EP3938162A1 - Procede de fabrication d'un renfort fibreux pre-impregne a partir d'un non-tisse thermoplastique et d'un renfort de fibres naturelles vegetales, et renfort fibreux pre-impregne obtenu - Google Patents

Procede de fabrication d'un renfort fibreux pre-impregne a partir d'un non-tisse thermoplastique et d'un renfort de fibres naturelles vegetales, et renfort fibreux pre-impregne obtenu

Info

Publication number
EP3938162A1
EP3938162A1 EP20709228.9A EP20709228A EP3938162A1 EP 3938162 A1 EP3938162 A1 EP 3938162A1 EP 20709228 A EP20709228 A EP 20709228A EP 3938162 A1 EP3938162 A1 EP 3938162A1
Authority
EP
European Patent Office
Prior art keywords
strip
reinforcement
fibers
thermoplastic
natural plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20709228.9A
Other languages
German (de)
English (en)
Inventor
Thibault ROUMIER
Floran PIERRE
Karim Behlouli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lineo
Original Assignee
Lineo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lineo filed Critical Lineo
Publication of EP3938162A1 publication Critical patent/EP3938162A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2311/00Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
    • B29K2311/10Natural fibres, e.g. wool or cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • the present invention relates to a method of manufacturing a composite material.
  • the present invention relates to a process for manufacturing a fibrous material prepreg with thermoplastic polymer, designated by the term prepreg fibrous reinforcement.
  • the invention also relates to a prepreg fiber reinforcement capable of being obtained by carrying out the process of the present invention.
  • This prepreg reinforcing material obtained by implementing the process of the present invention consists, on the one hand, of a thermoplastic nonwoven, preferably of synthetic polymer of polypropylene (PP) type or of polylactic acid ( PLA), or any type of thermoplastic polymer, and, on the other hand, by a reinforcing web of natural vegetable fibers, short or long, for example in linen.
  • a thermoplastic nonwoven preferably of synthetic polymer of polypropylene (PP) type or of polylactic acid ( PLA), or any type of thermoplastic polymer, and, on the other hand, by a reinforcing web of natural vegetable fibers, short or long, for example in linen.
  • thermosetting prepreg material obtained by hot calendering, between two rollers, of unidirectional reinforcements made of natural fibers, or even by integral impregnation of a layer of fibers in a thermosetting resin bath, followed by drying.
  • this operation can be carried out by hot calendering of a thermoplastic polymer film, between two cylinders or rolls heated and driven in rotation.
  • This process has the advantage of being easy to implement, in particular as regards hot calendering.
  • the films thermoplastic polymers being particularly widespread on the market, this technique is particularly economical.
  • this residual moisture not evacuated during the compression by calendering is responsible for the formation of bubbles or microbubbles, in the final material, resulting in the creation of porosity, the bubbles being responsible for aesthetic problems on the final material, which then does not have a smooth and homogeneous surface, but also, and above all, has degraded mechanical characteristics.
  • melt flow index (or MFI for “Melt Flow Index”) of thermoplastic films is generally considered to be particularly low, with a maximum of the order of 8 g / 10 min, knowing that the melt index. fluidity is defined as the mass of preheated polymer, in grams, flowing in 10 minutes through a capillary of specific diameter and length, under the pressure of a standard weight piston. Such a low melt index implies that the resin, after melting the polymer, will not permeate the natural fiber backing optimally.
  • the lower the melt index of a polymer the less fluid the resin will be and, consequently, the less well the reinforcement will impregnate.
  • such a technique allows, compared to film stacking, an improvement in the impregnation of the reinforcement, due in particular to the melt index of the powder, of the order of 50 g / 10 min, which is substantially greater than the melt index of the thermoplastic film. Residual moisture from natural fibers is also more easily removed during compression. However, moisture wicking can be further improved to achieve optimum final material quality.
  • the sprinkling method remains a relatively expensive technology, as it requires significant investments, in particular in the purchase of a sprinkling and / or calendering module, for companies not having previously equipped them.
  • a three-dimensional preform by first producing an initial preform of several layers, or folds, of fibers which are superimposed, followed by a step of forming the initial preform in a press, generally hot, in order to obtain, finally, a three-dimensional preform of the desired shape. This will then be used for the manufacture of a composite part.
  • a method for producing a three-dimensional preform in which the initial preform, comprising several superimposed plies and each consisting of unidirectional continuous fibers and a first polymer, is then, during forming, sandwiched between two external webs, arranged at the interfaces between said initial preform and the male tool and between this preform and the female tool.
  • the outer webs are made of a second polymer, different from the first, thermoplastic or thermosetting, preferably polyamide, and remain solid while deforming during forming, this step being carried out at a forming temperature below the melting temperature. of said second polymer, while the first polymer constituting the plies of the initial preform is liquid or viscous at the forming temperature.
  • the aim here is to manufacture a complex three-dimensional preform, requiring the implementation of different stages in a long process to implement, while the problem of the evacuation of residual moisture in the manufacture of pre-reinforcements. impregnated is not resolved.
  • the first step is to adjust the width of the tape to the desired width, by means of calibration means, before associating the tape, on each of its faces, with a polymeric binder making it possible to ensure homogeneous cohesion of the tape, so that the total mass of the binder does not exceed 25% of the total mass of the tape obtained.
  • Said binder affixed to both sides of the reinforcing tape is in the form of a powder of one or more thermoplastic and / or thermosetting polymers or of a nonwoven or of a fabric made of one or more thermoplastic polymers and / or thermosets.
  • the tapes are made of carbon fibers or other mineral material, ceramic, glass, silica, basalt or aramid, and the problem of the evacuation of moisture from a reinforcing veil of natural plant fibers is not not resolved.
  • a proportion of binder serves to consolidate the web of carbon fibers, and does not allow not a good impregnation of said fibers.
  • the carbon web is thus made easy to handle, but requires additional impregnation to obtain a ready-to-use composite material.
  • the resulting mixture is then compacted at high temperature to obtain a composite product.
  • the removal of residual moisture contained in the plant fibers here is likely not to be optimal, especially in the case where the fibers are soaked in the phenolic resin before the drying step.
  • this step requires the use of an oven and this step is time consuming; in fact, at least 1 hour and up to 3 hours are necessary to remove residual moisture.
  • the invention offers the possibility of alleviating, at least in part, the various drawbacks of the state of the art by proposing a process for manufacturing pre-impregnated natural vegetable fibers exhibiting optimum impregnation of the reinforcement as well as mechanical characteristics. and optimal aesthetics for the subsequent manufacture of a high quality composite material, which process has allowed residual moisture to be evacuated from natural plant fibers.
  • the present invention relates to a method of manufacturing a prepreg fiber reinforcement composed of a reinforcement of natural plant fibers impregnated with a thermoplastic polymer, said prepreg fiber reinforcement being intended to be used in the manufacture of a part made of composite material, said method being characterized in that it comprises, at least, the following steps:
  • said prepreg fiber reinforcement is wound in the form of a roll.
  • thermoplastic nonwoven In a first variant of the process of the invention, a single strip of thermoplastic nonwoven is used.
  • thermoplastic nonwoven In another variant of this process, a second strip and a third strip of thermoplastic nonwoven are used, one coming on a first, upper face of said first reinforcing fiber strip. natural plant fibers and the other coming on a second, lower face of said first reinforcing strip of natural plant fibers.
  • a temperature T1 is applied within said first heating zone of between 60 and 250 ° C.
  • a temperature T2 of between 100 and 280 ° C. is applied to it, advantageously.
  • a pressure is applied during the pressing step of between 10 and 150 N / cm 2 , preferably equal to 80 N / cm 2 .
  • said first reinforcing strip of natural vegetable fibers long or short, preferably flax fibers or jute fibers or hemp fibers or nettle fibers or kenaf fibers, or a mixture of these.
  • thermoplastic nonwoven fabric made from polypropylene and its derivatives, or polylactic acid (PLA) and its derivatives, or polyamide and its derivatives, or high or low density polyethylene and its derivatives, or polyester and its derivatives, or a mixture of several of these thermoplastic compounds.
  • PLA polylactic acid
  • polyamide polyamide
  • high or low density polyethylene and its derivatives or polyester and its derivatives, or a mixture of several of these thermoplastic compounds.
  • a first reinforcing strip of natural plant fibers comprising unidirectional long flax fibers and a second strip of thermoplastic nonwoven made from polypropylene is used.
  • the present invention also relates to a prepreg fiber reinforcement capable of being obtained by implementing the aforementioned manufacturing process, said reinforcement being characterized in that it is composed of a first reinforcing strip of natural plant fibers. and at least a second strip of thermoplastic nonwoven.
  • the prepreg fiber reinforcement according to the invention consists only of a first reinforcing strip of natural plant fibers and of a second strip of thermoplastic nonwoven.
  • said natural plant fibers of said reinforcing strip of the prepreg fiber reinforcement are flax fibers, while the thermoplastic material of said thermoplastic nonwoven web is polypropylene.
  • the prepreg fiber reinforcement of the invention preferably comprises a proportion of thermoplastic nonwoven greater than or equal to 30% and less than or equal to 80% by mass relative to the total mass of the reinforcement, while the volume ratio Vf% of natural plant fibers in this reinforcement is between 15 and 70% by volume.
  • the proportion of thermoplastic nonwoven in this reinforcement is between 35 and 40% by mass, relative to the total mass of the reinforcement, while the volume ratio Vf% of natural plant fibers is between 45 and 55 % of the volume of the reinforcement.
  • the invention also relates to a part made of composite material comprising at least one such prepreg fiber reinforcement and a core made of honeycomb, cardboard, foam or thermoplastic polymer.
  • the method which is the subject of the present invention has many advantages, and in particular that of providing a material of the reinforcement type made from natural plant fibers, short or long, in particular from flax fibers, homogeneously and optimally pre-impregnated with a polymer.
  • thermoplastic of a higher quality than the quality of prepreg substrate currently obtained by the implementation of known processes.
  • thermoplastic nonwoven associated with the layer of natural fibers, resulting in a optimum and homogeneous impregnation of these fibers by the polymer in the form of a strip of thermoplastic nonwoven material.
  • the prepreg fiber reinforcement according to the invention has optimal mechanical qualities such that it can constitute a composite material directly ready for use, or else be combined with another element to form a part made of composite material. .
  • FIG. 1 shows, schematically, and in a side view, the different steps of a particular and preferred embodiment of the manufacturing process of a prepreg fiber reinforcement of the invention.
  • the subject of the present invention is in particular a process for manufacturing a prepreg fiber reinforcement 1.
  • said prepreg fiber reinforcement 1, obtained by implementing the present process is composed at least, on the one hand, of a reinforcement of natural plant fibers 2 and, on the other hand, of 'a thermoplastic polymer 3, of which said reinforcement of natural plant fibers 2 is intended to be impregnated during the process of the invention.
  • thermoplastic nonwoven 3 the latter having a defined melting point TF.
  • thermoplastic nonwoven material advantageously of the same nature, but which can also be made from different thermoplastic nonwoven materials.
  • said two strips of thermoplastic nonwoven 3 then sandwiching the reinforcing strip of natural plant fibers 2.
  • the latter then constitutes the core while the strips of thermoplastic nonwoven on one side and on the other of this core of natural vegetable fibers constitute the skins.
  • thermoplastic nonwoven material is meant a material in the form of a web, a sheet or a mat of thermoplastic fibers arranged randomly and held together. different ways.
  • thermoplastic nonwoven material 3 used in the present invention therefore has a certain porosity, in particular compared to the thermoplastic films or fabrics, therefore non-porous, used in the processes for manufacturing composite materials pre-impregnated with l state of the art.
  • this thermoplastic nonwoven material 3 is made from polypropylene (PP) and its derivatives, or polylactic acid (PLA) and its derivatives, or polyamide (nylon) and its derivatives, or polyethylene high or low density and its derivatives, or polyester and its derivatives or even a mixture of these thermoplastic compounds or any other thermoplastic polymer.
  • PP polypropylene
  • PLA polylactic acid
  • Nylon polyamide
  • polyethylene high or low density and its derivatives or polyester and its derivatives or even a mixture of these thermoplastic compounds or any other thermoplastic polymer.
  • thermoplastic nonwoven material 3 is made from polypropylene.
  • the reinforcement 2 made of natural vegetable fibers is based on natural vegetable fibers, short or long, of flax, or of jute fibers, or of hemp, or nettle fibers, or kenaf fibers, or any other type of natural plant fibers potentially usable in the composite field, or else based on a mixture of these aforementioned natural plant fibers.
  • a reinforcement made of natural vegetable flax fibers 2 the fibers of which are advantageously long, having a length of for example between 1 and 60 cm, preferably between 10 and 40 cm and, more more preferably still substantially equal to or equal to 30 cm and 100% oriented, in other words unidirectional natural flax fibers.
  • said first reinforcing strip 4 of natural plant fibers 2 is placed and said second strip 5 of thermoplastic nonwoven 3 in contact with one another.
  • the first 4 and second 5 bands are brought into contact by a device 6, illustrated in FIG. 1, and allowing automated implementation of the method of the invention.
  • Such a device 6 preferably comprises, among other things, at least, means 7 for unwinding a first reinforcing roll of natural plant fibers 2 as well as means 8 for unwinding a second roll of thermoplastic nonwoven 3 for the formation, respectively, of said first 4 and second 5 bands, the latter gradually approaching until they come into contact with one another.
  • the device 6 for implementing the method of the invention further comprises means for unwinding this third strip of thermoplastic nonwoven.
  • the two rolls of nonwoven are positioned on either side of the reinforcing roll 2, at the inlet of the device 6, so that the second strip of thermoplastic nonwoven 3 comes into contact on a first face. upper part of said first reinforcing strip 4 2 and that the third strip comes into contact on its opposite lower face.
  • the drying of the natural plant fibers of the first strip 4, and therefore the evacuation of the residual moisture from these is carried out for a period of between 10 seconds and 5 min, the drying time being dependent, in particular, parameters and in particular the proportion of natural plant fibers 2 and of thermoplastic polymer.
  • the passage time of the two bands 4 and 5 within the first heating zone 9 is between 10 seconds and 5 min.
  • This drying is, therefore, particularly rapid, while allowing the production of a final product with very good mechanical performance.
  • first strip 4 of the reinforcement of natural plant fibers 2 is shown as being positioned above the second strip 5 of thermoplastic nonwoven material 3 for moisture evacuation. residual within said first strip 4, during the first steps of the method of the invention, this positioning not being, however, limiting of the method which is the subject of the invention.
  • the positioning is the reverse, that is to say that the second strip 5 of thermoplastic nonwoven material 3 is located above said first strip 4, and that the evacuation of residual moisture from the reinforcement of natural plant fibers 2 is just as optimal.
  • said two bands 4, 5 are already in contact with each other at the entrance of said first heating zone 9 and that they are routed all along this zone 9 in contact with the one on the other, without however altering the evacuation of residual moisture present within the first strip 4 of the reinforcement of natural plant fibers 2, due to the porosity of the thermoplastic nonwoven material 3 of the strip 5.
  • a temperature T1 of between 60 and 250 ° C. is preferably applied, this being chosen according to the nature of the thermoplastic nonwoven material 3 of which the second strip 5 is made, taking into account the fact that this temperature T1 applied must imperatively be lower than the melting temperature TF of said material 3.
  • thermoplastic nonwoven material 3 consists of polypropylene
  • the melting point of which TF is generally considered to be of the order of 170 ° C depending on its tacticity, in d ' other terms depending on the degree and form of regularity of the distribution of the substituent groups with respect to the main aliphatic chain a temperature T1 will preferably be applied, in the first heating zone 9, of less than 160 ° C.
  • this temperature T1 applied within said first heating zone 9 is as high as possible, while avoiding both the melting of the thermoplastic nonwoven material 3 of the strip 5 and the thermal degradation of the natural plant fibers 2. of the strip 4, in order to evacuate the humidity contained in said fibers 2 as quickly as possible.
  • the temperature applied at the level of the heating means can be between 150 and 200 ° C. Indeed, even if the melting temperature of polypropylene is of the order of 170 ° C, the polypropylene will not be present long enough in said first heating zone 9 to reach this temperature and begin to melt.
  • the effective elimination of this moisture obtained by the implementation of the method of the invention makes it possible to avoid the formation of air bubbles or microbubbles due to the vaporization of the humidity in the resin during the curing. of the prepreg.
  • the creation of a porosity in the final product, namely the prepreg fiber reinforcement 1 which then has optimum quality, in particular in terms of mechanical characteristics.
  • the presence of porosity at one point of a material is necessarily synonymous with degraded mechanical characteristics at this point, compared to the mechanical characteristics of other areas of the material not exhibiting this porosity.
  • the process of the invention makes it possible to avoid this and to ensure that a prepreg fiber reinforcement 1 is obtained which has mechanical and aesthetic characteristics that are homogeneous and optimal over its entire surface.
  • said first strip 4 and said second strip 5 are then conveyed, in contact with each other, at the level a second heating zone 11, which also comprises said device 6.
  • This second heating zone 1 1 is preferably located immediately downstream of the first heating zone 9, taking into account the direction of routing of the bands 4, 5, shown by the arrow in the accompanying figure. At this second heating zone 11, a temperature T2 is applied which is, this time, higher than the melting point TF of the thermoplastic nonwoven material 3.
  • this temperature T2 is applied through the action of suitable heating means 12 shown in the accompanying figure, by heating means in the upper part and in the lower part of said device 6.
  • a temperature T2 of between 100 and 280 ° C is preferably applied, the latter being, like the temperature T1, chosen according to the thermoplastic nonwoven material 3 of which it is made. the second strip 5.
  • the temperature T2 must, this time, imperatively be higher than the melting temperature TF of said material 3.
  • thermoplastic nonwoven material 3 consists of polypropylene, the melting point of which TF is approximately 170 ° C, a temperature T2 will preferably be applied in the second heating zone 1 1 greater than 180 ° C and up to 220 ° C, and more preferably still, a temperature T2 of the order of 200 ° C.
  • thermoplastic nonwoven 3 allows, once the evacuation of moisture in the first heating zone 9, to cause the fusion of said second strip 5 of thermoplastic nonwoven 3 and the homogeneous diffusion of this molten thermoplastic nonwoven within the natural plant fibers of the reinforcement 2.
  • a complex 13 is then obtained consisting of natural plant fibers and molten thermoplastic nonwoven.
  • the proportion of thermoplastic nonwoven is greater than or equal to 30% and less than or equal to 80% by mass relative to the mass total of complex 13, the proportion of natural plant fibers being between 20 and 70% by mass relative to the total mass of the complex, while the volume ratio of natural fibers plant (noted Vf%) in this complex 13 is between 15 and 70% by volume.
  • thermoplastic nonwoven in this complex 13 is between 35 and 40% by mass, relative to the total mass of the complex 13, while the rate by volume of natural vegetable fibers Vf% is between 45 and 55% of the volume of complex 13.
  • the complex 13 thus obtained is then conveyed to a calendering device 14, which comprises the device 6 for implementing the method of the invention, for carrying out the pressing step.
  • This calendering device 14 is advantageously located immediately downstream of the second heating zone 12, taking into account the direction of conveyance of the strips 4, 5, then of the complex 13, inside said device 6.
  • the calendering device 14 is preferably in the form of a first pressure roller 14a, operating from above and a second pressure roller 14b operating from below, the strip 13 consisting of natural fibers and non-woven fabric. molten thermoplastic passing between said two pressure rollers 14a, 14b, to guarantee a homogenization of the diffusion of the molten thermoplastic nonwoven throughout the thickness of the natural plant fibers 2.
  • a pressure is applied, during this pressing step, preferably by means of said calendering device 14, of between 10 and 150 N / cm 2 , preferably equal to 80 N / cm 2 .
  • the calendering device 14 provides, in addition to the pressing function, a heating function up to a temperature T2 above the melting temperature TF of the thermoplastic 3.
  • this complex 13 is entrained in a cooling zone 15. that the device 6 advantageously comprises.
  • This cooling zone 15 is preferably located immediately downstream of the calendering device 14, taking into account the direction of travel of the strips 4, 5 and then of the complex 13, inside said device 6.
  • an ambient temperature of the order of 20 ° C, or a lower temperature, between 5 and 15 ° C, is preferably applied through suitable means, for example in the form refrigeration means 16 in the upper part and in the lower part of the device 6.
  • this cooling zone 15 makes it possible to cool the complex 13 for a solidification of the latter, more particularly through a solidification of the thermoplastic 3 distributed homogeneously within the natural plant fibers 2.
  • the desired end product is obtained, namely the prepreg fiber reinforcement 1.
  • this prepreg fiber reinforcement 1 is then wound in the form of a roll 17 through suitable winding means, for example in the form of a winder, in order to be able to easily store the final product 1 obtained, in waiting for the use of this prepreg fiber reinforcement 1 to manufacture, in particular, parts of composite material in various fields such as automotive, aeronautics, mechanics, etc.
  • impregnated 1 is carried out by means of suitable drive means coupled, preferably, to motor means.
  • a device 6 consisting of a double band press is used, allowing, throughout the path of the bands 4 and 5 within this device 6, 'application of a light compression between these two bands, favoring a pre-assembly thereof, in addition to the calendering device 14 at which the pressure is really applied for the shaping of the product.
  • the prepreg reinforcement 1 obtained by the implementation of the process according to the present invention can then, in a particularly advantageous manner, enter into the composition of three-dimensional preforms having optimal qualities, by a hot forming operation, also called a dyeing operation. stamping, before forming, by still subsequent operations, molding and / or draping, a part of composite material.
  • the method of the present invention makes it possible to obtain a prepreg reinforcement 1, formed of a thermoplastic nonwoven 3, calendered on a reinforcing linen web 2, having optimized mechanical and aesthetic characteristics, and which can be used in the production. manufacture of parts in composite material, in particular for the field of mechanics or transport such as the automobile, aeronautics, space or even the railway field.
  • the present invention also relates to a prepreg fiber reinforcement 1 composed of a first reinforcing strip 4 of natural plant fibers 2 and at least one second strip 5 of thermoplastic nonwoven 3, said reinforcement 1 being capable of being obtained by implementing the process of the present invention.
  • the prepreg fiber reinforcement 1 comprises a proportion of nonwoven thermoplastic greater than or equal to 30% and less than or equal to 80% by mass relative to the total mass of reinforcement 1, preferably between 30 and 60% by mass.
  • the proportion of natural plant fibers is between 20 and 70% by mass relative to the total mass of said reinforcement 1, preferably between 40 and 70% by mass, while the volume content of natural plant fibers (noted Vf%) in this reinforcement 1 is between 15 and 70% by volume, preferably 35 and 60% by volume.
  • thermoplastic nonwoven in this prepreg fiber reinforcement 1 is between 35 and 40% by mass, relative to the total mass of the reinforcement 1, while the volume rate of natural vegetable fibers Vf% is between 45 and 55% of the volume of reinforcement 1.
  • thermoplastic nonwoven and the volume ratio of natural plant fibers will be adapted according to the envisaged applications, the density of the potential thermoplastic polymer which may vary between 0.9 and 1.3 optionally, and the nature of the fibers.
  • This prepreg fiber reinforcement 1 has, due to its composition containing at least one strip 5 of thermoplastic nonwoven 3, optimum and homogeneous mechanical characteristics over its entire surface, the nonwoven strip in question having impregnated, with homogeneously, the whole of the first reinforcing strip 4 of natural vegetable fibers 2.
  • said prepreg fiber reinforcement 1 consists only of a first reinforcing strip 4 of natural plant fibers 2 and of a second strip 5 of thermoplastic nonwoven 3.
  • the natural plant fibers of said reinforcing strip at 2 are flax fibers, while the thermoplastic material of said strip 5 of thermoplastic nonwoven 3 is polypropylene.
  • the volume ratio of flax fibers Vf% is of the order of, or equal to, 50% by volume while the proportion of thermoplastic nonwoven polymer 3 is order of, or equal to, 37% by mass relative to the total mass of reinforcement 1.
  • the present invention also relates to a part made of composite material comprising at least one such prepreg fiber reinforcement 1.
  • the part made of composite material obtained by using the prepreg reinforcement 1 according to the invention may consist of a panel with a core of honeycomb, cardboard, foam or thermoplastic polymer, which would thus be , advantageously, free from formaldehyde.
  • the heating temperature, in the first heating zone where the plant fibers are dried is indicated as being at 200 ° C, taking into account the fact that the heating time is relatively short, the thermoplastic nonwoven strip polypropylene does not have time to reach such a temperature of 200 ° C and remains at a temperature below its melting point.
  • the density is obtained by calculating the ratio between the mass and the volume of the product.
  • Mf%, Vf% Use of the law of mixtures with the mass of the thermoplastic nonwoven as a reference, weighing of the final composite, and deduction of the density of fibers after processing (evaporation of residual moisture from the fibers).
  • the standard used is ISO 527-5 (UD glass composite tensile strength).
  • a first range is located between 0.01% and 0.15% of strain called “Rigidity_Petite strain” and another range between 0.4% and 0.7% called “Rigidity_Great strain”.
  • this refers to the stiffness / density ratio of the sample.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Procédé de fabrication d'un renfort fibreux pré-imprégné (1) composé d'un renfort en fibres naturelles végétales (2) imprégnées d'un polymère thermoplastique (3), comprenant les étapes : on dispose une première bande (4) de renfort en fibres naturelles végétales (2) et une deuxième bande (5) de non-tissé thermoplastique (3) avec une température de fusion T F au contact l'une de l'autre; on achemine lesdites bandes (4,5) au niveau d'une première zone de chauffage (9) maintenue à une température T1 inférieure à T F; on achemine lesdites bandes (4, 5) au niveau d'une seconde zone de chauffage (11) maintenue à une température T2 supérieure T F; on presse ledit complexe (13) et on l'achemine au niveau d'une zone de refroidissement (15) pour obtenir ledit renfort.

Description

PROCEDE DE FABRICATION D’UN RENFORT FIBREUX PRE-IMPREGNE A PARTIR D’UN NON-TISSE THERMOPLASTIQUE ET D’UN RENFORT DE FIBRES
NATURELLES VEGETALES, ET RENFORT FIBREUX PRE-IMPREGNE OBTENU
La présente invention concerne un procédé de fabrication d’un matériau composite.
Plus particulièrement, la présente invention est relative à un procédé de fabrication d’un matériau fibreux pré-imprégné de polymère thermoplastique, désigné sous le terme renfort fibreux pré-imprégné.
L’invention est également relative à un renfort fibreux pré-imprégné susceptible d’être obtenu par la mise en oeuvre du procédé de la présente invention.
Ce matériau renfort pré-imprégné obtenu par la mise en oeuvre du procédé de la présente invention est constitué, d’une part, par un non-tissé thermoplastique, de préférence en polymère synthétique de type polypropylène (PP) ou de type acide polylactique (PLA), ou tout type de polymère thermoplastique, et, d’autre part, par une voile de renfort de fibres naturelles végétales, courtes ou longues, par exemple en lin.
On connaît déjà, dans l’état de la technique, la fabrication d’un matériau pré-imprégné thermodurcissable obtenu par calandrage à chaud, entre deux rouleaux, de renforts unidirectionnels en fibres naturelles, ou bien encore par imprégnation intégrale d’une couche de fibres dans un bain de résine thermodurcissable, suivi d’un séchage.
Ainsi, il a été imaginé, pour imprégner des renforts unidirectionnels en fibres naturelles de mettre en oeuvre la technique de « film stacking », consistant en un chauffage et une compression simultanée de couches alternées, à savoir au moins une couche d’un film polymère et au moins une couche de fibres sèches.
Par exemple, cette opération peut être effectuée par calandrage à chaud d’un film polymère thermoplastique, entre deux cylindres ou rouleaux chauffés et entraînés en rotation.
Ce procédé présente l’avantage d’être aisé à mettre en oeuvre, notamment pour ce qui est du calandrage à chaud. En outre, les films polymères thermoplastiques étant particulièrement répandus sur le marché, cette technique est particulièrement économique.
Ainsi, la technique du film stacking est particulièrement répandue depuis de nombreuses années.
Cependant, cette technique présente l’inconvénient d’être assez contraignante pour l’imprégnation de renforts en fibres naturelles susceptibles de contenir de l’humidité résiduelle.
En effet, cette humidité résiduelle non évacuée lors de la compression par calandrage, par exemple, est responsable de la formation de bulles ou de microbulles, dans le matériau final, aboutissant à créer de la porosité, les bulles étant responsables de problèmes esthétiques sur le matériau final, qui ne présente alors pas une surface lisse et homogène, mais également, et surtout, à des caractéristiques mécaniques dégradées.
A noter encore que l’indice de fluidité (ou MFI pour « Melt Flow Index ») des films thermoplastiques est généralement considéré comme étant particulièrement faible, avec un maximum de l’ordre de 8 g/10 min, sachant que l’indice de fluidité est défini comme étant la masse de polymère préchauffé, en grammes, s’écoulant en 10 minutes au travers d’un capillaire d’un diamètre et d’une longueur spécifiques, sous la pression d’un piston de poids standard. Un tel indice de fluidité bas implique que la résine, après fusion du polymère, n’imprègnera pas le renfort en fibres naturelles de manière optimale.
En d’autres termes, plus l’indice de fluidité d’un polymère est faible, moins la résine sera fluide et, en conséquence, moins l’imprégnation du renfort s’effectuera correctement.
Pour tenter de pallier, au moins en partie, aux inconvénients du film stacking, la méthode de saupoudrage d’une poudre de polymère thermoplastique sur le renfort de fibres naturelles, combinée à un calandrage à chaud, est de plus en plus répandue.
En effet, une telle technique permet, par rapport au film stacking, une amélioration de l’imprégnation du renfort, du fait, notamment, de l’indice de fluidité de la poudre, de l’ordre de 50g/10min, qui est substantiellement supérieur à l’indice de fluidité du film thermoplastique. L’humidité résiduelle des fibres naturelles est également plus aisément éliminée lors de la compression. Toutefois, l’évacuation de l’humidité peut encore être améliorée pour obtenir une qualité de matériau finale optimale.
A noter, également, que la méthode de saupoudrage reste une technologie relativement coûteuse, car nécessitant des investissements importants, notamment dans l’achat d’un module de saupoudrage et/ou de calandrage, pour les sociétés n’étant pas préalablement équipées.
Dans l’état de la technique, on connaît également, par le document de brevet publié sous le numéro WO 2017/134356, un procédé de réalisation de préformes tridimensionnelles en matériau composite, par formage de préformes initiales, avec des voiles.
Plus particulièrement, dans le domaine de la fabrication des pièces en matériau composite, il est connu de fabriquer une préforme tridimensionnelle, en réalisant, dans un premier temps, une préforme initiale de plusieurs couches, ou plis, de fibres qui sont superposées, suivi d’une étape de formage de la préforme initiale dans une presse, généralement à chaud, pour obtenir, finalement, une préforme tridimensionnelle de forme voulue. Celle-ci sera ensuite utilisée pour la fabrication d’une pièce composite.
Pour éviter le plissage des couches de fibres lors de la réalisation de formes complexes, on propose ici un procédé de réalisation d’une préforme tridimensionnelle dans lequel la préforme initiale, comprenant plusieurs plis superposés et constitués chacun de fibres continues unidirectionnelles et d’un premier polymère, est ensuite, lors du formage, prise en sandwich entre deux voiles externes, disposés aux interfaces entre ladite préforme initiale et l’outillage mâle et entre cette préforme et l’outillage femelle.
Les voiles externes sont constitués d’un second polymère, différent du premier, thermoplastique ou thermodurcissable, de préférence en polyamide, et restent solides tout en se déformant lors du formage, cette étape étant réalisée à une température de formage inférieure à la température de fusion dudit second polymère, tandis que le premier polymère constitutif des plis de la préforme initiale est liquide ou visqueux à la température de formage.
Toutefois, si une telle technologie semble présenter une certaine efficacité pour éviter le plissage des couches de fibres lors de la réalisation de formes complexes, on cherche ici à fabriquer une préforme tridimensionnelle complexe, nécessitant la mise en oeuvre de différentes étapes dans un procédé long à mettre en oeuvre, tandis que le problème de l’évacuation de l’humidité résiduelle dans la fabrication de renforts pré-imprégnés n’est pas résolu.
En effet, dans ce document de l’état de la technique, s’il est évoqué la réalisation de préformes dites sèches, comprenant une certaine proportion de liant autorisant une opération ultérieure d’imprégnation pour former une pièce composite, ou la réalisation d’une préforme initiale à partir de fibres pré imprégnées d’un premier polymère thermoplastique ou thermodurcissable, aucune indication n’est donnée sur l’obtention de telles fibres présentant une qualité optimale, aussi bien en termes de caractéristiques mécaniques qu’esthétiques.
On connaît également, de la demande de brevet français FR 2 939 069, un procédé de préparation d’un ruban de fils ou de filaments de renfort, présentant une largeur donnée sensiblement constante sur toute sa longueur, associé, sur chacune des faces dudit ruban, à un liant polymérique.
Dans ce procédé, on procède dans un premier temps à un ajustement de la largeur du ruban à la largeur souhaitée, grâce à des moyens de calibrage, avant d’associer le ruban, sur chacune de ses faces, à un liant polymérique permettant d’assurer une cohésion homogène du ruban, de manière à ce que la masse totale du liant n’excède pas 25% de la masse totale du ruban obtenu.
Ledit liant apposé sur les deux faces du ruban de renfort se présente sous la forme d’une poudre d’un ou plusieurs polymères thermoplastiques et/ou thermodurcissables ou d’un non-tissé ou d’un tissu en un ou plusieurs polymères thermoplastiques et/ou thermodurcissables.
Dans ce document, les rubans sont en fibres de carbone ou autre matière minérale, céramique, verre, silice, basalte ou aramide, et la problématique de l’évacuation de l’humidité d’un voile de renfort en fibres naturelles végétales n’est pas résolue.
En outre, une proportion de liant, inférieure à 25% de la masse totale du ruban obtenu, sert à consolider la nappe de fibres de carbone, et ne permet pas une bonne imprégnation desdites fibres. La nappe de carbone est ainsi rendue aisément manipulable, mais nécessite une imprégnation supplémentaire pour l’obtention d’un matériau composite prêt à l’emploi.
Dans la demande internationale WO 2007/1 10660 est décrit un procédé pour fabriquer des produits composites, dans lequel on mélange une résine phénolique ou polyester liquide contenant au moins un catalyseur, à des fibres végétales séchées à 100°C pendant 1 h dans un four, avant ajout de la résine mélangée à un catalyseur aux fibres, ou à 60°C pendant 3h dans un four, après que les fibres ont été trempées dans la résine mélangée à un catalyseur.
Le mélange ainsi obtenu est ensuite compacté à haute température pour l’obtention d’un produit composite.
L’évacuation de l’humidité résiduelle contenue dans les fibres végétales ici est susceptible de ne pas être optimale, en particulier dans le cas où les fibres sont trempées dans la résine phénolique avant l’étape de séchage.
En outre, quel que soit le moment où le séchage a lieu, avant ou après l’ajout du mélange résine/catalyseur aux fibres, cette étape nécessite l’emploi d’un four et cette étape est chronophage ; en effet, au moins 1 h et jusqu’à 3h sont nécessaires pour éliminer l’humidité résiduelle.
Un autre inconvénient de ce procédé est que l’imprégnation des fibres végétales par la résine phénolique est susceptible de ne pas être homogène en tous points du produit composite finalement obtenu, en sorte que les caractéristiques mécaniques du produit ne seront pas les mêmes sur toute la surface de celui-ci.
Ainsi, l’invention offre la possibilité de pallier, au moins en partie, les divers inconvénients de l’état de la technique en proposant un procédé de fabrication de fibres naturelles végétales pré-imprégnées présentant une imprégnation optimale du renfort ainsi que des caractéristiques mécaniques et esthétiques optimales pour la fabrication ultérieure d’un matériau composite de grande qualité, lequel procédé ayant permis une évacuation de l’humidité résiduelle des fibres naturelles végétales.
En particulier, le produit final obtenu par la mise en oeuvre du procédé présente des valeurs de contraintes/rigidité particulièrement intéressantes ainsi qu’une absence de porosité ou porosité très faible. A cet effet, la présente invention concerne un procédé de fabrication d’un renfort fibreux pré-imprégné composé d’un renfort en fibres naturelles végétales imprégnées d’un polymère thermoplastique, ledit renfort fibreux pré imprégné étant destiné à entrer dans la fabrication d’une pièce en matériau composite, ledit procédé étant caractérisé en ce qu’il comprend, au moins, les étapes suivantes :
- on utilise une première bande de renfort en fibres naturelles végétales et au moins une deuxième bande de non-tissé thermoplastique dont la température de fusion est notée TF ;
- on dispose ladite première bande de renfort en fibres naturelles végétales et ladite deuxième bande de non-tissé thermoplastique au contact l’une de l’autre ;
- on achemine ladite première bande et ladite deuxième bande au niveau d’une première zone de chauffage au sein de laquelle on applique une température T1 inférieure à la température de fusion TF, pour l’évacuation de l’humidité résiduelle de la première bande de renfort en fibres naturelles ;
- on achemine ensuite ladite première bande et ladite deuxième bande, au contact l’une de l’autre, au niveau d’une seconde zone de chauffage au niveau de laquelle on applique une température T2 supérieure à la température de fusion TF, pour la fusion de ladite deuxième bande de non- tissé thermoplastique et l’obtention d’un complexe constitué de fibres naturelles végétales et de non-tissé thermoplastique fondu ;
- on presse ledit complexe ;
- on achemine ledit complexe au niveau d’une zone de refroidissement pour obtenir finalement ledit renfort fibreux pré-imprégné ;
- optionnellement, on enroule ledit renfort fibreux pré-imprégné sous la forme d’un rouleau.
Dans une première variante du procédé de l’invention, on utilise une seule bande de non-tissé thermoplastique.
Dans une autre variante de ce procédé, on utilise une deuxième bande et une troisième bande de non-tissé thermoplastique, l’une venant sur une première face, supérieure, de ladite première bande de renfort en fibres naturelles végétales et l’autre venant sur une deuxième face, inférieure, de ladite première bande de renfort en fibres naturelles végétales.
Tout préférentiellement, on applique une température T1 au sein de ladite première zone de chauffage comprise entre 60 et 250°C.
En ce qui concerne ladite seconde zone de chauffage, on y applique, avantageusement, une température T2 comprise entre 100 et 280°C.
De manière intéressante, on applique une pression au cours de l’étape de pressage comprise entre 10 et 150 N/cm2, de préférence égale à 80 N/cm2.
Pour ce qui est de ladite première bande de renfort en fibres naturelles végétales, longues ou courtes, on choisit préférentiellement des fibres de lin ou des fibres de jute ou des fibres de chanvre ou des fibres d’ortie ou des fibres de kénaf, ou un mélange de celles-ci.
Selon une autre particularité de l’invention, on utilise une deuxième bande de non-tissé thermoplastique fabriquée à base de polypropylène et de ses dérivés, ou d’acide polylactique (PLA) et de ses dérivés, ou de polyamide et de ses dérivés, ou de polyéthylène haute ou basse densité et de ses dérivés, ou de polyester et de ses dérivés, ou d’un mélange de plusieurs de ces composés thermoplastiques.
Selon un exemple de réalisation tout préférentiel, on utilise une première bande de renfort en fibres naturelles végétales comportant des fibres de lin longues unidirectionnelles et une deuxième bande de non-tissé thermoplastique fabriquée à base de polypropylène.
La présente invention est également relative à un renfort fibreux pré imprégné susceptible d’être obtenu par la mise en oeuvre du procédé de fabrication susmentionné, ledit renfort étant caractérisé en ce qu’il est composé d’une première bande de renfort en fibres naturelles végétales et d’au moins une deuxième bande de non-tissé thermoplastique.
Tout préférentiellement, le renfort fibreux pré-imprégné selon l’invention est constitué uniquement par une première bande de renfort en fibres naturelles végétales et par une deuxième bande de non-tissé thermoplastique.
Avantageusement, lesdites fibres naturelles végétales de ladite bande de renfort du renfort fibreux pré-imprégné sont des fibres de lin, tandis que le matériau thermoplastique de ladite bande de non-tissé thermoplastique est du polypropylène.
Le renfort fibreux pré-imprégné de l’invention comporte de manière préférentielle une proportion de non-tissé thermoplastique supérieure ou égale à 30% et inférieure ou égale à 80% en masse par rapport à la masse totale du renfort, tandis que le taux volumique Vf% de fibres naturelles végétales dans ce renfort est compris entre 15 et 70% en volume.
Encore plus préférentiellement, la proportion de non-tissé thermoplastique dans ce renfort est comprise entre 35 et 40% en masse, par rapport à la masse totale du renfort, tandis que le taux volumique Vf% de fibres naturelles végétales est compris entre 45 et 55% du volume du renfort.
L’invention concerne également une pièce en matériau composite comportant au moins un tel renfort fibreux pré-imprégné et une âme en nids d’abeille, en carton, en mousse ou en polymère thermoplastique.
Le procédé objet de la présente invention présente de nombreux avantages, et en particulier celui de fournir un matériau de type renfort en fibres naturelles végétales, courtes ou longues, notamment en fibres de lin, pré-imprégné de manière homogène et optimale d’un polymère thermoplastique, d’une qualité supérieure à la qualité des substrat pré imprégnés actuellement obtenus par la mise en oeuvre des procédés connus.
Cette amélioration dans la qualité provient notamment d’une meilleure évacuation de l’humidité résiduelle des fibres naturelles végétales au moment du chauffage, par l’utilisation d’une couche de non-tissé thermoplastique associée à la couche de fibres naturelles, aboutissant à une imprégnation optimale et homogène de ces fibres par le polymère se présentant sous la forme d’une bande de matériau non-tissé thermoplastique.
En outre, le renfort fibreux pré-imprégné selon l’invention présente des qualités mécaniques optimales en sorte qu’il peut constituer un matériau composite directement prêt à l’emploi, ou bien être combiné à un autre élément pour former une pièce en matériau composite.
D’autres caractéristiques et avantages de l’invention ressortiront de la description détaillée qui va suivre des modes de réalisation non limitatifs de l’invention, en référence à l’unique figure annexée décrite plus en détails ci- après :
- La figure 1 représente, de manière schématique, et selon une vue de côté, les différentes étapes d’un mode de réalisation particulier et préférentiel du procédé de fabrication d’un renfort fibreux pré-imprégné de l’invention.
En référence à la figure 1 annexée, la présente invention a notamment pour objet un procédé de fabrication d’un renfort fibreux pré-imprégné 1 .
Selon l’invention, ledit renfort fibreux pré-imprégné 1 , obtenu par la mise en oeuvre du présent procédé, est composé au moins, d’une part, d’un renfort en fibres naturelles végétales 2 et, d’autre part, d’un polymère thermoplastique 3, dont ledit renfort en fibres naturelles végétales 2 est destiné à être imprégné au cours du procédé de l’invention.
A cet effet, dans une première étape du présent procédé de fabrication d’un renfort fibreux pré-imprégné 1 , on utilise une première bande 4 d’un tel renfort en fibres naturelles végétales 2 et au moins une deuxième bande 5 d’un matériau non-tissé thermoplastique 3, celui-ci présentant une température de fusion TF définie.
A titre de remarque préliminaire, sera décrite ci-dessous une variante particulièrement préférentielle de réalisation du procédé de l’invention, en référence à la figure 1 , dans laquelle on utilise uniquement une deuxième bande 5 d’un matériau non-tissé thermoplastique 3, couplée à la bande de renfort 2 en fibres naturelles végétales.
Cela étant, il est également envisageable, dans une autre variante de réalisation, d’utiliser deux bandes 5 d’un matériau non-tissé thermoplastique 3, avantageusement de même nature, mais pouvant également être fabriquées à partir de matériaux non-tissés thermoplastiques différents, lesdites deux bandes de non-tissé thermoplastique 3 venant alors prendre en sandwich la bande de renfort en fibres naturelles végétales 2. Cette dernière constitue alors l’âme tandis que les bandes de non-tissé thermoplastique d’un côté et de l’autre de cette âme en fibres végétales naturelles constituent les peaux. A noter également que, au sens de la présente invention, on entend par matériau non-tissé thermoplastique un matériau sous la forme d’un voile, d’une nappe ou d’un matelas de fibres thermoplastiques disposées de manière aléatoire et maintenues entre elles de différentes façons.
Le matériau non-tissé thermoplastique 3 mis en oeuvre dans la présente invention arbore, par conséquent, une certaine porosité, notamment par rapport aux films ou tissus thermoplastiques, donc non poreux, utilisés dans les procédés de fabrication de matériaux composites pré-imprégnés de l’état de la technique.
Préférentiellement, ce matériau non-tissé thermoplastique 3 est fabriqué à partir de polypropylène (PP) et de ses dérivés, ou d’acide polylactique (PLA) et de ses dérivés, ou de polyamide (nylon) et de ses dérivés, ou de polyéthylène haute ou basse densité et de ses dérivés, ou de polyester et de ses dérivés ou bien encore d’un mélange de ces composés thermoplastiques ou de tout autre polymère thermoplastique.
Encore plus préférentiellement, le matériau non-tissé thermoplastique 3 est fabriqué à partir de polypropylène.
En ce qui concerne à présent le renfort 2 en fibres naturelles végétales, dans un exemple de réalisation particulièrement avantageux, celui-ci est à base de fibres naturelles végétales, courtes ou longues, de lin, ou de fibres de jute, ou de fibre de chanvre, ou de fibres d’ortie, ou de fibres de kénaf, ou tout autre type de fibres naturelles végétales potentiellement utilisables dans le domaine du composite, ou bien encore à base d’un mélange de ces fibres naturelles végétales précitées.
Tout préférentiellement, on utilise, dans l’invention, un renfort en fibres naturelles végétales de lin 2, dont les fibres sont avantageusement longues, présentant une longueur comprise par exemple entre 1 et 60 cm, de préférence entre 10 et 40 cm et, plus préférentiellement encore sensiblement égale, ou égale à 30 cm, et 100% orientées, en d’autres termes de fibres naturelles de lin unidirectionnelles.
Dans une deuxième étape du procédé objet de la présente invention, on dispose ladite première bande 4 de renfort en fibres naturelles végétales 2 et ladite deuxième bande 5 de non-tissé thermoplastique 3 au contact l’une de l’autre.
Dans un exemple de réalisation dudit procédé, la mise au contact des première 4 et deuxième 5 bandes est effectuée par un dispositif 6, illustré sur la figure 1 , et permettant une mise en oeuvre automatisée du procédé de l’invention.
Un tel dispositif 6 comprend préférentiellement, entre autres, au moins, des moyens de déroulement 7 d’un premier rouleau de renfort en fibres naturelles végétales 2 ainsi que des moyens de déroulement 8 d’un deuxième rouleau de non-tissé thermoplastique 3 pour la formation, respectivement, desdites première 4 et deuxième 5 bandes, celles-ci se rapprochant progressivement jusqu’à venir en contact l’une de l’autre.
Dans la variante de réalisation du procédé, non représentée, dans laquelle on utilise une première bande 4 de renfort en fibres naturelles végétales 2, une deuxième bande 5, et une troisième bande, d’un matériau non-tissé thermoplastique 3, ladite deuxième et ladite troisième bande prenant en sandwich ladite première bande 4, le dispositif 6 pour la mise en oeuvre du procédé de l’invention, comporte, en outre, des moyens de déroulement de cette troisième bande de non-tissé thermoplastique.
Dans cette hypothèse, les deux rouleaux de non-tissés sont positionnés de part et d’autre du rouleau de renfort 2, en entrée du dispositif 6, en sorte que la deuxième bande de non-tissé thermoplastique 3 vienne au contact sur une première face supérieure de ladite première bande 4 de renfort 2 et que la troisième bande vienne au contact sur sa face inférieure opposée.
Pour en revenir à la variante de réalisation du procédé de l’invention dans laquelle on utilise uniquement une première bande 4 de renfort en fibres naturelles végétales 2 et une deuxième bande 5 de non-tissé thermoplastique, le rapprochement progressif des deux bandes 4 et 5 s’effectue, tout préférentiellement, au cours d’une d’étape dans laquelle on achemine la première bande 4 de renfort en fibres naturelles végétales 2 et la deuxième bande 5 de non-tissé thermoplastique 3 au niveau d’une première zone de chauffage 9 que comporte ledit dispositif 6. Au sein de cette première zone de chauffage 9, on applique, avantageusement, une température inférieure à la température de fusion TF du matériau non-tissé thermoplastique 3. Une telle température est atteinte au travers de moyens de chauffage adaptés 10 représentés, sur la figure annexée, par des moyens de chauffage localisés en partie supérieure et en partie inférieure dudit dispositif 6.
Lorsque les deux bandes 4 et 5 passent au sein de cette première zone de chauffage 9, tout en se rapprochant pour venir en contact l’une de l’autre, on permet, de manière particulièrement avantageuse, un séchage des fibres naturelles végétales et une évacuation de l’humidité susceptible d’être toujours présente au niveau du matériau renfort en fibres naturelles végétales 2 de la première bande 4, au travers de la structure poreuse du matériau non-tissé thermoplastique 3 dont est constituée la deuxième bande 5.
Tout préférentiellement, le séchage des fibres naturelles végétales de la première bande 4, et donc l’évacuation de l’humidité résiduelle de celles-ci, est effectué pendant une période comprise entre 10 secondes et 5 min, le temps de séchage étant dépendant, notamment, des paramètres et notamment de la proportion de fibres naturelles végétales 2 et de polymère thermoplastique.
En d’autres termes, le temps de passage des deux bandes 4 et 5 au sein de la première zone de chauffage 9 est compris entre 10 secondes et 5 min.
Ce séchage est, en conséquence, particulièrement rapide, tout en permettant l’obtention d’un produit final présentant de très bonnes performances mécaniques.
A noter, par ailleurs, que sur la figure annexée, la première bande 4 du renfort en fibres naturelles végétales 2 est représentée comme étant positionnée au-dessus de la deuxième bande 5 de matériau non-tissé thermoplastique 3 pour une évacuation de l’humidité résiduelle au sein de ladite première bande 4, au cours des premières étapes du procédé de l’invention, ce positionnement n’étant toutefois pas limitatif du procédé objet de l’invention.
En effet, il est tout à fait envisageable que le positionnement soit inverse, c’est-à-dire que la deuxième bande 5 de matériau non-tissé thermoplastique 3 se trouve au-dessus de ladite première bande 4, et que l’évacuation de l’humidité résiduelle du renfort en fibres naturelles végétales 2 soit tout aussi optimale.
A noter encore, toujours en référence à l’illustration schématique de la figure annexée, que les deux bandes 4, 5 sont représentées comme n’étant pas en contact l’une de l’autre en entrée de la première zone de chauffage 9, et venant en rapprochement l’une de l’autre au fur et à mesure de l’avancement desdites deux bandes 4, 5 au sein de cette zone 9, entre le moyen de chauffage supérieur et le moyen de chauffage inférieur.
Il est toutefois envisageable que lesdites deux bandes 4, 5 soient déjà en contact l’une avec l’autre à l’entrée de ladite première zone de chauffage 9 et qu’elles soient acheminées tout le long de cette zone 9 au contact l’une de l’autre, sans pour autant altérer l’évacuation de l’humidité résiduelle présente au sein de la première bande 4 de du renfort en fibres naturelles végétales 2, du fait de la porosité du matériau non-tissé thermoplastique 3 de la bande 5.
Dans cette première zone de chauffage 9, on applique, de préférence, une température T1 comprise entre 60 et 250°C, celle-ci étant choisie en fonction de la nature du matériau non-tissé thermoplastique 3 dont est constituée la deuxième bande 5, en tenant compte du fait que cette température T1 appliquée doit impérativement être inférieure à la température de fusion TF dudit matériau 3.
Ainsi, dans l’exemple de réalisation particulièrement préférentiel dans lequel le matériau non-tissé thermoplastique 3 consiste en du polypropylène, dont la température de fusion TF est généralement considérée comme étant de l’ordre de 170°C selon sa tacticité, en d’autres termes selon le degré et la forme de régularité de la répartition des groupements substituants par rapport à la chaîne aliphatique principale, on appliquera préférentiellement une température T1 , dans la première zone de chauffage 9, inférieure à 160°C.
Encore plus préférentiellement, cette température T1 appliquée au sein de ladite première zone de chauffage 9 est la plus élevée possible, tout en évitant aussi bien la fusion du matériau non-tissé thermoplastique 3 de la bande 5 que la dégradation thermique des fibres naturelles végétales 2 de la bande 4, afin d’évacuer l’humidité contenue dans lesdites fibres 2 le plus rapidement possible.
A noter que, comme le temps de passage des bandes 4, 5 de fibres végétales 2 et de matériau non-tissé thermoplastique 3 dans la première zone de chauffage 9 est relativement court, la température appliquée au niveau des moyens de chauffage peut être comprise entre 150 et 200°C. En effet, même si la température de fusion du polypropylène est de l’ordre de 170°C, le polypropylène ne sera pas présent suffisamment longtemps dans ladite première zone de chauffage 9 pour atteindre cette température et commencer à fondre.
Cela étant, l’élimination efficace de cette humidité obtenue par la mise en oeuvre du procédé de l’invention permet d’éviter la formation de bulles ou de microbulles d’air dues à la vaporisation de l’humidité dans la résine pendant la cuisson du pré imprégné. On évite ainsi, au moyen du procédé de l’invention, et du séchage des fibres végétales, la création d’une porosité dans le produit final, à savoir le renfort fibreux pré-imprégné 1 , qui présente alors une qualité optimale, notamment en termes de caractéristiques mécaniques.
En effet, la présence d’une porosité en un point d’un matériau est nécessairement synonyme de caractéristiques mécaniques dégradées en ce point, par rapport aux caractéristiques mécaniques d’autres zones du matériau ne présentant pas cette porosité. Le procédé de l’invention permet d’éviter cela et de garantir l’obtention d’un renfort fibreux pré-imprégné 1 présentant des caractéristiques mécaniques, et esthétiques, homogènes et optimales sur l’intégralité de sa surface.
Suivant cette première étape de chauffage dont la fonction principale est l’évacuation de l’humidité résiduelle des fibres naturelles végétales 2, on achemine ensuite ladite première bande 4 et ladite deuxième bande 5, au contact l’une de l’autre, au niveau d’une seconde zone de chauffage 1 1 , que comporte également ledit dispositif 6.
Cette seconde zone de chauffage 1 1 est localisée de préférence immédiatement en aval de la première zone de chauffage 9, tenant compte du sens d’acheminement des bandes 4, 5, représenté par la flèche sur la figure annexée. Au niveau de cette seconde zone de chauffage 1 1 , on applique une température T2 qui est, cette fois, supérieure à la température de fusion TF du matériau non-tissé thermoplastique 3.
De manière avantageuse, comme illustré sur la figure jointe, on applique cette température T2 grâce à l’action de moyens de chauffage adaptés 12 représentés, sur la figure annexée, par des moyens de chauffage en partie supérieure et en partie inférieure dudit dispositif 6.
Dans cette seconde zone de chauffage 1 1 , on applique, de préférence, une température T2 comprise entre 100 et 280°C, celle-ci étant, tout comme la température T1 , choisie en fonction du matériau non-tissé thermoplastique 3 dont est constituée la deuxième bande 5.
La température T2 doit, cette fois-ci, impérativement être supérieure à la température de fusion TF dudit matériau 3.
En reprenant l’exemple dans lequel le matériau non-tissé thermoplastique 3 consiste en du polypropylène, dont la température de fusion TF est environ de 170°C, on appliquera, préférentiellement, une température T2 dans la seconde zone de chauffage 1 1 supérieure à 180°C et jusqu’à 220°C, et plus préférentiellement encore, une température T2 de l’ordre de 200°C.
L’application, au sein de cette seconde zone de chauffage 1 1 , d’une température T2 supérieure à la température de fusion TF, permet, une fois l’évacuation de l’humidité dans la première zone de chauffage 9, d’entraîner la fusion de ladite deuxième bande 5 de non-tissé thermoplastique 3 et la diffusion homogène de ce non-tissé thermoplastique fondu au sein des fibres naturelles végétales du renfort 2.
On obtient, alors, un complexe 13 constitué de fibres naturelles végétales et de non-tissé thermoplastique fondu.
De manière particulièrement avantageuse, dans le complexe 13, et donc dans le renfort fibreux pré-imprégné 1 final, la proportion de non-tissé thermoplastique est supérieure ou égale à 30% et inférieure ou égale à 80% en masse par rapport à la masse totale du complexe 13, la proportion de fibres végétales naturelles étant comprise entre 20 et 70% en masse par rapport à la masse totale du complexe, tandis que le taux volumique de fibres naturelles végétales (noté Vf%) dans ce complexe 13 est compris entre 15 et 70% en volume.
Encore plus avantageusement, la proportion de non-tissé thermoplastique dans ce complexe 13 est comprise entre 35 et 40% en masse, par rapport à la masse totale du complexe 13, tandis que le taux volumique de fibres naturelles végétales Vf% est compris entre 45 et 55% du volume du complexe 13.
De telles proportions et taux volumiques permettent d’englober totalement les fibres végétales naturelles 2 de la première bande 4 de non- tissé thermoplastique 3 dans le complexe 13, et ce afin d’avoir, au niveau du renfort fibreux pré-imprégné 1 final, une transmission optimale des efforts mécaniques entre les fibres naturelles végétales et la matrice de liant polymère thermoplastique.
Le complexe 13 ainsi obtenu est ensuite acheminé au niveau d’un dispositif de calandrage 14, que comprend le dispositif 6 de mise en oeuvre du procédé de l’invention, pour la réalisation de l’étape de pressage.
Ce dispositif de calandrage 14 est localisé avantageusement immédiatement en aval de la deuxième zone de chauffage 12, tenant compte du sens d’acheminement des bandes 4, 5, puis du complexe 13, à l’intérieur dudit dispositif 6.
Le dispositif de calandrage 14 se présente, préférentiellement, sous la forme d’un premier rouleau presseur 14a, opérant par le dessus et d’un second rouleau presseur 14b opérant par le dessous, la bande 13 constituée de fibres naturelles et de non-tissé thermoplastique fondu passant entre lesdits deux rouleaux presseurs 14a, 14b, pour garantir une homogénéisation de la diffusion du non-tissé thermoplastique fondu dans l’ensemble de l’épaisseur des fibres naturelles végétales 2.
De préférence, mais non limitativement, on applique une pression, au cours de cette étape de pressage, de préférence au moyen dudit dispositif de calandrage 14, comprise entre 10 et 150 N/cm2, de préférence égale à 80 N/cm2.
Dans un autre exemple de réalisation du procédé de fabrication d’un renfort fibreux pré-imprégné 1 selon l’invention, non représenté sur les figures, il est envisageable que l’étape au cours de laquelle on applique la température T2 supérieure à la température de fusion TF du thermoplastique 3, pour l’obtention du complexe 13, et l’étape au cours de laquelle on presse ledit complexe 13, soient effectuées de manière simultanée.
Dans un tel exemple de réalisation, non représenté sur la figure jointe, le dispositif de calandrage 14 assure, en plus de la fonction de pressage, une fonction de chauffage jusqu’à une température T2 supérieure à la température de fusion TF du thermoplastique 3.
Cela étant, quel que soit le mode de réalisation choisi, une fois l’étape de pressage du complexe 13 constitué de fibres naturelles végétales et de non-tissé thermoplastique fondu effectuée, ce complexe 13 est entraîné au niveau d’une zone de refroidissement 15 que comporte avantageusement le dispositif 6.
Cette zone de refroidissement 15 est localisée de préférence immédiatement en aval du dispositif de calandrage 14, tenant compte du sens d’acheminement des bandes 4, 5 puis du complexe 13, à l’intérieur dudit dispositif 6.
Au niveau de cette zone de refroidissement 15, il est appliqué préférentiellement une température ambiante, de l’ordre de 20°C, ou une température inférieure, comprise entre 5 et 15 °C, au travers de moyens adaptés, par exemple sous la forme de moyens de réfrigération 16 en partie supérieure et en partie inférieure du dispositif 6.
La présence de cette zone de refroidissement 15 permet de refroidir le complexe 13 pour une solidification de celui-ci, au travers plus particulièrement d’une solidification du thermoplastique 3 diffusé de manière homogène au sein des fibres naturelles végétales 2.
Ainsi, à la sortie de cette zone de refroidissement 15, on obtient le produit final recherché, à savoir le renfort fibreux pré-imprégné 1 .
Optionnellement, ce renfort fibreux pré-imprégné 1 est ensuite enroulé sous la forme d’un rouleau 17 au travers de moyens d’enroulement adaptés, par exemple sous la forme d’un enrouleur, pour pouvoir stocker aisément le produit final 1 obtenu, dans l’attente de l’utilisation de ce renfort fibreux pré imprégné 1 pour fabriquer, notamment, des pièces en matériau composite dans des domaines divers tels que l’automobile, l’aéronautique, la mécanique, etc.
A noter que, tout le long du procédé de fabrication d’un renfort fibreux pré-imprégné 1 selon l’invention, au moyen du dispositif 6, l’acheminement des bandes 4 et 5, puis du complexe 13 et enfin dudit renfort fibreux pré imprégné 1 s’effectue par l’intermédiaire de moyens d’entraînement adaptés couplés, préférentiellement, à des moyens moteurs.
De manière avantageuse, on utilise, pour la mise en oeuvre automatisée du procédé de l’invention, un dispositif 6 consistant en une presse double bande, permettant, tout au long du cheminement des bandes 4 et 5 au sein de ce dispositif 6, l’application d’une compression légère entre ces deux bandes, favorisant un préassemblage de celles-ci, en plus du dispositif de calandrage 14 au niveau duquel est vraiment appliqué la pression pour la mise en forme du produit.
Le renfort pré-imprégné 1 obtenu par la mise en oeuvre du procédé selon la présente invention peut ensuite, de manière particulièrement avantageuse, entrer dans la composition de préformes tridimensionnelles présentant des qualités optimales, par une opération de formage à chaud, également appelée opération d’emboutissage, avant de former, par des opérations encore ultérieures, de moulage et/ou de drapage, une pièce en matériau composite.
Le procédé de la présente invention permet d’obtenir un renfort pré imprégné 1 , formé d’un non-tissé thermoplastique 3, calandré sur un voile de renfort en lin 2, présentant des caractéristiques mécaniques et esthétiques optimisées, et pouvant être utilisé dans la fabrication de pièces en matériau composite, notamment pour le domaine de la mécanique ou du transport tel que l’automobile, l’aéronautique, le spatial ou encore le domaine ferroviaire.
Ainsi, la présente invention est également relative à un renfort fibreux pré-imprégné 1 composé d’une première bande 4 de renfort en fibres naturelles végétales 2 et d’au moins une deuxième bande 5 de non-tissé thermoplastique 3, ledit renfort 1 étant susceptible d’être obtenu par la mise en oeuvre du procédé de la présente invention.
De manière particulièrement avantageuse, le renfort fibreux pré imprégné 1 selon l’invention comporte une proportion de non-tissé thermoplastique supérieure ou égale à 30% et inférieure ou égale à 80% en masse par rapport à la masse totale du renfort 1 , de préférence entre 30 et 60% en masse. La proportion de fibres végétales naturelles est comprise entre 20 et 70% en masse par rapport à la masse totale dudit renfort 1 , de préférence entre 40 et 70% en masse, tandis que le taux volumique de fibres naturelles végétales (noté Vf%) dans ce renfort 1 est compris entre 15 et 70% en volume, de préférence 35 et 60% en volume.
Encore plus avantageusement, la proportion de non-tissé thermoplastique dans ce renfort fibreux pré-imprégné 1 est comprise entre 35 et 40% en masse, par rapport à la masse totale du renfort 1 , tandis que le taux volumique de fibres naturelles végétales Vf% est compris entre 45 et 55% du volume du renfort 1 .
Les proportions en non-tissé thermoplastique et le taux volumique en fibres naturelles végétales seront adaptées selon les applications envisagées, la densité du polymère thermoplastiques potentiels qui peut varier entre 0.9 et 1 .3 éventuellement, et la nature des fibres.
Ce renfort fibreux pré-imprégné 1 présente, du fait de sa composition contenant au moins une bande 5 de non-tissé thermoplastique 3, des caractéristiques mécaniques optimales et homogènes sur toute sa surface, la bande de non-tissé en question ayant imprégné, de manière homogène, l’ensemble de la première bande 4 de renfort en fibres naturelles végétales 2.
Plus particulièrement, ledit renfort fibreux pré-imprégné 1 est constitué uniquement par une première bande 4 de renfort en fibres naturelles végétales 2 et par une deuxième bande 5 de non-tissé thermoplastique 3.
Tout préférentiellement, les fibres naturelles végétales de ladite bande de renfort en 2 sont des fibres de lin, tandis que le matériau thermoplastique de ladite bande 5 de non-tissé thermoplastique 3 est du polypropylène.
Dans cet exemple de réalisation particulier, de manière avantageuse, le taux volumique de fibres de lin Vf% est de l’ordre de, ou égal à, 50% en volume tandis que la proportion de polymère non-tissé thermoplastique 3 est de l’ordre de, ou égale à, 37% en masse par rapport à la masse totale du renfort 1 .
La présente invention est également relative à une pièce en matériau composite comportant au moins un tel renfort fibreux pré-imprégné 1 . En particulier, la pièce en matériau composite obtenue par l’utilisation du renfort pré-imprégné 1 selon l’invention peut consister en un panneau avec une âme en nids d’abeille, en carton, en mousse ou en polymère thermoplastique, qui serait ainsi, avantageusement, exempte de formaldéhyde.
A noter que les caractéristiques techniques qui ont été spécifiées ci- dessus en lien avec la description détaillée du procédé de fabrication d’un renfort fibreux pré-imprégné 1 de l’invention, notamment la nature et les propriétés des fibres naturelles végétales et la nature du non-tissé thermoplastique, les proportions des constituants, etc., sont applicables au produit renfort fibreux pré-imprégné 1 et inversement.
Exemple : définition des performances mécaniques des renfort fibreux pré-impréqnés selon l’invention
Les paramètres du procédé et les caractéristiques des produits de départ (taux volumique de fibres naturelles végétales Vf%, fibres naturelles végétales de lin - « flaxtape », matériau non-tissé thermoplastique polypropylène - « spun PP »), température de chauffe, temps de chauffe, etc., sont indiqués ci-dessous.
A noter que la température de chauffe, dans la première zone de chauffage où les fibres végétales sont séchées, est indiquée comme étant à 200°C, tenant compte du fait que le temps de chauffage est relativement court, la bande de non-tissé thermoplastique en polypropylène n’a pas le temps d’atteindre une telle température de 200°C et reste à une température inférieure à sa température de fusion.
Caractérisations élémentaires et mécaniques :
Caractérisations élémentaires :
La densité est obtenue en calculant le rapport entre la masse et le volume du produit. Mf%, Vf% : Utilisation de la loi des mélanges avec masse du non-tissé thermoplastique en référence, pesée du composite final, et déduction de la masse volumique de fibres après transformation (évaporation de l’humidité résiduelle des fibres).
Pour la porosité : Détermination du Vm% et du Vf% en fonction de la masse du composite et de résine puis détermination de la porosité avec %Volume composite = Vf% + Vm% +Vp% (porosité).
Caractérisations mécaniques :
La norme utilisée est la norme ISO 527-5 (traction composite UD verre).
Pour la détermination des modules de rigidité, les biocomposites unidirectionnels n’ayant pas de comportement linéaire pendant toute leur déformation sur un essai de traction, deux plages de calculs ont été sélectionnées afin de déterminer deux modules de rigidité différents suivant les déformations de l’échantillon. Une première plage se situe entre 0.01 % et 0.15% de déformation appelé « Rigidité_Petite déformation » et une autre plage entre 0.4% et 0.7% appelé « Rigidité_Grande déformation ».
En ce qui concerne la rigidité spécifique, celle-ci fait référence au rapport Rigidité / densité de l’échantillon.
Ces valeurs mécaniques sont non exhaustives, et sont des exemples avec un composite obtenu dans certaines conditions, optimisées pour ces ratios de fibres.
Ces essais démontrent que les renforts fibreux pré-imprégnés obtenus au moyen du procédé de l’invention présentent des caractéristiques mécaniques optimales.

Claims

REVENDICATIONS
1. Procédé de fabrication d’un renfort fibreux pré-imprégné (1 ) composé d’un renfort en fibres naturelles végétales (2) imprégnées d’un polymère thermoplastique (3), ledit renfort fibreux pré-imprégné (1 ) étant destiné à entrer dans la fabrication d’une pièce en matériau composite, ledit procédé étant caractérisé en ce qu’il comprend, au moins, les étapes suivantes :
- on utilise une première bande (4) de renfort en fibres naturelles végétales (2) et au moins une deuxième bande (5) de non-tissé thermoplastique (3) dont la température de fusion est notée TF ;
- on dispose ladite première bande (4) de renfort en fibres naturelles végétales (2) et ladite deuxième bande (5) de non-tissé thermoplastique (3) au contact l’une de l’autre ;
- on achemine ladite première bande (4) et ladite deuxième bande
(5) au niveau d’une première zone de chauffage (9) au sein de laquelle on applique une température T1 inférieure à la température de fusion TF , pour l’évacuation de l’humidité résiduelle de la première bande (4) de renfort en fibres naturelles végétales (2) ;
- on achemine ensuite ladite première bande (4) et ladite deuxième bande (5), au contact l’une de l’autre, au niveau d’une seconde zone de chauffage (1 1 ) au niveau de laquelle on applique une température T2 supérieure à la température de fusion TF, pour la fusion de ladite deuxième bande (5) de non-tissé thermoplastique (3) et l’obtention d’un complexe (13) constitué de fibres naturelles et de non- tissé thermoplastique fondu ;
- on presse ledit complexe (13) ;
- on achemine ledit complexe au niveau d’une zone de refroidissement (15) pour obtenir finalement ledit renfort fibreux pré- imprégné (1 ) ;
- optionnellement, on enroule ledit renfort fibreux pré-imprégné (1 ) sous la forme d’un rouleau (17).
2. Procédé de fabrication d’un renfort fibreux pré-imprégné (1 ) selon la revendication précédente, caractérisé en ce que l’on utilise une seule bande (5) de non-tissé thermoplastique (3).
3. Procédé de fabrication d’un renfort fibreux pré-imprégné (1 ) selon la revendication 1 , caractérisé en ce que l’on utilise une deuxième bande (5) de non-tissé thermoplastique (3) et une troisième bande de non-tissé thermoplastique (3), l’une venant sur une première face supérieure de ladite première bande (4) de renfort en fibres naturelles végétales (2) et l’autre venant sur une deuxième face inférieure de ladite première bande (4) de renfort en fibres naturelles végétales (2).
4. Procédé de fabrication d’un renfort fibreux pré-imprégné (1 ) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’on applique une température T1 au sein de ladite première zone de chauffage (9) comprise entre 60 et 250°C.
5. Procédé de fabrication d’un renfort fibreux pré-imprégné (1 ) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’on applique une température T2 au sein de ladite seconde zone de chauffage (1 1 ) comprise entre 100 et 280°C.
6. Procédé de fabrication d’un renfort fibreux pré-imprégné (1 ) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’on applique une pression au cours de l’étape de pressage comprise entre 10 et 150 N/cm2, de préférence égale à 80 N/cm2.
7. Procédé de fabrication d’un renfort fibreux pré-imprégné (1 ) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’on utilise une première bande (4) de renfort en fibres naturelles végétales (2), longues ou courtes, comportant des fibres de lin ou des fibres de jute ou des fibres de chanvre ou des fibres d’ortie ou des fibres de kénaf, ou un mélange de celles-ci.
8. Procédé de fabrication d’un renfort fibreux pré-imprégné (1 ) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’on utilise une deuxième bande (5) de non-tissé thermoplastique (3) fabriquée à base de polypropylène et de ses dérivés, ou d’acide polylactique (PLA) et de ses dérivés, ou de polyamide et de ses dérivés, ou de polyéthylène haute ou basse densité et de ses dérivés, ou de polyester et de ses dérivés ou d’un mélange de plusieurs de ces composés thermoplastiques.
9. Procédé de fabrication d’un renfort fibreux pré-imprégné (1 ) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’on utilise une première bande (4) de renfort en fibres naturelles végétales (2) comportant des fibres de lin longues unidirectionnelles et une deuxième bande (5) de non-tissé thermoplastique (3) fabriquée à base de polypropylène.
10. Renfort fibreux pré-imprégné (1 ) susceptible d’être obtenu par la mise en oeuvre du procédé de fabrication selon l’une quelconque des revendications précédentes, ledit renfort étant caractérisé en ce qu’il est composé d’une première bande (4) de renfort en fibres naturelles végétales (2) et d’au moins une deuxième bande (5) de non-tissé thermoplastique (3).
11. Renfort fibreux pré-imprégné (1 ) selon la revendication précédente caractérisé en ce qu’il est constitué uniquement par une première bande (4) de renfort en fibres naturelles végétales (2) et par une deuxième bande (5) de non-tissé thermoplastique (3).
12. Renfort fibreux pré-imprégné (1 ) selon l’une quelconque des revendications 10 ou 1 1 caractérisé en ce que lesdites fibres naturelles végétales de ladite bande de renfort en (2) sont des fibres de lin, tandis que le matériau thermoplastique de ladite bande (5) de non-tissé thermoplastique (3) est du polypropylène.
13. Renfort fibreux pré-imprégné (1 ) selon l’une quelconque des revendications 10 à 12 caractérisé en ce qu’il comporte une proportion de non-tissé thermoplastique (3) supérieure ou égale à 30% et inférieure ou égale à 80% en masse par rapport à la masse totale du renfort (1 ), tandis que le taux volumique (Vf%) de fibres naturelles végétales (2) dans ce renfort (1 ) est compris entre 15 et 70% en volume.
14. Renfort fibreux pré-imprégné (1 ) selon la revendication 13 caractérisé en ce que la proportion de non-tissé thermoplastique (3) dans ce renfort (1 ) est comprise entre 35 et 40% en masse, par rapport à la masse totale du renfort (1 ), tandis que le taux volumique (Vf%) de fibres naturelles végétales (2) est compris entre 45 et 55% du volume du renfort (1 ).
15. Pièce en matériau composite caractérisée en ce qu’elle comporte au moins un renfort fibreux pré-imprégné (1 ) selon l’une quelconque des revendications 10 à 14 et une âme en nids d’abeille, en carton, en mousse ou en polymère thermoplastique.
EP20709228.9A 2019-03-12 2020-03-12 Procede de fabrication d'un renfort fibreux pre-impregne a partir d'un non-tisse thermoplastique et d'un renfort de fibres naturelles vegetales, et renfort fibreux pre-impregne obtenu Withdrawn EP3938162A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1902514A FR3093669B1 (fr) 2019-03-12 2019-03-12 Procédé de fabrication d’un renfort fibreux pré-imprégné à partir d’un non-tissé thermoplastique et d’un renfort de fibres naturelles
PCT/EP2020/056708 WO2020182959A1 (fr) 2019-03-12 2020-03-12 Procede de fabrication d'un renfort fibreux pre-impregne a partir d'un non-tisse thermoplastique et d'un renfort de fibres naturelles vegetales, et renfort fibreux pre-impregne obtenu

Publications (1)

Publication Number Publication Date
EP3938162A1 true EP3938162A1 (fr) 2022-01-19

Family

ID=67262636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20709228.9A Withdrawn EP3938162A1 (fr) 2019-03-12 2020-03-12 Procede de fabrication d'un renfort fibreux pre-impregne a partir d'un non-tisse thermoplastique et d'un renfort de fibres naturelles vegetales, et renfort fibreux pre-impregne obtenu

Country Status (3)

Country Link
EP (1) EP3938162A1 (fr)
FR (1) FR3093669B1 (fr)
WO (1) WO2020182959A1 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0606065D0 (en) * 2006-03-25 2006-05-03 Building Res Establishment Ltd Process for making composite products
FR2939069B1 (fr) * 2008-11-28 2013-03-01 Hexcel Reinforcements Nouveau materiau intermediaire de largeur constante pour la realisation de pieces composites par procede direct.
FR2962452B1 (fr) * 2010-07-07 2012-09-28 Holding Depestele Soc Preforme souple pour la production d'une piece a base de fibres naturelles
DE102011056686B4 (de) * 2011-12-20 2017-11-23 Markus Brzeski Verfahren zur Herstellung eines Faserverbundwerkstoffes, ein nach dem Verfahren hergestellter Faserverbundwerkstoff sowie eine Vorrichtung zur Durchführung des Verfahrens
EP2821226B1 (fr) * 2012-03-02 2018-12-26 Avic Composite Corporation Ltd. Matériau composite contenant des tissus à base de fibres végétales et procédé de préparation correspondant
FR3012074B1 (fr) * 2013-10-18 2016-10-28 Faurecia Automotive Ind Piece structurelle de vehicule automobile, legere et robuste
JP2019508603A (ja) * 2016-01-15 2019-03-28 ファースト クオリティ ノンウーヴンズ、インコーポレイテッド 天然繊維ウェブ層を含む不織複合体及びその形成方法
FR3047196B1 (fr) 2016-02-02 2018-09-28 Coriolis Group Procede de realisation de preformes tridimensionnelles par formage de preformes initiales avec des voiles

Also Published As

Publication number Publication date
FR3093669A1 (fr) 2020-09-18
WO2020182959A1 (fr) 2020-09-17
FR3093669B1 (fr) 2021-03-19

Similar Documents

Publication Publication Date Title
EP1373621B1 (fr) Procede et dispositif de fabrication d'une plaque composite a renfort fibreux multiaxial
EP2919969B1 (fr) Procede de depot d'un materiau intermediaire permettant d'assurer la cohesion de ce dernier et materiau intermediaire
EP3446868B1 (fr) Procédé de fabrication d'un ruban de filaments de largeur constante pour la realisation de pieces composites par procede direct et ruban correspondant
EP3713759B1 (fr) Materiau de renfort comprenant une couche poreuse en un polymere thermoplastique partiellement reticule et procedes associes
EP2822746B1 (fr) Procédé de fabrication d'une pièce d'équipement de véhicule automobile et pièce d'équipement associée
FR2954356A1 (fr) Nouveaux materiaux intermediaires realises par entrecroisement avec entrelacement de fils voiles
WO2018060559A1 (fr) Procédé de réalisation de pièces en matériau composite par imprégnation d'une préforme particulière
FR2975939A1 (fr) Ruban voile presentant une resistance au delaminage amelioree
WO2019087141A1 (fr) Produit composite comprenant un treillis et un polymere
WO2001016418A1 (fr) Procede et dispositif de fabrication de plaques composites
EP3606734B1 (fr) Procédé de réalisation de pièces en matériau composite a partir de préformes aiguilletées en présence d'agent lubrifiant
WO2019185997A1 (fr) Procédé de réalisation d'une pièce en matériau composite par aiguilletage de sous-ensembles de plis
FR3014731A1 (fr) Procede de fabrication d'une piece structurelle economique, notamment pour un vehicule automobile
FR2811688A1 (fr) Nappe unidirectionnelle en materiau composite
EP1466045B1 (fr) Structure fibreuse pour la realisation de materiaux composites
EP3606735A1 (fr) Procédé de réalisation de pièces en matériau composite à partir de préformes aigilletées
WO2020182959A1 (fr) Procede de fabrication d'un renfort fibreux pre-impregne a partir d'un non-tisse thermoplastique et d'un renfort de fibres naturelles vegetales, et renfort fibreux pre-impregne obtenu
FR3078010A1 (fr) Materiau composite et procede de realisation de ce materiau
EP3197676B1 (fr) Procédé de fabrication d'une pièce composite à base de résine aqueuse et pièce composite issue d'un tel procédé
EP3057781B1 (fr) Piece structurelle de vehicule automobile, legere et robuste et sa methode de fabrication
CA3029649C (fr) Feuille composite a base de tissu et de polyetherimide a porosite controlee
FR2949125A1 (fr) Renfort composite a base de fibres naturelles
FR3101276A1 (fr) Procédé de réalisation d’une pièce en materiau composite de type sandwich par aiguilletage
FR2709697A1 (fr) Procédé et appareil pour imprégner des fibres avec des matières à viscosité élevée, et article correspondant.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220503