WO2018012529A1 - Substrat de diamant monocristallin - Google Patents

Substrat de diamant monocristallin Download PDF

Info

Publication number
WO2018012529A1
WO2018012529A1 PCT/JP2017/025393 JP2017025393W WO2018012529A1 WO 2018012529 A1 WO2018012529 A1 WO 2018012529A1 JP 2017025393 W JP2017025393 W JP 2017025393W WO 2018012529 A1 WO2018012529 A1 WO 2018012529A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
diamond
growth
single crystal
layer
Prior art date
Application number
PCT/JP2017/025393
Other languages
English (en)
Japanese (ja)
Inventor
英雄 會田
聖祐 金
豊 木村
友喜 川又
憲次朗 池尻
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Priority to JP2018527626A priority Critical patent/JP7161158B2/ja
Publication of WO2018012529A1 publication Critical patent/WO2018012529A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts

Definitions

  • the present invention relates to a single crystal diamond substrate which is not subjected to surface processing such as grinding and polishing.
  • diamond is expected as an ultimate semiconductor device due to its excellent characteristics, and as an example, a configuration in which an n-type diamond layer or a p-type diamond layer is laminated on a diamond substrate as a base substrate has been proposed.
  • the quality of the diamond to be laminated depends on the quality and surface state of the diamond substrate used as the base substrate. That is, the base substrate for manufacturing the semiconductor device is required not only to have crystal quality, but also to have a flat surface and no work-affected layer on the surface to be a growth surface of the base substrate.
  • Patent Document 1 planarization techniques such as etching and CMP polishing described in JP-A-01-062484 (hereinafter referred to as Patent Document 1) and the like are used as the surface processing method of the substrate.
  • Patent Document 2 a technique for increasing the diameter using heteroepitaxial growth such as International Publication No. 2015/046294 (hereinafter described as Patent Document 2) is used, and mass productivity due to the increase in diameter is used. It was possible to improve the cost and reduce the chip unit price.
  • Patent Document 1 While having the effects described above, in recent years, with respect to the substrate whose diameter has been increased by Patent Document 2 or the like, the processing method described in Patent Document 1 provides high-precision surface roughness necessary for vapor phase growth on the crystal surface. It cannot be applied, and there is a problem that generation of hillocks (Hillocks) cannot be suppressed during vapor phase growth of diamond using the crystal surface.
  • hillocks hillocks
  • laser cutting and mechanical polishing using diamond abrasive grains which have been used for jewelry processing for a long time, result in a roughened processing surface and a work-affected layer.
  • the invention described in the present application aims to provide a single crystal diamond substrate having a highly accurate and smooth surface roughness without causing a work-affected layer on the surface.
  • the invention described in the second aspect of the present invention is characterized in that the surface roughness Ra of the substrate is formed with 5 nm or less.
  • the invention described in the present application can form a highly accurate growth surface using only vapor phase growth. That is, the growth surface of a conventional single crystal diamond substrate that has been heteroepitaxially grown is rough in an unpolished state and needs to be flattened using conventional processing techniques, so that it can be finished to a flat surface without a work-affected layer. It was impossible.
  • the rear surface separated from the base substrate for growing the diamond layer after vapor phase growth is in a state in which the diamond layer can be grown with high accuracy and smoothness due to its growth method.
  • the surface roughness of the vapor-grown back surface can be further improved by the invention described in the second aspect of the present invention. That is, in the vapor phase growth, the surface roughness can be controlled by the surface of the base substrate and the growth conditions up to a certain value. More specifically, when the single crystal diamond substrate is grown again using the single crystal diamond obtained by the heteroepitaxial growth, the surface roughness Ra can be smoothed to a constant value depending on the growth conditions and the thickness to be grown. .
  • the single crystal diamond substrate according to the present invention is a thick film diamond having good crystallinity, which is obtained by homoepitaxially growing single crystal diamond on the back surface by setting the roughness of the crystal surface grown in the crystal growth stage on the back surface to 5 nm or less. It is possible to grow into a single crystal.
  • FIG. 1 is an explanatory diagram of a method for producing a single crystal diamond substrate used in this embodiment
  • FIG. 2 shows AFM measurement images on the substrate front surface (a) and back surface (b) of the substrate.
  • the growth apparatuses such as a growth stage, a chamber, and a target
  • description in a figure is abbreviate
  • the single crystal diamond layer 3 is first vapor-deposited on the base substrate 1 made of MgO single crystal using a CVD method or the like.
  • a diamond single crystal substrate for homoepitaxial growth that can grow the diamond single crystal substrate having the above-mentioned high-precision surface roughness by using the back surface of the diamond substrate obtained by separating the base substrate and the like from the diamond layer as a growth layer ( 4) was obtained.
  • MgO single crystal is used in this embodiment, but other materials include aluminum oxide ( ⁇ -Al 2 O 3 : sapphire), Si, quartz, platinum, iridium, and strontium titanate (SrTiO 3) or the like.
  • the MgO single crystal substrate and the aluminum oxide (sapphire) single crystal substrate are extremely stable thermally and have a diameter of up to 8 inches (about 203.2 mm). For the reason that it is possible, it is preferable as a substrate for a diamond layer used when the above-mentioned homoepi substrate is prepared.
  • the base substrate 1 is a substrate whose at least one surface is mirror-polished. This is because the diamond layer 3 is grown and formed on the mirror-polished surface side in the later-described diamond layer 3 growth step.
  • the mirror polishing may be performed so that at least one side is smooth enough to grow a diamond layer.
  • the surface roughness Ra is preferably 10 nm or less. This is because when the Ra exceeds 10 nm, the quality of the diamond layer to be grown on one piece is deteriorated. It is assumed that there is no crack on the one side. Further, Ra can be measured with a surface roughness measuring machine.
  • As the substrate a substrate whose both surfaces are mirror-polished may be used as necessary. In this case, any one surface can be arbitrarily used as a growth surface of the diamond layer.
  • the shape in the plane direction of the substrate for the diamond layer is not particularly limited, and may be, for example, a circular shape or a square shape.
  • the substrate is preferably 2 inches (about 50.8 mm) or more in diameter from the viewpoint of enlargement, more preferably 3 inches (about 76.2 mm) or more, and 6 inches. More preferably (about 152.4 mm).
  • the upper limit of the diameter of the substrate is not particularly limited, but is preferably 8 inches or less from a practical viewpoint. In the present application, in consideration of the dimensional tolerance of the substrate, the range of 49.8 mm to 50.8 mm, which is obtained by subtracting 1.0 mm, which is 2% of 50.8 mm, is defined as 2 inches.
  • the size of the base substrate 1 is defined in a circular shape, the size is preferably 50 mm ⁇ 50 mm or more, more preferably 75 mm ⁇ 75 mm or more from the viewpoint of increasing the size when the substrate is square. . Further, the upper limit of the dimension is preferably 200 mm ⁇ 200 mm or less from a practical viewpoint. Therefore, the diamond layer substrate has a surface area of at least 20 cm 2 . Furthermore, it is more preferable to have a surface area of up to 1297 cm 2 from the viewpoint of enlargement.
  • the thickness of the base substrate 1 is preferably 3.0 mm or less, more preferably 1.5 mm or less, and further preferably 1.0 mm or less.
  • the lower limit of thickness is not specifically limited, It is preferable that it is 0.05 mm or more from a viewpoint of ensuring rigidity, and it is more preferable that it is 0.4 mm or more.
  • the thickness is preferably 0.3 mm or more, and when the diameter exceeds 150 mm, the thickness is preferably 0.6 mm or more.
  • an iridium (Ir) single crystal film 2 is formed on the surface of the base substrate 1, and a diamond layer is grown on the Ir single crystal film.
  • a diamond layer 3 made of a diamond single crystal is grown and formed on one side.
  • the method for growing the diamond layer is not particularly limited, and a known method can be used. Specific examples of the growth method include a vapor phase growth method such as a pulsed laser deposition (PLD) method and a chemical vapor deposition (CVD) method.
  • PLD pulsed laser deposition
  • CVD chemical vapor deposition
  • a diamond layer substrate is placed in a CVD growth furnace, and a CVD diamond single crystal is grown on one surface of the substrate.
  • a growth method a direct current plasma method, a hot filament method, a combustion flame method, an arc jet method, or the like can be used, but a microwave plasma method is preferable in order to obtain high-quality diamond with little contamination.
  • a gas containing hydrogen and carbon is used as a source gas.
  • Methane is introduced into the growth furnace as a gas containing hydrogen and carbon at a methane / hydrogen gas flow rate ratio of 0.001% to 30%.
  • CVD diamond is grown by depositing active species on one side of the substrate maintained at a temperature of 700 ° C. to 1300 ° C. by heating with the plasma.
  • the thickness of the diamond layer is set so as to be equal to the height of the columnar diamond to be formed, and it is preferable to grow with a thickness of 30 ⁇ m or more and 500 ⁇ m or less.
  • the base substrate 1 is separated.
  • the base substrate 1 is removed by wet etching using nitric acid or the like, and the remaining Ir film 2 is alloyed with solder and then removed by the same method.
  • the grown surface O is the bottom surface
  • the diamond substrate layer is vapor-phase grown again on the back surface U where the pillars remain. went. (See (e) in FIG. 1)
  • the conditions for the growth are the same as those for the vapor phase growth of the diamond substrate layer.
  • a high quality single crystal diamond substrate could be obtained by homoepitaxial growth on the same material in this embodiment.
  • FIG. 2 shows a surface AFM measurement image of the homoepitaxial substrate 4 obtained in this embodiment.
  • 2A shows the crystal surface of the surface O
  • FIG. 2B shows the growth crystal surface of the back surface U.
  • the homoepitaxial substrate obtained in the present embodiment has the surface roughness of the back surface smoother than the front surface. This is because the surface of the base substrate has an influence on the separated back crystal surface, and there is no disorder of the atoms caused by processing, that is, no work-affected layer by observing the back surface using a transmission electron microscope. I was able to confirm that.
  • a single crystal diamond substrate having a high precision and smooth surface roughness can be provided without producing a work-affected layer on the surface by using the homoepitaxial substrate described in the present embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

La présente invention vise à fournir un substrat de diamant monocristallin présentant une grande précision et une faible rugosité de surface, et dont la surface est exempte d'une couche altérée par l'usinage. Dans la présente invention, une surface arrière d'une couche de diamant obtenue par croissance en phase vapeur, par croissance hétéroépitaxiale, est formée de manière à présenter une rugosité de surface comprise dans une plage spécifique en tant que surface destinée à favoriser la croissance homoépitaxiale ; une couche de diamant monocristallin obtenue par une croissance en phase vapeur supplémentaire étant formée sur la surface arrière d'un monocristal de diamant après que la croissance en phase vapeur est achevée, ce qui permet d'obtenir un substrat de diamant monocristallin présentant une grande précision et une faible rugosité de surface, et dont la surface est exempte d'une couche altérée par l'usinage.
PCT/JP2017/025393 2016-07-14 2017-07-12 Substrat de diamant monocristallin WO2018012529A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527626A JP7161158B2 (ja) 2016-07-14 2017-07-12 ダイヤモンド基板層の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-138991 2016-07-14
JP2016138991 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018012529A1 true WO2018012529A1 (fr) 2018-01-18

Family

ID=60953064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025393 WO2018012529A1 (fr) 2016-07-14 2017-07-12 Substrat de diamant monocristallin

Country Status (2)

Country Link
JP (1) JP7161158B2 (fr)
WO (1) WO2018012529A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933514A (zh) * 2020-08-12 2020-11-13 哈尔滨工业大学 电子束蒸镀工艺制备外延单晶金刚石用Ir(111)复合衬底的方法
JP6998634B1 (ja) 2020-10-22 2022-01-18 国立大学法人長岡技術科学大学 ダイヤモンド形成用構造体、およびダイヤモンド形成用構造体の製造方法
JP2022520278A (ja) * 2019-03-29 2022-03-29 エレメント シックス テクノロジーズ リミテッド 単結晶合成ダイヤモンド材料
JP2022093409A (ja) * 2018-12-04 2022-06-23 信越化学工業株式会社 積層基板、積層基板の製造方法及び自立基板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151097A (ja) * 1984-12-25 1986-07-09 Showa Denko Kk 平滑面をもつダイヤモンド薄膜の製法
JPH04333266A (ja) * 1991-01-15 1992-11-20 Norton Co 被覆または積層ダイヤモンド基板及びその仕上方法
JPH0741388A (ja) * 1993-03-10 1995-02-10 Sumitomo Electric Ind Ltd ダイヤモンドの平坦化法および研磨法
JP2010013322A (ja) * 2008-07-04 2010-01-21 National Institute Of Advanced Industrial & Technology 単結晶ダイヤモンドの表面損傷の除去方法
JP2010516601A (ja) * 2007-01-22 2010-05-20 エレメント シックス リミテッド ダイヤモンド表面のプラズマエッチング
WO2015199180A1 (fr) * 2014-06-25 2015-12-30 住友電気工業株式会社 Procédé de production de substrat en diamant, substrat en diamant, et substrat composite en diamant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528654B2 (ja) * 2005-03-14 2010-08-18 信越化学工業株式会社 積層基板、積層基板の製造方法及びデバイス
JP2007284285A (ja) * 2006-04-14 2007-11-01 Kobe Steel Ltd ダイヤモンド膜及びその製造方法
JP6112485B2 (ja) * 2013-09-19 2017-04-12 国立研究開発法人産業技術総合研究所 単結晶ダイヤモンドの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151097A (ja) * 1984-12-25 1986-07-09 Showa Denko Kk 平滑面をもつダイヤモンド薄膜の製法
JPH04333266A (ja) * 1991-01-15 1992-11-20 Norton Co 被覆または積層ダイヤモンド基板及びその仕上方法
JPH0741388A (ja) * 1993-03-10 1995-02-10 Sumitomo Electric Ind Ltd ダイヤモンドの平坦化法および研磨法
JP2010516601A (ja) * 2007-01-22 2010-05-20 エレメント シックス リミテッド ダイヤモンド表面のプラズマエッチング
JP2010013322A (ja) * 2008-07-04 2010-01-21 National Institute Of Advanced Industrial & Technology 単結晶ダイヤモンドの表面損傷の除去方法
WO2015199180A1 (fr) * 2014-06-25 2015-12-30 住友電気工業株式会社 Procédé de production de substrat en diamant, substrat en diamant, et substrat composite en diamant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022093409A (ja) * 2018-12-04 2022-06-23 信越化学工業株式会社 積層基板、積層基板の製造方法及び自立基板の製造方法
JP7475389B2 (ja) 2018-12-04 2024-04-26 信越化学工業株式会社 積層基板、積層基板の製造方法及び自立基板の製造方法
JP2022520278A (ja) * 2019-03-29 2022-03-29 エレメント シックス テクノロジーズ リミテッド 単結晶合成ダイヤモンド材料
JP7304959B2 (ja) 2019-03-29 2023-07-07 エレメント シックス テクノロジーズ リミテッド 単結晶合成ダイヤモンド材料
CN111933514A (zh) * 2020-08-12 2020-11-13 哈尔滨工业大学 电子束蒸镀工艺制备外延单晶金刚石用Ir(111)复合衬底的方法
CN111933514B (zh) * 2020-08-12 2023-02-24 哈尔滨工业大学 电子束蒸镀工艺制备外延单晶金刚石用Ir(111)复合衬底的方法
JP6998634B1 (ja) 2020-10-22 2022-01-18 国立大学法人長岡技術科学大学 ダイヤモンド形成用構造体、およびダイヤモンド形成用構造体の製造方法
JP2022068862A (ja) * 2020-10-22 2022-05-10 国立大学法人長岡技術科学大学 ダイヤモンド形成用構造体、およびダイヤモンド形成用構造体の製造方法

Also Published As

Publication number Publication date
JP7161158B2 (ja) 2022-10-26
JPWO2018012529A1 (ja) 2019-05-09

Similar Documents

Publication Publication Date Title
KR101797428B1 (ko) 단결정 다이아몬드 성장용 기재 및 단결정 다이아몬드 기판의 제조 방법
WO2018012529A1 (fr) Substrat de diamant monocristallin
US10480096B2 (en) Diamond substrate
US11180865B2 (en) Foundation substrate for producing diamond film and method for producing diamond substrate using same
US10619267B2 (en) Diamond substrate
KR102267800B1 (ko) 단결정 다이아몬드의 제조방법
US20110084285A1 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
JPWO2020194803A1 (ja) 下地基板及びその製造方法
US10100435B2 (en) Method for manufacturing diamond substrate
CN110100304A (zh) Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法
JP7226722B2 (ja) ダイヤモンド基板
JP2022109306A (ja) ダイヤモンド製膜用下地基板及びそれを用いたダイヤモンド基板の製造方法
JP6525046B1 (ja) 半導体ウェーハの製造方法
JP2020059648A (ja) ダイヤモンド基板及びダイヤモンド基板の製造方法
WO2022264754A1 (fr) Substrat de diamant et son procédé de fabrication
JP7487702B2 (ja) 単結晶ダイヤモンド基板の製造方法
US20150376776A1 (en) Variable-temperature material growth stages and thin film growth
JP7439117B2 (ja) 下地基板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018527626

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827656

Country of ref document: EP

Kind code of ref document: A1