WO2018014193A1 - 感应模组的测试方法及测试装置 - Google Patents

感应模组的测试方法及测试装置 Download PDF

Info

Publication number
WO2018014193A1
WO2018014193A1 PCT/CN2016/090476 CN2016090476W WO2018014193A1 WO 2018014193 A1 WO2018014193 A1 WO 2018014193A1 CN 2016090476 W CN2016090476 W CN 2016090476W WO 2018014193 A1 WO2018014193 A1 WO 2018014193A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
sensing module
conductive solution
clamping member
testing
Prior art date
Application number
PCT/CN2016/090476
Other languages
English (en)
French (fr)
Inventor
曾超
张伟宏
杨卓豪
李亮
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2016/090476 priority Critical patent/WO2018014193A1/zh
Priority to CN201680000900.3A priority patent/CN106415294A/zh
Publication of WO2018014193A1 publication Critical patent/WO2018014193A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2856Internal circuit aspects, e.g. built-in test features; Test chips; Measuring material aspects, e.g. electro migration [EM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present patent application relates to testing technology of electronic products, and in particular to a testing method and testing device for an induction module.
  • a common calibration and test method is to press a relatively flat isotropic conductive surface (commonly with a rubber head, a metal head) on the sensing area of the fingerprint chip, and then collect data, and process the data to perform chip processing. Self-calibration, the thickness and density of the Epoxy Molding Compound (EMC) layer can also be tested.
  • EMC Epoxy Molding Compound
  • the commonly used rubber heads are not flat themselves, and the density and flatness of different rubber heads (or metal heads) are inconsistent, and wear is caused after many uses (resulting in more unevenness).
  • the rubber head or metal head
  • the rubber head (or metal head) is physically pressed to damage the chip, and the magnitude of the physical pressing strength may affect the test result, and may cause damage to the sensing area of the fingerprint chip.
  • an embodiment of the present invention provides a method for testing a sensing module, comprising: controlling a sensing module to send a test signal to a conductive solution, the sensing module is immersed in the conductive solution; and the receiving sensing module passes A feedback signal received by the conductive solution; a test result is generated based on the feedback signal.
  • testing device applied to the testing method of the sensing module described above;
  • the testing device includes: a support frame, a test sink, a test fixture, an electrical connector, and a microprocessor
  • the test water tank is disposed on the support frame; the test water tank is provided with the conductive solution; the test fixture is movably disposed on the support frame, and the test fixture is used for clamping the sensor module
  • the electrical connector is coupled to the microprocessor for transmitting signals to the microprocessor and the sensing module; wherein, when the test fixture holding the sensing module is moved to When the position is tested, the sensing module is immersed in the conductive solution; the microprocessor is configured to control the sensing module to send the test signal to the conductive solution, and pass the The feedback signal received by the conductive solution produces a test result.
  • this embodiment uses a conductive solution as a conductive medium in the test, and feeds the test signal to the sensing module. That is, the conductive hardware is used to replace the test hardware (such as a rubber head or a metal head) in the prior art, and the fluidity of the liquid is used to make the conductive solution completely conform to the surface of the sensing module; thereby eliminating the deviation of the test hardware itself, Get test data with less interference and higher precision.
  • the conductive hardware such as a rubber head or a metal head
  • the sensing module is a fingerprint sensing module; the fingerprint sensing module includes a fingerprint chip, a surface protection layer, and a metal guide; the test signal is sent by the fingerprint chip to the Conductively dissolved, and sequentially fed back to the fingerprint chip through the conductive solution and the surface protective layer to form the feedback signal. That is, the test method of this example can be used to test the performance of a fingerprint sensing module.
  • the sensing module is a fingerprint sensing module; the fingerprint sensing module includes a fingerprint chip. And the surface protection layer; the test signal is sent by the fingerprint chip to the conductive solution through the surface protection layer; and sequentially fed back to the fingerprint chip through the conductive solution and the surface protection layer to form the Feedback signal. That is, the test method of this example can be used to test the performance of another fingerprint sensing module.
  • the solvent of the conductive solution includes distilled water.
  • distilled water as a solvent avoids the introduction of impurities, which facilitates the obtaining of highly accurate test data.
  • testing method of the sensing module further includes: uploading the test result to the main control device.
  • the test results are uploaded to the main control device to realize unified recording and management of the batch products, so as to facilitate subsequent tracking and query.
  • the test fixture includes a clamping member and a driving mechanism; the driving mechanism is mechanically coupled to the clamping member and electrically connected to the microprocessor; wherein the driving motor is used
  • the clamping member is driven to move the clamping member to the test position. That is, the step of immersing the sensing module in the pre-configured conductive solution is automated; thereby achieving fully automated operation of the testing process; saving time and effort.
  • the testing device further includes an adjustment water tank; the adjustment water tank is disposed on the support frame and communicates with the test water tank; wherein the adjustment water tank is used for adjusting the conductive solution in the test water tank height.
  • the adjustment of the water tank is added, and the height of the conductive solution in the test water tank is adjusted in real time and automatically by the principle of the connecting device, without manual real-time monitoring and adjustment; saving time and labor.
  • FIG. 1(a) is a flow chart showing a test method of a sensing module according to a first example of a portion of the present invention
  • 1(b) is a schematic view showing the flatness of the surface protective layer in the first example according to some embodiments of the present invention before and after compensation;
  • 1(c) is a schematic view showing the principle of thickness testing of a surface protective layer in a first example in accordance with some embodiments of the present invention
  • 1(d) is a schematic view showing the principle of impurity and void testing of the surface protective layer in the first example in some embodiments of the present invention
  • FIG. 2 is a flow chart of a method of testing a sensing module of a second example in accordance with some embodiments of the present invention
  • FIG. 3 is a schematic structural view of a test apparatus according to a third example in some embodiments of the present invention.
  • FIG. 4 is a block diagram showing a test apparatus of a third example in accordance with some embodiments of the present invention.
  • Figure 5 is a block schematic diagram of a test apparatus of a fourth example in accordance with some embodiments of the present invention.
  • the first example relates to a test method for a sensing module.
  • the sensing module may be any electronic module with a touch sensing function.
  • the fingerprint sensing module is taken as an example for specific description, but is not limited thereto.
  • FIG. 1( a ) a flowchart of a test method of the sensing module of the present example, the specific steps are as follows.
  • Step 101 The control sensor module sends a test signal to the conductive solution, and the sensing module is immersed in the conductive solution.
  • the conductive solution may be, for example, a sodium hydrogencarbonate solution or a sodium carbonate solution.
  • the solvent of the conductive solution is distilled water, so that the introduction of impurities can be avoided, and it is advantageous to obtain test data with high precision.
  • the conductive solution is most conductive when it is near saturation; however, the conductive solution cannot saturate the crystal. For example, when the concentration of sodium bicarbonate solution is [1.8, 2.5] g / liter, the conductivity is better and more stable.
  • the choice of the solute in the conductive solution is not limited; as long as it can be dissolved in distilled water and is electrically conductive; the concentration range of the conductive solution is not limited in this example, and different conductive solutions may select different concentration ranges (by The nature of the conductive solution is determined).
  • the concentration of the conductive solution should always remain the same (or within the allowable error range) to ensure the consistency of the test for each sensor module.
  • the fingerprint sensing module in this example may have different structures. The following two specific structures are taken as an example for description.
  • the fingerprint sensing module of the first structure comprises a circuit board, a fingerprint chip, a surface protection layer and a metal guide.
  • the fingerprint chip is mounted on the circuit board, and the surface protection layer is mounted on the fingerprint chip; the metal guide is mounted on the circuit board and surrounds the fingerprint chip; and the surface protection layer and the metal guide are electrically connected to the fingerprint chip respectively.
  • the fingerprint chip is, for example, a capacitive fingerprint chip, but is not limited thereto; the metal guide is, for example, an annular metal decorative member or a grounding member, but is not limited thereto.
  • the fingerprint chip of the sensing module is connected to a microprocessor.
  • the microprocessor controls the fingerprint chip to send a test signal to the conductive solution. That is, the microprocessor sends a start command to the fingerprint chip; after receiving the start command, the fingerprint chip acquires the internal pre-stored test signal and sends it to the conductive solution through the metal guide; however, the test signal can also be micro- The processor sends to the fingerprint chip. Since the fingerprint sensing module is immersed in the conductive solution, that is, the outer surface of the metal guide is in full contact with the conductive solution, the test signal can be completely conducted into the conductive solution. Wherein, the test signal can be a pulse signal.
  • the fingerprint sensing module of the second structure only includes a fingerprint chip and a surface protection layer.
  • the test of this example When the test method is applied to the fingerprint sensing module of the first structure and the second structure, the test mode is substantially the same; the difference is that in the fingerprint sensing module of the first structure, the test signal is passed by the fingerprint chip through the metal The guiding member is sent to the conductive solution; and in the fingerprint sensing module of the second structure, the test signal is sent by the fingerprint chip to the conductive solution through the surface protective layer.
  • Step 102 Receive a feedback signal received by the sensing module through the conductive solution.
  • the sensing module receives the feedback signal through the conductive solution. That is, for the fingerprint sensing modules of the above two structures, the test signals are sequentially fed back to the fingerprint chip through the conductive solution and the surface protective layer to form a feedback signal.
  • Step 103 Generate a test result according to the feedback signal.
  • the microprocessor receives the feedback signal from the fingerprint chip and generates a test result based on the feedback signal.
  • the test results include at least one of the flatness test result of the surface protective layer, the thickness test result, and the impurity and void test results. among them:
  • FIG. 1(b) is a schematic diagram of the flatness of the surface protective layer before and after compensation.
  • the figure on the left side in FIG. 1(b) shows the compensation before, and the figure on the right side shows the compensation.
  • the flatness of the surface protective layer refers to the flatness of the outer surface of the surface protective layer (ie, the surface for sensing the signal); the flatness of the chip can be obtained by the operation and processing of the feedback data.
  • the magnitude of the feedback signal actually reflects the degree of unevenness of the outer surface of the surface protective layer; for example, the mean square error of the feedback signal can be calculated to evaluate the flatness of the outer surface of the surface protective layer, and the smaller the mean square error, the flatness The higher the degree; however, not limited to the second, other relevant parameters of the feedback signal can also be calculated to evaluate the evaluation flatness.
  • the fingerprint chip can be self-calibrated according to the flatness, and the inconsistency of the fingerprint chip itself and the inconsistency of the surface protection layer are eliminated by compensation. That is, the surface of the surface protective layer is not completely flat due to the manufacturing process; and the surface of the fingerprint chip is not completely flat, which further causes unevenness of the surface of the surface protective layer provided on the surface of the fingerprint chip. Therefore, the inconsistency of the fingerprint chip itself and the inconsistency of the surface protection layer can be simultaneously eliminated by the compensation.
  • FIG. 1(c) is a schematic diagram showing the principle of thickness testing of the surface protective layer.
  • the fingerprint chip in the embodiment is a capacitive fingerprint chip.
  • C refers to the capacitance value detected by the capacitive fingerprint chip
  • d is the thickness of the surface protective layer
  • ⁇ , S, ⁇ , and k are constants.
  • is a dielectric constant
  • S is a facing area of two capacitive plates in the capacitive fingerprint chip
  • d is a pitch of the two capacitive plates.
  • the size of C determines the size of the feedback signal, that is, the larger C, the larger the feedback signal; thus the thickness d of the surface protection layer is inversely proportional to the magnitude of the feedback signal, according to which the feedback signal can be used.
  • the degree of attenuation fits the thickness of the surface protective layer.
  • FIG. 1(d) is a schematic diagram showing the principle of impurity and void testing of the surface protective layer.
  • the impurities and voids of the surface protective layer can be obtained by analyzing the feedback signal. That is, the feedback signal is actually the data collected by the surface protection layer; the surface protection layer includes a plurality of pixel points, and whether the surface protection layer has impurities or voids is determined according to the number and position of the poor data pixels in the feedback signal. For example, when there are a plurality of pixels with small data in a certain area of the surface protection layer, it is judged that there are impurities or voids in the area.
  • the above is the fingerprint sensing module of the above two structures as an example, and the specific implementation manners of step 102 and step 103 are described; however, the example is not limited thereto, and is included in the fingerprint sensing module.
  • the specific implementation manners of steps 102 and 103 may be different.
  • a conductive solution is used as a conductive medium in the test, and the test signal is fed back to the sensing module. That is, the conductive hardware is used to replace the test hardware (such as a rubber head or a metal head) in the prior art, and the fluidity of the liquid is used to make the conductive solution completely conform to the surface of the sensing module; thereby eliminating the deviation of the test hardware itself, Test data with less interference and higher precision is obtained; at the same time, it can avoid the hard damage that the existing test hardware may cause on the sensing surface of the sensing module.
  • the test hardware such as a rubber head or a metal head
  • the second example relates to a test method for a sensing module.
  • the second example is based on the first example.
  • the main improvement is that in the second example, the test results will be uploaded to the master device.
  • Steps 201 to 203 are substantially the same as steps 101 to 103 in the first example, and are not described herein again. The difference is that step 204 is added to the example, which is specifically described below.
  • Step 204 Upload the test result to the master device.
  • the microprocessor reports the analysis result obtained by the analysis to the master device.
  • the master control device records the test results of each fingerprint sensor module to achieve unified recording and management of batch products for subsequent tracking and query.
  • the third example relates to a test device, please refer to FIG. 3 and FIG. 4 together.
  • the test apparatus in this example includes a support frame 10, a test sink 11, a test fixture 12, an electrical connector 13, a microprocessor 14, and an operating member 15.
  • the test device is used to test the sensing module 17.
  • the support frame 10 includes at least a base 101.
  • the base 101 may have a hollow structure, that is, the inside of the base 101 has an accommodating space for the microprocessor 14.
  • the present example does not impose any limitation on the actual structure of the base 101, and does not impose any limitation on the placement position of the microprocessor 14.
  • the test sink 11 is placed on the base 101, that is, the test sink 11 is placed on the upper surface of the base 101.
  • the test tank 11 is provided with a conductive solution for testing.
  • the conductive solution may be, for example, a sodium hydrogencarbonate solution or a sodium carbonate solution.
  • the solvent of the conductive solution is distilled water, which can avoid the introduction of impurities, and is favorable for obtaining high-precision test data. Generally speaking, it is electrically soluble at room temperature. When the liquid is near saturation, the conductivity is the best; but the conductive solution cannot saturate the crystal.
  • the concentration of sodium bicarbonate solution is in the range of [1.8, 2.5] g / liter, the conductivity is better and more stable.
  • the choice of the solute in the conductive solution is not limited; as long as it can be dissolved in distilled water and is electrically conductive; the concentration range of the conductive solution is not limited in this example, and the concentration range of the different conductive solution is determined by the conductive solution. Nature determines.
  • the concentration of the conductive solution should remain constant (or within the allowable error range) to ensure consistency of testing of each of the sensing modules 17.
  • the testing device may further include an adjustment water tank 16 disposed on the base 101, that is, the adjustment water tank 16 is placed on the upper surface of the base 101 and located on one side of the test water tank 11; the water tank 16 and the test water tank are adjusted 11 connected.
  • the regulating water tank 16 is used to adjust the height of the conductive solution in the test water tank 11.
  • the regulating water tank 16 is provided with an electrically conductive solution identical to that in the test water tank 11.
  • the adjusting water tank 16 can adjust the height of the conductive solution in the test tank in real time and automatically; thereby eliminating the need for manual real-time monitoring and adjustment, saving time and effort.
  • the test fixture 12 is movably disposed on the support frame 10.
  • the test fixture 12 includes a clamping member 121 and at least one elastic member 122.
  • the two ends of the elastic member 122 are respectively connected to the base 101 and the clamping member 121 of the support frame 10.
  • the elastic member 122 is, for example, a spring, and the number of springs is, for example, two.
  • the support frame 10 further includes two guide posts 102 respectively fixed to the base 101, and the two springs are respectively sleeved on the two guide posts 102.
  • the present example does not impose any limitation on the specific structure of the elastic member 122 and the number of elastic members; it can be set according to actual needs.
  • the clamping member 121 can grip the edge of the circuit board of the sensing module 17.
  • the present example does not impose any limitation on the specific structure of the clamping member 121. Any clamping structure capable of holding the sensing module 17 is within the protection scope of the present example; the clamping member shown in FIG. 3 is only an example. Sexual description.
  • the electrical connector 13 is connected to the microprocessor 14, and the electrical connector 13 is used for the microprocessor to transmit signals to the sensing module 17.
  • the electrical connector 13 is fixed on the clamping member 121, and When the sensing module 17 is clamped on the clamping member 121, the electrical connector 13 is connected to the corresponding connector on the sensing module 17.
  • the specific position of the electrical connector 13 is not limited in this example as long as the microprocessor 14 and the sensing module 17 can be electrically connected.
  • the operating member 15 is coupled to the gripping member 121 for manual operation by the operator such that the gripping member 121 is moved to the test position.
  • the operating member 15 of the present example includes a wrench 151, a first linkage rod 152, a second linkage rod 153, a first connecting rod 154 fixed to the clamping member 121, and a second connecting rod fixed to the base 101. 155.
  • the connecting end of the wrench 151 is rotatably connected to the first end of the first linking rod 152, and the second end of the first linking rod 152 is rotatably connected to the first connecting rod 154; the connecting end of the wrench 151 is also rotatable Connected to the first end of the second linkage rod 153, the second end of the second linkage rod 153 is rotatably coupled to the second connecting rod 155.
  • the second connecting rod 155 passes through the opening of the clamping member 121; that is, one end of the second connecting rod 155 is rotatably connected to the second end of the second linking rod 153, and the other end is fixed to the base 101.
  • test device The working process of the test device in this example is specifically described as follows:
  • the sensing module 17 is clamped on the clamping member 121, and the sensing module 17 is electrically connected to the electrical connector 13.
  • the sensing module 17 is, for example, a fingerprint sensing module including a circuit board, a fingerprint chip, a surface protection layer, and a metal guide; at this time, the clamping member 121 can be clamped on the circuit board; as long as the test signal and feedback are not affected. The signal can be transmitted.
  • the operator applies a force to the wrench 151, that is, pulls up the wrench 151, and under the action of the first linkage rod 152 and the first connecting rod 154, the clamping member 121 moves downward to the test position.
  • the induction mold Group 17 was just immersed in the conductive solution. That is, the clip 121 can be moved up and down relative to the base 101 by the elastic member 122; when the clip 121 is moved down to the test position, the elastic member 122 is in a compressed state.
  • the microprocessor 14 sends a start signal to the sensing module 17 to control the sensing module 17 to send a test signal to the conductive solution.
  • the sensing module 17 receives the feedback signal through the conductive solution, and the microprocessor 14 receives the feedback signal and generates a test result based on the feedback signal.
  • the microprocessor 14 uploads the test result to the main control device; the main control device can record the test result of each sensor module, and realize unified recording and management of the batch product, so as to facilitate subsequent tracking and query.
  • the present example is a system corresponding to the first or second example, and the present example can be implemented in cooperation with the first or second example.
  • the relevant technical details mentioned in the first or second example are still valid in this example, and are not described herein again in order to reduce repetition. Accordingly, the related art details mentioned in this example can also be applied in the first or second example.
  • the fourth example relates to a test device, please refer to FIG. 5.
  • the fourth example is substantially the same as the third example.
  • the test fixture includes a clamping member and an elastic member (preferably including an operating member), and the operator manually controls the movement of the clamping member to Test location.
  • the test fixture includes a clamping member and a driving mechanism 18; the driving mechanism 18 is mechanically coupled to the clamping member and electrically connected to the microprocessor 14.
  • a drive motor 18 is used to drive the clamp to move the clamp to the test position.
  • 5 is a block diagram of the test device of the fourth example; the microprocessor 14 is also connected to the electrical connector 13; and the electrical connector 13 is connected to the sensing module 17.
  • the driving mechanism 18 may include a motor, a rotating shaft, and a gear assembly (not shown).
  • the motor is electrically connected to the microprocessor 14 and the driving shaft, and the gear assembly is mechanically coupled to the driving shaft and the clamping member.
  • the microprocessor 14 controls the motor to operate and drives the rotating shaft to rotate in the first direction, and drives the clamping member to move to the testing position through the gear assembly.
  • the microprocessor 14 controls the motor to operate and drives the spindle to rotate in the second direction, and drives the clamp to move to the initial position through the gear assembly.
  • This example does not impose any limitation on the specific structure of the drive mechanism. Any structural form that enables the drive clamp to move back and forth between the test position and the initial position is within the scope of this example.
  • the driving mechanism is used to automatically drive the movement of the clamping member, so that the step of immersing the sensing module in the pre-configured conductive solution is automated; thereby realizing the fully automated operation of the testing process; saving time and effort.
  • the present example is a system corresponding to the first or second example, and the present example can be implemented in cooperation with the first or second example.
  • the relevant technical details mentioned in the first or second example are still valid in this example, and are not described herein again in order to reduce repetition. Accordingly, the related art details mentioned in this example can also be applied in the first or second example.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like.

Abstract

本专利申请涉及电子产品的测试技术,公开了一种感应模组的测试方法及测试装置。感应模组的测试方法包括:控制感应模组发送测试信号至导电溶液,感应模组浸没在导电溶液中;接收感应模组通过导电溶液接收的反馈信号;根据反馈信号生成测试结果。本申请还提供一种测试装置。采用导电溶液替换现有技术中的测试硬件,利用液体的流动性使得导电溶液与感应模组的表面完全贴合;从而消除了现有技术中的测试硬件本身的偏差,可以得到干扰更小,精度更高的测试数据。

Description

感应模组的测试方法及测试装置 技术领域
本专利申请涉及电子产品的测试技术,特别涉及一种感应模组的测试方法及测试装置。
背景技术
随着指纹识别和移动支付浪潮的到来,电容式指纹芯片迎来了爆发增长,而在对电容式指纹芯片应用的过程中,为了得到良好的图像质量,指纹芯片必须经过校准和测试。
常见的校准和测试方法为是利用在指纹芯片的感应区上压一个相对平整的各向同性可导电平面(常见的有橡胶头、金属头),然后采集数据,通过对数据进行处理,进行芯片自校准,也可对环氧树脂模塑料(Epoxy Molding Compound,EMC)层的厚度及密度进行检测。
然而,常用的橡胶头(或金属头)自身并不平整、不同橡胶头(或金属头)密度、平整度不一致,并且使用多次后会有所磨损(导致更加不平整)。另一方面,采用橡胶头(或金属头)物理按压损坏芯片,物理按压强度的大小会影响测试结果,且可能对指纹芯片的感应区造成损伤。
发明内容
本发明部分实施例的目的在于提供一种感应模组的测试方法及测试装置,采用导电溶液替换现有技术中的测试硬件,利用液体的流动性使得导电溶液与感应模组的表面完全贴合;从而消除了现有技术中的测试硬件本身的 偏差,可以得到干扰更小,精度更高的测试数据。
为解决上述技术问题,本发明的一个实施例提供了一种感应模组的测试方法,包括:控制感应模组发送测试信号至导电溶液,感应模组浸没在导电溶液中;接收感应模组通过导电溶液接收的反馈信号;根据反馈信号生成测试结果。
本发明的另一个实施例还提供了一种测试装置,应用于以上所述的感应模组的测试方法;所述测试装置包括:支撑架、测试水槽、测试夹具、电连接器以及微处理器;所述测试水槽设置于所述支撑架;所述测试水槽内装有所述导电溶液;所述测试夹具可移动的设置于所述支撑架,所述测试夹具用于夹持所述感应模组;所述电连接器连接于所述微处理器,用于供所述微处理器与所述感应模组互传信号;其中,当夹持有所述感应模组的所述测试夹具移动至测试位置时,所述感应模组浸没在所述导电溶液中;所述微处理器用于控制所述感应模组发送所述测试信号至所述导电溶液,并根据所述感应模组通过所述导电溶液接收的反馈信号产生测试结果。
本实施例相对于现有技术而言,采用导电溶液作为测试中的导电介质,将测试信号反馈至感应模组。即,采用导电溶液替换现有技术中的测试硬件(例如橡胶头或金属头),利用液体的流动性使得导电溶液与感应模组的表面完全贴合;从而消除了测试硬件本身的偏差,可以得到干扰更小,精度更高的测试数据。
另外,所述感应模组为指纹感应模组;所述指纹感应模组包括指纹芯片、表面保护层以及金属导件;所述测试信号由所述指纹芯片通过所述金属导件发送至所述导电溶,并依次通过所述导电溶液与所述表面保护层反馈至所述指纹芯片,形成所述反馈信号。即,本例子的测试方法能够用于测试一种指纹感应模组的相关性能。
另外,所述感应模组为指纹感应模组;所述指纹感应模组包括指纹芯片 与表面保护层;所述测试信号由所述指纹芯片通过所述表面保护层发送至所述导电溶液;并依次通过所述导电溶液与所述表面保护层反馈至所述指纹芯片,形成所述反馈信号。即,本例子的测试方法能够用于测试另一种指纹感应模组的相关性能。
另外,所述导电溶液的溶剂包括蒸馏水。采用蒸馏水作为溶剂,可以避免引入杂质,从而有利于得到精度较高的测试数据。
另外,所述感应模组的测试方法还包括:将所述测试结果上传至主控设备。将测试结果上传主控设备,实现对批量产品的统一记录和管理,以便于后续的追踪查询。
另外,在测试装置中,所述测试夹具包括夹持件与驱动机构;所述驱动机构机械连接于所述夹持件,且电性连接于所述微处理器;其中,所述驱动电机用于驱动所述夹持件,以使得所述夹持件移动至所述测试位置。即,使得将感应模组浸没在预先配置的导电溶液中这一步骤实现了自动化;从而实现了测试过程的全自动化操作;省时省力。
另外,所述测试装置还包括调节水槽;所述调节水槽设置于所述支撑架且与所述测试水槽相连通;其中,所述调节水槽用于调节所述测试水槽中的所述导电溶液的高度。增设调节水槽,利用连通器的原理实时且自动地调节测试水槽中的导电溶液的高度,无需人工实时监测并调节;省时省力。
附图说明
图1(a)是根据本发明部分实施例中第一例子的感应模组的测试方法的流程图;
图1(b)是根据本发明部分实施例中第一例子中的表面保护层的平整度在补偿前和补偿后的示意图;
图1(c)是根据本发明部分实施例中第一例子中的表面保护层的厚度测试原理的示意图;
图1(d)是根据本发明部分实施例中第一例子中的表面保护层的杂质与空洞测试原理的示意图;
图2是根据本发明部分实施例中第二例子的感应模组的测试方法的流程图;
图3是根据本发明部分实施例中第三例子的测试装置的结构示意图;
图4是根据本发明部分实施例中第三例子的测试装置的方框示意图;
图5是根据本发明部分实施例中第四例子的测试装置的方框示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的部分实施例采用举例的方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在各例子中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
第一例子涉及一种感应模组的测试方法。其中,感应模组可以是具有触摸感应功能的任何一种电子模组,本例子中以指纹感应模组为例进行具体说明,然不限于此。
如图1(a)所示,为本例子的感应模组的测试方法的流程图,具体步骤说明如下。
步骤101:控制感应模组发送测试信号至导电溶液,感应模组浸没在导电溶液中。
本例子中,需要在常温下预先配置导电溶液;导电溶液例如可以为碳酸氢钠溶液或者碳酸钠溶液。其中,导电溶液的溶剂为蒸馏水,从而可以避免引入杂质,有利于得到精度较高的测试数据。一般而言,导电溶液在接近饱和的时候,导电性最好;但是导电溶液不能饱和析出晶体。例如碳酸氢钠溶液在浓度范围是[1.8,2.5]克/每升的时候,导电率较好且较为稳定。本例子对导电溶液中溶质的选择不作任何限制;只要能够溶解于蒸馏水且具导电性即可;本例子对导电溶液的浓度范围也不作任何限制,不同的导电溶液可能选择不同的浓度范围(由该导电溶液的性质决定)。
需要说明的是,导电溶液的浓度应当始终保持不变(或者在允许的误差范围内),以保证对各感应模组测试的一致性。
本例子中的指纹感应模组可以具有不同结构,以下以两种具体结构为例进行说明。
第一种结构的指纹感应模组包括电路板、指纹芯片、表面保护层以及金属导件。指纹芯片安装在电路板上,表面保护层安装在指纹芯片上;金属导件安装在电路板上且环绕指纹芯片;表面保护层与金属导件分别电性连接于指纹芯片。其中,指纹芯片例如为电容式指纹芯片,然不限于此;金属导件例如为环形金属装饰件或接地件,然不限于此。
具体而言,所述感应模组的指纹芯片连接于一个微处理器。当测试开始时,微处理器控制指纹芯片发送测试信号至导电溶液。即,微处理器发送一个启动命令至指纹芯片;指纹芯片接收到启动命令后,获取其内部预存的测试信号,并通过金属导件发送至导电溶液;然不限于此,测试信号也可以由微处理器发送至指纹芯片。由于指纹感应模组浸没在导电溶液中,即金属导件的外表面与导电溶液完全接触,因此测试信号能够全部传导至导电溶液中。其中,该测试信号可以为脉冲信号。
第二种结构的指纹感应模组仅包括指纹芯片与表面保护层。本例子的测 试方法应用于第一种结构和第二种结构的指纹感应模组时,测试方式大致相同;区别之处在于:第一种结构的指纹感应模组中,测试信号由所述指纹芯片通过金属导件发送至导电溶液;而第二种结构的指纹感应模组中,测试信号由指纹芯片通过表面保护层发送至导电溶液。
步骤102:接收感应模组通过导电溶液接收的反馈信号。
本例子中,感应模组通过导电溶液接收反馈信号。即,对于上述两种结构的指纹感应模组而言,测试信号均为依次通过导电溶液与表面保护层反馈至指纹芯片,形成反馈信号。
步骤103:根据反馈信号生成测试结果。
微处理器从指纹芯片接收反馈信号,并根据反馈信号生成测试结果。测试结果包括表面保护层的平整度测试结果、厚度测试结果以及杂质与空洞测试结果的至少其中之一。其中:
请参考图1(b),所示为表面保护层的平整度在补偿前和补偿后的示意图,其中,图1(b)中左侧的图表示补偿前,右侧的图表示补偿后。具体而言,表面保护层的平整度是指表面保护层的外表面(即用于感测信号的表面)的平整度;通过对反馈数据的运算和处理,可以得到芯片的平整度。具体而言,反馈信号的大小实际上就是反应了表面保护层的外表面的凹凸程度;例如,可以计算反馈信号的均方差来评估表面保护层的外表面的平整度,均方差越小,平整度越高;然不限于次,还可以计算反馈信号的其他相关参数来评估评估平整度。
在后续使用中,指纹芯片可以根据该平整度进行自校准,通过补偿,消除指纹芯片本身的不一致性及表面保护层的不一致性。即,由于制造工艺的原因,表面保护层的表面并非完全平整;且指纹芯片表面并非完全平整,这也进一步导致了设置在指纹芯片表面的表面保护层的表面的不平整。因此,通过补偿可以同时消除指纹芯片本身的不一致性及表面保护层的不一致性。
请参考图1(c),所示为表面保护层的厚度测试原理的示意图。具体而言,表面保护层的厚度可以根据公式C(感应电容)=εS/4πkd计算得到。其中,本实施方式中的指纹芯片是电容式指纹芯片,公式中C是指电容式指纹芯片检测得到的电容值;d为表面保护层的厚度;另外,ε、S、π、k均是常数,具体而言,ε为介电常数,S为电容式指纹芯片中的两个电容板的正对面积;d为两个电容板的间距。
实际上的,C的大小决定了反馈信号的大小,即,C越大,反馈信号越大;由此可得表面保护层厚度d和反馈信号的大小成反比,根据这个原理可以由反馈信号的衰减程度拟合出表面保护层的厚度。
请参考图1(d),所示为表面保护层的杂质与空洞测试原理的示意图。具体而言,表面保护层的杂质与空洞可以通过对反馈信号的分析得出。即,反馈信号实际上是表面保护层采集的数据;表面保护层包含多个像素点,根据反馈信号中数据较差像素点的个数和位置,来判断表面保护层是否存在杂质或空洞。例如,当表面保护层的某个区域内存在多个数据偏小的像素点时,则判断该区域内存在杂质或空洞。
需要说明的是,以上是以上述两种结构的指纹感应模组为例,对步骤102和步骤103的具体实现方式进行说明的;然本例子并不限于此,当指纹感应模组所包含的元器件不同、或者感应模组为其他的电子模组时,步骤102和步骤103的具体实现方式可以有所不同。
本例子中,采用导电溶液作为测试中的导电介质,将测试信号反馈至感应模组。即,采用导电溶液替换现有技术中的测试硬件(例如橡胶头或金属头),利用液体的流动性使得导电溶液与感应模组的表面完全贴合;从而消除了测试硬件本身的偏差,可以得到干扰更小,精度更高的测试数据;同时,也可以避免现有的测试硬件对感应模组的感应表面可能造成的硬损伤。
第二例子涉及一种感应模组的测试方法。第二例子是在第一例子基础上 的改进,主要改进之处在于:在第二例子中,测试结果还会被上传至主控设备。
如图2所示,为第二例子的感应模组的测试方法的流程图。其中,步骤201至步骤203与第一例子中的步骤101至步骤103大致相同,此处不再赘述;不同之处在于,本例子新增了步骤204,具体说明如下。
步骤204:将测试结果上传至主控设备。
即,微处理器将分析得出的测试结果上报主控设备。
本例子中,主控设备会记录各指纹感应模组的测试结果,实现对批量产品的统一记录和管理,以便于后续的追踪查询。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
第三例子涉及一种测试装置,请一并参考图3和图4。本例子中的测试装置包括:支撑架10、测试水槽11、测试夹具12、电连接器13、微处理器14以及操作件15。该测试装置用于测试感应模组17。
本例子中,支撑架10至少包括底座101。底座101可以为中空结构,即底座101内部具有一个容置空间,以放置微处理器14。然而本例子对底座101的实际结构不作任何限制,且对微处理器14的放置位置也不作任何限制。
本例子中,测试水槽11设置于底座101,即,测试水槽11放置在底座101的上表面上。测试水槽11内装有测试用的导电溶液。导电溶液例如可以为碳酸氢钠溶液或者碳酸钠溶液。其中,导电溶液的溶剂为蒸馏水,可以避免引入杂质,有利于得到精度较高的测试数据。一般而言,在室温下导电溶 液在接近饱和的时候,导电性最好;但是导电溶液不能饱和析出晶体。例如在室温下,碳酸氢钠溶液的浓度范围在[1.8,2.5]克/每升的时候,导电率较好且较为稳定。本例子对导电溶液中溶质的选择不作任何限制;只要能够溶解于蒸馏水且具导电性即可;本例子对导电溶液的浓度范围也不作任何限制,不同的导电溶液的浓度范围由该导电溶液的性质决定。另外,导电溶液的浓度应当始终保持不变(或者在允许的误差范围内),以保证对各感应模组17测试的一致性。
较佳的,测试装置还可以包括一个调节水槽16,该调节水槽16设置于底座101,即调节水槽16放置在底座101的上表面上且位于测试水槽11的一侧;调节水槽16与测试水槽11相连通。调节水槽16用于调节测试水槽11中的导电溶液的高度。具体而言,调节水槽16装有与测试水槽11中完全相同的导电溶液。利用连通器原理,调节水槽16可实时且自动地调节测试水槽中的导电溶液的高度;从而无需人工实时监测并调节,省时省力。
本例子中,测试夹具12可移动的设置于支撑架10。具体而言,测试夹具12包括夹持件121与至少一弹性件122,弹性件122的两端分别连接于支撑架10的底座101与夹持件121。弹性件122例如为弹簧,且弹簧的数目例如为两个。较佳的,支撑架10还包括分别固定于底座101的两个导向柱102,两个弹簧分别套设于两个导向柱102上。本例子对弹性件122的具体结构以及弹性件的数目不作任何限制;可以根据实际需要设置。
本例子中,夹持件121可以夹持住感应模组17的电路板的边缘。本例子对夹持件121的具体结构不作任何限制,凡是能够夹持住感应模组17的任何夹持结构均在本例子的保护范围之内;图3中所示的夹持件仅作为示例性说明。
本例子中,电连接器13连接于微处理器14,电连接器13用于微处理器与感应模组17互传信号。较佳的,电连接器13固定在夹持件121上,且当 感应模组17夹持在夹持件121上时,电连接器13与感应模组17上对应的连接器相连接。然而本例子对电连接器13的具体设置位置不作任何限制,只要能够使微处理器14以及感应模组17实现电性连接即可。
本例子中,操作件15连接于夹持件121,操作件15用于供操作者手动操作,使得夹持件121移动至测试位置。具体而言,本例子的操作件15包括扳手151、第一连动杆152、第二连动杆153、固定于夹持件121的第一连接杆154以及固定于底座101的第二连接杆155。扳手151的连接端可旋转地连接于第一连动杆152的第一端,第一连动杆152的第二端可旋转地连接于第一连接杆154;扳手151的连接端还可旋转地连接于第二连动杆153的第一端,第二连动杆153的第二端可旋转地连接于第二连接杆155。本例子中,第二连接杆155穿过夹持件121的开孔;即,第二连接杆155的一端与第二连动杆153的第二端可旋转连接,另一端固定于底座101。
本例子中的测试装置的工作过程具体说明如下:
首先,将感应模组17夹持在夹持件121上,且使得感应模组17与电连接器13电性连接。其中,感应模组17例如为包括电路板、指纹芯片、表面保护层以及金属导件的指纹感应模组;此时,夹持件121可以夹持在电路板上;只要不影响测试信号和反馈信号的传导即可。
其次,操作者施力于扳手151,即向上拉起扳手151,在第一连动杆152、第一连接杆154的作用下,夹持件121向下移动至测试位置,此时,感应模组17刚好浸没在导电溶液中。即,夹持件121能够通过弹性件122相对于底座101进行上下移动;当夹持件121向下移动至测试位置时,弹性件122处于压缩状态。对应的,当操作者撤销作用于扳手151上的外力时,在弹性件122的作用下,夹持件121向上移动返回至初始位置时,此时弹性件122恢复至自然伸长状态;然本例子对此不作任何限制。其中,图3中所示的夹持件121位于初始位置。
然后,微处理器14发送启动信号至感应模组17,以控制感应模组17发送测试信号至导电溶液。感应模组17通过导电溶液接收反馈信号,微处理器14接收反馈信号,并根据反馈信号产生测试结果。
较佳的,微处理器14会将测试结果上传至主控设备;主控设备能够记录各感应模组的测试结果,实现对批量产品的统一记录和管理,以便于后续的追踪查询。
不难发现,本例子为与第一或第二例子相对应的系统,本例子可与第一或第二例子互相配合实施。第一或第二例子中提到的相关技术细节在本例子中依然有效,为了减少重复,这里不再赘述。相应地,本例子中提到的相关技术细节也可应用在第一或第二例子中。
第四例子涉及一种测试装置,请参考图5。第四例子与第三例子大致相同,主要区别之处在于:在第三例子中,测试夹具包括夹持件与弹性件(较佳的还包括操作件),操作人员手动控制夹持件移动至测试位置。而在第四例子中,测试夹具包括夹持件与驱动机构18;驱动机构18机械连接于夹持件,且电性连接于微处理器14。驱动电机18用于驱动夹持件,以使得夹持件移动至测试位置。其中,图5为第四例子的测试装置的方框示意图;微处理器14还连接于电连接器13;电连接器13连接于感应模组17。
具体而言,驱动机构18可以包括马达、转轴以及齿轮组件(图未示),马达电性连接于微处理器14与驱动轴,齿轮组件机械连接于驱动轴与夹持件。当感应模组17夹持于夹持件后,微处理器14控制马达工作并驱动转轴朝第一方向转动,并通过齿轮组件驱带动夹持件移动至测试位置。当本次测试结束时,微处理器14控制马达工作并驱动转轴朝第二方向转动,并通过齿轮组件驱带动夹持件移动至初始位置。本例子对驱动机构的具体结构不作任何限制,凡事能够实现驱动夹持件在测试位置与初始位置之间来回移动的任何结构形式均属于本例子的保护范围。
本例子中,采用驱动机构来自动驱动夹持件移动,使得将感应模组浸没在预先配置的导电溶液中这一步骤实现了自动化;从而实现了测试过程的全自动化操作;省时省力。
不难发现,本例子为与第一或第二例子相对应的系统,本例子可与第一或第二例子互相配合实施。第一或第二例子中提到的相关技术细节在本例子中依然有效,为了减少重复,这里不再赘述。相应地,本例子中提到的相关技术细节也可应用在第一或第二例子中。
本领域技术人员可以理解实现上述例子中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述描述仅仅是实现本发明的部分实施例的例子,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (13)

  1. 一种感应模组的测试方法,其特征在于,包括:
    控制感应模组发送测试信号至导电溶液,所述感应模组浸没在所述导电溶液中;
    接收所述感应模组通过所述导电溶液接收的反馈信号;
    根据所述反馈信号生成测试结果。
  2. 根据权利要求1所述的感应模组的测试方法,其特征在于,所述感应模组为指纹感应模组,所述指纹感应模组包括指纹芯片、表面保护层以及金属导件;
    所述测试信号由所述指纹芯片通过所述金属导件发送至所述导电溶液,并依次通过所述导电溶液与所述表面保护层反馈至所述指纹芯片,形成所述反馈信号。
  3. 根据权利要求1所述的感应模组的测试方法,其特征在于,所述感应模组为指纹感应模组,所述指纹感应模组包括指纹芯片与表面保护层;
    所述测试信号由所述指纹芯片通过所述表面保护层发送至所述导电溶液,并依次通过所述导电溶液与所述表面保护层反馈至所述指纹芯片,形成所述反馈信号。
  4. 根据权利要求2或3所述的感应模组的测试方法,其特征在于,所述测试结果包括:所述表面保护层的平整度测试结果、厚度测试结果以及杂质与空洞测试结果的至少其中之一。
  5. 根据权利要求1至4中任一项所述的感应模组的测试方法,其特征在于,所述导电溶液的溶剂包括蒸馏水。
  6. 根据权利要求5所述的感应模组的测试方法,其特征在于,所述导 电溶液的溶质包括碳酸氢钠。
  7. 根据权利要求1至6中任一项所述的感应模组的测试方法,其特征在于,所述感应模组的测试方法还包括:
    将所述测试结果上传至主控设备。
  8. 一种测试装置,其特征在于,应用于权利要求1至7中任意一项所述的感应模组的测试方法,所述测试装置包括:支撑架、测试水槽、测试夹具、电连接器以及微处理器;
    所述测试水槽设置于所述支撑架,所述测试水槽内装有所述导电溶液;
    所述测试夹具可移动的设置于所述支撑架,所述测试夹具用于夹持所述感应模组;
    所述电连接器连接于所述微处理器,所述电连接器用于供所述微处理器与所述感应模组互传信号;
    其中,当夹持有所述感应模组的所述测试夹具移动至测试位置时,所述感应模组浸没在所述导电溶液中;
    所述微处理器用于控制所述感应模组发送所述测试信号至所述导电溶液,并根据所述感应模组通过所述导电溶液接收的反馈信号产生测试结果。
  9. 根据权利要求8所述的测试装置,其特征在于,所述测试夹具包括夹持件与至少一弹性件;
    所述弹性件的两端分别连接于所述支撑架与所述夹持件;
    其中,所述测试夹具移动至所述测试位置时,所述弹性件处于压缩状态。
  10. 根据权利要求9所述的测试装置,其特征在于,所述弹性件为弹簧,所述弹簧套设于所述支撑架的导向柱。
  11. 根据权利要求9或10所述的测试装置,其特征在于,所述测试夹 具还包括操作件,所述操作件连接于所述夹持件;
    其中,所述操作件用于操作所述夹持件,以使得所述夹持件移动至所述测试位置。
  12. 根据权利要求8到11中任一项所述的测试装置,其特征在于,所述测试夹具包括夹持件与驱动机构;
    所述驱动机构机械连接于所述夹持件,且电性连接于所述微处理器;
    其中,所述驱动机构用于驱动所述夹持件,以使得所述夹持件移动至所述测试位置。
  13. 根据权利要求8到12中任一项所述的测试装置,其特征在于,所述测试装置还包括调节水槽,所述调节水槽设置于所述支撑架且与所述测试水槽相连通;
    其中,所述调节水槽用于调节所述测试水槽中的所述导电溶液的高度。
PCT/CN2016/090476 2016-07-19 2016-07-19 感应模组的测试方法及测试装置 WO2018014193A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/090476 WO2018014193A1 (zh) 2016-07-19 2016-07-19 感应模组的测试方法及测试装置
CN201680000900.3A CN106415294A (zh) 2016-07-19 2016-07-19 感应模组的测试方法及测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/090476 WO2018014193A1 (zh) 2016-07-19 2016-07-19 感应模组的测试方法及测试装置

Publications (1)

Publication Number Publication Date
WO2018014193A1 true WO2018014193A1 (zh) 2018-01-25

Family

ID=58087460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090476 WO2018014193A1 (zh) 2016-07-19 2016-07-19 感应模组的测试方法及测试装置

Country Status (2)

Country Link
CN (1) CN106415294A (zh)
WO (1) WO2018014193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825702A (zh) * 2023-02-06 2023-03-21 镇江矽佳测试技术有限公司 一种指纹芯片抗干扰测试装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018227514A1 (zh) 2017-06-16 2018-12-20 深圳市汇顶科技股份有限公司 指纹图像处理方法、光学指纹辨识系统及电子装置
CN109558289A (zh) * 2017-09-26 2019-04-02 南昌欧菲生物识别技术有限公司 一种指纹模组的测试装置及测试方法
CN110488175B (zh) * 2019-07-31 2024-04-26 广东利扬芯片测试股份有限公司 指纹芯片测试部件、方法和计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607929B1 (en) * 1997-12-24 2003-08-19 Commissariat A L' Energie Atomique Device and method for testing sensitive elements on an electronic chip
CN101581700A (zh) * 2009-03-31 2009-11-18 林俊明 一种金属板漆层固化度检测方法
CN102439467A (zh) * 2009-04-30 2012-05-02 卢森堡大学 大面积半导体器件的电气及光电子表征

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607929B1 (en) * 1997-12-24 2003-08-19 Commissariat A L' Energie Atomique Device and method for testing sensitive elements on an electronic chip
CN101581700A (zh) * 2009-03-31 2009-11-18 林俊明 一种金属板漆层固化度检测方法
CN102439467A (zh) * 2009-04-30 2012-05-02 卢森堡大学 大面积半导体器件的电气及光电子表征

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115825702A (zh) * 2023-02-06 2023-03-21 镇江矽佳测试技术有限公司 一种指纹芯片抗干扰测试装置

Also Published As

Publication number Publication date
CN106415294A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2018014193A1 (zh) 感应模组的测试方法及测试装置
US7443157B2 (en) Device and method for planeness testing
CN111076855A (zh) 一种玻璃应力检测装置
CN105526858B (zh) 一种自动平面度检测设备及其测试方法
CN105407703A (zh) 用于pcb半成品的测试装置及其测试方法
CN108983460B (zh) 一种探针压接装置的定位精度补偿系统及方法
CN203385925U (zh) 一种高像素模组的自动调焦设备
CN113587829B (zh) 一种边缘厚度测量方法、装置、边缘厚度测量设备及介质
CN106990090B (zh) 用于动态表面增强拉曼光谱检测的装置及方法
CN107016315A (zh) 扫描测试装置及方法
CN114705129A (zh) 一种封装基板形变测量设备及其方法
CN204988247U (zh) 工件测高装置
CN107907144A (zh) 一种测斜传感器自动校准设备
CN210108573U (zh) 一种适用于测量非等轴残余应力的旋转压头组件
CN208476201U (zh) 一种测量螺旋孔棒料外螺距的自动化装置
CN113391194A (zh) 印制电路板测试方法及其装置
CN109015481B (zh) 一种电缆三坐标轴定位工具
CN216012480U (zh) 颜色检测装置
CN220635409U (zh) 一种多工位一体化电感检测系统
CN208366520U (zh) 扭力测试装置
CN211653134U (zh) 测距传感器的自动标定系统
CN215178583U (zh) 一种电磁阀延迟时间及响应时间的测试装置
CN115436711A (zh) 一种可自动校平的双极板接触电阻检测方法及其装置
CN211425732U (zh) 一种玻璃应力检测装置
CN108153188B (zh) 一种基于脚本数据的调整检查流程切换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909123

Country of ref document: EP

Kind code of ref document: A1