WO2018014344A1 - 摄像头组件及使用该摄像头组件的拍摄装置和飞行器 - Google Patents

摄像头组件及使用该摄像头组件的拍摄装置和飞行器 Download PDF

Info

Publication number
WO2018014344A1
WO2018014344A1 PCT/CN2016/091063 CN2016091063W WO2018014344A1 WO 2018014344 A1 WO2018014344 A1 WO 2018014344A1 CN 2016091063 W CN2016091063 W CN 2016091063W WO 2018014344 A1 WO2018014344 A1 WO 2018014344A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
camera assembly
thermal expansion
disposed
aircraft
Prior art date
Application number
PCT/CN2016/091063
Other languages
English (en)
French (fr)
Inventor
宾朋
刘浩
廖然
赵喜峰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/091063 priority Critical patent/WO2018014344A1/zh
Priority to CN201680011371.7A priority patent/CN107278277B/zh
Publication of WO2018014344A1 publication Critical patent/WO2018014344A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/02Control effected by setting a graduated member on the camera in accordance with indication or reading afforded by a light meter, which may be either separate from or built into camera body

Definitions

  • Embodiments of the present invention relate to the field of optical imaging technologies, and in particular, to a camera assembly and a camera and an aircraft using the camera assembly.
  • the fixed-focus camera assembly has been widely used in camera electronic devices for various purposes due to its advantages such as simple design, fast focusing speed and stable imaging quality.
  • the commonly used fixed focus camera assembly generally includes a lens, a lens holder and an image sensor chip; wherein the lens is disposed on the lens holder, and the image sensor chip is disposed in the receiving space formed by the lens and the lens holder.
  • the lens is provided with a plastic lens.
  • the plastic lens is sensitive to the outside temperature. When the image sensor chip dissipates heat or the ambient temperature rises, the plastic lens thermally expands due to heat, and the shape of the plastic lens changes, causing the focal length of the lens to change, causing the lens to appear. Defocusing, poor imaging quality.
  • Embodiments of the present invention provide a camera assembly and an imaging device and an aircraft using the same, which can compensate for a change in focal length caused by lens expansion.
  • an embodiment of the present invention provides a camera assembly including: a lens holder and a lens assembly mounted on the lens holder, the lens assembly including a lens formed by at least one lens; the lens holder including a connector, the connection The component is configured to drive the lens assembly to move a predetermined displacement along an optical axis direction of the lens when the temperature inside the lens holder is raised, the preset displacement being used to compensate for a change in the focal length caused by the expansion of the lens.
  • an embodiment of the present invention provides a photographing apparatus including a body of a photographing device and a camera assembly disposed on the body, the camera assembly including a lens mount and a lens assembly mounted on the lens mount
  • the lens assembly includes a lens composed of at least one lens; the lens holder includes a connector for driving the lens assembly along an optical axis direction of the lens when an internal temperature of the lens holder is raised The preset displacement is moved to compensate for the amount of change in focus caused by the expansion of the lens.
  • an embodiment of the present invention provides an aircraft including a body and a photographing device mounted on the body, the photographing device including a body of the photographing device and a camera assembly disposed on the body,
  • the camera assembly includes: a lens holder and a lens assembly mounted on the lens holder, the lens assembly including a lens composed of at least one lens; the lens holder including a connector for temperature inside the lens holder When rising, the lens assembly is moved along a direction of an optical axis of the lens by a preset displacement, and the preset displacement is used to compensate for a change in the focal length caused by the expansion of the lens.
  • a camera assembly and an imaging device and an aircraft using the camera assembly includes a lens holder and a lens assembly mounted on the lens holder, the lens assembly includes a lens formed by at least one lens; and the lens holder includes a connector
  • the connecting member drives the lens assembly to move along the optical axis direction of the lens by a preset displacement when the temperature inside the lens holder is raised.
  • the preset displacement is used to compensate for the change of the focal length caused by the expansion of the lens, thereby ensuring the temperature of the camera assembly after the temperature change.
  • the position of the focal plane coincides with the position of the focal plane before the temperature change, so that the camera assembly can take a clear picture.
  • FIG. 1 is a schematic structural view of a camera assembly provided by the present invention
  • FIG. 2 is a schematic view showing the working principle of the camera assembly provided by the present invention.
  • FIG. 3 is a schematic exploded view of a camera assembly provided by the present invention.
  • FIG. 4 is a schematic view of a field of view of a camera assembly provided by the present invention.
  • FIG. 5 is a schematic top view of a camera assembly provided by the present invention.
  • Figure 6 is a schematic cross-sectional view of the A-A plane of Figure 5;
  • FIG. 7 is a schematic structural view of an aircraft provided by the present invention.
  • the camera assembly provided in this embodiment can be applied to various camera fields to overcome the problem of lens out of focus caused by thermal expansion of the lens.
  • the camera assembly can be applied not only to various electronic devices, such as mobile phones, tablets, cameras, cameras, and the like, but also to an electronic device having an imaging function, and can also be applied to an aircraft, an unmanned vehicle, an unmanned ship, and the like.
  • a detailed description will be given by taking the camera assembly applied to an aircraft as an example.
  • FIG. 1 is a schematic structural view of a camera assembly provided by the present invention.
  • the camera assembly includes a lens holder 20 and a lens assembly 40 mounted on the lens holder 20, and the lens assembly 40 includes a lens composed of at least one lens;
  • the mirror base 20 includes a connecting member for driving the lens assembly 40 to move a predetermined displacement in the optical axis direction of the lens when the temperature inside the lens holder 20 is raised.
  • the preset displacement is used to compensate for the amount of change in the focal length caused by the expansion of the lens.
  • the connecting member may specifically be a connecting structure having a thermal expansion and contraction function.
  • the lens assembly can be driven to move the preset displacement.
  • the connector can be attached to the lens assembly or not to the lens assembly.
  • the connecting member drives the lens assembly to move upward
  • the connecting member can be connected to one end of the lens assembly away from the lens holder, and the lens assembly is moved upward from the end of the lens assembly away from the lens holder, and the connecting member can also be
  • the lens assembly is coupled to one end of the lens mount and urges the lens assembly to move upward from the end of the lens assembly adjacent the lens mount.
  • the embodiment is not particularly limited herein.
  • the connector may be specifically a thermal expansion member 30 having a top end connected to the lens assembly 40.
  • Lens assembly 40 includes a lens constructed from at least one lens. Among the materials constituting the lens, at least one of the lenses is made of plastic, and the other lenses may be made of glass or the like.
  • the thermal expansion member 30 when the temperature rises, the thermal expansion member 30 thermally expands, and the lens occurs.
  • the thermal expansion member 30 drives the lens assembly 40 to move a predetermined displacement along the optical axis of the lens to compensate for the amount of change in focus caused by lens expansion.
  • FIG. 2 is a schematic diagram of the working principle of the camera assembly provided by the present invention.
  • (a) represents the position of the focal plane when the lens assembly 40 is not heated. Specifically, when the lens assembly 40 is not heated, the optical path is as shown by the solid line. At this time, the normal focal plane is located at A1, and the normal focal plane is located at the plane L where the image sensor chip is located.
  • (b) represents the position of the focal plane when the lens assembly 40 of the prior art is heated. Specifically, when the lens assembly 40 is heated, the lens in the lens assembly 40 thermally expands. In the viewing angle shown in FIG.
  • the focal plane is at a position A2, that is, the focal plane moves down by the distance Y, and the focal plane does not fall on the image sensor chip.
  • (3) Represents the position of the focal plane when the lens assembly 40 is heated when the thermal expansion member is disposed in the camera assembly. Specifically, in the viewing angle shown in FIG. 2, when the lens assembly 40 is heated, thermal expansion of the lens causes the focal plane to move downward, but at the same time, the thermal expansion member is thermally expanded, and after being thermally expanded, the thermal expansion member is along the lens. The length of the optical axis direction is extended to drive the lens assembly to move away from the image sensor chip, that is, to drive the lens assembly to move upward.
  • the amount of expansion displacement of the thermal expansion member 30 along the optical axis direction and the lens along the optical axis The displacement of the focal plane of the direction is equal, that is, the distance Y of the focal plane moving down is equal to the distance X of the lens assembly moving upward, and the final focal plane A2 falls on the plane L where the image sensor chip is located, thereby ensuring the temperature change.
  • the focal plane coincides with the focal plane before the temperature change, that is, it always falls on the image sensor chip, thereby ensuring the image clarity.
  • the distance that the connecting member drives the lens assembly to move upward is equal to the distance that the focal plane moves downward, thereby ensuring that the focal plane is always on the plane where the image sensor chip is located, so that the camera assembly can take a clear image.
  • thermal expansion elongation temperature difference x object length x thermal expansion rate.
  • the amount of movement of the focal plane of the lens with increasing temperature can be obtained, and the corresponding relationship between the amount of focal plane movement and temperature rise can be obtained.
  • the final experimental data shows a linear relationship between the amount of focal plane movement and temperature rise. Since the temperature difference is given by the environment, a material having a thermal expansion coefficient as high as possible can be selected, and the length of the thermal expansion member can be obtained by the above formula.
  • the length of the thermal expansion member may be determined according to the overall size of the camera assembly, and then the thermal expansion rate is determined, and finally the material corresponding to the thermal expansion rate is selected.
  • the material of the thermal expansion member in this embodiment is a plastic that satisfies a preset thermal expansion coefficient.
  • the material of the thermal expansion member and the thermal expansion coefficient of the thermal expansion member are not Special restrictions are made as long as the amount of change in focal length caused by lens expansion can be compensated.
  • the camera assembly provided by the embodiment includes a lens holder and a lens assembly mounted on the lens holder.
  • the lens assembly includes a lens formed by at least one lens.
  • the lens holder includes a connecting member, and the connecting member is heated when the temperature inside the lens holder is raised.
  • Driving the lens assembly to move a preset displacement along the optical axis direction of the lens the preset displacement is used to compensate for the amount of focal length change caused by the expansion of the lens, thereby ensuring that the position of the focal plane after the temperature change coincides with the position of the focal plane before the temperature change This allows the camera assembly to capture clear images.
  • FIG. 3 is a schematic exploded view of a camera assembly provided by the present invention
  • FIG. 5 is a top plan view of the camera assembly provided by the present invention
  • FIG. 6 is a schematic cross-sectional view of the A-A surface of FIG.
  • the thermal expansion member 30 is a thermal expansion ring disposed around the lens assembly.
  • the top end of the thermal expansion ring of the present embodiment is connected to the lens assembly 40, and is disposed around the thermal expansion member through the thermal expansion ring.
  • the thermal expansion ring moves the lens assembly 40 upward, the lens assembly 40 can be balanced to ensure that the focal plane does not tilt.
  • the top edge of the thermal expansion ring is recessed to form a recess 33.
  • the edges of the tips of the thermal expansion rings are recessed to form at least two recesses 33, each of which is equally spaced.
  • a convex portion 34 is formed between the adjacent two concave portions, and the convex portion 34 is configured to drive the lens assembly 40 to move a predetermined displacement in the optical axis direction of the lens when the temperature inside the lens holder is raised.
  • the lens in the camera assembly has an angle of view, as shown in FIG. 4 .
  • 4 is a schematic view of a field of view of a camera assembly provided by the present invention.
  • the angle of view of the lens is generally about 90-100 degrees, which is a conical surface.
  • a recess is formed in the top end edge of the thermal expansion ring, and the recess can avoid the angle of view of the lens, so that the angle of view of the lens is complete.
  • a convex portion 34 is formed between the adjacent two concave portions, and the convex portion 34 can be coupled with the lens assembly 40 to drive the lens assembly 40 to move a predetermined displacement in the optical axis direction of the lens.
  • thermal expansion ring The structure of the thermal expansion ring will be described in detail below using a specific embodiment.
  • the lens holder 20 further includes a mounting seat 21, the lens assembly 40 is disposed in the receiving cavity of the mounting seat 21, and the thermal expansion ring is disposed on the mounting seat 21.
  • the thermal expansion ring in this embodiment is a ring shape disposed around, and correspondingly, the mounting seat 21 is a surrounding boss structure, and the thermal expansion Each convex portion 34 of the expansion ring is correspondingly disposed at a corner of the boss.
  • the thermal expansion ring may be a polygonal ring, a ring, an elliptical ring, an irregular arc-shaped ring, etc.
  • the mounting seat 21 may be a polygonal boss, an annular boss, an elliptical annular boss, A boss of a surrounding structure with a plurality of arcs.
  • the inner side of the convex portion 34 may further be provided with a groove for arranging the corner portion of the boss.
  • the corner of the boss may also be provided with a chamfer 211, and the protrusion 34 may be sleeved on the chamfer 211 of the boss.
  • the chamfer 211 provided at the corner of the boss of the present embodiment reduces wear on the thermal expansion ring when the thermal expansion ring extends upward.
  • the lens holder 20 is a square body, and the corresponding thermal expansion ring is a quadrilateral thermal expansion ring, and the quadrilateral thermal expansion ring includes four concave portions and four convex portions, and the concave portion It is spaced apart from the convex part.
  • the recess can avoid the angle of view of the lens, which can be coupled to the lens assembly.
  • the lens assembly 40 also includes a housing in which the lens is mounted and the housing is coupled to a thermal expansion ring.
  • the outer casing can be joined to the thermal expansion ring by bonding, lapping, locking, snapping, and the like.
  • the embodiment is not particularly limited herein.
  • the outer casing includes a lens barrel 10 and a rigid connecting frame 400 disposed at the periphery of the lens barrel.
  • the lens is mounted in the lens barrel 10, and the rigid connecting frame 400 is coupled to the thermal expansion ring 30.
  • the rigid connector 400 can be specifically made of a rigid material that does not deform after being heated.
  • the top end of the thermal expansion ring is coupled to the rigid connector 400.
  • the lens holder further includes a base 22 disposed at the bottom of the mounting seat 21, and an end surface of the bottom end of the thermal expansion ring is coupled to the top end of the base 22.
  • the end face of the bottom end of the heat expansion ring is joined to the top end of the base 22 by bonding.
  • the thermal expansion ring can also be connected to the base 22 by means of snapping, snapping or the like.
  • the connection between the thermal expansion ring and the lens barrel can be realized when the length of the thermal expansion ring is greater than the length of the lens barrel, that is, when the length of the thermal expansion ring in the optical axis direction is greater than the length of the mounting seat 21. That is, the lens barrel is fixed in the opposite direction by the rigid connecting frame, and then the rigid connecting frame and the thermal expansion The top end of the expansion ring is connected.
  • the lens when the inside of the lens holder is heated, the lens thermally expands due to heat, causing the focal plane to move downward, and at this time, the thermal expansion ring is thermally expanded by heat, and the end surface of the bottom end of the thermal expansion ring is connected with the top end of the base 22, and the thermal expansion ring After thermal expansion due to heat, the thermal expansion ring can only extend in the opposite direction of the base 22 due to the limitation of the base 22, that is, the thermal expansion ring extends away from the base 22. During the extension of the thermal expansion ring, the rigid connecting frame 400 is driven to Moving away from the base 22, the rigid connecting frame 400 drives the lens barrel to move.
  • the rigid connecting frame 400 drives the lens barrel to move away from the base 22 by a distance equal to the focal plane moving closer to the base 22, thereby realizing the temperature change.
  • the position of the focal plane coincides with the position of the focal plane before the temperature change, so that the focal plane always falls on the image sensor chip of the sensed image, so that the camera assembly can take a clear image.
  • the rigid connecting frame 400 includes a bearing portion 41 and a fixing portion 42 disposed at an edge of the carrying portion 41.
  • the bearing portion 41 is coupled to the lens barrel 10, and the fixing portion 42 and the top end 32 of the thermal expansion ring are provided. connection.
  • the carrying portion 41 can be connected to the lens barrel by means of bonding, clamping, overlapping, arranging, etc., that is, the lens barrel is disposed at the bottom of the carrying portion 41.
  • the carrying portion 41 is provided with a through hole 411.
  • the through hole 411 is connected to one side of the lens barrel 10 with an annular fixing member 412, and the annular fixing member 412 is connected to the lens barrel 10.
  • the lens barrel 10 may be coupled to the annular fixing member 412 by bonding.
  • the projected area of the carrying portion 41 toward the lens holder 20 is larger than the projected area of the lens barrel 10 toward the lens holder 20.
  • the lens barrel 10 is disposed in the receiving cavity formed by the lens holder 20, and the carrying portion 41 is disposed. Above the lens 10, it is carried by the upper edge 23 of the receiving chamber.
  • the lens barrel can be fixedly disposed on the bottom of the carrying portion on the one hand, and the through hole ensures the field of view of the lens on the other hand.
  • the fixing portion 42 includes a column 421 and a protrusion 422.
  • the first end of the column 421 is connected to the carrying portion 41, the protrusion 422 is disposed at the second end of the column 421, and the protrusion 422 and the thermal expansion
  • the top end 31 of the ring is connected.
  • the projection 422 is coupled to the top end 31 of the thermal expansion ring.
  • the protrusion 422 is placed on the convex portion 31 of the thermal expansion ring and fixed by bonding.
  • the camera assembly provided by the embodiment further includes an image sensor chip, and the image sensor chip is disposed in the receiving cavity of the lens holder and disposed at the bottom of the lens holder.
  • the camera assembly in this embodiment further includes a substrate disposed at the bottom of the lens holder, and the image sensor chip is disposed on the substrate.
  • the aircraft can perform various aerial photography functions.
  • FIG. 7 is a schematic structural view of an aircraft provided by the present invention.
  • the aircraft may for example be an unmanned aerial vehicle.
  • the aircraft includes a body 100 and a camera assembly (not shown) mounted to the body 100.
  • the camera assembly refer to the embodiment shown in FIG. 1 to FIG. 6 , which is not described herein again.
  • the aircraft further includes a power assembly 110 that includes a propeller 111 and a motor 112 that drives the propeller 111 to rotate to provide lift of the aircraft.
  • the body 100 includes a body center portion 120 and at least one arm 130 extending along the body center portion 120.
  • the power assembly 110 described above may be disposed on the arm 130.
  • the body 100 includes an upper casing 101 and a lower casing 102;
  • the upper housing 101 and the lower housing 102 are disposed opposite each other to form a body center portion 120 and at least one arm 130 extending along the body center portion 120.
  • the drone further includes: a metal cavity (not shown) and a stand 150;
  • the metal cavity is disposed between the upper case 101 and the lower case 102, the metal cavity is for placing a battery, and the stand 150 is disposed below the lower case 102.
  • the camera assembly may include a platform 140 disposed on the body.
  • the pan/tilt head 140 is disposed below the body center portion 120, and the platform 140 is provided with a mounting portion 141 on which the mirror mount is mounted.
  • FIG. 7 merely illustrates a physical structure diagram of an aircraft by way of example, and is not a limitation on the structure of the aircraft. The present invention does not specifically limit the structure of the aircraft.
  • the aircraft provided in this embodiment includes a body and a camera assembly mounted on the body.
  • the camera assembly includes: a lens holder and a lens assembly mounted on the lens holder, the lens assembly including at least one through
  • the mirror comprises a lens;
  • the mirror base comprises a connecting member, wherein the connecting member is configured to drive the lens assembly to move the preset displacement along the optical axis direction of the lens when the temperature inside the lens holder is raised, and the preset displacement is used to compensate for the change of the focal length caused by the expansion of the lens.
  • the position of the focal plane coincides with the position of the focal plane before the temperature change, so that the camera assembly can capture a clear image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种摄像头组件及使用该摄像头组件的拍摄装置和飞行器,该飞行器包括机身以及安装于所述机身的拍摄装置,所述拍摄装置包括拍摄装置的本体和设置在所述本体上的摄像头组件,所述摄像头组件包括:镜座和安装在镜座上的镜头组件,所述镜头组件包括至少一个透镜构成的镜片;所述镜座包括连接件,所述连接件用于在所述镜座内部温度升高时带动所述镜头组件沿所述镜片的光轴方向移动预设位移,所述预设位移用于补偿所述镜片膨胀引起的焦距变化量。

Description

摄像头组件及使用该摄像头组件的拍摄装置和飞行器 技术领域
本发明实施例涉及光学成像技术领域,尤其涉及一种摄像头组件及使用该摄像头组件的拍摄装置和飞行器。
背景技术
随着摄像技术的发展,定焦摄像头组件由于具有设计简单,对焦速度快,成像质量稳定的优点,在各种用途的摄像电子设备中得到广泛的应用。
目前常用的定焦摄像头组件一般包括镜头、镜座及图像传感器芯片;其中,镜头设置在镜座上,图像传感器芯片设在镜头与镜座形成的容纳空间中。镜头中设有塑料镜片,塑料镜片对外界温度敏感,当图像传感器芯片散热,或者环境温度升高时,塑料镜片受热发生热膨胀,塑料镜片的形状发生变化,导致镜头的焦距发生变化,使得镜头出现失焦现象,成像品质不佳。
发明内容
本发明实施例提供一种摄像头组件及使用该摄像头组件的拍摄装置和飞行器,该摄像头组件可以补偿镜片膨胀引起的焦距变化量。
一方面,本发明实施例提供一种摄像头组件,包括:镜座和安装在镜座上的镜头组件,所述镜头组件包括至少一个透镜构成的镜片;所述镜座包括连接件,所述连接件用于在所述镜座内部温度升高时带动所述镜头组件沿所述镜片的光轴方向移动预设位移,所述预设位移用于补偿所述镜片膨胀引起的焦距变化量。
另一方面,本发明实施例提供一种拍摄装置,所述拍摄装置包括拍摄装置的本体和设置于所述本体上的摄像头组件,所述摄像头组件包括镜座和安装在镜座上的镜头组件,所述镜头组件包括至少一个透镜构成的镜片;所述镜座包括连接件,所述连接件用于在所述镜座内部温度升高时带动所述镜头组件沿所述镜片的光轴方向移动预设位移,所述预设位移用于补偿所述镜片膨胀引起的焦距变化量。
再一方面,本发明实施例提供一种飞行器,该飞行器包括机身以及安装于所述机身的拍摄装置,所述拍摄装置包括拍摄装置的本体和设置在所述本体上的摄像头组件,所述摄像头组件包括:镜座和安装在镜座上的镜头组件,所述镜头组件包括至少一个透镜构成的镜片;所述镜座包括连接件,所述连接件用于在所述镜座内部温度升高时带动所述镜头组件沿所述镜片的光轴方向移动预设位移,所述预设位移用于补偿所述镜片膨胀引起的焦距变化量。
本发明实施例提供的摄像头组件及使用该摄像头组件的拍摄装置和飞行器,该摄像头组件包括镜座和安装在镜座上的镜头组件,镜头组件包括至少一个透镜构成的镜片;镜座包括连接件,连接件在镜座内部温度升高时带动镜头组件沿镜片的光轴方向移动预设位移,该预设位移用于补偿镜片膨胀引起的焦距变化量,从而保证了摄像头组件在温度变化后的焦平面的位置与温度变化前的焦平面的位置重合,使得摄像头组件可以拍摄清晰的图像。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的摄像头组件的结构示意图;
图2为本发明提供的摄像头组件的工作原理示意图;
图3为本发明提供的摄像头组件的爆炸结构示意图;
图4为本发明提供的摄像头组件的视场角示意图;
图5为本发明提供的摄像头组件的俯视示意图;
图6为图5中的A-A面的截面示意图;
图7为本发明提供的飞行器的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例提供的摄像头组件,可以应用到各种摄像领域,以克服镜片热膨胀导致的镜头失焦的问题。该摄像头组件不仅可以应用到各种电子设备中,例如手机、平板、摄像机、相机等具有摄像功能的电子设备中,还可以应用到飞行器、无人车、无人船等。在本实施例中,以该摄像头组件应用于飞行器为例,进行详细说明。
下面以具体地实施例对本实施例的摄像头组件以及飞行器的结构和实现原理进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程在某些实施例中不再赘述。
图1为本发明提供的摄像头组件的结构示意图。如图1所示,该摄像头组件包括镜座20和安装在镜座20上的镜头组件40,镜头组件40包括至少一个透镜构成的镜片;
镜座20包括连接件,连接件用于在镜座20内部温度升高时带动镜头组件40沿镜片的光轴方向移动预设位移,该预设位移用于补偿镜片膨胀引起的焦距变化量。
在本实施例中,该连接件具体可以为具有热胀冷缩功能的连接结构。可以带动镜头组件移动预设位移。该连接件可以与镜头组件连接,也可以与镜头组件不连接。以连接件带动镜头组件向上移动为例,在连接时,该连接件可以与镜头组件远离镜座的一端连接,并从镜头组件远离镜座的一端带动镜头组件向上移动,该连接件也可以与镜头组件靠近镜座的一端连接,并从镜头组件靠近镜座的一端推动镜头组件向上移动。上述仅示意性的示出了连接的实现方式,对于连接件与镜头组件的其它连接关系,本实施例此处不做特别限制。当连接件与镜头组件不连接时,该连接件与镜头组件之间设置中间媒介,通过连接件驱动中间媒介来使镜头组件移动预设位移。
在图1中示出了一种可行的实现方式,如图1所示,该连接件具体可以为热膨胀件30,该热膨胀件30的顶端与镜头组件40连接。镜头组件40包括至少一个透镜构成的镜片。在组成镜片的材料中,存在至少一个镜片的材质为塑料,其它镜片的材质可以为玻璃等材质。
在具体实现过程中,在温度升高时,热膨胀件30发生热膨胀,镜片发生 热膨胀,此时热膨胀件30带动镜头组件40沿镜片的光轴方向移动预设位移,以补偿镜片膨胀引起的焦距变化量。
下面结合图2,对本发明提供的摄像组件的实现原理进行详细说明。图2为本发明提供的摄像头组件的工作原理示意图。如图2所示,(一)代表了在镜头组件40未受热时,焦平面的位置。具体的,在镜头组件40未受热时,光路如实线所示,此时,正常的焦平面所处的位置为A1,该正常的焦平面所处的位置即图像传感器芯片所处的平面L。(二)代表了现有技术中的镜头组件40受热时,焦平面的位置。具体地,在镜头组件40受热时,镜头组件40中的镜片发生热膨胀,在图2所示的视角中,镜片发生热膨胀之后,具体的光路如虚线所示,此时焦平面所处的位置为A2,即焦平面下移距离Y,此时焦平面没有落在图像传感器芯片上。(三)代表了在摄像头组件中设置热膨胀件时,镜头组件40受热时,焦平面的位置。具体地,在图2所示的视角中,在镜头组件40受热时,镜片发生热膨胀,将会导致焦平面下移,但与此同时,热膨胀件受热膨胀,在受热膨胀之后,热膨胀件沿镜片的光轴方向的长度延长,从而带动镜头组件向远离图像传感器芯片的方向移动,即带动镜头组件向上移动,在本实施例中,热膨胀件30沿光轴方向的膨胀位移量与镜片沿光轴方向的焦平面的位移量相等,即焦平面下移的距离Y与镜头组件上移的距离X相等,最终的焦平面A2落在了图像传感器芯片所处的平面L,从而保证温度变化后的焦平面与温度变化前的焦平面重合,即始终落在所述图像传感器芯片上,进而保证了成像的清晰。本实施例使得连接件向上带动镜头组件移动的距离与焦平面向下移动的距离相等,从而保证了焦平面始终位于图像传感器芯片所处的平面上,使得摄像头组件可以拍摄清晰的图像。
本领域技术人员可以理解,物体受热膨胀伸长量=温差×物体长度×热膨胀率。通过有限次实验可以得到镜头的焦平面随着温度升高的移动量,从而得到焦平面移动量与温升的对应关系。最终的实验数据显示焦平面移动量与温升的关系呈现线性关系。由于温差是环境给定的,因此,可以选择一种热膨胀率尽可能高的材料,通过上述公式求得热膨胀件的长度。可选地,还可以根据摄像头组件的整体尺寸,先确定热膨胀件的长度,然后确定热膨胀率,最终选择热膨胀率对应的材质。即本实施例中的热膨胀件的材质为满足预设热膨胀系数的塑料。本实施例对热膨胀件的材质以及热膨胀件的热膨胀率不 做特别限制,只要可以补偿镜片膨胀引起的焦距变化量即可。
本实施例提供的摄像头组件,该摄像头组件包括镜座和安装在镜座上的镜头组件,镜头组件包括至少一个透镜构成的镜片;镜座包括连接件,连接件在镜座内部温度升高时带动镜头组件沿镜片的光轴方向移动预设位移,该预设位移用于补偿镜片膨胀引起的焦距变化量,从而保证了温度变化后的焦平面的位置和温度变化前的焦平面的位置重合,使得摄像头组件可以拍摄清晰的图像。
下面结合图3至图5,对本实施例提供的摄像头组件的结构进行详细说明。
图3为本发明提供的摄像头组件的爆炸结构示意图,图5为本发明提供的摄像头组件的俯视示意图,图6为图5中的A-A面的截面示意图。如图3、图5以及图6所示,该热膨胀件30为环绕镜头组件设置的热膨胀环。
本实施例的热膨胀环的顶端与镜头组件40连接,通过热膨胀环环绕热膨胀件设置,热膨胀环在带动镜头组件40向上移动时,可以使得镜头组件40受力平衡,保证焦平面不会发生倾斜。
可选地,该热膨胀环顶端边缘凹陷形成有凹部33。例如,在图3所示的实施例中,热膨胀环顶端的边缘凹陷形成至少两个凹部33,各凹部等间距设置。对应地,相邻的两个凹部之间形成凸部34,该凸部34用于在镜座内部温度升高时带动镜头组件40沿镜片的光轴方向移动预设位移。
在具体实现过程中,摄像头组件中的镜头存在视场角,具体如图4所示。图4为本发明提供的摄像头组件的视场角示意图。由图4所示,镜头的视场角一般为90-100度左右,为一个圆锥面。在本实施例中,为了保证摄像头组件具有良好的视场角,因此,在热膨胀环顶端边缘凹陷形成有凹部,该凹部可以避开镜头的视角,使得镜头的视角完整。同时,在相邻的两个凹部之间形成凸部34,该凸部34可以与镜头组件40进行连接,以带动镜头组件40沿镜片的光轴方向移动预设位移。
下面采用一个具体的实施例,对热膨胀环的结构进行详细说明。
在一种可行的实现方式中,镜座20还包括安装座21,镜头组件40设置在安装座21的容纳腔中,热膨胀环设置在安装座21上。本实施例中的热膨胀环为环绕设置的环形,对应地该安装座21为环绕设置的凸台结构,该热膨 胀环的每一凸部34均对应套设在凸台的一个角部。可以理解,所述热膨胀环可以为多边形环、圆环、椭圆环、不规则圆弧拼接的环状等;所述安装座21可为多边形凸台、环状凸台、椭圆环状凸台、多段圆弧拼接的环绕结构的凸台。
在本实施例中,凸部34的内侧还可以设置用于套设凸台的角部的凹槽。可选地,凸台的角部还可以设置有倒角211,该凸部34可以套设在凸台的倒角211上。本实施例的凸台的角部设置的倒角211,在热膨胀环向上延伸时,减少了对热膨胀环的磨损。
具体地,请继续参照图3,在图3所示的实施例中,镜座20为正方体,则对应的热膨胀环为四边形热膨胀环,该四边形热膨胀环包括四个凹部和四个凸部,凹部和凸部间隔设置。该凹部可以避开镜头的视角,该凸部可以与镜头组件连接。
下面采用详细的实施例来说明热膨胀环与镜头组件的连接的具体实现方式。
请继续参照图3以及图6。镜头组件40还包括外壳,镜片安装在外壳中,外壳与热膨胀环连接。例如,该外壳可以通过粘结、搭接、锁扣、卡合等方式与热膨胀环连接。对于外壳与热膨胀环的具体连接方式,本实施例此处不做特别限制。
本实施例此处提供外壳与热膨胀环连接的一种具体的实现方式。在本实施例中,该外壳包括镜筒10和设置在镜筒外围的刚性连接架400,镜片安装在镜筒10中,刚性连接架400与热膨胀环30连接。
该刚性连接架400具体可以由刚性材料制成,该刚性材料在受热后不会发生变形。该热膨胀环的顶端与刚性连接架400连接。
可选地,镜座还包括设置在安装座21底部的底座22,热膨胀环的底端的端面与底座22的顶端连接。例如,热膨胀环的底端的端面与底座22的顶端通过粘接的方式实现连接。可以理解,所述热膨胀环也可通过卡合、扣合等方式和底座22连接。
本实施例通过设置刚性连接架,可以在热膨胀环的长度大于镜筒的长度时,即热膨胀环在沿光轴方向上的长度大于安装座21的长度时,实现热膨胀环与镜筒的连接。即通过刚性连接架反向固定镜筒,然后刚性连接架与热膨 胀环的顶端连接。
在具体实现过程中,当镜座内部受热时,镜片受热发生热膨胀,导致焦平面向下移动,而此时热膨胀环受热发生热膨胀,由于热膨胀环的底端的端面与底座22的顶端连接,热膨胀环在受热发生热膨胀后,由于底座22的限制,热膨胀环只能向底座22相反的方向延伸,即热膨胀环向远离所述底座22的方向延伸,热膨胀环延伸的过程中,带动刚性连接架400向远离底座22的方向移动,该刚性连接架400再带动镜筒移动,刚性连接架400带动镜筒向远离底座22移动的距离与焦平面向靠近底座22移动的距离相等,从而实现了温度变化后焦平面的位置与温度变化前焦平面的位置重合,从而使得焦平面始终落在感测图像的图像传感器芯片上,使得摄像头组件可以拍摄清晰的图像。
下面结合图3以及图6,对刚性连接架400的结构进行详细说明。如图3和图6所示,该刚性连接架400包括承载部41以及设置在承载部41边缘的固定部42;其中,承载部41与镜筒10连接,固定部42与热膨胀环的顶端32连接。
在具体实现过程中,承载部41可以通过粘结、卡设、搭接、套设等连接方式与镜筒连接,即将镜筒设置在承载部41的底部。可选地,承载部41上设置有通孔411,通孔411朝向镜筒10的一侧连接有环形固定件412,环形固定件412与镜筒10连接。可选地,该镜筒10可以通过粘结的方式与环形固定件412连接。
如图3所示,承载部41朝向镜座20的投影面积大于镜筒10朝向镜座20的投影面积,则镜筒10设置在镜座20形成的容纳腔内,而该承载部41则设置在镜头10的上方,并被容纳腔的上缘23所承载。
本实施例通过设置通孔以及环形固定件,一方面可以将镜筒固定设置在承载部的底部,另一方面,该通孔保证了镜头的视野。
进一步地,如图3所示,固定部42包括立柱421和凸起422,立柱421的第一端与承载部41连接,凸起422设置在立柱421的第二端,且凸起422与热膨胀环的顶端31连接。
在本实施例中,该凸起422与热膨胀环的顶端31连接。以图3为例,该凸起422搭设在热膨胀环的凸部31上,并通过粘结的方式进行固定。
进一步地,在上述实施例的基础上,本实施例提供的摄像头组件还包括图像传感器芯片,所述图像传感器芯片设置于所述镜座的容纳腔内并设置于镜座的底部。从而当热膨胀环带动所述镜头的位置发生变化,而保证镜头的焦平面始终落在所述图像传感器芯片上。
进一步地,本实施例中的摄像头组件还包括设置在镜座底部的基板,所述图像传感器芯片设置在基板上。
下面以一个具体的实施例,来说明上述的摄像头组件应用到飞行器的具体示意。当该摄像头组件应用到飞行器上时,该飞行器可以实现各种航拍的功能。
图7为本发明提供的飞行器的结构示意图。该飞行器例如可以为无人飞行器。如图7所示,该飞行器包括机身100以及安装于该机身100的摄像头组件(未示出)。对于该摄像头组件的具体实现方式,可参见上述图1至图6所示的实施例,本实施例此处不再赘述。
在本实施例中,飞行器还包括动力组件110,动力组件110包括螺旋桨111和驱动螺旋桨111转动的电机112,以提供飞行器的升力。
该机身100包括机体中心部120和沿机体中心部120延伸的至少一个机臂130。上述的动力组件110可以设置在机臂130上。
可选地,机身100包括上壳体101和下壳体102;其中,
上壳体101和下壳体102对合设置,形成了机体中心部120和沿机体中心部120延伸的至少一个机臂130。
可选地,无人机还包括:金属腔体(未示出)和脚架150;
该金属腔体设置在上壳体101和下壳体102之间,金属腔体用于放置电池,脚架150设置在下壳体102的下方。
可选地,该摄像头组件可以包括设置在机体上的云台140。具体地,该云台140设置在机体中心部120的下方,云台140上设置有安装部141,镜座安装在安装部上。
需要说明的是,图7只是以示例的形式示意出一种飞行器的实体结构图,并不是对飞行器结构的限定,本发明对飞行器的结构不作具体限定。
本实施例提供的飞行器,包括机身以及安装于机身的摄像头组件,该摄像头组件包括:镜座和安装在镜座上的镜头组件,镜头组件包括至少一个透 镜构成的镜片;镜座包括连接件,连接件用于在镜座内部温度升高时带动镜头组件沿镜片的光轴方向移动预设位移,预设位移用于补偿镜片膨胀引起的焦距变化量,本实施例使得飞行器在航拍过程中,在镜座内的温度升高时,温度变化后焦平面的位置与温度变化前焦平面的位置重合,使得摄像头组件可以拍摄清晰的图像。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (31)

  1. 一种摄像头组件,其特征在于,包括:镜座和安装在镜座上的镜头组件,所述镜头组件包括至少一个透镜构成的镜片;
    所述镜座包括连接件,所述连接件用于在所述镜座内部温度升高时带动所述镜头组件沿所述镜片的光轴方向移动预设位移,所述预设位移用于补偿所述镜片膨胀引起的焦距变化量。
  2. 根据权利要求1所述的摄像头组件,其特征在于,所述连接件为热膨胀件,所述热膨胀件的顶端与所述镜头组件连接。
  3. 根据权利要求2所述的摄像头组件,其特征在于,在所述镜座内部受热时,所述热膨胀件沿所述光轴方向的膨胀位移量和所述镜片沿所述光轴方向的焦平面的位移量相等。
  4. 根据权利要求2所述的摄像头组件,其特征在于,所述热膨胀件为环绕所述镜头组件设置的热膨胀环。
  5. 根据权利要求4所述的摄像头组件,其特征在于,所述热膨胀环顶端边缘凹陷形成有凹部。
  6. 根据权利要求5所述的摄像头组件,其特征在于,所述热膨胀环顶端边缘凹陷形成至少两个凹部。
  7. 根据权利要求6所述的摄像头组件,其特征在于,各所述凹部等间距设置。
  8. 根据权利要求5所述的摄像头组件,其特征在于,所述相邻的两个凹部之间形成凸部,所述凸部用于在所述镜座内部温度升高时带动所述镜头组件沿所述镜片的光轴方向移动预设位移。
  9. 根据权利要求8所述的摄像头组件,其特征在于,所述镜座还包括安装座,所述镜头组件设置在所述安装座的容纳腔中,所述热膨胀环设置在所述安装座上。
  10. 根据权利要求9所述的摄像头组件,其特征在于,所述热膨胀环为环绕设置环形,所述安装座为环绕设置的凸台结构,所述热膨胀环的每一凸部均对应套设在所述凸台的一个角部。
  11. 根据权利要求9所述的摄像头组件,其特征在于,所述镜头组件还包括外壳,所述镜片安装在所述外壳中,所述外壳与所述热膨胀环连接。
  12. 根据权利要求11所述的摄像头组件,其特征在于,所述外壳包括镜筒和设置在所述镜筒外围的刚性连接架,所述镜片安装在所述镜筒中,所述刚性连接架与所述热膨胀环连接。
  13. 根据权利要求12所述的摄像头组件,其特征在于,所述热膨胀环的顶端与所述刚性连接架连接。
  14. 根据权利要求13所述的摄像头组件,其特征在于,所述镜座还包括设置在所述安装座底部的底座,所述热膨胀环的底端的端面与所述底座的顶端连接。
  15. 根据权利要求14所述的摄像头组件,其特征在于,所述热膨胀环在沿光轴方向上的长度大于所述安装座的长度。
  16. 根据权利要求12至15任一项所述的摄像头组件,其特征在于,所述刚性连接架包括承载部以及设置在所述承载部边缘的固定部;
    所述承载部与所述镜筒连接,所述固定部与所述热膨胀环的顶端连接。
  17. 根据权利要求16所述的摄像头组件,其特征在于,所述承载部上设置有通孔,所述通孔朝向所述镜筒的一侧连接有环形固定件,所述环形固定件与所述镜筒连接。
  18. 根据权利要求17所述的摄像头组件,其特征在于,所述固定部包括立柱和凸起,所述立柱的第一端与所述承载部连接,所述凸起设置在所述立柱的第二端,且所述凸起与所述热膨胀环的顶端连接。
  19. 根据权利要求1至15以及17、18任一项所述的摄像头组件,其特征在于,还包括:设置于所述镜座底部的图像传感器芯片,所述图像传感器芯片设置在所述镜座的容纳腔中。
  20. 根据权利要求1至15以及17任一项所述的摄像头组件,其特征在于,所述热膨胀件的材质为满足预设热膨胀系数的塑料。
  21. 根据权利要求1至15以及17任一项所述的摄像头组件,其特征在于,所述镜片中存在至少一片镜片的材质为塑料。
  22. 根据权利要求14所述的摄像头组件,其特征在于,所述热膨胀环的底端的端面与所述底座的顶端粘接。
  23. 根据权利要求17所述的摄像头组件,其特征在于,所述镜筒粘接在所述环形固定件上。
  24. 一种拍摄装置,其特征在于,所述拍摄装置包括拍摄装置的本体和设置于所述本体上的如权利要求1-23任一项所述的摄像头组件。
  25. 一种飞行器,其特征在于,包括机身以及安装于所述机身的如权利要求24所述的拍摄装置。
  26. 根据权利要求25所述的飞行器,其特征在于,所述飞行器还包括动力组件,所述动力组件包括螺旋桨和驱动所述螺旋桨转动的电机,以提供所述飞行器的升力。
  27. 根据权利要求26所述的飞行器,其特征在于,所述机身包括机体中心部和沿所述机体中心部延伸的至少一个机臂,所述动力组件设置在所述机臂上。
  28. 根据权利要求27所述的飞行器,其特征在于,所述飞行器还包括云台,所述云台设置在所述机体中心部的下方,所述云台上设置有安装部,所述拍摄装置的摄像头组件中的镜座安装在所述安装部上。
  29. 根据权利要求25至28任一项所述的飞行器,其特征在于,所述机身包括上壳体和下壳体;其中,
    所述上壳体和所述下壳体对合设置,形成了所述机体中心部和沿所述机体中心部延伸的至少一个机臂。
  30. 根据权利要求29所述的飞行器,其特征在于,所述飞行器还包括:金属腔体和脚架;
    所述金属腔体设置在所述上壳体和所述下壳体之间,所述金属腔体用于放置电池,所述脚架设置在所述下壳体的下方。
  31. 根据权利要求25至28、30任一项所述的飞行器,其特征在于,所述飞行器为无人飞行器。
PCT/CN2016/091063 2016-07-22 2016-07-22 摄像头组件及使用该摄像头组件的拍摄装置和飞行器 WO2018014344A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/091063 WO2018014344A1 (zh) 2016-07-22 2016-07-22 摄像头组件及使用该摄像头组件的拍摄装置和飞行器
CN201680011371.7A CN107278277B (zh) 2016-07-22 2016-07-22 摄像头组件及使用该摄像头组件的拍摄装置和飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091063 WO2018014344A1 (zh) 2016-07-22 2016-07-22 摄像头组件及使用该摄像头组件的拍摄装置和飞行器

Publications (1)

Publication Number Publication Date
WO2018014344A1 true WO2018014344A1 (zh) 2018-01-25

Family

ID=60052194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091063 WO2018014344A1 (zh) 2016-07-22 2016-07-22 摄像头组件及使用该摄像头组件的拍摄装置和飞行器

Country Status (2)

Country Link
CN (1) CN107278277B (zh)
WO (1) WO2018014344A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114302049A (zh) * 2022-01-25 2022-04-08 荣耀终端有限公司 一种新型马达、摄像模组及电子设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200310227A1 (en) * 2019-03-29 2020-10-01 Apple Inc. Lens holder to compensate for optical focal shift by thermo-mechanical expansion
CN110365883A (zh) * 2019-07-22 2019-10-22 宁波为森智能传感技术有限公司 一种摄像头
CN110753170A (zh) * 2019-09-09 2020-02-04 宁波为森智能传感技术有限公司 一种摄像模组及组装方法
CN110764338B (zh) * 2019-10-30 2022-02-15 长光卫星技术有限公司 一种具备调焦功能的轻型空间相机主承力装置
CN110830699A (zh) * 2019-11-28 2020-02-21 宁波为森智能传感技术有限公司 一种摄像头
CN113141441B (zh) * 2020-01-17 2023-12-08 晋城三赢精密电子有限公司 摄像头模组及其电子装置
CN111999840B (zh) * 2020-07-24 2022-07-05 北京空间机电研究所 一种具有焦距补偿能力的焦面结构
CN111929970B (zh) * 2020-08-31 2022-02-01 维沃移动通信有限公司 电子设备及其摄像头模组
CN112630922B (zh) * 2020-11-30 2022-11-11 江西联创电子有限公司 镜头模组及其装配方法
CN113985687B (zh) * 2021-09-30 2022-08-19 歌尔光学科技有限公司 一种镜头组件和投影仪
US11669937B2 (en) 2022-02-28 2023-06-06 Huajie ZENG Method and system for enhancing image captured by on-board camera, and computing device
CN114549936B (zh) * 2022-02-28 2022-12-23 曾华杰 增强车辆的摄像头拍摄的影像的方法、系统和计算设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2896314Y (zh) * 2005-11-30 2007-05-02 大立光电股份有限公司 镜头焦距补偿构造
CN101893757A (zh) * 2009-05-20 2010-11-24 中国科学院西安光学精密机械研究所 一种中红外成像光学系统
CN102033286A (zh) * 2009-09-29 2011-04-27 鸿富锦精密工业(深圳)有限公司 对焦装置及相机模组
CN102062920A (zh) * 2010-12-27 2011-05-18 中国科学院长春光学精密机械与物理研究所 一种光学仪器的被动温度补偿机构
CN105323454A (zh) * 2014-07-30 2016-02-10 光宝电子(广州)有限公司 多相机图像撷取系统与图像重组补偿方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312345B2 (ja) * 1993-01-13 2002-08-05 株式会社リコー コンバータレンズを内蔵したレンズ鏡胴
CN203946284U (zh) * 2014-07-21 2014-11-19 深圳市大疆创新科技有限公司 一种飞行系统、飞行器以及处理器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2896314Y (zh) * 2005-11-30 2007-05-02 大立光电股份有限公司 镜头焦距补偿构造
CN101893757A (zh) * 2009-05-20 2010-11-24 中国科学院西安光学精密机械研究所 一种中红外成像光学系统
CN102033286A (zh) * 2009-09-29 2011-04-27 鸿富锦精密工业(深圳)有限公司 对焦装置及相机模组
CN102062920A (zh) * 2010-12-27 2011-05-18 中国科学院长春光学精密机械与物理研究所 一种光学仪器的被动温度补偿机构
CN105323454A (zh) * 2014-07-30 2016-02-10 光宝电子(广州)有限公司 多相机图像撷取系统与图像重组补偿方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114302049A (zh) * 2022-01-25 2022-04-08 荣耀终端有限公司 一种新型马达、摄像模组及电子设备
CN114302049B (zh) * 2022-01-25 2022-11-18 荣耀终端有限公司 一种新型马达、摄像模组及电子设备

Also Published As

Publication number Publication date
CN107278277B (zh) 2020-11-06
CN107278277A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2018014344A1 (zh) 摄像头组件及使用该摄像头组件的拍摄装置和飞行器
KR102438333B1 (ko) 전자 기기
KR101012720B1 (ko) 카메라 모듈
TWI548929B (zh) 影像穩定器及取像裝置
TWI620967B (zh) 攝影模組
US8503106B2 (en) Camera module and lens driving device
WO2009142149A1 (ja) レンズ駆動装置
WO2022252699A1 (zh) 摄像模组及其组装方法、电子设备
TW201818107A (zh) 成像鏡頭模組及電子裝置
US9465187B2 (en) Thermal despace compensation systems and methods
US11953703B2 (en) Lens module and camera module including the same
US20140340575A1 (en) Camera Module
TW201340701A (zh) 照相機模組及照相機裝置
TWI589513B (zh) 用以補償震動之微機電系統裝置和機構
KR102569642B1 (ko) 렌즈 어셈블리, 카메라 모듈 및 광학기기
CN211206941U (zh) 潜望式光学模块以及光学系统
TW201817217A (zh) 相機模組
TW201818108A (zh) 成像鏡頭模組及電子裝置
CN115918099B (zh) 一种摄像头马达、摄像头模组和电子设备
JP2012194293A (ja) レンズ駆動装置およびレンズ駆動装置の製造方法
JP2018059986A (ja) 撮像装置
JP6337578B2 (ja) 撮像装置、及び電子機器
JP2011145323A (ja) 撮像装置及び携帯機器
CN206039120U (zh) 摄像头组件及使用该摄像头组件的拍摄装置和飞行器
JP2013182138A (ja) 光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909271

Country of ref document: EP

Kind code of ref document: A1