préforme afin d'obtenir une garniture selon l'invention. Il est envisageable, préalablement au procédé de thermo-compression, soit (i) de retirer un voile de la nappe quand cette dernière en possède au moins un, soit (ii) d'ajouter au moins un voile à la nappe. Le voile peut être un film d'aluminium ou tout autre voile tissé ou non tissé choisi en fonction de la garniture visée et de l'application ciblée.
Il est également envisageable de disposer au moins deux nappes, selon l'invention, identiques ou différentes. Elles sont alors disposées l'une sur l'autre dans le moule dans l'étape de dépose.
Avantageusement, l'étape de dépose du produit, qui est avantageusement une nappe surfacée, c'est-à-dire une nappe comprenant au moins un voile, tissé ou non tissé, s'accompagne d'un positionnement dudit produit en vis-à-vis des parois d'un moule, à savoir des parois externes dudit moule dans le cas d'un moule mâle ou des parois internes dudit moule dans le cas d'un moule femelle.
En outre, le procédé peut comprendre une étape d'évacuation de l'air situé entre ledit produit, ou nappe, et le moule, cette étape faisant suite à ladite étape de positionnement, ladite évacuation d'air s'opérant soit (i) par projection d'air pressurisé sur ledit produit, chassant l'air situé entre ledit produit et le moule ou (ii) par aspiration dudit air ou (iii) par apposition d'une force mécanique de compression sur ledit produit, le procédé se terminant par une étape de démoulage avec récupération de ladite garniture.
Le traitement thermique au cours de l'étape de chauffe qui consiste à chauffer le moule et donc le produit ou nappe permet de provoquer la polymérisation du liant thermodurcissable. En effet, le liant est formé par réticulation : deux ingrédients, dont l'un est typiquement une « résine », réagissent sous l'action de la chaleur en présence de réactifs tels que catalyseur et accélérateur de polymérisation. La structure tridimensionnelle formée est stable, présente une résistance thermomécanique et chimique. Finalement, après refroidissement du produit traité par le procédé de moulage par thermocompression, des pontages solides se sont créés grâce au liant entre les fibres. La garniture issue de la nappe moulée présente ainsi une bonne cohésion et est rendue facilement manipulable. La garniture selon l'invention est fabriquée à partir d'un produit d'isolation thermique et/ou phonique tel que défini précédemment. Cette garniture est issue d'un moulage dudit produit isolant. Une garniture est ainsi moulée dans une forme éventuellement non plane se conformant aux contours de la surface support sur lequel elle est destinée à être montée.
Avantageusement, la garniture selon l'invention peut présenter, en outre, (i) une conductivité thermique inférieure ou égale à 42 mW/(m.K), de préférence inférieure ou égale à 40 mW/(m.K), et/ou (ii) peut présenter :
une résistivité au passage de l'air supérieure ou égale à 28000 N.s/m4 lorsque ladite couche de laine minérale a une épaisseur supérieure ou égale à 10 mm, ou
une résistivité au passage de l'air supérieure ou égale à 13500 N.s/m4 lorsque ladite couche de laine minérale a une épaisseur supérieure ou égale à 15 mm ; ou
· une résistivité au passage de l'air supérieure ou égale à 8000 N.s/m4 lorsque ladite couche de laine minérale a une épaisseur supérieure ou égale à 25 mm.
La garniture peut également présenter une absorption acoustique supérieure ou égale à 0,8 entre 1300 et 9000Hz, avantageusement entre 1800 et 9000Hz, mesurée selon la norme DA 49 1997.
Les garnitures selon l'invention peuvent être destinées à être mises en œuvre dans un véhicule, sur un plafond, sous une toiture ou sur un mur ou une paroi, ou encore dans un équipement d'électroménager tel qu'un lave-linge ou un lave-vaisselle.
Lorsqu'elles sont mises en œuvre dans un véhicule, elles peuvent ainsi isoler thermiquement et/ou acoustiquement le moteur dudit véhicule et/ou la cabine du conducteur de ce véhicule. Le véhicule est choisi parmi une automobile, un bus, un camion, un véhicule agricole, un bateau, un aéronef et un train. Avantageusement, il s'agit d'une automobile.
L'invention a l'avantage de ne pas nécessiter l'utilisation de plusieurs combinaisons de matériaux telles que des mousses, des nappes coton En effet, seule une nappe adaptée, résistive au passage de l'air, suffit. Le temps de mise en œuvre est donc réduit, ce qui engendre des gains de productivité. Cette nappe pourra, en outre, aussi avoir d'autres fonctions, éventuellement cumulatives telle qu'une fonction hydrophobe et/ou oléophobe, et pourra aussi avoir un aspect esthétique.
De plus, en baissant le grammage, la quantité de résine à cuire baisse également, et donc, par ricochet, le temps de cycle de moulage/cuisson s'en voit également réduit permettant, là aussi, un gain de productivité non négligeable.
On présente ci-après un exemple de produit de l'invention obtenu conformément au procédé de l'invention. EXEMPLE 1 : Fabrication d'une nappe de laine de verre selon l'invention
Une nappe de laine de verre est obtenue à partir de deux assiettes de fibrage, disposées en série, lesdites assiettes ayant 300 mm de diamètre et 13150 trous, chacune, et avec un procédé de fabrication présentant les caractéristiques suivantes :
o La tirée de verre est de 10 tonnes/jour et la tirée par trou de centrifugeur est de 0,76 kg/jour.
o La vitesse de rotation du centrifugeur est de 2500 rpm.
o La pression du brûleur est de 290 mm CE.
o La température du brûleur est de 1450°C.
o La largeur du tapis de réception est de 1250 mm.
o La vitesse du tapis de réception est de 39 m/min.
o Le produit P est égal à 48,75 m2/min.
o Le liant utilisé est une résine phormo-phénolique à une teneur de 10% en poids par rapport au poids total fibres + liant.
L'épaisseur de la nappe obtenue est d'environ 30 mm. La longueur moyenne des mèches est d'environ 200 mm.
Le produit non cuit, selon l'invention, obtenu ici, présente les caractéristiques suivantes :
• Le grammage est de 300 g/m2. Pour mesurer le grammage, on prend une éprouvette de 300mm x 1000 mm dudit produit selon la norme EN822, coupée dans le sens de la longueur du matelas de fibres de verres ensimées. On calcule la surface en m2 de ladite éprouvette, à savoir 0,3m2. On mesure ensuite le poids en gramme de cette éprouvette. Puis, on calcule le grammage en g/m2 en divisant le poids mesuré en gramme par la surface calculé en m2. • Le micronaire ou indice de finesse des fibres est de 2,9/5g, mesuré selon la norme DIN 53941 .
La nappe, ainsi obtenue, subit ensuite un procédé de cuisson consistant à comprimer ladite nappe entre deux plaques chauffées à 210°C pendant 90 secondes.
La garniture, selon l'invention, obtenue ici, présente les caractéristiques suivantes :
• La conductivité thermique est de 40 mW/m.K, mesurée à 10°C selon la norme ISO 8301 .
· La résistivité au passage de l'air est de 8000 N.s.nrï4, mesurée selon la norme EN29053 (ISO9053).
• Le coefficient d'absorption acoustique est de 0,94 à 3150Hz, mesuré selon la norme DA 49 1997.
Ce produit peut être comparé avec une nappe de laine de verre obtenue de manière standard et non conforme à l'invention.
COMPARATIF 1 : Fabrication d'une nappe de laine de verre non conforme à l'invention
Une nappe de laine de verre est obtenue à partir de deux assiettes de fibrage, disposées en série, lesdites assiettes ayant 300 mm de diamètre et 13150 trous, chacune, et avec un procédé de fabrication présentant les caractéristiques suivantes :
o La tirée de verre est de 1 1 ,5 tonnes/jour et la tirée par trou de centrifugeur est de 0,87 kg/jour.
o La vitesse de rotation du centrifugeur est de 2500 rpm.
o La pression du brûleur est de 330 mm CE.
o La température du brûleur est de 1430°C.
o La largeur du tapis de réception est de 1000 mm.
o La vitesse du tapis de réception est de 35 m/min.
o Le produit P est égal à 35 m2/min.
o Le liant utilisé est une résine formo-phénolique à une teneur de 10% en poids par rapport au poids total fibres + liant.
L'épaisseur de la nappe obtenue est d'environ 30 mm. La longueur moyenne des mèches est d'environ 350 mm. Le produit non-cuit, non conforme à l'invention, obtenu ici, présente les caractéristiques suivantes :
• Le grammage est de 425 g/m2. La mesure a été faite selon la méthode décrite dans l'exemple 1 précédent.
· Le micronaire ou indice de finesse des fibres est de 3,3/5g, mesuré selon la norme DIN 53941 .
La nappe, ainsi obtenue, subit ensuite un procédé de cuisson consistant à comprimer ladite nappe entre deux plaques chauffées à 210°C pendant 90 secondes.
La garniture, non conforme à l'invention, obtenue ici, présente les caractéristiques suivantes :
• La conductivité thermique est de 38 mW/m.K, mesurée à 10°C selon la norme ISO 8301 .
• La résistivité au passage de l'air est de 5000 N.s.nrï4 mesurée selon la norme EN29053 (ISO9053).
• Le coefficient d'absorption acoustique est de 0,96 à 3150Hz, mesuré selon la norme DA 49 1997.
Le procédé de fibrage selon l'invention a ainsi permis de manière non évidente de fournir un produit d'isolation thermique et phonique qui jusque-là n'existait pas et ce grâce à plusieurs caractéristiques techniques relatives pour l'essentiel à la vitesse de rotation de l'assiette de fibrage, à la température et la pression du brûleur, à la tirée de fibres, et à la vitesse du tapis de réception.
Le produit, selon l'invention, présente une impédance acoustique comparable aux produits sur le marché ainsi qu'une conductivité thermique peu dégradée malgré une forte diminution du grammage, permettant d'atteindre un niveau de résistance thermique important et une impédance acoustique quasiment identique avec une épaisseur de nappe réduite de façon significative.
Enfin, le produit selon l'invention par son grammage relativement faible se présente sous forme de plaques minces, souples et légères qui peuvent être stockées sous forme de rouleaux. Ces plaques permettent ensuite de réaliser des garnitures rigides, moulées par thermo-compression, et de forme variées.
Et, comme on peut le voir au vue de l'exemple comparatif, la Demanderesse a réussi à réduire le grammage d'un produit d'isolation, ce dernier étant donc moins lourd, tout en dégradant très peu les propriétés d'isolation thermique et en conservant les propriétés d'isolation acoustique dudit produit.

Claims

REVENDICATIONS
1 . Produit d'isolation thermique et/ou phonique non cuit, à base de laine minérale, avantageusement de laine de verre, comprenant une nappe de laine minérale ensimée par au moins un liant, ladite nappe ensimée ayant :
- une masse surfacique, ou grammage, inférieure ou égale à 350 g/m2, de préférence inférieure ou égale à 300g/m2, voire inférieure ou égale à 250g/m2, et, de façon optionnelle, supérieure ou égale à 200g/m2, mesurée selon la norme EN 822,
- un micronaire d'au plus 3 sous 5 grammes, de préférence d'au plus 15 l/min, mieux encore d'au plus 12 l/min, et d'au moins 9 l/min, et
- une épaisseur supérieure à 10 mm, voire supérieure ou égale à 15 mm, voire même supérieure ou égale à 25 mm.
2. Produit la revendication 1 , comprenant entre 8% et 14% en poids de liant, de préférence entre 9% et 13% en poids de liant, par rapport au poids total du mélange laine minérale et liant, et est choisi parmi les liants thermodurcissables.
3. Produit selon la revendication 2, dans lequel le liant est choisi parmi les liants thermodurcissables à base (i) de résine formo-phénolique, (ii) de polyépoxydes, ou (iii) de glucides.
4. Produit selon l'une des revendications 1 à 3, dans lequel les fibres de laine minérale sont couchées sur un voile, tissé ou non tissé, hydrophobe et/ou oléophobe.
5. Produit selon la revendication 4, dans lequel le voile a, en outre, des propriétés ignifuges et/ou fongicides grâce à un composé fixé audit voile par imprégnation, enduction ou thermofixation.
6. Produit selon la revendication 4 ou 5, dans lequel le voile est un voile tissé à base de polyester ou un voile non tissé, aiguilleté, à base de fibres (i) de polyester et/ou de viscose, (ii) de fibres de polypropylène, ou (iii) de fibres de carbone, ou un voile de verre renforcé de polyester.
7. Garniture obtenue à partir d'un produit d'isolation thermique et/ou phonique selon l'une des revendications 1 à 6 par moulage dans une forme à une température de polymérisation du liant, la garniture, éventuellement non plane se conformant aux contours de la surface support sur laquelle elle est destinée à être montée.
8. Garniture selon la revendication 7, présentant une conductivité thermique inférieure ou égale à 42 mW/(m.K), de préférence inférieure ou égale à 40 mW/(m.K), mesurée selon la norme ISO 8301 à 10°C, et/ou présentant :
une résistivité au passage de l'air supérieure ou égale à 28000 N.s/m4, mesurée selon la norme ISO 9053, lorsque ladite nappe de laine minérale a une épaisseur supérieure ou égale à 10 mm, ou
une résistivité au passage de l'air supérieure ou égale à 13500 N.s/m4, mesurée selon la norme ISO 9053, lorsque ladite nappe de laine minérale a une épaisseur supérieure ou égale à 15 mm, ou
· une résistivité au passage de l'air supérieure ou égale à 8000 N.s/m4, mesurée selon la norme ISO 9053, lorsque ladite nappe de laine minérale a une épaisseur supérieure ou égale à 25 mm.
9. Garniture selon la revendication 7 ou 8, présentant une absorption acoustique supérieure ou égale à 0,8 entre 1300 et 9000 Hz, avantageusement entre 1800 et 9000 Hz, mesurée selon la norme DA 49 1997.
10. Procédé de fabrication d'un produit d'isolation thermique et/ou phonique non cuit, à base de laine minérale, avantageusement de laine de verre, selon l'une des revendications 1 à 6, à l'aide d'une installation comportant un dispositif par centrifugation interne qui comprend au moins un centrifugeur apte à tourner autour d'un axe X, notamment vertical, et dont la bande périphérique est percée d'une pluralité d'orifices pour délivrer des filaments d'un matériau fondu, un moyen d'étirage gazeux à haute température sous forme d'un brûleur annulaire qui assure l'étirage des filaments en fibres, et un tapis de réception associé à des moyens d'aspiration pour réceptionner les fibres, consistant à régler une combinaison de paramètres qui sont au moins :
- la pression du brûleur, qui est comprise entre 250 et 750 mm CE, de préférence entre 280 et 440 mm CE,
- la température du brûleur, qui est comprise entre 1350°C à 1450°C, - la tirée de fibres par jour et par orifice du centrifugeur, qui est d'au plus 1 kg, la tirée totale étant d'au plus 26 tonnes/jour, et
- le produit (P) de la vitesse de défilement du tapis de réception par la largeur dudit tapis, qui est compris entre 38 et 90m2/min.
1 1 . Procédé de fabrication selon la revendication 10, dans lequel la vitesse de rotation du centrifugeur est comprise entre 1500 à 3000 tours/minute, et/ou le diamètre du centrifugeur est compris entre 200 et 800 mm, de préférence 400 mm et/ou dans lequel les fibres de laine minérale sont réceptionnées sur le tapis de réception sous forme de mèches ayant une longueur comprise entre 10 et 50 cm.
12. Procédé de fabrication selon la revendication 10 ou 1 1 , dans lequel la vitesse de défilement du tapis de réception est comprise entre 30 m/min et 50 m/min et dans lequel la largeur du tapis de réception est comprise entre 700 mm et 1800 mm.
13. Procédé de fabrication d'une garniture selon l'une des revendications 7 à 9, comprenant le procédé de fabrication d'un produit d'isolation thermique et/ou phonique, selon l'une des revendications 10 à 12, suivi par une étape de thermocompression, mettant en œuvre simultanément (i) un processus de chauffe dudit produit à une température suffisante pour ramollir ou polymériser le liant compris dans ledit produit et (ii) un processus de déformation dudit produit qui se conforme ainsi à la forme désirée de la garniture.
14. Utilisation d'une garniture selon l'une des revendications 7 à 9, en tant qu'isolant thermique et/ou phonique dans un véhicule, en particulier pour l'isolation thermique et/ou phonique d'un moteur ou d'un habitacle de véhicule, sur un plafond, un mur ou une paroi, sous une toiture ou encore dans un équipement d'électroménager.
PCT/FR2017/051963 2016-07-22 2017-07-19 Produit d'isolation thermique et/ou phonique non cuit et garniture d'isolation obtenue a partir de ce produit WO2018015657A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197004090A KR102405001B1 (ko) 2016-07-22 2017-07-19 미소성 단열 및/또는 차음 제품 및 그로부터 얻어진 절연 블랭킷
JP2019500797A JP7071326B2 (ja) 2016-07-22 2017-07-19 未硬化の断熱及び/又は遮音性製品、並びにこの製品から得られる絶縁性ライニング
US16/316,700 US11299418B2 (en) 2016-07-22 2017-07-19 Unfired heat and/or sound insulation product and insulation blanket obtained therefrom
CA3031011A CA3031011A1 (fr) 2016-07-22 2017-07-19 Produit d'isolation thermique et/ou phonique non cuit et garniture d'isolation obtenue a partir de ce produit
EP17748546.3A EP3488038A1 (fr) 2016-07-22 2017-07-19 Produit d'isolation thermique et/ou phonique non cuit et garniture d'isolation obtenue a partir de ce produit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1657002A FR3054249B1 (fr) 2016-07-22 2016-07-22 Produit d'isolation thermique et/ou phonique non cuit et garniture d'isolation obtenue a partir de ce produit
FR1657002 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018015657A1 true WO2018015657A1 (fr) 2018-01-25

Family

ID=56920834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/051963 WO2018015657A1 (fr) 2016-07-22 2017-07-19 Produit d'isolation thermique et/ou phonique non cuit et garniture d'isolation obtenue a partir de ce produit

Country Status (8)

Country Link
US (1) US11299418B2 (fr)
EP (1) EP3488038A1 (fr)
JP (1) JP7071326B2 (fr)
KR (1) KR102405001B1 (fr)
CA (1) CA3031011A1 (fr)
FR (1) FR3054249B1 (fr)
MA (1) MA45746A (fr)
WO (1) WO2018015657A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200065191A (ko) * 2018-11-29 2020-06-09 (주)엘지하우시스 건축용 복합 단열재 및 이를 포함하는 단열 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1429543A (fr) 1964-02-28 1966-02-25 Owens Corning Fiberglass Corp Panneau de paroi composite
WO2003098209A1 (fr) 2002-05-22 2003-11-27 Saint-Gobain Isover Dispositif de determination de la finesse de fibres minerales
EP1418292A1 (fr) * 2002-11-07 2004-05-12 Saint-Gobain Isover Feutre à base de fibres minérales pour absorber le bruit d'impact
WO2008043960A1 (fr) 2006-10-11 2008-04-17 Saint-Gobain Isover Resine phenolique, procede de preparation, composition d'encollage pour fibres minerales et produits resultants
WO2008043961A1 (fr) 2006-10-11 2008-04-17 Saint-Gobain Isover Resine phenolique, procede de preparation, composition d'encollage pour fibres minerales et produits resultants
WO2009112784A1 (fr) * 2008-02-28 2009-09-17 Saint-Gobain Isover Produit a base de fibres minerales et son procede d'obtention

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0888259A4 (fr) * 1996-03-20 2001-04-11 Owens Corning Fiberglass Corp Procede de fabrication d'un produit d'isolation
JP2001337681A (ja) * 2000-05-26 2001-12-07 Nippon Muki Co Ltd 吸音断熱インシュレータおよびその製造方法
JP2002046551A (ja) * 2000-07-31 2002-02-12 Nippon Muki Co Ltd 自動車用インシュレータ
US20100000170A1 (en) 2008-07-03 2010-01-07 Parks Jerry M Pre-Applied Waterless Adhesive On HVAC Facings With Sealable Flange
FR2940648B1 (fr) * 2008-12-30 2011-10-21 Saint Gobain Isover Produit d'isolation a base de laine minerale resistant au feu, procede de fabrication et composition d'encollage adaptee
FR2975690B1 (fr) * 2011-05-25 2014-06-13 Saint Gobain Isover Composition d'encollage exempte de formaldehyde pour fibres, notamment minerales, et produits resultants.
FR3000971B1 (fr) * 2013-01-11 2016-05-27 Saint Gobain Isover Produit d'isolation thermique a base de laine minerale et procede de fabrication du produit
JP6103506B2 (ja) * 2014-07-22 2017-03-29 旭ファイバーグラス株式会社 無機繊維断熱材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1429543A (fr) 1964-02-28 1966-02-25 Owens Corning Fiberglass Corp Panneau de paroi composite
WO2003098209A1 (fr) 2002-05-22 2003-11-27 Saint-Gobain Isover Dispositif de determination de la finesse de fibres minerales
EP1418292A1 (fr) * 2002-11-07 2004-05-12 Saint-Gobain Isover Feutre à base de fibres minérales pour absorber le bruit d'impact
WO2008043960A1 (fr) 2006-10-11 2008-04-17 Saint-Gobain Isover Resine phenolique, procede de preparation, composition d'encollage pour fibres minerales et produits resultants
WO2008043961A1 (fr) 2006-10-11 2008-04-17 Saint-Gobain Isover Resine phenolique, procede de preparation, composition d'encollage pour fibres minerales et produits resultants
WO2009112784A1 (fr) * 2008-02-28 2009-09-17 Saint-Gobain Isover Produit a base de fibres minerales et son procede d'obtention

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200065191A (ko) * 2018-11-29 2020-06-09 (주)엘지하우시스 건축용 복합 단열재 및 이를 포함하는 단열 시스템
KR102438945B1 (ko) * 2018-11-29 2022-09-01 (주)엘엑스하우시스 건축용 복합 단열재 및 이를 포함하는 단열 시스템

Also Published As

Publication number Publication date
FR3054249A1 (fr) 2018-01-26
JP2019528382A (ja) 2019-10-10
US20190185366A1 (en) 2019-06-20
JP7071326B2 (ja) 2022-05-18
KR102405001B1 (ko) 2022-06-07
KR20190031502A (ko) 2019-03-26
CA3031011A1 (fr) 2018-01-25
US11299418B2 (en) 2022-04-12
EP3488038A1 (fr) 2019-05-29
MA45746A (fr) 2019-05-29
FR3054249B1 (fr) 2019-08-30

Similar Documents

Publication Publication Date Title
EP3484752B1 (fr) Ecran de protection acoustique et thermique pour véhicule automobile
FR2949791A1 (fr) Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique
KR101363423B1 (ko) 팽창 퍼라이트·실리카 성형 구조체를 갖는 저밀도 무기질 파우더 진공단열재, 이의 제조 방법 및 이의 성형기
WO2018002457A1 (fr) Panneau de protection acoustique destiné à habiller une paroi de véhicule automobile
EP3291974B1 (fr) Panneau pour l'habillage et/ou l'insonorisation d'une paroi d'un vehicule et procede de realisation associe
WO2017178713A1 (fr) Panneau de protection acoustique destiné à habiller une paroi de véhicule automobile
KR20030051591A (ko) 복합재 요소(들)의 제조 방법 및 복합재 요소
FR3054249B1 (fr) Produit d'isolation thermique et/ou phonique non cuit et garniture d'isolation obtenue a partir de ce produit
WO2014009381A1 (fr) Nouveaux matériaux composites allégés, leurs procédés de fabrication et leurs utilisations
WO2016116684A1 (fr) Panneau de protection acoustique pour moteur de véhicule automobile
EP0818425A1 (fr) Matériau à base de fibres minérales
US20120101176A1 (en) Moulded Product for Automotive Panels
EP3339788A1 (fr) Fours et produits d'isolation pour fours
CA3078751A1 (fr) Panneau acoustique en laine minerale et procede de fabrication d'un tel panneau
CN110438661A (zh) 一种新型环保阻燃毡及其制备方法
WO2022167931A1 (fr) Procédé optimisé de production d'une isolation thermique composite
WO2017153685A1 (fr) Procédé de réalisation d'un écran de protection thermo-acoustique pour véhicule automobile
WO2001003916A9 (fr) Materiau isolant anti-feu, adapte a l'isolation aeronautique
JP4331576B2 (ja) 真空断熱材用無機繊維マットの製造方法
FR2942829A1 (fr) Materiau d'insonorisation
WO2019073019A1 (fr) Panneau acoustique en laine de verre et procede de fabrication d'un tel panneau
EP3747640B1 (fr) Procédé de fabrication d'une pièce de véhicule automobile et pièce de véhicule associée
EP4139118B1 (fr) Élément composite intermédiaire, procédé de fabrication et pièce composite
FR3117426A1 (fr) Ecran de protection acoustique
EP3938162A1 (fr) Procede de fabrication d'un renfort fibreux pre-impregne a partir d'un non-tisse thermoplastique et d'un renfort de fibres naturelles vegetales, et renfort fibreux pre-impregne obtenu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17748546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500797

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3031011

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004090

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017748546

Country of ref document: EP

Effective date: 20190222