WO2018014782A1 - 安检仪运动控制系统 - Google Patents

安检仪运动控制系统 Download PDF

Info

Publication number
WO2018014782A1
WO2018014782A1 PCT/CN2017/092831 CN2017092831W WO2018014782A1 WO 2018014782 A1 WO2018014782 A1 WO 2018014782A1 CN 2017092831 W CN2017092831 W CN 2017092831W WO 2018014782 A1 WO2018014782 A1 WO 2018014782A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
motion
fan ring
control system
radius
Prior art date
Application number
PCT/CN2017/092831
Other languages
English (en)
French (fr)
Inventor
王荣
祁春超
黄雄伟
吴光胜
赵术开
丁庆
Original Assignee
华讯方舟科技有限公司
深圳市无牙太赫兹科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华讯方舟科技有限公司, 深圳市无牙太赫兹科技有限公司 filed Critical 华讯方舟科技有限公司
Priority to US16/319,160 priority Critical patent/US10877460B2/en
Publication of WO2018014782A1 publication Critical patent/WO2018014782A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4061Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40339Avoid collision

Definitions

  • the invention relates to the technical field of security instruments, in particular to a motion control system of a security device.
  • Millimeter waves have frequencies from 30 GHz to 300 GHz (wavelengths from 1 mm to 10 mm), and in practical engineering applications, the low-end frequencies of millimeter waves are often reduced to 26 GHz.
  • the position of the millimeter wave frequency in the electromagnetic spectrum is between the infrared and the microwave.
  • millimeter wave has the ability to work around the clock and can be used in harsh environments such as smoke, clouds and the like.
  • the millimeter wave has a short wavelength, a frequency bandwidth (having a very large utilization space), and a propagation characteristic in the atmosphere is a typical characteristic of a millimeter wave.
  • the millimeter wave mainly has the following characteristics: high precision, high resolution, ability to penetrate plasma, millimeter wave is less affected by harsh natural environment; millimeter wave system is small in size and light in weight, compared with microwave circuit. Millimeter-wave circuits are much smaller in size, so millimeter-wave systems are easier to integrate. It is these unique properties that give the millimeter-wave technology a wide range of applications in the field of non-destructive testing and security inspection.
  • the millimeter wave imaging system is mainly divided into millimeter wave active imaging and millimeter wave passive imaging.
  • the three-dimensional full-imaging imaging technology of millimeter-wave active cylindrical array rotation scanning is adopted, that is, the array type millimeter wave transmitting and receiving antenna module is used to acquire human body scanning information
  • the motion control mode mostly adopts a programmable logic controller (Programmable) Logic Controller, PLC) control system and servo motor control scheme, because the ordinary programmable logic controller signal processing speed is slow, the signal delay is long, can not monitor the working state of each motor from time to time, once the fault occurs, the maintenance inspection work is very cumbersome Therefore, the maintenance, repair and debugging of the human body security device is very inconvenient, and the wrong movement is not protected or protected in the solution, thereby posing a safety hazard.
  • PLC programmable logic controller
  • a security instrument motion control system includes a host computer communication module, a main controller, a rotary motion module, a trigger module, a position detection module, and a power module;
  • the upper computer communication module is used for communication with the upper computer
  • the main controller is respectively connected to the upper computer communication module, the rotary motion module, the trigger module, and the positioning detection module, and the main controller receives the motion instruction issued by the upper computer, and drives and controls the motion of the rotary motion module. ;
  • the rotary motion module is mechanically connected to the positioning detection module, and the positioning detection module is configured to detect and determine motion information of the rotary motion module;
  • the main controller controls the motion state of the rotary motion module according to the motion information and controls the trigger module to scan and collect human body information, wherein the main controller is an FPGA control chip;
  • the power module supplies power to each module in the security control system of the security device.
  • the rotary motion module includes a driver, a servo motor, and a cantilever;
  • the driver, the servo motor, and the cantilever are sequentially connected, and the driver is configured to drive the servo motor to drive the cantilever to rotate.
  • the positioning detection module includes a rotary encoder and a positioning unit; the rotary encoder and the positioning unit are both disposed coaxially with the servo motor;
  • the rotary encoder is configured to detect the rotation angle, direction and speed information of the servo motor in real time
  • the positioning unit is configured to monitor the starting and ending positions of the servo motor in clockwise or counterclockwise rotation.
  • the rotary encoder is an incremental encoder having a resolution of less than or equal to 0.005 degrees.
  • the positioning unit includes a positioning piece, and the positioning piece includes a first fan ring, a second fan ring, a third fan ring, and a fourth fan ring that are annularly connected in a counterclockwise direction, and The centers of the first fan ring, the second fan ring, the third fan ring, and the fourth fan ring are coincident;
  • the central angles of the first fan ring, the second fan ring, the third fan ring, and the fourth fan ring are respectively a first central angle, a second central angle, a third central angle, and a fourth central angle;
  • the major radius of the first fan ring, the second fan ring, the third fan ring, and the fourth fan ring are respectively a first radius, a second radius, a third radius, and a fourth radius;
  • the first central angle is an obtuse angle
  • the second central angle is an acute angle
  • the third central angle is a right angle
  • the fourth central angle is an obtuse angle
  • the first radius, the third radius, and the second radius are sequentially decreased, and the second radius is equal to the fourth radius.
  • the positioning unit further includes a first protection switch, a second protection switch, a zero position switch, and a middle position switch;
  • the zero position switch is disposed at a midpoint of the arc of the first fan ring, and the distance from the zero position switch to the center of the circle is smaller than the first radius and greater than the third radius;
  • a line connecting the middle position switch and the zero position switch passes through the center of the circle, and the middle position switch is disposed at a connection between the third fan ring and the fourth fan ring;
  • the distance of the center of the circle is greater than the second radius and less than the third radius;
  • the first protection switch, the second protection switch, and the zero position switch are located on the same circumference, and the fifth central angle formed by the first protection switch, the center center, and the zero position switch and the second protection switch, the center of the circle, and the zero The sixth central angle formed by the bit switches is equal to the first central angle.
  • the first protection switch and the second protection switch are both mechanical switches.
  • the zero switch and the neutral switch are all photosensor switches.
  • the trigger module includes a digital pulse driving chip, and the digital pulse driving chip is coupled to the FPGA control chip.
  • the host computer communication module includes a Gigabit Ethernet port communication chip, and the Gigabit Ethernet port communication chip is connected to the host computer for communication with the host computer.
  • the FPGA control chip in the motion control system of the security device receives the motion command of the angle, direction and speed from the upper computer through the upper computer communication module to realize the fast control rotary motion module; meanwhile, the FPGA control chip detects the rotary motion module according to the positioning detection module.
  • the real-time motion information controls the motion state of the motion module, wherein the motion state includes stop motion and normal rotation.
  • the FPGA control chip can detect the working status of each module in the motion control system of the security device in real time. Once the security control system of the security device fails, the modules can be debugged, repaired and maintained separately, which improves the working efficiency. At the same time, if the positioning detection module detects an abnormality in the rotary motion module, the FPGA control chip controls the stop motion of the motion module, which greatly improves the safety of the rotary motion module.
  • Figure 1 is a structural frame diagram of the motion control system of the security instrument
  • FIG. 2 is a schematic structural view of a rotary motion module in a motion control system of a security device
  • FIG. 3 is a top plan view of a rotary motion module and a positioning detection module in a motion control system of the security device;
  • FIG. 4 is a schematic structural view of a positioning piece
  • FIG. 5 is a schematic structural diagram of a positioning detection module
  • 6a is a schematic structural view of a positioning detecting module when rotating clockwise
  • 6b is a schematic structural diagram of a zero position on the right side of the positioning detection module
  • FIG. 7a is a schematic structural view of a positioning detecting module when rotating counterclockwise
  • FIG. 7b is a schematic structural diagram of the zero position on the left side of the positioning detection module.
  • the security instrument motion control system includes a main controller 10 , a host computer communication module 20 , a rotary motion module 30 , a positioning detection module 40 , a trigger module 50 , and a power module (not shown in the figure). Show).
  • the upper computer communication module 20 is used for communication with the upper computer; the main controller 10 is connected to the upper computer communication module 20, the rotational motion module 30, the positioning detection module 40, and the trigger module 50, respectively.
  • the main controller 10 receives the motion command issued by the host computer through the host computer communication module 20, and drives and controls the motion of the rotary motion module 30.
  • the rotational motion module 30 is mechanically coupled to the position detection module 40 for detecting and determining motion information of the rotational motion module 30.
  • the main controller 10 controls the motion state of the rotational motion module 30 according to the motion information of the rotational motion module 30 and controls the trigger module 50 to scan and collect the human body information.
  • the power module supplies power to the various modules in the security motion control system.
  • the main controller 10 is a field-programmable gate array (Field-Programmable Gate). Array, FPGA) control chip.
  • the FPGA control chip the field programmable gate array control chip, is a product further developed on the basis of programmable devices such as PAL, GAL, and CPLD. It emerged as a semi-custom circuit in the field of application-specific integrated circuits (ASICs), which not only solves the shortcomings of custom circuits, but also overcomes the shortcomings of the limited number of original programmable device gates.
  • ASICs application-specific integrated circuits
  • the FPGA control chip has the advantages of fast signal processing, timely processing of signals, low delay, and flexible peripheral communication interface.
  • the upper computer communication module 20 includes a Gigabit network port communication chip, and the Gigabit network communication chip is used for communication with the host computer.
  • the FPGA control chip receives the motion command from the host computer via the host computer communication module 20, and the motion command includes motion information such as angle, direction, speed, etc., and realizes rapid control of the rotation motion module 30 to rotate.
  • the FPGA control chip controls the motion state of the motion module according to the real-time motion information (rotation angle, direction, speed) of the rotational motion module 30 detected by the positioning detection module 40, wherein the motion state includes stopping rotation and normal rotation.
  • the upper computer communication module 20 can also feed back the real-time motion information (rotation angle, direction, speed) of the rotational motion module 30 by the positioning detection module 40 to the upper computer.
  • the FPGA control chip can detect the working status of each module in the motion control system of the security device in real time. Once the security control system of the security device fails, the modules can be debugged, repaired and maintained separately, which improves the working efficiency. At the same time, if the positioning detection module 40 detects an abnormality in the rotary motion module 30, the FPGA control chip controls the stop rotation of the motion module, which greatly improves the safety of the rotary motion module 30.
  • FIG. 2 is a schematic structural diagram of a rotary motion module in a motion control system of a security device.
  • the rotary motion module 30 includes a driver 310, a servo motor 320, and a cantilever 330.
  • the driver 310, the servo motor 320, and the cantilever 330 are sequentially connected, and the driver 310 is used to drive the servo motor 320 to drive the cantilever 330 to perform an ⁇ -angle positive and a counterclockwise rotational motion.
  • the angle ⁇ is an obtuse angle. In the embodiment, the angle ⁇ is 120°, 135° or 150°, and the specific rotation angle ⁇ can be set according to actual requirements, and is not limited to the specific angle of the embodiment.
  • the positioning detection module 40 includes a rotary encoder 410 and a positioning unit 420; both the rotary encoder 410 and the positioning unit 420 are disposed coaxially with the servo motor 320.
  • the rotary encoder 410 is used to detect the rotation angle, direction and speed information of the servo motor 320 in real time, and the positioning unit 420 is used to monitor the start and end positions of the servo motor 320 in clockwise or counterclockwise rotation.
  • the rotary encoder 410 is an incremental encoder, and the resolution of the incremental encoder is less than or equal to 0.005 degrees.
  • the incremental rotary encoder 410 converts the displacement into a periodic electrical signal, and then converts the electrical signal into a counting pulse, and uses the number of pulses to represent the magnitude of the displacement; and converts the angular encoder disk through two internal photosensitive receiving tubes.
  • the timing and phase relationship is increased (positive direction) or reduced (negative direction) by the angle disc angular displacement, which is easy to install and safe, and has a long service life.
  • the rotary encoder 410 is configured to detect the rotation angle, direction and speed information of the servo motor 320 in real time, and feed back the detected motion information to the FPGA control chip. If the FPGA control chip does not receive the motion information of the rotation of the cantilever 330 fed back by the rotary encoder 410, or the difference between the angle value of the rotation of the cantilever 330 received by the FPGA control chip and the angle value of the actual rotation is greater than 1°, then the rotation coding The processor 410 fails. At this time, the FPGA control chip drives the servo motor 320 to stop moving. The real-time monitoring of the rotary encoder 410 by the FPGA control chip enables control of the servo motor 320, greatly improving the safety of the rotary motion module 30.
  • the FPGA control chip controls the trigger module to send a trigger command according to the motion information of the rotation of the cantilever 330, and the trigger command is a pulse signal.
  • the trigger module 50 includes a digital pulse driving chip, and the digital pulse driving chip is connected to the FPGA control chip.
  • the FPGA control chip controls the trigger module 50 to send a pulse signal for scanning and collecting human body information.
  • the ⁇ angle is less than 1°. In the embodiment, the ⁇ angle is less than 0.5°, and the smaller the ⁇ angle is, the more detailed the collected human body information is. In actual operation, the ⁇ angle can be set according to actual needs. .
  • the positioning unit 420 includes a positioning piece 422. As shown in FIG. 4, the positioning piece 422 includes a first fan ring A1, a second fan ring A2, and a third fan ring that are annularly connected in a counterclockwise direction. A3 and fourth fan ring A4. In this embodiment, the first fan ring A1, the second fan ring A2, the third fan ring A3, and the fourth fan ring A4 are integrally formed and located on the same horizontal plane. The center of the first fan ring A1, the second fan ring A2, the third fan ring A3, and the fourth fan ring A4 coincide.
  • the central angles of the first fan ring A1, the second fan ring A2, the third fan ring A3, and the fourth fan ring A4 are respectively a first central angle ⁇ 1, a second central angle ⁇ 2, a third central angle ⁇ 3, and a fourth central angle ⁇ 4.
  • the major ring radii of the first fan ring A1, the second fan ring A2, the third fan ring A3, and the fourth fan ring A4 are a first radius R1, a second radius R2, a third radius R3, and a fourth radius R4, respectively.
  • the first central angle ⁇ 1 is an obtuse angle
  • the positioning unit 420 further includes a first protection switch S1, a second protection switch S2, a zero position switch S3, and a middle position switch S4.
  • the zero switch S3 is disposed at a midpoint of the arc of the first fan ring A1, and the distance from the zero switch S3 to the center O is smaller than the first radius R1 and greater than the third radius R3.
  • the connection between the intermediate position switch S4 and the zero position switch S3 passes through the center O, and the intermediate position switch S4 is disposed at the junction of the third fan ring A3 and the fourth fan ring A4; the distance between the middle position switch S4 and the center O is greater than the
  • the second radius R2 is smaller than the third radius R3.
  • the first protection switch S1, the second protection switch S2, and the zero position switch position S3 are on the same circumference, and the fifth central angle ⁇ 5 formed by the first protection switch S1, the center O and the zero position switch S3 and the second protection switch S2
  • the sixth central angle ⁇ 6 formed by the center O and the zero switch S3 is equal to the first central angle ⁇ 1.
  • the zero position switch S3 and the middle position switch S4 are photoelectric sensor switches.
  • the zero switch S3 is used when the servo motor 320 controls the rotational movement of the cantilever 330 to position the left (clockwise rotation) right (counterclockwise rotation) starting positions on both sides.
  • the security device motion control system receives the initialization command and the rotation command of the upper computer through the upper computer communication module 20, wherein the initialization command corrects the cantilever 330 through the state of the zero switch S3 and the intermediate position switch S4 to make the cantilever 330 moves to the starting position on the left or right side.
  • the servo motor 320 drives the cantilever 330 to rotate clockwise or counterclockwise, the zero switch S3 is blocked by the first fan ring A1 of the positioning piece 422 to be unobstructed, indicating that the cantilever 330 is located at the left start position or the right start position. Bit.
  • the middle position switch S4 is used to determine the direction of movement when the servo motor 320 drives the cantilever 330 to move to the initial position. Referring to FIG. 6a and FIG. 6b, if the intermediate position switch S4 is blocked by the third fan ring A3 of the positioning piece 422, and the servo motor 320 rotates clockwise, the zero position switch S3 is blocked by the first fan ring A1 of the positioning piece 422. If it becomes unobstructed, it means that the cantilever 330 is located at the right start position. Referring to FIG. 7a and FIG.
  • the FPGA control chip controls the cantilever 330 to rotate to the left start position or the right start position. Then, with the positioning piece 422, the zero position switch S3, and the middle position switch S4, if the middle position switch S4 is not blocked by the third fan ring A3 of the positioning piece 422, the servo motor 320 rotates counterclockwise, thereby driving the cantilever 330 to rotate counterclockwise. ⁇ angle; if the intermediate position switch S4 is blocked by the third fan ring A3 of the positioning piece 422, the servo motor 320 rotates clockwise, thereby driving the cantilever 330 to rotate the angle ⁇ clockwise.
  • the positioning detection module 40 uses a combination positioning method of the positioning piece 422 and the photoelectric sensor switch, and the conventional absolute encoder is used to determine the initial position, which greatly saves the cost.
  • the first protection switch S1 and the second protection switch S2 are both mechanical switches, a fifth central angle ⁇ 5 formed by the first protection switch S1, the center O, and the zero switch S3, and a second protection switch S2, a center O.
  • the sixth central angle ⁇ 6 formed by the zero switch S3 is equal to the first central angle ⁇ 1, that is, the first protection switch S1 and the second protection switch S2 are respectively located at the extreme positions of the maximum angle ⁇ of the rotation of the cantilever 330.
  • the first fan ring A1 of the positioning piece 422 will rotate clockwise to touch the first protection switch S1 or counterclockwise to touch the second protection switch S2, and the first protection switch S1
  • the second protection switch S2 will disconnect the power supply of the servo motor 320, and the servo motor 320 stops moving to avoid the deformation or damage of the cantilever 330 caused by the failure, and has the protection function, and the fault information is fed back to the upper position through the FPGA control chip. machine.
  • the trigger module 50 includes a digital pulse driving chip, and the digital pulse driving chip is connected to the FPGA control chip.
  • the FPGA control chip controls the trigger module 50 to send a pulse signal for scanning and collecting human body information.
  • the ⁇ angle is less than 1°. In the embodiment, the ⁇ angle is less than 0.5°, and the smaller the ⁇ angle is, the more detailed the collected human body information is. In actual operation, the ⁇ angle can be set according to actual needs. .
  • the above-mentioned security instrument motion control system protects the rotary motion module 30 from both hardware and software.
  • the hardware protection uses the first protection switch, the second protection switch and the positioning piece 422 to realize the power failure of the servo motor 320 to avoid malfunction.
  • the cantilever 330 impacts deformation or damage, and has a protective function; its software protection detects the motion information of the rotary encoder 410 and the zero switch in real time through the FPGA control chip, and controls the servo motor 320 according to the motion information, thereby greatly improving the movement of the security device. Control system security.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

一种安检仪运动控制系统,安检仪控制系统中FPGA控制芯片(10)经上位机通讯模块(20)接收来自上位机的角度、方向、速度等运动指令,实现快速控制旋转运动模块(30);同时,FPGA控制芯片(10)根据将定位检测模块(40)检测旋转运动模块(30)的实时运动信息控制旋转运动模块(30)的运动状态,其中,运动状态包括停止运动和正常旋转。FPGA控制芯片(10)可以实时检测到安检仪运动控制系统中各个模块的工作状态,一旦该安检仪运动控制系统出现故障,可以对各模块分别进行调试、维修和维护,提高了工作效率。同时,若定位检测模块(40)检测到旋转运动模块(30)出现异常,则FPGA控制芯片(10)控制旋转运动模块(30)停止运动,大大提高了旋转运动模块(30)的安全性。

Description

安检仪运动控制系统
【技术领域】
本发明涉及安检仪技术领域,特别是涉及安检仪运动控制系统。
【背景技术】
毫米波的频率为30GHz到300GHz(波长从1mm到10mm),在实际工程应用中,常把毫米波的低端频率降到26GHz。在电磁波谱中毫米波频率的位置介于红外与微波之间。与红外相比,毫米波具有全天候工作的能力并且可用于烟尘,云雾等恶劣环境下。与微波相比,毫米波的波长短,频带宽(具有很广阔的利用空间)以及在大气中的传播特性是毫米波的典型特点。具体来说毫米波主要有以下几个特点:精度高、分辨率高、能够穿透等离子体、毫米波受恶劣自然环境的影响小;毫米波系统体积小,重量轻,和微波电路相比,毫米波电路尺寸要小很多,因此,毫米波系统更易集成,正是这些独特的性质赋予了毫米波技术的无损检测和安检领域的广泛应用前景。
毫米波成像体制主要分为毫米波主动成像和毫米波被动成像。一般多采用毫米波主动式圆柱形阵列旋转扫描的三维全成成像技术,即采用阵列式的毫米波发射、接收天线模块来获取人体扫描信息,其运动控制方式大多采用可编程逻辑控制器(Programmable Logic Controller,PLC)控制系统和伺服电机的控制方案,由于普通的可编程逻辑控制器信号处理速度慢,对信号延时长,无法时时监测各电机运动工作状态,一旦出现故障,维修检测工作十分繁琐,从而使人体安检仪维护、维修、调试十分不便,且在方案中对错误运动未防护或防护不周全,从而带来安全隐患。
【发明内容】
基于此,有必要针对维护繁琐、调试不便、安全性能低的问题,提供一种安检仪运动控制系统。
一种安检仪运动控制系统,包括上位机通讯模块、主控器、旋转运动模块、触发模块、定位检测模块和电源模块;
所述上位机通讯模块用于与上位机进行通讯;
所述主控器分别与所述上位机通讯模块、旋转运动模块、触发模块、定位检测模块连接,所述主控器接收所述上位机发出的运动指令,并驱动控制所述旋转运动模块运动;
所述旋转运动模块与定位检测模块机械连接,所述定位检测模块用于检测和判断所述旋转运动模块的运动信息;
所述主控器根据所述运动信息控制所述旋转运动模块的运动状态和控制所述触发模块扫描采集人体信息,其中,所述主控器为FPGA控制芯片;
所述电源模块为所述安检仪运动控制系统中的各个模块供电。
在其中一个实施中,所述旋转运动模块包括驱动器、伺服电机和悬臂;
所述驱动器、伺服电机、悬臂依次连接,所述驱动器用于驱动所述伺服电机带动所述悬臂旋转。
在其中一个实施中,所述定位检测模块包括旋转编码器和定位单元;所述旋转编码器、定位单元均与所述伺服电机同轴设置;
所述旋转编码器用于实时检测所述伺服电机的旋转角度、方向及速度信息,
所述定位单元用于监测所述伺服电机顺时针或逆时针旋转的起始和极限位置。
在其中一个实施中,所述旋转编码器为增量式编码器,所述增量式编码器的分辨率小于等于0.005度。
在其中一个实施中,所述定位单元包括定位片,所述定位片包括沿逆时针方向环状相接的第一扇环、第二扇环、第三扇环和第四扇环,且所述第一扇环、第二扇环、第三扇环和第四扇环的圆心重合;
所述第一扇环、第二扇环、第三扇环和第四扇环的圆心角分别为第一圆心角、第二圆心角、第三圆心角、第四圆心角;
所述第一扇环、第二扇环、第三扇环和第四扇环的大环半径分别为第一半径、第二半径、第三半径、第四半径;
所述第一圆心角为钝角,第二圆心角为锐角,第三圆心角为直角,第四圆心角为钝角;
所述第一半径、第三半径、第二半径依次递减,且所述第二半径与第四半径相等。
在其中一个实施中,所述定位单元还包括第一保护开关、第二保护开关、零位开关和中间位开关;
所述零位开关设置在所述第一扇环圆弧的中点,所述零位开关到圆心的距离小于所述第一半径且大于所述第三半径;
所述中间位开关与所述零位开关的连线穿过所述圆心,且所述中间位开关设置在所述第三扇环与第四扇环的连接处;所述中间位开关与所述圆心的距离大于第二半径且小于第三半径;
所述第一保护开关、第二保护开关、零位开关位于同一圆周上,且所述第一保护开关、圆心、零位开关构成的第五圆心角与所述第二保护开关、圆心、零位开关构成的第六圆心角均与所述第一圆心角相等。
在其中一个实施中,所述第一保护开关、第二保护开关均为机械开关。
在其中一个实施中,所述零位开关、中间位开关均为光电传感器开关。
在其中一个实施中,所述触发模块包括数字脉冲驱动芯片,所述数字脉冲驱动芯片与所述FPGA控制芯片连接。
在其中一个实施中,所述上位机通讯模块包括千兆网口通讯芯片,所述千兆网口通讯芯片与所述上位机连接,用于实现与上位机的通讯。
上述安检仪运动控制系统中FPGA控制芯片经上位机通讯模块接收来自上位机的角度、方向、速度等运动指令,实现快速控制旋转运动模块;同时,FPGA控制芯片根据将定位检测模块检测旋转运动模块的实时运动信息(旋转角度、方向、速度)控制运动模块的运动状态,其中,运动状态包括停止运动和正常旋转。FPGA控制芯片可以实时检测到该安检仪运动控制系统中各个模块的工作状态,一旦该安检仪运动控制系统出现故障,可以对各模块分别进行调试、维修和维护,提高了工作效率。同时,若定位检测模块检测到旋转运动模块出现异常,则FPGA控制芯片控制运动模块的停止运动,大大提高了旋转运动模块的安全性。
【附图说明】
图1为安检仪运动控制系统结构框架图;
图2为安检仪运动控制系统中旋转运动模块的结构示意图;
图3为安检仪运动控制系统中旋转运动模块、定位检测模块的俯视示意图;
图4为定位片的结构示意图;
图5为定位检测模块的结构示意图;
图6a为顺时针旋转时定位检测模块的结构示意图;
图6b为定位检测模块右侧零位的结构示意图;
图7a为逆时针旋转时定位检测模块的结构示意图;
图7b为定位检测模块左侧零位的结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示的为安检仪运动控制系统,安检仪运动控制系统包括主控器10、上位机通讯模块20、旋转运动模块30、定位检测模块40、触发模块50和电源模块(图中未示)。上位机通讯模块20用于与上位机进行通讯;主控器10分别与上位机通讯模块20、旋转运动模块30、定位检测模块40、触发模块50连接。主控器10通过上位机通讯模块20接收上位机发出的运动指令,并驱动控制旋转运动模块30运动。旋转运动模块30与定位检测模块40机械连接,定位检测模块40用于检测和判断旋转运动模块30的运动信息。主控器10根据旋转运动模块30的运动信息控制旋转运动模块30的运动状态和控制触发模块50扫描采集人体信息。电源模块为安检仪运动控制系统中的各个模块供电。
在本实施例中,主控器10为现场可编程门阵列(Field-Programmable Gate Array,FPGA)控制芯片。FPGA控制芯片,即现场可编程门阵列控制芯片,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。与传统的PLC控制器相比,FPGA控制芯片信号处理速度快,且对信号的及时处理,延迟小,外围通讯接口方式灵活等优点。
上位机通讯模块20包括千兆网口通讯芯片,千兆网通讯芯片用于实现与上位机的通讯。FPGA控制芯片经上位机通讯模块20接收来自上位机的运动指令,其运动指令中包括角度、方向、速度等运动信息,并实现快速控制旋转运动模块30旋转。同时,FPGA控制芯片根据将定位检测模块40检测旋转运动模块30的实时运动信息(旋转角度、方向、速度)控制运动模块的运动状态,其中,运动状态包括停止旋转和正常旋转。上位机通讯模块20还可以将定位检测模块40检测旋转运动模块30的实时运动信息(旋转角度、方向、速度)反馈给上位机。
FPGA控制芯片可以实时检测到该安检仪运动控制系统中各个模块的工作状态,一旦该安检仪运动控制系统出现故障,可以对各模块分别进行调试、维修和维护,提高了工作效率。同时,若定位检测模块40检测到旋转运动模块30出现异常,则FPGA控制芯片控制运动模块的停止旋转,大大提高了旋转运动模块30的安全性。
如图2所示的为安检仪运动控制系统中旋转运动模块的结构示意图,旋转运动模块30包括驱动器310、伺服电机320和悬臂330。驱动器310、伺服电机320、悬臂330依次连接,驱动器310用于驱动伺服电机320带动悬臂330进行θ角正、逆时针旋转运动。其中,θ角为钝角,在本实施例中,θ角为120°、135°或150°,其具体的旋转角度θ可根据实际需求来设定,并不限于本实施例的具体角度。
参考图3,定位检测模块40包括旋转编码器410和定位单元420;旋转编码器410和定位单元420均与伺服电机320同轴设置。旋转编码器410用于实时检测伺服电机320的旋转角度、方向及速度信息,定位单元420用于监测伺服电机320顺时针或逆时针旋转的起始和极限位置。
在本实施例中,旋转编码器410为增量式编码器,增量式编码器的分辨率小于等于0.005度。增量式旋转编码器410是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小;通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向),其安装方便和安全、使用寿命长。
旋转编码器410用于实时检测伺服电机320的旋转角度、方向及速度信息,并将检测的运动信息反馈给FPGA控制芯片。若FPGA控制芯片没有接受到旋转编码器410反馈的悬臂330旋转的运动信息时,或FPGA控制芯片接受的悬臂330旋转的角度值与实际旋转的角度值的差值大于1°时,则旋转编码器410出现故障,此时,则FPGA控制芯片驱动伺服电机320停止运动。通过FPGA控制芯片对旋转编码器410的实时监测可实现对伺服电机320的控制,大大提高了旋转运动模块30的安全性。
若FPGA控制芯片接受到旋转编码器410反馈的悬臂330旋转的运动信息时, FPGA控制芯片根据悬臂330旋转的运动信息控制触发模块发送触发指令,该触发指令为一脉冲信号。其中,触发模块50包括数字脉冲驱动芯片,数字脉冲驱动芯片与FPGA控制芯片连接。当悬臂330运动旋转α角度时,FPGA控制芯片则控制触发模块50发送一个脉冲信号,用于扫描采集人体信息。一般α角小于1°,在本实施例中,α角小于0.5°,其α角越小,所采集的人体信息越详细,在实际操作过程中,可根据实际需求来设定α角的大小。
定位单元420包括定位片422,如图4所示的为定位片的结构示意图,定位片422包括沿逆时针方向环状相接的第一扇环A1、第二扇环A2、第三扇环A3和第四扇环A4。在本实施例中,第一扇环A1、第二扇环A2、第三扇环A3和第四扇环A4一体成形,且位于同一水平面上。其中,第一扇环A1、第二扇环A2、第三扇环A3和第四扇环A4的圆心O重合。第一扇环A1、第二扇环A2、第三扇环A3和第四扇环A4的圆心角分别为第一圆心角θ1、第二圆心角θ2、第三圆心角θ3、第四圆心角θ4。第一扇环A1、第二扇环A2、第三扇环A3和第四扇环A4的大环半径分别为第一半径R1、第二半径R2、第三半径R3、第四半径R4。
其中,第一圆心角θ1为钝角,第一圆心角θ1与悬臂330的最大旋转角度θ相等(θ1=θ);第二圆心角θ2为锐角,且θ2 =90°-θ/2;第三圆心角为直角,即θ3=90°;第四圆心角为钝角,且θ4=180°-θ/2。第一半径R1、第三半径R3、第二半径R2依次递减,即R1> R3> R2,且第二半径R2与第四半径R4相等,即R2= R4。
参考图5,定位单元420还包括第一保护开关S1、第二保护开关S2、零位开关S3和中间位开关S4。零位开关S3设置在第一扇环A1圆弧的中点,零位开关S3到圆心O的距离小于第一半径R1且大于第三半径R3。中间位开关S4与零位开关S3的连线穿过圆心O,且中间位开关S4设置在第三扇环A3与第四扇环A4的连接处;中间位开关S4与圆心O的距离大于第二半径R2且小于第三半径R3。第一保护开关S1、第二保护开关S2、零位开关位S3于同一圆周上,且第一保护开关S1、圆心O、零位开关S3构成的第五圆心角θ5与第二保护开关S2、圆心O、零位开关S3构成的第六圆心角θ6均与第一圆心角θ1相等。
在本实施例中,零位开关S3、中间位开关S4均为光电传感器开关。零位开关S3用于伺服电机320控制悬臂330旋转运动时,对左(顺时针旋转)右(逆时针旋转)两侧起始位置进行定位。
在操作过程中,安检仪运动控制系统通过上位机通讯模块20接收上位机的初始化指令和旋转指令,其中初始化指令为通过零位开关S3、中间位开关S4的状态来校正悬臂330,使其悬臂330运动到左侧或右侧的起始位置。当伺服电机320驱动悬臂330顺时针或逆时针旋转时,零位开关S3被定位片422的第一扇环A1由遮挡到不遮挡时,表示悬臂330位于左侧起始位或右侧起始位。
中间位开关S4用于判断伺服电机320驱动悬臂330运动到初始位置时的运动方向。参考图6a和图6b,若中间位开关S4被定位片422的第三扇环A3遮挡,且伺服电机320顺时针旋转,此时零位开关S3被定位片422的第一扇环A1有遮挡变为不遮挡,即可表示该悬臂330位于右侧起始位。参考图7a、和图7b,若中间位开关S4被定位片422的第三扇环A3遮挡,且伺服电机320逆时针旋转,此时零位开关S3被定位片422的第一扇环A1有遮挡变为不遮挡,即可表示该悬臂330位于左侧起始位。
安检仪运动控制系统通过上位机通讯模块20接收上位机的旋转指令时,其FPGA控制芯片控制悬臂330旋转至左侧起始位或右起始位置。然后与定位片422、零位开关S3、中间位开关S4配合,若中间位开关S4没有被定位片422的第三扇环A3遮挡,则伺服电机320逆时针旋转,进而驱动悬臂330逆时针旋转θ角;若中间位开关S4被定位片422的第三扇环A3遮挡,则伺服电机320顺时针旋转,进而驱动悬臂330顺时针旋转θ角。同时,通过旋转编码器410对悬臂330的运动信息实时监测。定位检测模块40中采用定位片422和光电传感开关的组合定位方式,取缔了传统的绝对使编码器来确定初始位置,大大节约了成本。
在本实施例中,第一保护开关S1、第二保护开关S2均为机械开关,第一保护开关S1、圆心O、零位开关S3构成的第五圆心角θ5与第二保护开关S2、圆心O、零位开关S3构成的第六圆心角θ6均与第一圆心角θ1相等,也即,第一保护开关S1、第二保护开关S2分别位于悬臂330旋转的最大角度θ的极限位置。当零位开关S3出现故障时,定位片422的第一扇环A1就会顺时针旋转触碰到第一保护开关S1或逆时针旋转触碰到第二保护开关S2,其第一保护开关S1、第二保护开关S2就会断开伺服电机320的供电电源,其伺服电机320停止运动,避免因故障引起悬臂330撞击变形或损坏,具有保护作用,同时将故障信息通过FPGA控制芯片反馈给上位机。
触发模块50包括数字脉冲驱动芯片,数字脉冲驱动芯片与FPGA控制芯片连接。当伺服电机320运动旋转α角度时,FPGA控制芯片则控制触发模块50发送一个脉冲信号,用于扫描采集人体信息。一般α角小于1°,在本实施例中,α角小于0.5°,其α角越小,所采集的人体信息越详细,在实际操作过程中,可根据实际需求来设定α角的大小。
上述安检仪运动控制系统从硬件和软件两方面对旋转运动模块30予以保护,硬件保护即采用第一保护开关、第二保护开关及定位片422来实现伺服电机320的断电,避免因故障引起悬臂330撞击变形或损坏,具有保护作用;其软件保护即通过FPGA控制芯片实时检测旋转编码器410、零位开关的运动信息,根据该运动信息对伺服电机320进行控制,大大提高了安检仪运动控制系统的安全性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种安检仪运动控制系统,其特征在于,包括上位机通讯模块、主控器、旋转运动模块、触发模块、定位检测模块和电源模块;
    所述上位机通讯模块用于与上位机进行通讯;
    所述主控器分别与所述上位机通讯模块、旋转运动模块、触发模块、定位检测模块连接,所述主控器接收所述上位机发出的运动指令,并驱动控制所述旋转运动模块运动;
    所述旋转运动模块与定位检测模块机械连接,所述定位检测模块用于检测和判断所述旋转运动模块的运动信息;
    所述主控器根据所述运动信息控制所述旋转运动模块的运动状态和控制所述触发模块扫描采集人体信息,其中,所述主控器为FPGA控制芯片;
    所述电源模块为所述安检仪运动控制系统中的各个模块供电。
  2. 根据权利要求1所述的安检仪运动控制系统,其特征在于,所述旋转运动模块包括驱动器、伺服电机和悬臂;
    所述驱动器、伺服电机、悬臂依次连接,所述驱动器用于驱动所述伺服电机带动所述悬臂旋转。
  3. 根据权利要求2所述的安检仪运动控制系统,其特征在于,所述定位检测模块包括旋转编码器和定位单元;所述旋转编码器、定位单元均与所述伺服电机同轴设置;
    所述旋转编码器用于实时检测所述伺服电机的旋转角度、方向及速度信息,
    所述定位单元用于监测所述伺服电机顺时针或逆时针旋转的起始和极限位置。
  4. 根据权利要求3所述的安检仪运动控制系统,其特征在于,所述旋转编码器为增量式编码器,所述增量式编码器的分辨率小于等于0.005度。
  5. 根据权利要求3所述的安检仪运动控制系统,其特征在于,所述定位单元包括定位片,所述定位片包括沿逆时针方向环状相接的第一扇环、第二扇环、第三扇环和第四扇环,且所述第一扇环、第二扇环、第三扇环和第四扇环的圆心重合;
    所述第一扇环、第二扇环、第三扇环和第四扇环的圆心角分别为第一圆心角、第二圆心角、第三圆心角、第四圆心角;
    所述第一扇环、第二扇环、第三扇环和第四扇环的大环半径分别为第一半径、第二半径、第三半径、第四半径;
    所述第一圆心角为钝角,第二圆心角为锐角,第三圆心角为直角,第四圆心角为钝角;
    所述第一半径、第三半径、第二半径依次递减,且所述第二半径与第四半径相等。
  6. 根据权利要求5所述的安检仪运动控制系统,其特征在于,所述定位单元还包括第一保护开关、第二保护开关、零位开关和中间位开关;
    所述零位开关设置在所述第一扇环圆弧的中点,所述零位开关到圆心的距离小于所述第一半径且大于所述第三半径;
    所述中间位开关与所述零位开关的连线穿过所述圆心,且所述中间位开关设置在所述第三扇环与第四扇环的连接处;所述中间位开关与所述圆心的距离大于第二半径且小于第三半径;
    所述第一保护开关、第二保护开关、零位开关位于同一圆周上,且所述第一保护开关、圆心、零位开关构成的第五圆心角与所述第二保护开关、圆心、零位开关构成的第六圆心角均与所述第一圆心角相等。
  7. 根据权利要求6所述的安检仪运动控制系统,其特征在于,所述第一保护开关、第二保护开关均为机械开关。
  8. 根据权利要求6所述的安检仪运动控制系统,其特征在于,所述零位开关、中间位开关均为光电传感器开关。
  9. 根据权利要求1所述的安检仪运动控制系统,其特征在于,所述触发模块包括数字脉冲驱动芯片,所述数字脉冲驱动芯片与所述FPGA控制芯片连接。
  10. 根据权利要求1所述的安检仪运动控制系统,其特征在于,所述上位机通讯模块包括千兆网口通讯芯片,所述千兆网口通讯芯片与所述上位机连接,用于实现与上位机的通讯。
PCT/CN2017/092831 2016-07-21 2017-07-13 安检仪运动控制系统 WO2018014782A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/319,160 US10877460B2 (en) 2016-07-21 2017-07-13 Security check instrument motion control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610587383.6 2016-07-21
CN201610587383.6A CN106094734B (zh) 2016-07-21 2016-07-21 安检仪运动控制系统

Publications (1)

Publication Number Publication Date
WO2018014782A1 true WO2018014782A1 (zh) 2018-01-25

Family

ID=57448910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092831 WO2018014782A1 (zh) 2016-07-21 2017-07-13 安检仪运动控制系统

Country Status (3)

Country Link
US (1) US10877460B2 (zh)
CN (1) CN106094734B (zh)
WO (1) WO2018014782A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094734B (zh) 2016-07-21 2019-01-01 华讯方舟科技有限公司 安检仪运动控制系统
CN106338732B (zh) * 2016-08-23 2019-02-26 华讯方舟科技有限公司 一种毫米波三维全息成像方法及系统
CN106291740B (zh) 2016-09-07 2017-09-15 华讯方舟科技有限公司 功率调节方法、装置以及人体安检设备
CN106680814B (zh) * 2016-12-09 2018-07-27 华讯方舟科技有限公司 旋转扫描三维成像系统
CN109061635B (zh) * 2018-06-08 2021-07-06 深圳市重投华讯太赫兹科技有限公司 旋转扫描系统
CN109491309A (zh) * 2018-09-26 2019-03-19 河北华讯方舟太赫兹技术有限公司 安检仪的控制方法、安检仪及具有存储功能的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366042A (en) * 1991-03-06 1994-11-22 Zf Friedrichshafen Ag Device for detecting different steering angles
US20080025590A1 (en) * 2006-07-28 2008-01-31 Siemens Aktiengesellschaft Method for the tree-dimensional representation of a structure influenced by a periodic process, and medical imaging system
CN101472783A (zh) * 2006-06-22 2009-07-01 Zf腓特烈港股份公司 用于确定转向盘转角的方法和装置
CN102426361A (zh) * 2011-10-30 2012-04-25 北京无线电计量测试研究所 一种毫米波主动式三维全息成像的人体安检系统
CN106094734A (zh) * 2016-07-21 2016-11-09 华讯方舟科技有限公司 安检仪运动控制系统
CN205862211U (zh) * 2016-07-21 2017-01-04 华讯方舟科技有限公司 安检仪运动控制系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6290036B2 (ja) * 2013-09-25 2018-03-07 株式会社東芝 検査装置及び検査システム
CN105699494B (zh) * 2015-12-28 2018-08-17 深圳市太赫兹科技创新研究院 毫米波全息三维成像检测系统和方法
CN105759269B (zh) * 2016-04-25 2018-06-26 华讯方舟科技有限公司 三维全息成像的安检系统及方法
CN105759315B (zh) * 2016-04-26 2018-10-23 华讯方舟科技有限公司 扫描机构及具有该扫描机构的安检仪
CN106127732B (zh) * 2016-06-13 2019-01-01 深圳市太赫兹科技创新研究院 微波图像中人体性别检测方法和装置
US10884116B2 (en) * 2016-08-25 2021-01-05 Shenzhen Cct Thz Technology Co., Ltd. Human-body foreign-matter detection method and system based on millimetre-wave image

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366042A (en) * 1991-03-06 1994-11-22 Zf Friedrichshafen Ag Device for detecting different steering angles
CN101472783A (zh) * 2006-06-22 2009-07-01 Zf腓特烈港股份公司 用于确定转向盘转角的方法和装置
US20080025590A1 (en) * 2006-07-28 2008-01-31 Siemens Aktiengesellschaft Method for the tree-dimensional representation of a structure influenced by a periodic process, and medical imaging system
CN102426361A (zh) * 2011-10-30 2012-04-25 北京无线电计量测试研究所 一种毫米波主动式三维全息成像的人体安检系统
CN106094734A (zh) * 2016-07-21 2016-11-09 华讯方舟科技有限公司 安检仪运动控制系统
CN205862211U (zh) * 2016-07-21 2017-01-04 华讯方舟科技有限公司 安检仪运动控制系统

Also Published As

Publication number Publication date
US20190258220A1 (en) 2019-08-22
CN106094734B (zh) 2019-01-01
US10877460B2 (en) 2020-12-29
CN106094734A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2018014782A1 (zh) 安检仪运动控制系统
WO2018000976A1 (zh) 人体安检仪的监测方法和系统以及控制装置
CN101968366B (zh) 增量传感器的自动回零位的方法及其设备
WO2015014045A1 (zh) 多轴真空机械手轴系精度测试装置
CN205862211U (zh) 安检仪运动控制系统
CN103341863A (zh) 一种实现空间机械臂自爬行与载荷操作的末端执行器
WO2016086433A1 (zh) 一种触控基板、终端及提高触摸精度的方法
CN113029560A (zh) 自适应高精度rv减速器性能测试装置及其控制方法
CN108062112B (zh) 一种双余度角位置检测装置
JP2872383B2 (ja) 把持装置
CN110597124A (zh) 一种硬件冗余的通信架构
CN111452083A (zh) 一种具有力/位检测的一体化关节式驱控模块
JPH03294188A (ja) 活線作業用マニピュレータシステム
CN108873873A (zh) 变电站gis设备带电检测机器人
CN107618019A (zh) 移动机器人弹性件自适应柔性连接机构以及检测系统
CN102226692B (zh) 轴套式光电角位移传感器及设置方法
CN110861093B (zh) 一种并联机械臂智能5g导航避障系统
JP2018111137A (ja) 回転軸関節構造
CN107379008B (zh) 移动机器人全向自适应柔性检测系统
CN107521973B (zh) 多面检测仪
CN217605009U (zh) 大能量工作状态转换装置的检测组件
CN202024774U (zh) 轴套式光电角位移传感器
CN109048989A (zh) 一种用于核环境的机械臂腕关节
CN213738260U (zh) 一种门座式起重机供电装置及门座式起重机
JPS60195603A (ja) ロボツト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830416

Country of ref document: EP

Kind code of ref document: A1