WO2018012816A1 - 압축 장치 및 제어 질량 흐름 분리 방법 - Google Patents

압축 장치 및 제어 질량 흐름 분리 방법 Download PDF

Info

Publication number
WO2018012816A1
WO2018012816A1 PCT/KR2017/007339 KR2017007339W WO2018012816A1 WO 2018012816 A1 WO2018012816 A1 WO 2018012816A1 KR 2017007339 W KR2017007339 W KR 2017007339W WO 2018012816 A1 WO2018012816 A1 WO 2018012816A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass flow
flow
pressure chamber
high pressure
fluid
Prior art date
Application number
PCT/KR2017/007339
Other languages
English (en)
French (fr)
Inventor
코잘라필립
헥트로만
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to US15/755,300 priority Critical patent/US11262113B2/en
Priority to CN201780004858.7A priority patent/CN108474377B/zh
Priority to JP2018521271A priority patent/JP6727298B2/ja
Priority to EP17827888.3A priority patent/EP3486488B1/en
Publication of WO2018012816A1 publication Critical patent/WO2018012816A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3443Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation with a separation element located between the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/02Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C2/025Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents the moving and the stationary member having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet

Definitions

  • the present invention relates to a device for compressing a gaseous fluid, in particular a refrigerant.
  • the compression device comprises a housing having a suction pressure chamber and a high pressure chamber, a compression mechanism and an apparatus formed in the high pressure chamber region for separating the control mass flow from the fluid-lubricant-mixture to control the compression mechanism. Equipped.
  • the invention also relates to a method for separating a controlled mass flow using an apparatus for separating a controlled mass flow in an apparatus for compressing a gaseous fluid.
  • Compressors known in the prior art for example for mobile applications for compressing and conveying refrigerant through a refrigerant circulation system, in particular compressors for automotive air conditioning systems, have an oil separator for separating oil from refrigerant-oil-mixture. It is provided and provided. At this time, the oil separator is arranged on the high pressure side of the compressor to separate the amount of oil required for the compressor after refrigerant compression and return it to the low pressure side, also called the suction side, inside the compressor. As a result, the separated oil is conveyed from the outlet of the compressor back to the inlet inside the compressor.
  • conventional oil separators of compressors are formed as impact separators or centrifugal separators.
  • Compressors belonging to the prior art include a compression mechanism for sucking, compressing, and releasing refrigerant, including lubricating oil, and an oil separator for separating oil from the compressed refrigerant.
  • the compression mechanism and the oil separator are arranged inside the housing.
  • the oil separator in US Pat. No. 6,511,530 B2 has a separation chamber formed in the housing and having an inlet opening for the refrigerant-oil-mixture and an outlet opening for the oil.
  • a separation tube is disposed inside the separation chamber.
  • the compressor also has an outlet tube for refrigerant in the oil separator region, which outlet tube is fluidly connected to the housing of the compressor.
  • the refrigerant in the form of gas exiting the compressor and flowing through the separation pipe flows out of the compressor and past the outlet pipe. Oil is collected in the chamber.
  • DE 10 2012 104 045 A1 describes a refrigerant scroll compressor for an automotive air conditioning system with oil recirculation from the high pressure line of the refrigerant circulation system to the suction zone.
  • the compressor has a stator spiral and a rotor spiral that moves in a relatively moving manner relative to the stator spiral and a medium pressure chamber for generating axial forces for mutual sealing of these spirals.
  • the compressor is formed with a medium pressure channel, and the gaseous refrigerant is led directly to the medium pressure chamber in a compression process between the spirals through the medium pressure channel.
  • the medium pressure chamber is thus supplied with refrigerant directly from the compression chambers formed between the spirals, in which case the pressure in the medium pressure chamber is set as the average pressure of the relevant region of the compression chamber of the spirals.
  • Oil is recycled from the high pressure line of the refrigerant circulation system to the medium pressure chamber by the oil recirculation channel and from the medium pressure channel to the suction region of the refrigerant scroll compressor.
  • a gaseous refrigerant exiting the compression chamber and entering the medium pressure chamber is mixed with oil, with the result that the refrigerant-oil-mixture flows through the oil suction channel into the suction region.
  • WO 2015/0029845 A1 describes an oil separator for a compressor.
  • the oil separator has a cylindrical separation chamber having a side area, and the separation chamber is again formed with a gas inlet opening.
  • the gas inlet opening is arranged tangential to the wall.
  • the oil is basically deposited at the lower end of the vertically oriented separation chamber, while the compressed gas flows out of the upper end opposite the lower end of the separation chamber.
  • the operation of the impact separator or centrifugal separator is due to the difference in density of the fluids to be separated, for example the liquid oil and the refrigerant in the gaseous state.
  • the refrigerant compressor used in mobile applications deviations in the starting mode of operation of the impact separator or centrifugal separator occur.
  • all internal contamination of the refrigerant circulation system caused by the operation of various components of the refrigerant circulation system or by production residues results in particles having a larger density than the refrigerant in gaseous state. In this case the particles may be separated with the oil due to a greater density than the gaseous refrigerant and then recycled inside the compressor to the suction side of the compressor.
  • Another difference in the starting mode of operation is the operation of the refrigerant compressor by the proportion of liquid refrigerant at the compressor inlet.
  • the liquid refrigerant is introduced into the oil separator in a drop (drop).
  • droplets also separate due to the difference in density between the liquid and gaseous refrigerants, and are recycled internally with the separated oil.
  • Internal control mass flow is limited in relation to the structure due to the cross section of the internal nozzles and channels. This causes the proportion of separated liquid refrigerant in the controlled mass flow to simultaneously reduce the backflow of oil.
  • liquid refrigerants for example in the case of bearings and scroll compressors, wash the oil against spirals and can adversely affect the life of the compressor.
  • the so-called controlled mass flow is recycled inside the compressor from the high pressure side to the suction side. Due to the proportion of gaseous refrigerant in the controlled mass flow, recycling to the suction side results in volume loss of the compressor.
  • the heat quantity is also recycled to the suction side of the compressor, which causes an increase in the refrigerant temperature or an increase in the compression start temperature when entering the compressor.
  • the constant inlet pressure due to the increased inlet temperature lowers the density of sucked refrigerant, which likewise reduces the volumetric efficiency of the entire compressor and leads to increased hot gas temperature at the outlet of the compressor.
  • the increased high pressure gas temperature causes higher loads on the components of the refrigerant circulation system.
  • An object of the present invention is to provide a compressor capable of recycling the control mass flow from the high pressure side to the suction side inside the compressor.
  • the control mass flow should be as low as possible to minimize the volume loss of the compressor on the one hand and the heat transferred to the suction side on the other hand due to the proportion of the fluid in the gaseous state.
  • the volumetric effect of the entire compressor should be at the maximum level.
  • the high pressure gas temperature should be minimized.
  • the risk of blocking internal control channels due to structural particles should be minimized and recycling of liquid refrigerant inside the compressor should be prevented.
  • the compressor must have a simple configuration, consisting of a minimum number of parts and at the same time requiring a minimum of space.
  • the costs for manufacturing, maintenance, assembly and operation must be minimal.
  • the problem is solved by an apparatus according to the invention for compressing a gaseous fluid, in particular a refrigerant.
  • the compression device includes a housing having a suction pressure chamber and a high pressure chamber, a compression mechanism and an apparatus formed in the high pressure chamber region for separating the control mass flow from the fluid-lubricant-mixture to control the compression mechanism.
  • the invention also relates to a method for separating a controlled mass flow using an apparatus for separating the controlled mass flow in an apparatus for compressing a gaseous fluid.
  • the separation device comprises a first flow channel for exiting the main mass flow of the compressed fluid-lubricant-mixture from the compression device to separate the mass flow of the gaseous fluid as a controlled mass flow. It is formed and arranged with a second flow channel for guiding the controlled mass flow inside the compression device leading to the suction pressure chamber.
  • the controlled mass flow is a mass flow of a gaseous fluid, preferably containing no lubricant or only a minimum proportion of lubricant, and no liquid refrigerant or only a minimum proportion of liquid refrigerant, and It does not contain any solid particles.
  • the apparatus for compressing a gaseous fluid is preferably formed as a refrigerant compressor, in particular as an electric refrigerant compressor.
  • a second flow channel of the separation device is arranged inside the flow stabilization zone of the high pressure chamber to diverge the controlled mass flow.
  • the flow stabilization zone means a region having no noticeable turbulence in the flow.
  • small suspended particles such as solid particles, are already precipitated due to gravity, and in the flow stabilization zone, a fluid in a pure gas state is basically provided. Only exists.
  • the flow channels are formed in such a way that they are separated from each other within the device for separating the control mass flow from the fluid-lubricant-mixture and are oriented in a way extending in the longitudinal direction of the device. .
  • the flow directions of the main mass flow and the control mass flow are preferably directed in opposite directions to each other.
  • the device for separating the controlled mass flow from the fluid-lubricant-mixture has a cylindrical form, in particular a circular-cylindrical form.
  • the device for separating the control mass flow is arranged in the outlet region of the high pressure chamber.
  • the second flow channel is formed in such a way as to branch at a predetermined angle from the first flow channel, as a result of which the control mass flow is deflected by at least 90 ° when introduced into the second flow channel.
  • the second flow channel is formed to lead to the high pressure channel in the flow direction of the controlled mass flow.
  • a first expansion engine for example a high pressure nozzle or valve, for expanding the control mass flow from the high pressure level to the medium pressure level.
  • the control mass flow is directed to the housing region, which is supplied with a medium pressure gaseous fluid.
  • the housing region to which the medium pressure level gaseous fluid is supplied has a through opening leading to the suction pressure chamber.
  • a second expansion engine for example a low pressure nozzle or valve, for expanding the control mass flow from the medium pressure level to the low pressure level.
  • the low pressure level in this case corresponds to the suction pressure level in the suction pressure chamber of the device for compressing the gaseous refrigerant.
  • the compression mechanism of the device for compressing a gaseous fluid is preferably formed as a scroll compressor with a fixed stator, a movable orbiter and a medium pressure chamber.
  • the stator and orbiter each have a base plate and a spirally formed wall extending from this base plate. These walls are arranged in engagement with each other.
  • the medium pressure chamber is formed on the back of the base plate of the movable orbiter, and the medium pressure chamber is supplied with a gaseous fluid of a medium pressure level.
  • the compression mechanism of the device for compressing a gaseous fluid is formed with a variable stroke volume as a piston compressor.
  • the device according to the invention is preferably used in the refrigerant circulation system of an automobile air conditioning system.
  • the problem of the present invention is also solved by the method according to the invention for separating the controlled mass flow in the apparatus for compressing the fluid in gaseous state using the apparatus for separating the controlled mass flow.
  • the method has the following steps:
  • control mass flow Separating the control mass flow from the main mass flow and directing the control mass flow through the second flow channel into the suction pressure chamber inside the device, in which case the gaseous fluid as the control mass flow is free of solid particles. Isolated.
  • the controlled mass flow is the mass flow of the fluid in the gaseous state, and preferably also contains no lubricant at all or only a minimum proportion of lubricant, and no liquid refrigerant at all or only a minimum proportion of liquid refrigerant.
  • the controlled mass flow expands from a high pressure level to a medium pressure level when flowing through a first expansion engine, for example a high pressure nozzle or valve, and is supplied with a medium pressure gaseous fluid. Guided to the housing area.
  • a second expansion engine for example through a low pressure nozzle or valve
  • the control mass flow continues to expand from the medium pressure level to the low pressure level, and the suction pressure chamber of the device for compressing the gaseous fluid You are guided to.
  • the device according to the invention for compressing a fluid in gaseous state has a variety of advantages:
  • FIG. 1 shows, in cross section, a compressor, in particular a scroll compressor, having a device for isolating a controlled mass flow
  • FIG. 3 shows in detail in cross section a first alternative embodiment of an apparatus for isolating a controlled mass flow
  • FIG. 4 shows, in cross section, a detailed view of an alternative second embodiment of an apparatus for separating a controlled mass flow.
  • FIG. 1 shows, in sectional view, a compressor 1 with a device 10 for isolating a controlled mass flow, also referred to as separator 10.
  • the compressor 1 also has a compression mechanism for sucking, compressing and discharging the refrigerant as a gaseous fluid including oil as a lubricant for lubrication purposes.
  • the compression mechanism and separator 10 are arranged inside the housing.
  • the compressor 1 is formed as a scroll compressor with a rear housing element 2a, an intermediate housing element 2b and a front housing element 2c, which are housed in the assembly state of the compressor 1.
  • the compression mechanism of the compressor 1 has a fixed stator 3 and a movable orbiter 4 having a base plate and a spirally formed wall extending from this base plate, respectively.
  • the base plates are arranged mutually so that the walls engage with each other.
  • the fixed stator 3 is formed inside the housing 2 or as a component of the housing, and the movable orbiter 4 is coupled to a drive shaft 5 which is rotated by an eccentric drive. It is ringed and guided on a circular track.
  • the drive shaft 5 is by means of one or more radial bearings 7 in the intermediate housing element 2b of the housing 2 and a second lady not shown in the drawing in the front housing element 2c of the housing 2. It is supported in the bearing.
  • the movable orbiter 5 is arranged in such a manner that it is fixed to the drive shaft 5 via the radial bearing 6.
  • the spiral walls of the stator 3 and the orbiter 4 contact at multiple locations and form a number of continuous, closed working areas inside these walls, in which case Adjacently arranged work areas limit the volume of different sizes.
  • Adjacently arranged work areas limit the volume of different sizes.
  • the volume and position of the work area are changed.
  • the volume of the working area decreases gradually toward the center of the spiral walls.
  • the fluid in gaseous form to be compressed in particular gaseous refrigerant comprising oil, is sucked into the work area via the suction chamber 8 (also called suction pressure chamber 8 due to the pressure of the refrigerant) as a refrigerant-oil-mixture. It is compressed by the movement of the orbiter 4 moving relative to the stator 3, and is discharged to the outflow chamber 9 due to the pressure of the refrigerant, also referred to as the high pressure chamber 9.
  • the refrigerant-oil-mixture at a high pressure level in the high pressure chamber 9 is conveyed from the compressor 1 through the flow channel 11 in the flow direction 18, wherein the flow channel 11 is a gaseous refrigerant or Guide the main mass flow of the refrigerant-oil-mixture.
  • the main mass flow of the refrigerant-oil-mixture flows from the high pressure chamber 9 into the refrigerant circulation system through the flow channel 11 of the compressor 1 formed in the separation device 10.
  • the flow channel 11 in this case extends in the longitudinal direction of the separator 10, which is preferably formed in a cylindrical shape, and at the first end of the separator 10, a rear housing, also called a high pressure housing due to the pressure level of the refrigerant It leads to an opening formed in element 2a.
  • the compressor 1 also has an area formed as a back pressure chamber 16, also referred to as a medium pressure chamber 16 due to the pressure level inside the compressor 1, which is located at the rear of the base plate of the movable orbiter 4.
  • the orbiter 4 is pressed against the formed and fixed stator 3.
  • the back pressure chamber 16 is supplied with an intermediate pressure of medium pressure or suction pressure and high pressure. The forces obtained due to the different pressures act in the axial direction, and the walls of the orbiter 4 and the stator 3 are pressurized to one another in the axially overlapping end faces so that they are hermetically sealed so that the radial cross-flow of the gaseous refrigerant is achieved. (radial transverse flow) can be minimized.
  • Separation device 10 has a first flow channel 11 for directing the refrigerant-oil-mixture from the compressor 1 into the refrigerant circulation system, as well as a second flow channel 12 for directing the control mass flow inside the compressor. Also provided.
  • the second flow channel 12 in this case leads to the high pressure chamber 9 vertically and in the flow stabilization zone, so that in particular the gaseous refrigerant flows into the flow channel 12 from the high pressure chamber 9 in the vertical flow direction. do.
  • the flow stabilization zone is arranged to face away from the outlet openings of the working area of the compression mechanism, for example.
  • the inlet of the flow channel 12 is also formed in the middle region to the upper region of the high pressure chamber 9 in the direction of gravity, so that it preferably contains no oil ratio or only a minimum oil ratio and is a liquid refrigerant. Only gaseous refrigerants having no ratio of or only a minimum liquid refrigerant ratio and no additional particles are introduced into the flow channel 12. The oil and possible suspended particles precipitate in the lower region of the high pressure chamber 9 and / or are drawn from the compressor 1 via the first flow channel 11.
  • the second flow channel 12 extends generally in the longitudinal direction of the separator 10, preferably formed in a cylindrical shape, in which case the inlet opening leading to the high pressure region 9 is arranged perpendicular to the longitudinal direction, and the separator It is connected into the high pressure channel 13 at a second end formed at the end of the first end of 10.
  • a gaseous refrigerant is deflected about 90 ° so that a high pressure channel is formed as a connecting channel through the second flow channel 12 in the flow direction 19. (13) flows inside.
  • the gaseous refrigerant mainly reaches the high pressure channel 13 and And a first expansion engine 14 formed for example as a high pressure nozzle or valve, in particular as a control valve.
  • the control mass flow of the gaseous refrigerant expands to a medium pressure level when flowing through the first expansion engine 14, thereby causing a medium pressure. Guided into the medium pressure chamber 16 through the channel 15. As a result, a back pressure for pressurizing the orbiter 4 to the stator 3 by the control mass flow is ensured.
  • the controlled mass flow expands from the medium pressure level to the suction pressure level and is recycled to the suction pressure chamber 8, for example, when flowing through a low pressure nozzle or valve, in particular a second expansion engine 17 formed as a control valve.
  • the controlled mass flow in the suction pressure chamber 8 is mixed with the refrigerant-oil-mixture sucked from the compressor 1 of the refrigerant circulation system and drawn into the working area.
  • the circulation system of the controlled mass flow is closed.
  • p2-p1 and the density ⁇ 2 of the refrigerant and the cross sectional dimensions of the expansion engines 14, 17, in particular the diameter d of the nozzle or valve. 2 schematically illustrates the flow of a controlled mass flow through expansion engines 14, 17 formed as nozzles. Since the density ⁇ 2 of the refrigerant and the pressure difference ⁇ p may not be affected, the diameter d of the expansion engines 14 and 17 can be reduced. In this case, the smaller the diameter d or cross-sectional area of the expansion engines 14 and 17 is, the smaller the control mass flow is.
  • the separator 10 separates the particle-free controlled mass flow of the gaseous refrigerant from the main mass flow and the controlled mass flow expands. It is recirculated through the engines 14, 17 to the suction side of the compressor 1.
  • FIG. 3 and 4 show, in cross section, details of alternative embodiments of the compressors 1 ′, 1 ′′, in particular the arrangement of the separators 10 ′, 10 ′′, respectively.
  • the rear housing element 2a of the housing 2 has separators 10 ', 10 "for separating the control mass flow from the high pressure chamber 9 and the main mass flow, respectively.
  • the first flow channel 11 ', 11') is the flow path of the main mass flow, starting from the high pressure chamber 9 and extending to the opening in the housing 2.
  • the refrigerant-oil-mixture, which is guided as the main mass flow, is conveyed from the compressor 1 ', 1 "into the refrigerant circulation system in the flow direction 18 through the flow channels 11', 11".
  • the separators 10 ', 10 are each formed as part of the rear housing element 2a.
  • the second flow channel 12 ′ or the high pressure channel 13 ′ for directing the control mass flow to the first expansion engine 14 is perpendicular, ie at a 90 ° angle ⁇ . It is connected into the first flow channel 11 'of the main mass flow.
  • the flow direction 19 of the control mass flow and the flow direction 18 of the main mass flow are mutually arranged at a 90 ° angle ⁇ when the control mass flow diverges from the main mass flow.
  • the flow channels 11 ′, 12 ′ are formed as two bore holes and are mutually oriented at least 90 ° angle ⁇ .
  • the flow directions of the main mass flow and the control mass flow are mutually oriented at an angle greater than 90 ° in the branching region. If the flow directions are interleaved at an angle greater than 90 °, the control mass flow encompasses an angle greater than 90 ° in the branching region and the control mass flow is deflected at an angle greater than approximately 90 °.
  • the first flow channel 11 ′′ of the main mass flow runs obliquely to the opening formed in the housing 2, leading to the branching region of the second flow channel 12 ′′ of the control mass flow.
  • the first flow channel of the main mass flow leads to the branching region of the second flow channel of the control mass flow at an angle to the opening formed in the housing.
  • a separation sleeve 20 is arranged in the diverging region of the second flow channel 12 "of the controlled mass flow. The separation sleeve 20 is arranged with the first flow channel 11" and the second at an angle smaller than 90 °. Used for forced flow guide of control mass flow in flow channel 12 "mutual arrangement.
  • Separation sleeve 20 and second flow channel 12" allow the control mass flow to essentially flow direction 18 of the main mass flow. Are aligned with one another so as to branch and deflect into the second flow channel 12 ". Control mass flow then flows out of the first flow channel 11" or separation sleeve 20 in the flow direction 18. , Initially deflected at an angle ⁇ above 90 ° and as a whole to an angle ⁇ in the range of approximately 135 ° to 165 °, and then further deflected to about 90 ° by means of further deflection to the second flow channel 12 ′′. ) Flows inside.
  • Refrigerant-oil-mixture containing particles which contain no oil component from the main mass flow, contain no oil components, contain only a minimum proportion of oil, or contain no liquid refrigerant, or contain only a minimum proportion of liquid refrigerant.
  • the inertia of the fluid as well as the inertia of the particles are used, which, in accordance with the embodiments of FIGS. According to examples it is ensured by branching inside the flow stabilization region of the high pressure chamber 9.
  • the present invention relates to a device for compressing a gaseous fluid, in particular a refrigerant.
  • the compression device comprises a housing having a suction pressure chamber and a high pressure chamber, a compression mechanism and an apparatus formed in the high pressure chamber region for separating the control mass flow from the fluid-lubricant-mixture to control the compression mechanism. Equipped.
  • the invention also relates to a method for separating a controlled mass flow using an apparatus for separating a controlled mass flow in an apparatus for compressing a gaseous fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Abstract

본 발명은 가스 상태의 유체, 특히 냉매를 압축하기 위한 장치(1, 1', 1")에 관한 것이다. 상기 압축 장치(1, 1', 1")는 흡입압 챔버(8)와 고압 챔버(9)를 갖춘 하우징(2), 압축 기구 그리고 이러한 압축 기구를 제어하기 위해 유체-윤활제-혼합물로부터 제어 질량 흐름을 분리하기 위한, 상기 고압 챔버(9) 내에 형성된 장치(10, 10', 10")를 구비한다. 상기 분리 장치(10, 10', 10")는 제어 질량 흐름으로서 가스 상태의 유체의 질량 흐름을 분리하도록, 상기 압축 장치(1, 1', 1")로부터 압축된 유체-윤활제-혼합물의 메인 질량 흐름을 유도하기 위한 제 1 유동 채널(11, 11', 11")과 상기 압축 장치(1, 1', 1") 내부에서 상기 흡입압 챔버(8)로 제어 질량 흐름을 안내하기 위한 제 2 유동 채널(12, 12', 12")을 구비하여 형성되고 배치되어 있다. 본 발명은 또한 가스 상태의 유체를 압축하기 위한 장치(1, 1', 1") 내에서 제어 질량 흐름을 분리하기 위한 장치(10, 10', 10")를 이용해 제어 질량 흐름을 분리하기 위한 방법과 관련이 있다.

Description

제어 질량 흐름을 분리하기 위한 장치를 구비한 가스 상태의 유체 압축 장치 및 상기 제어 질량 흐름을 분리하기 위한 방법
본 발명은 가스 상태의 유체, 특히 냉매를 압축하기 위한 장치에 관한 것이다. 상기 압축 장치는 흡입압 챔버와 고압 챔버를 갖춘 하우징, 압축 기구(compression mechanism) 그리고 상기 압축 기구를 제어하기 위해 유체-윤활제-혼합물로부터 제어 질량 흐름을 분리하기 위한, 상기 고압 챔버 영역에 형성된 장치를 구비한다. 본 발명은 또한 가스 상태의 유체를 압축하기 위한 장치 내에서 제어 질량 흐름을 분리하기 위한 장치를 이용해 제어 질량 흐름을 분리하기 위한 방법과도 관련이 있다.
선행 기술에 공지되어 있는 압축기, 예를 들면 냉매 순환계를 통해서 냉매를 압축하고 이송하기 위한 이동식 적용예를 위한, 특히 자동차 공기 조화 시스템용 압축기는 냉매-오일-혼합물로부터 오일을 분리하기 위해 오일 분리기를 구비하여 형성되어 있다. 이때 상기 오일 분리기는, 냉매 압축 후 압축기에 필요한 오일 량을 분리하여 압축기 내부에서, 흡입측으로도 명명되는 저압측으로 돌려보내기 위해 압축기의 고압측에 배치되어 있다. 그 결과 분리된 오일이 압축기 내부에서 압축기의 유출구로부터 다시 유입구로 이송된다.
소형 구조에서 충분한 분리 효율(separation efficiency)뿐만 아니라 적은 비용만을 야기하기 위하여, 압축기들, 특히 냉매 압축기들의 종래의 오일 분리기는 충격 분리기(impact separator) 또는 원심 분리기(centrifugal separator)로서 형성되어 있다.
선행 기술에 속하는 압축기들은 윤활용 오일을 포함해 냉매를 흡입하고 압축하며, 유출하기 위한 압축 기구 그리고 상기 압축된 냉매로부터 오일을 분리하기 위한 오일 분리기를 구비한다. 상기 압축 기구와 오일 분리기는 하우징 내부에 배치되어 있다.
US 6 511 530 B2호에서 오일 분리기는 하우징 내에 형성된 그리고 냉매-오일-혼합물용 유입 개구와 오일용 유출 개구를 갖는 분리 챔버를 구비한다. 상기 분리 챔버 내부에는 분리 관이 배치되어 있다. 또한, 압축기는 오일 분리기 영역에 냉매용 유출 관을 구비하고, 상기 유출 관은 압축기의 하우징과 유체 밀봉 방식으로 연결되어 있다. 압축기로부터 나와 상기 분리 관을 통해 유출되는 가스 형태의 냉매는 상기 압축기로부터 나와 유출관을 지나서 유출된다. 오일은 챔버 내에 수집된다.
DE 10 2012 104 045 A1호에는 냉매 순환계의 고압 라인으로부터 흡입 영역으로 오일 재순환 기능을 갖춘 자동차 공기 조화 시스템용 냉매 스크롤 압축기(scroll compressor)가 기술되어 있다. 상기 압축기는 스테이터 스파이럴(stator spiral) 및 이러한 스테이터 스파이럴에 대해 상대적으로 이동하는 방식으로 움직이는 로터 스파이럴(rotor spiral) 그리고 이들 스파이럴을 상호 밀봉하기 위한 축 방향 힘을 발생시키기 위한 중압 챔버를 구비한다. 또한, 상기 압축기는 중압 채널을 구비하여 형성되어 있으며, 가스 상태의 냉매는 상기 중압 채널을 통해 상기 스파이럴들 사이 압축 공정(compression process)에서 곧바로 상기 중압 챔버로 안내된다. 따라서 상기 중압 챔버에는 스파이럴들 사이에 형성되는 압축 챔버들로부터 곧바로 냉매가 공급되며, 이 경우 상기 중압 챔버 내 압력은 상기 스파이럴들의 압축 챔버의 관련 영역의 평균 압력으로서 설정된다. 오일은 냉매 순환계의 고압 라인으로부터 오일 재순환 채널에 의해 중압 챔버로 재순환되고, 상기 중압 채널로부터는 오일 흡입 채널에 의해 냉매 스크롤 압축기의 흡입 영역으로 재순환된다. 중압 챔버 내에서는 압축 챔버로부터 나와 중압 챔버로 유입되는 가스 상태의 냉매가 오일과 혼합되며, 그 결과 냉매-오일-혼합물이 오일 흡입 채널을 통해 흡입 영역으로 흐른다.
WO 2015/0029845 A1호에는 압축기용 오일 분리기가 기술되어 있다. 상기 오일 분리기는 측면적을 갖는 원통형 분리 챔버를 구비하고, 상기 분리 챔버는 재차 가스 유입 개구를 구비하여 형성되어 있다. 상기 가스 유입 개구는 벽에 접선 방향으로 배치되어 있다. 오일은 기본적으로 수직으로 배향된 분리 챔버의 하부 단부에 침전되어 있고, 반면에 압축된 가스는 상기 분리 챔버의 하부 말단 단부에 마주 놓인 상부 단부로부터 유출된다.
충격 분리기 또는 원심 분리기의 동작은 분리될 유체들, 예를 들면 액상 오일과 가스 상태의 냉매의 밀도 차이에 기인한다. 이동식 적용예에 사용되는 냉매 압축기의 작동 동안에는 충격 분리기 또는 원심 분리기의 시작 작동 모드의 편차가 발생한다. 한 편으로는 냉매 순환계의 여러 컴포넌트들의 작동에 의해 또는 생산 잔류물에 의해 야기되는 냉매 순환계의 모든 내부 오염이 가스 상태의 냉매보다 큰 밀보를 갖는 입자를 야기한다. 이 경우 상기 입자는 가스 상태의 냉매보다 큰 밀도로 인해 오일과 함께 분리된 다음 압축기 내부에서 압축기의 흡입측으로 재순환될 수 있을 것이다. 압축기의 내부 컴포넌트(예: 베어링, 밀봉부, 밸브 및 예를 들면 스크롤 압축기의 경우 스파이럴 또는 왕복동식 압축기(reciprocating compressor)의 경우 실린더 내부에 있는 피스톤과 같은 다른 이동성 부재)들을 손상시키거나 파괴시키지 않기 위해, 압축기 내부에서의 입자 순환이 방지되어야 한다. 입자를 여과하거나 침전시키기 위해서는 적어도 가능한 큰 필터 면적 그리고 가능한 경우 침전을 위한 유동 안정화 영역이 제공되어야 한다. 이 경우 필터의 메시 크기(mesh size)는 한 편으로는, 입자에 의한 차단으로부터 유동 횡단면을 효과적으로 보호하기 위하여, 압축기 내부 최소 유동 횡단면 크기에 종속된다. 다른 한 편으로 메시 크기는, 관류되는 입자가 중요 컴포넌트(예: 베어링, 밀봉부 그리고 스크롤 압축기의 경우 스파이럴)들을 손상시키지 않도록 작게 선택되어야 한다. 냉매 압축기용 제어 질량 흐름의 내부 역류(back flow)는 기능과 관련이 있기 때문에, 추가적으로 최대한 분리된 입자 흐름이 필터 면적의 차단을 야기하지 않고, 이와 더불어 압축기를 손상시키지 않도록 하는 것이 보장되어야 한다.
시작 작동 모드의 또 다른 차이점은 압축기 입구에서 액상 냉매 비율에 의한 냉매 압축기의 작동이다. 압축기 내부에서 액상 냉매의 비율 정도와 유동 속도에 따라 액상 냉매는 방울(drop)로 오일 분리기로 유입된다. 이러한 방울 또한 액상 냉매와 가스 상태의 냉매의 밀도 차이로 인해 분리되고, 분리된 오일과 함께 내부에서 재순환된다. 내부 제어 질량 흐름은 내부 노즐들과 채널들의 횡단면으로 인해 구조와 관련해서 제한된다. 이로 인해 제어 질량 흐름 내 분리된 액상 냉매의 비율이 동시에 역류되는 오일의 감소를 야기한다. 그 외에 액상 냉매는 예를 들면 베어링 그리고 스크롤 압축기의 경우 스파이럴들에 대해 오일을 씻어내는 작용을 하고, 그리고 압축기의 수명에 불리한 영향을 미칠 수 있다.
선행 기술에 공지된 압축기들의 경우, 소위 제어 질량 흐름이 압축기 내부에서, 고압측으로부터 흡입측으로 재순환된다. 제어 질량 흐름 내 가스 상태의 냉매 비율로 인해, 흡입측으로의 재순환은 압축기의 용적 손실을 야기한다. 또한, 제어 질량 흐름에 의해서는 열량(heat quantity) 또한 압축기의 흡입측으로 재순환되고, 이러한 열량은 압축기 내부로 유입 시 냉매 온도 증가 또는 압축 시작 온도 증가를 야기한다. 증가된 유입 온도로 인해 압력이 일정한 경우 흡인된 냉매의 밀도가 낮아지고, 이는 마찬가지로 전체 압축기의 용적 효율도 감소시키며, 그리고 압축기의 출구에서 증가된 고압가스 온도(hot gas temperature)를 야기한다. 그 외에 증가된 고압가스 온도는 냉매 순환계의 컴포넌트들에 더 높은 하중을 야기한다.
본 발명의 과제는, 제어 질량 흐름을 압축기 내부에서 고압측으로부터 흡입측으로 재순환시킬 수 있는 압축기를 제공하는 데 있다. 이 경우 상기 제어 질량 흐름은 가스 상태의 유체 비율로 인해, 한 편으로는 압축기의 용적 손실 그리고 다른 한 편으로는 흡입측으로 전달되는 열량을 최소화하기 위하여 가능한 한 적은 수준이어야 한다. 전체 압축기의 용적 효과는 최대 수준이어야만 한다. 압축기 출구에서는 고압가스 온도가 최소화되어야 한다. 또한, 구조상 입자로 인한 내부 제어 채널들의 차단 위험이 최소화되고, 압축기 내부에서 액상 냉매의 재순환이 방지되어야 한다. 압축기는, 최소 개수의 부품으로 이루어지는 동시에 최소의 공간을 필요로 하는 간단한 구성을 가져야만 한다. 또한, 제조, 관리, 조립 및 작동을 위한 비용도 최소이어야만 한다.
상기 과제는, 독립 특허 청구항의 특징들을 갖는 대상에 의해서 해결된다. 개선예들이 종속 특허 청구항들에 기재되어 있다.
상기 과제는, 가스 상태의 유체, 특히 냉매를 압축하기 위한 본 발명에 따른 장치에 의해서 해결된다. 상기 압축 장치는, 흡입압 챔버와 고압 챔버를 갖춘 하우징, 압축 기구 그리고 상기 압축 기구를 제어하기 위해 유체-윤활제-혼합물로부터 제어 질량 흐름을 분리하기 위한, 상기 고압 챔버 영역에 형성된 장치를 구비한다. 본 발명은 또한 가스 상태의 유체를 압축하기 위한 장치 내에서 상기 제어 질량 흐름을 분리하기 위한 장치를 이용해 제어 질량 흐름을 분리하기 위한 방법과도 관련이 있다.
본 발명의 구상에 따라, 상기 분리 장치는 제어 질량 흐름으로서 가스 상태의 유체의 질량 흐름을 분리하기 위해, 압축 장치로부터 압축된 유체-윤활제-혼합물의 메인 질량 흐름을 유출하기 위한 제 1 유동 채널과 흡입압 챔버로 이어지는 상기 압축 장치 내부에서 제어 질량 흐름을 안내하기 위한 제 2 유동 채널을 구비하여 형성되어 배치되어 있다.
상기 제어 질량 흐름은 가스 상태의 유체의 질량 흐름으로서 바람직하게는 윤활제를 전혀 포함하지 않거나 단지 최소 비율의 윤활제만 포함하고, 그리고 액상 냉매를 전혀 포함하지 않거나 단지 최소 비율의 액상 냉매만 포함하며, 그리고 고체 입자를 전혀 포함하지 않는다.
가스 상태의 유체를 압축하기 위한 장치는 바람직하게 냉매 압축기로서, 특히 전동 냉매 압축기로서 형성되어 있다.
본 발명의 대안적인 제 1 실시예에 따르면, 제어 질량 흐름을 분기하기 위해 상기 분리 장치의 제 2 유동 채널은 상기 고압 챔버로 이어지도록 고압 챔버의 유동 안정화 영역 내부에 배치되어 있다.
이때 유동 안정화 영역은 유동 내에서 주목할 만한 난류를 갖지 않는 영역을 의미하며, 이 경우 예컨대 고체 입자로서 작은 부유 입자가 중력으로 인해 이미 침전되어 있으며, 상기 유동 안정화 영역 내에는 기본적으로 순수 가스 상태의 유체만 존재한다.
본 발명의 한 개선예에 따르면, 유동 채널들은 유체-윤활제-혼합물로부터 제어 질량 흐름을 분리하기 위한 장치 내부에서 서로 분리되는 방식으로 형성되어 있고, 상기 장치의 길이 방향으로 연장되는 방식으로 배향되어 있다.
메인 질량 흐름과 제어 질량 흐름의 유동 방향들은 바람직하게는 서로 반대 방향으로 향한다.
본 발명의 바람직한 한 실시예에 따르면, 유체-윤활제-혼합물로부터 제어 질량 흐름을 분리하기 위한 장치는 원통형 형태(cylindrical form), 특히 원형 원통형 형태(circular-cylindrical form)를 갖는다.
본 발명의 대안적인 제 2 실시예에 따르면, 제어 질량 흐름을 분리하기 위한 장치는 고압 챔버의 유출구 영역에 배치되어 있다. 이 경우 상기 제 2 유동 채널은 제 1 유동 채널로부터 소정의 각으로 분기되는 방식으로 형성되어 있음으로써, 결과적으로 제어 질량 흐름이 제 2 유동 채널로 유입될 때 적어도 90° 각 정도 편향된다.
본 발명의 한 개선예에 따르면, 제 2 유동 채널은 제어 질량 흐름의 유동 방향으로 볼 때 고압 채널로 이어지도록 형성되어 있다. 상기 고압 채널의 유출구에는 제어 질량 흐름을 고압 레벨에서 중압 레벨로 팽창하기 위한 제 1 팽창 기관, 예를 들면 고압 노즐 또는 밸브가 배치되어 있다. 이 경우 상기 제어 질량 흐름은 하우징 영역으로 안내되며, 상기 하우징 영역에는 중압 레벨의 가스 상태의 유체가 공급된다.
본 발명의 바람직한 추가 실시예에서, 중압 레벨의 가스 상태의 유체가 공급되는 하우징 영역은 흡입압 챔버로 이어지는 관통 개구를 갖는다. 또한, 상기 관통 개구 내부에는 제어 질량 흐름을 중압 레벨에서 저압 레벨로 팽창시키기 위한 제 2 팽창 기관, 예를 들면 저압 노즐 또는 밸브가 배치되어 있다. 이 경우 저압 레벨은 가스 상태의 냉매를 압축하기 위한 장치의 흡입압 챔버 내 흡입압 레벨에 상응한다.
가스 상태의 유체를 압축하기 위한 장치의 압축 기구는 바람직하게는 스크롤 압축기로서 고정된 스테이터(fixed stator) 및 이동성 오비터(movable orbiter) 그리고 중압 챔버를 구비하여 형성되어 있다. 이 경우 상기 스테이터와 오비터는 각각 베이스 플레이트 및 이러한 베이스 플레이트로부터 연장되는, 스파이럴형으로 형성된 벽을 갖는다. 이들 벽은 서로 맞물리는 형태로 배치되어 있다. 또한, 상기 중압 챔버는 이동성 오비터의 베이스 플레이트 후면에 형성되어 있고, 그리고 상기 중압 챔버에는 중압 레벨의 가스 상태의 유체가 공급된다.
본 발명의 한 대안적인 실시예에 따르면, 가스 상태의 유체를 압축하기 위한 장치의 압축 기구는 피스톤 압축기로서 가변적인 행정 체적을 구비하여 형성되어 있다.
본 발명에 따른 장치는 바람직하게 자동차 공기 조화 시스템의 냉매 순환계 내에 사용된다.
본 발명의 과제는 제어 질량 흐름을 분리하기 위한 장치를 이용해 가스 상태의 유체를 압축하기 위한 장치 내에서 제어 질량 흐름을 분리하기 위한 본 발명에 따른 방법에 의해서도 해결된다. 상기 방법은 하기의 단계들을 갖는다:
- 고압으로 압축된 유체-윤활제-혼합물을 고압 챔버로 유출하는 단계,
- 상기 압축 장치의 제 1 유동 채널을 통해 상기 유체-윤활제-혼합물의 메인 질량 흐름을 유도하는 단계,
- 상기 메인 질량 흐름으로부터 제어 질량 흐름을 분리하고, 상기 제어 질량 흐름을 제 2 유동 채널을 통해 상기 장치 내부에서 흡입압 챔버로 유도하는 단계, 이 경우 제어 질량 흐름으로서 가스 상태의 유체는 고체 입자 없이 분리됨.
제어 질량 흐름은 가스 상태의 유체의 질량 흐름으로서, 또한 바람직하게는 윤활제를 전혀 포함하지 않거나 단지 최소 비율의 윤활제만 포함하고, 그리고 액상 냉매를 전혀 포함하지 않거나 단지 최소 비율의 액상 냉매만 포함한다.
본 발명의 바람직한 추가 실시예에 따르면, 제어 질량 흐름은 제 1 팽창 기관, 예를 들면 고압 노즐 또는 밸브를 관류할 때, 고압 레벨에서 중압 레벨로 팽창되고, 중압 레벨의 가스 상태의 유체가 공급되는 하우징 영역으로 안내된다. 제 2 팽창 기관을 관류할 때, 예를 들면 저압 노즐 또는 밸브를 관류할 때, 상기 제어 질량 흐름은 계속해서 중압 레벨에서 저압 레벨로 팽창되고, 가스 상태의 유체를 압축하기 위한 장치의 흡입압 챔버로 안내된다.
요약적으로 말해서, 가스 상태의 유체를 압축하기 위한 본 발명에 따른 장치는 다음과 같은 다양한 장점들을 갖는다:
- 전체 수명 동안 제어 질량 흐름을 팽창시키기 위한 작고 견고한 팽창 기관 사용,
- 입자에 의한 제어 질량 흐름의 하중이 최소화됨으로써 차단 현상이 발생하지 않기 때문에 팽창 기관 보호를 위해 작은 메시 크기를 갖는 크기가 작은 필터 면적 사용,
- 제어 질량 흐름 내 액상 냉매 방지 및 이와 관련하여 예를 들면 중압 챔버 내에 배치된 베어링으로부터 윤활제 씻김 방지,
- 노즐 또는 밸브와 같은 팽창 기관의 최소 횡단면을 통과하는 손실 질량 흐름으로서 제어 질량 흐름이 최솟값이기 때문에 압축기 작동 시 특히 낮은 회전 속도와 높은 압력차뿐만 아니라 최대 효과,
- 또한, 적은 오일 량으로 인해 제어 질량 흐름 내 에너지 함량(energy content)이 최솟값이기 때문에 최소한의 열만 흡입 가스 내로 유입되고, 그리고
- 고압가스 온도에 도달할 때까지 단지 최소 수준으로 흡입 가스 가열 및 작동 한계 최대 확대,
- 최소 개수의 부품으로 이루어지는 동시에 최소의 공간을 필요로 하는 간단한 구성, 그리고
- 제조, 조립 및 작동을 위한 최소 비용.
본 발명의 또 다른 세부 사항, 특징들 및 장점들은 관련 도면을 참조하는 실시예들에 대한 하기의 설명으로부터 드러난다. 도면부에서:
도 1은 제어 질량 흐름을 분리하기 위한 장치를 구비하는 압축기, 특히 스크롤 압축기를 단면도로 도시하고,
도 2는 노즐로서 형성된 팽창 기관을 통과하는 제어 질량 흐름의 유동을 개략적으로 도시하며,
도 3은 제어 질량 흐름을 분리하기 위한 장치의 대안적인 제 1 실시예의 상세도를 단면도로 도시하고, 그리고
도 4는 제어 질량 흐름을 분리하기 위한 장치의 대안적인 제 2 실시예의 상세도를 단면도로 도시한다.
도 1은, 실제로 분리기(10)로도 명명되는, 제어 질량 흐름을 분리하기 위한 장치(l0)를 구비한 압축기(1)를 단면도로 도시한다. 상기 압축기(1)는 또한 윤활 목적을 위한 윤활제로서 오일을 포함한 가스 상태의 유체로서 냉매를 흡입, 압축 및 유출하기 위한 압축 기구를 구비한다. 상기 압축 기구와 분리기(10)는 하우징 내부에 배치되어 있다.
압축기(1)는 스크롤 압축기로서 후방 하우징 요소(2a), 중간 하우징 요소(2b) 및 전방 하우징 요소(2c)를 구비하여 형성되어 있으며, 이들 하우징 요소는 압축기(1) 조립 상태에서 하우징(2)을 형성한다. 압축기(1)의 압축 기구는 각각 베이스 플레이트와 이러한 베이스 플레이트로부터 연장되는, 스파이럴형으로 형성된 벽을 갖는 고정된 스테이터(3)와 이동성 오비터(4)를 구비한다. 상기 베이스 플레이트들은 상기 벽들이 서로 맞물리도록 상호 배치되어 있다. 상기 고정된 스테이터(3)는 하우징(2) 내부에 또는 하우징의 구성 요소로서 형성되어 있고, 그리고 상기 이동성 오비터(4)는 편심 드라이브(eccentric drive)에 의해 회전하는 드라이브 샤프트(5)에 커플링 되어 있고 원형 트랙 상에서 가이드 된다. 상기 드라이브 샤프트(5)는 하우징(2)의 중간 하우징 요소(2b)에서는 하나 이상의 레이디얼 베어링(7)에 의해 그리고 하우징(2)의 전방 하우징 요소(2c)에서는 도면에 도시되지 않은 제 2 레이디얼 베어링 내에 지지되어 있다. 이동성 오비터(5)는 레이디얼 베어링(6)을 통해서 드라이브 샤프트(5)에 고정되는 방식으로 배치되어 있다.
오비터(4)가 이동할 때, 스테이터(3)와 오비터(4)의 스파이럴형 벽들은 다수의 위치에서 접촉하고, 이들 벽 내부에서 다수의 연속하는, 폐쇄된 작업 영역을 형성하며, 이 경우 이웃하여 배치된 작업 영역들은 상이한 크기의 용적을 제한한다. 스테이터(3)에 상대적으로 움직이는 오비터(4)의 이동에 대한 반작용 시, 상기 작업 영역의 용적과 위치가 변경된다. 상기 작업 영역의 용적은 스파이럴형 벽들의 중앙으로 갈수록 점점 작아진다. 압축될 가스 형태의 유체, 특히 오일을 포함하는 가스 형태의 냉매는 냉매-오일-혼합물로서 흡입 챔버(8)(냉매의 압력으로 인해 흡입압 챔버(8)로도 명명됨)를 통해 작업 영역으로 흡입되고, 스테이터(3)에 상대적으로 움직이는 오비터(4)의 이동에 의해 압축되며, 그리고 고압 챔버(9)로도 명명되는 냉매의 압력으로 인해 유출 챔버(9)로 유출된다.
고압 챔버(9) 내에 고압 레벨로 있는 냉매-오일-혼합물은 유동 채널(11)을 통해 유동 방향(18)으로 압축기(1)로부터 이송되며, 이때 상기 유동 채널(11)은 가스 상태의 냉매 또는 냉매-오일-혼합물의 메인 질량 흐름을 안내한다. 그 결과 냉매-오일-혼합물의 메인 질량 흐름은 고압 챔버(9)로부터, 분리 장치(10) 내에 형성된 압축기(1)의 유동 채널(11)을 통해 냉매 순환계 내부로 흐른다. 이 경우 유동 채널(11)은 바람직하게는 원통형으로 형성된 분리기(10)의 길이 방향으로 연장되고, 상기 분리기(10)의 제 1 단부에서, 냉매의 압력 레벨로 인해 고압 하우징으로도 명명되는 후방 하우징 요소(2a) 내에 형성된 개구로 이어진다.
압축기(1)는 또한 압축기(1) 내부 압력 레벨로 인해 중압 챔버(16)로도 명명되는 역압 챔버(16)로서 형성된 영역을 구비하며, 이 영역은 이동성 오비터(4)의 베이스 플레이트의 후면에 형성되어 있고 고정된 스테이터(3) 쪽으로 오비터(4)를 가압한다. 상기 역압 챔버(16)에는 중압 또는 흡입 압력과 고압의 중간 압력이 공급된다. 상이한 압력으로 인해 얻어지는 힘은 축 방향으로 작용하며, 그리고 오비터(4)와 스테이터(3)의 벽들은 축 방향으로 겹쳐서 있는 단부면들에서 서로 가압되어 상호 밀폐됨으로써 가스 상태의 냉매의 반경 방향 횡류(radial transverse flow)가 최소화될 수 있다.
분리 장치(10)는 압축기(1)로부터 냉매 순환계 내부로 냉매-오일-혼합물을 유도하기 위한 제 1 유동 채널(11)뿐만 아니라 압축기 내부에서 제어 질량 흐름을 유도하기 위한 제 2 유동 채널(12)도 구비한다. 이 경우 제 2 유동 채널(12)은 수직으로 그리고 유동 안정화 영역에서 고압 챔버(9)로 이어짐으로써, 특히 가스 상태의 냉매가 수직 유동 방향으로 고압 챔버(9)로부터 유동 채널(12) 내부로 유입된다.
상기 유동 안정화 영역은 예를 들면 압축 기구의 작업 영역의 유출 개구들로부터 떨어져서 마주보도록 배치되어 있다. 유동 채널(12)의 입구는 또한 중력 방향으로 고압 챔버(9)의 중간 영역 내지 상부 영역에 형성되어 있으며, 그 결과 바람직하게는 오일 비율을 전혀 포함하지 않거나 단지 최소 오일 비율만을 포함하고, 액상 냉매의 비율을 전혀 포함하지 않거나 단지 최소 액상 냉매 비율만을 포함하며, 그리고 추가 입자를 전혀 포함하지 않는 갖는 가스 상태의 냉매만 유동 채널(12) 내부로 유입된다. 오일 및 발생 가능한 부유 입자는 고압 챔버(9)의 하부 영역에 침전되어 있고/있거나 제 1 유동 채널(11)을 통해 압축기(1)로부터 유도된다.
제 2 유동 채널(12)은 대체로 바람직하게는 원통형으로 형성된 분리기(10)의 길이 방향으로 연장되고, 이 경우 고압 영역(9)으로 이어지는 입구 개구는 상기 길이 방향에 수직으로 배치되어 있으며, 그리고 분리기(10)의 제 1 단부 말단부에 형성된 제 2 단부에서 고압 채널(13) 내부로 연결된다. 상기 고압 영역(9)으로 이어지는 제 2 유동 채널(12)의 입구 영역에서는 가스 상태의 냉매가 약 90°편향되어 유동 방향(19)으로 제 2 유동 채널(12)을 통해 연결 채널로서 형성된 고압 채널(13) 내부로 흐른다.
특히 고압 챔버(9)의 유동 안정화 영역에 제 2 유동 채널(12)의 개구 배치에 의해 그리고 상기 유동 채널(12) 내부에서 편향에 의해, 가스 상태의 냉매는 주로 고압 채널(13)에 도달하고, 그리고 예를 들면 고압 노즐 또는 밸브, 특히 제어 밸브로서 형성된 제 1 팽창 기관(14)에 도달한다.
분리기(10) 내 냉매-오일-혼합물의 메인 질량 흐름과 제어 질량 흐름의 분할 또는 분리 후, 가스 상태의 냉매의 제어 질량 흐름은 제 1 팽창 기관(14)을 관류할 때 중압 레벨로 팽창되어 중압 채널(15)을 통해 중압 챔버(16) 내부로 안내된다. 그 결과 제어 질량 흐름에 의해서 스테이터(3)에 오비터(4)를 가압하기 위한 역압이 보장된다.
제어 질량 흐름은 예컨대, 저압 노즐 또는 밸브, 특히 제어 밸브로서 형성된 제 2 팽창 기관(17)을 관류할 때 중압 레벨에서 흡입압 레벨로 팽창되어 흡입압 챔버(8)로 재순환된다. 흡입압 챔버(8) 내에서 제어 질량 흐름은 냉매 순환계의 압축기(1)로부터 흡입된 냉매-오일-혼합물과 혼합되어 작업 영역 내로 흡입된다. 제어 질량 흐름의 순환계는 폐쇄되어 있다.
압축기(1)를 가능한 효율적으로 작동하기 위하여, 제어 질량 흐름은 최소한으로 존재해야 한다. 제어 질량 흐름은 예를 들면 고압 노즐 또는 저압 노즐과 같은 팽창 기관(14, 17)을 관류할 때, 상태 변수, 특히 상기 팽창 기관(14, 17)의 앞과 뒤에서 팽창될 유체의 압력차 Δp = p2 - p1 그리고 냉매의 밀도(ρ2)와 상기 팽창 기관(14, 17)의 횡단면 치수, 특히 상기 노즐 또는 밸브의 지름(d)에 의존적이다. 도 2는 노즐로서 형성된 팽창 기관(14, 17)을 통과하는 제어 질량 흐름의 유동을 개략적으로 도시한다. 냉매의 밀도(ρ2)와 압력차(Δp)는 영향을 받지 않을 수 있기 때문에 팽창 기관(14, 17)의 지름(d)은 감소될 수 있다. 이 경우 팽창 기관(14, 17)의 지름(d) 또는 단면적이 작게 형성될수록 제어 질량 흐름이 적어진다.
그러나 상기 횡단면 또는 지름(d)이 작을수록, 입자에 의한 상기 팽창 기관(14, 17)의 차단 민감성이 증가한다. 전체 수명 동안 팽창 기관(14, 17)의 차단과 더불어 막힘을 방지하기 위해, 분리기(10)에 의해 메인 질량 흐름으로부터 가스 상태의 냉매의 입자 없는 제어 질량 흐름이 분리되고, 상기 제어 질량 흐름이 팽창 기관(14, 17)들을 통해 압축기(1)의 흡입측으로 재순환된다.
도 3 및 도 4에는 각각 압축기(1', 1")의 대안적인 실시예의 상세도, 특히 분리기(10', 10")의 배치가 단면도로 도시되어 있다.
하우징(2)의 후방 하우징 요소(2a)는 각각 고압 챔버(9) 및 메인 질량 흐름으로부터 제어 질량 흐름을 분리하기 위한 분리기(10', 10")를 구비한다. 이 경우 제 1 유동 채널(11', 11")은 메인 질량 흐름의 유동 경로로서, 고압 챔버(9)에서 출발하여 하우징(2) 내 개구까지 연장된다. 메인 질량 흐름으로서 안내되는 냉매-오일-혼합물은 유동 채널(11', 11")을 통해 유동 방향(18)으로 압축기(1', 1")로부터 냉매 순환계 내부로 이송된다. 분리기(10', 10")는 각각 후방 하우징 요소(2a)의 부분으로서 형성되어 있다.
도 3에 따른 실시예에서, 제 1 팽창 기관(14)으로 제어 질량 흐름을 안내하기 위한 제 2 유동 채널(12') 또는 고압 채널(13')은 수직으로, 즉 90°각(α)으로 메인 질량 흐름의 제 1 유동 채널(11') 내부로 연결된다. 제어 질량 흐름의 유동 방향(19)과 메인 질량 흐름의 유동 방향(18)은 상기 메인 질량 흐름으로부터 상기 제어 질량 흐름이 분기될 때, 90°각(α)으로 상호 배치되어 있다. 유동 채널(11', 12')들은 2개의 보어 홀로서 형성되어 있고 적어도 90°각(α)으로 상호 배향되어 있다.
도면에 도시되지 않은 실시예에 따르면, 메인 질량 흐름과 제어 질량 흐름의 유동 방향들은 분기 영역에서 90°보다 큰 각으로 상호 배향되어 있다. 유동 방향들이 90°보다 큰 각으로 상호 배치된 경우, 제어 질량 흐름은 분기 영역에서 90°보다 큰 각을 포괄하며, 상기 제어 질량 흐름은 대략 90°보다 큰 각으로 편향된다.
도 4에 따른 실시예의 경우, 메인 질량 흐름의 제 1 유동 채널(11")은 하우징(2) 내에 형성된 개구에 비스듬히, 제어 질량 흐름의 제 2 유동 채널(12")의 분기 영역으로 이어진다. 도면에 도시되지 않은 실시예에 따르면, 메인 질량 흐름의 제 1 유동 채널은 하우징 내에 형성된 개구에 비스듬히 제어 질량 흐름의 제 2 유동 채널의 분기 영역으로 이어진다. 제어 질량 흐름의 제 2 유동 채널(12")의 분기 영역에는 분리 슬리브(20)가 배치되어 있다. 상기 분리 슬리브(20)는 90°보다 작은 각으로 제 1 유동 채널(11")과 제 2 유동 채널(12") 상호 배치 시 제어 질량 흐름의 강제 유동 가이드에 사용된다. 분리 슬리브(20)와 제 2 유동 채널(12")은, 제어 질량 흐름이 기본적으로 메인 질량 흐름의 유동 방향(18)에 반대로 제 2 유동 채널(12") 내부로 분기되어 편향되도록 서로 정렬되어 있다. 이때 제어 질량 흐름은 유동 방향(18)으로 제 1 유동 채널(11") 또는 분리 슬리브(20)로부터 흘러나와, 초기에는 90°를 초과하는 각(α)으로 그리고 전체적으로 관찰할 때 대략 135° 내지 165°범위의 각(α)으로 편향된 다음, 약 90°로 추가로 편향에 의해 제 2 유동 채널(12") 내부로 유입된다.
입자를 포함하는 냉매-오일-혼합물로서 메인 질량 흐름으로부터 오일 성분을 포함하지 전혀 포함하지 않거나 단지 최소 비율의 오일만 포함하는 또는 액상 냉매를 전혀 포함하지 않거나 단지 최소 비율의 액상 냉매만 포함하는 입자가 없는, 가스 상태의 냉매 질량 흐름을 분리할 때에는 입자의 관성뿐만 아니라 유체의 관성도 이용되며, 이는 도 3 및 도 4의 실시예에 따라 제어 질량 흐름을 적어도 90° 편향에 의해 또는 도 1의 실시예들에 따라 고압 챔버(9)의 유동 안정화 영역 내부에서 분기에 의해 보장된다.
본 발명은 가스 상태의 유체, 특히 냉매를 압축하기 위한 장치에 관한 것이다. 상기 압축 장치는 흡입압 챔버와 고압 챔버를 갖춘 하우징, 압축 기구(compression mechanism) 그리고 상기 압축 기구를 제어하기 위해 유체-윤활제-혼합물로부터 제어 질량 흐름을 분리하기 위한, 상기 고압 챔버 영역에 형성된 장치를 구비한다. 본 발명은 또한 가스 상태의 유체를 압축하기 위한 장치 내에서 제어 질량 흐름을 분리하기 위한 장치를 이용해 제어 질량 흐름을 분리하기 위한 방법과도 관련이 있다.

Claims (10)

  1. 흡입압 챔버(8)와 고압 챔버(9)를 갖춘 하우징(2), 압축 기구(compression mechanism) 그리고 이러한 압축 기구를 제어하기 위해 유체-윤활제-혼합물로부터 제어 질량 흐름을 분리하기 위한, 상기 고압 챔버(9) 내에 형성된 분리 장치(10, 10', 10")를 구비하는, 가스 상태의 유체를 압축하기 위한 장치(1, 1', 1")로서,
    상기 분리 장치(10, 10', 10")가 제어 질량 흐름으로서 가스 상태의 유체의 질량 흐름을 분리하도록, 상기 압축 장치(1, 1', 1")로부터 압축된 유체-윤활제-혼합물의 메인 질량 흐름을 유도하기 위한 제 1 유동 채널(11, 11', 11")과 상기 압축 장치(1, 1', 1") 내부에서 상기 흡입압 챔버(8)로 제어 질량 흐름을 안내하기 위한 제 2 유동 채널(12, 12', 12")을 구비하여 형성되고 배치되어 있는 것을 특징으로 하는, 압축 장치(1, 1', 1").
  2. 제 1 항에 있어서,
    상기 제어 질량 흐름을 분기하기 위해 상기 분리 장치(10)의 제 2 유동 채널(12)이 상기 고압 챔버(9)로 이어지도록 상기 고압 챔버(9)의 유동 안정화 영역 내부에 배치되어 있는 것을 특징으로 하는, 압축 장치(1).
  3. 제 2 항에 있어서,
    상기 유동 채널(11, 12)들이 상기 분리 장치(10) 내부에서 서로 분리되어 형성되어 있고, 그리고 상기 분리 장치(10)의 길이 방향으로 연장되는 방식으로 배향되어 있는 것을 특징으로 하는, 압축 장치(1).
  4. 제 3 항에 있어서,
    상기 분리 장치(10)가 원통형 형태(cylindrical form)를 갖는 것을 특징으로 하는, 압축 장치(1).
  5. 제 1 항에 있어서,
    상기 분리 장치(10', 10")가 상기 고압 챔버(9)의 유출구 영역에 배치되어 있고, 상기 제 2 유동 채널(12', 12")은 상기 제 1 유동 채널(11', 11")로부터 소정의 각(α)로 분기되는 방식으로 형성되어 제어 질량 흐름이 상기 제 2 유동 채널(12', 12") 내부로 유입될 때 적어도 90° 각(α) 만큼 편향되는 것을 특징으로 하는, 압축 장치(1', 1").
  6. 제 1 항에 있어서,
    상기 제 2 유동 채널(12, 12', 12")이 제어 질량 흐름의 유동 방향으로 볼 때 고압 채널(13, 13', 13")로 이어지도록 형성되어 있고, 상기 고압 채널(13, 13', 13")의 유출구에 제어 질량 흐름을 고압 레벨에서 중압 레벨로 팽창하기 위한 제 1 팽창 기관(14)이 배치되어 있으며, 상기 제어 질량 흐름은 중압 레벨의 가스 상태의 유체가 공급되는 상기 하우징(2) 영역으로 안내되는 것을 특징으로 하는, 압축 장치(1, 1', 1").
  7. 제 6 항에 있어서,
    중압 레벨의 가스 상태의 유체가 공급되는 상기 하우징(2) 영역이 흡입압 챔버(8)로 이어지는 관통 개구를 갖고, 상기 관통 개구 내부에 제어 질량 흐름을 중압 레벨에서 저압 레벨로 팽창시키기 위한 제 2 팽창 기관(17)이 배치되어 있는 것을 특징으로 하는, 압축 장치(1, 1', 1").
  8. 제 7 항에 있어서,
    상기 압축 기구가 스크롤 압축기로서 고정된 스테이터(fixed stator)(3)와 이동성 오비터(movable orbiter)(4) 그리고 중압 챔버(16)를 구비하고, 이때
    - 상기 스테이터(3)와 오비터(4)는 각각 베이스 플레이트와 이러한 베이스 플레이트로부터 연장되는, 스파이럴형으로 형성된 벽을 구비하여 형성되어 있고, 이들 벽은 서로 맞물리는 형태로 배치되어 있으며,
    - 상기 중압 챔버(16)는 상기 이동성 오비터(4)의 베이스 플레이트 후면에 형성되어 있고, 그리고 상기 중압 챔버에는 중압 레벨의 가스 상태의 유체가 공급되는 것을 특징으로 하는, 압축 장치(1, 1', 1").
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 따른 가스 상태의 유체를 압축하기 위한 압축 장치(1, 1', 1") 내에서 제어 질량 흐름을 분리하기 위한 장치(10, 10', 10")를 이용해 제어 질량 흐름을 분리하기 위한 방법으로서,
    - 고압으로 압축된 유체-윤활제-혼합물을 고압 챔버(8)로 유출하는 단계,
    - 상기 압축 장치(1, 1', 1")로부터 제 1 유동 채널(11, 11', 11")을 통해 유체-윤활제-혼합제의 메인 질량 흐름을 유도하는 단계,
    - 상기 메인 질량 흐름으로부터 제어 질량 흐름을 분리하고, 상기 제어 질량 흐름을 제 2 유동 채널(12, 12', 12")을 통해 상기 압축 장치(1, 1', 1") 내부에서 흡입압 챔버(8)로 유도하는 단계를 포함하고, 이때 제어 질량 흐름으로서 가스 상태의 유체가 고체 입자 없이 분리되는, 제어 질량 흐름 분리 방법.
  10. 제 9 항에 있어서,
    상기 제어 질량 흐름이
    - 제 1 팽창 기관(14)을 관류할 때 고압 레벨에서 중압 레벨로 팽창되어 상기 중압 레벨의 가스 상태의 유체가 공급되는 하우징(2) 영역으로 안내되고,
    - 제 2 팽창 기관(17)을 관류할 때 상기 중압 레벨에서 저압 레벨로 팽창되어 흡입압 챔버(8)로 안내되는 것을 특징으로 하는, 제어 질량 흐름 분리 방법.
PCT/KR2017/007339 2016-07-15 2017-07-07 압축 장치 및 제어 질량 흐름 분리 방법 WO2018012816A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/755,300 US11262113B2 (en) 2016-07-15 2017-07-07 Compression device and control mass flow separation method
CN201780004858.7A CN108474377B (zh) 2016-07-15 2017-07-07 压缩装置以及控制质量流的分离方法
JP2018521271A JP6727298B2 (ja) 2016-07-15 2017-07-07 制御質量流れを分離するための装置を備えたガス状態の流体の圧縮装置、及び制御質量流れを分離する方法
EP17827888.3A EP3486488B1 (en) 2016-07-15 2017-07-07 Compression device and control mass flow separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016113057.5 2016-07-15
DE102016113057.5A DE102016113057B4 (de) 2016-07-15 2016-07-15 Vorrichtung zum Verdichten eines gasförmigen Fluids mit einer Anordnung zum Separieren eines Steuermassenstroms sowie Verfahren zum Separieren des Steuermassenstroms

Publications (1)

Publication Number Publication Date
WO2018012816A1 true WO2018012816A1 (ko) 2018-01-18

Family

ID=60782945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007339 WO2018012816A1 (ko) 2016-07-15 2017-07-07 압축 장치 및 제어 질량 흐름 분리 방법

Country Status (7)

Country Link
US (1) US11262113B2 (ko)
EP (1) EP3486488B1 (ko)
JP (1) JP6727298B2 (ko)
KR (1) KR101913158B1 (ko)
CN (1) CN108474377B (ko)
DE (1) DE102016113057B4 (ko)
WO (1) WO2018012816A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020129864A1 (de) 2020-11-12 2022-05-12 Hanon Systems Vorrichtung zum Verdichten eines gasförmigen Fluids

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511530B2 (en) 2000-04-17 2003-01-28 Denso Corporation Compressor with oil separator
JP2004211550A (ja) * 2002-12-26 2004-07-29 Mitsubishi Heavy Ind Ltd 圧縮機
JP2009221924A (ja) * 2008-03-14 2009-10-01 Denso Corp 圧縮機
KR101128756B1 (ko) * 2008-12-24 2012-03-23 가부시키가이샤 도요다 지도숏키 스크롤형 압축기
DE102012104045A1 (de) 2012-05-09 2013-11-14 Halla Visteon Climate Control Corporation 95 Kältemittelscrollverdichter für Kraftfahrzeugklimaanlagen
KR20140036561A (ko) * 2012-09-17 2014-03-26 한라비스테온공조 주식회사 스크롤 압축기
JP2014145353A (ja) * 2013-01-30 2014-08-14 Denso Corp 圧縮機
WO2015029845A1 (ja) 2013-08-28 2015-03-05 三菱重工オートモーティブサーマルシステムズ株式会社 オイルセパレータおよびそれを備えた圧縮機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443201B1 (en) * 2003-01-28 2016-03-23 Denso Corporation Fluid machine operable in both pump mode and motor mode and waste heat recovering system having the same
JP4519489B2 (ja) * 2004-03-15 2010-08-04 日立アプライアンス株式会社 スクロール圧縮機
JP2008088945A (ja) * 2006-10-04 2008-04-17 Toyota Industries Corp スクロール型圧縮機
JP2008267345A (ja) 2007-04-24 2008-11-06 Denso Corp 電動圧縮機
KR101368394B1 (ko) 2007-10-30 2014-03-03 엘지전자 주식회사 스크롤 압축기
JP5315933B2 (ja) * 2008-06-05 2013-10-16 株式会社豊田自動織機 電動スクロール型圧縮機
KR101738456B1 (ko) 2010-07-12 2017-06-08 엘지전자 주식회사 스크롤 압축기
KR101480472B1 (ko) 2011-09-28 2015-01-09 엘지전자 주식회사 스크롤 압축기
KR101467024B1 (ko) 2012-02-16 2014-12-01 한라비스테온공조 주식회사 스크롤 압축기
WO2014106233A1 (en) * 2012-12-31 2014-07-03 Thermo King Corporation Compressor control for reverse rotation failure
EP2806165B1 (de) * 2013-05-22 2015-09-09 Obrist Engineering GmbH Scrollkompressor und CO2-Fahrzeugklimaanlage mit einem Scrollkompressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511530B2 (en) 2000-04-17 2003-01-28 Denso Corporation Compressor with oil separator
JP2004211550A (ja) * 2002-12-26 2004-07-29 Mitsubishi Heavy Ind Ltd 圧縮機
JP2009221924A (ja) * 2008-03-14 2009-10-01 Denso Corp 圧縮機
KR101128756B1 (ko) * 2008-12-24 2012-03-23 가부시키가이샤 도요다 지도숏키 스크롤형 압축기
DE102012104045A1 (de) 2012-05-09 2013-11-14 Halla Visteon Climate Control Corporation 95 Kältemittelscrollverdichter für Kraftfahrzeugklimaanlagen
KR20140036561A (ko) * 2012-09-17 2014-03-26 한라비스테온공조 주식회사 스크롤 압축기
JP2014145353A (ja) * 2013-01-30 2014-08-14 Denso Corp 圧縮機
WO2015029845A1 (ja) 2013-08-28 2015-03-05 三菱重工オートモーティブサーマルシステムズ株式会社 オイルセパレータおよびそれを備えた圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3486488A4

Also Published As

Publication number Publication date
CN108474377B (zh) 2019-12-13
EP3486488B1 (en) 2022-10-19
JP6727298B2 (ja) 2020-07-22
US20190128579A1 (en) 2019-05-02
KR20180008272A (ko) 2018-01-24
EP3486488A1 (en) 2019-05-22
CN108474377A (zh) 2018-08-31
US11262113B2 (en) 2022-03-01
KR101913158B1 (ko) 2018-11-01
DE102016113057A1 (de) 2018-01-18
DE102016113057B4 (de) 2019-05-23
JP2018532071A (ja) 2018-11-01
EP3486488A4 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
KR100938798B1 (ko) 스크롤식 냉매 압축기
WO2016190490A1 (ko) 오일회수 수단을 구비한 압축기
CN105090041B (zh) 具有油分离器的螺杆压缩机和冷水机组
IT9047901A1 (it) Apparecchio a rumorosita' attenuata per la separazione di liquido da gas
WO2018012816A1 (ko) 압축 장치 및 제어 질량 흐름 분리 방법
CN211343344U (zh) 一种具有油气分离机构的卧式涡旋压缩机
JP2003286948A (ja) 気体圧縮機
CN100532851C (zh) 高压型涡旋式压缩机的油排出减少装置
IT9048597A1 (it) Separatore di olio per sistemi di refrigerazione.
CN108894988A (zh) 压缩机及空调系统
JPS6257365B2 (ko)
CA2930851C (en) Method and system for multi-stage compression of a gas using a liquid
CN103270301A (zh) 制冷剂压缩机
CN111043795B (zh) 压缩机组件和制冷设备
KR100550490B1 (ko) 라인내 오일 분리기
CN108087273B (zh) 压缩机及具有其的空调器
WO2018093089A1 (ko) 오일 분리기를 구비하는 사판식 압축기
CN214887554U (zh) 多级增压空气压缩机
GB2257751A (en) Rotary vane compressor.
WO2010151019A2 (ko) 체크 밸브 및 이를 구비하는 압축기
CN115419597B (zh) 一种带补气通道的热泵电动涡旋压缩机盖体结构
US20240110734A1 (en) Compressor, in particular refrigerant compressor, refrigeration machine, and method for producing a compressor
CN112761950B (zh) 压缩机
CN117090772A (zh) 涡旋压缩机
USRE27691E (en) Oil separator for rotary compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018521271

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827888

Country of ref document: EP

Kind code of ref document: A1