WO2018014439A1 - 红外探测像元结构及其制备方法、混合成像器件 - Google Patents

红外探测像元结构及其制备方法、混合成像器件 Download PDF

Info

Publication number
WO2018014439A1
WO2018014439A1 PCT/CN2016/098382 CN2016098382W WO2018014439A1 WO 2018014439 A1 WO2018014439 A1 WO 2018014439A1 CN 2016098382 W CN2016098382 W CN 2016098382W WO 2018014439 A1 WO2018014439 A1 WO 2018014439A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
connecting body
plate
detecting pixel
infrared detecting
Prior art date
Application number
PCT/CN2016/098382
Other languages
English (en)
French (fr)
Inventor
康晓旭
陈寿面
Original Assignee
上海集成电路研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路研发中心有限公司 filed Critical 上海集成电路研发中心有限公司
Priority to US16/310,818 priority Critical patent/US10670468B2/en
Publication of WO2018014439A1 publication Critical patent/WO2018014439A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/38Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids
    • G01J5/40Radiation pyrometry, e.g. infrared or optical thermometry using extension or expansion of solids or fluids using bimaterial elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular, to an infrared detecting pixel structure and a method for fabricating the same, and a hybrid imaging device.
  • monitoring systems that use the visible wavelength band of 300nm-900nm are more and more unable to meet the monitoring requirements of nighttime or high dynamic changes. More and more applications need to be in visible light.
  • Optical signals outside the band, especially in the long-wavelength band are imaged.
  • the present invention aims to provide an infrared detecting pixel structure and a manufacturing method thereof, which adopts a variable capacitor structure to improve the sensitivity and imaging quality of the device; and the present invention also provides a visible light infrared hybrid imaging.
  • the device adopts the above infrared detecting pixel structure while Integrating visible and infrared light detection into the same silicon substrate improves hybrid imaging quality.
  • the present invention provides an infrared detecting pixel structure, which is disposed on a silicon substrate and includes:
  • the lower electrode structure located in the silicon substrate, the lower electrode structure having a lower plate arranged in a first direction and a lower connecting body arranged in a second direction connecting the plurality of lower plates;
  • An upper electrode structure located above the lower electrode structure, the upper electrode structure having an upper plate arranged in a first direction with the lower electrode structure and an upper connecting body arranged in a second direction connecting the plurality of upper plates; One end of the body is fixed, and the non-fixed end of the upper connecting body can move relative to the fixed end;
  • An infrared sensitive structure is disposed on the surface of the upper connecting body, and the infrared sensitive structure is configured to absorb incident infrared light and generate thermal deformation, so that the non-connecting end moves relative to the connecting end, so that the upper plate is relatively displaced with respect to the lower plate.
  • the upper and lower plates generate a change in the capacitance signal to achieve infrared detection.
  • the lower connecting body is connected to the output pole of the lower electrode structure;
  • the upper connecting body has a connecting end connected to the leading pole of the upper electrode structure, and the non-connecting end of the upper connecting body is not fixed, so that the non-connecting end is opposite to the connecting end Movement;
  • the upper connecting body is connected to the lead-out pole of the upper electrode structure through a varistor structure.
  • the varistor structure is a meandering meandering structure in a plane.
  • a cantilever structure Preferably, further comprising a cantilever structure; one end of the varistor is connected to a connection end of the upper connector, and the other end of the varistor structure is connected to one end of the cantilever structure, The other end of the cantilever structure is connected to the lead of the upper electrode structure.
  • the cantilever beam structure is an L-shape in a plane.
  • the material of the infrared sensitive structure is a material having micro stress inside; the micro stress increases during heating or cooling to cause deformation of the infrared sensitive structure, thereby causing relative displacement of the upper connecting body relative to the connecting end. The relative displacement of the upper plate relative to the lower plate.
  • the lower connecting body is connected to the bottom of each lower plate so that a groove is formed between the adjacent lower plate and the lower connecting body of the bottom, and each upper plate is inserted into the groove and the upper pole Board, said ditch
  • the lower plates on both sides of the slots and the gases in the trenches form a double capacitor structure.
  • the side wall surface on the side where the distance of the lower plate relative to the upper plate is reduced relative to the lower plate has a dielectric layer.
  • the present invention also provides a hybrid imaging sensor in which the above-described infrared detecting pixel structure and visible light detecting above the infrared detecting pixel structure are respectively disposed on the upper surface and the lower surface of the same silicon substrate. Pixel structure.
  • the present invention also provides a method for preparing the above-mentioned infrared detecting pixel structure, comprising:
  • Step 01 forming a lower electrode region in a silicon substrate
  • Step 02 etching a plurality of trenches in the lower electrode region, the lower electrode region of the trench sidewall forms a lower plate, and the lower electrode region at the bottom of the trench forms a lower connector;
  • Step 03 forming a sacrificial layer on the substrate on which step 02 is completed;
  • Step 04 forming the upper plate in the sacrificial layer in the trench, and then forming an upper connecting body connected to the upper plate on the surface of the sacrificial layer;
  • Step 05 forming the infrared sensitive structure on a surface of the upper connecting body
  • Step 06 The sacrificial layer is removed by a release process.
  • the infrared detecting pixel structure of the present invention uses the upper plate and the lower plate of the comb structure to form a capacitor structure, and one end of the upper electrode structure is not fixed, so that the infrared sensitive structure in the upper electrode structure absorbs infrared light. Thermal stress will cause deformation, so that the capacitance between the upper plate and the lower plate changes, infrared detection is realized, and the sensitivity of the device is improved; and the infrared detecting pixel structure is applied to the infrared light visible light hybrid imaging device, Achieve both visible and infrared imaging on the same silicon substrate, improving image quality.
  • FIG. 1 is a top plan view showing the structure of an infrared detecting pixel according to a preferred embodiment of the present invention
  • FIG. 2 is a front cross-sectional view showing the structure of the infrared detecting pixel of FIG. 1.
  • FIG. 3 is a schematic view showing the relative movement of the upper capacitor structure in the infrared detecting pixel structure of FIG.
  • FIG. 4 is a schematic structural view of a hybrid imaging device constructed by the infrared detecting pixel structure of FIG.
  • FIG. 5 is a schematic flow chart of a method for fabricating an infrared detecting pixel structure according to a preferred embodiment of the present invention
  • 6-16 are schematic diagrams showing preparation steps of a method for preparing an infrared detecting pixel structure according to a preferred embodiment of the present invention.
  • the infrared detecting pixel structure of the present invention adopts an upper electrode structure fixed at one end and not fixed at the other end, and a lower electrode structure, wherein the upper electrode plate of the upper electrode structure and the lower electrode plate of the lower electrode structure are arranged interposed on the upper electrode structure.
  • the invention has an infrared sensitive structure, and the infrared sensitive structure absorbs infrared light and generates thermal deformation to cause relative displacement of the upper electrode structure relative to the lower electrode structure, thereby changing the capacitance signal generated by the upper plate and the lower plate to realize infrared detection. .
  • an infrared detecting pixel structure is disposed on a silicon substrate 100, and includes:
  • the lower electrode structure located in the silicon substrate 100, the lower electrode structure having a lower plate 106a arranged in a first direction and a lower connecting body 106b arranged in a second direction connecting the plurality of lower plates 106a; the lower connecting body 106b Connecting the extraction pole of the lower electrode structure (in this embodiment, the via hole 105 + the pad 108b);
  • the height of the lower connecting end 106b1 of the lower connecting body 106b connected to the leading end of the lower electrode structure (the through hole 105 + the pad 108b in the present embodiment) is higher than the height of the horizontal portion of the lower connecting body 106b.
  • the lower electrode structure is formed by the through hole 105 and the pad 108b.
  • the through hole 105 penetrates the lower connection end 106b1, the top of the through hole 105 is connected to a pad 108b, and the pad 108b is directly in contact with the lower connection end 106b1.
  • An upper electrode structure located above the lower electrode structure the upper electrode structure having an upper plate 110a arranged in a first direction with the lower electrode structure and an upper connecting body 110b arranged in a second direction connecting the plurality of upper plates 110a
  • the upper connecting body 110b has a connecting end 110c connected to the leading end of the upper electrode structure, and the non-connecting end of the upper connecting body 110b is not fixed, so that the non-connecting end can relatively move relative to the connecting end;
  • the upper connecting body can be a rectangular structure
  • the upper connecting body 110b is connected to the lead-out pole of the upper electrode structure through a varistor structure 112;
  • the varistor structure 112 is a meandering meandering structure in the plane, that is, a serpentine structure, which can increase the varistor The resistivity; one end of the varistor structure 112 is connected to the connection end 110c of the upper connector 110b, for example, by a metal connection, and the other end of the varistor structure 112 is connected to one end of a cantilever
  • the capacitor resistor structure is configured to output an RC signal, and the other end of the cantilever beam structure 116 is connected to the lead-out pole of the upper electrode structure, and the cantilever beam structure is L-shaped in the plane.
  • the output electrode of the upper electrode structure is formed by a through hole 108 and a pad 108a.
  • the pad 108a is connected to the cantilever beam structure 116, and the through hole 108 is connected to the pad 108a.
  • the pad 108a and the surface of the silicon substrate 100 have at least one isolation layer, for example, a buffer layer 107a formed of a material such as SiO2 and a barrier layer 107b formed of a material such as SiN.
  • the material of the upper plate 110a and the upper connecting body 110b in the upper electrode structure may also be a metal material such as metal TiN or TaN having an infrared light signal, such that the upper plate 110a and The upper connecting body 110b can absorb heat and transfer heat to the infrared sensitive structure, which not only improves the utilization of infrared light, avoids light loss, but also enhances the sensitivity of the infrared sensitive structure.
  • first direction and the second direction are perpendicular to each other, the first direction is a vertical direction, and the second direction is a horizontal direction; the lower connecting body 106b is connected to the bottom of each lower plate 106a, thereby causing adjacent lower plates
  • a groove is formed between 106a and the lower lower connecting body 106b, and each upper plate 110a is inserted into the groove, and the upper plate 110a, the lower plate 106a on both sides of the groove, and the gas in the groove constitute a double capacitor structure.
  • the aspect ratio of the groove is greater than 3, and the width and pitch ratio of the groove are greater than 3.
  • the surface of the upper connecting body 110b has an infrared sensitive structure for absorbing incident infrared light and generating thermal deformation, so that the non-connecting end is relatively moved with respect to the connecting end 110c, resulting in the upper plate 110a being opposite to the lower plate 106a.
  • a relative displacement is generated such that the dual-capacitor structure produces a change in the capacitance signal to achieve infrared detection.
  • the material of the infrared sensitive structure is a material with micro stress inside. When the material with micro stress inside is heated or cooled, the micro stress will become large, resulting in deformation of the infrared sensitive structure as a whole, and the deformation is macroscopic deformation.
  • the infrared sensitive structure includes at least an infrared absorbing layer 113 and a material located on the surface of the infrared absorbing layer.
  • the layer 114, the infrared absorbing layer 113 is located at least at one of the top and bottom of the infrared sensitive structure, and the thermal expansion coefficient of the material layer 114 and the infrared absorbing layer 113 are different; the infrared absorbing layer 113 transfers the generated heat to the material layer, the material layer 114 absorbs heat, and a mismatch between the infrared absorbing layer 113 and the material layer 114 causes stress to be generated, thereby causing deformation, thereby causing relative displacement of the upper connecting body 110b relative to the connecting end 110c, so that the upper plate 110a is opposite to the lower pole.
  • the plate 106a is relatively displaced; preferably, the material layer 114 is a thermally deformable layer, thermally deformed
  • the thermal expansion coefficient of the layer is greater than the thermal expansion coefficient of the infrared absorbing layer 113.
  • the infrared sensitive structure includes the infrared absorbing layer 113 and the thermally deformable layer 114 on the surface of the infrared absorbing layer 113, and the infrared absorbing layer 113 transfers the generated heat to the thermal deformation.
  • the layer 114, the thermotropic deformation layer 114 is thermally expanded, and stress is generated between the thermotropic deformation layer 114 and the infrared absorption layer 113, thereby causing the thermotropic deformation layer 114 and the infrared absorption layer 113 to be warped upward, thereby driving the upper connection body 110b.
  • An upward relative displacement is generated with respect to the connection end 110c such that the upper plate 110a is relatively displaced with respect to the lower plate 106a.
  • the material of the infrared absorbing layer 113 may be SiN, SiON or the like which can absorb infrared light.
  • the material of the heat-induced deformation layer 114 may be a material having a high thermal expansion coefficient such as ZrO2, SiC and Al2O3.
  • the lower surface of the upper connecting body 110b of the upper electrode structure has a lower dielectric protective layer 111.
  • the cantilever beam structure 116, the varistor structure 112 and the infrared sensitive structure surface are both covered with the upper dielectric protective layer 115.
  • the material of the upper dielectric protective layer 115 and the lower dielectric protective layer 111 may be SiN or silicon-rich SiN.
  • the side wall surface on the side where the distance of the lower electrode plate 106a with respect to the upper electrode plate 110a is reduced when the upper plate 110a is relatively displaced with respect to the lower plate 106a has a dielectric layer 118 with respect to the lower pole of the upper plate 110a
  • the dielectric layer 118 can avoid generating opposite capacitance change signals, and the relative movement of the upper plate 110a and the lower plate 106a is caused to produce the same changed capacitance signal, which is beneficial to signal enhancement, as shown in FIG.
  • the relative area of the upper plate 110a with respect to the lower plate 106a decreases, and the capacitance between the upper plate 110a and the lower plate 106a decreases, resulting in the upper plate 110a and the two sides.
  • the capacitance of the double-capacitor structure formed by the adjacent lower plate 106a is reduced, and at the same time, the distance of the upper plate 110a with respect to the adjacent lower left plate 106a thereof is increased, resulting in the upper plate 110a being adjacent to the left side.
  • the capacitance of the left capacitor structure between the lower plates 106a is reduced, The distance between the upper plate 110a and the lower plate 106a adjacent to the right side thereof is reduced, resulting in an increase in the capacitance of the capacitor structure between the upper plate 110a and the lower plate 106a adjacent to the right side.
  • the capacitance of the left capacitor structure is reduced, and the signal of the capacitor structure of the right capacitor structure is weakened.
  • the signal enhancement of the capacitance reduction is beneficial to the detection sensitivity, and the signal reduction of the capacitance reduction is sensitive to the detection sensitivity. Disadvantageously, that is, we want the signal with reduced capacitance to be enhanced, and the interference term is removed.
  • the factor that the distance between the upper plate 110a and the lower plate 106a adjacent to the right side is reduced is the interference term.
  • the dielectric layer 118 on the sidewall surface of the lower electrode plate 106a adjacent to the right side of the upper plate 110a can weaken the capacitance signal of the right capacitor structure, which is equivalent to reducing the effect of the interference term.
  • the silicon substrate 100 has a doping region 117 therein, the lower electrode structure is located in the doping region 117, the doping type of the lower electrode structure is opposite to that of the doping region 117, and the doping type of the dielectric layer 118 is The doping type of the lower electrode structure is reversed, so that the capacitance structure formed by the upper plate 110a and the lower plate 106a can have forward conduction and reverse non-conduction characteristics, for example, the doped layer is N-type doped, for example, The N-type silicon region doped with As/P, the lower electrode structure is P-type doped, and the dielectric layer is N-type doped.
  • the material of the lower plate 106a may also be a material having an infrared band selective filtering function, so that infrared light transmitted from the bottom of the silicon substrate 100 can selectively pass through the lower plate 106a into the infrared sensitive structure.
  • the infrared absorption layer 113 absorbs heat to be transferred to the thermotropic deformation layer 114, the varistor structure 112, and the cantilever structure 116. Since the thermal deformation layer 114 generates heat by heat, the thermotropic deformation layer 114 and infrared absorption are caused.
  • the infrared sensitive structure formed by the layer 113 is deformed, and the upper connecting body 110b and the upper plate 110a are pulled up, so that the spacing between the upper plate 110a and the lower plate 106a is changed to cause deformation; specifically, the upper pole
  • the spacing between the board 110a and the lower left side plate 106a below the upper plate 110a becomes larger, the piezoresistance is reduced, so that the RC signal is reduced, and the resonance circuit of the standard CMOS circuit can also be used to monitor the change.
  • the RC signal for an infrared image sensor formed by the infrared detector pixel structure, can utilize the RC signal to generate an infrared image of the desired band.
  • a hybrid imaging device is also provided.
  • an arrow indicates a light incident direction
  • the above-mentioned infrared detecting pixel structure and the infrared are respectively disposed on the upper surface and the lower surface of the same silicon substrate 100.
  • Detecting the visible light detecting pixel structure above the pixel structure Specifically, a visible light detecting region is disposed on a lower surface of the silicon substrate 100, and the silicon substrate 100 is P-type.
  • the visible light detecting pixel structure in the lower surface of the silicon substrate 100 includes a P-type region 101a and an N-type region 101b.
  • a PN junction is formed, and the P-type region 101a is surrounded by the N-type region 101b and is isolated from the P-type silicon substrate 100 by the N-type region 101b, and the front device and the thick channel are disposed adjacent to the N-type region 101b.
  • the circuit processing module 102 is formed with a back channel interconnection structure 103 disposed on the lower surface of the P-type silicon substrate around the N-type region 101b, and the back channel interconnection structure is connected to the circuit processing module 102. Meanwhile, a part of the back channel interconnection is provided.
  • the edge of the structure 103 extends below the P-type region 101a and the N-type region 101b, and is electrically connected to the P-type region 101a and the N-type region 101b, respectively, such that the P-type region 101a and the N-type region 101b are passed through the back-end interconnect structure 103.
  • the signal is transmitted to the processing module 102, that is, the photosensitive signal detected by the PN junction is transmitted to the circuit processing module 102; under the P-type region 101a, there is a light-enhancing filling medium 104, and the material of the light-enhancing filling medium 104 may be enhanced.
  • Light transmission organic material is transmitted to the processing module 102, that is, the photosensitive signal detected by the PN junction is transmitted to the circuit processing module 102; under the P-type region 101a, there is a light-enhancing filling medium 104, and the material of the light-enhancing filling medium 104 may be enhanced. Light transmission organic material.
  • the infrared detecting pixel structure described above is disposed on the upper surface of the silicon substrate 100 and above the PN junction of the visible light detecting pixel structure; in particular, the N-type region 101b and the P-type region 101a correspond to the upper plate 110a and the lower pole Below the board 106a; the upper electrode structure is led out of the pad 108a and the through hole 108.
  • the through hole 108 extends through the entire silicon substrate 100.
  • the bottom of the through hole 108 is connected to the back channel interconnection structure 103, and the top of the through hole 108 passes through.
  • the pad 108a is connected to the cantilever beam structure 113; the lower electrode
  • the structure is extracted from the pad 108b and the via 105.
  • the via 105 extends through the entire silicon substrate 100.
  • the bottom of the via 105 is connected to the back via interconnect structure 103.
  • the top of the via 105 passes through the pad 108b and the lower connector.
  • 106b is connected.
  • Both the via 105 and the via 108 may be composed of a plurality of layers of material.
  • the sidewall surface of the via 105 or 108 has a SiO 2 insulating layer, and then the via 105 or 108 is filled with metal copper so that the metal copper is insulated by the SiO 2 layer. Surrounded.
  • the doping region 117 described above may be used to isolate the lower electrode structure from the silicon substrate 100.
  • a method for preparing the infrared detecting pixel structure described above is further provided in the embodiment, including:
  • Step 01 forming a lower electrode region in a silicon substrate
  • a first type of ion implantation is performed into the silicon substrate 100 to form a doping region 117 , and the doping region 117 is of an N type; then, the doping region 117 is performed.
  • Two types of ion implantation form a lower electrode region 106, and the lower electrode region 106 is P-type; the first type is opposite to the second type.
  • Step 02 etching a plurality of trenches in the lower electrode region, the lower electrode region of the trench sidewall forms a lower plate, and the lower electrode region at the bottom of the trench forms a lower connector;
  • a pattern of the via holes 105 is etched at a lower connection end corresponding to the lower connection body, and a pattern of the via holes 108 is etched on the other side of the lower electrode region, a pattern of the via holes 105.
  • a pattern of the via holes 108 penetrating to the lower surface of the silicon substrate 100, and an insulating dielectric material and a conductive metal material may be sequentially deposited in the pattern of the via holes 105 and the pattern of the via holes 108, and the via holes 105 and the via holes 108 are planarized. a top portion, thereby forming a via 105 and a via 108; then, referring to FIG.
  • the lower plate region is etched, which may be, but is not limited to, etching and etching a plurality of trenches by photolithography and etching processes.
  • a groove, a sidewall of the groove forms a lower plate 106a, and a region of the bottom of the plurality of grooves is a lower connection body 106b; a description of a ratio of the dimensions of the groove may be doped to the groove between the lower plates;
  • the surface of the trench may also be deposited with a layer of window material (not shown) for selectively transmitting light of the desired wavelength band, and a dielectric layer 118 is deposited on one sidewall of the trench and chemically mechanically polished. The process polishes away the dielectric layer 118 at the top of the trench.
  • the sidewall of the dielectric layer 118 is: the distance of the lower plate 106a relative to the upper plate 110a is reduced when the upper plate 110a is displaced relative to the lower plate 106a. Small side wall.
  • Step 03 forming a sacrificial layer on the substrate on which step 02 is completed;
  • a sacrificial layer 109 is deposited on the silicon substrate 100 completing step 02.
  • the material of the sacrificial layer 109 may be, but not limited to, SiO2, and the sacrificial layer 109 may be subsequently removed using steam HF;
  • Step 04 forming an upper plate in the sacrificial layer in the trench, and then forming an upper connecting body connected to the upper plate on the surface of the sacrificial layer;
  • the pattern of the upper plate 110a may be etched by a photolithography and etching process, and the depth of the pattern of the upper plate 110a is smaller than the depth of the groove of the above step 02.
  • the desired upper electrode material is deposited in the pattern of the upper plate 110a, and the upper electrode material outside the upper plate pattern is polished by chemical mechanical polishing to achieve planarization; then, referring to FIG. 12, the patterned sacrificial layer 109 is removed. a sacrificial layer 109 outside the lower electrode structure; then, referring to FIG.
  • a lower dielectric protective layer 111 may be deposited on the surface of the exposed silicon substrate 100, the surface of the pad 108a, the surface of the buffer layer 107b, and the surface of the sacrificial layer 109, and then under Etching a plurality of and upper layers in the dielectric protective layer 111
  • the corresponding plate of the plate 110a and the same material as the upper plate 110a are deposited therein to form the metal connection structure 110M; then, referring to FIG. 14, the upper connection body is formed on the surface of the lower dielectric protection layer 111 and the metal connection structure 110M.
  • the varistor structure 112 may be formed on one side of the upper connecting body 110b and the cantilever beam structure 116 may be simultaneously formed.
  • the varistor structure 112 and the upper connecting body 110b are connected through the upper portion.
  • the connection end 110c of the body 110b is connected; one end of the cantilever structure 116 is connected to the pad 108a, and the other end is connected to the varistor structure 112; for the description of the varistor structure 112 and the cantilever structure 116, reference may be made to the above.
  • the description of the infrared detection pixel structure will not be described here.
  • the extraction electrode of the lower electrode structure and the extraction electrode of the upper electrode structure may also be prepared in steps 02 and 04, respectively.
  • step 04 after the sacrificial layer 109 is patterned to remove the sacrificial layer 109 outside the lower electrode structure, the extruding poles of the lower electrode structure are prepared in the exposed silicon substrate 100.
  • Step 05 forming an infrared sensitive structure on the surface of the upper connecting body
  • an infrared sensitive structure is formed on the surface of the upper connecting body 110b, and an infrared sensitive structure may be simultaneously formed on the surfaces of the varistor structure 112 and the cantilever beam structure 116; here, the infrared sensitive structure is a plurality of layers, specifically including The infrared absorbing layer 113, the thermally deformable layer 114, and the upper dielectric protective layer 115 are sequentially formed.
  • Step 06 The sacrificial layer is removed by a release process.
  • the infrared detecting pixel structure after removing the sacrificial layer; the incident light first enters the visible light detecting pixel structure, and then enters the upper electrode structure and the infrared absorbing layer and the thermally induced deformation through the lower electrode structure.
  • the incident light first enters the visible light detecting pixel structure, and then enters the upper electrode structure and the infrared absorbing layer and the thermally induced deformation through the lower electrode structure.
  • the method of fabricating the hybrid imaging device of the present embodiment may include: under the silicon substrate 100 Surface preparation of visible light detecting pixel structure region and preparation of infrared detecting pixel structure on the upper surface of silicon substrate 100. Preparation of infrared detecting pixel structure may adopt the above steps 01-05, please refer to FIG. 16 again, and preparation of visible light detecting region may be But not limited to include:
  • Step 001 forming an N-type region 101b on the lower surface of the silicon substrate 100; here, N-type dopant ion implantation may be used to form the N-type region 101b;
  • Step 002 forming a P-type region 101a in the N-type region 101b; the N-type region 101b surrounding the P-type region 101a to constitute the PN junction described above;
  • Step 003 preparing a circuit processing module 102 around the PN junction
  • Step 004 Preparing a back-end interconnect structure 103 under the circuit processing module 102; wherein the back-channel interconnect structure 103 on the lower side of the PN junction is connected to the P-type region 101a and the N-type region 101b for the PN junction Signal is transmitted to the circuit processing module 102;
  • Step 005 depositing a light enhancing fill medium 104 between the back channel interconnect structures 103.
  • the through holes 108 and the bottoms of the through holes 106 respectively connected to the upper electrode structure and the lower electrode structure of the infrared detecting pixel structure are connected to the rear track interconnecting structure 103 of the visible light detecting pixel structure region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种红外探测像元结构,利用梳状结构的上极板(110a)和下极板(106a)来形成电容结构,并且上电极结构的一端不固定,这样,当上电极结构中的红外敏感结构(113,114)吸收红外光产生热应力,将导致变形,使得上极板(110a)和下极板(106a)之间的电容信号发生变化,实现红外探测,提高了器件的灵敏度。还公开了一种混合成像器件以及一种红外探测像元结构的制备方法。

Description

红外探测像元结构及其制备方法、混合成像器件
本申请要求于2016年7月18日提交中国专利局、申请号为201610564817.0、名称为“红外探测像元结构及其制备方法、混合成像器 件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体技术领域,具体涉及一种红外探测像元结构及其制备方法,以及一种混合成像器件。
技术背景
随着成像监控系统在日常生活中的广泛应用,单以300nm-900nm的可见光波段成像的监控系统越来越无法满足夜间或高动态变化等环境的监控要求,越来越多的应用需要在可见光波段之外尤其是长波波段(包括红外、THZ等波段的信号)的光信号进行成像。
现有技术中,采用两颗不同波段的成像芯片和两套光路来分别实现可见光成像和长波波段信号成像,在通过计算机算法处理合成在一起,由于光路的不一致以及单个成像单元的对应误差,会造成合成图像产生较大的偏差,严重影响成像质量和监控效果;此外,由于这种成像器件灵敏度低,进一步导致成像质量下降。
发明概要
为了克服以上问题,本发明旨在提供了一种红外探测像元结构及其制备方法,采用可变型电容结构来提高器件的灵敏度和成像质量;同时本发明还提供了一种可见光红外光混合成像器件,采用上述红外探测像元结构,同时 将可见光和红外光探测集成于同一个硅衬底中,提高了混合成像质量。
为了达到上述目的,本发明提供了一种红外探测像元结构,设置在一硅衬底上,其包括:
位于硅衬底中的下电极结构,下电极结构具有第一方向排列的下极板以及将多个下极板相连接的第二方向排布的下连接体;
位于下电极结构上方的上电极结构,上电极结构具有与下电极结构相间的第一方向排列的上极板以及将多个上极板相连接的第二方向排布的上连接体;上连接体的一端固定,上连接体的非固定端相对于所述固定端可作相对运动;
在上连接体表面具有红外敏感结构,红外敏感结构用于吸收入射的红外光并且产生热变形,从而非连接端相对于连接端做相对移动,使得上极板相对于下极板产生相对位移,上极板和下极板产生电容信号发生变化,从而实现红外探测。
优选地,下连接体连接下电极结构的引出极;上连接体具有连接端与上电极结构的引出极相连接,上连接体的非连接端不固定,使得非连接端相对于连接端可相对运动;所述上连接体通过一压敏电阻结构与上电极结构的引出极相连接。
优选地,所述压敏电阻结构为平面内的曲折迂回结构。
优选地,还包括悬臂梁结构;所述压敏电阻的一端与所述上连接体的连接端相连接,所述压敏电阻结构的另一端与所述悬臂梁结构的一端相连接,所述悬臂梁结构的另一端与所述上电极结构的引出极相连接。
优选地,所述悬臂梁结构为平面内的L型。
优选地,所述红外敏感结构的材料为内部具有微应力的材料;在升温或降温的过程中微应力变大导致所述红外敏感结构发生形变,从而带动上连接体相对于连接端产生相对位移,使得上极板相对于下极板产生相对位移。
优选地,所述下连接体与每个下极板的底部相连接,从而使相邻下极板和底部的下连接体之间构成沟槽,每个上极板插入沟槽内,上极板、所述沟 槽两侧的下极板、以及所述沟槽内的气体构成双电容结构。
优选地,上极板相对于下极板产生相对位移时所述下极板相对于所述上极板的距离减小的一侧的侧壁表面具有介电层。
为了达到上述目的,本发明还提供了一种混合成像传感器,在同一硅衬底的上表面和下表面分别设置有上述的红外探测像元结构以及位于所述红外探测像元结构上方的可见光探测像元结构。
为了达到上述目的,本发明还提供了一种上述的红外探测像元结构的制备方法,包括:
步骤01:在一硅衬底中形成下电极区域;
步骤02:在下电极区域中刻蚀出多个沟槽,沟槽侧壁的下电极区域形成下极板,沟槽底部的下电极区域形成下连接体;
步骤03:在完成步骤02的衬底上形成牺牲层;
步骤04:在沟槽内的牺牲层中形成所述上极板,然后,在牺牲层表面形成与上极板相连的上连接体;
步骤05:在所述上连接体表面形成所述红外敏感结构;
步骤06:经释放工艺,去除所述牺牲层。
本发明的红外探测像元结构,利用梳状结构的上极板和下极板来形成电容结构,并且上电极结构的一端不固定,这样,当上电极结构中的红外敏感结构吸收红外光产生热应力,将导致变形,使得上极板和下极板之间的电容发生变化,实现红外探测,提高了器件的灵敏度;并且,红外探测像元结构应用于红外光可见光混合成像器件中,可以实现同一硅衬底上的可见和红外两部分成像,提高了成像质量。
附图说明
图1为本发明的一个较佳实施例的红外探测像元结构的俯视示意图
图2为图1的红外探测像元结构的主视剖面示意图
图3为图2的红外探测像元结构中上电容结构产生相对移动时的示意图
图4为图2的红外探测像元结构构成的混合成像器件的结构示意图
图5为本发明的一个较佳实施例的红外探测像元结构的制备方法的流程示意图
图6~16为本发明的一个较佳实施例的红外探测像元结构的制备方法的各制备步骤示意图
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
本发明的红外探测像元结构,利用一端固定且另一端不固定的上电极结构以及下电极结构,上电极结构的上极板与下电极结构的下极板相间排布,在上电极结构上具有红外敏感结构,利用红外敏感结构吸收红外光并且产生热致变形来导致上电极结构相对于下电极结构产生相对位移,从而使上极板和下极板产生的电容信号发生变化,实现红外探测。
以下结合附图1-16和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
请参阅图1-2,本实施例中,红外探测像元结构,设置在一硅衬底100上,其包括:
位于硅衬底100中的下电极结构,下电极结构具有第一方向排列的下极板106a以及将多个下极板106a相连接的第二方向排布的下连接体106b;下连接体106b连接下电极结构的引出极(本实施例中为通孔105+焊盘108b); 本实施例中,下连接体106b与下电极结构的引出极(本实施利中为通孔105+焊盘108b)相连接的下连接端106b1的高度高于下连接体106b水平方向部分的高度,下电极结构的引出极为通孔105和焊盘108b构成,通孔105穿透下连接端106b1,通孔105顶部与一焊盘108b相连接,焊盘108b直接与下连接端106b1接触。
位于下电极结构上方的上电极结构,上电极结构具有与下电极结构相间的第一方向排列的上极板110a以及将多个上极板110a相连接的第二方向排布的上连接体110b;上连接体110b具有连接端110c与上电极结构的引出极相连接,上连接体110b的非连接端不固定,使的非连接端相对于连接端可相对移动;上连接体可以为长方形结构,这里,上连接体110b通过一压敏电阻结构112与上电极结构的引出极相连接;压敏电阻结构112为平面内的曲折迂回结构,即蛇形结构,这样可以增大压敏电阻的电阻率;压敏电阻结构112的一端与上连接体110b的连接端110c相连接,例如可以利用金属连线相连,压敏电阻结构112的另一端与一悬臂梁结构116的一端相连接,这样构成电容电阻结构,从而输出RC信号,悬臂梁结构116的另一端与上电极结构的引出极相连接,悬臂梁结构在平面内呈L型,如图1所示;本实施例中,上电极结构的引出极采用一通孔108和一焊盘108a构成,焊盘108a与悬臂梁结构116相连接,通孔108与焊盘108a相连接,通孔108穿入硅衬底100中,焊盘108a与硅衬底100表面具有至少一层隔离层,例如,可以包括SiO2等材料形成的缓冲介质层107a和SiN等材料形成的阻挡层107b。较佳的,上电极结构中上极板110a和上连接体110b的材料还可以为金属TiN或TaN等等具有吸收红外光信号的金属材料,这样上极板110a和 上连接体110b均可以吸收热量并向红外敏感结构传递热量,不仅提高了红外光的利用率,避免光损失,还能够增强红外敏感结构的灵敏度。
这里,第一方向与第二方向相互垂直,第一方向为竖直方向,第二方向为水平方向;下连接体106b与每个下极板106a的底部相连接,从而使相邻下极板106a和底部的下连接体106b之间构成沟槽,每个上极板110a插入沟槽内,上极板110a、沟槽两侧的下极板106a、以及沟槽内的气体构成双电容结构。这里,较佳的,沟槽的深宽比例大于3,且沟槽的宽度和间距比例大于3。
在上连接体110b表面具有红外敏感结构,红外敏感结构用于吸收入射的红外光并且产生热变形,从而非连接端相对于连接端110c做相对移动,导致上极板110a相对于下极板106a产生相对位移,这样,双电容结构产生电容信号发生变化,从而实现红外探测。这里,红外敏感结构的材料为内部具有微应力的材料,这种内部具有微应力的材料在升温或降温时,微应力会变大导致红外敏感结构整体发生形变,这种形变是宏观上的形变,从而带动上连接体相对于连接端产生相对位移,使得上极板相对于下极板产生相对位移;本实施例中,红外敏感结构至少包括一红外吸收层113以及位于红外吸收层表面的材料层114,红外吸收层113至少位于红外敏感结构的顶部和底部之一的位置,材料层114与红外吸收层113的热膨胀系数不相同;红外吸收层113将产生的热量传递给材料层,材料层114吸收热量,红外吸收层113与材料层114之间的产生不匹配导致产生应力,进而产生形变,从而带动上连接体110b相对于连接端110c产生相对位移,使得上极板110a相对于下极板106a产生相对位移;较佳的,上述材料层114为热致形变层,热致形变 层的热膨胀系数大于红外吸收层113的热膨胀系数,具体的,红外敏感结构包括红外吸收层113和红外吸收层113表面的热致形变层114,红外吸收层113将产生的热量传递给热致形变层114,热致形变层114受热膨胀,热致形变层114和红外吸收层113之间产生应力,进而导致热致形变层114和红外吸收层113产生向上翘曲形变,从而带动上连接体110b相对于连接端110c产生向上的相对位移,使得上极板110a相对于下极板106a产生相对位移。较佳的,红外吸收层113的材料可以为SiN、SiON等可以吸收红外光的材料,热致形变层114的材料可以为ZrO2、SiC和Al2O3等具有高的热膨胀系数的材料。
本实施例中,上电极结构的上连接体110b下表面具有下介质保护层111,悬臂梁结构116、压敏电阻结构112和红外敏感结构表面均覆盖有上介质保护层115,较佳的,上介质保护层115和下介质保护层111的材料可以为SiN或富硅的SiN。
在上极板110a相对于下极板106a产生相对位移时下极板106a相对于上极板110a的距离减小的一侧的侧壁表面具有介电层118,在上极板110a相对于下极板106a相対移动时该介质层118可以避免产生相反的电容变化信号,促使上极板110a和下极板106a的相对移动产生相同变化的电容信号,有利于信号的增强,如图3所示,当上极板110a向上移动时,上极板110a相对于下极板106a的相对面积减小,上极板110a和下极板106a之间的电容减小,导致上极板110a和两侧相邻的下极板106a构成的双电容结构的电容减小,同时,上极板110a相对于其相邻左侧的下极板106a的距离增大,导致上极板110a和左侧相邻的下极板106a之间的左侧电容结构的电容减小, 而上极板110a相对于其相邻右侧的下极板106a的距离减小,导致上极板110a和右侧相邻的该下极板106a之间的电容结构的电容增大,此时,左侧电容结构的电容减小的信号增强,而右侧电容结构的电容减小的信号减弱,电容减小的信号增强对探测灵敏度是有益的,而电容减小的信号减弱对探测灵敏度是不利的,也即是我们希望电容减小的信号得到增强,去除干扰项,“上极板110a相对于其相邻右侧的下极板106a的距离减小”这一因素就是干扰项,这样,上极板110a右侧相邻的下极板106a的侧壁表面的介电层118能够削弱右侧电容结构的电容信号,相当于减小了干扰项的作用。这里,硅衬底100中具有掺杂区117,下电极结构位于掺杂区117中,下电极结构的掺杂类型与掺杂区117的掺杂类型相反,介电层118的掺杂类型与下电极结构的掺杂类型相反,从而可以使上极板110a和下极板106a形成的电容结构具有正向导通和反向不导通的特性,例如,掺杂层为N型掺杂,例如掺杂有As/P的N型硅区域,下电极结构为P型掺杂,介电层为N型掺杂。
本实施例中,下极板106a的材料还可以为具有红外波段选择过滤功能的材料,从而可以使从硅衬底100底部透过的红外光选择性透过下极板106a进入红外敏感结构,进而被红外吸收层113吸收产生热量,传递至热致形变层114、压敏电阻结构112和悬臂梁结构116,由于热致性变形层114受热产生热应力,导致热致形变层114和红外吸收层113构成的红外敏感结构发生变形,拉动上连接体110b和上极板110a上移,这样就会引起上极板110a和下极板106a之间的间距发生变化产生形变;具体的,上极板110a和上极板110a下方相邻左侧的下极板106a之间的间距变大,压电电阻减小,从而使得RC信号减小,还可以利用标准CMOS电路的谐振电路来监测该变化的 RC信号,对于由该红外探测像元结构形成的红外图像传感器来说,可以利用RC信号来生成所需波段的红外图像。
本实施例中,还提供了一种混合成像器件,请参阅图4,箭头表示光入射方向,在同一硅衬底100的上表面和下表面分别设置有上述的红外探测像元结构以及位于红外探测像元结构上方的可见光探测像元结构。具体的,在一硅衬底100的下表面设置有可见光探测区域,硅衬底100为P型,硅衬底100下表面中的可见光探测像元结构包括P型区域101a和N型区域101b,从而构成PN结,P型区域101a将被N型区域101b包围并且通过N型区域101b与P型硅衬底100相隔离,在N型区域101b周围与之不相连设置有前道器件和厚道互连形成的电路处理模块102,在N型区域101b周围的P型硅衬底下表面设置有后道互连结构103,后道互连结构与电路处理模块102相连;同时,有一部分后道互连结构103边缘延伸于P型区域101a和N型区域101b下方,分别与P型区域101a和N型区域101b形成电连接,这样,通过后道互连结构103将P型区域101a和N型区域101b的信号传输至处理模块102,也即是将PN结探测到的感光信号传输到电路处理模块102上;在P型区域101a下方具有光增强填充介质104,光增强填充介质104的材料可以为增强光透射的有机材料。
上述的红外探测像元结构设置在硅衬底100的上表面并且位于可见光探测像元结构的PN结的上方;特别的,N型区域101b和P型区域101a对应于上极板110a和下极板106a的下方;上电极结构的引出极为焊盘108a和通孔108,通孔108贯穿整个硅衬底100,该通孔108的底部与后道互连结构103相连接,通孔108顶部通过焊盘108a与悬臂梁结构113相连接;下电极 结构的引出极为焊盘108b和通孔105,通孔105贯穿整个硅衬底100,通孔105的底部与后道互连结构103相连接,通孔105的顶部通过焊盘108b与下连接体106b相连接。通孔105和通孔108均可以由多层材料层叠组成,例如,通孔105或108的侧壁表面具有SiO2绝缘层,然后通孔105或108内填充金属铜,使得金属铜被SiO2绝缘层包围。这里,上述的掺杂区117可以用于隔离下电极结构与硅衬底100。
请参阅图5,本实施例中还提供了一种上述的红外探测像元结构的制备方法,包括:
步骤01:在一硅衬底中形成下电极区域;
具体的,请参阅图6,首先,向硅衬底100中进行第一类型的离子注入,形成掺杂区117,掺杂区117的类型为N型;然后,向掺杂区117中进行第二类型的离子注入,形成下电极区域106,下电极区域106为P型;第一类型与第二类型相反。
步骤02:在下电极区域中刻蚀出多个沟槽,沟槽侧壁的下电极区域形成下极板,在沟槽底部的下电极区域形成下连接体;
具体的,首先,请参阅图7,在对应于下连接体的下连接端刻蚀出通孔105的图案以及在下电极区域的另一侧刻蚀出通孔108的图案,通孔105的图案和通孔108的图案贯穿到硅衬底100下表面,并且在通孔105的图案和通孔108的图案中可以依次沉积绝缘介质材料和导电金属材料,并且平坦化通孔105和通孔108的顶部,从而形成通孔105和通孔108;然后,请参阅图8,通过沉积沉积隔离层并且图案化隔离层,最终在通孔108上方形成隔离层,包括阻挡层107a和缓冲层107b,然后在通孔105和通孔108的顶部 分别制备出焊盘108b和焊盘108a;然后,请参阅图9,在隔离层保护下,来刻蚀下极板区域,可以但不限于采用光刻和刻蚀工艺来刻蚀出多个沟槽,沟槽的侧壁形成下极板106a,多个沟槽底部的区域为下连接体106b;沟槽各尺寸比例可以掺杂上述下极板之间的沟槽的描述;此外,在沟槽的表面还可以沉积一层窗口材料层(未示出),用于选择性透过所需波段的光,并且,在沟槽的一个侧壁表面沉积介电层118,并且采用化学机械抛光工艺研磨掉沟槽顶部的介电层118,该形成介电层118的侧壁为:在上极板110a相对于下极板106a产生相对位移时下极板106a相对于上极板110a的距离减小的一侧的侧壁。
步骤03:在完成步骤02的衬底上形成牺牲层;
具体的,请参阅图10,在完成步骤02的硅衬底100上沉积牺牲层109,牺牲层109的材料可以但不限于为SiO2,后续可以使用蒸汽HF进行将牺牲层109去除;
步骤04:在沟槽内的牺牲层中形成上极板,然后,在牺牲层表面形成与上极板相连的上连接体;
具体的,首先,请参阅图11,可以但不限于采用光刻和刻蚀工艺来刻蚀出上极板110a的图案,上极板110a的图案的深度小于上述步骤02的沟槽的深度,再在上极板110a的图案中沉积所需上电极材料,并且化学机械抛光研磨掉上极板图案外的上电极材料,实现平坦化;接着,请参阅图12,图形化牺牲层109来去除下电极结构之外的牺牲层109;然后,请参阅图13,可以在暴露的硅衬底100表面、焊盘108a表面、缓冲层107b表面、牺牲层109表面沉积下介质保护层111,再在下介质保护层111中刻蚀出多个与上 极板110a对应的凹槽,并且在其中沉积与上极板110a相同的材料,来形成金属连接结构110M;然后,请参阅图14,在下介质保护层111和金属连接结构110M表面形成上连接体110b,在形成上连接体110b之后,还可以在上连接体110b的一个侧方形成压敏电阻结构112以及还可以同时形成悬臂梁结构116,压敏电阻结构112与上连接体110b通过上连接体110b的连接端110c相连接;悬臂梁结构116的一端与焊盘108a相连接,另一端与压敏电阻结构112相连接;关于压敏电阻结构112、悬臂梁结构116的描述可以参照上述的红外探测像元结构的描述,这里不再赘述。
需要说明的是,本发明的其它实施例中,下电极结构的引出极和上电极结构的引出极还可以分别在步骤02和步骤04中制备。在步骤04中,在图形化牺牲层109以去除下电极结构上方之外的牺牲层109之后,在暴露的硅衬底100中制备下电极结构的引出极。
步骤05:在上连接体表面形成红外敏感结构;
具体的,请参阅图15,在上连接体110b表面形成红外敏感结构,还可以在压敏电阻结构112和悬臂梁结构116表面同时形成红外敏感结构;这里,红外敏感结构为多层,具体包括:依次形成红外吸收层113、热致形变层114和上介质保护层115。
步骤06:经释放工艺,去除牺牲层。
具体的,请参阅图16,为去除牺牲层之后的红外探测像元结构;入射光首先进入可见光探测像元结构中的,然后透过下电极结构进入上电极结构以及红外吸收层和热致形变层。
此外,本实施例的混合成像器件的制备方法可以包括:在硅衬底100下 表面制备可见光探测像元结构区域和在硅衬底100上表面制备红外探测像元结构,红外探测像元结构的制备可以采用上述步骤01-05,请再次参阅图16,可见光探测区域的制备可以但不限于包括:
步骤001:在硅衬底100下表面形成N型区域101b;这里可以采用N型掺杂离子注入来形成N型区域101b;
步骤002:在N型区域101b中形成P型区域101a;N型区域101b把P型区域101a包围,从而构成上述的PN结;
步骤003:在PN结周围制备电路处理模块102;
步骤004:在电路处理模块102下方制备后道互连结构103;其中,PN结下方一侧的后道互连结构103与P型区域101a和N型区域101b相连接,用于将PN结的信号传输给电路处理模块102;
步骤005:在后道互连结构103之间沉积光增强填充介质104。
与红外探测像元结构上电极结构和下电极结构分别连接的通孔108和通孔106的底部与可见光探测像元结构区域的后道互连结构103相连接。关于制备的可见光探测区域的具体结构以及红外探测像元结构可以参考上述描述,这里不再赘述。
虽然本发明已以较佳实施例揭示如上,然所述实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。

Claims (10)

  1. 一种红外探测像元结构,设置在一硅衬底上,其特征在于,包括:
    位于硅衬底中的下电极结构,下电极结构具有第一方向排列的下极板以及将多个下极板相连接的第二方向排布的下连接体;
    位于下电极结构上方的上电极结构,上电极结构具有与下电极结构相间的第一方向排列的上极板以及将多个上极板相连接的第二方向排布的上连接体;上连接体的一端固定,上连接体的非固定端相对于所述固定端可作相对运动;
    在上连接体表面具有红外敏感结构,红外敏感结构用于吸收入射的红外光并且产生热变形,从而非连接端相对于连接端做相对移动,使得上极板相对于下极板产生相对位移,上极板和下极板产生电容信号发生变化,从而实现红外探测。
  2. 根据权利要求1所述的红外探测像元结构,其特征在于,下连接体连接下电极结构的引出极;上连接体具有连接端与上电极结构的引出极相连接,上连接体的非连接端不固定,使得非连接端相对于连接端可相对运动;所述上连接体通过一压敏电阻结构与上电极结构的引出极相连接。
  3. 根据权利要求2所述的红外探测像元结构,其特征在于,所述压敏电阻结构为平面内的曲折迂回结构。
  4. 根据权利要求2所述的红外探测像元结构,其特征在于,还包括悬臂梁结构;所述压敏电阻的一端与所述上连接体的连接端相连接,所述压敏电阻结构的另一端与所述悬臂梁结构的一端相连接,所述悬臂梁结构的另一端与所述上电极结构的引出极相连接。
  5. 根据权利要求4所述的红外探测像元结构,其特征在于,所述悬臂梁结构为平面内的L型。
  6. 根据权利要求1所述的红外探测像元结构,其特征在于,所述红外敏感结构的材料为内部具有微应力的材料;在升温或降温的过程中微应力变大导致所述红外敏感结构发生形变,从而带动上连接体相对于连接端产生相对 位移,使得上极板相对于下极板产生相对位移。
  7. 根据权利要求1所述的红外探测像元结构,其特征在于,所述下连接体与每个下极板的底部相连接,从而使相邻下极板和底部的下连接体之间构成沟槽,每个上极板插入沟槽内,上极板、所述沟槽两侧的下极板、以及所述沟槽内的气体构成双电容结构。
  8. 根据权利要求1所述的红外探测像元结构,其特征在于,上极板相对于下极板产生相对位移时所述下极板相对于所述上极板的距离减小的一侧的侧壁表面具有介电层。
  9. 一种混合成像器件,其特征在于,在同一硅衬底的上表面和下表面分别设置有权利要求1-8任意一项所述的红外探测像元结构以及位于所述红外探测像元结构上方的可见光探测像元结构。
  10. 一种权利要求1所述的红外探测像元结构的制备方法,其特征在于,包括:
    步骤01:在一硅衬底中形成下电极区域;
    步骤02:在下电极区域中刻蚀出多个沟槽,沟槽侧壁的下电极区域形成下极板,沟槽底部的下电极区域形成下连接体;
    步骤03:在完成步骤02的衬底上形成牺牲层;
    步骤04:在沟槽内的牺牲层中形成所述上极板,然后,在牺牲层表面形成与上极板相连的上连接体;
    步骤05:在所述上连接体表面形成所述红外敏感结构;
    步骤06:经释放工艺,去除所述牺牲层。
PCT/CN2016/098382 2016-07-18 2016-11-07 红外探测像元结构及其制备方法、混合成像器件 WO2018014439A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/310,818 US10670468B2 (en) 2016-07-18 2016-11-07 Infrared pixel structure, manufacturing method thereof and hybrid image device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610564817.0A CN106124067B (zh) 2016-07-18 2016-07-18 红外探测像元结构及其制备方法、混合成像器件
CN201610564817.0 2016-07-18

Publications (1)

Publication Number Publication Date
WO2018014439A1 true WO2018014439A1 (zh) 2018-01-25

Family

ID=57284140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098382 WO2018014439A1 (zh) 2016-07-18 2016-11-07 红外探测像元结构及其制备方法、混合成像器件

Country Status (3)

Country Link
US (1) US10670468B2 (zh)
CN (1) CN106124067B (zh)
WO (1) WO2018014439A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019000385A1 (zh) * 2017-06-29 2019-01-03 上海集成电路研发中心有限公司 一种图像传感器结构及其制备方法
CN107478336B (zh) * 2017-09-01 2019-07-23 中国科学院电子学研究所 太赫兹成像阵列芯片及其制作方法、成像系统
DE102017221076B4 (de) * 2017-11-24 2023-03-09 Infineon Technologies Ag Infrarotstrahlungssensoren
CN108562360B (zh) * 2018-03-20 2020-11-27 上海集成电路研发中心有限公司 一种新型红外传感器结构
CN113363275B (zh) * 2021-08-10 2021-11-16 西安中科立德红外科技有限公司 混合成像结构
CN113451345B (zh) * 2021-09-01 2021-11-23 西安中科立德红外科技有限公司 基于半导体集成电路cmos工艺的混合成像探测器芯片
CN113551780B (zh) * 2021-09-18 2021-12-21 西安中科立德红外科技有限公司 基于半导体集成电路工艺的红外传感器芯片及其制造方法
CN113566980B (zh) * 2021-09-23 2021-12-28 西安中科立德红外科技有限公司 混合成像探测器
CN114050166B (zh) * 2021-12-29 2022-04-22 中国人民解放军火箭军工程大学 用于医疗成像的基于半导体coms工艺的混合成像芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144331A (zh) * 1995-04-06 1997-03-05 株式会社村田制作所 红外探测器及其制造方法
CN1178319A (zh) * 1996-09-06 1998-04-08 株式会社村田制作所 红外辐射传感元件
CN101386401A (zh) * 2008-10-16 2009-03-18 上海集成电路研发中心有限公司 红外探测器像元应力的监控结构及监控方法
US20120211857A1 (en) * 2011-02-23 2012-08-23 Seiko Epson Corporation Pyroelectric detector, pyroelectric detection device, and electronic instrument
JP2013019857A (ja) * 2011-07-14 2013-01-31 Nec Tokin Corp 焦電型センサ素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8827932D0 (en) * 1988-11-30 1989-07-05 Plessey Co Plc Thermal ir detector electrode configuration
JP3331507B2 (ja) * 1993-12-28 2002-10-07 エヌイーシートーキン株式会社 焦電型赤外線センサ
JP3204130B2 (ja) * 1996-10-30 2001-09-04 株式会社村田製作所 焦電型赤外線センサ素子
US6080988A (en) * 1996-12-20 2000-06-27 Nikon Corporation Optically readable radiation-displacement-conversion devices and methods, and image-rendering apparatus and methods employing same
JP3417855B2 (ja) * 1998-11-05 2003-06-16 株式会社日立製作所 赤外センサ
JP3497797B2 (ja) * 2000-03-30 2004-02-16 株式会社東芝 赤外線センサの製造方法
JP4707667B2 (ja) * 2004-09-01 2011-06-22 株式会社アドバンテスト バイモルフ素子、バイモルフスイッチ、ミラー素子及びこれらの製造方法
DE112007001046T5 (de) * 2006-05-10 2009-02-19 Murata Manufacturing Co. Ltd., Nagaokakyo-shi Infrarotsensor und Verfahren zum Herstellen desselben
US8047710B2 (en) * 2006-10-11 2011-11-01 Panasonic Corporation Electronic device
US10126165B2 (en) * 2015-07-28 2018-11-13 Carrier Corporation Radiation sensors
CN105185802B (zh) * 2015-08-31 2018-05-01 上海集成电路研发中心有限公司 单芯片可见光红外混合成像探测器像元结构及制备方法
FR3048125B1 (fr) * 2016-02-24 2020-06-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de detection de rayonnement electromagnetique a plot de connexion electrique sureleve
FR3066321B1 (fr) * 2017-05-09 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un detecteur bolometrique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144331A (zh) * 1995-04-06 1997-03-05 株式会社村田制作所 红外探测器及其制造方法
CN1178319A (zh) * 1996-09-06 1998-04-08 株式会社村田制作所 红外辐射传感元件
CN101386401A (zh) * 2008-10-16 2009-03-18 上海集成电路研发中心有限公司 红外探测器像元应力的监控结构及监控方法
US20120211857A1 (en) * 2011-02-23 2012-08-23 Seiko Epson Corporation Pyroelectric detector, pyroelectric detection device, and electronic instrument
JP2013019857A (ja) * 2011-07-14 2013-01-31 Nec Tokin Corp 焦電型センサ素子

Also Published As

Publication number Publication date
US20190178721A1 (en) 2019-06-13
US10670468B2 (en) 2020-06-02
CN106124067B (zh) 2019-01-18
CN106124067A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2018014439A1 (zh) 红外探测像元结构及其制备方法、混合成像器件
TWI608600B (zh) 影像感測器及其製作方法
US8436440B2 (en) Method for forming a back-side illuminated image sensor
US20170125462A1 (en) Image sensor and method for fabricating the same
US7675099B2 (en) Image sensor and method of forming the same
KR102175605B1 (ko) 개선된 양자 효율 표면 구조물을 구비한 이미지 센서
TWI545736B (zh) 包含整合於波導上的光偵測器的半導體設備及其製造方法
CN108962924A (zh) 形成图像传感器的吸收增强结构的方法
US6841411B1 (en) Method of utilizing a top conductive layer in isolating pixels of an image sensor array
CN116095518A (zh) 背照式bsi图像传感器
KR102288339B1 (ko) 반도체 이미지 센서
KR20190035564A (ko) 반도체 이미지 센서
JP2008198971A (ja) 先端cmos撮像装置における多重絶縁体構造上の光伝送の改良
JP6054069B2 (ja) 固体撮像装置
KR20190138370A (ko) 이미지 센서 및 그 제조 방법
CN109560096A (zh) 图像传感器及其形成方法
KR100535841B1 (ko) 열형 적외선 촬상 소자 및 그 제조 방법
US20120007205A1 (en) Infrared imaging device and method of manufacturing the same
CN109411496A (zh) 半导体器件及其形成方法
TW202306185A (zh) 雙吸收層的遠紅外光感測器及其製造方法
WO2011096042A1 (ja) 赤外線撮像素子及びその製造方法
KR102063795B1 (ko) 실리콘 나노와이어를 이용한 이미지 센서 및 그 제조방법
TWI622165B (zh) 影像感測器及其製作方法
TWI615985B (zh) 光感測元件及其製造方法
CN106601759B (zh) 一种半导体器件及其制造方法和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909366

Country of ref document: EP

Kind code of ref document: A1