WO2018012402A1 - Heat insulating material and method for producing same - Google Patents

Heat insulating material and method for producing same Download PDF

Info

Publication number
WO2018012402A1
WO2018012402A1 PCT/JP2017/024835 JP2017024835W WO2018012402A1 WO 2018012402 A1 WO2018012402 A1 WO 2018012402A1 JP 2017024835 W JP2017024835 W JP 2017024835W WO 2018012402 A1 WO2018012402 A1 WO 2018012402A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
layer
core layer
heat insulating
insulating material
Prior art date
Application number
PCT/JP2017/024835
Other languages
French (fr)
Japanese (ja)
Inventor
嘉村 輝雄
隆欣 伊藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201780042591.0A priority Critical patent/CN109477606A/en
Priority to JP2018527564A priority patent/JP7192497B2/en
Priority to KR1020197003447A priority patent/KR20190027854A/en
Publication of WO2018012402A1 publication Critical patent/WO2018012402A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • the present invention relates to a heat insulating material and a manufacturing method thereof.
  • the heat insulating material is used for the purpose of enhancing the heat insulating performance, and a foamed material such as urethane foam is used as a heat insulating material for a refrigerator, a freezer, a building material or the like.
  • a vacuum heat insulating material is used in which urethane foam or glass fiber having a continuous hollow structure is used as a core material, and these core materials are vacuum packaged with a gas barrier packaging material (for example, Patent Document 1, Patent Document 2).
  • a vacuum chamber is used to manufacture such a vacuum heat insulating material.
  • a vacuum insulation material that does not use a vacuum chamber is manufactured by mixing a gas absorbent with the foaming resin composition that is the core material and then removing it with the gas absorbent while foaming with carbon dioxide gas.
  • a method of creating a situation and improving the heat insulation performance has been proposed.
  • a gas absorbent is not mixed with the resin composition, but a gas absorbent in the form of a sachet is installed outside the foamed urethane having a continuous hollow structure to absorb carbon dioxide inside (for example, a patent Reference 4) has also been proposed.
  • An object of the present invention is to provide a heat insulating material having high heat insulating performance without using a vacuum chamber.
  • the present inventors have determined that a core layer (A) having a fine hollow structure, a gas absorption layer (B) that is at least partially located outside the core layer (A) and can absorb gas. And the heat insulating material having a gas barrier layer (C) which is located outside the gas absorption layer (B) and can shut off the gas, it has been found that the above problem can be solved. That is, the present invention is as follows.
  • a core layer (A) having a fine hollow structure having a fine hollow structure;
  • a heat insulating material having (C) A heat insulating material having (C).
  • a gas absorbing layer at least part of which is located outside the core layer (A) and capable of absorbing gas
  • B) causing the gas in the core layer (A) to be absorbed [10]
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiment is an exemplification for explaining the present invention, and is not intended to limit the present invention to the following embodiment.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the heat insulating material of the present embodiment is a core layer (A) having a fine hollow structure (hereinafter, also simply referred to as “core layer (A)”), at least part of which is located outside the core layer (A), Gas absorbing layer (B) capable of absorbing gas (hereinafter also referred to simply as “gas absorbing layer (B)”), and gas blocking layer located outside the gas absorbing layer (B) and capable of blocking gas (C) (hereinafter also referred to simply as “gas barrier layer (C)”).
  • core layer (A), the gas absorption layer (B), and the gas barrier layer (C) will be described in detail.
  • the core layer (A) is located in the central core of the heat insulating material as in the example shown in FIG. 1 in the present embodiment, and is a fine hollow portion represented by a fine bubble (hereinafter referred to as “fine hollow”). A layer having a structure. Since the core layer (A) has a fine hollow structure, the heat insulating performance of the heat insulating material in the present embodiment is greatly improved.
  • the fine hollow structure means a structure having an average diameter (hereinafter, also referred to as “average hollow diameter”) of the fine hollow structure in the present embodiment in a range of 500 ⁇ m or less.
  • the average hollow diameter is preferably 1 to 300 ⁇ m, more preferably 1 to 100 ⁇ m, and further preferably 1 to 50 ⁇ m.
  • the average hollow diameter is 500 ⁇ m or less, the thermal conductivity tends to decrease when the inside of the hollow body is depressurized, and a good heat insulating material tends to be easily obtained.
  • the average hollow diameter is 1 ⁇ m or more, the porosity tends to be difficult to decrease.
  • the resin properties such as the type and amount of gas and nucleating agent that contribute to foaming, the melt tension value of the base resin, etc.
  • the temperature and pressure at the time of molding, the shape of the molding machine, etc. are optimized.
  • the average hollow diameter of the fine hollow structure can be measured by the method described in Examples described later.
  • the porosity of the core layer (A) having a fine hollow structure is preferably 90.0 to 99.0%, more preferably 93.0 to 98.5%, and further preferably 95.0% to 98. 0.0%. Since the thermal conductivity of the base material portion is high, the thermal conductivity and strength tend to be within a preferable range by being in such a range. In order to obtain the core layer (A) having a porosity in the above range, for example, in the case of a foam, the amount of gas that contributes to foaming may be increased. The porosity of the core layer (A) can be measured by the method described in Examples described later.
  • Independent hollow body ratio of the fine hollow structure is the ratio of the fine hollow structure not communicating with the outside of the core layer (A) among all the fine hollow structures in the core layer (A)). In order to express practical strength and heat insulation performance, it is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
  • the independent hollow body ratio of the fine hollow structure can be measured by the method described in Examples described later.
  • the core layer (A) having a fine hollow structure can improve the heat insulation performance by lowering the pressure in the hollow part.
  • the pressure of the fine hollow structure is preferably 10 to 10,000 Pa, more preferably 15 to 5000 Pa, and still more preferably 20 to 1000 Pa.
  • the pressure is 10 Pa or more, the influence of gas leakage or the like is relatively reduced, and the pressure tends to be maintained.
  • the pressure is 10000 Pa or less, a good heat insulating material with low thermal conductivity is obtained. It is easy to be done.
  • a gas absorption layer (B) having a capability of absorbing a large amount of gas contained in the core layer (A) may be used.
  • the pressure of the fine hollow structure can be measured by the method described in Examples described later.
  • the thickness of the core layer (A) having a fine hollow structure is preferably 0.5 to 40 mm, more preferably 1 to 25 mm, and further preferably 2 to 20 mm.
  • the thickness is 0.5 mm or more, heat insulation performance as a heat insulating material can be maintained, and when the thickness is 40 mm or less, gas absorption inside the core layer (A) by the gas absorption layer (B) is achieved. Tends to be easy and the heat insulation performance tends to be excellent.
  • the production method of the core layer (A) having a fine hollow structure is not particularly limited.
  • a foaming agent is included in the base material to create a fine hollow structure by foaming, or hollow microcapsules are dispersed in the base material.
  • a technique in which a fibrous material having a hollow structure is contained in the substrate can be used.
  • a method of making the base material contain a foaming agent and creating a fine hollow structure by the extrusion foaming method or the bead foaming method is preferable, and the extrusion foaming method is more preferable.
  • the resin used as the substrate is not particularly limited.
  • polyurethane, polyvinyl chloride, polycarbonate, polystyrene, polytetrafluoroethylene, polyolefin, ionomer, polysulfone, cellulose acetate and its analogs, ethyl cellulose, polydimethylsiloxane, silicone resin, And chlorosulfonated polyethylene From the viewpoint of gas permeability and strength, polyurethane, polyvinyl chloride, polycarbonate, polystyrene, polyolefin, cellulose acetate and its analogs, and silicone resin are preferable, and polystyrene and polyolefin are more preferable.
  • polyurethane, polyvinyl chloride, polycarbonate, polystyrene, polyolefin, cellulose acetate and its analogs, and silicone resin are preferable, and polystyrene and polyolefin are more preferable.
  • One or more of these can be
  • the foaming agent is used to expand rubber, plastic, etc., which are base materials, in order to create a fine hollow structure, and is roughly classified into a chemical foaming agent and a physical foaming agent.
  • a chemical foaming agent is a substance that generates a gas such as nitrogen, ammonia gas, hydrogen, carbon dioxide, water vapor, or oxygen by thermal decomposition or chemical reaction.
  • chemical blowing agents include azo, nitroso, hydrazide, semicarbazide, azide, triazole, tetrazole, isocyanate, bicarbonate, carbonate, nitrite, hydride, sodium bicarbonate and acid.
  • Examples include a combination, a combination of hydrogen peroxide and yeast, and a combination of metal powder and acid.
  • Carbonate that generates carbon dioxide and bicarbonate are preferable because they can generate high-purity gas. One or more of these can be used in combination. Moreover, these can be obtained easily and can be used suitably.
  • Physical foaming agent is a substance that foams due to physical changes such as pressure release and vaporization of compressed gas.
  • specific examples include inert gases such as nitrogen, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, water, and carbon dioxide. Carbon dioxide and water are preferred from the viewpoints of safety, environmental compatibility, and gas absorption. One or more of these can be used in combination. Moreover, these can be obtained easily and can be used suitably.
  • the amount of foaming agent added cannot be uniquely determined because the optimum amount varies depending on the type of base material and the type of foaming agent.
  • a method for producing a fine hollow structure using a foaming agent is performed by foaming in a base material containing a foaming agent, and the foaming method is variously determined depending on the type and amount of the foaming agent.
  • carbon dioxide gas is used as the physical foaming agent, it can be suitably carried out according to a technique described in JP 2010-173263A as a known technique.
  • the gas absorption layer (B) is located outside the core layer (A) of the heat insulating material as in the example shown in FIG. 1 in this embodiment, and the core layer (A It is a layer that can absorb the gas inside.
  • the gas absorption layer (B) completely includes the core layer (A), but the gas absorption layer (B) may be located outside the core layer (A).
  • the gas absorption layer (B) may not include a part of the core layer (A) and may include a part other than the end of the core layer (A). . Since the gas absorption layer (B) absorbs the gas, the pressure in the hollow portion of the core layer (A) is lowered, so that the heat insulation performance is improved.
  • the gas absorption layer (B) is a layer capable of absorbing gas by containing a gas absorbent, for example.
  • a gas absorbent for example.
  • Specific examples of the mode of containing the gas absorbent include a layer using the gas absorbent alone or a layer containing the gas absorbent in the base material.
  • the base material in addition to the same base material used for the core layer (A), rubbers such as natural rubber, butadiene rubber, silicone rubber, vinyl acetate emulsion adhesive, rubber adhesive, starch adhesive Such adhesives and pressure-sensitive adhesives can be suitably used.
  • the gas absorbent is a substance that can absorb gas, and the type of gas to be absorbed is not particularly limited, and examples thereof include carbon dioxide, water vapor, and oxygen.
  • gas absorbents include alkali metal hydroxides, alkaline earth metal hydroxides, amine compounds, epoxy compounds, alkali metals, alkaline earth metals, alkali metal hydrides, alkaline earth metal hydrides, Lithium aluminum hydride, metal sulfate, calcium chloride, activated alumina, silica gel, molecular sieve, alkali metal carbonate, calcium oxide, sulfuric acid, phosphorus oxide, iron, sulfite, ascorbic acid, glycerin, MXD6 nylon, ethylenic acid Saturated hydrocarbons, polymers with cyclohexene groups, oxygen atom defect structures of metal oxides such as titanium and cerium, alkali metal hydroxides, alkaline earth metal hydroxides, metal sulfates, chlorides Calcium, activated
  • the amount of the gas absorbent added is preferably in the range of 5 to 99 parts by weight with respect to 100 parts by weight of the base. More preferably, the amount is 10 to 99 parts by mass in order to increase the amount of absorption and the rate of absorption.
  • the gas absorption layer (B) may have a multilayer structure or a single layer structure, and a layer other than the gas absorption layer may be provided between the gas absorption layer (B) and the core layer (A).
  • layers other than gas absorption include an adhesive layer that bonds the core layer (A) and the gas absorption layer (B), and a buffer layer that prevents components of the gas absorption layer from moving to the core layer (A). It is done.
  • the gas absorption layer (B) directly or indirectly covers 40% or more of the surface area of the core layer (A). Preferably, it covers 75% or more, and more preferably covers 80% or more.
  • the thickness of the gas absorption layer (B) is preferably 10 to 500 ⁇ m. By being in this range, the gas absorption performance and the heat insulation performance tend to be compatible. When the thickness is 10 ⁇ m or more, the performance of the gas absorbent that contributes is easily obtained, and when the thickness is 500 ⁇ m or less, the ratio of the gas absorption layer (B) in the heat insulating material does not become too large, and the thermal conductivity. It tends to be able to suppress the deterioration of.
  • the gas absorption layer (B) can be produced, for example, by melting and kneading a gas absorbent in a resin to produce resin pellets and film-molding. As another form, it can also be produced by coating the core layer (A) or film after kneading a gas absorbent with the above-mentioned adhesive.
  • the gas blocking layer (C) is a layer that is located outside the gas absorption layer (B) and can block gas from the outside, as in the example shown in FIG. 1 in the present embodiment.
  • the gas barrier layer (C) is not particularly limited as long as it can prevent air from entering the core layer (A).
  • a metal oxide vapor deposition film, a silicon oxide vapor deposition film, and a metal vapor deposition film are used.
  • a multilayer body having one or more selected from the group consisting of metal thin films is preferable because of its excellent gas barrier properties. These are available as commercial products and can be suitably used. One or more of these can be used in combination.
  • the gas barrier layer (C) may have a multilayer structure or a single layer structure, and a layer other than a gas barrier layer between the gas barrier layer (C) and the gas absorption layer (B) or the atmosphere. These layers may be provided. Examples of layers other than the gas blocking layer include a sealant resin layer for performing heat sealing and a protective layer for preventing pinholes in the gas blocking layer (C).
  • the thickness of the gas barrier layer (C) is preferably 1 ⁇ m to 500 ⁇ m. By being in this range, the gas barrier performance and the heat insulating performance tend to be compatible.
  • the manufacturing method of the heat insulating material of this embodiment will not be specifically limited if the heat insulating material of this embodiment can be obtained, For example, it has the following process. (1) A step of obtaining a core layer (A) having a fine hollow structure by foaming a resin (2) A step of absorbing a gas inside the core layer (A) in a gas absorption layer (B) capable of absorbing gas
  • the step (1) for obtaining the core layer is not particularly limited, and examples thereof include those similar to the above-described “method for producing the core layer (A)”.
  • the step (2) for absorbing gas is not particularly limited.
  • the core layer (A) having a fine hollow structure is combined with the gas absorption layer (B) and the gas blocking layer (C). It can be carried out.
  • the gas absorption layer (B) and the gas barrier layer (C) are bonded by a conventional dry laminate, and the gas absorption layer (B) and the gas barrier layer (C) are combined. Examples thereof include a technique of applying an adhesive to the layer and bonding it to the core layer (A).
  • the core layer (A) and the gas absorption layer (B) are bonded with a conventional dry laminate or heat laminate, and the composite of the core layer (A) and the gas absorption layer (B) is formed.
  • a technique of covering without adhering with the gas barrier layer (C) may also be mentioned.
  • step (1) of obtaining the core layer it is preferable to use the extrusion foaming method among the “method for producing the core layer (A)” described above.
  • the average hollow diameter of the fine hollow structure was calculated by the following method. Specifically, first, the core layer (A) is cut along an arbitrary X direction orthogonal to the thickness direction and the Y direction orthogonal to the thickness direction and the X direction, and the center portion of each cut surface is cut. The image was magnified 20 to 100 times with a scanning electron microscope (trade name “JSM-6460LA” manufactured by JEOL Ltd.). Next, the photographed image was printed on A4 paper, and a straight line having a length of 60 mm was drawn on the image. Here, the cut surface cut in the X direction was drawn in parallel with the X direction, and the cut surface cut in the Y direction was drawn in parallel with the Y direction.
  • the hollow average chord length (t) is calculated from the number of hollows existing on each straight line (including point contact) by the following formula, and the average chord length in the X direction (tX direction) and the average chord length in the Y direction ( tY direction).
  • Average chord length (t) 60 (mm) / (number of hollows ⁇ photo magnification)
  • Porosity (base material density ⁇ core layer (A) density) / (base material density) ⁇ 100
  • the independent hollow body rate of the fine hollow structure was computed from the following formula.
  • each measurement and each calculation were performed about five different test pieces, and the average value was calculated
  • Independent hollow body ratio (%) (Vx ⁇ W / ⁇ ) ⁇ 100 / (Va ⁇ W / ⁇ ) Vx: Sum of the volume of the resin constituting the fine hollow structure and the total hollow volume of the independent hollow portion in the foamed resin molded body (cm 3 ) Va: Apparent volume calculated geometrically (cm 3 ) W: Mass of the foamed resin molding (g) ⁇ : density of the base material constituting the core layer (A) (g / cm 3 )
  • the injection needle was pierced within one hour after the heat insulating material was produced.
  • the heat insulating material which measured the pressure since the heat conductivity mentioned later cannot be measured after that, the heat conductivity produced and measured another heat insulating material of the same structure.
  • Method 2 The heat insulating material in which the gas barrier layer (C) is not integrated with the core layer (A) with an adhesive or the like was measured by the following method which can be measured more easily.
  • An acrylic vacuum chamber was prepared, and a high-precision vacuum gauge (Canon Anelva Co., Ltd .: M-342DG) was attached thereto.
  • a displacement sensor (Omron: ZX2) that can accurately measure the distance is placed outside the chamber, and the displacement sensor and chamber are placed in the chamber. Measured the distance to the surface of the insulation.
  • the gas blocking layer (C) moves when the pressure inside the chamber becomes lower than the pressure of the core layer (A). By detecting this movement with the displacement sensor, The pressure of the core layer (A) was measured.
  • the thickness of the core layer (A) was measured in units of 0.1 millimeter using a caliper.
  • the thicknesses of the gas absorption layer (B) and the gas barrier layer (C) were measured in units of 1 micrometer by observing a cross-sectional portion of each layer with a scanning electron microscope (JSM-6460LA, manufactured by JEOL Ltd.).
  • the thickness of the test sample of the heat insulator was measured simultaneously by the thermal conductivity measurement with the HFM436.
  • Thermal conductivity In accordance with the HFM method described in JIS A1412, the thermal conductivity of the heat insulating material was measured at 25 degrees using a thermal conductivity measuring device HFM436 manufactured by Netch Japan Co., Ltd. Thermal conductivity is A rating of 0.020 W / mK or less, B evaluation of 0.021 to 0.025 W / mK C evaluation of 0.026 to 0.030 W / mK What was 0.031 W / mK or more was made into D evaluation. What was evaluated as D is rejected.
  • the gas absorption layer (B1) was prepared using a polyethylene resin (ELITE 5220G manufactured by Dow Chemical Company) as a base material, calcium hydroxide as a carbon dioxide absorbent, and calcium oxide as a water vapor absorbent.
  • ELITE 5220G manufactured by Dow Chemical Company
  • a two-layer film was formed using the resin pellets (b1-1) and (b1-2) at a ratio of 1: 1 to obtain a gas absorption layer (B1) having a thickness of 100 ⁇ m.
  • a dry laminate adhesive TM250HV manufactured by Toyo Morton and a curing agent CAT-RT86L-60 were diluted twice with ethyl acetate.
  • a commercially available gas barrier film having a layer structure of PET / DL / Al / LDPE / LLDPE as a gas barrier layer (C) (San-A Kaken: for retort pouches, PET: polyethylene terephthalate, The LLDPE side of DL: adhesive, Al: aluminum foil, LDPE: low density polyethylene, LLDPE: linear short chain branched polyethylene) is bonded and compounded by dry lamination, and the gas absorption layer (B1) and gas barrier layer ( C) was obtained.
  • a tandem type extruder in which a first extruder and a second extruder are connected was prepared. 100 parts by mass of polystyrene resin (G9305 manufactured by PS Japan Co., Ltd.) is supplied to the first extruder of the tandem extruder and melt kneaded, and carbon dioxide as a foaming agent from the middle of the flow path of the first extruder. The melted polystyrene resin and carbon dioxide were uniformly mixed and kneaded, and the polystyrene resin was continuously supplied to the second extruder and cooled to a temperature suitable for foaming while being melt-kneaded.
  • polystyrene resin G9305 manufactured by PS Japan Co., Ltd.
  • polystyrene resin is extruded and foamed from a circular mold attached to the tip of the second extruder, and the resulting cylindrical foamed product is cooled along with the mandrel, and is cylindrical by a cutter at one point on the mandrel.
  • the foam molded body was cut into a 5 mm thick core layer (A1) having a fine hollow structure.
  • Table 1 shows the average hollow diameter, porosity, and independent hollow body ratio of the core layer (A1).
  • the gas barrier layer (C) is formed on the (b1-2) layer side of the gas absorption layer (B1) of the multilayer film having the gas absorption layer (B1) and the gas barrier layer (C) produced by the above method.
  • the core layer (A) was bonded using an adhesive in the same manner as the bonded method. And the terminal part was sealed in the range of 20 mm in width using the heat seal (made by Fuji Impulse). Seven days later, the thermal conductivity and pressure (method 1) of the composite (heat insulating material) of this core layer (A1) -gas absorption layer (B1) -gas barrier layer (C) were measured. The results are shown in Table 1.
  • a core layer (A) was produced in the same manner as in Example 1 except that carbon dioxide and water were used as the foaming agent.
  • Table 1 shows the average hollow diameter, porosity, and independent hollow body ratio of the produced core layer (A2).
  • the (b2-1) layer side of the gas absorption layer (B2) was bonded to the core layer (A2) produced by the above method to produce a composite. This step was performed in a carbon dioxide atmosphere.
  • Example 3 As the core layer (A), a composite (heat insulating material) was prepared in the same manner as in Example 2 except that the core layer (A3) having the average hollow diameter, porosity, and independent hollow body ratio shown in Table 1 was used. The thermal conductivity and pressure (Method 2) were measured. The results are shown in Table 1.
  • Example 4 A core layer (A2) was obtained in the same manner as in Example 2. Subsequently, 1/3 of the surface of the core layer (A2) was bonded to the gas absorption layer (B2), and the whole was covered with the gas barrier layer (C). After removing the gas between the gas barrier layers (C) as much as possible, the end portion was sealed with a heat seal in the range of a width of 10 mm. This step was performed in a carbon dioxide atmosphere. Two weeks later, the thermal conductivity and pressure (Method 2) of the composite (heat insulating material) of this core layer (A2) -gas absorption layer (B2) -gas barrier layer (C) were measured. The results are shown in Table 1.
  • the bag-shaped gas absorption sachet was used instead of the gas absorption layer (B), the pressure drop was small. Moreover, since the sachet portion protruded from the surface of the heat insulating material, the heat conductivity could not be measured accurately.

Abstract

The present invention provides a heat insulating material which comprises: a core layer (A) having a fine hollow structure; a gas absorption layer (B), at least a part of which is positioned outside the core layer (A), and which is capable of absorbing a gas; and a gas blocking layer (C) which is positioned outside the gas absorption layer (B), and which is capable of blocking a gas.

Description

断熱材及びその製造方法Insulating material and manufacturing method thereof
 本発明は、断熱材及びその製造方法に関する。 The present invention relates to a heat insulating material and a manufacturing method thereof.
 断熱材は、断熱性能を高める目的で使用され、冷蔵庫や冷凍庫、建材等の断熱材として発泡ウレタン等の発泡体が用いられている。近年は更に断熱性を向上させるために連通中空構造の発泡ウレタンやガラス繊維をコア材とし、これらコア材をガスバリア性包材で真空包装した真空断熱材が使用される(例えば、特許文献1、特許文献2参照)。また、このような真空断熱材を製造するために、真空チャンバーが使用される。 The heat insulating material is used for the purpose of enhancing the heat insulating performance, and a foamed material such as urethane foam is used as a heat insulating material for a refrigerator, a freezer, a building material or the like. In recent years, in order to further improve the heat insulation properties, a vacuum heat insulating material is used in which urethane foam or glass fiber having a continuous hollow structure is used as a core material, and these core materials are vacuum packaged with a gas barrier packaging material (for example, Patent Document 1, Patent Document 2). Moreover, a vacuum chamber is used to manufacture such a vacuum heat insulating material.
 真空チャンバーを使用しない真空断熱材の製造技術としては、コア材となる発泡用樹脂組成物にガス吸収剤を混ぜた後、二酸化炭素ガスによる発泡をさせつつ、ガス吸収剤で除去する事によって真空状況を作り出して断熱性能を向上させる方法(例えば、特許文献3参照)が提案されている。 A vacuum insulation material that does not use a vacuum chamber is manufactured by mixing a gas absorbent with the foaming resin composition that is the core material and then removing it with the gas absorbent while foaming with carbon dioxide gas. A method of creating a situation and improving the heat insulation performance (see, for example, Patent Document 3) has been proposed.
 この他には、樹脂組成物にガス吸収剤を混ぜるのではなく、連通中空構造の発泡ウレタンの外部に小袋状にしたガス吸収剤を設置して内部の二酸化炭素を吸収させる方法(例えば、特許文献4参照)も提案されている。 Other than this, a gas absorbent is not mixed with the resin composition, but a gas absorbent in the form of a sachet is installed outside the foamed urethane having a continuous hollow structure to absorb carbon dioxide inside (for example, a patent Reference 4) has also been proposed.
特開平7-234067号公報Japanese Patent Laid-Open No. 7-234067 特開平9-138058号公報Japanese Patent Laid-Open No. 9-138058 特開1995-053769号公報Japanese Patent Laid-Open No. 1995-053769 特開1999-334764号公報JP 1999-334864 A
 しかしながら真空包装において高い断熱性能を発現させる為には、一般的に10Pa以下の高真空が必要とされ、僅かに真空度が悪化しても性能が急激に低下してしまう。また製造工程においては真空チャンバーを用いて、高真空状態を長時間維持する必要があり、このことが生産性を低下させる要因となる。 However, in order to exhibit high heat insulation performance in vacuum packaging, a high vacuum of 10 Pa or less is generally required, and even if the degree of vacuum is slightly deteriorated, the performance is drastically lowered. Further, in the manufacturing process, it is necessary to maintain a high vacuum state for a long time using a vacuum chamber, which causes a decrease in productivity.
 また、特許文献3に記載されるような従来の方法では、発泡とガス吸収とのバランスを調整することが困難であり、更にガス吸収剤のコア材への添加は熱伝導率を上げてしまうため、十分な断熱性を達成することが困難である。また、特許文献4に記載されるような方法では、ガス吸収が局所化するため、ガスを除去するのに長時間を要したり、連通中空構造に由来する物理強度の低下等の問題点がある。 Moreover, in the conventional method as described in Patent Document 3, it is difficult to adjust the balance between foaming and gas absorption, and addition of a gas absorbent to the core material increases the thermal conductivity. Therefore, it is difficult to achieve sufficient heat insulation. Moreover, in the method as described in Patent Document 4, since gas absorption is localized, it takes a long time to remove the gas, and there are problems such as a decrease in physical strength derived from the communicating hollow structure. is there.
 本発明の課題は真空チャンバーを使用せずに、高い断熱性能を有する断熱材を提供する事である。 An object of the present invention is to provide a heat insulating material having high heat insulating performance without using a vacuum chamber.
 本発明者らは上記課題について鋭意検討した結果、微細中空構造を有するコア層(A)、少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)、及び該ガス吸収層(B)の外側に位置し、ガスを遮断可能なガス遮断層(C)を有する断熱材を用いる事で上記課題を解決できる事を見出した。
 すなわち、本発明は以下の通りである。
[1]
 微細中空構造を有するコア層(A)、
 少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)、及び
 該ガス吸収層(B)の外側に位置し、ガスを遮断可能なガス遮断層(C)を有する断熱材。
[2]
 前記コア層(A)の空隙率が90~99%の範囲にある[1]に記載の断熱材。
[3]
 前記コア層(A)の微細中空構造の平均中空径が1~500μmの範囲にある[1]又は[2]に記載の断熱材。
[4]
 前記コア層(A)の微細中空構造の圧力が10~10000Paの範囲にある[1]~[3]のいずれかに記載の断熱材。
[5]
 前記コア層(A)の厚さが0.5~40mmの範囲にある[1]~[4]のいずれかに記載の断熱材。
[6]
 前記コア層(A)の微細中空構造の独立中空体率が50%以上である[1]~[5]のいずれかに記載の断熱材。
[7]
 前記ガス吸収層(B)が前記コア層(A)の表面の40%以上を直接又は間接に覆っている[1]~[6]のいずれかに記載の断熱材。
[8]
 前記ガス吸収層(B)が二酸化炭素、水蒸気、及び酸素からなる群より選ばれる1種以上を吸収可能な[1]~[7]のいずれかに記載の断熱材。
[9]
 下記の工程を有する[1]~[8]のいずれかに記載の断熱材の製造方法。
(1)樹脂を発泡させて、微細中空構造を有するコア層(A)を得る工程
(2)少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)に、前記コア層(A)内部のガスを吸収させる工程
[10]
 前記コア層(A)を得る工程において、押出発泡法を用いる[9]に記載の断熱材の製造方法。
As a result of intensive studies on the above problems, the present inventors have determined that a core layer (A) having a fine hollow structure, a gas absorption layer (B) that is at least partially located outside the core layer (A) and can absorb gas. And the heat insulating material having a gas barrier layer (C) which is located outside the gas absorption layer (B) and can shut off the gas, it has been found that the above problem can be solved.
That is, the present invention is as follows.
[1]
A core layer (A) having a fine hollow structure;
A gas absorption layer (B) capable of absorbing gas, at least a part of which is positioned outside the core layer (A), and a gas barrier layer positioned outside the gas absorption layer (B) and capable of blocking gas A heat insulating material having (C).
[2]
The heat insulating material according to [1], wherein the core layer (A) has a porosity of 90 to 99%.
[3]
The heat insulating material according to [1] or [2], wherein an average hollow diameter of the fine hollow structure of the core layer (A) is in the range of 1 to 500 μm.
[4]
The heat insulating material according to any one of [1] to [3], wherein the pressure of the fine hollow structure of the core layer (A) is in the range of 10 to 10,000 Pa.
[5]
The heat insulating material according to any one of [1] to [4], wherein the thickness of the core layer (A) is in the range of 0.5 to 40 mm.
[6]
The heat insulating material according to any one of [1] to [5], wherein an independent hollow body ratio of the fine hollow structure of the core layer (A) is 50% or more.
[7]
The heat insulating material according to any one of [1] to [6], wherein the gas absorption layer (B) directly or indirectly covers 40% or more of the surface of the core layer (A).
[8]
The heat insulating material according to any one of [1] to [7], wherein the gas absorption layer (B) can absorb at least one selected from the group consisting of carbon dioxide, water vapor, and oxygen.
[9]
The method for producing a heat insulating material according to any one of [1] to [8], comprising the following steps.
(1) Step of obtaining a core layer (A) having a fine hollow structure by foaming a resin (2) A gas absorbing layer (at least part of which is located outside the core layer (A) and capable of absorbing gas) B) causing the gas in the core layer (A) to be absorbed [10]
In the process of obtaining the said core layer (A), the manufacturing method of the heat insulating material as described in [9] using an extrusion foaming method.
 本発明により、真空チャンバーを使用せずに、高い断熱性能を有する断熱材を提供することが可能である。 According to the present invention, it is possible to provide a heat insulating material having high heat insulating performance without using a vacuum chamber.
本発明の発泡複合体を用いた断熱材の1形態示す模式図である。It is a schematic diagram which shows 1 form of the heat insulating material using the foam composite of this invention. 本発明の発泡複合体を用いた断熱材の別形態示す模式図である。It is a schematic diagram which shows another form of the heat insulating material using the foam composite of this invention.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の実施の形態に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The following embodiment is an exemplification for explaining the present invention, and is not intended to limit the present invention to the following embodiment. The present invention can be implemented with appropriate modifications within the scope of the gist thereof.
[断熱材]
 本実施形態の断熱材は、微細中空構造を有するコア層(A)(以下、単に「コア層(A)」ともいう。)、少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)(以下、単に「ガス吸収層(B)」ともいう。)、及び該ガス吸収層(B)の外側に位置し、ガスを遮断可能なガス遮断層(C)(以下、単に「ガス遮断層(C)」ともいう。)を有する。以下、コア層(A)、ガス吸収層(B)、及びガス遮断層(C)について詳細に説明する。
[Insulation]
The heat insulating material of the present embodiment is a core layer (A) having a fine hollow structure (hereinafter, also simply referred to as “core layer (A)”), at least part of which is located outside the core layer (A), Gas absorbing layer (B) capable of absorbing gas (hereinafter also referred to simply as “gas absorbing layer (B)”), and gas blocking layer located outside the gas absorbing layer (B) and capable of blocking gas (C) (hereinafter also referred to simply as “gas barrier layer (C)”). Hereinafter, the core layer (A), the gas absorption layer (B), and the gas barrier layer (C) will be described in detail.
[コア層(A)]
 コア層(A)は、本実施形態において図1に示す一例の様に、断熱材の中央のコアに位置し、微小な大きさの泡に代表される微細な中空部分(以下、「微細中空構造」ともいう。)を有する層である。当該コア層(A)は、微細中空構造を有するために本実施形態における断熱材の断熱性能が大きく向上する。
[Core layer (A)]
The core layer (A) is located in the central core of the heat insulating material as in the example shown in FIG. 1 in the present embodiment, and is a fine hollow portion represented by a fine bubble (hereinafter referred to as “fine hollow”). A layer having a structure. Since the core layer (A) has a fine hollow structure, the heat insulating performance of the heat insulating material in the present embodiment is greatly improved.
 微細中空構造とは、本実施形態における微細中空構造の平均径(以下、「平均中空径」ともいう。)が500μm以下の範囲にある構造を意味する。
 平均中空径は好ましくは1~300μm、より好ましくは1~100μmであり、さらに好ましくは1~50μmである。平均中空径が500μm以下であることにより、空体内部が減圧になった際に熱伝導率が低下しやすく、良好な断熱材を得られやすい傾向にある。一方、平均中空径が1μm以上であることにより、空隙率が低下しにくくなる傾向にある。平均中空径が上記範囲にあるような微細中空構造を得るためには、例えば発泡体の場合は、発泡に寄与するガスや核剤の種類及び量、基材樹脂のメルトテンション値等の樹脂特性、成型時の温度や圧力、成型機の形状等を最適化することが行われる。微細中空構造の平均中空径は、後述する実施例に記載の方法により測定できる。
The fine hollow structure means a structure having an average diameter (hereinafter, also referred to as “average hollow diameter”) of the fine hollow structure in the present embodiment in a range of 500 μm or less.
The average hollow diameter is preferably 1 to 300 μm, more preferably 1 to 100 μm, and further preferably 1 to 50 μm. When the average hollow diameter is 500 μm or less, the thermal conductivity tends to decrease when the inside of the hollow body is depressurized, and a good heat insulating material tends to be easily obtained. On the other hand, when the average hollow diameter is 1 μm or more, the porosity tends to be difficult to decrease. In order to obtain a fine hollow structure having an average hollow diameter in the above range, for example, in the case of a foam, the resin properties such as the type and amount of gas and nucleating agent that contribute to foaming, the melt tension value of the base resin, etc. The temperature and pressure at the time of molding, the shape of the molding machine, etc. are optimized. The average hollow diameter of the fine hollow structure can be measured by the method described in Examples described later.
 微細中空構造を有するコア層(A)の空隙率は好ましくは90.0~99.0%であり、より好ましくは93.0~98.5%であり、さらに好ましくは95.0%~98.0%である。基材部分の熱伝導率は高い為、このような範囲にあることで熱伝導率及び強度を好ましい範囲にすることができる傾向にある。空隙率が上記範囲にあるようなコア層(A)を得るためには、例えば発泡体の場合は、発泡に寄与するガスの量を増やせばよい。コア層(A)の空隙率は、後述する実施例に記載の方法により測定できる。 The porosity of the core layer (A) having a fine hollow structure is preferably 90.0 to 99.0%, more preferably 93.0 to 98.5%, and further preferably 95.0% to 98. 0.0%. Since the thermal conductivity of the base material portion is high, the thermal conductivity and strength tend to be within a preferable range by being in such a range. In order to obtain the core layer (A) having a porosity in the above range, for example, in the case of a foam, the amount of gas that contributes to foaming may be increased. The porosity of the core layer (A) can be measured by the method described in Examples described later.
 微細中空構造の独立中空体率(本明細書において独立中空体率とは、コア層(A)内の全ての微細中空構造のうち、コア層(A)の外部に通じていない微細中空構造の割合を意味する。)は、実用的な強度と断熱性能を発現する為には、好ましくは50%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上である。微細中空構造の独立中空体率は、後述する実施例に記載の方法により測定できる。 Independent hollow body ratio of the fine hollow structure (in the present specification, the independent hollow body ratio is the ratio of the fine hollow structure not communicating with the outside of the core layer (A) among all the fine hollow structures in the core layer (A)). In order to express practical strength and heat insulation performance, it is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. The independent hollow body ratio of the fine hollow structure can be measured by the method described in Examples described later.
 微細中空構造を有するコア層(A)は、中空部分の圧力を下げることで断熱性能を向上させることができる。微細中空構造の圧力は好ましくは10~10000Paであり、より好ましくは15~5000Pa、さらに好ましくは20~1000Paである。圧力が10Pa以上であることにより、ガスのリーク等の影響が相対的に小さくなり、その圧力を維持できる傾向にあり、圧力が10000Pa以下であることにより熱伝導率が低く良好な断熱材を得られやすい。圧力が上記範囲にあるような微細中空構造を得るためには、例えばコア層(A)に含まれるガスを多量に吸収出来る能力を有するガス吸収層(B)を用いればよい。微細中空構造の圧力は、後述する実施例に記載の方法により測定できる。 The core layer (A) having a fine hollow structure can improve the heat insulation performance by lowering the pressure in the hollow part. The pressure of the fine hollow structure is preferably 10 to 10,000 Pa, more preferably 15 to 5000 Pa, and still more preferably 20 to 1000 Pa. When the pressure is 10 Pa or more, the influence of gas leakage or the like is relatively reduced, and the pressure tends to be maintained. When the pressure is 10000 Pa or less, a good heat insulating material with low thermal conductivity is obtained. It is easy to be done. In order to obtain a fine hollow structure in which the pressure is in the above range, for example, a gas absorption layer (B) having a capability of absorbing a large amount of gas contained in the core layer (A) may be used. The pressure of the fine hollow structure can be measured by the method described in Examples described later.
 微細中空構造を有するコア層(A)の厚さは好ましくは0.5~40mmであり、より好ましくは1~25mmであり、さらに好ましくは2~20mmである。厚さが0.5mm以上であることにより、断熱材としての断熱性能を維持することができ、厚さが40mm以下であることによりガス吸収層(B)によるコア層(A)内部のガス吸収が容易となり断熱性能に優れる傾向にある。 The thickness of the core layer (A) having a fine hollow structure is preferably 0.5 to 40 mm, more preferably 1 to 25 mm, and further preferably 2 to 20 mm. When the thickness is 0.5 mm or more, heat insulation performance as a heat insulating material can be maintained, and when the thickness is 40 mm or less, gas absorption inside the core layer (A) by the gas absorption layer (B) is achieved. Tends to be easy and the heat insulation performance tends to be excellent.
 微細中空構造を有するコア層(A)の作製方法は特に限定されないが、例えば基材に発泡剤を含有させ、発泡により微細中空構造を作り出したり、基材に中空マイクロカプセル等を分散させたり、基材に中空構造を有する繊維状のものを含有させる手法等が挙げられる。中でも製造の容易性やガス透過性を考慮すると基材に発泡剤を含有させ、押出発泡法やビーズ発泡法により微細中空構造を作り出す手法が好ましく、押出発泡法がより好ましい。 The production method of the core layer (A) having a fine hollow structure is not particularly limited. For example, a foaming agent is included in the base material to create a fine hollow structure by foaming, or hollow microcapsules are dispersed in the base material. For example, a technique in which a fibrous material having a hollow structure is contained in the substrate can be used. Among these, considering the ease of production and gas permeability, a method of making the base material contain a foaming agent and creating a fine hollow structure by the extrusion foaming method or the bead foaming method is preferable, and the extrusion foaming method is more preferable.
 基材として用いられる樹脂は特に限定されないが、例えばポリウレタン、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリテトラフロロエチレン、ポリオレフィン、アイオノマー、ポリスルホン、酢酸セルロース及びその類縁体、エチルセルロース、ポリジメチルシロキサン、シリコーン樹脂、及びクロロスルホン化ポリエチレンが挙げられる。ガス透過性と強度との観点より、好ましくはポリウレタン、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリオレフィン、酢酸セルロース及びその類縁体、及びシリコーン樹脂であり、より好ましくはポリスチレン及びポリオレフィンである。これらは、1種以上を組み合わせて用いることができる。またこれらは市販品を容易に入手可能であり、それらを好適に用いることができる。 The resin used as the substrate is not particularly limited. For example, polyurethane, polyvinyl chloride, polycarbonate, polystyrene, polytetrafluoroethylene, polyolefin, ionomer, polysulfone, cellulose acetate and its analogs, ethyl cellulose, polydimethylsiloxane, silicone resin, And chlorosulfonated polyethylene. From the viewpoint of gas permeability and strength, polyurethane, polyvinyl chloride, polycarbonate, polystyrene, polyolefin, cellulose acetate and its analogs, and silicone resin are preferable, and polystyrene and polyolefin are more preferable. One or more of these can be used in combination. Moreover, these can be obtained easily and can use them suitably.
 発泡剤は微細中空構造を作るために基材であるゴムやプラスチック等を膨張させる為に用いられるものであり、主として化学発泡剤と物理発泡剤とに大別される。 The foaming agent is used to expand rubber, plastic, etc., which are base materials, in order to create a fine hollow structure, and is roughly classified into a chemical foaming agent and a physical foaming agent.
 化学発泡剤とは熱分解や化学反応により窒素、アンモニアガス、水素、二酸化炭素、水蒸気、酸素等のガスを発生する物質である。
 化学発泡剤として、例えばアゾ系、ニトロソ系、ヒドラジッド系、セミカルバジド系、アジド系、トリアゾール系、テトラゾール系、イソシアネート系、重炭酸塩、炭酸塩、亜硝酸塩、水素化物、重炭酸ナトリウムと酸との組み合わせ、過酸化水素とイースト菌との組み合わせ、及び金属粉末と酸との組み合わせが挙げられ、二酸化炭素を発生させる炭酸塩、及び重炭酸塩が高純度のガスを発生させることができるため好ましい。これらは、1種以上を組み合わせて用いることができる。またこれらは市販品を容易に入手可能であり、好適に用いることができる。
A chemical foaming agent is a substance that generates a gas such as nitrogen, ammonia gas, hydrogen, carbon dioxide, water vapor, or oxygen by thermal decomposition or chemical reaction.
Examples of chemical blowing agents include azo, nitroso, hydrazide, semicarbazide, azide, triazole, tetrazole, isocyanate, bicarbonate, carbonate, nitrite, hydride, sodium bicarbonate and acid. Examples include a combination, a combination of hydrogen peroxide and yeast, and a combination of metal powder and acid. Carbonate that generates carbon dioxide and bicarbonate are preferable because they can generate high-purity gas. One or more of these can be used in combination. Moreover, these can be obtained easily and can be used suitably.
 物理発泡剤とは圧縮ガスの放圧や気化等の物理的変化により発泡させる物質である。具体例として窒素等の不活性ガス、脂肪族炭化水素、ハロゲン化脂肪族炭化水素、水、二酸化炭素が挙げられ、二酸化炭素や水が安全性や環境適合性、ガス吸収の観点から好ましい。これらは、1種以上を組み合わせて用いることができる。またこれらは、市販品を容易に入手可能であり、好適に用いることができる。 Physical foaming agent is a substance that foams due to physical changes such as pressure release and vaporization of compressed gas. Specific examples include inert gases such as nitrogen, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, water, and carbon dioxide. Carbon dioxide and water are preferred from the viewpoints of safety, environmental compatibility, and gas absorption. One or more of these can be used in combination. Moreover, these can be obtained easily and can be used suitably.
 発泡剤の添加量は基材の種類や発泡剤の種類によって最適量が異なるため一義的に決定できない。 The amount of foaming agent added cannot be uniquely determined because the optimum amount varies depending on the type of base material and the type of foaming agent.
 発泡剤を用いた微細中空構造の作製方法は、発泡剤を含有させた基材中で発泡させることで行うが、発泡方法は発泡剤の種類や量により種々決定させる。一例として物理発泡剤として二酸化炭素ガスを用いる場合、公知の手法として、特開2010-173263に記載の手法に従って好適に実施することができる。 A method for producing a fine hollow structure using a foaming agent is performed by foaming in a base material containing a foaming agent, and the foaming method is variously determined depending on the type and amount of the foaming agent. As an example, when carbon dioxide gas is used as the physical foaming agent, it can be suitably carried out according to a technique described in JP 2010-173263A as a known technique.
[ガス吸収層(B)]
 ガス吸収層(B)は、本実施形態において図1に示す一例の様に、断熱材のコア層(A)の外側に位置し、前記微細中空構造を作製する際に用いたコア層(A)中のガスを吸収可能な層である。また、図1に示す一例は、ガス吸収層(B)がコア層(A)を完全に包含しているが、ガス吸収層(B)はコア層(A)の外側に位置すればよいため、図2に示す別例の様に、ガス吸収層(B)は、コア層(A)の一部を包含せず、コア層(A)の端部以外を包含する態様であってもよい。ガス吸収層(B)がガスを吸収することによりコア層(A)の中空部分の圧力が下がるため断熱性能が向上する。
[Gas absorption layer (B)]
The gas absorption layer (B) is located outside the core layer (A) of the heat insulating material as in the example shown in FIG. 1 in this embodiment, and the core layer (A It is a layer that can absorb the gas inside. In the example shown in FIG. 1, the gas absorption layer (B) completely includes the core layer (A), but the gas absorption layer (B) may be located outside the core layer (A). As in another example shown in FIG. 2, the gas absorption layer (B) may not include a part of the core layer (A) and may include a part other than the end of the core layer (A). . Since the gas absorption layer (B) absorbs the gas, the pressure in the hollow portion of the core layer (A) is lowered, so that the heat insulation performance is improved.
 ガス吸収層(B)は例えばガス吸収剤を含有することによりガスを吸収可能な層である。ガス吸収剤を含有させる態様として具体的には、ガス吸収剤を単独で用いた層又は基材にガス吸収剤を含有させた層が挙げられる。基材としてはコア層(A)に用いられる基材と同様な基材に加え、天然ゴム、ブタジエンゴム、シリコーンゴム等のゴム類、酢酸ビニールエマルジョン接着剤、ゴム系接着剤、デンプン系接着剤等の接着剤や粘着剤を好適に使用することができる。 The gas absorption layer (B) is a layer capable of absorbing gas by containing a gas absorbent, for example. Specific examples of the mode of containing the gas absorbent include a layer using the gas absorbent alone or a layer containing the gas absorbent in the base material. As the base material, in addition to the same base material used for the core layer (A), rubbers such as natural rubber, butadiene rubber, silicone rubber, vinyl acetate emulsion adhesive, rubber adhesive, starch adhesive Such adhesives and pressure-sensitive adhesives can be suitably used.
 ガス吸収剤はガスを吸収可能な物質であり、吸収するガスの種類は特に限定されないが、例えば二酸化炭素、水蒸気、酸素が例示される。
 ガス吸収剤として、例えばアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アミン化合物、エポキシ化合物、アルカリ金属、アルカリ土類金属、アルカリ金属の水素化物、アルカリ土類金属の水素化物、リチウムアルミニウムヒドリド、金属の硫酸塩、塩化カルシウム、活性アルミナ、シリカゲル、モレキュラーシーブ、アルカリ金属の炭酸塩、酸化カルシウム、硫酸、酸化りん、鉄、亜硫酸塩、アスコルビン酸、グリセリン、MXD6ナイロン、エチレン性不飽和炭化水素、シクロヘキセン基を有するポリマー、チタンやセリウム等の金属酸化物の酸素原子欠陥構造体が挙げられ、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、金属の硫酸塩、塩化カルシウム、活性アルミナ、シリカゲル、モレキュラーシーブ、アルカリ金属の炭酸塩、酸化カルシウム、鉄、及び亜硫酸塩が安価でガス吸収時に不活性ガスをほとんど発生しないため好ましい。これらは、1種以上を組み合わせて用いることができる。またこれらは、市販品を容易に入手可能であり、好適に用いることができる。
The gas absorbent is a substance that can absorb gas, and the type of gas to be absorbed is not particularly limited, and examples thereof include carbon dioxide, water vapor, and oxygen.
Examples of gas absorbents include alkali metal hydroxides, alkaline earth metal hydroxides, amine compounds, epoxy compounds, alkali metals, alkaline earth metals, alkali metal hydrides, alkaline earth metal hydrides, Lithium aluminum hydride, metal sulfate, calcium chloride, activated alumina, silica gel, molecular sieve, alkali metal carbonate, calcium oxide, sulfuric acid, phosphorus oxide, iron, sulfite, ascorbic acid, glycerin, MXD6 nylon, ethylenic acid Saturated hydrocarbons, polymers with cyclohexene groups, oxygen atom defect structures of metal oxides such as titanium and cerium, alkali metal hydroxides, alkaline earth metal hydroxides, metal sulfates, chlorides Calcium, activated alumina, silica gel, molecular sieve, alkali Metal carbonates, calcium oxide, iron, and preferable because sulfites hardly generate inert gas during inexpensive gas absorption. One or more of these can be used in combination. Moreover, these can be obtained easily and can be used suitably.
 ガス吸収層(B)として基材にガス吸収剤を含有させた層を用いる場合、ガス吸収剤の添加量は基材100質量部に対して好ましくは5~99質量部の範囲であり、ガスの吸収量及び速度を高くする為により好ましくは10~99質量部である。
 ガス吸収層(B)は多層構造でも単層構造でもよく、ガス吸収層(B)とコア層(A)との間にガスを吸収する層以外の層を設けてもよい。
 ガス吸収以外の層としては、例えばコア層(A)とガス吸収層(B)とを接着する接着層や、ガス吸収層の成分がコア層(A)に移行するのを防ぐ緩衝層が挙げられる。
When a layer containing a gas absorbent in a base is used as the gas absorption layer (B), the amount of the gas absorbent added is preferably in the range of 5 to 99 parts by weight with respect to 100 parts by weight of the base. More preferably, the amount is 10 to 99 parts by mass in order to increase the amount of absorption and the rate of absorption.
The gas absorption layer (B) may have a multilayer structure or a single layer structure, and a layer other than the gas absorption layer may be provided between the gas absorption layer (B) and the core layer (A).
Examples of layers other than gas absorption include an adhesive layer that bonds the core layer (A) and the gas absorption layer (B), and a buffer layer that prevents components of the gas absorption layer from moving to the core layer (A). It is done.
 ガス吸収層(B)がコア層(A)内部のガスを吸収除去する速度を高くするには、ガス吸収層(B)がコア層(A)の表面積の40%以上を直接又は間接に覆っていることが好ましく、75%以上を覆っていることがより好ましく、80%以上を覆っていることがさらに好ましい。 In order to increase the rate at which the gas absorption layer (B) absorbs and removes the gas inside the core layer (A), the gas absorption layer (B) directly or indirectly covers 40% or more of the surface area of the core layer (A). Preferably, it covers 75% or more, and more preferably covers 80% or more.
 ガス吸収層(B)の厚さは好ましくは10~500μmであり、この範囲にあることでガス吸収性能と断熱性能とを両立可能である傾向にある。厚さが10μm以上であることにより寄与するガス吸収剤の性能が得られやすく、厚さが500μm以下であることにより断熱材に占めるガス吸収層(B)の割合が大きくなりすぎず熱伝導率の悪化を抑制できる傾向にある。
 ガス吸収層(B)の作製は、例えば樹脂にガス吸収剤を溶融混練して樹脂ペレットを作製し、フィルム成型することにより可能である。別の形態としては、上述の接着剤にガス吸収剤を混練した後に、コア層(A)やフィルムにコーティングする事でも作製可能である。
The thickness of the gas absorption layer (B) is preferably 10 to 500 μm. By being in this range, the gas absorption performance and the heat insulation performance tend to be compatible. When the thickness is 10 μm or more, the performance of the gas absorbent that contributes is easily obtained, and when the thickness is 500 μm or less, the ratio of the gas absorption layer (B) in the heat insulating material does not become too large, and the thermal conductivity. It tends to be able to suppress the deterioration of.
The gas absorption layer (B) can be produced, for example, by melting and kneading a gas absorbent in a resin to produce resin pellets and film-molding. As another form, it can also be produced by coating the core layer (A) or film after kneading a gas absorbent with the above-mentioned adhesive.
[ガス遮断層(C)]
 ガス遮断層(C)は本実施形態において図1に示す一例の様に、ガス吸収層(B)の外側に位置し、外部からのガスを遮断可能な層である。
 ガス遮断層(C)は、コア層(A)内に空気の侵入を防ぐ事が可能な層であれば特に限定されないが、金属酸化物の蒸着膜、珪素酸化物の蒸着膜、金属蒸着膜、金属薄膜からなる群より選ばれる一種以上を有する多層体がガス遮断性に優れるため好ましい。これらは市販品として入手可能であり、好適に用いることができる。これらは、1種以上を組み合わせて用いることができる。
 ガス遮断層(C)は、多層構造や単層構造を形成していてもよく、また、ガス遮断層(C)とガス吸収層(B)又は大気との間に、ガスを遮断する層以外の層を設けてもよい。
 ガスを遮断する層以外の層としては、例えばヒートシールを行うためのシーラント樹脂層や、ガス遮断層(C)のピンホールを防止する保護層が挙げられる。
[Gas barrier layer (C)]
The gas blocking layer (C) is a layer that is located outside the gas absorption layer (B) and can block gas from the outside, as in the example shown in FIG. 1 in the present embodiment.
The gas barrier layer (C) is not particularly limited as long as it can prevent air from entering the core layer (A). However, a metal oxide vapor deposition film, a silicon oxide vapor deposition film, and a metal vapor deposition film are used. A multilayer body having one or more selected from the group consisting of metal thin films is preferable because of its excellent gas barrier properties. These are available as commercial products and can be suitably used. One or more of these can be used in combination.
The gas barrier layer (C) may have a multilayer structure or a single layer structure, and a layer other than a gas barrier layer between the gas barrier layer (C) and the gas absorption layer (B) or the atmosphere. These layers may be provided.
Examples of layers other than the gas blocking layer include a sealant resin layer for performing heat sealing and a protective layer for preventing pinholes in the gas blocking layer (C).
 ガス遮断層(C)の厚さは好ましくは1μm~500μmであり、この範囲にあることでガス遮断性能と断熱性能とを両立可能である傾向にある。 The thickness of the gas barrier layer (C) is preferably 1 μm to 500 μm. By being in this range, the gas barrier performance and the heat insulating performance tend to be compatible.
[断熱材の製造方法]
 本実施形態の断熱材の製造方法は、本実施形態の断熱材を得ることができるものであれば特に限定されないが、例えば下記の工程を有する。
(1)樹脂を発泡させて、微細中空構造を有するコア層(A)を得る工程
(2)ガスを吸収可能なガス吸収層(B)に、コア層(A)内部のガスを吸収させる工程
[Production method of heat insulating material]
Although the manufacturing method of the heat insulating material of this embodiment will not be specifically limited if the heat insulating material of this embodiment can be obtained, For example, it has the following process.
(1) A step of obtaining a core layer (A) having a fine hollow structure by foaming a resin (2) A step of absorbing a gas inside the core layer (A) in a gas absorption layer (B) capable of absorbing gas
 コア層を得る工程(1)としては、特に限定されないが、上述した「コア層(A)の作製方法」と同様のものが挙げられる。また、ガスを吸収させる工程(2)としては、特に限定されないが、例えば微細中空構造を有するコア層(A)を、ガス吸収層(B)及びガス遮断層(C)と複合化することにより行うことができる。複合化の手法として例えば、ガス吸収層(B)とガス遮断層(C)とを常法のドライラミネートにより接着しておき、このガス吸収層(B)とガス遮断層(C)との複合層に接着剤を塗布してコア層(A)に接着させる手法等が挙げられる。別の形態として、コア層(A)とガス吸収層(B)とを常法のドライラミネートや熱ラミネートで接着しておき、このコア層(A)とガス吸収層(B)の複合体をガス遮断層(C)で接着しないで覆う手法等も挙げられる。また、断熱材を使用する際には末端部を密閉化することが好ましく、例えばヒートシールにて押しつぶして密閉化することで断熱性及び性能の長期安定化を図ることができる。 The step (1) for obtaining the core layer is not particularly limited, and examples thereof include those similar to the above-described “method for producing the core layer (A)”. Further, the step (2) for absorbing gas is not particularly limited. For example, the core layer (A) having a fine hollow structure is combined with the gas absorption layer (B) and the gas blocking layer (C). It can be carried out. For example, the gas absorption layer (B) and the gas barrier layer (C) are bonded by a conventional dry laminate, and the gas absorption layer (B) and the gas barrier layer (C) are combined. Examples thereof include a technique of applying an adhesive to the layer and bonding it to the core layer (A). As another form, the core layer (A) and the gas absorption layer (B) are bonded with a conventional dry laminate or heat laminate, and the composite of the core layer (A) and the gas absorption layer (B) is formed. A technique of covering without adhering with the gas barrier layer (C) may also be mentioned. Moreover, when using a heat insulating material, it is preferable to seal a terminal part, for example, by heat-sealing and sealing, heat insulation and performance can be stabilized for a long term.
 コア層を得る工程(1)において、上述した「コア層(A)の作製方法」のうち、押出発泡法を用いることが好ましい。 In the step (1) of obtaining the core layer, it is preferable to use the extrusion foaming method among the “method for producing the core layer (A)” described above.
 以下、実施例により本実施形態を具体的に説明するが、本実施形態はこれらにより何ら限定されるものではない。 Hereinafter, the present embodiment will be specifically described by way of examples, but the present embodiment is not limited thereto.
[微細中空構造の平均中空径]
 微細中空構造の平均中空径は、次の方法によって算出した。具体的には、まず、コア層(A)を厚さ方向に直行する任意のX方向、並びに厚さ方向及びX方向に直行するY方向に沿って切断し、それぞれの切断面の中央部を走査型電子顕微鏡(日本電子製 商品名「JSM-6460LA」)で20~100倍に拡大して撮影した。
 次に、撮影した画像をA4用紙上に印刷し、画像上に長さ60mmの直線を一本描いた。ここで、X方向に切断した切断面についてはX方向に平行に、Y方向に切断した切断面についてはY方向に平行に直線を描いた。上記各直線上に存在(点接触を含める)する中空の数から中空の平均弦長(t)を下記式により算出し、X方向の平均弦長(tX方向)及びY方向の平均弦長(tY方向)とした。
 平均弦長(t)=60(mm)/(中空数×写真の倍率)
 さらに、X方向に沿って切断した切断面の拡大写真及びY方向に直交する方向に沿って切断した切断面の拡大写真の双方において、X方向及びY方向に直行するZ方向(厚さ方向)に平行な長さ60mmの直線をそれぞれ一本描き、これらの直線上の存在する中空数を数え、切断面ごとに厚さ方向の平均弦長(t)を算出して、これらの平均弦長(t)の相加平均値を算出し、この相加平均値を厚さ方向の平均弦長(tZ方向)とした。
 そして、算出された各方向における平均弦長(t)に基づいて下記式により微細中空構造の平均中空径を算出した。
 平均中空径(mm)=(tX方向+tY方向+tZ方向)/3
[Average hollow diameter of fine hollow structure]
The average hollow diameter of the fine hollow structure was calculated by the following method. Specifically, first, the core layer (A) is cut along an arbitrary X direction orthogonal to the thickness direction and the Y direction orthogonal to the thickness direction and the X direction, and the center portion of each cut surface is cut. The image was magnified 20 to 100 times with a scanning electron microscope (trade name “JSM-6460LA” manufactured by JEOL Ltd.).
Next, the photographed image was printed on A4 paper, and a straight line having a length of 60 mm was drawn on the image. Here, the cut surface cut in the X direction was drawn in parallel with the X direction, and the cut surface cut in the Y direction was drawn in parallel with the Y direction. The hollow average chord length (t) is calculated from the number of hollows existing on each straight line (including point contact) by the following formula, and the average chord length in the X direction (tX direction) and the average chord length in the Y direction ( tY direction).
Average chord length (t) = 60 (mm) / (number of hollows × photo magnification)
Furthermore, in both the enlarged photograph of the cut surface cut along the X direction and the enlarged photograph of the cut surface cut along the direction orthogonal to the Y direction, the Z direction (thickness direction) orthogonal to the X direction and the Y direction. Draw a straight line with a length of 60 mm parallel to each other, count the number of hollows on these straight lines, calculate the average chord length (t) in the thickness direction for each cut surface, and calculate the average chord length The arithmetic average value of (t) was calculated, and this arithmetic average value was defined as the average chord length in the thickness direction (tZ direction).
And based on the calculated average chord length (t) in each direction, the average hollow diameter of the fine hollow structure was calculated by the following formula.
Average hollow diameter (mm) = (tX direction + tY direction + tZ direction) / 3
[空隙率]
 コア層(A)のベースとなる基材の密度と、コア層(A)の密度とから、コア層(A)の空隙率を下記の計算式にて求めた。
 空隙率(%)=(基材密度-コア層(A)の密度)/(基材の密度)×100
[Porosity]
From the density of the base material serving as the base of the core layer (A) and the density of the core layer (A), the porosity of the core layer (A) was determined by the following calculation formula.
Porosity (%) = (base material density−core layer (A) density) / (base material density) × 100
[微細中空構造の独立中空体率]
 コア層(A)を縦25mm、横25mm、厚さ20mmの直方体状になるように断熱材の試験片を切出した後(厚さが足りない場合は、切出した試験片を重ねて上記直方体状とした。)、大気圧下、相対湿度50%、温度23℃の条件の恒温室内に試験片を1日静置した。
 次に、この試験片の正確な見かけの体積値Vaを測定した。次いで、試験片を十分に乾燥させた後、ASTM-D2856-70に記載されている手順Cに準じ、東芝・ベックマン株式会社製の空気比較式比重計930により、体積値Vxを測定した。そして、これらの体積値Va及び体積値Vxに基づき、下記の式から微細中空構造の独立中空体率を算出した。なお、各測定及び各算出は、異なる5つの試験片について行いその平均値を求めた。この平均値を独立中空体率とした。
 独立中空体率(%)=(Vx-W/ρ)×100/(Va-W/ρ)
Vx:微細中空構造を構成する樹脂の容積と、発泡樹脂成形体内の独立中空部分の中空の全容積との和(cm
Va:幾何学的に計算される見かけの体積(cm
W:発泡樹脂成形体の質量(g)
ρ:コア層(A)を構成する基材の密度(g/cm
[Independent hollow body ratio of fine hollow structure]
After cutting out the test piece of the heat insulating material so that the core layer (A) has a rectangular parallelepiped shape with a length of 25 mm, a width of 25 mm, and a thickness of 20 mm (if the thickness is insufficient, the cut test pieces are stacked to form the above rectangular solid The test piece was allowed to stand for one day in a thermostatic chamber under conditions of atmospheric pressure, relative humidity 50%, and temperature 23 ° C.
Next, the exact apparent volume value Va of this test piece was measured. Next, after sufficiently drying the test piece, the volume value Vx was measured with an air comparison type hydrometer 930 manufactured by Toshiba Beckman Co., Ltd. according to the procedure C described in ASTM-D2856-70. And based on these volume value Va and volume value Vx, the independent hollow body rate of the fine hollow structure was computed from the following formula. In addition, each measurement and each calculation were performed about five different test pieces, and the average value was calculated | required. This average value was defined as the independent hollow body ratio.
Independent hollow body ratio (%) = (Vx−W / ρ) × 100 / (Va−W / ρ)
Vx: Sum of the volume of the resin constituting the fine hollow structure and the total hollow volume of the independent hollow portion in the foamed resin molded body (cm 3 )
Va: Apparent volume calculated geometrically (cm 3 )
W: Mass of the foamed resin molding (g)
ρ: density of the base material constituting the core layer (A) (g / cm 3 )
[微細中空構造の圧力]
<手法1>
 絶対圧力センサー(オプテックス・エフエー社:FHAV-050KP)を内径1.2mmの注射針に溶接したものを用意した。続いて、この絶対圧力センサー付き注射針と作製した断熱材とをグローブボックスに入れ、グローブボックス内を二酸化炭素で置換した。その後、絶対圧力センサー付き注射針の先が作製した断熱材のコア層(A)の中心部分に届くように突き刺し、注射針を指した部分にエポシキ系接着剤(ニチバン社:アラルダイトAR-R30)を塗布し、外部から気体が入らないようにした。7日後に微細中空構造の圧力を測定した。なお、注射針を突き刺すのは断熱材の作製後、1時間以内に実施した。なお、圧力を測定した断熱材では、その後に後述する熱伝導率を測定できない為、熱伝導率は同構成の別の断熱材を作製して測定した。
<手法2>
 ガス遮断層(C)がコア層(A)と接着剤等で一体化していない断熱材は、より簡単に測定できる以下の手法で測定した。
 アクリル製の真空チャンバーを用意し、これに高精度真空計(キヤノンアネルバ社製:M-342DG)を装着した。続いて、作製してから2週間経過した断熱材をチャンバーに入れた後、距離を精密に測定できる変位センサー(オムロン社製:ZX2)をチャンバーの外に設置し、この変位センサーとチャンバーに入れた断熱材の表面までの距離を測定出来るようにした。その後、チャンバー内部をゆっくりと真空化すると、チャンバー内部の圧力がコア層(A)の圧力より低くなった時点でガス遮断層(C)が動く為、この動きを変位センサーで感知する事で、コア層(A)の圧力を測定した。
[Pressure of fine hollow structure]
<Method 1>
An absolute pressure sensor (Optex FA: FHAV-050KP) welded to an injection needle with an inner diameter of 1.2 mm was prepared. Subsequently, the injection needle with an absolute pressure sensor and the produced heat insulating material were put in a glove box, and the inside of the glove box was replaced with carbon dioxide. After that, the tip of the injection needle with an absolute pressure sensor was pierced so as to reach the central portion of the core layer (A) of the heat insulating material produced, and the epoxy adhesive (Nichiban: Araldite AR-R30) was pointed to the injection needle. Was applied to prevent gas from entering from the outside. After 7 days, the pressure of the fine hollow structure was measured. The injection needle was pierced within one hour after the heat insulating material was produced. In addition, in the heat insulating material which measured the pressure, since the heat conductivity mentioned later cannot be measured after that, the heat conductivity produced and measured another heat insulating material of the same structure.
<Method 2>
The heat insulating material in which the gas barrier layer (C) is not integrated with the core layer (A) with an adhesive or the like was measured by the following method which can be measured more easily.
An acrylic vacuum chamber was prepared, and a high-precision vacuum gauge (Canon Anelva Co., Ltd .: M-342DG) was attached thereto. Subsequently, after the insulation material that has been passed for two weeks has been placed in the chamber, a displacement sensor (Omron: ZX2) that can accurately measure the distance is placed outside the chamber, and the displacement sensor and chamber are placed in the chamber. Measured the distance to the surface of the insulation. After that, if the inside of the chamber is slowly evacuated, the gas blocking layer (C) moves when the pressure inside the chamber becomes lower than the pressure of the core layer (A). By detecting this movement with the displacement sensor, The pressure of the core layer (A) was measured.
[厚さ]
 コア層(A)の厚さは、ノギスを用いて0.1ミリメートル単位でコア層(A)測定した。
 ガス吸収層(B)及びガス遮断層(C)の厚さは、各層の断面部分を走査型電子顕微鏡(日本電子製、JSM-6460LA)にて観察して1マイクロメートル単位で測定した。
 断熱体の試験サンプルの厚さは、上記HFM436により熱伝導率測定によって、同時に測定した。
[thickness]
The thickness of the core layer (A) was measured in units of 0.1 millimeter using a caliper.
The thicknesses of the gas absorption layer (B) and the gas barrier layer (C) were measured in units of 1 micrometer by observing a cross-sectional portion of each layer with a scanning electron microscope (JSM-6460LA, manufactured by JEOL Ltd.).
The thickness of the test sample of the heat insulator was measured simultaneously by the thermal conductivity measurement with the HFM436.
[熱伝導率]
 JIS A1412に記載されているHFM法に準拠して、ネッチジャパン(株)製の熱伝導率測定装置HFM436を用いて25度で、断熱材の熱伝導率を測定した。
 熱伝導率が、
 0.020W/mK以下であるものをA評価、
 0.021~0.025W/mKであるものをB評価、
 0.026~0.030W/mKであるものをC評価、
 0.031W/mK以上であるものをD評価とした。
 D評価としたものを不合格とする。
[Thermal conductivity]
In accordance with the HFM method described in JIS A1412, the thermal conductivity of the heat insulating material was measured at 25 degrees using a thermal conductivity measuring device HFM436 manufactured by Netch Japan Co., Ltd.
Thermal conductivity is
A rating of 0.020 W / mK or less,
B evaluation of 0.021 to 0.025 W / mK
C evaluation of 0.026 to 0.030 W / mK
What was 0.031 W / mK or more was made into D evaluation.
What was evaluated as D is rejected.
[実施例1]
<ガス吸収層(B1)の作製及びガス遮断層(C)との複合化>
 ガス吸収層(B1)は、基材としてポリエチレン樹脂(ダウケミカル社製ELITE5220G)、二酸化炭素吸収剤として水酸化カルシウム、及び水蒸気吸収剤として酸化カルシウムを用いて作製した。
 まず、ポリエチレン樹脂/水酸化カルシウム=51質量部/49質量部の比で溶融混練して、ガス吸収層(B)形成用の樹脂ペレット(b1-1)を作製した。同様に、ポリエチレン樹脂/酸化カルシウム=60質量部/40質量部の比で溶融混練して、ガス吸収層(B)形成用の樹脂ペレット(b1-2)を作製した。
 続いて、この樹脂ペレット(b1-1)及び(b1-2)を1対1の比で用いて二層フィルム成型を行い、100μm厚のガス吸収層(B1)を得た。
 続いて作製したガス吸収層(B1)の(b1-1)層側に、東洋モートン社製のドライラミネート用接着剤TM250HV及び硬化剤CAT-RT86L-60を酢酸エチルにて2倍に希釈したものをバーコーターで塗布、乾燥させた後に、ガス遮断層(C)としてPET/DL/Al/LDPE/LLDPEの層構成を有する市販のガスバリアフィルム(サンエー化研:レトルトパウチ用,PET:ポリエチレンテレフタレート、DL:接着剤、Al:アルミニウム箔、LDPE:低密度ポリエチレン、LLDPE:直鎖状短鎖分岐ポリエチレン)のLLDPE側をドライラミネートにより接着させて複合化し、ガス吸収層(B1)とガス遮断層(C)とからなる多層フィルムを得た。
[Example 1]
<Production of Gas Absorbing Layer (B1) and Compounding with Gas Barrier Layer (C)>
The gas absorption layer (B1) was prepared using a polyethylene resin (ELITE 5220G manufactured by Dow Chemical Company) as a base material, calcium hydroxide as a carbon dioxide absorbent, and calcium oxide as a water vapor absorbent.
First, melt-kneading was carried out at a ratio of polyethylene resin / calcium hydroxide = 51 parts by mass / 49 parts by mass to prepare resin pellets (b1-1) for forming a gas absorption layer (B). Similarly, melt-kneading was performed at a ratio of polyethylene resin / calcium oxide = 60 parts by mass / 40 parts by mass to prepare resin pellets (b1-2) for forming the gas absorption layer (B).
Subsequently, a two-layer film was formed using the resin pellets (b1-1) and (b1-2) at a ratio of 1: 1 to obtain a gas absorption layer (B1) having a thickness of 100 μm.
Subsequent to the (b1-1) layer side of the gas absorption layer (B1) produced, a dry laminate adhesive TM250HV manufactured by Toyo Morton and a curing agent CAT-RT86L-60 were diluted twice with ethyl acetate. After coating with a bar coater and drying, a commercially available gas barrier film having a layer structure of PET / DL / Al / LDPE / LLDPE as a gas barrier layer (C) (San-A Kaken: for retort pouches, PET: polyethylene terephthalate, The LLDPE side of DL: adhesive, Al: aluminum foil, LDPE: low density polyethylene, LLDPE: linear short chain branched polyethylene) is bonded and compounded by dry lamination, and the gas absorption layer (B1) and gas barrier layer ( C) was obtained.
<コア層(A1)の作製及び多層フィルムとの複合化>
  第一押出機と第二押出機を接続してなるタンデム型押出機を用意した。該タンデム型押出機の第一押出機に、100質量部のポリスチレン樹脂(PSジャパン社製G9305)を供給して溶融混錬し、第一押出機の流路の途中から発泡剤としての二酸化炭素を圧入して、溶融状態のポリスチレン樹脂と二酸化炭素とを均一に混合混練した上で、ポリスチレン樹脂を第二押出機に連続的に供給して溶融混練しつつ発泡に適した温度に冷却した。その後、第二押出機の先端に取り付けたサーキュラー金型からポリスチレン樹脂を押出発泡させ、得られた円筒状の発泡成形体をマンドレルに添わせて冷却し、マンドレル上の一点で、カッターにより円筒状の発泡成形体を切開して、微細中空構造を有する5mm厚のコア層(A1)とした。コア層(A1)の平均中空径、空隙率、独立中空体率は表1の通りであった。
 続いて、上記方法で作製したガス吸収層(B1)とガス遮断層(C)とを有する多層フィルムのガス吸収層(B1)の(b1-2)層側に、ガス遮断層(C)を接着させた方法と同様の手法で接着剤を用いてコア層(A)を接着した。そして末端部を幅20mmの範囲でヒートシール(富士インパルス社製)を用いて密閉化した。7日後にこのコア層(A1)-ガス吸収層(B1)-ガス遮断層(C)の複合体(断熱材)の熱伝導率と圧力(手法1)を測定した。結果を表1に示す。
<Preparation of core layer (A1) and composite with multilayer film>
A tandem type extruder in which a first extruder and a second extruder are connected was prepared. 100 parts by mass of polystyrene resin (G9305 manufactured by PS Japan Co., Ltd.) is supplied to the first extruder of the tandem extruder and melt kneaded, and carbon dioxide as a foaming agent from the middle of the flow path of the first extruder. The melted polystyrene resin and carbon dioxide were uniformly mixed and kneaded, and the polystyrene resin was continuously supplied to the second extruder and cooled to a temperature suitable for foaming while being melt-kneaded. Then, polystyrene resin is extruded and foamed from a circular mold attached to the tip of the second extruder, and the resulting cylindrical foamed product is cooled along with the mandrel, and is cylindrical by a cutter at one point on the mandrel. The foam molded body was cut into a 5 mm thick core layer (A1) having a fine hollow structure. Table 1 shows the average hollow diameter, porosity, and independent hollow body ratio of the core layer (A1).
Subsequently, the gas barrier layer (C) is formed on the (b1-2) layer side of the gas absorption layer (B1) of the multilayer film having the gas absorption layer (B1) and the gas barrier layer (C) produced by the above method. The core layer (A) was bonded using an adhesive in the same manner as the bonded method. And the terminal part was sealed in the range of 20 mm in width using the heat seal (made by Fuji Impulse). Seven days later, the thermal conductivity and pressure (method 1) of the composite (heat insulating material) of this core layer (A1) -gas absorption layer (B1) -gas barrier layer (C) were measured. The results are shown in Table 1.
[実施例2]
<ガス吸収層(B2)の作製>
 ガス吸収層(B2)は、基材としてポリエチレン樹脂(ダウケミカル社製ELITE5220G)、二酸化炭素吸収剤として水酸化カルシウム、及び水蒸気吸収剤として酸化カルシウムを用いて作製した。
 まず、ポリエチレン樹脂/水酸化カルシウム=50質量部/50質量部の比で溶融混練して、ガス吸収層(B)形成用の樹脂ペレット(b2-1)を作製した。同様に、ポリエチレン樹脂/酸化カルシウム=50質量部/50質量部の比で溶融混練して、ガス吸収層(B)形成用の樹脂ペレット(b2-2)を作製した。
 続いて、この樹脂ペレット(b2-1)及び(b2-2)を1.4対1の比で用いて二層フィルム成型を行い、120μm厚のガス吸収層(B2)を得た。
[Example 2]
<Production of gas absorption layer (B2)>
The gas absorption layer (B2) was prepared using polyethylene resin (ELITE 5220G manufactured by Dow Chemical Co., Ltd.) as a base material, calcium hydroxide as a carbon dioxide absorbent, and calcium oxide as a water vapor absorbent.
First, melt-kneading was carried out at a ratio of polyethylene resin / calcium hydroxide = 50 parts by mass / 50 parts by mass to prepare resin pellets (b2-1) for forming the gas absorption layer (B). Similarly, melt-kneading was carried out at a ratio of polyethylene resin / calcium oxide = 50 parts by mass / 50 parts by mass to prepare resin pellets (b2-2) for forming the gas absorption layer (B).
Subsequently, a two-layer film was formed using the resin pellets (b2-1) and (b2-2) at a ratio of 1.4 to 1, and a gas absorption layer (B2) having a thickness of 120 μm was obtained.
<コア層(A2)の作製とガス吸収層(B2)との複合化>
 発泡剤として二酸化炭素と水を用いた以外は、実施例1と同様の方法でコア層(A)を作製した。作製したコア層(A2)の平均中空径、空隙率、独立中空体率は表1の通りであった。
 続いて、前記方法で作製したコア層(A2)にガス吸収層(B2)の(b2-1)層側を接着させて複合体を作製した。この工程は、二酸化炭素雰囲気下で行なった。
<Composition of production of core layer (A2) and gas absorption layer (B2)>
A core layer (A) was produced in the same manner as in Example 1 except that carbon dioxide and water were used as the foaming agent. Table 1 shows the average hollow diameter, porosity, and independent hollow body ratio of the produced core layer (A2).
Subsequently, the (b2-1) layer side of the gas absorption layer (B2) was bonded to the core layer (A2) produced by the above method to produce a composite. This step was performed in a carbon dioxide atmosphere.
<コア層(A2)ガス吸収層(B2)の複合体とガス遮断層(C)との複合化>
 上記で作製したコア層(A2)とガス吸収層(B2)の複合体を、実施例1に記載のガス遮断層(C)で完全に覆い、複合体とガス遮断層(C)の間の気体を出来るだけ除去した後に末端部を幅10mmの範囲でヒートシールを用いて密閉化した。この工程は二酸化炭素雰囲気下で行なった。二週間後にこのコア層(A2)-ガス吸収層(B2)-ガス遮断層(C)の複合体(断熱材)の熱伝導率と圧力(手法2)を測定した。結果を表1に示す。
<Composite of core layer (A2) gas absorption layer (B2) composite and gas barrier layer (C)>
The composite of the core layer (A2) and the gas absorption layer (B2) produced above is completely covered with the gas barrier layer (C) described in Example 1, and between the composite and the gas barrier layer (C). After removing the gas as much as possible, the end portion was sealed in a range of 10 mm in width using a heat seal. This step was performed in a carbon dioxide atmosphere. Two weeks later, the thermal conductivity and pressure (Method 2) of the composite (heat insulating material) of this core layer (A2) -gas absorption layer (B2) -gas barrier layer (C) were measured. The results are shown in Table 1.
[実施例3]
 コア層(A)として、表1の平均中空径、空隙率、独立中空体率を有するコア層(A3)を用いた以外は、実施例2と同様に手法で複合体(断熱材)を作製し熱伝導率と圧力(手法2)を測定した。結果を表1に示す。
[Example 3]
As the core layer (A), a composite (heat insulating material) was prepared in the same manner as in Example 2 except that the core layer (A3) having the average hollow diameter, porosity, and independent hollow body ratio shown in Table 1 was used. The thermal conductivity and pressure (Method 2) were measured. The results are shown in Table 1.
[実施例4]
 実施例2と同様の方法でコア層(A2)を得た。続いて、コア層(A2)の表面の1/3をガス吸収層(B2)と接着し、その上から全体をガス遮断層(C)で覆った。ガス遮断層(C)の間の気体を出来るだけ除去した後に末端部を幅10mmの範囲でヒートシールを用いて密閉化した。この工程は二酸化炭素雰囲気下で行なった。二週間後にこのコア層(A2)-ガス吸収層(B2)-ガス遮断層(C)の複合体(断熱材)の熱伝導率と圧力(手法2)を測定した。結果を表1に示す。
[Example 4]
A core layer (A2) was obtained in the same manner as in Example 2. Subsequently, 1/3 of the surface of the core layer (A2) was bonded to the gas absorption layer (B2), and the whole was covered with the gas barrier layer (C). After removing the gas between the gas barrier layers (C) as much as possible, the end portion was sealed with a heat seal in the range of a width of 10 mm. This step was performed in a carbon dioxide atmosphere. Two weeks later, the thermal conductivity and pressure (Method 2) of the composite (heat insulating material) of this core layer (A2) -gas absorption layer (B2) -gas barrier layer (C) were measured. The results are shown in Table 1.
[比較例1]
 従来のポリスチレン発泡体である岩倉化学工業社の製品名セルボードを断熱材として熱伝導率を測定したが、実施例に劣る結果となった(表1)。その他の測定及び評価の結果を表1に示す。
[Comparative Example 1]
The thermal conductivity was measured using a cell board manufactured by Iwakura Chemical Industry Co., Ltd., which is a conventional polystyrene foam, as a heat insulating material, but the results were inferior to those of the examples (Table 1). The results of other measurements and evaluations are shown in Table 1.
[比較例2]
 ガス吸収層(B1)及びガス遮断層(C)を用いず、実施例1と同様の方法で得たコア層(A1)のみを作製して、それを断熱材として熱伝導率を測定したが、微細中空体の圧力が低下しない為、熱伝導率は実施例に劣る結果となった(表1)。その他の測定及び評価の結果を表1に示す。
[Comparative Example 2]
Although the gas absorption layer (B1) and the gas barrier layer (C) were not used, only the core layer (A1) obtained by the same method as in Example 1 was produced, and the thermal conductivity was measured using it as a heat insulating material. Since the pressure of the fine hollow body did not decrease, the thermal conductivity was inferior to the examples (Table 1). The results of other measurements and evaluations are shown in Table 1.
[比較例3]
 ガス吸収層(B2)及びガス遮断層(C)を用いず、実施例2と同様の方法で得たコア層(A2)のみを作製して、それを断熱材として熱伝導率を測定したが、微細中空体の圧力が低下しない為、熱伝導率は実施例に劣る結果となった(表1)。その他の測定及び評価の結果を表1に示す。
[Comparative Example 3]
Although the gas absorption layer (B2) and the gas barrier layer (C) were not used, only the core layer (A2) obtained by the same method as in Example 2 was produced, and the thermal conductivity was measured using it as a heat insulating material. Since the pressure of the fine hollow body did not decrease, the thermal conductivity was inferior to the examples (Table 1). The results of other measurements and evaluations are shown in Table 1.
[参考例1]
 実施例1のガス吸収層用ペレットを作製する際に用いた水酸化カルシウムと酸化カルシウムの粉末を、通気性を有する小袋に入れてガス吸収小袋を作製した。続いて、実施例1と同様の手法でコア層(A1)を得た後、コア層(A1)の上にガス吸収小袋を乗せた。コア層(A1)とガス吸収小袋の全体をガス遮断層(C)で完全に覆い、ガス遮断層(C)の間の気体を出来るだけ除去した後に末端部を幅10mmの範囲でヒートシールを用いて密閉化した。この工程は二酸化炭素雰囲気下で行なった。二週間後にこの複合体の圧力(手法2)と熱伝導率を測定した。しかし、ガス吸収層(B)ではなく袋状のガス吸収小袋を用いている為、圧力の低下は小さかった。また、小袋部分が断熱材の表面から出っ張ってしまった為、正確に熱伝導率を測定する事はできなかった。
[Reference Example 1]
The powder of calcium hydroxide and calcium oxide used when producing the pellet for the gas absorption layer of Example 1 was put into a gas-permeable pouch to produce a gas absorption pouch. Subsequently, after obtaining the core layer (A1) by the same method as in Example 1, a gas absorption sachet was placed on the core layer (A1). Cover the entire core layer (A1) and gas absorption pouch with the gas barrier layer (C), remove the gas between the gas barrier layer (C) as much as possible, and then heat-seal the end part within a width of 10mm. And sealed. This step was performed in a carbon dioxide atmosphere. Two weeks later, the pressure (method 2) and thermal conductivity of the composite were measured. However, since the bag-shaped gas absorption sachet was used instead of the gas absorption layer (B), the pressure drop was small. Moreover, since the sachet portion protruded from the surface of the heat insulating material, the heat conductivity could not be measured accurately.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本出願は、2016年7月11日に日本国特許庁へ出願された日本特許出願(特願2016-136563号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 
This application is based on a Japanese patent application (Japanese Patent Application No. 2016-136563) filed with the Japan Patent Office on July 11, 2016, the contents of which are incorporated herein by reference.

Claims (10)

  1.  微細中空構造を有するコア層(A)、
     少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)、及び
     該ガス吸収層(B)の外側に位置し、ガスを遮断可能なガス遮断層(C)を有する断熱材。
    A core layer (A) having a fine hollow structure;
    A gas absorption layer (B) capable of absorbing gas, at least a part of which is positioned outside the core layer (A), and a gas barrier layer positioned outside the gas absorption layer (B) and capable of blocking gas A heat insulating material having (C).
  2.  前記コア層(A)の空隙率が90~99%の範囲にある請求項1に記載の断熱材。 The heat insulating material according to claim 1, wherein the porosity of the core layer (A) is in the range of 90 to 99%.
  3.  前記コア層(A)の微細中空構造の平均中空径が1~500μmの範囲にある請求項1又は2に記載の断熱材。 The heat insulating material according to claim 1 or 2, wherein an average hollow diameter of the fine hollow structure of the core layer (A) is in the range of 1 to 500 µm.
  4.  前記コア層(A)の微細中空構造の圧力が10~10000Paの範囲にある請求項1~3のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 3, wherein the pressure of the fine hollow structure of the core layer (A) is in the range of 10 to 10,000 Pa.
  5.  前記コア層(A)の厚さが0.5~40mmの範囲にある請求項1~4のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 4, wherein the thickness of the core layer (A) is in the range of 0.5 to 40 mm.
  6.  前記コア層(A)の微細中空構造の独立中空体率が50%以上である請求項1~5のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 5, wherein an independent hollow body ratio of the fine hollow structure of the core layer (A) is 50% or more.
  7.  前記ガス吸収層(B)が前記コア層(A)の表面の40%以上を直接又は間接に覆っている請求項1~6のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 6, wherein the gas absorption layer (B) directly or indirectly covers 40% or more of the surface of the core layer (A).
  8.  前記ガス吸収層(B)が二酸化炭素、水蒸気、及び酸素からなる群より選ばれる1種以上を吸収可能な請求項1~7のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 7, wherein the gas absorption layer (B) can absorb one or more selected from the group consisting of carbon dioxide, water vapor, and oxygen.
  9.  下記の工程を有する請求項1~8のいずれか1項に記載の断熱材の製造方法。
    (1)樹脂を発泡させて、微細中空構造を有するコア層(A)を得る工程
    (2)少なくとも一部が該コア層(A)の外側に位置し、ガスを吸収可能なガス吸収層(B)に、前記コア層(A)内部のガスを吸収させる工程
    The method for producing a heat insulating material according to any one of claims 1 to 8, comprising the following steps.
    (1) Step of obtaining a core layer (A) having a fine hollow structure by foaming a resin (2) A gas absorbing layer (at least part of which is located outside the core layer (A) and capable of absorbing gas) B) causing the gas inside the core layer (A) to be absorbed
  10.  前記コア層(A)を得る工程において、押出発泡法を用いる請求項9に記載の断熱材の製造方法。
     
    The method for manufacturing a heat insulating material according to claim 9, wherein an extrusion foaming method is used in the step of obtaining the core layer (A).
PCT/JP2017/024835 2016-07-11 2017-07-06 Heat insulating material and method for producing same WO2018012402A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780042591.0A CN109477606A (en) 2016-07-11 2017-07-06 Heat-insulating material and its manufacturing method
JP2018527564A JP7192497B2 (en) 2016-07-11 2017-07-06 Insulating material and its manufacturing method
KR1020197003447A KR20190027854A (en) 2016-07-11 2017-07-06 Insulation and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-136563 2016-07-11
JP2016136563 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012402A1 true WO2018012402A1 (en) 2018-01-18

Family

ID=60952482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024835 WO2018012402A1 (en) 2016-07-11 2017-07-06 Heat insulating material and method for producing same

Country Status (5)

Country Link
JP (1) JP7192497B2 (en)
KR (1) KR20190027854A (en)
CN (1) CN109477606A (en)
TW (1) TW201821727A (en)
WO (1) WO2018012402A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159373A (en) * 1994-11-30 1996-06-21 Sanyo Electric Co Ltd Vacuum heat insulating material
US5532034A (en) * 1994-12-06 1996-07-02 Whirlpool Corporation Getter system for vacuum insulation panel
JPH10169889A (en) * 1996-12-10 1998-06-26 Sharp Corp Heat insulation material pack
JP2006123178A (en) * 2004-10-26 2006-05-18 Kaneka Corp Heat insulating panel
JP2007040359A (en) * 2005-08-02 2007-02-15 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2007313652A (en) * 2006-05-23 2007-12-06 Toppan Printing Co Ltd Barrier facing material for vacuum heat insulating material and vacuum heat insulating material
JP2009063065A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2013040717A (en) * 2011-08-16 2013-02-28 Hitachi Appliances Inc Vacuum heat insulation material, and refrigerator using the same
CN104132220A (en) * 2014-08-18 2014-11-05 李载润 Vacuum insulation panel for active absorbent and manufacturing method for vacuum insulation panel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2746069B2 (en) 1993-08-10 1998-04-28 松下電器産業株式会社 Foam insulation and method of manufacturing the same
JPH07103389A (en) * 1993-10-04 1995-04-18 Fujitsu General Ltd Heat insulating material
JPH07234067A (en) 1994-02-21 1995-09-05 Hitachi Ltd Vacuum thermal insulation door for refrigerator and the like
JPH09138058A (en) 1995-11-14 1997-05-27 Sanyo Electric Co Ltd Vacuum heat insulating material
JP3935556B2 (en) * 1997-05-20 2007-06-27 大日本印刷株式会社 Insulating material and manufacturing method thereof
JPH11257573A (en) * 1998-03-10 1999-09-21 Sumitomo Chem Co Ltd Vacuum insulation material
JPH11334764A (en) 1998-05-22 1999-12-07 Matsushita Electric Ind Co Ltd Heat insulating box, its production and use
JP2001114922A (en) * 1999-10-13 2001-04-24 Asahi Kasei Corp Phenol resin foam
JP2006336722A (en) 2005-06-01 2006-12-14 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2010059756A (en) * 2008-09-08 2010-03-18 Toray Ind Inc High performance heat insulation material
CN201866468U (en) * 2010-11-11 2011-06-15 太仓宏大方圆电气有限公司 Wet superfine glass wool vacuum insulation panel
JPWO2016084763A1 (en) * 2014-11-26 2017-08-31 旭硝子株式会社 Vacuum insulation material and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159373A (en) * 1994-11-30 1996-06-21 Sanyo Electric Co Ltd Vacuum heat insulating material
US5532034A (en) * 1994-12-06 1996-07-02 Whirlpool Corporation Getter system for vacuum insulation panel
JPH10169889A (en) * 1996-12-10 1998-06-26 Sharp Corp Heat insulation material pack
JP2006123178A (en) * 2004-10-26 2006-05-18 Kaneka Corp Heat insulating panel
JP2007040359A (en) * 2005-08-02 2007-02-15 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2007313652A (en) * 2006-05-23 2007-12-06 Toppan Printing Co Ltd Barrier facing material for vacuum heat insulating material and vacuum heat insulating material
JP2009063065A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2013040717A (en) * 2011-08-16 2013-02-28 Hitachi Appliances Inc Vacuum heat insulation material, and refrigerator using the same
CN104132220A (en) * 2014-08-18 2014-11-05 李载润 Vacuum insulation panel for active absorbent and manufacturing method for vacuum insulation panel

Also Published As

Publication number Publication date
KR20190027854A (en) 2019-03-15
CN109477606A (en) 2019-03-15
JPWO2018012402A1 (en) 2019-05-09
TW201821727A (en) 2018-06-16
JP7192497B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
KR101546544B1 (en) Multi-layered polystyrene resin foamed sheet
KR102343721B1 (en) Multilayer foam sheet and interleaf for glass plates
KR101521410B1 (en) Polyethylene resin extrusion-foamed sheet, and interleaving paper for glass plates
WO2014196278A1 (en) Foamed multilayer polyethylene resin sheet, and glass-panel slip sheet
JP6760265B2 (en) Polyethylene film
JP2020192811A (en) Polyethylene film
CN101393132A (en) Oxygen detector sheet and composite deoxidizer having oxygen detector sheet
WO2018012402A1 (en) Heat insulating material and method for producing same
TWI722847B (en) Packing sheet
JP2020090609A (en) Polyethylene-based resin foam particle and polyethylene-based resin foam particle molded body
KR20170116148A (en) The heat-
IT202000007069A1 (en) Monomaterial polymeric film
JP2011163415A (en) Method for manufacturing vacuum heat insulating material connection sheet
JPH05200958A (en) Easily tearable laminated film and easily tearable bag using the same
JP6664283B2 (en) Oxygen absorbing film roll
JP6786851B2 (en) Packaging with bean sprouts and how to keep the freshness of bean sprouts
JP6957863B2 (en) Package containing fungus mushrooms and method for maintaining freshness of fungus mushrooms
CN114889266B (en) PETG curtain coating membrane
JP2013209577A (en) Polyethylene resin foam sheet and laminated foam sheet
JP2004009522A (en) Laminated film
JP7256434B2 (en) Polyethylene-based resin multilayer foamed sheet and method for producing the same
JP5557486B2 (en) Polyethylene resin foam sheet
JP5375073B2 (en) Laminated body
JP6995600B2 (en) A method for manufacturing a paper sheet for a glass plate made of a thermoplastic resin foam.
JP2018165025A (en) Moisture absorption film and method of manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527564

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197003447

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17827530

Country of ref document: EP

Kind code of ref document: A1