WO2015029845A1 - オイルセパレータおよびそれを備えた圧縮機 - Google Patents

オイルセパレータおよびそれを備えた圧縮機 Download PDF

Info

Publication number
WO2015029845A1
WO2015029845A1 PCT/JP2014/071713 JP2014071713W WO2015029845A1 WO 2015029845 A1 WO2015029845 A1 WO 2015029845A1 JP 2014071713 W JP2014071713 W JP 2014071713W WO 2015029845 A1 WO2015029845 A1 WO 2015029845A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cylinder
gas
separation cylinder
oil separator
Prior art date
Application number
PCT/JP2014/071713
Other languages
English (en)
French (fr)
Inventor
明紀 吉岡
一朗 余語
Original Assignee
三菱重工オートモーティブサーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工オートモーティブサーマルシステムズ株式会社 filed Critical 三菱重工オートモーティブサーマルシステムズ株式会社
Priority to DE112014003972.1T priority Critical patent/DE112014003972T5/de
Priority to US14/904,915 priority patent/US10155188B2/en
Priority to CN201480040725.1A priority patent/CN105492843B/zh
Publication of WO2015029845A1 publication Critical patent/WO2015029845A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/10Vortex chamber constructions with perforated walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Definitions

  • the present invention relates to a cyclone-type oil separator that separates oil contained in refrigerant gas, and a compressor including the same.
  • an oil separator is provided in the discharge circuit in order to separate oil contained in the discharge gas from the compressor.
  • a cyclone-type oil separator is conventionally known as this oil separator, which imparts a swirling flow to a gas containing oil and separates the oil using centrifugal force.
  • a gas outlet pipe is inserted and installed at the center of a separator main body to which an inlet pipe is connected in a tangential direction, and a hood having an opening formed on the front side in the turning direction of the swirl flow
  • An oil separator provided with a number of auxiliary outlet holes provided is disclosed.
  • Patent Document 2 to the shell in which the gas outflow pipe is inserted and installed at the center, the inlet pipe is connected so that the tangent line on the outer peripheral side of the curved pipe portion and the tangent line of the inner wall of the shell coincide with each other. It is disclosed.
  • Patent Document 3 as the oil separator is miniaturized and incorporated in a compressor, a separation cylinder is integrally formed with the compressor housing, and a gas ejection hole is formed with respect to the axis of the separation cylinder. Is disclosed as being inclined toward the lower end side of the separation cylinder. Furthermore, as shown in Patent Document 4, as the oil separator is integrated with the compressor, a separation cylinder is integrally provided in the compressor housing, and a separation pipe is installed at the center thereof, and the inner peripheral lower region of the separation cylinder Discloses an arrangement in which an inner peripheral separation cylinder having a large number of communicating holes is disposed and an annular space is formed between the inner cylinder and the separation cylinder so as to lead the separated oil downward.
  • Patent No. 2830618 gazette JP, 2010-286193, A JP 2004-324564 A JP, 2013-15069, A
  • Patent Document 1 discloses that the amount of oil spilled from the outlet hole is reduced by providing the hood-equipped auxiliary outlet hole, it is possible to reduce re-scattering of oil once separated. Because the effect was limited, the oil separation efficiency could not be sufficiently improved.
  • Patent Document 4 an inner circumferential separation cylinder having a large number of communication holes is installed in the lower circumferential area of the separation cylinder, and an annular space is formed between the separation cylinder and the separation cylinder to lower the separated oil.
  • the communication hole can not positively capture the oil, moreover, the annular space is communicated with the internal space of the separation cylinder through a large number of communication holes. Since the contact between the gas stream and the separated oil can not necessarily be divided, the oil separation efficiency can not be sufficiently improved, and further improvement has been desired.
  • the size of the separation cylinder is reduced, so how to reduce re-scattering of oil once separated is important for improving the oil separation efficiency.
  • the present invention has been made in view of such circumstances, and it is an oil separator that reliably captures oil once separated and prevents oil from re-entrainment to improve the oil separation efficiency. It aims at providing a compressor provided with it.
  • a first aspect of the present invention is provided with a cylindrical separation cylinder, and the oil contained in the gas flowing in from the gas inlet provided tangentially along its inner circumferential surface is separated by centrifugation.
  • an opening in communication with the gas inlet and a projection opening are formed in the inner peripheral surface of the separation cylinder.
  • a plurality of oil catching openings are provided, and a cylindrical cylinder having a plurality of oil passages communicating with the oil catching openings provided on the outer peripheral surface side is fitted.
  • the gas containing oil is caused to flow tangentially from the gas inlet into the cylindrical cylinder fitted to the inner circumferential surface of the separation cylinder, and a swirling flow is applied to the gas.
  • the oil can be centrifugally separated along the inner peripheral surface thereof, and the oil is captured by a plurality of oil capturing openings which are projected to the inner peripheral side of the cylinder, and provided on the outer peripheral surface side of the cylinder.
  • the oil capture opening may be opened so as to face the gas flow which is made to be a swirl flow in the cylinder.
  • the oil centrifugally separated along the inner circumferential surface of the cylinder by the swirling flow is efficiently collected through the oil capturing opening facing the gas flow, and the oil is collected on the outer periphery of the cylinder. It can be led to an oil passage provided on the surface side and allowed to flow out from one end side of the cylinder. Therefore, the oil collection efficiency by the oil capturing opening can be enhanced, and the oil separation efficiency can be further improved.
  • the plurality of oil passages may be spirally provided on the outer peripheral surface of the cylinder and may be extended to one end side of the cylinder.
  • the oil captured by the oil capturing opening and led to the oil passage is promptly led to one end side of the cylinder without contacting the gas flow along the spiral oil passage, It can be made to flow out of the separation cylinder to an external oil reservoir or the like. Therefore, the separated oil can be collected efficiently and can be smoothly returned to the required refueling point and recirculated without redispersion.
  • the plurality of oil passages may be formed as a recessed groove on the outer peripheral surface of the cylinder, and the opening side of the groove may be a passage closed by the inner peripheral surface of the separation cylinder.
  • the concave groove is formed on the outer peripheral surface of the cylindrical body by an appropriate processing method (for example, press molding, rolling, cutting, etc.), and the cylindrical side of the opening side is the inner circumference of the separation cylinder.
  • an oil passage separated from the gas flow passage can be formed. Therefore, it is possible to reliably prevent the oil that has once separated from coming in contact with the gas flow while flowing down the oil passage and to be discharged together with the gas flow, and to improve the oil separation efficiency.
  • the cylindrical cylinder may be formed by bending a pipe material or a sheet material.
  • the cylindrical cylindrical body provided with the opening communicating with the gas inlet, the opening for oil capture protruding to the inner circumferential side, and the plurality of oil passages communicating with the opening for oil capturing It can be easily manufactured by a general processing method using a pipe material or a bent sheet material. Therefore, an oil separator having a high oil separation efficiency, in which a cylindrical cylinder is fitted to the inner circumferential surface of the separation cylinder, can be easily configured at low cost.
  • the separation cylinder is an independent sealed container, and the gas inlet is connected to an oil-containing gas inlet pipe, and the oil outlet pipe separated at one end of the container
  • the outlet pipe of the separated gas may be connected to the other end side.
  • the discharge pipe from the compressor is connected to the gas inflow pipe of the oil separator
  • the oil return pipe to the compressor is connected to the oil outflow pipe
  • the high pressure gas pipe connected to the heat exchanger is connected to the gas outflow pipe.
  • the cyclone type oil separator can be incorporated into the discharge circuit of the refrigeration cycle, whereby the oil separator installed in the refrigeration cycle can be made compact and highly efficient.
  • a cylindrical separation cylinder is integrally provided to the housing, Is a compressor incorporating any one of the oil separators described above as the separation cylinder.
  • the cylindrical separation cylinder is integrally provided in the housing of the compressor, and the above-mentioned cyclone type oil separator is compressed by fitting the cylindrical cylinder to the inner peripheral surface of the separation cylinder. It can be integrated into the machine. Therefore, the oil separation efficiency of the downsized built-in type oil separator is increased, the oil rising from the compressor is reduced to reduce the oil circulation rate (OCR), and the heat exchange of the air conditioner, the refrigerator, various heat pumps, etc. Can improve the heat exchange performance in the vessel and increase its capacity.
  • OCR oil circulation rate
  • the gas containing oil is caused to flow from the inlet into the cylindrical cylinder fitted to the inner peripheral surface of the separation cylinder from the tangential direction, and the swirl flow is applied to the gas.
  • Oil can be centrifugally separated along its inner circumferential surface, and the oil is captured by a plurality of oil catching openings protruding to the inner circumferential side of the cylinder and provided on the outer circumferential surface side of the cylinder While being separated from the gas flow can be made to flow out from one end side of the cylinder by being led to the oil passage that is being separated, the gas from which the oil is separated can be made to flow out from the other end side of the cylinder. It is possible to improve the oil separation efficiency by preventing the phenomenon that the collected oil is rolled up and re-entrained by the gas flow and is discharged together with the gas flow.
  • the above-mentioned cyclone type oil separator is provided by integrally providing a cylindrical separation cylinder on the compressor housing and fitting the cylindrical cylinder on the inner peripheral surface of the separation cylinder.
  • the oil separation efficiency of the downsized built-in type oil separator is enhanced, the oil spillage from the compressor is reduced, and the oil circulation rate (OCR) is lowered, and the air conditioner, refrigeration It is possible to improve the heat exchange performance of each heat exchanger such as machine, various heat pumps, etc., and to improve the capacity.
  • FIG. 5 is a cross-sectional view along the line AA in FIG. 4;
  • FIG. 5 is a cross-sectional view taken along line BB in FIG. 4;
  • FIG. 5 is a cross-sectional view taken along the line CC in FIG. 4;
  • FIG. 1 shows a longitudinal sectional view of an oil separator according to a first embodiment of the present invention
  • FIG. 2 shows a longitudinal sectional view of the separation cylinder
  • FIGS. The detailed structural drawing of is shown.
  • the oil separator 1 includes a cylindrical separation cylinder 2 and a cylindrical cylinder 8 fitted to the inner peripheral surface 4 of the cylindrical gas flow passage 3 in the separation cylinder 2.
  • the separation cylinder 2 has a cylindrical gas flow passage 3 formed therein, and the gas inflow port 5 (in the present embodiment, two upper and lower gasses in this example) from the tangential direction with respect to the cylindrical gas flow passage 3 ) Is opened obliquely downward.
  • the gas inlet 5 is in communication with a discharge chamber or the like of the compressor.
  • a fitting portion 6 for connecting a pipe for discharging the gas from which the oil is separated, and at the lower end, an outlet hole 7 for the oil separated from the gas. Is provided.
  • the oil outflow hole 7 communicates with an oil reservoir or the like.
  • the separation cylinder 2 ejects a refrigerant gas containing oil from the gas inlet port 5 in a tangential direction to the cylindrical gas flow passage 3 inside, and a cyclone which centrifuges the oil by giving a swirling flow to the gas.
  • the oil separator 1 of the type is constructed.
  • the cylindrical cylindrical body 8 is fitted in close contact with the inner circumferential surface 4 of the cylindrical gas flow passage 3. .
  • the cylindrical cylindrical body 8 is a thin-walled pipe-like cylindrical body extended from the lower portion of the fitting portion 6 of the gas flow passage 3 to the lower end portion where the oil outflow hole 7 is provided.
  • a rectangular gas inlet opening 9 which is elongated in the longitudinal direction so as to face the gas inlet 5 on the side of the separation cylinder 2 is provided.
  • a plurality of oil capture openings 10 are provided vertically in the region downstream of the opening 9 in the gas flow direction. The opening 9 and the oil capturing opening 10 are provided so as to penetrate the inside and outside of the cylinder 8 respectively.
  • the opening 8 introduces the swirling flow in the tangential direction along the inner peripheral surface of the cylindrical body 8 as it is and introduces the gas jetted out of the gas inlet 5 as it is.
  • the plurality of oil capturing openings 10 are formed so as to protrude by a predetermined dimension on the inner peripheral side of the cylindrical body 8 and are configured to face the gas flow to be a swirling flow. .
  • the plurality of oil catching openings 10 are in communication with the oil passage 11 constituted by a plurality of grooves formed in a spiral on the outer peripheral surface side of the cylindrical body 8.
  • Each oil passage 11 is extended from the open position of the oil catching opening 10 to the lower end of the cylindrical body 8, and the oil caught by the oil catching opening 10 and introduced to the oil passage 11 side is It is for flowing down to the lower end portion and flowing out to the oil outlet hole 7.
  • the cylindrical body 8 is fitted in close contact with the inner circumferential surface 4 of the gas flow passage 3, and the opening side of the recessed groove is closed by the inner circumferential surface 4. It is a separate and independent passage.
  • the cylindrical body 8 has, for example, a recessed groove formed by rolling or the like on the outer peripheral surface of the seamless pipe, and the oil capturing opening 10 is opened at the projecting end to the inner peripheral side to face the gas flow
  • An opening 9 opposed to the inflow port 5 can be provided.
  • a sheet material is used to punch out the opening 9 at a predetermined position, press-mold the recessed groove, and open the oil capture opening 10 at the end so as to face the gas flow.
  • the product may be bent into a pipe shape.
  • the recessed groove may be formed by cutting or the like.
  • the cross-sectional area of the end of the oil passage 11 on which the oil capture opening 10 is provided is increased by that amount so that the opening area of the oil capture opening 10 is slightly larger than the cross-sectional area of the oil passage 11
  • the oil capture opening 10 may be provided at the end portion of the oil capture opening 10 so as to face the gas flow.
  • the oil capture opening 10 protrudes from the inner circumferential surface of the cylindrical body 8 so as to protrude to the center side, but the shape of the aperture is square, semicircular, polygonal to facilitate capture of oil. Etc. can be of various shapes.
  • the high-pressure gas containing oil compressed by the compressor passes through the discharge chamber etc. from the gas inlet 5 into the gas flow passage 3 of the separation cylinder 2 of the oil separator 1 and is fitted on the inner peripheral surface thereof It is spouted in eight.
  • the gas inlet 5 is opened tangentially to the cylindrical gas flow passage 3, a swirling flow is given to the gas flow.
  • the oil contained in the gas is separated along the inner peripheral wall of the cylinder 8 by the centrifugal force.
  • the oil is captured by a plurality of oil capturing openings 10 that project to the center side from the inner peripheral surface of the cylinder 8 and are opened to face the swirling flow, and the oil capturing opening 10 is connected to the cylinder 8 It is led to the oil passage 11 provided on the outer periphery of.
  • the centrifugally separated oil is collected by the plurality of oil capturing openings 10 opened in the inner wall of the cylinder 8 without flowing down along the inner wall of the cylinder 8, and the cylinder
  • the oil passage 11 By being guided to the oil passage 11 provided on the outer periphery of the cylinder 8, it flows downward in the spiral oil passage 11 in a state of being separated from the gas flow, and an oil outlet hole from the lower end of the cylinder 8 It will be drained to 7.
  • the gas from which the oil has been separated ascends inside the cylinder 8 and is sent to the outside through the gas outflow pipe connected to the fitting portion 6 provided at the upper end of the gas flow passage 3 The oil leakage to the refrigerant circuit side can be suppressed.
  • the cyclone type oil separator 1 has a plurality of openings 9 communicating with the gas inlet 5 and a plurality of projections on the inner peripheral side on the inner peripheral surface 4 of the separation cylinder 3. Since the oil capture opening 10 is provided, and the cylindrical cylinder 8 in which the plurality of oil passages 11 communicating with the oil capture opening 10 are provided on the outer peripheral surface side is fitted, The oil-containing gas is caused to flow from the gas inlet 5 into the cylindrical cylinder 8 fitted in the inner circumferential surface 4 of the separation cylinder 2 from the tangential direction, and the swirl flow is applied to the oil in the gas. Can be centrifuged along its inner circumferential surface.
  • the separated oil is captured by the plurality of oil capturing openings 10 that are projected and formed on the inner peripheral side of the cylindrical body 8 and is guided to the oil passage 11 provided on the outer peripheral surface side of the cylindrical body 8
  • the gas separated from the gas flow can be made to flow out from the other end side of the cylinder 8 while flowing out from one end side of the cylinder 8 in a state separated from the gas flow. For this reason, it is possible to improve the oil separation efficiency by preventing the phenomenon in which the oil once separated is rolled up by the gas flow and re-entrained and discharged together with the gas flow.
  • the oil capture opening 10 is opened so as to face the gas flow which is a swirling flow in the cylinder 8, the centrifugal force is performed along the inner circumferential surface of the cylinder 8 by the swirling flow.
  • the separated oil is efficiently collected through the oil capturing opening 10 that directly faces the gas flow, and the oil is guided to the oil passage 11 provided on the outer peripheral surface side of the cylindrical body 8, and one end of the cylindrical body 8 It can be drained from the side. Therefore, the oil collection efficiency by the oil capturing opening 10 can be enhanced, and the oil separation efficiency can be further improved.
  • the plurality of oil passages 11 are provided spirally on the outer peripheral surface of the cylindrical body 8 and extend to one end side of the cylindrical body 8. For this reason, the oil captured by the oil capturing opening 10 and led to the oil passage 11 is promptly led to one end side of the cylindrical body 8 without contacting the oil flow along the spiral oil passage 11 with the gas flow.
  • the oil can be made to flow from the separation cylinder 2 to an external oil reservoir or the like. Therefore, the separated oil can be collected efficiently and can be smoothly returned to the required refueling point and recirculated without redispersion.
  • the plurality of oil passages 11 are formed as concave grooves in the outer peripheral surface of the cylindrical body 8, and the opening side of the grooves is a passage closed by the inner peripheral surface 4 of the separation cylinder 2.
  • a recessed groove is formed on the outer peripheral surface by an appropriate processing method (for example, press forming, rolling, cutting, etc.), and the cylindrical tube 8 is fitted to the inner peripheral surface 4 of the separation cylinder 2 at the opening side.
  • an oil passage 11 separated from the gas flow passage 3 can be formed. This makes it possible to reliably prevent the oil that has once separated from coming into contact with the gas flow while flowing down the oil passage 11, and to be discharged together with the gas flow, thus improving the oil separation efficiency.
  • the cylinder 8 is formed by bending a pipe material or a sheet material. Therefore, a cylindrical cylindrical body provided with an opening 9 communicating with the gas inlet 5, an oil capturing opening 10 projecting to the inner circumferential side, and a plurality of oil passages 11 communicating with the oil capturing opening 10. 8 can be easily produced by a general processing method using a pipe material or a bent sheet material. Therefore, the oil separator 1 with high oil separation efficiency in which the cylindrical cylinder 8 is fitted to the inner peripheral surface of the separation cylinder 2 can be simply configured at low cost.
  • the separation cylinder 2 is a container having an independent sealing structure
  • the gas inlet port 5 is connected to an inlet pipe of gas containing oil
  • the oil outlet pipe separated at one end of the hermetic container the other end
  • the gas inlet pipe of the oil separator 1 is a discharge pipe from the compressor
  • the oil outlet pipe is an oil return pipe to the compressor
  • the gas outlet pipe By connecting it to the high pressure gas piping connected to the heat exchanger, it can be incorporated into the discharge circuit of the refrigeration cycle, thereby achieving the downsizing, high efficiency, and downsizing of the oil separator 1 installed in the refrigeration cycle.
  • the cylindrical separation cylinder 2 is integrally formed with the housing of the compressor, and the cylindrical cylinder 8 is fitted in the separation cylinder 2
  • the gas inlet 5 is communicated with the discharge chamber of the compressor, the oil outlet hole 7 with the oil reservoir of the compressor, and the discharge pipe is connected to the fitting portion 6 at the upper end of the separation cylinder 2
  • the oil separator 1 may be integrated into the housing of the machine.
  • the cyclone-type oil separator 1 is integrally incorporated into the compressor. can do.
  • the oil separation efficiency of the downsized built-in type oil separator 1 is increased, the oil rising from the compressor is reduced, and the oil circulation rate (OCR) is reduced.
  • OCR oil circulation rate
  • the heat exchange performance of the heat exchanger can be improved, and its capacity can be improved.
  • the present invention is not limited to the invention according to the above-described embodiment, and appropriate modifications can be made without departing from the scope of the invention.
  • the opening shape of the oil capturing opening 10 is a square, semicircular, or polygonal
  • the cross-sectional shape of the oil passage 11 communicating with the oil capturing opening 10 is particularly limited.
  • the cross-sectional shape of the concave groove constituting the passage 11 may be any shape, for example, the same shape as the opening shape of the oil catching opening 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Cyclones (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

いったん分離された油を確実に捕捉し、その油の再飛散を防止することにより油分離効率の向上を図ったオイルセパレータおよびそれを備えた圧縮機を提供する。円筒状の分離筒(2)を備え、その内周面(4)に沿って接線方向に設けられたガス流入口(5)から流入するガス中に含まれる油を遠心分離し、分離された油を分離筒(2)の一端側から、ガスをその他端側から流出させるようにしたオイルセパレータ(1)において、分離筒(2)の内周面(4)に、ガス流入口(5)と連通する開口(9)および内周側に突出開口される複数の油捕捉用開口(10)が設けられ、その油捕捉用開口(10)と連通する複数の油通路(11)が外周面側に設けられている円筒状の筒体(8)が嵌合されている。

Description

オイルセパレータおよびそれを備えた圧縮機
 本発明は、冷媒ガス中に含まれる油を分離するサイクロン方式のオイルセパレータおよびそれを備えた圧縮機に関するものである。
 空調機、冷凍機等では、圧縮機からの吐出ガス中に含まれる油を分離するため、吐出回路中にオイルセパレータを設置している。このオイルセパレータとして、油を含むガスに旋回流を付与し、遠心力を利用して油を分離するサイクロン方式のオイルセパレータが従来から知られている。特許文献1には、接線方向に入口管が接続された分離器本体の中心にガス流出管を挿入設置し、その外周面に旋回流の旋回方向の前方側に開口が形成されるフードが突設された多数の補助流出孔を設けた油分離器が開示されている。また、特許文献2には、中心にガス流出管が挿入設置されたシェルに、入口管をその曲管部の外周側の接線と、シェルの内壁の接線とが一致するように接続したものが開示されている。
 また、オイルセパレータを小型化して圧縮機に内蔵したものとして、特許文献3に示すように、圧縮機ハウジングに対して分離筒を一体に成形し、その分離筒の軸線に対してガスの噴出孔を分離筒の下端側に向って傾斜して設けたものが開示されている。更に、オイルセパレータを圧縮機と一体化したものとして、特許文献4に示すように、圧縮機ハウジングに分離筒を一体に設け、その中心に分離パイプを設置するとともに、分離筒の内周下方域に多数の連通孔を有する内周分離筒を設置し、分離筒との間に環状空間を形成することにより、分離した油を下方に導くようにしたものが開示されている。
特許第2830618号公報 特開2010-286193号公報 特開2004-324564号公報 特開2013-15069号公報
 サイクロン方式のオイルセパレータにおいては、遠心力を利用して如何に効率よく油を分離するかが重要であることは云うまでもないが、いったん分離された油がガス流により巻き上げられて再飛散し、ガス流と共に流出される現象を防ぐことが油分離効率を向上する上で重要である。特許文献1には、フード付きの補助流出孔を設けることにより、流出孔からの流出油量を低減するようにしたものが開示されているが、いったん分離された油の再飛散を低減できるものではないため、その効果は限定的であり、油の分離効率を十分高めることができなかった。
 一方、特許文献4には、分離筒の内周下方域に、多数の連通孔を有する内周分離筒を設置し、分離筒との間に環状空間を形成することにより、分離した油を下方に導くようにしたものが開示されているが、連通孔により油を積極的に捕捉できるものではなく、しかも環状空間が分離筒の内部空間とが多数の連通孔を介して連通されているため、ガス流と分離された油との接触を必ずしも分断できるものではないことから、油分離効率を十分に向上することができず、更なる改善が望まれていた。特に、圧縮機内にオイルセパレータを内蔵する構成のものでは、分離筒が小型化されるため、いったん分離された油の再飛散を如何に低減するかが油分離効率の向上にとって重要となる。
 本発明は、このような事情に鑑みてなされたものであって、いったん分離された油を確実に捕捉し、その油の再飛散を防止することにより油分離効率の向上を図ったオイルセパレータおよびそれを備えた圧縮機を提供することを目的とする。
 本発明の第1の態様は、円筒状の分離筒を備え、その内周面に沿って接線方向に設けられたガス流入口から流入するガス中に含まれる油を遠心分離し、分離された油を前記分離筒の一端側から、またガスをその他端側から流出させるようにしたオイルセパレータにおいて、前記分離筒の内周面に、前記ガス流入口と連通する開口および内周側に突出開口される複数の油捕捉用開口が設けられ、その油捕捉用開口と連通する複数の油通路が外周面側に設けられている円筒状の筒体が嵌合されているオイルセパレータである。
 この構成によれば、油を含むガスをガス流入口から分離筒の内周面に嵌合されている円筒状の筒体内に接線方向から流入させ、旋回流を付与することにより、ガス中の油をその内周面に沿って遠心分離することができ、その油を筒体の内周側に突出開口されている複数の油捕捉用開口により捕捉し、筒体の外周面側に設けられている油通路に導くことにより、ガス流と分離した状態で筒体の一端側から流出させる一方、油が分離されたガスを筒体の他端側から流出させることができる。これによって、いったん分離された油がガス流により巻き上げられて再飛散され、ガス流と共に流出される現象を防止して油分離効率を向上することができる。
 第1の態様において、前記油捕捉用開口は、前記筒体内で旋回流とされるガス流に対して正対するように開口されていてもよい。
 この構成によれば、旋回流によって筒体の内周面に沿うように遠心分離された油をガス流と正対する油捕捉用開口を介して効率よく捕集し、その油を筒体の外周面側に設けられている油通路に導き、筒体の一端側から流出させることができる。従って、油捕捉用開口による油の捕集効率を高めることができ、油分離効率を一層向上することができる。
 第1の態様において、前記複数の油通路は、前記筒体の外周面に螺旋状に設けられ、該筒体の一端側まで延長されていてもよい。
 この構成によれば、油捕捉用開口により捕捉され、油通路に導かれた油をその螺旋状の油通路に沿ってガス流と接触させることなく、速やかに筒体の一端側へと導き、分離筒から外部の油溜り等へと流出させることができる。従って、分離された油を効率よく捕集し、それを再飛散させることなく、円滑に所要の給油箇所にリターンさせて再循環させることができる。
 第1の態様において、前記複数の油通路は、前記筒体の外周面に凹溝として形成され、その溝の開口側が前記分離筒の内周面により閉鎖された通路とされていてもよい。
 この構成によれば、筒体の外周面に適宜の加工方法(例えば、プレス成形、転造、切削等)によって凹溝を形成し、その開口側を円筒状の筒体を分離筒の内周面に嵌合して閉鎖することにより、ガス流通路から分離された油通路する形成することができる。従って、いったん分離された油が油通路を流下する間にガス流と接触して再飛散され、ガス流と共に流出される事態を確実に阻止し、油分離効率を向上することができる。
 第1の態様において、前記円筒状の筒体は、パイプ材もしくはシート材を曲げ成形したものとされていてもよい。
 この構成によれば、ガス流入口と連通する開口、内周側に突出開口された油捕捉用開口および該油捕捉用開口と連通する複数の油通路が設けられた円筒状の筒体を、パイプ材もしくはシート材を曲げ成形したものを用い、一般的な加工方法によって簡易に作製することができる。従って、分離筒の内周面に円筒状の筒体を嵌合した油分離効率の高いオイルセパレータを低コストで簡易に構成することができる。
 第1の態様において、前記分離筒が独立した密閉構造の容器とされ、前記ガス流入口に油を含むガスの流入配管が接続されるとともに、前記容器の一端側に分離された油の流出管、他端側に分離されたガスの流出管が接続されていてもよい。
 この構成によれば、このオイルセパレータのガス流入配管に圧縮機からの吐出配管、油流出管に圧縮機への油戻し配管、ガス流出管に熱交換器に連なる高圧ガス配管を接続することにより、サイクロン方式のオイルセパレータを冷凍サイクルの吐出回路中に組み込むことができ、これによって、冷凍サイクル中に設置されるオイルセパレータの小型コンパクト化、高効率化を図ることができる。
 さらに、本発明の第2の態様は、ハウジングを備え、その内部に油を分離するオイルセパレータが内蔵されている圧縮機において、前記ハウジングに対して円筒状の分離筒が一体に設けられ、それを前記分離筒として上述のいずれかのオイルセパレータが組み込まれている圧縮機である。
 この構成によれば、圧縮機のハウジングに円筒状の分離筒を一体に設け、その分離筒の内周面に円筒状の筒体を嵌合することにより、上述のサイクロン方式のオイルセパレータを圧縮機に一体に内蔵することができる。従って、小型化された内蔵型オイルセパレータの油分離効率を高め、圧縮機からの油上がりを低減して油循環率(OCR)を下げ、空調機、冷凍機、各種ヒートポンプ等の各々の熱交換器での熱交換性能を向上し、その能力をアップすることができる。
 本発明のオイルセパレータによると、油を含むガスを流入口から分離筒の内周面に嵌合されている円筒状の筒体内に接線方向から流入させ、旋回流を付与することにより、ガス中の油をその内周面に沿って遠心分離することができ、その油を筒体の内周側に突出開口されている複数の油捕捉用開口により捕捉し、筒体の外周面側に設けられている油通路に導くことにより、ガス流と分離した状態で筒体の一端側から流出させる一方、油が分離されたガスを筒体の他端側から流出させることができるため、いったん分離された油がガス流により巻き上げられて再飛散され、ガス流と共に流出される現象を防止して油分離効率を向上することができる。
 本発明の圧縮機によると、圧縮機ハウジングに円筒状の分離筒を一体に設け、その分離筒の内周面に円筒状の筒体を嵌合することにより、上述のサイクロン方式のオイルセパレータを圧縮機に一体に内蔵することができるため、小型化された内蔵型オイルセパレータの油分離効率を高め、圧縮機からの油上がりを低減して油循環率(OCR)を下げ、空調機、冷凍機、各種ヒートポンプ等の各々の熱交換器での熱交換性能を向上し、その能力をアップすることができる。
本発明の第1実施形態に係るオイルセパレータの縦断面図である。 上記オイルセパレータの分離筒の縦断面図である。 上記オイルセパレータの筒体の側面図(A)、その右側面図(B)、背面図(C)およびその上面図(D)である。 上記オイルセパレータの筒体のガス流入用の開口が設けられている側の平面図である。 図4中のA-A断面図である。 図4中のB-B断面図である。 図4中のC-C断面図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態について、図1ないし図7を用いて説明する。
 図1には、本発明の第1実施形態に係るオイルセパレータの縦断面図が示され、図2には、その分離筒の縦断面図、図3ないし図7には、オイルセパレータの筒体の細部構造図が示されている。
 オイルセパレータ1は、円筒状の分離筒2と、その分離筒2内の円筒状のガス流路3の内周面4に嵌合された円筒状の筒体8とを備えている。
 分離筒2は、内部に円筒状のガス流通路3が形成されたものであり、その円筒状のガス流通路3に対して接線方向からガス流入口5(本例では、上下2個のガス流入口とされている。)が斜め下方に向って開口されている。このガス流入口5は、圧縮機の吐出チャンバー等に連通されるものである。また、ガス流通路3の上端部には、油が分離されたガスを流出させる配管を接続するためのフィッテング部6が設けられ、下端部には、ガス中から分離された油の流出孔7が設けられている。なお、油流出孔7は、油溜り等に連通されるものである。
 分離筒2は、内部の円筒状のガス流通路3に対して、ガス流入口5から油を含む冷媒ガスを接線方向から噴出し、そのガスに旋回流を与えることにより油を遠心分離するサイクロン方式のオイルセパレータ1を構成するものである。本実施形態のオイルセパレータ1においては、油分離効率を向上するため、円筒状のガス流通路3の内周面4に円筒状の筒体8が密着状態に嵌合された構成とされている。
 この円筒状の筒体8は、ガス流通路3のフィッテング部6の下部から油流出孔7が設けられている下端部まで延長された薄肉のパイプ状の筒体であり、その具体的構成が図3ないし図7に示されている。
 筒体8の長さ方向の略中間位置には、分離筒2側のガス流入口5と対向するように縦方向に長くされた長方形状のガス流入用の開口9が設けられており、この開口9のガス流れ方向の下流側の領域に上下方向に複数の油捕捉用開口10が設けられている。開口9および油捕捉用開口10は、それぞれ筒体8の内外を貫通するように設けられている。
 開口8は、ガス流入口5から噴出されたガスをそのまま筒体8の内周面に沿って接線方向に旋回流を付与して導入するものである。一方、複数の油捕捉用開口10は、筒体8の内周側に所定寸法だけ突出されて開口され、旋回流とされるガス流に対して正対するように開口された構成とされている。
 この複数の油捕捉用開口10は、筒体8の外周面側に螺旋状に設けられた複数条の凹溝により構成される油通路11にそれぞれ連通されている。各油通路11は、油捕捉用開口10の開口位置から筒体8の下端部まで延長されており、油捕捉用開口10によって捕捉され、油通路11側に導入された油を筒体8の下端部まで流下させ、油流出孔7へと流出させるためのものである。なお、油通路11は、筒体8がガス流通路3の内周面4に密着状態で嵌合され、凹溝の開口側がその内周面4で閉鎖されることにより、ガス流通路3から分離、独立された通路とされている。
 筒体8は、例えば、シームレスパイプの外周面に凹溝を転造等により形成し、その内周側への突出端にガス流と正対するように油捕捉用開口10を開口するとともに、ガス流入口5と対向する開口9を設けたものとすることができる。また、パイプ材に代えてシート材を用い、それぞれ所定位置に開口9を打抜くとともに、凹溝をプレス成形し、その端部にガス流に対して正対するように油捕捉用開口10を開口したものをパイプ状に曲げ成形したものとしてもよい。なお、凹溝は、切削加工等により形成してもよい。
 さらに、油捕捉用開口10の開口面積が、油通路11の断面積よりも少し大きめとなるように、油通路11の油捕捉用開口10を設ける側の端部の断面積をその分だけ大きめに構成し、その端部に油捕捉用開口10をガス流に対して正対するように設けた構成としてもよい。また、油捕捉用開口10は、筒体8の内周面から中心側に出っ張るように突出開口されるが、その開口形状は、油を捕捉し易いようにウロコ状、半円状、多角状等、様々な形状とすることができる。
 以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
 圧縮機によって圧縮された油を含む高圧ガスは、吐出チャンバー等を経てガス流入口5からオイルセパレータ1の分離筒2のガス流通路3内において、その内周面に嵌合されている筒体8内に噴出される。この際、ガス流入口5は、円筒状のガス流通路3に対して接線方向に開口されていることから、ガス流に旋回流が付与される。このため、ガス中に含まれる油は、その遠心力により筒体8の内周壁に沿って分離される。
 この油は、筒体8の内周面から中心側に突出し、かつ旋回流と正対するように開口されている複数の油捕捉用開口10によって捕捉され、油捕捉用開口10が連なる筒体8の外周に設けられている油通路11へと導かれる。このように、遠心分離された油は、筒体8の内壁に沿って下方に流下することなく、筒体8の内壁に開口されている複数の油捕捉用開口10により捕集され、筒体8の外周に設けられている油通路11へと導かれることによって、ガス流と分離された状態でその螺旋状の油通路11内を下方に流下し、筒体8の下端部から油流出孔7へと流出されることになる。
 従って、いったん分離された油が、ガス流により巻き上げられて再飛散し、ガス流と共にオイルセパレータ1から外部に流出される現象を確実に阻止し、油分離効率を高めることができる。一方、油が分離されたガスは、筒体8内を上昇し、ガス流通路3の上端部に設けられているフィッテング部6に接続されているガス流出配管を介して外部へと送られるため、冷媒回路側への油上がりを抑制することができる。
 斯くして、本実施形態によると、サイクロン方式のオイルセパレータ1にあって、分離筒3の内周面4に、ガス流入口5と連通する開口9および内周側に突出開口される複数の油捕捉用開口10が設けられ、その油捕捉用開口10と連通する複数の油通路11が外周面側に設けられている円筒状の筒体8が嵌合された構成とされているため、油を含むガスをガス流入口5から分離筒2の内周面4に嵌合されている円筒状の筒体8内に接線方向から流入させ、旋回流を付与することにより、ガス中の油をその内周面に沿って遠心分離することができる。
 そして、分離された油を筒体8の内周側に突出開口されている複数の油捕捉用開口10により捕捉し、筒体8の外周面側に設けられている油通路11に導くことにより、ガス流と分離した状態で筒体8の一端側から流出させる一方、油が分離されたガスを筒体8の他端側から流出させることができる。このため、いったん分離された油がガス流により巻き上げられて再飛散され、ガス流と共に流出される現象を防止して油分離効率を向上することができる。
 また、上記油捕捉用開口10は、筒体8内で旋回流とされるガス流に対して正対するように開口されているため、旋回流によって筒体8の内周面に沿うように遠心分離された油をガス流と正対する油捕捉用開口10を介して効率よく捕集し、その油を筒体8の外周面側に設けられている油通路11に導き、筒体8の一端側から流出させることができる。従って、油捕捉用開口10による油の捕集効率を高めることができ、油分離効率を一層向上することができる。
 さらに、複数の油通路11は、筒体8の外周面に螺旋状に設けられ、該筒体8の一端側まで延長されている。このため、油捕捉用開口10により捕捉され、油通路11に導かれた油をその螺旋状の油通路11に沿ってガス流と接触させることなく、速やかに筒体8の一端側へと導き、分離筒2から外部の油溜り等へと流出させることができる。従って、分離された油を効率よく捕集し、それを再飛散させることなく、円滑に所要の給油箇所にリターンさせて再循環させることができる。
 また、複数の油通路11は、筒体8の外周面に凹溝として形成され、その溝の開口側が分離筒2の内周面4により閉鎖された通路とされているため、筒体8の外周面に適宜の加工方法(例えば、プレス成形、転造、切削等)によって凹溝を形成し、その開口側を円筒状の筒体8を分離筒2の内周面4に嵌合して閉鎖することにより、ガス流通路3から分離された油通路11する形成することができる。これによって、いったん分離された油が油通路11を流下する間にガス流と接触して再飛散され、ガス流と共に流出される事態を確実に阻止し、油分離効率を向上することができる。
 さらに、筒体8は、パイプ材もしくはシート材を曲げ成形したものとされている。このため、ガス流入口5と連通する開口9、内周側に突出開口された油捕捉用開口10および該油捕捉用開口10と連通する複数の油通路11が設けられた円筒状の筒体8を、パイプ材もしくはシート材を曲げ成形したものを用い、一般的な加工方法によって簡易に作製することができる。従って、分離筒2の内周面に円筒状の筒体8を嵌合した油分離効率の高いオイルセパレータ1を低コストで簡易に構成することができる。
[その他の実施形態]
 次に、本発明のその他の実施形態について説明する。
 (1)上記した第1実施形態では、本発明に係るサイクロン式オイルセパレータ1の基本構成を示しているが、このオイルセパレータ1を空調機、冷凍機、各種ヒートポンプ等の冷凍サイクルにおいて、圧縮機からの吐出回路中に設ける構成とする場合、上記の分離筒2を独立した密閉構造の容器とし、ガス流入口5に油を含むガスの流入配管を接続するとともに、容器の一端側に分離された油の流出管、他端側に分離されたガスの流出管を接続した構成とすればよい。
 このように、分離筒2を独立した密閉構造の容器とし、そのガス流入口5に油を含むガスの流入配管を接続するとともに、密閉容器の一端側に分離された油の流出管、他端側に分離されたガスの流出管を接続した構成とすることにより、そのオイルセパレータ1のガス流入配管を圧縮機からの吐出配管、油流出管を圧縮機への油戻し配管、ガス流出管を熱交換器に連なる高圧ガス配管に接続することで、冷凍サイクルの吐出回路中に組み込むことができ、これによって、冷凍サイクル中に設置されるオイルセパレータ1の小型コンパクト化、高効率化を図ることができる。
 (2)上記オイルセパレータ1を圧縮機に内蔵した構成とする場合、圧縮機のハウジングに対して円筒状の分離筒2を一体成形し、その分離筒2内に上記円筒状筒体8を嵌合するとともに、ガス流入口5を圧縮機の吐出チャンバー、油流出孔7を圧縮機の油溜りに連通し、更に分離筒2の上端部のフィッテング部6に吐出配管を接続することにより、圧縮機のハウジングにオイルセパレータ1を一体的に組み込んだ構成とすればよい。
 このように、圧縮機のハウジングに対して円筒状の分離筒を一体成形し、それを分離筒2として上述のオイルセパレータ1を組み込むことにより、サイクロン方式のオイルセパレータ1を圧縮機に一体に内蔵することができる。これによって、小型化された内蔵型のオイルセパレータ1の油分離効率を高め、圧縮機からの油上がりを低減して油循環率(OCR)を下げ、空調機、冷凍機、各種ヒートポンプ等の各々の熱交換器での熱交換性能を向上し、その能力をアップすることができる。
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、油捕捉用開口10の開口形状をウロコ状、半円状、多角状としている一方、油捕捉用開口10が連通される油通路11について、その断面形状を特に限定していないが、該通路11を構成する凹溝の断面形状は、如何なる形状であってもよく、例えば油捕捉用開口10の開口形状と同一形状としてもよい。
1 オイルセパレータ
2 分離筒
3 ガス流通路
4 内周面
5 ガス流入口
6 フィッテング部
7 油流出孔
8 円筒状の筒体
9 開口
10 油捕捉用開口
11 油通路

Claims (7)

  1.  円筒状の分離筒を備え、その内周面に沿って接線方向に設けられたガス流入口から流入するガス中に含まれる油を遠心分離し、分離された油を前記分離筒の一端側から、またガスをその他端側から流出させるようにしたオイルセパレータにおいて、
     前記分離筒の内周面に、前記ガス流入口と連通する開口および内周側に突出開口される複数の油捕捉用開口が設けられ、その油捕捉用開口と連通する複数の油通路が外周面側に設けられている円筒状の筒体が嵌合されているオイルセパレータ。
  2.  前記油捕捉用開口は、前記筒体内で旋回流とされるガス流に対して正対するように開口されている請求項1に記載のオイルセパレータ。
  3.  前記複数の油通路は、前記筒体の外周面に螺旋状に設けられ、該筒体の一端側まで延長されている請求項1または2に記載のオイルセパレータ。
  4.  前記複数の油通路は、前記筒体の外周面に凹溝として形成され、その溝の開口側が前記分離筒の内周面により閉鎖された通路とされている請求項1ないし3のいずれかに記載のオイルセパレータ。
  5.  前記円筒状の筒体は、パイプ材もしくはシート材を曲げ成形したものとされている請求項1ないし4のいずれかに記載のオイルセパレータ。
  6.  前記分離筒が独立した密閉構造の容器とされ、前記ガス流入口に油を含むガスの流入配管が接続されるとともに、前記容器の一端側に分離された油の流出管、他端側に分離されたガスの流出管が接続されている請求項1ないし5のいずれかに記載のオイルセパレータ。
  7.  ハウジングを備え、その内部に油を分離するオイルセパレータが内蔵されている圧縮機において、
     前記ハウジングに対して円筒状の分離筒が一体に設けられ、それを前記分離筒として請求項1ないし5のいずれかに記載のオイルセパレータが組み込まれている圧縮機。
PCT/JP2014/071713 2013-08-28 2014-08-20 オイルセパレータおよびそれを備えた圧縮機 WO2015029845A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014003972.1T DE112014003972T5 (de) 2013-08-28 2014-08-20 Ölabscheider, und mit diesem vorgesehener Verdichter
US14/904,915 US10155188B2 (en) 2013-08-28 2014-08-20 Oil separator, and compressor provided with same
CN201480040725.1A CN105492843B (zh) 2013-08-28 2014-08-20 分油器和具备该分油器的压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013176581A JP5991675B2 (ja) 2013-08-28 2013-08-28 オイルセパレータおよびそれを備えた圧縮機
JP2013-176581 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015029845A1 true WO2015029845A1 (ja) 2015-03-05

Family

ID=52586407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071713 WO2015029845A1 (ja) 2013-08-28 2014-08-20 オイルセパレータおよびそれを備えた圧縮機

Country Status (5)

Country Link
US (1) US10155188B2 (ja)
JP (1) JP5991675B2 (ja)
CN (1) CN105492843B (ja)
DE (1) DE112014003972T5 (ja)
WO (1) WO2015029845A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012816A1 (ko) 2016-07-15 2018-01-18 한온시스템 주식회사 압축 장치 및 제어 질량 흐름 분리 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091432B (zh) * 2014-05-14 2018-01-02 Lg电子株式会社 油分离器以及具有该油分离器的空调
JP6642564B2 (ja) * 2015-03-05 2020-02-05 ブラザー工業株式会社 燃料電池システムにおける気液分離器
DE102015121583B4 (de) * 2015-12-11 2021-02-11 Hanon Systems Vorrichtung zum Abscheiden von Öl eines Kältemittel-Öl-Gemisches sowie zum Abkühlen des Öls und zum Abkühlen und/oder Verflüssigen des Kältemittels in einem Kältemittelkreislauf
KR102418813B1 (ko) * 2018-03-21 2022-07-11 한온시스템 주식회사 압축기
CN108606716B (zh) * 2018-07-18 2023-08-04 江苏美的清洁电器股份有限公司 手持吸尘器及空气处理组件
CN111486625B (zh) * 2019-01-28 2022-06-03 上海荥科制冷设备有限公司 一种制冷配件的油分离器
JP7232125B2 (ja) * 2019-05-22 2023-03-02 川崎重工業株式会社 給気トランク
US11353250B2 (en) * 2020-01-10 2022-06-07 Heatcraft Refrigeration Products Llc Vertical oil separator
US11747064B2 (en) 2020-03-30 2023-09-05 Carrier Corporation Integrated oil separator with flow management
CN111365898B (zh) * 2020-04-03 2021-07-09 常州微能节能科技有限公司 一种促进氟利昂循环系统冷冻机油回油的方法
US20220411073A1 (en) * 2021-06-29 2022-12-29 Hamilton Sundstrand Corporation Centrifugal water collector with conical water scupper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094164A (ja) * 1983-10-28 1985-05-27 Mitsubishi Heavy Ind Ltd サイクロン式除塵装置
JPH02137916U (ja) * 1989-04-17 1990-11-16
JPH0960591A (ja) * 1995-08-21 1997-03-04 Toyota Autom Loom Works Ltd 圧縮機のオイル分離機構
JP2001295767A (ja) * 2000-04-17 2001-10-26 Denso Corp 圧縮機
JP2003027917A (ja) * 2001-07-13 2003-01-29 Hirokazu Matsumoto 排ガス除塵装置
JP2013015069A (ja) * 2011-07-04 2013-01-24 Denso Corp オイルセパレータ、及び、オイルセパレータを備えた圧縮機

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1522903A (en) * 1920-02-18 1925-01-13 Griscom Russell Co Baffle for centrifugal oil separators
US1721908A (en) * 1926-03-19 1929-07-23 Charles H Heist Centrifugal fluid cleaner
US2147671A (en) * 1937-07-15 1939-02-21 Motor Power Inc Centrifugal gas separator
US2229860A (en) * 1938-11-14 1941-01-28 Mccurdy Howard Helical centrifugal separator
BE517007A (ja) * 1952-01-25
US2705053A (en) * 1953-05-14 1955-03-29 Doak Aircraft Co Inc Oil degasification
US2974668A (en) * 1957-12-10 1961-03-14 Harvestaire Inc Centrifugal type thresher
US4375386A (en) * 1981-05-07 1983-03-01 The Badger Company, Inc. Cyclonic entrainment separator for evaporator
US4678588A (en) * 1986-02-03 1987-07-07 Shortt William C Continuous flow centrifugal separation
JPS6366122U (ja) * 1986-10-17 1988-05-02
US5113671A (en) * 1990-11-26 1992-05-19 Ac&R Components Components, Inc. Oil separator
JP2830618B2 (ja) 1992-02-21 1998-12-02 ダイキン工業株式会社 遠心分離形油分離器
AUPM714794A0 (en) * 1994-07-29 1994-08-18 International Fluid Separation Pty Limited Separation apparatus and method
US5755965A (en) * 1995-10-16 1998-05-26 Hdr Engineering, Inc. Cyclonic de-gasser
WO1997014489A1 (en) * 1995-10-18 1997-04-24 Gnesys, Inc. Hydrocyclone gas separator
FI112781B (fi) * 2000-09-25 2004-01-15 Steris Europe Inc Menetelmä ja laitteisto puhtaan höyryn tuottamiseksi
JP4022166B2 (ja) 2003-04-25 2007-12-12 三菱重工業株式会社 圧縮機およびその製造方法
US20070251256A1 (en) * 2006-03-20 2007-11-01 Pham Hung M Flash tank design and control for heat pumps
JP4894357B2 (ja) 2006-06-02 2012-03-14 株式会社豊田自動織機 圧縮機
KR101042393B1 (ko) 2008-07-02 2011-06-17 주식회사 두원전자 오일 분리기
JP5439026B2 (ja) 2009-05-11 2014-03-12 株式会社神戸製鋼所 気液分離器
JP5366671B2 (ja) 2009-06-12 2013-12-11 三菱電機株式会社 サイクロン式油分離器、これを備えた圧縮式冷凍装置及び空気圧縮装置
JP2011185597A (ja) 2011-04-28 2011-09-22 Sanden Corp 遠心分離装置
SE536286C2 (sv) * 2011-10-06 2013-07-30 Husqvarna Ab Stoftavskiljare med konstant sugkraft
CA2844330C (en) * 2013-02-25 2019-10-15 Bruce Lyon Sand separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094164A (ja) * 1983-10-28 1985-05-27 Mitsubishi Heavy Ind Ltd サイクロン式除塵装置
JPH02137916U (ja) * 1989-04-17 1990-11-16
JPH0960591A (ja) * 1995-08-21 1997-03-04 Toyota Autom Loom Works Ltd 圧縮機のオイル分離機構
JP2001295767A (ja) * 2000-04-17 2001-10-26 Denso Corp 圧縮機
JP2003027917A (ja) * 2001-07-13 2003-01-29 Hirokazu Matsumoto 排ガス除塵装置
JP2013015069A (ja) * 2011-07-04 2013-01-24 Denso Corp オイルセパレータ、及び、オイルセパレータを備えた圧縮機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012816A1 (ko) 2016-07-15 2018-01-18 한온시스템 주식회사 압축 장치 및 제어 질량 흐름 분리 방법
DE102016113057A1 (de) 2016-07-15 2018-01-18 Hanon Systems Vorrichtung zum Verdichten eines gasförmigen Fluids mit einer Anordnung zum Separieren eines Steuermassenstroms sowie Verfahren zum Separieren des Steuermassenstroms
DE102016113057B4 (de) 2016-07-15 2019-05-23 Hanon Systems Vorrichtung zum Verdichten eines gasförmigen Fluids mit einer Anordnung zum Separieren eines Steuermassenstroms sowie Verfahren zum Separieren des Steuermassenstroms
US11262113B2 (en) 2016-07-15 2022-03-01 Hanon Systems Compression device and control mass flow separation method

Also Published As

Publication number Publication date
US20160136555A1 (en) 2016-05-19
JP2015045442A (ja) 2015-03-12
CN105492843A (zh) 2016-04-13
DE112014003972T5 (de) 2016-06-30
CN105492843B (zh) 2019-07-09
US10155188B2 (en) 2018-12-18
JP5991675B2 (ja) 2016-09-14

Similar Documents

Publication Publication Date Title
WO2015029845A1 (ja) オイルセパレータおよびそれを備えた圧縮機
CN104583601B (zh) 螺旋压缩机及具备它的冷却单元
US7731771B2 (en) Cyclone collector
CN102670134B (zh) 过滤筒及具有该过滤筒的灰尘分离单元
JP2012125727A (ja) 油分離器
CN103638749B (zh) 一种具有储液和排液功能的气液分离器
JP7217339B2 (ja) 車両用空気調和システムのアキュムレータ
JP6055673B2 (ja) 気液分離器および気液分離器を備えた冷凍装置
CN109139428B (zh) 油气分离器及带有油气分离器的压缩机
CN106837470A (zh) 内燃机用分离器
CN106352622A (zh) 油分离器及采用其的制冷系统
JP2016008780A (ja) 油分離装置及びこの油分離装置を用いたスクリュー圧縮機
JP4425951B2 (ja) ブローバイガス用オイルセパレータ
WO2017163809A1 (ja) オイルセパレータ
WO2019077945A1 (ja) 気液分離器及び油冷式圧縮機
CN110064251A (zh) 一种气液分离器
US9022230B2 (en) Oil separation means and refrigeration device equipped with the same
CN203980746U (zh) 一种油分离器
CN116059754B (zh) 一种导流环滤芯及气液分离器
JP2008045763A (ja) オイルセパレータ
JP5776326B2 (ja) 気液分離器
JP2015096781A (ja) 油分離器
CN208154887U (zh) 气液分离器
CN202885380U (zh) 螺旋式油分离器
JP2013015069A (ja) オイルセパレータ、及び、オイルセパレータを備えた圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040725.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841242

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14904915

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014003972

Country of ref document: DE

Ref document number: 1120140039721

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841242

Country of ref document: EP

Kind code of ref document: A1