WO2018012529A1 - Single-crystal diamond substrate - Google Patents

Single-crystal diamond substrate Download PDF

Info

Publication number
WO2018012529A1
WO2018012529A1 PCT/JP2017/025393 JP2017025393W WO2018012529A1 WO 2018012529 A1 WO2018012529 A1 WO 2018012529A1 JP 2017025393 W JP2017025393 W JP 2017025393W WO 2018012529 A1 WO2018012529 A1 WO 2018012529A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
diamond
growth
single crystal
layer
Prior art date
Application number
PCT/JP2017/025393
Other languages
French (fr)
Japanese (ja)
Inventor
英雄 會田
聖祐 金
豊 木村
友喜 川又
憲次朗 池尻
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Priority to JP2018527626A priority Critical patent/JP7161158B2/en
Publication of WO2018012529A1 publication Critical patent/WO2018012529A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts

Definitions

  • the present invention relates to a single crystal diamond substrate which is not subjected to surface processing such as grinding and polishing.
  • diamond is expected as an ultimate semiconductor device due to its excellent characteristics, and as an example, a configuration in which an n-type diamond layer or a p-type diamond layer is laminated on a diamond substrate as a base substrate has been proposed.
  • the quality of the diamond to be laminated depends on the quality and surface state of the diamond substrate used as the base substrate. That is, the base substrate for manufacturing the semiconductor device is required not only to have crystal quality, but also to have a flat surface and no work-affected layer on the surface to be a growth surface of the base substrate.
  • Patent Document 1 planarization techniques such as etching and CMP polishing described in JP-A-01-062484 (hereinafter referred to as Patent Document 1) and the like are used as the surface processing method of the substrate.
  • Patent Document 2 a technique for increasing the diameter using heteroepitaxial growth such as International Publication No. 2015/046294 (hereinafter described as Patent Document 2) is used, and mass productivity due to the increase in diameter is used. It was possible to improve the cost and reduce the chip unit price.
  • Patent Document 1 While having the effects described above, in recent years, with respect to the substrate whose diameter has been increased by Patent Document 2 or the like, the processing method described in Patent Document 1 provides high-precision surface roughness necessary for vapor phase growth on the crystal surface. It cannot be applied, and there is a problem that generation of hillocks (Hillocks) cannot be suppressed during vapor phase growth of diamond using the crystal surface.
  • hillocks hillocks
  • laser cutting and mechanical polishing using diamond abrasive grains which have been used for jewelry processing for a long time, result in a roughened processing surface and a work-affected layer.
  • the invention described in the present application aims to provide a single crystal diamond substrate having a highly accurate and smooth surface roughness without causing a work-affected layer on the surface.
  • the invention described in the second aspect of the present invention is characterized in that the surface roughness Ra of the substrate is formed with 5 nm or less.
  • the invention described in the present application can form a highly accurate growth surface using only vapor phase growth. That is, the growth surface of a conventional single crystal diamond substrate that has been heteroepitaxially grown is rough in an unpolished state and needs to be flattened using conventional processing techniques, so that it can be finished to a flat surface without a work-affected layer. It was impossible.
  • the rear surface separated from the base substrate for growing the diamond layer after vapor phase growth is in a state in which the diamond layer can be grown with high accuracy and smoothness due to its growth method.
  • the surface roughness of the vapor-grown back surface can be further improved by the invention described in the second aspect of the present invention. That is, in the vapor phase growth, the surface roughness can be controlled by the surface of the base substrate and the growth conditions up to a certain value. More specifically, when the single crystal diamond substrate is grown again using the single crystal diamond obtained by the heteroepitaxial growth, the surface roughness Ra can be smoothed to a constant value depending on the growth conditions and the thickness to be grown. .
  • the single crystal diamond substrate according to the present invention is a thick film diamond having good crystallinity, which is obtained by homoepitaxially growing single crystal diamond on the back surface by setting the roughness of the crystal surface grown in the crystal growth stage on the back surface to 5 nm or less. It is possible to grow into a single crystal.
  • FIG. 1 is an explanatory diagram of a method for producing a single crystal diamond substrate used in this embodiment
  • FIG. 2 shows AFM measurement images on the substrate front surface (a) and back surface (b) of the substrate.
  • the growth apparatuses such as a growth stage, a chamber, and a target
  • description in a figure is abbreviate
  • the single crystal diamond layer 3 is first vapor-deposited on the base substrate 1 made of MgO single crystal using a CVD method or the like.
  • a diamond single crystal substrate for homoepitaxial growth that can grow the diamond single crystal substrate having the above-mentioned high-precision surface roughness by using the back surface of the diamond substrate obtained by separating the base substrate and the like from the diamond layer as a growth layer ( 4) was obtained.
  • MgO single crystal is used in this embodiment, but other materials include aluminum oxide ( ⁇ -Al 2 O 3 : sapphire), Si, quartz, platinum, iridium, and strontium titanate (SrTiO 3) or the like.
  • the MgO single crystal substrate and the aluminum oxide (sapphire) single crystal substrate are extremely stable thermally and have a diameter of up to 8 inches (about 203.2 mm). For the reason that it is possible, it is preferable as a substrate for a diamond layer used when the above-mentioned homoepi substrate is prepared.
  • the base substrate 1 is a substrate whose at least one surface is mirror-polished. This is because the diamond layer 3 is grown and formed on the mirror-polished surface side in the later-described diamond layer 3 growth step.
  • the mirror polishing may be performed so that at least one side is smooth enough to grow a diamond layer.
  • the surface roughness Ra is preferably 10 nm or less. This is because when the Ra exceeds 10 nm, the quality of the diamond layer to be grown on one piece is deteriorated. It is assumed that there is no crack on the one side. Further, Ra can be measured with a surface roughness measuring machine.
  • As the substrate a substrate whose both surfaces are mirror-polished may be used as necessary. In this case, any one surface can be arbitrarily used as a growth surface of the diamond layer.
  • the shape in the plane direction of the substrate for the diamond layer is not particularly limited, and may be, for example, a circular shape or a square shape.
  • the substrate is preferably 2 inches (about 50.8 mm) or more in diameter from the viewpoint of enlargement, more preferably 3 inches (about 76.2 mm) or more, and 6 inches. More preferably (about 152.4 mm).
  • the upper limit of the diameter of the substrate is not particularly limited, but is preferably 8 inches or less from a practical viewpoint. In the present application, in consideration of the dimensional tolerance of the substrate, the range of 49.8 mm to 50.8 mm, which is obtained by subtracting 1.0 mm, which is 2% of 50.8 mm, is defined as 2 inches.
  • the size of the base substrate 1 is defined in a circular shape, the size is preferably 50 mm ⁇ 50 mm or more, more preferably 75 mm ⁇ 75 mm or more from the viewpoint of increasing the size when the substrate is square. . Further, the upper limit of the dimension is preferably 200 mm ⁇ 200 mm or less from a practical viewpoint. Therefore, the diamond layer substrate has a surface area of at least 20 cm 2 . Furthermore, it is more preferable to have a surface area of up to 1297 cm 2 from the viewpoint of enlargement.
  • the thickness of the base substrate 1 is preferably 3.0 mm or less, more preferably 1.5 mm or less, and further preferably 1.0 mm or less.
  • the lower limit of thickness is not specifically limited, It is preferable that it is 0.05 mm or more from a viewpoint of ensuring rigidity, and it is more preferable that it is 0.4 mm or more.
  • the thickness is preferably 0.3 mm or more, and when the diameter exceeds 150 mm, the thickness is preferably 0.6 mm or more.
  • an iridium (Ir) single crystal film 2 is formed on the surface of the base substrate 1, and a diamond layer is grown on the Ir single crystal film.
  • a diamond layer 3 made of a diamond single crystal is grown and formed on one side.
  • the method for growing the diamond layer is not particularly limited, and a known method can be used. Specific examples of the growth method include a vapor phase growth method such as a pulsed laser deposition (PLD) method and a chemical vapor deposition (CVD) method.
  • PLD pulsed laser deposition
  • CVD chemical vapor deposition
  • a diamond layer substrate is placed in a CVD growth furnace, and a CVD diamond single crystal is grown on one surface of the substrate.
  • a growth method a direct current plasma method, a hot filament method, a combustion flame method, an arc jet method, or the like can be used, but a microwave plasma method is preferable in order to obtain high-quality diamond with little contamination.
  • a gas containing hydrogen and carbon is used as a source gas.
  • Methane is introduced into the growth furnace as a gas containing hydrogen and carbon at a methane / hydrogen gas flow rate ratio of 0.001% to 30%.
  • CVD diamond is grown by depositing active species on one side of the substrate maintained at a temperature of 700 ° C. to 1300 ° C. by heating with the plasma.
  • the thickness of the diamond layer is set so as to be equal to the height of the columnar diamond to be formed, and it is preferable to grow with a thickness of 30 ⁇ m or more and 500 ⁇ m or less.
  • the base substrate 1 is separated.
  • the base substrate 1 is removed by wet etching using nitric acid or the like, and the remaining Ir film 2 is alloyed with solder and then removed by the same method.
  • the grown surface O is the bottom surface
  • the diamond substrate layer is vapor-phase grown again on the back surface U where the pillars remain. went. (See (e) in FIG. 1)
  • the conditions for the growth are the same as those for the vapor phase growth of the diamond substrate layer.
  • a high quality single crystal diamond substrate could be obtained by homoepitaxial growth on the same material in this embodiment.
  • FIG. 2 shows a surface AFM measurement image of the homoepitaxial substrate 4 obtained in this embodiment.
  • 2A shows the crystal surface of the surface O
  • FIG. 2B shows the growth crystal surface of the back surface U.
  • the homoepitaxial substrate obtained in the present embodiment has the surface roughness of the back surface smoother than the front surface. This is because the surface of the base substrate has an influence on the separated back crystal surface, and there is no disorder of the atoms caused by processing, that is, no work-affected layer by observing the back surface using a transmission electron microscope. I was able to confirm that.
  • a single crystal diamond substrate having a high precision and smooth surface roughness can be provided without producing a work-affected layer on the surface by using the homoepitaxial substrate described in the present embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

[Problem] To provide a single-crystal diamond substrate having high precision and low surface roughness, and in which a work-affected layer does not occur on the surface thereof. [Solution] In the present invention, a back surface of a diamond layer vapor-phase grown by heteroepitaxial growth is formed so as to have a surface roughness in a specific range as a surface for fostering homoepitaxial growth, whereby a single-crystal diamond layer formed by additional vapor-phase growth is formed on the back surface of a diamond single-crystal after the vapor-phase growth is completed, and a single-crystal diamond substrate having high precision and low surface roughness can be obtained without a work-affected layer occurring thereon.

Description

単結晶ダイヤモンド基板Single crystal diamond substrate
 本発明は研削、研磨等の表面加工が行われていない単結晶ダイヤモンド基板に関する。 The present invention relates to a single crystal diamond substrate which is not subjected to surface processing such as grinding and polishing.
 従来より、ダイヤモンドはその優れた特性から究極の半導体デバイスとして期待されており、一例として下地基板となるダイヤモンド基板上にn型ダイヤモンド層やp型ダイヤモンド層を積層した構成が提案されている。この様な構成について、積層されるダイヤモンドの品質は、下地基板として用いられるダイヤモンド基板の品質や表面状態に左右される。即ち、半導体デバイスを作製する下地基板には結晶品質だけではなく、下地基板の成長面となる表面について、平坦かつ加工変質層が無いことが求められる。この為、当該基板の表面加工方法として特開平01-062484号公報(以下特許文献1として記載)等に記載のエッチング及び、CMP研磨といった平坦化技術が用いられている。また、当該平坦化前の下地基板については国際公開第2015/046294号(以下特許文献2として記載)等のヘテロエピタキシャル成長を用いた大径化技術が使用されており、当該大径化による量産性の向上及びチップ単価の低下を可能としていた。 Conventionally, diamond is expected as an ultimate semiconductor device due to its excellent characteristics, and as an example, a configuration in which an n-type diamond layer or a p-type diamond layer is laminated on a diamond substrate as a base substrate has been proposed. In such a configuration, the quality of the diamond to be laminated depends on the quality and surface state of the diamond substrate used as the base substrate. That is, the base substrate for manufacturing the semiconductor device is required not only to have crystal quality, but also to have a flat surface and no work-affected layer on the surface to be a growth surface of the base substrate. For this reason, planarization techniques such as etching and CMP polishing described in JP-A-01-062484 (hereinafter referred to as Patent Document 1) and the like are used as the surface processing method of the substrate. For the base substrate before the planarization, a technique for increasing the diameter using heteroepitaxial growth such as International Publication No. 2015/046294 (hereinafter described as Patent Document 2) is used, and mass productivity due to the increase in diameter is used. It was possible to improve the cost and reduce the chip unit price.
特開平01-062484号公報Japanese Patent Laid-Open No. 01-062484 国際公開第2015/046294号International Publication No. 2015/046294
 上述した効果を有している一方で近年、特許文献2等により大径化された前記基板について、特許文献1記載の加工方法では結晶表面について気相成長に必要な高精度の表面粗さを付与することができず、当該結晶表面を用いたダイヤの気相成長に際してヒロック(Hillock:微小な突起)の発生を抑制することができないという課題を有している。加えて、他の加工方法についても、古くから宝石加工に用いられてきたレーザー切断やダイヤモンド砥粒を用いた機械研磨となる為、加工面が粗くなると共に、加工変質層を生じてしまう。 While having the effects described above, in recent years, with respect to the substrate whose diameter has been increased by Patent Document 2 or the like, the processing method described in Patent Document 1 provides high-precision surface roughness necessary for vapor phase growth on the crystal surface. It cannot be applied, and there is a problem that generation of hillocks (Hillocks) cannot be suppressed during vapor phase growth of diamond using the crystal surface. In addition, with respect to other processing methods, laser cutting and mechanical polishing using diamond abrasive grains, which have been used for jewelry processing for a long time, result in a roughened processing surface and a work-affected layer.
 上記課題に対し、本願記載の発明では、表面に加工変質層を生じることなく、高精度かつ滑らかな表面粗さを有する単結晶ダイヤモンド基板の提供を目的としている。 In view of the above problems, the invention described in the present application aims to provide a single crystal diamond substrate having a highly accurate and smooth surface roughness without causing a work-affected layer on the surface.
 上記目的のために本願記載の発明は、育成表面に研削、研磨加工を加えていない単結晶ダイヤモンド基板について、表面に加工変質層がなく、表面粗さRa=10nm以下としたことをその技術的特徴としている。より具体的には、結晶成長が完了した未加工のホモエピタキシャル用の単結晶ダイヤモンド基板について、表面粗さRaを10nm以下で形成したことをその技術的特徴としている。 For the above-mentioned purpose, the invention described in the present application is that the single crystal diamond substrate that is not subjected to grinding or polishing on the growth surface has no technically altered layer on the surface and the surface roughness Ra = 10 nm or less. It is a feature. More specifically, the technical feature of the raw homoepitaxial diamond single crystal substrate for which crystal growth has been completed is that the surface roughness Ra is 10 nm or less.
 また、本発明第2の態様記載の発明は、当該基板について表面粗さRaを5nm以下で形成したことをその技術的特徴としている。 Further, the invention described in the second aspect of the present invention is characterized in that the surface roughness Ra of the substrate is formed with 5 nm or less.
 上述した技術的特徴によって本願記載の発明は、気相成長のみを用いた高精度な育成表面の形成が可能となっている。即ち、従来のヘテロエピタキシャル成長させた単結晶ダイヤモンド基板の成長面は未研磨状態では粗く、従来の加工技術を用いて平坦化する必要がある為に、平坦かつ加工変質層のない面に仕上げることが不可能であった。一方、気相成長後ダイヤモンド層成長用の下地基板から分離された裏面はその育成方法上、高精度かつ滑らかな状態でダイヤモンド層の成長が可能な状態となっている。これに伴い、本願記載の単結晶ダイヤモンド基板は、当該育成した育成表面を底面とし、前記下地基板から分離された裏面側に再度気相成長を行うことによって表面、裏面の両方を加工変質層のない面にすると共に、当該裏面を用いた気相成長によって研磨加工を施さなくても滑らかな表面粗さを有する単結晶ダイヤモンド基板を提供することが可能となる。より具体的には、当該裏面の状態が表面粗さRa=10nm以下の状態となるように気相成長を行った後、ウェットエッチングで下地基板を除去することで育成表面を底面とし、裏面に気相成長を行うことによって、加工変質層が無く、高精度かつ滑らかな結晶表面を有するホモエピタキシャル用単結晶ダイヤモンド基板を提供することができる。これは、ダイヤモンドに極性が無く、裏面にダイヤモンドを成長させることが可能であることによる効果となっている。また、本発明では上述した表面加工を必要としない為、表面、裏面共に加工変質層を生じることのないホモエピタキシャル用の単結晶ダイヤモンド基板を用いたダイヤモンド気相成長により、前記ヒロックのない高品質な単結晶ダイヤモンド基板を得ることができる。 Due to the technical features described above, the invention described in the present application can form a highly accurate growth surface using only vapor phase growth. That is, the growth surface of a conventional single crystal diamond substrate that has been heteroepitaxially grown is rough in an unpolished state and needs to be flattened using conventional processing techniques, so that it can be finished to a flat surface without a work-affected layer. It was impossible. On the other hand, the rear surface separated from the base substrate for growing the diamond layer after vapor phase growth is in a state in which the diamond layer can be grown with high accuracy and smoothness due to its growth method. Along with this, the single crystal diamond substrate described in the present application uses the grown surface as a bottom surface, and performs vapor phase growth again on the back surface side separated from the base substrate, so that both the front surface and the back surface are processed alteration layers. It is possible to provide a single crystal diamond substrate having a smooth surface roughness without being polished by vapor phase growth using the back surface. More specifically, after vapor phase growth is performed so that the state of the back surface is a surface roughness Ra = 10 nm or less, the base substrate is removed by wet etching to make the growth surface the bottom surface, By performing vapor phase growth, it is possible to provide a single crystal diamond substrate for homoepitaxial that has no work-affected layer and has a highly accurate and smooth crystal surface. This is due to the fact that diamond has no polarity and it is possible to grow diamond on the back surface. In addition, since the surface processing described above is not required in the present invention, high quality without the above hillocks is obtained by diamond vapor phase growth using a single crystal diamond substrate for homoepitaxial that does not cause a work-affected layer on the front and back surfaces. A simple single crystal diamond substrate can be obtained.
 上述した効果に加えて、本発明第2の態様記載の発明により、前記気相成長した裏面の表面粗さを更に向上することができる。即ち、上記気相成長に於いて、一定の値までは下地基板の表面及び成長条件によって表面粗さを制御することが可能となっている。より具体的には、上記ヘテロエピタキシャル成長によって得られた単結晶ダイヤモンドを用いて単結晶ダイヤモンド基板を再度育成する際、育成条件及び育成する厚みによって表面粗さRaを一定値まで滑らかにすることができる。本発明記載の単結晶ダイヤモンド基板は、当該裏面における結晶育成段階で育成する結晶表面の粗さを5nm以下とすることによって前記裏面でホモエピタキシャル成長させる単結晶ダイヤモンドを、結晶性の良い厚膜のダイヤモンド単結晶に成長させることを可能にしている。 In addition to the effects described above, the surface roughness of the vapor-grown back surface can be further improved by the invention described in the second aspect of the present invention. That is, in the vapor phase growth, the surface roughness can be controlled by the surface of the base substrate and the growth conditions up to a certain value. More specifically, when the single crystal diamond substrate is grown again using the single crystal diamond obtained by the heteroepitaxial growth, the surface roughness Ra can be smoothed to a constant value depending on the growth conditions and the thickness to be grown. . The single crystal diamond substrate according to the present invention is a thick film diamond having good crystallinity, which is obtained by homoepitaxially growing single crystal diamond on the back surface by setting the roughness of the crystal surface grown in the crystal growth stage on the back surface to 5 nm or less. It is possible to grow into a single crystal.
 以上述べたように、本願請求項記載の発明を用いることによって表面に加工変質層を生じることなく、高精度かつ滑らかな表面粗さを有する単結晶ダイヤモンド基板を提供することが可能となる。 As described above, it is possible to provide a single crystal diamond substrate having a highly accurate and smooth surface roughness without causing a work-affected layer on the surface by using the invention described in the claims of the present application.
本発明の最良の実施形態に於いて用いる単結晶ダイヤモンド基板の製造方法説明図。Explanatory drawing of the manufacturing method of the single crystal diamond substrate used in the best embodiment of this invention. 図1で製造された単結晶ダイヤモンド基板表面(a)及び裏面(b)のAFM測定画像。The AFM measurement image of the single crystal diamond substrate surface (a) and back surface (b) manufactured in FIG.
 以下に、図1、図2を用いて、本発明に於ける最良の実施形態を示す。尚、図中の記号及び部品番号について、同じ部品として機能するものには共通の記号又は番号を付与している。 Hereinafter, the best embodiment of the present invention will be described with reference to FIGS. In addition, about the symbol and component number in a figure, the common symbol or number is provided to what functions as the same component.
 図1に本実施形態で用いる単結晶ダイヤモンド基板の製造方法説明図を、図2に同基板の基板表面(a)及び裏面(b)に於けるAFM測定画像を、それぞれ示す。尚、育成用ステージ、チャンバー及びターゲットといった育成装置については、図中での記載を省略している。 FIG. 1 is an explanatory diagram of a method for producing a single crystal diamond substrate used in this embodiment, and FIG. 2 shows AFM measurement images on the substrate front surface (a) and back surface (b) of the substrate. In addition, about the growth apparatuses, such as a growth stage, a chamber, and a target, description in a figure is abbreviate | omitted.
 図1(a)~(g)から解るように、本実施形態では初めにMgO単結晶からなる下地基板1上にCVD法等を用いて単結晶ダイヤモンド層3を気相成長させており、当該ダイヤモンド層から下地基板等を分離して得られたダイヤモンド基板の裏面を成長層として用いることで、前記高精度な表面粗さを有するダイヤモンド単結晶基板を成長可能なホモエピタキシャル用ダイヤモンド単結晶基板(以下ホモエピ用基板として記載)4を得ることができた。 As can be seen from FIGS. 1A to 1G, in this embodiment, the single crystal diamond layer 3 is first vapor-deposited on the base substrate 1 made of MgO single crystal using a CVD method or the like. A diamond single crystal substrate for homoepitaxial growth that can grow the diamond single crystal substrate having the above-mentioned high-precision surface roughness by using the back surface of the diamond substrate obtained by separating the base substrate and the like from the diamond layer as a growth layer ( 4) was obtained.
 以下に、詳細な説明を述べる。初めのダイヤモンド層を形成する下地基板1について、本実施形態ではMgO単結晶を使用するが、それ以外の材質としては、酸化アルミニウム(α-Al:サファイア)、Si、石英、白金、イリジウム、チタン酸ストロンチウム(SrTiO)等が挙げられる。これらのうちMgO単結晶基板と酸化アルミニウム(サファイア)単結晶基板は、熱的に極めて安定していると共に、8インチ(約203.2mm)までの直径の基板が出ているため、簡単に入手可能との理由から、前記ホモエピ用基板作成時に用いるダイヤモンド層用の基板として好ましい。 Detailed description will be given below. For the base substrate 1 for forming the first diamond layer, MgO single crystal is used in this embodiment, but other materials include aluminum oxide (α-Al 2 O 3 : sapphire), Si, quartz, platinum, iridium, and strontium titanate (SrTiO 3) or the like. Of these, the MgO single crystal substrate and the aluminum oxide (sapphire) single crystal substrate are extremely stable thermally and have a diameter of up to 8 inches (about 203.2 mm). For the reason that it is possible, it is preferable as a substrate for a diamond layer used when the above-mentioned homoepi substrate is prepared.
 また、前記下地基板1は、少なくとも片面が鏡面研磨されたものを用いる。これは、後述するダイヤモンド層3の成長工程において、ダイヤモンド層3が鏡面研磨された面側に成長形成される事に起因する。当該鏡面研磨は、少なくとも片面でダイヤモンド層が成長可能な程度まで平滑となるように行われれば良く、目安としては表面粗さRaで10nm以下まで研磨することが好ましい。これは、Raが10nmを超えると、片成長させるダイヤモンド層の品質悪化を招いてしまう為である。尚、当該片面上にはクラックが無いものとする。また、Raの測定は、表面粗さ測定機により行うことができる。当該基板については、必要に応じて両面が鏡面研磨された基板を用いても良く、この場合何れか一方の面をダイヤモンド層の成長面として任意に利用できる。 Further, the base substrate 1 is a substrate whose at least one surface is mirror-polished. This is because the diamond layer 3 is grown and formed on the mirror-polished surface side in the later-described diamond layer 3 growth step. The mirror polishing may be performed so that at least one side is smooth enough to grow a diamond layer. As a guideline, the surface roughness Ra is preferably 10 nm or less. This is because when the Ra exceeds 10 nm, the quality of the diamond layer to be grown on one piece is deteriorated. It is assumed that there is no crack on the one side. Further, Ra can be measured with a surface roughness measuring machine. As the substrate, a substrate whose both surfaces are mirror-polished may be used as necessary. In this case, any one surface can be arbitrarily used as a growth surface of the diamond layer.
 尚、下地基板1にMgO単結晶基板を用いる場合、ダイヤモンド層の成長面として(001)面を用いることが好ましいが、(001)以外の面も使用可能である。また、ダイヤモンド層用の基板について、平面方向の形状は特に限定されず、例えば円形状や方形でも良い。また、当該基板が円形状の場合は大型化という観点から、直径2インチ(約50.8mm)以上であることが好ましく、3インチ(約76.2mm)以上であることがより好ましく、6インチ(約152.4mm)以上であることが更に好ましい。当該基板について直径の上限値は特に限定されないが、実用上の観点から8インチ以下が好ましい。本願では基板の寸法公差を考慮し、直径2インチに関しては50.8mmの2%に当たる1.0mmを減算した、直径49.8mm以上~50.8mmの範囲も2インチに該当すると定義する。 In addition, when using a MgO single-crystal substrate for the base substrate 1, it is preferable to use a (001) plane as a growth surface of a diamond layer, but planes other than (001) can also be used. Further, the shape in the plane direction of the substrate for the diamond layer is not particularly limited, and may be, for example, a circular shape or a square shape. When the substrate is circular, it is preferably 2 inches (about 50.8 mm) or more in diameter from the viewpoint of enlargement, more preferably 3 inches (about 76.2 mm) or more, and 6 inches. More preferably (about 152.4 mm). The upper limit of the diameter of the substrate is not particularly limited, but is preferably 8 inches or less from a practical viewpoint. In the present application, in consideration of the dimensional tolerance of the substrate, the range of 49.8 mm to 50.8 mm, which is obtained by subtracting 1.0 mm, which is 2% of 50.8 mm, is defined as 2 inches.
 上記下地基板1について円形の場合に於けるサイズを規定する一方、当該基板が方形の場合は大型化という観点から、50mm×50mm以上であることが好ましく、75mm×75mm以上であることがより好ましい。また、寸法の上限値は実用上の観点から、200mm×200mm以下が好ましい。従って、ダイヤモンド層用の基板は、少なくとも20cmの表面積を有する。更に、大型化という観点から、1297cmまでの表面積を有することが、より好ましい。 While the size of the base substrate 1 is defined in a circular shape, the size is preferably 50 mm × 50 mm or more, more preferably 75 mm × 75 mm or more from the viewpoint of increasing the size when the substrate is square. . Further, the upper limit of the dimension is preferably 200 mm × 200 mm or less from a practical viewpoint. Therefore, the diamond layer substrate has a surface area of at least 20 cm 2 . Furthermore, it is more preferable to have a surface area of up to 1297 cm 2 from the viewpoint of enlargement.
 また、前記下地基板1の厚みは、3.0mm以下であることが好ましく、1.5mm以下であることがより好ましく、1.0mm以下であることが更に好ましい。厚みの下限値は特に限定されないが、剛性を確保する観点から0.05mm以上であることが好ましく、0.4mm以上であることがより好ましい。尚、平面方向の形状が円形状で、直径50mm以上150mm以下のときは当該厚みが0.3mm以上、直径が150mmを超えるときは、厚みが0.6mm以上あることが、それぞれ好ましい。 Further, the thickness of the base substrate 1 is preferably 3.0 mm or less, more preferably 1.5 mm or less, and further preferably 1.0 mm or less. Although the lower limit of thickness is not specifically limited, It is preferable that it is 0.05 mm or more from a viewpoint of ensuring rigidity, and it is more preferable that it is 0.4 mm or more. In addition, when the planar shape is circular and the diameter is 50 mm or more and 150 mm or less, the thickness is preferably 0.3 mm or more, and when the diameter exceeds 150 mm, the thickness is preferably 0.6 mm or more.
 尚、本実施形態では、下処理として下地基板1の面上に、イリジウム(Ir)単結晶膜2を成膜し、当該Ir単結晶膜上にダイヤモンド層を成長形成している。 In this embodiment, as a pretreatment, an iridium (Ir) single crystal film 2 is formed on the surface of the base substrate 1, and a diamond layer is grown on the Ir single crystal film.
 次に、片面にダイヤモンド単結晶から成るダイヤモンド層3を成長させて形成する。ダイヤモンド層の成長方法は特に限定されず、公知の方法が利用できる。成長方法の具体例としては、パルスレーザ蒸着(PLD:Pulsed Laser Deposition)法や、化学気相蒸着法(CVD:Chemical Vapor Deposition)法等の気相成長法がある。 Next, a diamond layer 3 made of a diamond single crystal is grown and formed on one side. The method for growing the diamond layer is not particularly limited, and a known method can be used. Specific examples of the growth method include a vapor phase growth method such as a pulsed laser deposition (PLD) method and a chemical vapor deposition (CVD) method.
 前記CVD法を用いる場合、CVD成長炉内にダイヤモンド層用の基板を配置し、当該基板片面上にCVDダイヤモンド単結晶を成長させる。成長方法は、直流プラズマ法、熱フィラメント法、燃焼炎法、アークジェット法等が利用可能であるが、不純物の混入が少ない高品質なダイヤモンドを得るためにはマイクロ波プラズマ法が好ましい。 When the CVD method is used, a diamond layer substrate is placed in a CVD growth furnace, and a CVD diamond single crystal is grown on one surface of the substrate. As a growth method, a direct current plasma method, a hot filament method, a combustion flame method, an arc jet method, or the like can be used, but a microwave plasma method is preferable in order to obtain high-quality diamond with little contamination.
 当該マイクロ波プラズマCVDによるダイヤモンド層のエピタキシャル成長では、原料ガスとして水素、炭素を含む気体を使用する。水素、炭素を含む気体としてメタン/水素ガス流量比0.001%~30%でメタンを成長炉内に導入する。炉内圧力は約1.3×10Pa~1.3×10Paに保ち、周波数2.45GHz(±50MHz)、或いは915MHz(±50MHz)のマイクロ波を電力100W~60kW投入することによりプラズマを発生させる。そのプラズマによる加熱で温度を700℃~1300℃に保った基板片面上に活性種を堆積させて、CVDダイヤモンドを成長させる。ダイヤモンド層の厚みは形成しようとする柱状ダイヤモンドの高さ分となるように設定し、30μm以上500μm以下の厚みで成長することが好ましい。 In the epitaxial growth of the diamond layer by the microwave plasma CVD, a gas containing hydrogen and carbon is used as a source gas. Methane is introduced into the growth furnace as a gas containing hydrogen and carbon at a methane / hydrogen gas flow rate ratio of 0.001% to 30%. By maintaining the pressure in the furnace at about 1.3 × 10 3 Pa to 1.3 × 10 5 Pa and applying microwaves with a frequency of 2.45 GHz (± 50 MHz) or 915 MHz (± 50 MHz) to a power of 100 W to 60 kW Generate plasma. CVD diamond is grown by depositing active species on one side of the substrate maintained at a temperature of 700 ° C. to 1300 ° C. by heating with the plasma. The thickness of the diamond layer is set so as to be equal to the height of the columnar diamond to be formed, and it is preferable to grow with a thickness of 30 μm or more and 500 μm or less.
 上記ダイヤモンド層3を形成後、下地基板1を分離する。本実施形態では、硝酸等を用いたウェットエッチングによって下地基板1を除去すると共に、残ったIr膜2について半田と合金化後、同様の方法で除去している。 After the diamond layer 3 is formed, the base substrate 1 is separated. In the present embodiment, the base substrate 1 is removed by wet etching using nitric acid or the like, and the remaining Ir film 2 is alloyed with solder and then removed by the same method.
 上記述べた方法によって製造された図1記載のホモエピ用基板4について、本実施形態では育成された表面Oを底面とし、ピラーが残った状態の裏面Uに再度上記ダイヤモンド基板層の気相成長を行った。(図1中(e)参照)尚、当該成長の条件は前記ダイヤモンド基板層の気相成長時と同条件を用いている。当該再度の気相成長により、本実施形態では同一材質上へのホモエピタキシャル成長によって高品質な単結晶ダイヤモンド基板を得ることができた。 With respect to the homoepitaxial substrate 4 shown in FIG. 1 manufactured by the above-described method, in this embodiment, the grown surface O is the bottom surface, and the diamond substrate layer is vapor-phase grown again on the back surface U where the pillars remain. went. (See (e) in FIG. 1) The conditions for the growth are the same as those for the vapor phase growth of the diamond substrate layer. By this second vapor phase growth, a high quality single crystal diamond substrate could be obtained by homoepitaxial growth on the same material in this embodiment.
 図2に本実施形態で得られたホモエピ用基板4の表面AFM測定画像を示す。ここで、図2(a)が上記表面Oの結晶表面、(b)が裏面Uの育成用結晶表面であり、表面の表面粗さRa=19.1nm、裏面の表面粗さRa=4.0nmとなっている。図2から解るように、本実施形態で得られたホモエピ用基板は、表面よりも裏面の表面粗さが滑らかに形成されている。これは、上記下地基板の表面が分離した裏面の結晶表面に影響している為で、透過型電子顕微鏡を用いた当該裏面の観察により、加工に起因する原子の乱れ、即ち加工変質層が無いことを確認することができた。 FIG. 2 shows a surface AFM measurement image of the homoepitaxial substrate 4 obtained in this embodiment. 2A shows the crystal surface of the surface O, and FIG. 2B shows the growth crystal surface of the back surface U. The surface roughness Ra = 19.1 nm and the surface roughness Ra = 4. 0 nm. As can be seen from FIG. 2, the homoepitaxial substrate obtained in the present embodiment has the surface roughness of the back surface smoother than the front surface. This is because the surface of the base substrate has an influence on the separated back crystal surface, and there is no disorder of the atoms caused by processing, that is, no work-affected layer by observing the back surface using a transmission electron microscope. I was able to confirm that.
 以上述べたように、本願実施形態記載のホモエピ用基板を用いることで、表面に加工変質層を生じることなく、高精度かつ滑らかな表面粗さを有する単結晶ダイヤモンド基板を提供することができる。 As described above, a single crystal diamond substrate having a high precision and smooth surface roughness can be provided without producing a work-affected layer on the surface by using the homoepitaxial substrate described in the present embodiment.
    1 下地基板
    2 Ir層
    3 ダイヤモンド基板層
    4 ホモエピタキシャル成長用単結晶ダイヤモンド基板
    O 表面
    U 裏面
DESCRIPTION OF SYMBOLS 1 Base substrate 2 Ir layer 3 Diamond substrate layer 4 Single crystal diamond substrate for homoepitaxial growth O Surface U Back surface

Claims (2)

  1.  表面に加工変質層がなく、表面粗さRa=10nm以下、かつ表面に研削、研磨加工が加えられていない単結晶ダイヤモンド基板。 A single crystal diamond substrate that has no work-affected layer on the surface, has a surface roughness Ra of 10 nm or less, and has not been subjected to grinding or polishing on the surface.
  2.  表面に加工変質層がなく、表面粗さRa=5nm以下、かつ表面に研削、研磨加工が加えられていない請求項1記載の単結晶ダイヤモンド基板。 2. The single crystal diamond substrate according to claim 1, wherein there is no work-affected layer on the surface, the surface roughness Ra is 5 nm or less, and the surface is not ground or polished.
PCT/JP2017/025393 2016-07-14 2017-07-12 Single-crystal diamond substrate WO2018012529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527626A JP7161158B2 (en) 2016-07-14 2017-07-12 Method for manufacturing diamond substrate layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-138991 2016-07-14
JP2016138991 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018012529A1 true WO2018012529A1 (en) 2018-01-18

Family

ID=60953064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025393 WO2018012529A1 (en) 2016-07-14 2017-07-12 Single-crystal diamond substrate

Country Status (2)

Country Link
JP (1) JP7161158B2 (en)
WO (1) WO2018012529A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933514A (en) * 2020-08-12 2020-11-13 哈尔滨工业大学 Method for preparing Ir (111) composite substrate for epitaxial single crystal diamond by electron beam evaporation process
JP6998634B1 (en) 2020-10-22 2022-01-18 国立大学法人長岡技術科学大学 A diamond-forming structure and a method for manufacturing a diamond-forming structure.
JP2022520278A (en) * 2019-03-29 2022-03-29 エレメント シックス テクノロジーズ リミテッド Single crystal synthetic diamond material
JP2022093409A (en) * 2018-12-04 2022-06-23 信越化学工業株式会社 Laminated substrate, method for manufacturing the same and method for manufacturing free-standing substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151097A (en) * 1984-12-25 1986-07-09 Showa Denko Kk Production of diamond thin film with smooth surface
JPH04333266A (en) * 1991-01-15 1992-11-20 Norton Co Coated or laminated diamond substrate
JPH0741388A (en) * 1993-03-10 1995-02-10 Sumitomo Electric Ind Ltd Method for flattening and polishing diamond
JP2010013322A (en) * 2008-07-04 2010-01-21 National Institute Of Advanced Industrial & Technology Method for removing surface damage of single-crystal diamond
JP2010516601A (en) * 2007-01-22 2010-05-20 エレメント シックス リミテッド Plasma etching of diamond surface
WO2015199180A1 (en) * 2014-06-25 2015-12-30 住友電気工業株式会社 Process for producing diamond substrate, diamond substrate, and diamond composite substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528654B2 (en) * 2005-03-14 2010-08-18 信越化学工業株式会社 Multilayer substrate, method for manufacturing multilayer substrate, and device
JP2007284285A (en) * 2006-04-14 2007-11-01 Kobe Steel Ltd Diamond film and method for manufacturing the same
JP6112485B2 (en) * 2013-09-19 2017-04-12 国立研究開発法人産業技術総合研究所 Method for producing single crystal diamond

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151097A (en) * 1984-12-25 1986-07-09 Showa Denko Kk Production of diamond thin film with smooth surface
JPH04333266A (en) * 1991-01-15 1992-11-20 Norton Co Coated or laminated diamond substrate
JPH0741388A (en) * 1993-03-10 1995-02-10 Sumitomo Electric Ind Ltd Method for flattening and polishing diamond
JP2010516601A (en) * 2007-01-22 2010-05-20 エレメント シックス リミテッド Plasma etching of diamond surface
JP2010013322A (en) * 2008-07-04 2010-01-21 National Institute Of Advanced Industrial & Technology Method for removing surface damage of single-crystal diamond
WO2015199180A1 (en) * 2014-06-25 2015-12-30 住友電気工業株式会社 Process for producing diamond substrate, diamond substrate, and diamond composite substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022093409A (en) * 2018-12-04 2022-06-23 信越化学工業株式会社 Laminated substrate, method for manufacturing the same and method for manufacturing free-standing substrate
JP7475389B2 (en) 2018-12-04 2024-04-26 信越化学工業株式会社 Multilayer substrate, method for manufacturing multilayer substrate, and method for manufacturing free-standing substrate
JP2022520278A (en) * 2019-03-29 2022-03-29 エレメント シックス テクノロジーズ リミテッド Single crystal synthetic diamond material
JP7304959B2 (en) 2019-03-29 2023-07-07 エレメント シックス テクノロジーズ リミテッド Single crystal synthetic diamond material
CN111933514A (en) * 2020-08-12 2020-11-13 哈尔滨工业大学 Method for preparing Ir (111) composite substrate for epitaxial single crystal diamond by electron beam evaporation process
CN111933514B (en) * 2020-08-12 2023-02-24 哈尔滨工业大学 Method for preparing Ir (111) composite substrate for epitaxial single crystal diamond by electron beam evaporation process
JP6998634B1 (en) 2020-10-22 2022-01-18 国立大学法人長岡技術科学大学 A diamond-forming structure and a method for manufacturing a diamond-forming structure.
JP2022068862A (en) * 2020-10-22 2022-05-10 国立大学法人長岡技術科学大学 Structure for forming diamond and manufacturing method of structure for forming diamond

Also Published As

Publication number Publication date
JP7161158B2 (en) 2022-10-26
JPWO2018012529A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
KR101797428B1 (en) Single-crystal diamond growth base material and method for manufacturing single-crystal diamond substrate
WO2018012529A1 (en) Single-crystal diamond substrate
US10480096B2 (en) Diamond substrate
US11180865B2 (en) Foundation substrate for producing diamond film and method for producing diamond substrate using same
US10619267B2 (en) Diamond substrate
KR102267800B1 (en) Method of manufacturing single crystal diamond
US20110084285A1 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
JPWO2020194803A1 (en) Base substrate and its manufacturing method
US10100435B2 (en) Method for manufacturing diamond substrate
CN110100304A (en) The manufacturing method of III nitride semiconductor substrate and III nitride semiconductor substrate
JP7226722B2 (en) diamond substrate
JP2022109306A (en) Diamond film deposition ground substrate and method for manufacturing diamond substrate using the same
JP6525046B1 (en) Semiconductor wafer manufacturing method
JP2020059648A (en) Diamond substrate, and manufacturing method of diamond substrate
WO2022264754A1 (en) Diamond substrate and manufacturing method for same
JP7487702B2 (en) Method for manufacturing single crystal diamond substrate
US20150376776A1 (en) Variable-temperature material growth stages and thin film growth
JP7439117B2 (en) Underlying substrate and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018527626

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827656

Country of ref document: EP

Kind code of ref document: A1